FCCU PRT Compressor Blade Failure Case Study
Austin Anderson, CITGO
Chris Sykora, RMS
Tony Rubino, RMS
AUTHOR BIOGRAPHIES

• **Austin Anderson**, Rotating Equipment Reliability Engineer, 8 years maintenance/reliability of rotating and fixed equipment; Sherwin Alumina, CITGO Petroleum.

• **Chris Sykora**, Sr. Structural Analyst, 8 years design & structural analysis of rotating turbomachinery & afterburner/exhaust systems; GE Aviation & Rotating Machinery Services, Inc.

• **Tony Rubino**, Director of Compressor & Expander Engineering, 32 years design, manufacturing & troubleshooting turbomachinery; Pratt & Whitney, GE, CONMEC, Rotating Machinery Services, Inc.
HISTORY

- Axial compressor in Fluid Catalytic Cracking Unit service; constant speed operation with variable stator vanes for flow control.

- Entire flow path replaced at turnaround; utilized all available spare parts.
HISTORY (cont’d)

• 2 months after turnaround, unexplained 2% step reduction in flow capacity with negligible increase in rotor vibration; small increase in inlet pressure and discharge temperature.
• Closing and reopening variable vanes did not restore flow.
• Blockage from filter house in inlet of compressor estimated to be cause of flow loss.
HISTORY (cont’d)

• 25 months after turnaround, 6X increase (to 8+ mils) in peak rotor vibration (70% of bearing clearance).
• Vibration primarily 1X running speed.
• Step reduction of flow 3%.
• Blade failure estimated as cause of elevated vibration.
HISTORY (cont’d)

• Recommendation made to shutdown compressor to minimize consequential damage
 – Refurbished rotor was only flow path component available as a spare.
• Compressor was shutdown for inspection and repair.
OBSERVATIONS - Disassembly

- One first stage blade separated near blade attachment at fillet runout onto airfoil.
- Only the failed blade had a fatigue indication.
- Trailing edges of all Inlet Guide Vanes (upstream of 1st stage blade) severely damaged.
- Other downstream airfoils had minor, sporadic impact damage from contact with failed blade.
- Foreign material found in compressor.
- Tip rub noted on casing above first stage blade.
OBSERVATIONS (cont’d)

ADVANCING BLADES IN SAME ROW

FREQUENCY TUNED BLADE

FAILED BLADE

LEADING EDGE

WHEEL ROTATION

TRAILING EDGE

FATIGUE CRACK INITIATION POINT – PRESSURE SIDE AT 26% CHORD – ATYPICAL OF RESONANCE INDUCED FATIGUE
OBSERVATIONS (cont’d)

REMOVED IGV’s WITH BENT TRAILING EDGES FROM CONTACT WITH “BATTED” FAILED BLADE

SEPARATED BLADE COATING REDEPOSITED ON CASING SURFACE

SMEARED MATERIAL FROM TIP RUB

RUB HEAVIEST DEPOSIT SAMPLE LOCATION

IGV’S REMOVED
OBSERVATIONS (cont’d)

EXPANDED METAL AND SCREENS FOUND MISSING - INGESTED BY COMPRESSOR

DEBRIS ON FLOOR OF FILTER HOUSE
INVESTIGATION APPROACH

• Verify blade design suitable for application.
• Verify blade manufacturing executed per design intent.
• Identify operational anomalies that may have contributed to blade failure.
ANALYSIS RESULTS - Design

• Blade design suitable for purpose based on structural analysis and operating history
 – previous blades operated for 13 years
 – previous blades retired at overhaul.

• Blade design has adequate frequency margin.
 – satisfactory Campbell Diagram
 – frequency response verified by impact testing
 – all remaining 1st stage blades frequency tested to verify consistency of manufacturing.
ANALYSIS RESULTS - Metallurgy

• Blade failure initiated due to high cycle fatigue.

• Blade microstructure and mechanical properties within typical values; no manufacturing anomalies.
ANALYSIS RESULTS - Metallurgy

- Material found adhered to adjacent blade tips consistent with galvanized steel screen.
- Tip deposit removed from casing:
 - One sample was 0.03” (0.8mm) thick consisting of approximately 42 unique layers
 - 87% Fe, 12% Cr, & 1% Si
 - Other samples contained also Al & Zn
- Rub material deposited on casing matched chemistry of inlet filter housing components.
ANALYSIS RESULTS - Operation

• Train operates at constant speed well away from stall or choke regions.
• Location of fatigue initiation site **inconsistent** with peak stress areas of first three vibration modes.
• Location of fatigue initiation site **consistent** with observed tip rub loading and forced excitation of first mode deflection.
ANALYSIS RESULTS - Operation

• Stage 1 Blade Mode Shapes

Mode 1 – 1st Flex Bending
Mode 2 – 1st Torsional
Mode 3 – 1st Stiff Bending
ANALYSIS RESULTS - Operation

• Stage 1 Blade Modal Peak Stresses

Mode 1 – 1st Flex Bending

Mode 2 – 1st Torsional

Mode 3 – 1st Stiff Bending
ANALYSIS RESULTS - Operation

- Stage 1 Blade Tip Rub Peak Stress
CONCLUSIONS

• Root cause was fatigue crack initiation due to cyclic loading from a tip rub.
• Material from the inlet screen became trapped between the casing and “longest” blade causing tip forcing function.
• Shutdown & inspection decision was the “right decision” avoiding additional consequential flow path damage, and train structural damage from elevated vibration.
LESSONS LEARNED

• Inlet system inspection and maintenance should be a planned, high priority activity during turnarounds.
• Maintain adequate flow path spare components.
• Sudden, sustained, unexplainable flow capacity changes should be investigated at earliest opportunity.
• Include inlet system instrumentation to for ΔP changes
• Provide provisions for manway & borescope access
• Include visual inspection for both the inlet system and the front end of the compressor. Also to perform preventive maintenance on the inlet housing implosion door trip monitors during shutdowns
THANK YOU

• CONTACT INFO
• Austin Anderson, aander1@citgo.com
• Chris Sykora, csykora@rotatingmachinery.com
• Tony Rubino, trubino@rotatingmachinery.com
BACKUP SLIDES
ANALYSIS RESULTS - Frequency

Citgo Axial Compressor Rotor
CIT3611 - Stage 1 Rotor Blade
Blade with Tip Drilling
With Disk Boundary Conditions

A/F Height: 5.25 in.
Blade Mt: 403 Stnl Steel
Disk Mt: 4340 Steel
A/F Temp: 110 F

10.9% Margin

IGV & Stator Passing
3,600 +/- 15 RPM

48.5% Margin

Strut Passing
4X Running Speed

CIT4050
Axial Compressor Blades (Tip-Drilled)
Impact Frequency Test
Free-Free Frequencies

Mode: 1

Frequency Hz

Blade