Mechanical Vibration Testing
Reciprocating Pumps

Zach Kokel
Pump Engineering Manager
FMC Industries Inc.
Stephenville, TX, USA

James (B.J.) Dyck
Facilities Engineer
Chevron
Lafayette, LA, USA

26th International Pump Symposium
Condensate Injection Recip Pump

- Specific gravity : 0.44
- Vapor pressure : 554.7 PSIA
- Discharge Pressure : 5500 PSIA
- Speed : 240 RPM
- Quintuplex Design

Pump was purchased with a witnessed vibration test under suppliers vibration specification.

Specification’s vibration acceptance level was 0.25 in/sec for the pump and 0.30 in/sec for guards and spools.

Photo courtesy of FMC Industries
Available Standards

- **Balmac**
 - Equipment category definition is vague.
 - Acceptable vibration allowance varied by category.
- **ISO 108016-6:1995**
 - Equipment category definition is vague.
 - Acceptable vibration allowance varied by category.
- **API 674, 2nd Edition**
 - Does not specify any vibration acceptability tolerances.
Vibration Conversion Chart
ISO 10816-6 Vibration Limits

Table A.1 — Vibration classification numbers and guide values for reciprocating machines

<table>
<thead>
<tr>
<th>Vibration severity grades</th>
<th>Maximum values of overall vibration measured on the machine structure</th>
<th>Machine vibration classification number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displacement μm (r.m.s.)</td>
<td>Velocity mm/s (r.m.s.)</td>
</tr>
<tr>
<td>1.1</td>
<td>17.8</td>
<td>1.12</td>
</tr>
<tr>
<td>1.8</td>
<td>28.3</td>
<td>1.78</td>
</tr>
<tr>
<td>2.8</td>
<td>44.8</td>
<td>2.92</td>
</tr>
<tr>
<td>4.6</td>
<td>71.0</td>
<td>4.48</td>
</tr>
<tr>
<td>7.1</td>
<td>113</td>
<td>7.07</td>
</tr>
<tr>
<td>11</td>
<td>178</td>
<td>11.2</td>
</tr>
<tr>
<td>18</td>
<td>283</td>
<td>17.8</td>
</tr>
<tr>
<td>28</td>
<td>44.8</td>
<td>28.2</td>
</tr>
<tr>
<td>45</td>
<td>71.0</td>
<td>44.8</td>
</tr>
</tbody>
</table>

Key to zones

A: The vibration of newly commissioned machines would normally fall within this zone.
B: Machines with vibration within this zone are normally considered acceptable for long-term operation.
C: Machines with vibration within this zone are normally considered unsatisfactory for long-term continuous operation. Generally, the machine may be operated for a limited period in this condition until a suitable opportunity arises for remedial action.
D: Vibration values within this zone are normally considered to be of sufficient severity to cause damage to the machine.

NOTE — Vibration values for reciprocating machines may tend to be more constant over the life of the machine than for rotating machines. Therefore zones A and B are combined in this table. In future, when more experience is accumulated, guide values to differentiate between zones A and B may be provided.
Balmac Vibration Reference

Class-1: Individual components, integrally connected with the complete machine in its normal operating condition. Small Electric Motors, Precision Machines, Turbines

Class-2: Medium size machinery without special foundations, rigidly mounted engines, or machines on special foundation. Gear Boxes, Pumps, M-G Sets, Fans

Class-3: Large prime movers mounted on heavy, rigid foundations. Compressors, Blowers, Hammer mills, Engines

Class-4: Large prime movers mounted on relatively soft, light-weight structures. Crushers, Reciprocating Machinery, Vibrating Conveyors

<table>
<thead>
<tr>
<th>Vibration (ips)</th>
<th>Class-1</th>
<th>Class-2</th>
<th>Class-3</th>
<th>Class-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 ips</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>0.02 ips</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>0.03 ips</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>0.05 ips</td>
<td>FAIR</td>
<td>GOOD</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>0.08 ips</td>
<td>FAIR</td>
<td>FAIR</td>
<td>GOOD</td>
<td>GOOD</td>
</tr>
<tr>
<td>0.1 ips</td>
<td>ROUGH</td>
<td>FAIR</td>
<td>FAIR</td>
<td>GOOD</td>
</tr>
<tr>
<td>0.2 ips</td>
<td>N/A</td>
<td>ROUGH</td>
<td>FAIR</td>
<td>FAIR</td>
</tr>
<tr>
<td>0.4 ips</td>
<td>N/A</td>
<td>N/A</td>
<td>ROUGH</td>
<td>FAIR</td>
</tr>
<tr>
<td>0.6 ips</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>ROUGH</td>
</tr>
<tr>
<td>0.8 ips</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>1.0 ips</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Baseplate Stiffness Effects

Photo courtesy of FMC Industries
Baseplate Stiffness Effects

Photo courtesy of FMC Industries
Baseplate Stiffness Effects

Photo courtesy of FMC Industries
Bump Test

500 HP Test Stand – Impact Test Data
Frame 1Z

Natural Frequencies:
- 19.78 Hz
- 35.74 Hz
- 45.75 Hz

Operation Frequencies:
- 4 Hz (Running Speed)
- 20 Hz (5X Running Speed)

Photo courtesy of FMC Industries
Driveline Vibration

U-JOINT

Photo courtesy of FMC Industries
Driveline Vibration

500 HP Test Stand Piston Pump Spectrums & Waveforms

1X Pump Drive Bearing 1X

Analyse Spectrum
13-Jul-03 14:51:01
PK = 1530
LOAD = 103.0
RPM = 240. (4.00 Hz)

Analyse Waveform
13-Jul-03 14:51:01
RMS = 2116
PK(+/−) = 1.02/ 0.9290
CRESTF = 4.80

Photo courtesy of FMC Industries
Accepted Vibration Test

Pump passed

- Maximum vibration recorded
 - 0.33 in/sec
- Purchasers legacy vibration requirement
 - 0.40 in/sec
Recip pump vibration typically considered fluid induced, mechanical vibration must also be considered.

Vibration limits need to be set based on:
- Fluid being pumped
- Size of pump

Reduce all external vibration influences:
- Rigid base
- Direct drive line (w/flexible coupling)
Current Operation

- Pump completed final testing in January of 2010
- Pump is not installed and there is no further information on field performance with piping and pulsation dampeners.
Thank you!

QUESTIONS?