WORLD-CLASS OUTSTANDING INTERNATIONAL

HYDRAULIC UPGRADE OF HOT WATER CIRCULATION PUMPS IN A DISTRICT HEATING SYSTEM

Contents

- Introduction
 - Particulars
 - Objective
- First Design
 - Design Details
 - Hydraulic Performance
 - Onsite Vane Pass Vibration
- Second Design
 - Design Details
 - Hydraulic Performance
- Concluding Remarks

Introduction - Particulars

District heating circulation pumps (2 blocks):

- Single stage
- Double suction
- Between bearing
- Radial split casing (API 610 BB2)
- Side-side nozzles
- Variable speed (1000 – 1500 r/min)

9.30 - 10.3.2013

Introduction - Particulars

Conditions of service:

- Pre-upgrade: 500 1500 m³/h @ 60 m
- Requested for upgrade: 720 2400 m³/h @ 80 m

Normal duty: 1750 m³/h @ 35 m (1000 r/min)

Max. (design) duty: 2400 m³/h @ 80 m (1490 r/min)

- Fluid: Hot pressurized water (70 140 °C)
- Suction pressure: 6.9 11 bar

Introduction - Particulars

Introduction - Objective

Objective / Scope of supply:

- Re-rate existing pumps with new hydraulic end, keeping existing shaft.
- Replace existing DC speed controlled motors with VFD driven asynchronous motors
- Replace existing conventional packing with mechanical seal

Hydraulic Options:

- New impeller and new <u>diffuser</u> (→ First design iteration)
- New impeller and <u>volute insert</u>
 (→ Second design iteration)

Introduction - Objective

Proposal curve for the hydraulic upgrade

(@ max. duty \rightarrow N_{s,design} =2350)

9.30 - 10.3.2013

Existing pump

Impeller/diffuser_

in

single volute casing

Existing diffuser (4 vanes)

9.30 - 10.3.2013

CSP9 – Hydraulic Upgrade of Hot Water Circulation Pumps

- New high capacity impeller
 - 8 vanes
 - □ D_{2,max} 21½"

(546.1 mm)

New diffuser (6 vanes)

CSP9 – Hydraulic Upgrade of Hot Water Circulation Pumps

GEORGE R. BROWN CONVENTION CENTER 9.30 - 10.3.2013

First Test Result:

- Failed to make the head
- Efficiency too low
- Power too high
- ❖ BEP at too low capacity

Suspected Cause:

Choking flow at casing outlet (narrowing throat passage)

Second Test Result:

(After opening up casing area)

- Head picked-up
- Efficiency improved
- BEP shifted to higher capacity

BUT, pump still not making expected performance

Suspicion:

➤ Incorrect diffuser design?!?

Diffuser throat area laid out too small

→ <u>Second Hydraulic Option: Volute insert</u>

- While developing volute insert and manufacturing parts pump was shipped to site.
- At site an 8X vane pass vibration issue @ PIH emerged when running around 1200 r/min*.

Vibration measurement locations

* Shop tests were @ 1500 r/min.

Onsite vibration measurement

CSP9 – Hydraulic Upgrade of Hot Water Circulation Pumps

Order Tracking

1000 – 1420 r/min

PIH: 7.3 mm/s
@1236 r/min
(8X, or 165 Hz)

Bump Test:

➤ 169 Hz resonance frequency (Hor.)

GEORGE R. BROWN CONVENTION CENTER

9.30 - 10.3.2013

Elevated vibration levels due to:

- 8X vane passing excitation forces @165 Hz
- Natural (resonance) frequency in horizontal plane
 @169 Hz.
- Very small impeller tip ("Gap B") clearance, causing strong vane passing excitation forces

$$(D_3 - D_2) / D_2 = 553 - 546 / 546$$

= 0.013 or 1.3% (!)

Second Design

- > Keep new high capacity impeller
- > Replace diffuser with (dual) volute insert
- ➤ Increase impeller tip clearance

Second Design

Final test result:

- ✓ Head okay
- ✓ Efficiency okay
- ✓ Power okay
- ✓ Tip clearance (Gap B) okay:

$$(D_3 - D_2) / D_2 =$$

578.2 - 515 / 515 =
0.123 or 12.3%

✓ 8X vane pass vibration issue resolved

(next slide)

Second Design

Shop test with VFD demonstrated strong reduction in vibration response.

- 8X Vibration response not peaking up anymore
- Overall vibration level below 3 mm/s (RMS)

Concluding Remarks

- Pumps have been upgraded with new hydraulic internals for 60% increase in design capacity.
- First design iteration with new impeller and new diffuser was not successful:
 - Hydraulic performance failure
 - Vibration issue (at intermediate running speed)
- Second design iteration with same new impeller and volute insert proved to be successful.

Concluding Remarks

- First design iteration was unsuccessful because of:
 - Diffuser throat area was designed too small
 - Impeller tip clearance (Gap B) was much too small
- Particulars of <u>second design iteration</u>:
 - Sufficient volute (cutwater) throat area
 - ➤ Ample impeller tip clearance (Gap B) solved the PIH vibration response without having to introduce structural modifications.
- Pumps with new impeller and volute insert have been installed at site, and are in operation for more than 2 years now.

Thank you for your attention

Questions?

