Modification of BB1 pump vibration characteristics to meet ISO 13709 2nd edition (API 610 11th) limits

Simon Bradshaw, Director of API Product Development & Technology

ITT Goulds Pumps
Seneca Falls, NY
Simon Bradshaw is the Global API Product Development Manager for ITT Goulds Pumps, in Seneca Falls NY.

His responsibilities include the design and development of new products and processes for the oil and gas industry. Prior to joining ITT Goulds, he worked for both Sulzer Pumps and Weir Pumps, where he held various positions of engineering and contractual responsibility. Additionally he has supported the Hydraulic Institute in the development of pump standards and best practice guides.

Mr. Bradshaw has accumulated 24 years in the pump industry. He attributes this to having never exhausted the fun inherent in moving fluid between two improbable locations.

He holds a BEng (Hons) degree (Mechanical Engineering) from Heriot Watt University, is a registered Chartered Engineer in the UK and a member of the Institute of Engineering Designers.
Summary of the pump in question #1

<table>
<thead>
<tr>
<th>API 610 designation BB1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Service</td>
</tr>
<tr>
<td>Ruling Specification</td>
</tr>
<tr>
<td>Impeller diameter D2</td>
</tr>
<tr>
<td>Running speed</td>
</tr>
<tr>
<td>Flow</td>
</tr>
<tr>
<td>Design Head</td>
</tr>
<tr>
<td>Specific Speed</td>
</tr>
<tr>
<td>Suction Specific Speed</td>
</tr>
<tr>
<td>Casing Arrangement</td>
</tr>
<tr>
<td>Impeller Arrangement</td>
</tr>
<tr>
<td>Bearing arrangement</td>
</tr>
</tbody>
</table>
Summary of the pump in question #2

Supplied by a different division of ITT

Factory tested September 2007

Commissioned ≈ 2008

Vibration problems seen at low flow (50 to 75% of rated) that were not seen during factory testing

Site vibration values exceeded API 610 allowable levels

Pump was shipped to our R&D facility for further evaluation
Test loop setup #1

Shop Air 100 psig
(valve normally closed)

Vacuum pump
(valve normally closed)

Tower

Drain valve
(normally closed)

Backpressure valve

Suction valve

Discharge valve
(pressure breakdown)

Pump under test

Pump drive via VFD & gearbox
Test loop setup #2

- Gearbox
- Motor
- Pump
Initial testing results #1

Tested with “expected” site NPSHa of 13.4m (44ft), the pump met ISO 13709 (API 610) vibration criteria of 3.0 mm/s (0.12 in/s) in the preferred region (70 to 120% of rated) and 3.9 mm/s (0.156 in/s) elsewhere.

The customer requested testing to ISO 13709 2nd edition (API 610 11th) section 8.3.3.6, which requires testing at no more than 110% of rated NPSHa.

The pump was retested at the rated NPSHa of 10m (33 ft) and vibration levels significantly exceeded the allowable vibration criteria.
Initial testing results #2

Waterfall
J-4302 B \ OBV

- Broadband hydraulic noise
- Vane pass noise

OBV-Flow 1 51.5Hz .0875 in/sec
OBV-Flow 2 51.5Hz .0507 in/sec
OBV-Flow 3 B 51.5Hz .0209 in/sec
OBV-Flow 3 A 51.5Hz .0369 in/sec
OBV-Flow 4 51.5Hz .0567 in/sec
OBV-Flow 5 51.5Hz .0408 in/sec
OBV-Flow 6 51.5Hz .0440 in/sec
Analysis of contributors

1. Pump design circa 1970 intended for municipal water service (although successful used in ISO 13709 service on prior occasions)
 - 6 vane design, less than ideal with a 180° volute
 - Unstaggered vane design
 - Impeller eye larger than optimum by modern design rules
 - Suction casing area progression not optimum by modern design rules

2. Never previously required to meet ISO 13709 section 8.3.3.6 test

3. Large impeller trim

![Diagram showing flowrate and recirculation onset]
Analysis of fixes

<table>
<thead>
<tr>
<th>Fix</th>
<th>Positives</th>
<th>Negatives</th>
<th>Vane pass vibration</th>
<th>Suct. side recirc.</th>
<th>Disch. side recirc.</th>
<th>Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull ring in the impeller ring eye</td>
<td>Will suppress suction side recirculation</td>
<td>Increases NPSHr at high flows</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Profile ring with artificial “A” gap and bull ring incorporated</td>
<td>Will suppress suction side and discharge side recirculation</td>
<td>Long lead time</td>
<td>0</td>
<td>++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Cutback top half casing volute lip to 168°</td>
<td>Will reduce vane pass vibration</td>
<td>Will increase radial thrust.</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>V cut both casing volute lips</td>
<td>Will reduce vane pass vibration</td>
<td>Reduction effect will not be as much as the 168° cutback</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>Alter the position of the suction casing stop piece</td>
<td>Can improve the uniformity of flow into impeller and suppress instability</td>
<td>Requires a CFD analysis for correct location. Only a small improvement expected</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cast and machine and impeller with full diameter shrouds and trimmed vanes</td>
<td>Will suppress discharge side recirculation</td>
<td>Long lead time</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Design and manufacture a new 5/7 vane impeller with closer to full diameter</td>
<td>Improves all symptoms</td>
<td>Long lead time</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
</tbody>
</table>
Application of chosen Fixes #1

A suction side restriction ring (commonly known as a “Bull Ring”), was added to the casing.

The purpose of this ring is to limit suction side impeller recirculation.
Application of chosen Fixes #2

The top half casing volute lip was cutback to create an angle of 168° relative to the lower half volute lip.

The cutback was angled 30° to smear the pressure pulse in the time domain.
Application of chosen Fixes #3

The bottom half casing volute lip was angled 30° to smear the pressure pulse in the time domain.
Testing results after modifications #1

Testing confirmed the effectiveness of the modifications at suppressing low flow vibration behavior, but created a problem at higher flows.

So what went wrong?

![Graph showing vibration behavior with modifications]
A review of the NPSHr results gave a clue

The bull ring was causing significant head loss at higher flows:

• Head loss = Broadband hydraulic noise = Extra vibration
How to fix a Bull Ring #1

We applied a little used variant of the bull ring, which we call the Sabini Ring.

Existing bull ring slotted to achieve approximately 47% open area.

Leading edge chamfered to reduce losses.
Testing results after bull ring changes #1

Testing confirmed the effectiveness of the changes to the bull ring

Vibration was now well controlled over the whole flow range

![Graph showing vibration levels before and after changes]

- Orange line: Vibration before mods @ 10m (33ft) NPSHa
- Gray line: Vibration after mods @ 10m (33ft) NPSHa
- Blue line: Vibration after bull ring mods @ 10m (33ft) NPSHa
- Red line: ISO 13709 Limit

% BEP Flow: 0% 25% 50% 75% 100%
Vibration (mm/s): 0 0.1 0.2 0.3
Vibration (in/s): 0 0.1 0.2 0.3
Testing results after modifications #2

The NPSHr results also indicate the success of the final bull ring design.
Conclusions

1. ISO 13709 section 8.3.3.6 testing can cause problems in older pump designs

2. Modern designs with the following are preferred:
 • 5 or 7 vane impellers with 180° volutes
 • 6 vane impellers with 168° volutes
 • Impeller eye diameter minimized in relation to the target Nss value

3. Avoid large impeller trims as these promote recirculation and give a false indication of the true BEP (shockless) flow

4. Slotted bull rings offer a superior balance of recirculation suppression vs. NPSHr increase compared to plain rings.

Thanks for your attention