Oil & Gas plant experience of Sub-Synchronous Torsional Interactions (SSTI) and operability optimization
Authors

Paola Rotondo - GE Oil & Gas
Paola.Rotondo@ge.com

JOB Title: Principal Engineer for Electrical System Dynamics.

Daniele Sgrò - GE Oil & Gas
Daniele.Sgro@ge.com

JOB Title: Electrical System Design Engineer.
Education: M.Sc. (2009) in Mechatronics from the Polytechnic of Milan, Italy

Giacomo Tucci - GE Oil & Gas
Giacomo.Tucci@ge.com

JOB Title: Field Testing Engineer for service.
Education: M.Sc. (2009) in Mechanical Engineering from Florence University, Italy.

Giuliano Milani - GE Oil & Gas
Giuliano.Milani@ge.com

JOB Title: Principal Engineer for Advanced Train Integration.
Education: B.Sc. (2015) in Industrial Engineering from Rome University, Italy
Problem statement: SSTI site issue

During MR/PR compressors start-up, some trips have been observed on Generators Gearbox due to high lateral vibrations, with sub-synchronous component @ ~10 Hz.

NOTE: ~10 Hz is the GTG train 1st TNF.
Problem statement: SSTI site issue

- Island network with #2 GTGs in operation
- MR compressor train start-up (LCI driven)

1* LCI starts to supply torque
2* GT starting motor switched off; Start-up sequence continues with LCI only
3* GTG1 trip (MR train @ ~95% speed)
4* GTG2 trip (MR train @ ~99% speed)

Torsional measurements were not in place...
Sub-Synchronous Torsional Interactions (SSTI)

Interactions between Turbo-Generators and large power electronic devices (e.g. VSDS) connected to the same electrical grid

SSTI Causes...
- Direct torsional excitation
- Negative electrical damping

Can lead to....
- Generator vibrations
- Plant blackout
- Generators shaft-line damages

Increasing VSDS loads can lead to SSTI phenomena
Torsional analysis gap vs. SSTI

The torsional vibration behavior of the complete train is fundamental to ensure that the individual units will reliably operate when coupled. The Analysis is performed according to API requirements.

- **Mode shapes**
- **Stress analysis**

No additional assessment required by international standards for potential SSTI
Torsional measurements: installation study

The purpose is to identify:

- Measurement section(s)
- TNFs to be monitored
- Torsional measurement resolution

Torsional measurements executed on GTGs and MR/PR trains at site
Angular oscillation is translated into oscillating torque by a transfer function, based on the calculated train torsional modes shapes. These values are used for the train components fatigue assessment.
Site issue highlights:

Electrical grid configuration
- High percentage of the power supplied by the GTG is absorbed by active loads (LCI)

LCI load influence
- Gearbox vibrations increased rapidly after ~40% of torque demand to LCI (GTG trip when LCI reached ~50% load)

Torsional-to-Lateral interaction
- GTG gearbox lateral vibrations with predominant sub-synchronous component at ~10Hz (1st GTG TNF)

Typical SSTI phenomenon characteristics observed
Implemented actions:

- One **additional GTG** in operation (to increase the network short circuit power)

- Tuning/adjustment of LCI control parameters

SSTI phenomenon reduced within acceptable limits starting another GTG train
Site measurements after actions implementation

Data trend during LCI-MR start-up

- LCI speed [rpm]
- LCI DC link current [%]
- GTG 1 Active Power [MW]
- GTG 1 torsional measurement
- GTG 1 gearbox vibrations measurement

- With 3 GTGs no plant operability restrictions due to SSTI
- Qualitative torsional-to-lateral vibrations correlation

SSTI is a system phenomenon: every case is different from the other being different the corresponding network operating scenario
How to manage SSTI: recommendations

- Include in the plant design scope an **SSTI assessment** (risk evaluation and detailed analysis)

- Increase **plant short circuit power** (add GTGs in operations if available)

- Variable Frequency Drives design and control optimization

- Evaluate not only normal operating conditions but also contingencies and start-up scenarios

- Implement **torsional vibration measurements** on both VSDS units and GTGs shafts to have proper system monitoring

Include SSTI assessment during preliminary and detailed engineering phases
Nomenclature

- GTG = Gas Turbine Generator
- MR = Mixed Refrigerant
- PR = Propane
- VSDS = Variable Speed Drive System
- TNF = Torsional Natural Frequency
- LCI = Load Commutated Inverter
- GT = Gas Turbine