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[11 Hydrometric information constitutes the fundamental input for planning, design,
operation, and management of water resources systems. How to optimally site monitoring
gauges such that they are effective and efficient in gathering the hydrometric information

or data has received considerable attention. This paper presents a generic approach for

the design (or evaluation) of hydrometric networks. First, an entropy theory-based

criterion, named as maximum information minimum redundancy (MIMR), is proposed.

The MIMR criterion maximizes the joint entropy of stations within the optimal set, and the
transinformation between stations within and outside of the optimal set. Meanwhile, it insures
that the optimal set contains minimum duplicated information. An easy-to-implement greedy
ranking algorithm is developed to accomplish the MIMR selection. Two case studies are
presented to illustrate the applicability of MIMR in hydrometric network evaluation and
design. We also compare the MIMR selection with another entropy-based approach. Results
illustrate that MIMR is apt at finding stations with high information content, and locating
independent stations. The proposed approach is suitable for design (or evaluation) of any type

of hydrometric network.
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1. Introduction

[2] Hydrometric information, which is mainly collected
by monitoring networks, constitutes the fundamental input
for planning, design, operation, and management of water
resources systems. Optimally siting of monitoring gauges
such that they are effective and efficient in gathering data
(information) has received considerable attention. Although
there are myriad concerns in hydrometric network design,
this study focuses on the fundamental theme, i.e., selecting
an optimum number of stations and their optimum loca-
tions. Many approaches have been developed for that pur-
pose. A comprehensive review can be found in the work of
Mishra and Coulibaly [2009]. Among others, one type of
approach is based on entropy theory. The merit of entropy
theory is that it directly defines information and quantifies
uncertainty [Harmancioglu and Singh, 1998; Mogheir
et al., 2006]. A significant body of literature employing en-
tropy theory for the design of monitoring networks has
been reported, as briefly reviewed in what follows.

[3] Caselton and Husain [1980] and Husain [1987] used
an information maximization principle for identifying opti-
mum locations of rainfall gauges to be retained in a dense
network. When an existing network is sparse, Husain [1989]
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proposed a methodology for expanding it by means of infor-
mation interpolation. Krstanovic and Singh [1992a] devel-
oped an entropy-based approach for hydrologic network
evaluation. This approach was then used to spatiotemporally
evaluate the rainfall network in Louisiana [Krstanovic and
Singh, 1992b). Yang and Burn [1994] presented a method for
data collection design in which a concept of directional infor-
mation flow was employed. Also in terms of entropy theory,
Mogheir et al. [2006] evaluated the optimality of the ground-
water quality monitoring network in Gaza Strip, Palestine.
Mishra and Coulibaly [2010] assessed streamflow network in
different Canadian watersheds using entropy, joint entropy
and transinformation.

[4] Common with the aforementioned studies is that en-
tropy terms were computed using univariate or bivariate
formulations. However, joint information retained by mul-
tiple stations and their dependence are always required for
a more objective evaluation. A few studies did use multivar-
iate distributions but assumed that the data were normally or
lognormally distributed as, for example, did Husain [1987,
1989], and Krstanovic and Singh [1992a, 1992b]. This
assumption is debatable, since many natural phenomena are
heavy tail distributed, like streamflow and precipitation
[Bernadara et al., 2008; Carreau et al., 2009; Li et al.,
2012].

[s] Similar to Krstanovic and Singh [1992a, 1992b],
Alfonso et al. [2010a] introduced several adaptations to
make the entropy-based method applicable to the design of
water level monitors for highly controlled polder system in
the Netherlands. They first used multivariate total correlation
to assess the performance of three pairwise dependence
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criteria. The selection of optimal monitors was restricted to
low dimensional analysis (less than 2).

[6] Later, Alfonso et al. [2010b] proposed another crite-
rion by maximizing multivariate joint entropy and mini-
mizing total correlation for optimally siting water level
monitors. Yet, this approach failed to account for the infor-
mation transition ability (transinformation) of a network. It
is acknowledged that transferring hydrologic information
from points where it is available to those where it is
required is one of the purposes of collecting hydrometric
information [Harmancioglu and Yevjevich, 1987].

[71 Moreover, optimally siting hydrometric monitors is a
multiobjective problem. Solving this problem is tricky in
practice. Alfonso et al. [2010b] exploited a genetic algo-
rithm to approach the multiobjective optimization. The
advantage of multiobjective optimization is that it provides
different feasible solutions under different scenarios. Never-
theless, selection of the final network is not straightforward.
To assist the decision making processes, it is quite admira-
ble to find an easy-to-implement way to solve the multiob-
jective problem and to provide the end user a unique
solution with decent performance.

[8] Our objective therefore is to develop an easy-to-
implement approach for the design (or evaluation) of hydro-
metric networks. To that end, we first propose an entropy
theory-based criterion, named as maximum information
minimum redundancy (MIMR), satisfying three norms:
(1) maximum overall information (joint entropy), (2) maxi-
mum information transition ability (transinformation), and
(3) minimum redundant information (total correlation).
These entropy terms are calculated at multivariate level with-
out any distributional assumption. Thereby interactions
among stations can be properly accounted for. Then we pres-
ent a straightforward greedy selection algorithm to rank the
candidate gauges based on MIMR. During selection, the
three commensurable norms are additively unified, which
circumvents the complexity of multiobjective optimization,
while preserving its advantage in achieving different feasible
solutions through information-redundancy tradeoff weights.

[¢9] The paper is organized as follows. Formulating the
objectives of the study in this section, basic entropy theory
is briefly presented in section 2 for the ease of understand-
ing the MIMR criterion, which, together with a selection
algorithm, is discussed in section 3. Through two case stud-
ies, section 4 illustrates the applicability of MIMR to the
evaluation and design of hydrometric networks. Merits and
demerits of MIMR are discussed in section 5. Conclusions
are generalized in section 6.

2. Entropy Theory
2.1. Basic Entropy Terms

[10] Marginal entropy, joint entropy, transinformation,
and total correlation constitute basic information measures
commonly used in hydrometric network evaluation and
design. Let [X], X, ..., X,] denote a discrete random vector
with joint probability mass function p(x;,xa, ...,x,) and
one-dimensional margins, respectively, px, (x1), px, (x2), - .. ,
px,(x,) for Xi, X5, ..., and X,. In hydrometric network
evaluation and design, one usually wants to know: (1) How
much information is retained by a random variable (sta-
tion)? (2) What is the information conveyed by several var-
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iables (stations) together? (3) How much information of a
random variable (station) can be inferred from the knowl-
edge of another one? (4) What is the duplicated informa-
tion among several variables (stations)?

[11] The first question can be answered by marginal en-
tropy. The marginal entropy of a discrete random variable
measuring the information retained by it is defined as

_ *Z plx)loga(p(x1)), M

where, for simplicity, subscript of p(-) is suppressed. The
sum notation means summation over all possible outcomes
of X;. All sum notations in what follows hold the same
meaning, if no lower or upper limit is specified.

[12] To answer the second question, joint entropy is
defined as a measure of the overall information retained by
random variables. The bivariate joint entropy of X and X,
is defined as

HX1, ) = =Y ) plx,xn)loga(p(X1, X2)). )

X1 X2

There is a natural extension for multivariate joint entropy
from bivariate if one wants to know the information
retained by more than two random variables. The definition
of multivariate joint entropy is

H(X17X27"~ E E E Px17x27---7xn)
T 3)
logz(p(x17x27 "'7xn))'

The joint entropy is symmetric with respect to its argu-
ments. Quantitatively, joint entropy is less than or equal to
the sum of its one-dimensional marginal entropies. The
equality holds if and only if the random variables are sto-
chastically independent.

[13] Concerning the third question, transinformation
(also referred to as mutual information) provides the an-
swer. Transinformation of X; and X,, measuring the infor-
mation of X; (or X;) inferred from that of X; (or X)), is
computed as

T(X1;X2) ZZP x1,X2)log ((x;;(cz)) 4)

Transinformation provides a general measure of dependence
between random variables. It is superior to the Pearson cor-
relation coefficient, since it captures both linear and nonlin-
ear dependence, whereas the Pearson correlation coefficient
is only suitable for linear relationships, or more generally,
for spherical and elliptical dependence structures.

[14] To assess the redundancy of a hydrometric network,
one is usually interested in the amount of duplicated infor-
mation among a set of stations, which can be measured by
total correlation [Watanabe, 1960]. Mathematically, the
total correlation is defined as

ZH

Total correlation is also symmetric, facilitating its compu-
tation through grouping property [Kraskov et al., 2005;

CX1, X, ... X HX\ X, ... %). (5
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Alfonso et al., 2010a, 2010b]. Total correlation C is non-
negative. It assumes 0 if and only if all random variables
are independent. Otherwise, C will be greater than 0. Total
correlation answers the fourth question.

2.2. Continuous Time Series Discretization

[15] The entropy terms can be computed by discretizing
hydrometric time series data collected at stations. Several
methods are available for continuous data discretization.
Among others, the histogram method and mathematical
floor function are frequently used [Caselton and Husain,
1980; Husain, 1987 ; Mishra and Coulibaly, 2010; Alfonso
et al.,2010a, 2010b].

[16] When applying the histogram discretization, it is
common to assume a somewhat arbitrary number of bins,
like 10, 15, and 20. Yet, this strategy is questionable, since
discrete entropy terms are sensitive to the bin size. Optimal
bin size estimators can be used, like those in the work of
Scott [1979], Freedman and Diaconis [1981], Birgé and
Rozenholc [2006], Shimazaki and Shinomoto [2007]. These
estimators are derived based on different criteria, neverthe-
less, none of them are completely convincing in that one
has been shown to be better than others. Given a data sam-
ple, different estimators may lead to different bin size esti-
mates, which in turn will lead to different entropy values.

[17] The subjective determination of the bin size is
addressed to some extent, with the use of a mathematical
floor function [Ruddell and Kumar, 2009; Alfonso et al.,
2010a, 2010b]. Through a mathematical floor function, a
continuous value x is converted to its nearest lowest integer
multiple of a constant , i.e.,

x—a fxzz "J , (©)

where |-| represents the conventional mathematical floor
function. The advantages of mathematical floor function
include: (1) it avoids the choice of a parametric distribution
to fit the continuous data; (2) it can incorporate physical
considerations in that the resolution of ¢ should be no less
than uncertainties involved in the continuous data, as will
be illustrated in section 4.2. However, how to physically
determine an appropriate a is not always explicit in all sit-
uations. Then parameter a might be empirically selected
through trial and error, as will be illustrated in section 4.1.
Generally, it should be neither too large nor too small.
Rules of thumb can be used to guide the selection of pa-
rameter a: (1) it should guarantee that all candidate stations
have significant and distinguishable information contents;
(2) the spatial and temporal variability of time series of sta-
tions should be preserved as much as possible before and
after discretization; and (3) the selected stations should be
stable as much as possible, when a fluctuates within some
interval centered near its optimal value.

[18] One point worth noting is that after applying the
mathematical floor function the marginal entropy is no lon-
ger a measure of information of the continuous random
variable X, but the information of X rounded to its nearest
lowest integer multiple of a constant [Papoulis and Pilli,
2001]. Analogous meanings hold for other entropy terms.
In the context of hydrometric network design, we do not
need to precisely quantify the information retained by sta-
tions. A reasonable approximation is sufficient as long as
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the relative relationship among stations can be preserved in
terms of information content. Indeed, treating a continuous
time series as a discrete pulse signal is reasonable, consid-
ering the fact that in practice any records are subject to
noise, round off errors and errors caused by measurement
instruments. It is necessary to filter out such high-frequency
low-amplitude fluctuations.

2.3. Discrete Variable Merging

[19] Multivariate joint entropy and total correlation can
be computed at any dimension with the aid of discrete vari-
able merging. The basic idea for variable merging lies in
creating a new variable X such that the information
retained by which is equal to that of the original variables,
say X1, Xo, ..., X,. Consider merging two discrete varia-
bles as an example. If it is assumed that X; =[1,2, 1,2, 1,
3,31 and X> = [1, 2, 2, 2, 1, 3, 2]7, then the new variable
X can be obtained by pairwise welding the corresponding
digits together [Alfonso et al., 2010b], i.e., X =[11, 22, 12,
22, 11, 33, 32]%. It can be verified that the information
amount keeps invariant before and after merging.

[20] The direct welding approach, however, has a defi-
ciency which may cause the so called problem of “out of
memory” as the number of variables to be merged increases,
especially when the sample size is large. An adapted alterna-
tive to the direct welding approach, which avoids the above
problem, is generalized in what follows:

[21] Algorithm 1

[22] 1. Create a new sample X from X; and X, by the
direct welding approach.

[23] 2. Pick out the unique values in X and rank them in
ascending order, resulting in a ranked sample X, with a
length of /.

[24] 3. Access the location index of each element of X in
the ranked sample X,..

[25] 4. Assign each element of X a new label as its loca-
tion index obtained in step 3.

[26] After this, each element in the new merged sample is
relabeled by an integer ranging from 1 to /. Remember that the
merging approach is only suitable for discrete variables. The
variable merging approach satisfies the law of association and
commutation in terms of information content. Taking merging
3 variables as an example, according to the law of association
and commutation, the following equalities are satisfied:

H(< X1,X2, X >) = HK X1, X, >, X3 >)
=H(< X, <X, X3 >>) (7
:H(<<X1,X3 . ¢ >),

where < - > denotes the merging operator. Assuming X3 =
[1,1,2,2,1,3,3]" and applying algorithm 1 yields

H(K X, X > X >)=H([1, 4 2, 3, 1, 6, 5]")
= 2.522 Bits,

H(< X, <X, X;>)=H([1, 2, 4 3, 1, 6, 5]")
= 2.522 Bits,

H(K X, X >,X >)=H([1, 3, 2, 4, 1, 5, 6]

= 2.522 Bits.
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[27] In terms of variable merging, the multivariate joint
entropy, H(X;,X, ...,X,), can be computed by sequen-
tially applying algorithm 1, i.e.,

H(X],Xz, ...,Xn) :H(<X|,X2 > X, ...

:H(<<X1,X2 > X3>, ... ,X,,)
:H(< L XX > X > X >,Xn)

Xn)

@®)

e < XL > X > X > X ).

[28] Concerning the computation of total correlation, one
can proceed in two different ways. One is to use the short-
cut formula in equation (5). The other one is to apply the
grouping property [Kraskov et al., 2005; Alfonso et al.,
2010a, 2010b] together with algorithm 1, as shown in the
following:

C(Xlqua cee -,Xn) = C(X17X2) + C(< X17X2 >7X37X47 ce 7Xn)

= C(X1,X) + C(< X1, X >, X3)

+ C(< X1,X,X3 >, X4, X5, ... ,X,,)

= C(Xl,Xz) + C(< X1,X >,X3) + C(< X1,X,X3 >7X4)

+ ... +C(< X1, X, o, X >,Xn).

©

Since the total correlation at the bivariate level reduces to
transinformation, equation (9) indicates that the n-dimen-
sional total correlation is factorized as a summation of tra-
ditional transinformation values.

[290] With the aid of variable merging, we can define the
multivariate transinformation between single and grouped
variables, and between two grouped variables. The first type
multivariate transinformation, 7(< Xi,Xa, ..., X, >;X),
measures the information amount of a single variable which
can be inferred from that of variables in the group, and vice
versa. Transinformation between grouped variables, T'(< Xj,
X, ..., X, > < X],X;, ..., X, >), measures the common
information shared by the two grouped variables. The above
two types of multivariate transinformation can be easily com-
puted by first merging variables in the group and then apply-
ing the definition of bivariate transinformation in equation (4).

3. MIMR Criterion and Its Implementation
3.1. MIMR Criterion

[30] The idea of MIMR criterion lies in selecting (or
ranking) stations from a candidate set, through which, the
selected stations can: (1) maximize the overall information,
(2) maximize the information transition ability, and (3)
minimize the redundant information.

[31] Assume there are N candidate stations. For each sta-
tion, there are several years of records of the variable of in-
terest denoted by X, such as streamflow. Let S be the set of
stations already selected into the optimal network whose
elements are denoted as Xs,, Xg,, ..., Xs,. Similarly, let ¥
be the set of candidate stations to be selected whose
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elements are denoted as Xp,, Xr,, ... , Xr,. Apparently,
the sum of £ and m is equal to N. The amount of overall in-
formation retained by S can be quantified by multivariate
joint entropy

H(Xs,, Xs,, ..., Xs,). (10)
The information transition ability of S can be measured by
the sum of transinformation between grouped variables in
S and each station in ', denoted as 7; for simplicity,

m
T = ZT(< Xs,, Xs,, .., Xs, >3 Xr).

i=1

(11

Also, it can be measured by the transinformation between
grouped variables in S and F, denoted as 7>,

T, = T(< X, Xsyy ooy Xy >3 < Xp), Xy -0, XF, >). (12)
The redundant information of the optimal set S can be
quantified by the total correlation

C(Xs,, Xsyy -+, Xs,)- (13)
Then, the MIMR criterion-based objective functions are
formulated as

Max 1‘[()(51,)(5'27 ...,Xsk)
m
Max. > T(< Xs,,Xs,, .., X5, > X5 (14a)
i=1
Min CXS17XS27 4~7XSK)
or
Max. 1‘[()(3I 7XSz7 N 7Xs,()
Max. T(< XS| ,XSZ, ce 7XSk > < XF] 7XF27 N 7Xpm >).
Min. C(XS| 7X527 e ,Xsk)
(14b)

The objectives in equation (14a) [or equation (14b)] indicate
that an optimal network should convey effective information
as much as possible, while retaining redundant information,
if any, as little as possible.

[32] To circumvent the complexity of multiobjective opti-
mization and facilitate end user’s decision making, the three
objectives can be additively unified considering that they
are commensurate. Hence, the multiobjective optimization
reduces to single-objective optimization. The integrated
objective function corresponding to equation (14a) is

m

Max. Ai(H(Xs,, X, -, Xs,) + > T(< X, Xs,, o, Xs, >
i=1

XFA)) - )\QC(XS] 7XS23 o 7XS;)7

(15a)
where A; and )\, whose summation is 1, respectively, are

the information-redundancy tradeoff weights. The purpose
of tradeoff weights is to give users the possibility to include
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additional knowledge or their preference. Moreover, varying
tradeoff weights can achieve different feasible solutions
under different scenarios. Therefore, the advantage of multi-
objective optimization is retained to some extent. Similarly,
the analogous integrated objective function corresponding to
equation (14b) is

Max. /\I(H(XS17 .. ‘,Xs‘) + T(< X,y ooy Xg, >

<)(1:'17 ~-~>XF,,, >))—>\2C(X51, ...,Xsk). (15b)

3.2. Selection Algorithm

[33] Using the MIMR criterion, a selection algorithm for
the design of hydrometric networks can be generalized in
what follows:

[34] Algorithm 2

[35] 1. Collect data of hydrometric variable of interest at
each candidate station;

[36] 2. Discretize the continuous time series data by
equation (6);

[37] 3. Initialize the optimal set S as an empty set and the
candidate set F as the one containing all candidate stations;

[38] 4. Identify the central station as the one with maxi-
mum marginal entropy among all candidates;

[39] 5. Update sets S and F;

[40] 6. Select the next optimal station from F by the
MIMR criterion. In this step all stations in F' are scanned
sequentially to search the one satisfying equation (15a) [or
equation (15b)];

[41] 7. Repeat steps 5 and 6 iteratively until the expected
number of stations have been selected.

[42] A pseudo code for algorithm 2 is given in Table 1.
Convergence of the selection can be determined by the
ratio of joint entropy of the selected stations to that of all
the candidates. If the ratio is over a threshold, like 0.90,
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the selection stops. If no threshold is provided, then all
candidate stations will be ranked in descending order of
priority. To reduce the implementation effort, a MATLAB
package HydroMIMR was developed.

[43] Other than forward selection, the optimal stations
can also be determined in an opposite direction. For back-
ward selection, the criterion should be changed to mini-
mum information reduction and maximum redundancy
reduction, which is also based on the principle of MIMR.

4. Application

[44] Two case studies are presented in this section to
illustrate the applicability of MIMR in evaluating and
designing a hydrometric network. The first case shows how
to evaluate an existing streamflow gauge network. The sec-
ond case demonstrates the way to optimally select stations
from a dense polder water level monitoring system.

4.1. Case 1: Streamflow Network Evaluation

4.1.1. Study Area and Data

[4s] This case study aims to rank the importance of
streamflow gauges located on the mainstream of the Brazos
River in Texas. The Brazos River, with a drainage area of
about 118,000 km?, extends from eastern New Mexico, and
flows for more than 1000 km southeasterly across Texas, to
the Gulf of Mexico (Figure 1) [Wurbs et al., 2005].
Monthly scale streamflow observations from 1990 to 2009
of 12 USGS stream gauges were selected for this study, as
depicted in Figure 1. Notice that only gauges on the main-
stream were chosen. Evaluating gauges separately for each
tributary and the mainstream is reasonable, since they
belong to different geophysical hydrological units and
pooled evaluation would lead to irrational results.

Table 1. Pseudo Code for the MIMR-Based Greedy Selection Algorithm

Commands Outline

Comments

1: F « candidate set including all candidate stations
S « empty set
2: Discretize the continuous time series.
tInfo — H(F) < Equation (8)
4: Fori=1:N
H(X;) < Equation (1)

W

End
5: X; < argmax y [H(X;)]
6: F—F-X

S —S+X;

7: Fori=2:N
m « size (F)
n « size ()
Fork=1:m
M]MRSJFXFAV « Equation (14)
End
Xp, = argmax (MIMRs . x;, )
F—F—Xp,
S «— S + XF;(
End
8: Fori=1:N
sinfor « H(Xs,,Xs,, -
sinfo
pet = tInfo
If |pct — threshold| < eps
Spinat — {Xs,, Xs,, -+, X5,
return
End
End

,Xs,)

Initialize candidate set F' and empty set S

Compute the total information (¢/nfo) of all the potential stations
Compute the marginal entropy of each potential station

Select the first center station
Update F and S for the first time

Sequentially select station from the updated candidate set according to MIMR criterion

Update the candidate set and already selected set successively

Determine the final optimal set Sj;,,; according to the information fraction of the selected
set to the total information. Joint entropy of selected stations is denoted by s/nfo
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Figure 1. Location map of the Brazos River basin and streamflow gauges on the mainstream.

Reallocated station identification number (ID) sequentially
from upstream to downstream and the corresponding sum-
mary statistics of streamflow are given in Table 2. One
major finding was the increased variability of streamflow
from upstream to downstream as signified by the increased
variance. From the perspective of information theory, gen-
erally the larger the variance of a station the more informa-
tion (or uncertainty) it contains. In this sense, the
importance of each station also increases from upstream to
downstream. Selecting stations simply based on the var-
iance (or standard deviation), however, cannot make sure
that the transinformation between selected and unselected

stations is high and the redundant information among the
selected stations is low.

4.1.2. Results

[46] Prior to the MIMR ranking, the continuous stream-
flow time series for each station was discretized using
equation (6). A too small value of @ would the make the in-
formation content retained by every station indistinguish-
able, leading to inconvenience for further analysis. As
illustrated in the top plot of Figure 2, the information con-
tent measured by marginal entropy was similar among sta-
tions due to a small value of a (1.0 m®> s™!). On the other

Table 2. USGS Code, Reallocated ID and Summary Statistics of Streamflow for Each Gauge in this Study®

USGS Code ID Mean Variance SD Maximum Median Minimum
08082500 1 7.13 181.65 13.47 99.25 2.47 0.00
08088000 2 18.96 1415.07 37.62 254.48 5.19 0.00
08088610 3 18.92 1588.43 39.86 245.20 6.51 0.77
08089000 4 21.99 1864.03 43.17 256.66 7.78 0.96
08090800 5 28.09 3293.39 57.39 377.18 8.17 0.75
08091000 6 31.68 4502.97 67.10 423.62 9.00 0.35
08093100 7 44.57 7277.09 85.31 652.14 16.69 0.65
08096500 8 71.79 15493.18 124.47 807.02 27.82 0.94
08098290 9 89.79 20146.78 141.94 904.16 35.25 3.04
08111500 10 235.47 84091.05 289.98 1646.06 104.30 10.07
08114000 11 248.88 90336.52 300.56 1727.61 117.87 11.88
08116650 12 258.96 101733.94 318.96 1998.03 135.71 6.58

Streamflow is measured in m> s~ .
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Figure 2. Marginal entropy after discretization and stand-

ard deviation at the original scale of streamflow of each
station. The discretization parameters are 1.0 m> s ',
150.0 m® s™' and 1000.0 m® s~ for each plot from top to

bottom, respectively.

hand, an over large @ would make stations with relatively
small values insignificant. As in the bottom plot of Figure 2,
the large a (1000 m® s7!) compiled stations with small dis-
charges to be noninformative (e.g., gauges with ID 1, 2,
and 3). That is because equation (6) with large a can be
considered as a “high-pass-filter,” by which values below a
high threshold will be converted to the same integer. In
both of the above cases, the spatial variability of stream-
flow was distorted after discretization. From the middle
plot of Figure 2 corresponding to an appropriate value of
150 m> s~ ! for a, which is determined by trial and error,
one can see that all stations were informative and distin-
guishable. The spatial variability of streamflow among sta-
tions is also preserved. To confirm the rationale of
150 m* s~ for a, a sensitivity analysis was carried out by
comparing station ranks corresponding to different integers
of a varying from 130 m® s ' to 170 m®> s~'. Results
showed that station ranks obtained by MIMR were stable.
The top 9 selected stations kept invariant no matter how a
changed. These observations together empirically justified
the rationale for the value of 150 m® s' for a.

[47] Marginal entropy map, multivariate joint entropy
and total correlation provide an overall picture of the
behavior of information content of all candidate stations.
Figure 2 offered an implicit entropy map. The station with
minimum marginal entropy was located at the most
upstream on the river, whereas the one with maximum en-
tropy was found at the most downstream location. Also we
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detected an increasing trend of information content from
upstream to downstream, which was consistent with the
empirical conclusion achieved based on the streamflow
variance. Following this, we suspected that the information
amount increased as the controlled drainage area accumu-
lated. The joint entropy of all stations was 4.10 bits, repre-
senting the maximum information amount that could be
extracted from them. The total correlation was 8.78 bits,
signifying the amount of duplicated information among
them. The sum of marginal entropies of all stations was
12.88 bits, which was approximately 47% larger than the
total correlation, implying the gauging system was of an in-
formation-scattered type.

[48] With information weight A\; adopting a value of 0.8,
the MIMR selection was implemented to rank the 12
gauges. Justification for the value 0.8 for A\; would be
detailed in section 4.1.4. Results of MIMR selection are
presented in Table 3. We noted the following: (1) as
expected, the “central” station, with ID 12, was the one
with maximum marginal entropy located at the most down-
stream area; (2) unlike that derived from marginal entropy
or variance, the MIMR based priority rank did not exhibit
an increasing pattern from upstream to downstream; (3) the
joint entropy of stations in the optimal set did not always
increase as more and more stations were added; (4) the top
6 stations explained roughly 80% of the total information
retained by the 12 stations; (5) generally, multivariate tran-
sinformation 77 and 7, first increased and then decreased
as selection proceeded; and (6) the total correlation
increased as a new station was added to the optimal set.

[49] Observation 2 indicates that siting gauges simply
based on marginal entropy cannot obtain an optimal net-
work, but leads to the one with either low transinformation
or high duplicated information. Concerning observation 3,
theoretically, the joint entropy is nondecreasing as more
stations are added. It is invariant if and only if the informa-
tion of new added stations is thoroughly duplicated among
those already selected. The invariant joint entropy over
steps 5, 6 and 7 is not surprising, if one looks at the close
locations of the selected stations (Figure 1) during these
steps (ID 2, 3, and 4). The decreased transinformation in
observation 5 is explained by realizing that fewer and fewer
stations were left in the candidate set as selection pro-
ceeded. Figure 3 (MIMR) shows the spatial locations of the
top 6 selected stations. They are nearly uniformly distrib-
uted along the stream, which is desirable for obtaining the
area mean value. Even though the spatially averaged
streamflow is of little practical interest, the MIMR criterion
is generic for any hydrometric network evaluation and
design, of course suitable for siting gauges across a rainfall
field, for which the area mean value is important.

4.1.3. Comparison With WMPs

[s0] We compared the performance of MIMR selection
with another entropy-based method developed by Alfonso
et al. [2010a], i.e., water level monitoring design in polders
(WMP), whose objective function is generalized as:

Max. L+ H(X)

i—1 16
Min. ’ (16)
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Table 3. Joint Entropy, Transinformation, and Total Correlation of Ranked Streamflow Gauges Obtained by MIMR With A\; = 0.8 and

by WMPs
Iteration Step
1 2 3 4 5 6 7 8 9 10 11 12
MIMR
D 12 6 1 8 2 3 4 7 5 9 10 11
H 2.47 2.84 2.87 321 3.23 3.23 3.23 3.32 3.33 3.52 3.93 4.10
T, 6.57 7.12 7.76 7.42 7.13 6.78 6.37 5.81 5.24 4.12 2.28
T, 2.17 2.54 2.59 277 2.78 277 277 2.76 2.58 2.32 2.28
C 0.00 0.27 0.34 1.09 1.40 1.75 2.16 2.82 3.38 4.53 6.50 8.78
WMP1
1D 12 9 7 6 5 4 3 2 1
H 2.47 3.07 3.21 3.36 3.37 3.37 3.38 3.38 3.38
T 6.57 7.22 6.89 6.81 6.25 5.84 5.51 5.17 5.07
T, 2.17 2.59 2.66 2.80 2.72 2.69 2.70 2.62 2.58
C 0.00 0.73 1.34 1.82 2.38 2.79 3.13 3.47 3.57
WMP2
1D 12 9 7 6 5 4 3 2 1
H 2.47 3.07 3.21 3.36 3.37 3.37 3.38 3.38 3.38
T, 6.57 7.22 6.89 6.81 6.25 5.84 5.51 5.17 5.07
T, 2.17 2.59 2.66 2.80 2.72 2.69 2.70 2.62 2.58
C 0.00 0.73 1.34 1.82 2.38 2.79 3.13 3.47 3.57
WMP3
ID 12 9 6 11 10 8 5 2 1
H 2.47 3.07 3.26 3.57 3.86 4.01 4.02 4.06 4.08
T, 6.57 7.22 7.26 5.29 3.20 2.31 1.79 1.56 1.46
T, 2.17 2.59 2.76 2.65 1.41 1.11 0.98 0.98 0.95
C 0.00 0.73 1.20 332 5.42 6.36 6.92 7.22 7.32

where X; and X; represent stations in sets /" and S, respec-
tively. Other than transinformation, another two criteria
were used by WMP to measure the dependence of stations.
One was the directional information transfer index

T(X,Y)
DITyx(X;Y) = o 17
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Figure 3. Spatial distribution of the top 6 streamflow

gauges ranked by MIMR with \; = 0.8 and by WMPs.

The other one was also the directional information transfer

index but from X to Y, i.e.,

T(X,Y)
HX)

DITxy(X;Y) = (18)

For simplicity, WMPs with transinformation, DITyxy and
DITyy were denoted by WMP1, WMP2 and WMP3, respec-
tively. The objective functions for WMP2 and WMP3
can be obtained by replacing 7'(X;;X;) in equation (16) with
DITyx (X;;X;) and DITxy(X;;X;), respectively. A brief
description of the step by step selection of WMPs can be
found in the Appendix. Be aware that the objective function
of WMPs is generalized in a way such that their selection
concerns could be explicitly embodied. Implementation of
WMPs should strictly follow procedures in the Appendix.

[51] A summary of entropy terms associated with WMPs
is tabulated in Table 3. First, we compared the performance
of MIMR and WMPs in finding stations with high informa-
tion content. The joint entropy of MIMR-ranked stations
was a little bit smaller than that of stations obtained by
WMPs. The top 6 stations selected by MIMR explained
approximately 80% of the total information and 82% of
which was explained by the same number of top stations
derived from WMP1 and WMP2. The performance of
MIMR was comparable to WMP1 and WMP2 from the
point of view of joint entropy. For WMP3, the top 6 sta-
tions explained 98% of the total information. The above
comparison might seem against MIMR. A network is con-
sidered as optimal not only because of its high joint en-
tropy, but it is better to balance its performance in the three
respects mentioned in section 3.
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[52] Second, we compared the performance of MIMR
and WMPs in locating stations with high information tran-
sition ability. By looking into 7} in Table 3, one can see
that MIMR outperformed WMPs, indicating the decent in-
formation transition ability of the network obtained from
MIMR. From the point of view of 7, the performance of
MIMR was not always superior to that of WMPs. This is
unsurprising since in this study MIMR used function (14a)
as an objective in which 7, was not accounted for.
Actually even in this case, MIMR outperformed WMPs
after more than 4 stations were selected. The above analy-
sis also suggests a hydrometric network with high joint en-
tropy does not mean that it also has decent information
transition ability.

[53] Third, we evaluated the performance of MIMR in
searching independent stations. Total correlation of the top
6 stations selected by MIMR occupied less than 20% of the
duplicated information among the 12 stations. The percen-
tages for the same number of top stations derived from
WMPs were as high as values ranging approximately from
32% to 72%, as inferred from Table 3. Apparently, MIMR
is more effective in searching independent stations.

[54] Finally, from the spatial distribution of the top
ranked stations by different approaches (Figure 3), an inter-
esting observation emerged. Compared with stations
selected by MIMR, stations obtained from WMPs clustered
along the stream, explaining why they contained more
duplicated information. It is desired to screen the clustering
effect of a data collection network. In this sense, MIMR
should gain more confidence.

4.1.4. Sensitivity Analysis of i,

[s5] Since the primary purpose of data collection is to
obtain information, the sensitivity analysis was only carried
out for information weight falling between 0.5 and 1.0.
Results are summarized in Table 4, which mainly signify
the stability of MIMR with respect to information weight.
In this case, the stability of MIMR was mainly because of
the relatively small number of candidate stations. When an
existing network is dense, it is cautioned that paying spe-
cial attention to the tradeoff weights is required.

[s6] As previously stated, the tradeoff weights should
reflect the user’s knowledge and preference about the hy-
drometric network under consideration. In practice, how-
ever, such kind of prior information or experience may not
always be available. Even if it is available, selecting opti-
mal weights is still challenging. One question arises: how
to determine a suitable information weight without prior
knowledge about the system? Investigating the perform-
ance of MIMR with different tradeoff weights can achieve

Table 4. IDs of Selected Stations Step By Step Using the MIMR
Criterion With Different Information Weights

Iteration Step

N1 2 3 4 5 6 7 8 9 10 11 12
05 12 6 1 2 3 4 7 5 8 9 10 11
06 12 6 1 2 3 7 4 5 8 9 10 11
07 12 6 1 2 7 3 4 5 8 9 10 11
08 12 6 1 8 2 3 4 7 5 9 10 11
09 12 6 1 8 2 3 4 7 5 9 10 11
10 12 6 1 8 2 3 4 7 5 9 10 11
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useful hints. As inferred from Figure 4, a more informative
but less independent network can be obtained by increasing
the information weight. Maximum information and mini-
mum redundancy are two conflicting objectives. It is better
to balance them in order to reach a satisfactory result. The
information-redundancy tradeoff weights provide a flexible
“handle” to control this balance. As seen from Figure 4, a
value of 0.8 for information weight led to a decent balance
between information and redundancy, which provided a
justification for selecting 0.8 for A; in this case study.

[57] The behavior of different optimality measures asso-
ciated with WMPs is also presented in Figure 4. It was
noted that as the information weight increased, MIMR
moved toward WMP1 and WMP2. MIMR performed better
in maximizing the information transition ability and avoid-
ing redundant stations. Concerning the joint entropy,
MIMR performed slightly worse than WMPs. An interest-
ing result of MIMR worth noting is the smaller total corre-
lation (redundancy) than that related to WMPs even when
the information weight was 1.0. A value of 1.0 for informa-
tion weight means that the objective of minimizing redun-
dancy was excluded from the selection. Figure 4 inspires a
viable approach to guide the selection of tradeoff weights.
Using WMPs as benchmark methods, the information
weight is modulated until a satisfactory result is obtained.

4.2. Case 2: Polder Water Level Monitoring Network
Design

4.2.1. Study Area and Data

[s8] Water level time series of a highly controlled polder
system reported by Alfonso et al. [2010a] were used in this
case study. The polder system is located in a low-lying
region of Pijnacker, Delfland, Netherlands. There were in
total 1520 potential monitoring points along the canals
separated by a distance of 15 m on average, as depicted in
Figure 5. Water level time series for these points were gen-
erated from a hydrodynamic model built by the Delfland
Water Board. Driven by a given storm event, the model
was run for a simulation period of 10 days at a time step of
15 min, resulting in 1520 synthetic water level time series,
each with a length of 960. At each computational point,
only the first 792 records were used in the present analysis
due to data availability.

4.2.2. Results

[s9] The generated continuous water level time series
were first discretized by equation (6) with a value of 5 cm
for parameter a. This value was determined based on physi-
cal considerations that water level variations smaller than
5 cm were caused by wind, ship movement, or dynamic
waves generated by the operation of pumping stations
[Alfonso et al., 2010a]. These kinds of variations should be
treated as noise. The role of the mathematical floor function
was to filter out such noise to produce a noise-free pulse
signal. This example illustrates the advantage of mathemat-
ical floor function in incorporating physical considerations.

[60] The marginal entropy for each simulation point was
superimposed over the location map in Figure 5. The 16
null entropy points were highlighted by black points. These
points corresponded to pumping stations discharging to big
storage bodies, where fixed boundary conditions for water
level should be satisfied. Generally, points with static
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Figure 4. Behavior of different entropy terms of stations selected by MIMR with different informa-

tion-redundancy tradeoff weights and by WMPs.

observations can be determined in advance whether or not
to be retained in the final monitoring set based on manage-
ment considerations. Therefore, they were left out from the
following analysis.

[61] Figure 5 provided an overall picture for the informa-
tion content of the polder system. Besides the null informa-
tion points, a low information area was identified in the
south part of the system. A short canal segment with
extremely high information content was found in the north-
west part, implying the suitable area for siting the “central”
monitor. Excluding the null information points, the joint en-
tropy of the 1504 monitors was 9.09 bits, which represented

the maximum information amount that can be obtained
from the system. The total correlation was 3411.49 bits,
which quantified the duplicated information of the system.
The summation of the marginal entropies was 3420.58 bits,
which was almost equal to the amount of duplicated infor-
mation, suggesting the synthetic network was of an informa-
tion-clustered type.

[62] A summary of entropy terms for the top 10 monitors
obtained by MIMR with a value of 0.8 for the information
weight are presented in Table 5. The joint entropy reached
a plateau after 9 monitors were selected, which was used as
the convergence indicator. The top 9 monitors explained
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Figure 5. Marginal entropy map of the 1520 calculation
points used in this study. Points with null entropy are high-
lighted with black points.

about 84.9% of the total information, whereas roughly 85%
of which was explained after adding one more station. The
increment was no more than 0.1%, indicating it was reason-
able to choose the top 9 monitors as the final set. Transi-
nformation 77 was much larger than T,. This was expected,
since the duplicated information in F' was filtered out in the
variable merging process.

4.2.3. Comparison With WMPs

[63] Different entropy terms corresponding to MIMR
and WMPs were also presented in Table 5. More or less the
same results were obtained as in case 1. The better per-
formance of MIMR was more apparent. The joint entropy
of selected stations by MIMR was larger than that of sta-
tions selected by WMPs. This confirmed the decent per-
formance of MIMR in locating stations with high
information content. Both 77 and 7, obtained by MIMR
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were higher than those obtained by WMPs. Even though
equation (14a) was used as the objective in the MIMR
selection, implying that 7, was not accounted for, 75
obtained by MIMR was still larger than that obtained by
WMPs. This is another interesting finding about MIMR.
The network selected by MIMR contained notably less
redundant information than that contained in the network
obtained by WMPs, as indicated by total correlation.

[64] Spatial locations of the selected stations are pre-
sented in Figure 6. The top 10 monitors derived by MIMR
were widely spaced without clusters across the canal sys-
tem, confirming the good performance of MIMR in deter-
mining a network with minimum redundant information.
The spatial distribution of the top 10 stations ranked by
WMPI1 and WMP2 was almost the same except the one
selected at the 10th step. This observation explained why
entropy terms associated with WMP1 and WMP2 were
similar as given in Table 5. Compared with the widely
spaced stations determined by MIMR, station clusters were
found in the network determined by WMPs, especially by
WMP3. This signified the good performance of MIMR in
determining an unbiased monitoring network as long as the
information weight was properly selected. A monitoring net-
work with clustered stations is considered as biased in that
the underlying spatial variability of the variable of interest
cannot be realistically discerned by the data collected from it.

4.2.4. Sensitivity Analysis of 4;

[65] The right panel of Figure 4 displays the results of
sensitivity analysis, which are similar to those obtained in
case 1. As can be seen, the performance of MIMR approached
and then surpassed that of WMPs with respect to multivariate
joint entropy and transinformation as the information weight
increased from 0.5 to 1.0. On the other hand, from the view
point of total correlation, MIMR moved toward and then sur-
passed WMP1 and WMP2 but never reached WMP3. Again
it was found that even though the redundancy weight was
null, the MIMR criterion still performed better in finding in-
dependent stations compared with WMP3.

Table 5. Joint Entropy, Transinformation, and Total Correlation of Monitors Obtained by MIMR With A\; = 0.8 and by WMPs

Iteration Step

1 2 3 4 5 6 7 8 9 10

MIMR

H 4.25 5.53 6.37 6.92 7.12 7.25 7.57 7.70 7.72 7.73

T, 2581.58 2942.34 3126.60 3201.55 3215.89 3229.46 3281.50 3306.45 3306.40 3306.19

T 4.24 5.52 6.37 6.91 7.11 7.24 7.56 7.70 7.71 7.71

C 0.00 1.76 3.88 6.10 6.89 7.31 9.44 10.83 11.37 11.87
WMP1

H 4.25 5.42 5.74 6.16 6.46 6.65 6.69 6.75 6.77 6.97

T\ 2581.58 2915.38 3028.62 3076.65 3099.92 3143.04 3151.82 3157.58 3161.70 3159.53

T 4.24 5.42 5.74 6.16 6.45 6.63 6.68 6.73 6.75 6.94

C 0.00 1.63 3.70 5.72 7.60 9.83 11.95 14.05 16.17 18.18
WMP2

H 4.25 5.42 5.74 6.16 6.45 6.65 6.69 6.73 6.75 6.80

T, 2581.58 2915.38 3031.15 3077.77 3098.63 3142.14 3149.10 315233 3156.54 3159.98

T, 4.24 5.42 5.74 6.16 6.44 6.62 6.67 6.70 6.73 6.78

C 0.00 1.63 3.65 5.67 7.55 9.78 11.90 14.03 16.14 18.34
WMP3

H 4.25 5.43 5.72 6.38 6.94 6.96 6.97 6.99 6.99 7.05

T\ 2581.58 2918.61 2933.07 3081.56 3195.22 3195.47 3193.73 3192.24 3188.90 3190.04

T 4.24 5.43 5.72 6.37 6.93 6.95 6.97 6.99 6.99 7.05

C 0.00 2.16 5.72 8.29 10.94 15.03 18.37 2243 25.64 29.62
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Figure 6. Spatial distribution of the top 10 stations
ranked by MIMR with A\; = 0.8 and by WMPs.

[66] Spatial locations of the selected stations by MIMR
with different information weights are presented in Figure 7.
When the information weight was small, a cluster of stations
with small information content was always indentified. A
small information weight corresponds to a large redundancy
weight. With a large redundancy weight, the total correlation
has more influence on the objective function. Therefore, sta-
tions which would introduce less redundant information
were selected. The points with small information content in
F shared a small amount of information with stations in S.
That is why clustered stations were selected from the low in-
formation area. It was also noted that as the information
weight increased, the selected stations became widely
spaced, and then became clustered again (e.g., A\; = 1.0).
This time the clustered stations were found in the high infor-
mation area. In view of this, it was suggested again, using
WMPs as benchmark methods to modulate the information
weight until a satisfactory result can be obtained. This pro-
vides a practical way for determining suitable information-
redundancy tradeoff weights.
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5. Merits and Demerits of MIMR

[67] It is instructive to compare the criteria of different
approaches that have appeared in the literature through
which to highlight the merits and demerits of the MIMR
criterion.

[68] The idea of the information maximization principle
[Caselton and Husain, 1980; Husain, 1987, 1989 ; Al-Zahrani
and Husain, 1998; Yoo et al., 2008] is to select a set of
p stations from a dense network of m stations such that

Max. z,,: mz (xF, XM 7
i=1 j=1

(19)

i ME

where X7 represents the station in the possible p-combina-
tion of the m stations and X" denotes the station outside
of the p-combination. The combination of these p stations
that satisfies equation (19) will be the optimally retained
stations. Redundancy of the network is not accounted for.

[69] The idea of Krstanovic and Singh [1992a, 1992b] is
to select the “central” station first then sequentially select
others that give the lowest reduction in uncertainty. The
objective is generalized as

Min. H(Xi, ..., Xi1) —H((Xl, ...,)(i,l)|)(i>

(20)
= Min. T()(]7 ...,)(,',1;)(,')7

where X; represents the station selected in the ith step.
Equation (20) focuses on avoiding the redundant informa-
tion of a network and explicitly neglects its ability in maxi-
mizing the joint entropy and the transinformation between
selected and unselected stations.

[70] A two-phase approach was described by Yang and
Burn [1994]. The first stage uses a hierarchical clustering
technique to form groups of hydrometric gauging stations.
The second stage involves the selection of a single station
from each group for retention in the final network. The sin-
gle station is selected based on that the maximum fraction
of its information can be transferred to other stations in the
group. Generally, this approach focuses on the information
transition ability and on avoiding redundancy of the net-
work. It omits the ability in providing maximum joint
entropy.

[71] Quantitative comparisons between WMPs and MIMR
have been detailed. One more point we want to further high-
light is that WMPs are implemented through matrix opera-
tion. Therefore it is more computationally efficient than the
MIMR greedy selection. At each step of MIMR selection, all
stations remaining in the candidate set will be scanned to
search the optimal one, which would largely increase the
computational burden.

[72] Another criterion was described by Alfonso et al.
[2010b], which is generalized as

Max.
Min.
where X;,i = 1,2, ..., M represent the selected stations in

the optimal set and  is a constant with cost units of bits
per new station. Equation (21) fails to account for

H(X, ...
[Cw()(l7

Xur) — My

, 21
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Figure 7. Spatial distribution of selected stations

tradeoff weights.

transinformation. The advancement is the consideration for
the economic effect. It is easy to incorporate a cost function
into MIMR. The important point is to develop cost and
benefit functions in information units. Compared with the
approach used in the reference by Alfonso et al. [2010b] to
solve the multiobjective problem, the greedy ranking algo-
rithm for MIMR selection is straightforward and much eas-
ier to implement. However, we want to caution that this
simplicity is traded by the declined diversity of feasible
solutions.

[73] Another limitation of MIMR selection is that it is
only suitable for choosing stations from a dense network.
How to expand a sparse network is beyond its capacity.
Fortunately, this problem can be addressed by simula-
tion. Physically based hydrologic or hydrodynamic mod-
els can be used to generate synthetic dense networks,
like the polder water level monitors in case 2. Weather
generators are accessible to generate synthetic rainfall
fields [Wilks, 2009]. High spatial and temporal resolution
of radar rainfall products also can be exploited to
approach this problem [Volkmann et al., 2010]. It is cau-
tioned that the synthetic dense network should preserve
the properties of the observed network as much as possi-
ble. Otherwise, one should be careful with the potential
dangers.

6. Concluding Remarks

[74] A generic criterion for the evaluation and design of
hydrometric network based on entropy theory is presented.
The proposed criterion, named as maximum information
minimum redundancy (MIMR), covers the following three
optimality measures of a hydrometric network: (1) joint en-
tropy, (2) transinformation, (3) and total correlation. In
terms of the MIMR, the selected network can provide the
highest information content and avoid dependent stations as
much as possible, guaranteeing while the stations within and
outside of the optimal set has high common information.

by MIMR with different information-redundancy

Based on MIMR, a greedy ranking algorithm is proposed to
optimally select hydrometric stations from a dense network.
The optimum number of stations is determined by the per-
centages of total information that can be explained by sta-
tions in the optimal set.

[75] With the aid of discrete variable merging, all of the
entropy terms involved in MIMR can be easily evaluated at
high dimension without any distributional assumption. The
basic idea of variable merging is to create a new variable
whose information content is equal to that retained by the
original variables. This technique is only suitable for dis-
crete data. In the context of hydrometric network design (or
evaluation), continuous time series data should be discre-
tized first, which is done with the use of a mathematical
floor function. Mathematical floor function on one hand
avoids the choice of a parametric distribution to fit the con-
tinuous data and on the other hand, it can incorporate phys-
ical considerations. Three thumb rules suggest how to
select a proper discretization parameter suitable for general
hydrometric system, even in the case that no clear physical
consideration is available.

[76] The MIMR selection is quantitatively compared
with another entropy-based approach, i.e., WMPs. Results
show that MIMR is better at finding stations with high infor-
mation content, and better at locating independent stations.
The information-redundancy tradeoff weights provide the
user a flexible handle to balance the two conflicting objec-
tives: maximum information and minimum redundancy.
The tradeoff weights reflect the user’s knowledge about the
hydrometric network. When such knowledge is unavailable,
a promoted approach is to use the computationally efficient
WMPs as benchmarks and adjust the information weight
until a satisfactory result is obtained. In this study, we only
quantitatively compare MIMR with WMPs. Further com-
parisons with other approaches are merited, especially with
Alfonso et al. [2010b], to see the difference between moni-
toring networks determined by greedy selection and by
multiobjective optimization.
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[77] Even though there are many ways to define the objec-
tive for the design of a hydrometric network, MIMR focuses
on the fundamental theme, i.e., selecting an optimum number
of stations and their optimum locations. Other considera-
tions, like the cost of placing new stations, are not included.
Nevertheless, they can be easily incorporated into the objec-
tive by introducing an extra penalty function. The crucial
point is to find an appropriate way to measure the economic
cost in terms of information units. This is a problem pending
for future work.

Appendix A: The Step by Step Implementation
Procedure of WMPs’

[78] Following Alfonso et al. [2010a], the step by step
selection procedure of WMPs is generalized as:

[79] 1. Collect data of hydrometric variable X; of interest at
each candidate station s; i = 1, 2, ..., n, where » is the num-
ber of candidates) and discretize them using equation (6).

[80] 2. Calculate the marginal entropy H(X;) for each s;
with the use of equation (1).

[81] 3. For each s;, calculate the transinformation in equa-
tion (4) with respect to each of the remaining points and
build the symmetric matrix

TX1: X)) TX;3X) T(X1:X,)
_ T(Xz;Xl) T(Xz;Xz) T(Xz;Xn)

[82] For WMP2 and WMP3, the transinformation is
replaced by directional information transfer index in equa-
tions (17) and (18), respectively.

[83] 4. Select the first monitor m, which is located at the
point with the highest information content measured by mar-
ginal entropy, and add the monitor m; to the selected set M.

[84] 5. Recover the transinformation vector v; of the mon-
itormy : vy =V(i,m),i=1,2,...,n

[85] 6. Divide the candidates into two sets of stations with
respect to their dependence on m; : those that are dependent
and those that are independent S/'’. The independent set
S;,’l'ld is obtained by looking at the elements of v; such that
V (i, my) is less than a threshold given as mean (V (i, my)).

[86] 7. From the independent set Sf,’fld, select the second
monitor m;, which has the highest marginal entropy.

[87] 8. Recover the transinformation vector v, of the mon-
itormy 1 v, =V(i,m),i=1,2, ... n

[88] 9. Select the next monitor m3 in a similar way, but
now using an updated independent set Sj,’,’f given by the
common set of independent points in the overlapping tran-
sinformation vector for the previously selected monitors m;
and m;,. Set vz = v + v,.

[89] 10. Set v; = v3 and repeat the procedure from step 5
until m; does not provide significant information content or
until the independent set Sj,’,’id is empty.

[90] Acknowledgments. The authors would like to express their sin-
cere appreciation to Leonardo Alfonso, at the Hydroinformatics and
Knowledge Management, UNESCO-IHE, Delft, Netherlands, who pro-
vided part of the data used in this paper. Three anonymous referees raised
constructive comments. Their help in improving this paper is gratefully

LIET AL.: HYDROMETRIC NETWORK EVALUATION AND DESIGN

W05521

acknowledged. The work was financially supported in part by the United
States Geological Survey (USGS, Project ID: 2009TX334G) and TWRI
through the project “Hydrological Drought Characterization for TX under
Climate Change, with Implications for Water Resources Planning and
Management.”

References

Alfonso, L., A. Lobbrecht, and P. Price (2010a), Information theory-based
approach for location of monitoring water level gauges in polders, Water
Resour. Res., 46, W03528, doi:10.1029/2009WR008101.

Alfonso, L., A. Lobbrecht, and R. Price (2010b), Optimization of water
level monitoring network in polder systems using information theory,
Water Resour. Res., 46, W12553, doi:10.1029/2009WR008953.

Al-Zahrani, M., and T. Husain (1998), An algorithm for designing a precip-
itation network in the south-western region of Saudi Arabia, J. Hydrol.,
205,205-216.

Bernadara, P., D. Schertzer, E. Sauquet, I. Tchiguirinskaia, and M. Lang
(2008), The flood probability distribution tail: How heavy is it?, Stochas-
tic Environ. Res. Risk. Assess., 22, 107-122.

Birgé, L., and Y. Rozenholc (2006), How many bins should be put in a reg-
ular histogram, ESAIM: Probab. Stat., 10, 24-45, doi:10.1051/
ps:2006001.

Carreau, J., P. Naveau, and E. Sauquet (2009), A statistical rainfall-runoff
mixture mode with heavy-tailed components, Water Resour. Res., 45,
W10437, doi:10.1029/2009WR007880.

Caselton, W. F., and T. Husain (1980), Hydrologic network: Information
transmission, J. Water Resour. Manage. Div. Am. Soc. Civ. Eng., 106(2),
503-520.

Freedman, D., and P. Diaconis (1981), On the histogram as a density
estimator: L2 theory, Z. Wahrscheinlichkeitstheor. Verw. Geb., 57,
453-476.

Harmancioglu, N. B., and V. P. Singh (1998), Entropy in environmental
and water resources, in Encylopaedia of Hydrology and Water Resour-
ces, edited by R. W. Herscly and R. W. Fairbridge, 832 pp., Kluwer, Dor-
drecht, Netherlands.

Harmancioglu, N. B., and V. Yevjevich (1987), Transfer of hydrologic in-
formation among river points, J. Hydrol., 91, 103-118.

Husain, T. (1987), Hydrologic network design formulation, Can. Water
Resour. J., 12(1), 44-59.

Husain, T. (1989), Hydrologic uncertainty measure and network design,
Water Resour. Bull., 25(3), 527-534.

Kraskov, A., H. Stogbauer, R. G. Andrzejak, and P. Grassberger (2005),
Hierarchical clustering using mutual information, Europhys. Lett., 70,
278-284, doi:10.1209/epl/i2004-10483-y.

Kirstanovic, P. E., and V. P. Singh (1992a), Evaluation of rainfall networks
using entropy: I. theoretical development, Water Resour. Manage., 6,
279-293, doi:10.1007/BF00872281.

Krstanovic, P. E., and V. P. Singh (1992b), Evaluation of rainfall networks
using entropy: II. application, Water Resour. Manage., 6, 295-314,
doi:10.1007/BF00872282.

Li, C., V. P. Singh, and A. K. Mishra (2012), Simulation of the entire range
of daily precipitation using a hybrid probability distribution, Water
Resour. Res., 48, W03521, doi:10.1029/2011WRO011446.

Mishra, A. K., and P. Coulibaly (2009), Developments in hydrometric
network design: A review, Rev. Geophys., 47, RG2001, doi:10.1029/
2007RG000243.

Mishra, A. K., and P. Coulibaly (2010), Hydrometric network evaluation
for Canadian watersheds, J. Hydrol., 380, 420-437.

Mogheir, Y., V. P. Singh, and J. L. M. P. de Lima (2006), Spatial assess-
ment and redesign of a groundwater quanlity monitoring network using
entropy theory, Gaza strip, Palestine, Hydrogeol. J., 14, 700-712,
doi:10.1007/510040-005-0464-3.

Papoulis, A., and S. U. Pillai (2001), Probability, Random Variables and
Stochastic Processes, MacGraw-Hill, New York.

Ruddell, B. L., and P. Kumar (2009), Ecohydrologic process networks: 1. Iden-
tication, Water Resour. Res., 45, W03419, doi:10.1029/2008 WR007279.

Scott, D. W. (1979), On optimal and data-based histograms, Biometrika,
66(3), 605-610.

Shimazaki, H., and S. Shinomoto (2007), A method for selecting the bin
size of a time histogram, Neural Comput., 19(6), 1503-1527.

Volkmann, T. H. M., S. W. Lyon, H. V. Gupta, and A. Troch (2010),
Multicriteria design of rain gauge networks for flash flood prediction in
semiarid catchments with complex terrain, Water Resour. Res., 46,
W11554, doi:10.1029/2010WR009145.

14 of 15



W05521

Watanabe, S. (1960), Information theoretical analysis of multivariate corre-
lation, IBM J. Res. Rev., 4, 66-82.

Wilks, D. S. (2009), A gridded multisite weather generator and synchroni-
zation to observed weather data, Water Resour. Res., 45, W10419,
doi:10.1029/2009WR007902.

Wurbs, R. A., R. S. Muttiah, and F. Felden (2005), Incorporation of climate
change in water availability modeling, J. Hydrol. Eng., 10(5), 375-385.
Yang, Y., and D. H. Burn (1994), An entropy approach to data collection net-

work design, J. Hydrol., 157, 307-324, doi:10.1016/0022-1694(94)90111-2.

LIET AL.: HYDROMETRIC NETWORK EVALUATION AND DESIGN

W05521

Yoo, C., K. Jung, and J. Lee (2008), Evaluation of rain gauge network using
entropy theory: Comparison of mixed and continuous distributions func-
tion applications, J. Hydrol. Eng., 13(4),226-235.

C. Li, A. K. Mishra, and V. P. Singh, Department of Biological and
Agricultural Engineering, Texas A&M University, College Station, TX
77843-2117 USA. (lichsunny@tamu.edu; amishra@tamu.edu; vsingh@
tamu.edu)

150f 15



