

CASE STUDY:

Solution for PD Pump Suction Piping System Pulsation/Vibration Problem

Eugene L. Broerman, III "Buddy" – Sr. Research Engineer Ray G. Durke – Sr. Research Engineer Southwest Research Institute

Author's Biography

- Eugene "Buddy" Broerman is a Senior Research Engineer with Southwest Research Institute (SwRI). He has nearly 13 years of experience with pulsation/vibration related problems. He holds a bachelor's degree in mechanical engineering from Texas A&M University – Kingsville. Contact him at: EBroerman@swri.org
- **Ray Durke** is a Senior Research Engineer with Southwest Research Institute (SwRI). He has 35 years experience in plant dynamics, primarily in diagnosing and correcting machinery vibration and pulsation-related problems. He holds a BSME from Texas A&M University and an MBA from UTSA. Contact him at: <u>rdurke@swri.org</u>

Agenda

Introduce System & Problem

• Steps taken to Solve Problem

• Summary & Lessons Learned

Pump Description Details

Pumps Details	Pump Operating Conditions			
2 pumps (plunger) Separate piping systems	Suction Pressure: 30-40 psig (2.1-2.8 barg)			
3 plungers per pump				
	Discharge Pressure:			
3.375" bore (8.57 cm)	1000-1250 psig (69-86 barg)			
5" stroke (12.7 cm)	Temperature: 210-230°F (99-110°C)			
166 rpm				
•				

Problems

- High suction piping vibration causing:
 - Pipe insulation deterioration
 - Pipe restraint damage
 - Shortened pump valve life
 - High noise
- Gas-liquid pulsation dampeners installed years prior to field investigation – removed due to high maintenance and frequent bladder failures
- Issues above raised safety & reliability concerns

Steps Taken to Solve Problem

 Field investigation for problem characterization and diagnostics – vibration & pulsation data measured

 Pulsation analysis conducted to develop potential solutions

• Maintenance-free, all-liquid acoustic filter bottle recommended

Piping Layout

Summary of Field Measured Pulsation & Estimated Forces

Summary of Field Measured Vibration

Test Point	Overa Amplitu	ll Ide	Vibration (mils p-p) at Discrete Frequencies				
	Vibration mils p-	on ·p	1x	3x	5x	6x	7 Hz
FV E-W	45		11	4	10	3	
Tee E-W	65			20	20	13	26
Tee N-S	65		31	11	9	22	

Field Pulsation Data at Pump

Field Vibrations on SwRI Vibration Guideline Chart

Field measured vibrations in "Marginal" and "Correction" regions

Pulsation Model Results

Highest pulsation amplitudes predicted at 6x running speed:

- at pump manifold: 80 psi pk-pk
- in upstream piping: ~ 11 to 80 psi pk-pk

All-liquid Acoustic Filter

Filter sized to attenuate pulsations at plunger frequency (3x running speed) and at higher harmonics

Acoustic Filter Details

Equation – Acoustic Filter

$$f_H = \frac{c}{2\pi} \left(\frac{\mu}{V_1} + \frac{\mu}{V_2} \right)^{\frac{1}{2}} \qquad \mu = \frac{A}{L}$$

- f_{H} = Helmholtz frequency (Hz)
- A = Cross-sectional area of choke (ft²)
- L = Acoustic length of choke (ft)
- *c* = Velocity of sound (ft/sec)
- V_1 = Volume of cylinder bottle or chamber (ft³)
- V_2 = Volume of filter bottle or chamber (ft³)
- Green = Geometry
- Red = Operating conditions property

General Concept of an Acoustic Filter

Frequency response of ideal harmonic oscillator

Pulsation Model Results – Modified System

17

Vibrations with Filter Installed

Test Point	<u>Before</u> 3x (mils pk-pk)	<u>After</u> 3x (mils pk-pk)
FV	79	0.73
Pump Suction	34	0.37
Pump Discharge	33	1.25

- Data measured by operating company
- Highest vibration with filter = 1.8 mils pk-pk at 9x on disch. pipe

The following is a quote from the client:

"operators saying they have to walk up and touch the motor to make sure it's running... whereas they could hear the pump from the road, before the change."

Summary and Lessons Learned

- Pump System Problem
 - High amplitude piping vibrations
 - Insulation and restraint damage
 - Gas-liquid dampener bladder failures
- Steps taken to Solve Problem
 - Field investigation for problem evaluation vibration & pulsation measurements
 - Pulsation analysis
- Summary & Lessons Learned
 - All-liquid acoustic filter can significantly reduce system pulsation and vibration amplitudes

Questions/Comments?

Please ask. If you have a question, someone else in the room probably has a question also.

