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ABSTRACT

While the growing number of computational models available to designers can solve a
lot of problems, it complicates the process of properly utilizing the information provided
by each simulator. It may seem intuitive to select the model with the highest accuracy, or
fidelity. Decision makers want the greatest degree of certainty to increase their efficacy.
However, high fidelity models often come at a high computational expense. While com-
paratively lacking in veracity, low fidelity models do contain some degree of useful infor-
mation that can be obtained at a low cost. We propose a method to utilize this information
to generate a fused model with superior predictive capability than any of its constituent
models. Our methodology estimates the correlation between each model using a model
reification approach that precludes the need for observational data. The correlation is then
used in an updating procedure whereby uncertain outputs from multiple models may be

fused together to better estimate some quantity or quantities of interest.
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1. INTRODUCTION AND LITERATURE REVIEW*

Advancements in computing capability, mathematics, and a greater understanding of
the physical world has facilitated the development of mathematical models that can sim-
ulate many natural systems. Computer modeling has become ubiquitous in the aerospace
industry in response to the increasing complexity and performance requirements of today’s
aircraft. These simulators are incredibly useful for gaining insight into complex, dynamic
systems such as those modeled using Computational Fluid Dynamics (CFD) and Finite
Element Analysis (FEA). However, there is a problem with using computational models.
As the statistician George Box famously stated, “All models are wrong, but some are use-
ful." [1] This fact yields some degree of uncertainty of the output of a model. Minimizing
this uncertainty is critical to achieving accurate predictions of real-world performance.

There are many sources of uncertainty that exist in the modeling process including
parameter uncertainty, model inadequacy, residual variability, parametric variability, ob-
servation error, and code uncertainty [2]. Section 2.1 from Ref. [2] has defined these types
of uncertainty as follows. Parameter uncertainty refers to the uncertainty associated with
code inputs. Model inadequacy is attributed to the discrepancy between what is predicted
by the model and the real-world results, even when the true values for all model inputs
are known. Due to random variability in natural processes, the output is compared to the
mean value of the real-world process. Parametric uncertainty is introduced by allowing
the input parameters to vary according to some joint distribution. Observation error refers
to the imperfection in measuring the real-world process. Code uncertainty is included in

cases where it is impractical to run the code for every possible configuration of the input.

*Reprinted from “A Model Reification Approach to Fusing Information from Multifidelity Information
Sources", 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-
1949), Copyright (©) 2017 by William D. Thomison and Douglas L. Allaire.



While relevant uncertainties will be accounted for, this paper will primarily be focused on
reducing uncertainty due to model inadequacy.

For many applications, there exist multiple models that simulate the same system.
These models typically rely on different mathematical formulae or make varying assump-
tions that simplify the problem. This leads to models with varying degrees of discrepancy
from the true output, or fidelity. Generally speaking, a high fidelity model is more accurate
than a low fidelity one at the cost of computational expense. Intuitively, using the high fi-
delity model leads to a reduction in uncertainty due to model inadequacy. However, a low
fidelity model can still provide information that should be considered in any decision mak-
ing process. The problem lies in appropriately utilizing this information in concert with
the higher fidelity model. A method is needed to fuse the information from both models
to create a single, fused model that can better predict some quantities of interest. Ideally,
this method could fuse any number of multifidelity models to create a single model with
greater predictive capabilities than any of its constituent models.

Information fusion is a broad field with diverse applications from imaging to control
theory. Ref. [3] defines information fusion as “the study of efficient methods for automati-
cally or semi-automatically transforming information from different sources and different
points in time into a representation that provides effective support for human or automated
decision making." While the reification approach clearly falls into the information fusion
research domain under this definition, it has a specific use case for reducing uncertainty
due to model inadequacy in situations where multiple models are applicable. Techniques
available for this application include the adjustment factors approach [4, 5, 6, 7], Bayesian
model averaging [8, 9, 10, 11, 12, 13, 14], fusion under known correlation [15, 16, 17],
and fusion under unknown correlation using Covariance Intersection [18, 19]. Our ap-
proach adapts the methods for fusion under known correlation to cases where correlation

is unknown using model reification.



The term reified analysis was coined by Goldstein and Rougier in 2009 [20]. While
our methodology shares a similar nomenclature and purpose, it is very different in its
implementation. The word reify means to consider something to be real. As detailed in
the following sections, our approach generates treats information generated by each model
in turn as real-world data. It is in this regard that we consider the term reification an apt
description of the method.

This paper outlines a methodology to create a fused distribution using data from mod-
els of varying fidelity. First, correlation between the models is estimated if it is unknown.
Assuming that there is no existing data to estimate the correlation, synthetic data is gen-
erated by assuming one model to be the truth model. Given an estimate for correlation,
traditional update rules can be used to create a fused distribution. There are many update
rules used for combining information from multiple models. This method will make use
of the method in Ref. [17]. Details of these methods are included in Section 2. Section
3 outlines our methodology. Demonstrations using three test problems are included in

Section 4. Section 5 presents our conclusions drawn from this method and future work.



2. BACKGROUND*

For this paper we will specify the model as a physics-based numerical simulation of a
real-world process. Models such as these cannot possibly be perfectly accurate, thus in-
troduce varying degrees of uncertainty due to model inadequacy. We represent this model
as a function f(x), where x is a set of inputs. This function f maps the inputs to some
output y. To account for uncertainty, an additive term 0(x) is included. Model inadequacy
is a primary influencer on this term, but other types of uncertainty play a role as well. In
our demonstrations, observation error and code uncertainty are incorporated into 6(x). It
should be noted that this value is dependent upon the inputs, so it can change over the

input domain. The model can be represented by the equation

y=f(x) = f(x)+ (), (2.1)

where f(x) is the model output at a given input x. It is also the mean for model f(x) if
d(x) is unbiased.

While our method does not necessitate experimental data, it can be used to better quan-
tify the model inadequacy. It then becomes important to add in observation error to the
estimation of the total uncertainty of f(x). An example of how this can be done is shown
in the demonstrations in Section IV. However, if the model simulates a complex process,
it may be difficult to reliably collect accurate experimental data to validate the model over
the entire design space. This means that quantifying model inadequacy will often rely on
expert elicitation. We assume that this leads to a normal distribution of d(x) with some

mean and variance. The variance reflects the fidelity of the model. High fidelity models

*Reprinted from “A Model Reification Approach to Fusing Information from Multifidelity Information
Sources", 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (ATAA 2017-
1949), Copyright (©) 2017 by William D. Thomison and Douglas L. Allaire.
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will generally have lower variance than models of lower fidelity. However, the discrepancy
term’s dependence upon the input can lead to areas in the design space where the lower
fidelity model has a lower variance than the high fidelity model. Rigorous quantification
of model inadequacy is an area of active research with many proposed solutions [21, 22].

Our method is to be used in situations where more than one model exists that is able
to simulate a given quantity or quantities of interest. The information produced by these
models will be fused such that the new uncertainty will be less than any of its constituent
models. There are two ways to approach the combination of model outputs. The first is to
believe that each model has some probability of being true. This leads to using methods
such as Bayesian model averaging and adjustment factors approach to create a weighted
average of the two models. The second approach is to assume that each model contains
some amount of information that can be used to estimate the quantity of interest. This
approach necessitates incorporating the correlation between the models.

It is our assertion that accounting for correlation is essential in information fusion.
Assumed statistical independence can lead to overconfident estimates and skewed results
in cases where redundant information was used by one of the sources [23]. This type of
scenario happens frequently in the real-world. Imagine that a manager asks two engineers
to estimate the cost for a project. Both of these engineers have the exact same education
and have been on all of the same projects. It is likely that both of their estimates will be
nearly identical, which leads the manager to be more confident in their decision given they
have received two similar estimates. However, these estimates were created by two people
with identical experience. Virtually no new information was provided to the manager by
a second report, yet the managers confidence increased. This is a dangerous effect with
broad applicability.

Consider this problem from a distributed data fusion perspective. Distributed data fu-

sion refers to a system of interconnected sensor nodes without centralized data processing.



Instead, each individual node performs the estimation of the state space using the data
provided by the nodes it is connected to. Sensors can be added to the network without the
need for reconfiguring some centralized controller.

The major drawback to a distributed data fusion scheme is the redundancy prob-
lem [24]. Decentralized data fusion has a propensity for data to propagate back to sensors
that have already used it. This means the data is double-counted and the estimate becomes

corrupted. To better understand this problem, consider the following hypothetical system:

1. Two self-driving cars are equipped with a vehicle-to-vehicle (V2V) communication
system that can share data from vehicle sensors, including data interpreted by the

vehicles’ identical cameras.

2. The camera from Vehicle 1 sees an anomaly at location x. The machine vision
system reports a slight possibility that the anomaly is a cyclist. There are many
different possibilities that the computer interprets from the image, but the vehicle’s
algorithm places a high importance on human avoidance. This triggers the V2V

system to broadcast that there is a slight possibility of a cyclist at location .

3. A similar camera on Vehicle 2 receives the message and scans location x. It sees
a similar anomaly and confirms that there is something at location x, consistent
with the proposal generated by Camera 1. However, Vehicle 2 is not aware that
the confirmation was based on the same visual information processed by the same
camera system. This leads Vehicle 2’s computer to believe it has just independently
confirmed the observation of a cyclist causing the V2V system to broadcast a high

probability of a cyclist at location x.

4. Vehicle 1 receives information that there is a high probability of a cyclist at location

x. The system believes this is a confirmation of its earlier proposal of a cyclist,



leading to immediate evasive action to avoid what was not actually a cyclist.

Physical Physical Physical
assumptions | assumptions used assumptions
unique to by both A and B unique to

simulator A | simulator B

Figure 2.1: Relationship between two physics-based numerical simulations.

This hypothetical situation clearly shows how ignorance of the correlation of data can
lead to overconfident assumptions and potentially dangerous actions. Due to the nature
of simulating the same physical system, simulators may rely on the same formulae or
physical assumptions. This redundant information is equivalent to the redundancy prob-
lem experienced by distributed data fusion and experiences the same overconfidence is-
sue. A graphical representation of this relationship is shown in Fig. 2.1. This sim-

plified representation is analogous to the basic statistical inclusion-exclusion principle,

7



|AU B| = |A| + |B| — |A N B|, which demonstrates the necessity of accounting for cor-
relation. If you want to combine information from source A and B, the intersection of the

two must be accounted for to avoid including redundant information.
2.1 Fusion Under Known Correlation

Although this method is capable of fusing information from any number of models, for
simplicity we will assume the case where there exists two models f(x*) and fo(x*) that
both estimate the same quantity of interest. Following Eq. 2.1, f1(x*) = fi(x*) + 6;(x*)
and fo(x*) = fo(x*) + 83(x*), where x* represents a single input configuration. As
shown in Refs. [18, 25], the standard deviation for each model corresponds to the following
equations, fi(x*) = | fi(x*) — fi(x*)| and fo(x*) = | fo(x*) — fo(x*)|. The fused models

can be represented by the equation

y = ki f1(x") + ko fa(x7), (2.2)

where k; and k, are scalars such that k; + k; = 1. The purpose of this method is to reduce
uncertainty in the output, so the scalars are chosen such that the variance of y is minimized.
This is done by solving Eq. 2.3 for k; and k5 assuming an unbiased, normal distribution for

the uncertainty, §(x*), such that f;(x*) ~ N (fi(x*),0?) and fo(x*) ~ N (fa(x*), 02).
min k”Yk subjectto ki + ko =1, (2.3)

where



> is the covariance matrix that correlates the two models. Recall that fusion under known
correlation requires a known correlation coefficient, p. The solution of the minimization
yields a fused model, y, that has a mean given by

(03 = po109) fL(X*) + (07 = po102) fa(x")
0% + 03 — 2p0109

, (2.4)

Ely] =

and a variance of y given by

(1—p?*)oios

2 2 :
o7 + 05 —2poi0;

Var(y) = (2.5)

The detailed proof for this set of equations is shown in Ref. [17].

(a) Both Low Variance (b) Model 2 Medium Variance (c) Model 2 High Variance

(d) No Correlation (e) Medium Correlation (f) High Correlation

Figure 2.2: Trends in the fused estimate due to changes in variance and correlation co-
efficient. The fused model is the black solid line. Models 1 and 2 are blue and red,
respectively.

An analysis of Eq. 2.4 and Eq. 2.5 reveals some interesting behaviors of this method



as illustrated in Fig. 2.2. The first row demonstrates what happens to the fused model as
the variance of one model decreases. Note that the correlation coefficient is set to zero for
this case. It is evident that the fused estimate tends toward the model of higher fidelity.
Also, the confidence in the fused estimate decreases as the variance of the second model
increases. The second row demonstrates the effect of the correlation coefficient when the
variances are not equal. As the correlation coefficient increases, the fused estimate tends
toward the model of higher fidelity. As the correlation continues to increase, the fused
model moves beyond that of the higher fidelity model. This aligns with the intuition that
models that are nearly identical would both produce estimates that are both either too high
or too low. This is a unique trait of the fusion method that can only be leveraged when
accounting for correlation. Another trend not illustrated is the effect of the correlation
coefficient on models with similar variance. As the correlation coefficient increases, the
fused variance increases. As the correlation approaches one, the variance is equal to that
of its constituent models because no new information has been added.

It is important to note that, while this example focused on the use of two models, this
method is generalized for any number of models. Ref. [17] also derives the generalized
versions of Eq. 2.4 and Eq. 2.5, given by Eq. 2.6 and Eq. 2.7. The fused mean in the

generalized approach is shown to be

el L (x*)
Ely = ———= 2.6
Y] Ty1g (2.6)
where e = [1,...,1]7, ©7! is the inverse of the covariance matrix, and f(x*) =
[f1(x),. .., fu(x*)]T, given n number of models used. The variance of the fused estimate
is shown to be
Var(y) = o @)
ar(y) = ————. :
Y= e te

10



2.2 Fusion Under Unknown Correlation

As shown in the previous section, the correlation coefficient plays a significant role
in the distribution of the fused model. There are other methods that utilize correlation to
perform information fusion. One should be selected to validate the reification approach.
Traditionally, a Kalman filter would be used due to its ability to achieve the minimum mean
squared estimates [26]. However, that property is contingent upon perfectly knowing the
mean and covariance of the models. Covariance Intersection Algorithm (CI) was chosen
for its remarkable consistency irrespective of actual correlation.

This generalized method forms its estimates using the convex combination of means
and covariances in the inverse covariance space [18]. It can also account for models with
multiple quantities of interest. Similar to the previous section, we will consider two models
fi(x*) and fo(x*) with means f;(x*) and f,(x*) and deviations fi(x*) and fo(x*). The

covariance matrix, P, is redefined as follows

Unlike fusion under known correlation, CI utilizes a geometric interpretation called

the covariance ellipse [25]. The ellipse is created using the inequality
Bo(e) £ {x: x"Q 'x < ¢}, (2.8)

where () is a positive definite matrix, and Bg(c) is the boundary of the ellipse at level
c. Thus, if Q1 < Qa, then By, (c) C Bg,(c). To use the graphical interpretation of Co-
variance Intersection, ellipses are first plotted for f’u and 1522 for a given level c. The

covariance ellipse for f’yy is plotted, where f’yy is the covariance of the fused estimate.
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Covariance ellipses for
two information sources

- /Covariance ellipses for
“fused estimates under

different correlation

assumptions

Figure 2.3: Geometric interpretation of the Covariance Intersection algorithm.

This should always be a subset of both 1511 and f)gz, for all values of f’12. This is shown
graphically by the f)yy ellipse remaining inside the intersections of the P, and Py, el-
lipses. An illustration of this approach is shown in Fig. 2.3.

Constructing a linear update rule is necessary to fuse information sources such that the
fused estimate ellipse encloses all of the possible ellipses for the fused estimates under any

correlation assumption. The closer this updated ellipse encloses the intersecting region, the

12



more information is incorporated into the estimate. This condition ensures the correlation
coefficient is conservatively estimated, which is the primary benefit of this method over

Kalman filtering. Ref. [18] defines the update equations as

Py =wP + (1 —w)Py (2.9)

P Ely] = wP i (x") + (1 — w)Py f(x"), (2.10)

where w € [0, 1] controls the weights applied to each model. This update ensures that the
covariance ellipse of f’qq always encloses the intersection of f’ll and f’Qg, as shown in
Fig. 2.4 for varying values of w. w is chosen such that the trace or determinant of Py, is
minimized. We chose to minimize the trace for our comparison to this approach.

Due to the nature of the Covariance Intersection algorithm’s conservative update rule,
it has a tendency to discard lower fidelity information sources to achieve the most con-
servative estimate possible in cases with a single quantity of interest. It requires that the
information source with the highest fidelity be used for the fused estimate. While this does
allow the best model to be chosen at all points in the design space, this approach leads to
a loss of information that could be used to better estimate the model output if the corre-
lation coefficients were known. The next section outlines our methodology for estimating

correlation and creating a fused distribution.
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Covariance ellipses for
two information sources /7. oo

—.;/Covariance ellipses for
fused estimates with
"""" different values of ®

Figure 2.4: The covariance ellipse for any choice of w encloses the intersection of the
covariance ellipses of the information sources.
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3. METHODOLOGY™*

This section details our methodology for the complete process of fusing information
from multiple models. We assume no observational data is available to estimate corre-
lation. To mitigate this problem we use model reification to generate synthetic data. As
discussed previously, model reification refers to the process of treating one of the models
as the truth. This means that we assume the data generated by the model represents the
true quantities of interest. We will use this data to estimate the correlation between the
errors of different models. The process is then repeated for each model.

We will again assume the case where only two models, fi(x) and f»(x), exist for
estimating some quantity of interest, y. This can be estimated by using y = f1(x*)+6; (x*)
ory = fo(x*) + d»(x*). In this instance, the uncertainty is assumed to be an unbiased,
normal distribution given by d;(x*) ~ N(0,0%) and d5(x*) ~ N(0,03). Given this
information and some input configuration x* we can estimate the correlation of the errors
and use Egs. 2.4 and 2.5 to estimate the mean and variance of the new fused estimate.

We estimate the error of each model with respect to the true quantity of interest using
reification. Assuming simulator f;(x) is chosen to reify, the deviation for the other model

can be calculated using the following equations

A = AK) = AK) =6(x) 3.1)
R = fHE) - fA(x) (3.2)
= fl(x*) — fg(x*) + d1(x"), (3.3)

*Reprinted from “A Model Reification Approach to Fusing Information from Multifidelity Information
Sources", 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-
1949), Copyright (©) 2017 by William D. Thomison and Douglas L. Allaire.
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where Eq. 3.3 follows from the fact that if we reify simulator 1, the model inadequacy of

simulator 2 is given as dy(x*) = f1(x*) — fo(x*) + 01(x*). The mean squared errors are

then given as

E[fi(x")’] = E[&(x)] =0} (3.4)
Elfo(x")?] = E[(fi(x") — fo(x))’] + E[01(x")] (3.5)
= (Ax") = fo(x*))* + 07, (3.6)

and the covariance is given as

E[f1(x") f2(x")] = o7. (3.7)

Thus, under the assumption that simulator 1 has been reified, the correlation coefficient is

given as
0'% 01
) = = — — . 38
N = T G R T o G9

The subscript under the correlation coefficient denotes which model was reified. Under

these assumptions, the other information available to assess model fidelity is the model
inadequacy. To account for the uncertainty in which model is the highest fidelity at a
particular input configuration, model 2 is also reified to estimate py(x*). The average

correlation between the two models can then be estimated using a variance weighted sum

as follows
p(x*) = o2 (x*) + —02 (x*) (3.9)
x*) = X x*). )
p 0%+ o3 1 ol + o3 p2

This average correlation can then be used in Eqs. 2.4 and 2.5 to estimate the mean and
variance of the new fused estimate.

It should be noted that all calculations were performed using a precise input configura-

16



tion, x*. However, such precision of input variables into a model is unrealistic. Estimates
in the region surrounding the input configuration x* could provide useful information to
describe the true correlation between models. There is some possibility that the mean and
variance of the quantity of interest output by both simulations are identical at x*. This
would produce a correlation coefficient of 1, which is highly unlikely to be true at all
points in the surrounding region of the input space. It would also add no information to
the fusion process. Another benefit to interrogating the region surrounding the point is
to account for holes in the input space. For example, many complex models will have
input configurations that cause the simulator to fail and yield no output. To mitigate these
risks, the correlation will be averaged in a region surrounding x*. The optimal size of this
neighborhood is a topic of future work. We assume that the size is known.

Applying this to Eq. 3.8, the new estimate for correlation after the reification of model

lis

p1(S(x) = Esuelor(x)] (3.10)

V(i) = f2(x)? + of

Y

where S(x*) is the region surrounding x*. For a model with few input variables, this value
can be calculated using standard integration methods. However, the integral is subject to
the curse of dimensionality, making it intractable as the number of inputs increases. We
recommend using a Monte Carlo approach to obtain the solution. The steps for this method
are shown in Algorithm 1. The average correlation coefficient can then be used with the
fusion under known correlation method discussed in Section 2.1.

It should be noted that the methodology shown was assumed to be two models to
simplify the explanation, but the method is generalizable to any number of models. We

also simplified the model inadequacy. Variance can be added throughout the input space

17



Algorithm 1: Correlation Estimation with using Monte Carlo

1:  Uniformly sample f;(x) m times in S(x*)

2:  Add model inadequacy samples [§(x'),...,d(x™)] to the simulator samples

A1), A &™)

3: Calculate pi(x') = \/((fl(xi)f}2(xi))2+0% fori=1tom

4: Estimate p(S(x*)) = L 5" pl(x)

5: Repeat steps 1 - 4 to estimate po(S(x*))

2

6: Caleulate p(S(x")) = izp1(S(x)) + ﬁ”TigpQ(S(x*))

by simply adding the dependence on x in Egs. 3.6 and 3.10. The precise specification
of this variance can be done through expert elicitation or experimental data. Although
experimental data is not necessary for the reification process, it can be used to validate
the models and aid in the quantification of model inadequacy. The following section is a

demonstration of the method.
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4. DEMONSTRATION*

In this section we present the results of three demonstrations of our methodology. The
first is a simple analytical problem with one-dimensional input and output. The second and
third demonstrations use data from two computational fluid dynamics simulators, XFOIL
and Stanford University Unstructured (SU2). One demonstration has a single input and
output, while the other has two-dimensional input and output. Details regarding these
simulators and their implementation are discussed in Section 4.2.

There are several assumptions and caveats to these examples that must be discussed.
In order to quantify our method’s predictive capability, the true value of the quantity of
interest estimated by the simulators must be known. We chose to specify some “truth
model" for each of these demonstrations that can be compared against to determine the
method’s ability to create a fused model that better predicts the true quantity of interest.
The creation of this model is discussed for each example. It is important to note that such
a model would never exist in real-world situations. Access to a perfect model precludes
the need for other simulators.

Our methodology presumes expert elicitation will be used to quantify model inade-
quacy. This is not possible in the case of an analytical test problem or in situations where
no expert is available. For demonstrations 2 and 3, we do not have the expertise to make
accurate estimates of the fidelity level of XFOIL and SU2. Given that we specify a model
that represents the true quantities of interest, this data can also be used to consistently
estimate model inadequacy for each simulator. However, it would be unrealistic to have

complete knowledge of the model inadequacy at all points in the design space. To keep

*Reprinted from “A Model Reification Approach to Fusing Information from Multifidelity Information
Sources", 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-
1949), Copyright (©) 2017 by William D. Thomison and Douglas L. Allaire.
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the demonstration as realistic as possible, the discrepancy between the models’ output and
the true values was examined at only a few points in the design space. This mimics the
scenario where some experimental data is available to validate the models. A Gaussian
process was then employed to perform a regression over the design space using those
values as training points.

A Gaussian process is a powerful statistical modeling tool based on the principles of
Gaussian distributions. A Gaussian process can be thought of as a generalized version of
the Gaussian distribution that is applied over a continuous input space. Put simply, it is an
infinite set of normal distributions where each set of inputs has a corresponding distribu-
tion that can be obtained using mean and covariance functions [27]. Gaussian processes
were first proposed as a regression technique by O’Hagan in 1978 [28]. Gaussian process
regression, much like standard regression analysis, is the process of fitting a function to
represent a given dataset. The field of geostatistics coined the term kriging to describe this
method [29]. The benefit of using a Gaussian process is that it determines the mean and
variance at every point in a continuous design space while being computationally tractable.
When working with sparsely populated data sets a Gaussian process can account for the
changing variance in the probability distributions where data is unavailable, as is the case
for most computationally expensive models.

For our demonstrations the Gaussian Processes for Machine Learning (GPML) MAT-
LAB toolbox, version 3.6 was used to perform the regression [27]. This code requires
the specification of a mean function, covariance function, likelihood function, inference
method, and all corresponding hyperparameters, which are parameters that control the
behavior of each function. The specific functions and hyperparameters for each demon-
stration will be discussed in the following subsections.

Previously we defined six types of uncertainty: parameter uncertainty, model inade-

quacy, residual variability, parametric variability, observation error, and code uncertainty [2].
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We assume that only three of these are relevant to these demonstrations: model inadequacy,
observation error, and code uncertainty. The primary focus of this research is motivated
by the fact that models do not perfectly describe the true system, thus model inadequacy
must be considered. To mimic the scenario where experimental data is used to validate
the models, observation error is added to account for the inability to perfectly measure a
real-world process. Due to the models being run only at points where experimental data
was available, code uncertainty was added to account for the interpolation done between
the data points. It is our assumption that the other three types of uncertainty are not as
relevant to the scope of our research.

All of these assumptions were made to fairly and consistently estimate the discrepancy
term, 6(x*), for each model. This term can be biased or unbiased, meaning its mean
could be non-zero or zero, respectively. A biased discrepancy term would allow the model
output to be adjusted up or down to better fit the truth. An unbiased discrepancy term
would be of mean zero and only affect the variance of the model. While both may be used,
it is our assumption unbiased estimations are much more feasible in practice. Experts
can simply claim that a model loses accuracy in some area of the domain, rather than
know the direction and magnitude of the model’s deviation from truth. For this reason,
the unbiased estimator was chosen for the demonstrations. This also makes the problem
more challenging as information about the error is unused and will be a good test of the

capability of the model reification approach.
4.1 Analytical Example

We consider two simulators with a one-dimensional input. A “truth model" is speci-
fied to estimate the model inadequacy and demonstrate how well the method can predict
the true quantity of interest. We compare the results of our reification approach to the

constituent models, the Covariance Intersection algorithm, and the assumption of zero
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correlation in the fusion process.

We specify the truth model as
truth(x) = sin(x) + noise, 4.1)

where noise ~ N'(0,0.1%). Gaussian noise is added to more realistically simulate a real-
world process. This will be incorporated into the discrepancy term in the form of observa-

tion error. The two models are defined as
y = fi(x) = fi(x) + 61(x)

y = fa(x) = fo(x) + 02(x),

where

Fi(x) = (x — 0.1) — (x —3?.1) N (x —5(!).1)

Fo(x) = (x +0.3) — (x —1—3?.1) N (x —5?.1) ‘

The calculation of §; and d5 is discussed below.

These are simply modified versions of the Taylor series approximation of sin(x). The
domain of x is limited to —7m < x < m. An illustration of the truth model and two
simulators is shown in Fig. 4.1. In this case, Model 1 could be considered the high fidelity
model. However, Model 2 becomes much more accurate than Model 1 when x > 2. It
is evident that using only the high fidelity model would lead to significantly less accurate
information than a fused model.

Accurately imitating a real-world example was an important consideration when quan-
tifying the models’ uncertainty. Given the fact that no real-world truth models exist, per-

fectly quantifying the model inadequacy at every point would be unrealistic. Instead, we
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Figure 4.1: Output from each simulator along with the truth model.

chose to uniformly select 20 points in the input space to calculate the discrepancy by taking
the difference between the truth model and the simulator. This mimics a situation where
a limited amount of experimental data is used to validate a simulator. As discussed previ-
ously, observation error is inherent in the collection of experimental data, so that must be
incorporated into the model’s uncertainty. Code uncertainty was introduced in the areas
between the 20 points where the models were not run.

The construction of the unbiased estimation of each model’s uncertainty begins with
calculating the model inadequacy at each of the 20 points selected previously, such that

model inadequacy = |truth(x*) — f(x*)|. We take the absolute value to create an unbi-
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Figure 4.2: Gaussian process regression of uncertainty of Model 1.

ased estimator that ignores whether the true value is less than or greater than the model’s
output. You can see each of these points represented by black squares in Fig. 4.2.

A Gaussian process regression is then performed using these model inadequacy values
as training points to estimate the model’s overall uncertainty at all points in the design
space. As discussed previously, a mean function, covariance function, likelihood function,
and inference method must be specified. For this demonstration the mean function was
simply set to zero so that it could be ignored. The covariance function was specified
as squared exponential with isotropic distance measure. The hyperparameters for this
function are the characteristic length scale and signal standard deviation. After some trial

and error, the characteristic length scale was set to 0.25. We discovered that a good rough
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Figure 4.3: Mean and two sigma confidence interval of Model 1 and Model 2.

estimate for this number is the distance between the model data points. The signal standard
deviation controls the variance added between each data point due to code uncertainty and
was assumed to be 0.2. The likelihood function was chosen to be Gaussian to account for
the observation error that is assumed to be Gaussian. The hyperparameter, noise standard
deviation, was set to 0.1. Finally, the inference method was specified as exact.

Using these functions and hyperparameters, a plot of Model 1’s uncertainty was pro-
duced as shown in Fig. 4.2. The red line is the regression through each model inadequacy
data point. The gray shaded area represents the upper half of a two sigma confidence in-

terval. This confidence interval represents the other two types of uncertainty. Note how
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the confidence interval increases between each data point. This is a visual representation
of the code uncertainty. Also, the confidence interval never goes to zero at the data points.
This is due to observation error.

The overall uncertainty of Model 1 can be calculated from the information in this plot.
The overall uncertainty will consist of a sum of two variances. The first is the variance
due to model inadequacy defined as |truth(x*) — f(x*)|?. The second is the variance of
the Gaussian process, which is a combination of the other two uncertainties and will be
denoted by 02 5. It is our assumption that calculating the overall uncertainty in this way is
an adequate estimation that remains consistent and fair for all demonstration models. The
overall model uncertainty is defined as

Oooder = |[truth(x*) — f(x)]* + 0gp. (4.2)

0.2

2 4 can now be used in the discrepancy term, such that §(x) ~ N(0,02 ,.,) This

model

process is done for both models to produce Fig. 4.3.
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Figure 4.4: Mean and two sigma confidence interval for the fused model using Covariance
Intersection Algorithm, Zero Correlation Assumption, and Reification

The last item needed in Algorithm 1 is S(x*), or the neighborhood of points around x*.
This was chosen to be 10 points uniformly sampled from —0.05 < x* < 0.05. This can
be modified depending on the degree of non-linearity of the design space or the model’s
propensity for non-convergence for certain input configurations. Algorithm 1 can now be
performed to estimate the correlation at all points in the design space. This correlation
is used in Egs. 2.4 and 2.5 to estimate the mean and variance of the new fused estimate.
The design space was discretized such that this was repeated uniformly 300 times over the
range to yield Fig. 4.4, which compares the result to Covariance Intersection algorithm

and fusion assuming zero correlation.
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There are several notable features illustrated in this plot. Due to this being a single
dimension problem, Covariance Intersection algorithm always selects the model with the
least variance at all points in the design space. While this represents a significant im-
provement over using either of the models individually, it is not effectively leveraging
information from both models. The fused model produced by assuming zero correlation
yields estimates that are always between the two models, as predicted by Fig. 2.2(a-c).
From —7 < x* < —2 the reification estimate is significantly better than Covariance Inter-
section and assuming zero correlation. This is similar to Fig. 2.2(f) where two correlated
models allow for a prediction that is skewed beyond the higher fidelity model. This is one
of the unique properties of the fusion under known correlation method that is leveraged by
estimating the correlation with reification. However, this property is not always beneficial
as shown from —2 < x* < 2 when the true value is actually between the two correlated
models. We believe that the method’s ability to predict beyond both models far outweighs
the slight disadvantage in these scenarios. It should be noted that the unsteady confidence
interval near areas where both models converge is due to ill-conditioned matrices inherent

to the Winkler fusion method. Mitigating this behavior is a topic of future work.

Comparison of Mean Squared Error (MSE)
Fusion Method MSE
Model 1 0.0227
Model 2 0.0865
No Correlation 0.0139
Covariance Intersection 0.0120
Reification 0.0095

Table 4.1: Mean squared error for Model 1, Model 2, fusion assuming zero correlation,
the Covariance Intersection algorithm, and the reification approach.

Overall, the reification approach performs very well in this problem as shown in Ta-
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ble 4.1, where a comparison of mean squared errors (MSE) between each method and
truth is presented. Here, MSE is calculated by sampling a large number of uniformly
spaced points in the input space, 1,000 in this case. The reification approach yields a 58%

reduction in MSE when compared to using the highest fidelity model alone.

4.2 1D CFD Demonstration

-2. O pwron NACA 0012
e
Ma - 0.8000
a - 1.2500°
LS ¢, - 0.3093
€y = -0.0005
Oy = ~0.01577

I —

(a) XFOIL (b) SU2

Figure 4.5: Example outputs of NACA 0012 airfoil from XFOIL and SU2.

This demonstration uses the computational fluid dynamics programs XFOIL [30] and
SU2 [31] as the two simulators. The airfoil of interest is the NACA 0012, a common
validation airfoil for CFD simulators. The “truth" model used to validate the method and
estimate model discrepancy is constructed using real-world wind tunnel data of the NACA
0012 airfoil from the National Aeronautics and Space Administration (NASA) and the
Advisory Group for Aerospace Research and Development (AGARD) [32, 33]. For this
one dimensional case, the Mach number is fixed at 0.30 and the angle of attack will vary
from -2.2 to 13.3 degrees. The quantity of interest is the coefficient of lift.

XFOIL and SU2 are both very powerful CFD simulators, but have different perfor-

mance capabilities in various flow regimes. XFOIL is an airfoil solver for the subsonic
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Figure 4.6: Coefficient of lift estimates from SU2, XFOIL, and wind tunnel data.

regime that combines a panel method with the Karman-Tsien compressibility correction
for the potential flow with a two-equation boundary layer model. This causes XFOIL to
overestimate lift and underestimate drag [34]. SU2, for the case of airfoil analysis, uses a
finite volume scheme, the details of which may be found in Ref. [31]. SU2 was set to use
Reynolds-averaged Navier-Stokes (RANS) method with the Spalart-Allmaras turbulence
model. This allowed SU2 to be significantly more accurate than XFOIL in the more tur-
bulent flow regimes at higher Mach and angle of attack. This accuracy comes with orders
of magnitude increase in computational expense. XFOIL takes around 0.1 seconds, while

SU2, in this configuration, takes about 10 minutes on average. Fig. 4.5 shows an example
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output of the two simulators that illustrates the difference in fidelity levels. To validate
and quantify the fidelity disparity, wind tunnel data from NASA and AGARD was used to
construct a “truth model" by interpolating values between the given data points. Like the
previous example, this also allows our methodology to be validated against the constituent
models, the Covariance Intersection algorithm, and fusion assuming zero correlation. A
comparison between SU2, XFOIL, and the truth model is shown in Fig. 4.6. As expected,

SU2 performs better than XFOIL at higher angle of attack.
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Figure 4.7: Gaussian process regression of uncertainty of SU2.

Following the same procedure as the previous demonstration, the model inadequacy is
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Figure 4.8: SU2 and XFOIL coefficient of lift predictions with two sigma confidence
interval.

estimated by taking the difference between the wind tunnel data and our models. The wind
tunnel data has 11 data points at Mach 0.30. XFOIL and SU2 are run at these points and
the difference is used as training data for a Gaussian process regression. Code uncertainty
and uncertainty due to observation error were added into the GP as shown in Fig. 4.7 using
SU2 as an example. The same functions were used in this demonstration as the previous
numerical demonstration. The only difference was the characteristic length scale was set
to 1.25. The signal standard deviation and Gaussian noise standard deviation remained the
same. Following Eq. 4.2, the uncertainties were incorporated to produce Fig. 4.8. Note

how the confidence interval for SU2 becomes smaller than XFOIL at higher Mach, as
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Figure 4.9: Results of no correlation case, Covariance Intersection algorithm, and the
reification approach.

expected.

Similar to the previous example, 10 points were sampled uniformly from —0.05 <
x* < 0.05 for S(x*), or the neighborhood of points around x*. This can be modified
depending on the degree of non-linearity of the design space or if the CFD solvers have
trouble converging to a solution at x*. Algorithm 1 can be performed to estimate the
correlation at all points in the design space. This correlation is used in Egs. 2.4 and 2.5 to
estimate the mean and variance of the new fused estimate. Doing this over a design space
that has been discretized by 1000 points yields Fig. 4.9, which compares the result to the

Covariance Intersection algorithm and fusion assuming zero correlation.
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There are two important things to note in this plot. First, the reification method per-
forms better than Covariance Intersection and the zero correlation assumption in the vast
majority of the design space. This is again due to the property illustrated in Fig. 2.2(f)
where two correlated models allow for a prediction that is skewed beyond the higher fi-
delity model. Second, the areas where the two models cross exhibits interesting charac-
teristics due to their mean and variance approaching nearly identical values which can be
seen in Fig. 4.8. Mitigating the ill-conditioned matrices created by this scenario is a topic

of future work.

Comparison of Mean Squared Error (MSE)
Fusion Method MSE
XFOIL 0.0313
SU2 0.0149
No Correlation 0.0192
Covariance Intersection 0.0149
Reification 0.0050

Table 4.2: Mean squared error for XFOIL and SU2 without fusion, the no correlation case,
the Covariance Intersection algorithm, and the reification approach.

Table 4.2 shows the mean squared error for each method as well as the individual
simulators. The reification method yields a 66% reduction in mean squared error compared
to using only SU2. This is a huge increase in fidelity for an insignificant increase in
computational expense. This result shows that the reification method has the potential to

offer significant increases in accuracy for situations where multiple models are available.
4.3 2D CFD Demonstration

This demonstration again uses the computational fluid dynamics programs XFOIL and

SU2 as the two simulators. The “truth" model used to validate the method and estimate
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model discrepancy is the full set of real-world NACA 0012 wind tunnel data, which in-
cludes 68 data points throughout the design space. For this demonstration, the outputs of
interest will be the lift coefficient, C';, and the drag coefficient, C'p. The inputs for the
analysis will be the Mach number, M , and the angle of attack, . The Mach number
varies from 0.15 to 0.75 and the angle of attack will vary from -2.2 to 13.3 degrees.

As discussed in the previous example, SU2 is considered to be the higher fidelity of
the two models. We would expect to see greater accuracy relative to XFOIL as Mach
number and angle of attack increases due to the introduction of more turbulent, separated
flow regimes. To validate and quantify this expectation, wind tunnel data from NASA
and AGARD was used to construct a “truth model" using spline interpolation to determine
values between the given data points. Like the previous example, this also allows our
methodology to be validated against the constituent models as well as Covariance Inter-
section algorithm and fusion with zero correlation.

The procedure for a two dimensional problem is very similar to the single dimension
case computationally. However, it is much more challenging to illustrate the models con-
currently, so there will be fewer plots shown in this demonstration. The plots included
show the model mean as a colored surface, two sigma confidence interval as a black mesh,
and data points as black squares. There is a high Mach, high angle of attack section that is
omitted from plotting due to the simulators’ inability to simulate flows in this regime.

Following the same procedure as the previous demonstration, the model inadequacy
is estimated by taking the difference between the wind tunnel data and our models. The
wind tunnel data has 68 data points at varying Mach and angle of attack. XFOIL and SU2
are run at these points and the difference is used as training data for a Gaussian process
regression. Code uncertainty and uncertainty due to observation error were added into the
GP as shown in Fig. 4.10 using SU2 coefficient of lift as an example. Due to this being

a 2D case, new functions were needed for the GP to yield a smooth surface regression.
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Figure 4.10: Gaussian process regression of SU2 coefficient of lift uncertainty with two
sigma confidence interval mesh.
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Figure 4.11: SU2 coefficient of lift predictions with two sigma confidence interval mesh.

The mean function was set to zero again. However, the covariance function was chosen
to be the Matern function with automatic relevance determination. This allowed for a
characteristic length scale to be specified for each dimension. This is important due to the
order of magnitude difference between the values for Mach and «.. The value for the Mach
dimension was chosen to be 0.15, and the value for the o was 2. The other functions were
unchanged. However, the hyperparameters were chosen to be 0.15 and 0.1 for the signal
and Gaussian noise standard deviations for C'z, and 0.015 and 0.01 for C'p. Following

Eq. 4.2, the uncertainties were incorporated to produce Fig. 4.11, which is a plot of SU2
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coefficient of lift including the two sigma confidence interval. Unfortunately it is quite
difficult to visualize a 3D surface plot on paper, so notable trends are obscured. This same

procedure was done for XFOIL as well as C'p, although the plots are not included.
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Figure 4.12: Results of the reification method for C';. XFOIL is yellow, SU2 is blue, truth
is green, the reification method mean is red, and its two sigma confidence interval is the
black mesh.

The neighborhood of points around x*, S(x*), is different than that of the previous

two examples due to the fact that x* is two dimensional. Also, the dimensions have very

38



different scales. It was chosen to select 10 points uniformly in both dimensions and cre-
ate a square mesh of points around x*. The angle of attack dimension was sampled from
—0.05 < x* < 0.05 to be consistent with the previous example, while the Mach num-
ber dimension was sampled from —0.001935 < x* < 0.001935. This number is was
calculated by scaling 0.05 to the proportional value in the Mach number dimension.

The design space was discretized into a 200 by 200 grid of points. Algorithm 1 can
be used to estimate the correlation at each of these 40,000 points in the discretized design
space. This correlation is substituted into Eqs. 2.4 and 2.5 to estimate the mean and vari-
ance of the new fused estimate. Doing this over the entire design space yields Fig. 4.12,
which shows the XFOIL (yellow), SU2 (blue), truth model (green), and the reification
mean (red) and two sigma confidence interval (black mesh) for estimating the coefficient
of lift. Unlike the previous demonstrations, notable trends are difficult to discern. For
this reason plots of each method were not included. Performance of the method must be

evaluated using the mean squared error.

Coefficient of Lift Coefficient of Drag
Fusion Method MSE (1072) Fusion Method MSE (107°)
XFOIL 2.5385 XFOIL 16.057
SU2 0.7431 SU2 2.5407
No Correlation 0.8787 No Correlation 0.4241
Covariance Intersection 1.2240 Covariance Intersection 2.2288
Reification 0.2353 Reification 0.5608

Table 4.3: Mean squared error for XFOIL and SU2 without fusion, the no correlation case,
the Covariance Intersection algorithm, and the reification approach.

Table 4.3 shows the mean squared error for each method. The mean squared error was
calculated using a similar method as the previous examples. A square mesh of 40,000

points was created by uniformly sampling 200 points in each dimension. The difference
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between the truth model and the fused estimate at each point is squared, and the mean of
this value is the mean squared error.

The reification approach yields a significant reduction in mean squared error compared
to the high fidelity SU2 model in both C';, and C'p, 68% and 78% respectively. Once again
this represents a significant increase in accuracy for almost no increase in computational
expense. It is especially interesting that we achieved this reduction in MSE for Cp by
fusing a simulator with an order of magnitude poorer accuracy. Note the Covariance In-
tersection mean squared error is actually greater than XFOIL and SU2. This is due to the
fact that this is a two dimensional case, so the algorithm incorporates data from both C',
and Cp. The reification approach is slightly worse than the zero correlation case for the
drag prediction. This is due to the fact that the true value is always between XFOIL and
SU2, so the ability for reification to predict when the two models are both skewed high or
low is not utilized. This allows the zero correlation case to take a slight advantage in small
areas of the design space. Overall, these results show that the reification method has the
potential to offer significant increases in accuracy for situations where multiple models are

available.
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5. SUMMARY AND CONCLUSIONS*

We have presented a method for fusing information from multiple models of varying
fidelity. Our model reification approach improves upon existing fusion methods by esti-
mating correlation in cases where it is unknown and experimental data is inadequate. In
three demonstration cases, the model reification approach yielded a significant improve-
ment in predictive capability compared to using the models individually as well as existing
fusion methodologies.

Our approach relied on several assumptions. Among those were that model inadequacy
was quantified for any given model, that generating synthetic data by reifying models is a
reasonable approach for enabling the estimation of error terms for simulation models, that
a variance weighted average of correlation coefficient estimates is an appropriate method
for fusing correlation information, that an appropriate neighborhood of the input spaces
of the simulators can be identified for correlation estimation, and that the input spaces for
different simulators are identical. We feel these assumptions were necessary to constrain
the broad, complex subject of information fusion. The results support this conclusion and
show that our reification approach has the potential to significantly improve information
fusion from multifidelity information sources.

There are a few topics of future work we are actively researching. First, we are making
modifications to mitigate ill-conditioned matrices as the models’ outputs approach iden-
tical mean and variance. Second, we are working on a method to determine the optimal
size of the neighborhood around a particular input configuration. Finally, we are working

on methodology to sequentially construct the fused model by optimally sampling from

*Reprinted from “A Model Reification Approach to Fusing Information from Multifidelity Information
Sources", 19th AIAA Non-Deterministic Approaches Conference, AIAA SciTech Forum, (AIAA 2017-
1949), Copyright (©) 2017 by William D. Thomison and Douglas L. Allaire.
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the available models. We seek to integrate this work into an importance weighted Gibbs

sampling procedure from Ref. [35].
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