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ABSTRACT 

 

There is considerable evidence showing that exposure to particulate matter air 

pollution during important developmental windows, such as the prenatal period, can 

cause adverse respiratory outcomes. Mechanisms underlying increased risks from in 

utero exposure are largely unknown. Since epigenetic modifications have been 

recognized as an important mediator of developmental reprogramming following 

environmental exposures in early life, the primary objective of this research was to 

establish a representative model of prenatal air pollution exposure to probe underlying 

mechanisms leading to adverse respiratory responses in offspring. The preliminary study 

(aim 1) established the proof-of-principle for differential air pollution-induced epigenetic 

changes across varying genetic background. Two strains (BALB/c and C57Bl/6 mice) 

were exposed to diesel exhaust particulate matter (DEPM), a major constituent of 

outdoor air pollution, throughout pregnancy. Following sacrifice at postnatal day 2, 

offspring global DNA methylation and hydroxymethylation was quantified in lung 

tissue. Results indicate differential methylation in BALB/c mice but not C57Bl/6. In aim 

2, BALB/c and C57Bl/6 dams were exposed to a representative particulate air pollution 

mixture throughout gestation using a refined exposure model, and offspring response to 

allergen challenge was evaluated. After 4 weeks of chronic exposure to house dust mite 

allergen, offspring from both strains exposed to PM in utero demonstrated a reduced 

inflammatory response compared to filtered air controls. Airway hyperresponsiveness, a 

typical feature of asthma, was significantly different based on strain; however, air 
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pollution exposure did not affect this response. In order to investigate the relevance of 

this model in an exposed human population, we conducted a pilot project (aim 3) 

evaluating exposure to particulate air pollution during pregnancy in a region in South 

Texas with a high incidence of childhood asthma. Results demonstrate low levels of air 

pollution exposure during pregnancy measured by personal sampling of fine particulate 

matter (PM2.5) and polycyclic aromatic hydrocarbons (PAHs). Overall, findings from 

this work lay a foundation for further clarifying the mechanisms underlying childhood 

respiratory disease resulting from early life air pollution exposure. 
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1. INTRODUCTION  

 

The uterine environment is not an impregnable vault. Prenatal exposures in the 

form of prescribed drugs, such as thalidomide, environmental and occupational 

exposures, including organic mercury, and dietary factors like insufficient folic acid 

intake are well known to cause birth defects, growth malformations, and even 

spontaneous abortions. However, the idea that prenatal exposures can lead to chronic 

health effects later in life is fairly recent. In 1990, Dr. David Barker hypothesized that 

intrauterine growth retardation, low birth weight, and premature birth have causal 

relationships with the onset of hypertension, coronary heart disease, and non-insulin-

dependent diabetes in adulthood (Barker 1997). Though simplistic, Barker’s hypothesis 

signaled the beginning of a larger movement that would spur the Developmental Origins 

of Health and Disease (DOHaD) hypothesis. For instance, while much research has 

illustrated the severe immediate detrimental effects of too little folate on neural tube 

development (Blencowe et al. 2010), recent studies have indicated an association 

between folate intake and an increase in relative risk of chronic diseases later in life, 

such as childhood asthma (Parr et al. 2017). Due to the public health impact of chronic 

diseases, environmental factors in utero that predispose individuals to adverse health 

outcomes later in life have gained interest.   

Prenatal exposure to air pollution has been associated with an increased risk of 

asthma development in children (Veras et al. 2016). The exact mechanisms are 

unexplained, and in many countries, levels of air pollution continue to exceed 
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recommended standards. For instance, in China, chronic exposure to high levels of air 

pollution has become a major public health concern driving scientists to call for “urgent 

action” (Guan et al. 2016). In settings where we cannot eliminate exposure to particulate 

matter air pollution, it is necessary to determine whether the current standards are 

sufficient to provide protection to the developing fetus or if there is a possibility for 

intervention to reduce risk of disease later in life. Therefore, the overarching goal of this 

research is to lay a foundation to examine the mechanisms underlying childhood 

respiratory disease resulting from early life air pollution exposure. 

 

1.1 Asthma - Increasing Global Incidence 

Asthma is one of the most common chronic childhood diseases, affecting 

millions of children worldwide. In the U.S., the prevalence of childhood asthma has 

more than doubled in the past 30 years, increasing from 3.6% in 1980 to 9.3% in 2012 

(CDC, Center for Disease Control and Prevention 2015). Globally, the incidence of 

childhood asthma has increased rapidly in recent years, resulting in an increasing 

number of hospital admissions for asthma (Braman 2006). According to the 2014 Global 

Asthma Report from the International Study of Asthma and Allergies in Childhood 

(ISAAC), 9.4% of children ages 6-7 and 12.6% of children ages 13-14 have been 

diagnosed with asthma at some point (IUATLD, International Union Against 

Tuberculosis and Lung Disease and GAN, Global Asthma Network Study Group 2014).  

Although historically a disease of developed countries, childhood asthma 

prevalence has likewise been increasing rapidly in developing countries such as China. 
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In a study from 2010, children from three cities in China (Beijing, Chonqing, and 

Guangzhou) reported between 2-7% asthma prevalence (Bai et al. 2010). The Hong 

Kong Asthma Society recorded levels in 2011 ranging from 7-10% in children ages 6 to 

14 (HKAS, Hong Kong Asthma Society 2013). In 2015, researchers from Nanjing 

Medical University examined the prevalence of asthma-like disease (i.e., asthma, 

asthmatic bronchitis, chronic bronchitis, and asthmatic pneumonia) and current 

wheezing in over 12,000 children from the greater Nanjing area. They found that 

16.96% of the study population was affected by asthma-like disease and 3.31% were 

experiencing current wheeze (Yao et al. 2015).  

In the United States, asthma disproportionately affects ethnic minorities and 

populations with low socioeconomic status. Although these factors are partially linked, 

evidence indicates that genetics could play a role in increased atopy (allergy) and asthma 

predisposition. In a study examining asthma prevalence and emergency department visits 

among non-Hispanic black and white children from 1997-2003, McDaniel et al. (2006) 

found that black children were more likely to have asthma and experience emergency 

department visits for asthma compared to white children. Differences in measurable 

child or family characteristics were controlled for in the study and could not account for 

the measured disparities. Another study assessing children in New York City public 

elementary schools, found a 70% higher risk of current asthma in individuals residing in 

low socioeconomic communities. Puerto Rican children had the highest asthma 

prevalence regardless of school attended or income status (Claudio et al. 2006). Another 

study investigating risk factors and spatiotemporal patterns of childhood asthma in 
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Memphis, TN showed that African American patients were more likely to live in a “high 

risk” area (adjusted odds ratio (OR) of 3.03) compared to their white counterparts 

(Oyana et al. 2017). Hispanic patients had an increased OR of 1.62 compared to whites, 

and asthma prevalence was significantly higher in these “high risk” areas compared to 

“low risk”. In sum, their analysis indicated that race, insurance, and admit source 

(emergency visit v. home or self-referral) were significant factors for childhood asthma 

in this region.  

As asthma is most often atopic, or allergic, sensitization to allergens is a key step 

in the development and progression of disease. Stevenson et al. (2001) found a 

significantly increased risk of sensitization to cockroach or house dust mite in both 

African American and Mexican American children compared with white children 

following analysis of a representative sample of children age 6 to 16 years of age who 

participated in the Third National Health and Nutrition Examination Survey (NHANES 

III). Additionally, the majority of asthma-related deaths occur in low and lower-middle 

income countries (IUATLD, International Union Against Tuberculosis and Lung 

Disease and GAN, Global Asthma Network Study Group 2014). Overall, these data 

indicate the alarming increase in the incidence of asthma worldwide. The contribution of 

emergency room visits, missed school days, and overall costs related to morbidity 

represents a major public health concern. Education and access to care are essential steps 

in helping manage asthma exacerbation; however, in order to counteract or prevent 

asthma development, more research is needed on the mechanisms of asthma 

pathogenesis. 
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1.2 Allergic Asthma - A Complex Inflammatory Disease  

Asthma represents multiple clinical phenotypes, which is why it is commonly 

thought of as a “syndrome.” Overall, the common mechanism driving the disease state is 

chronic inflammation of the airways (Raedler and Schaub 2014). In atopic, or allergic, 

asthma, individuals exhibit an exaggerated immune response following exposure to an 

inhaled allergen. This results in the characteristic asthma “attack” including 

bronchoconstriction, airway hyperresponsiveness, cough, and wheeze. In atopic asthma, 

patients exhibit an increase in the presence of T helper 2 (Th2) cells in their airways. 

Th2 cell-associated cytokines [interleukin-4 (IL-4), IL-5, and IL-13] are upregulated (as 

opposed to Th1 cytokine IFNγ) and collectively induce eosinophilic inflammation, 

airway hyperresponsiveness (AHR), and circulating immunoglobulin E (IgE) reactivity 

to specific antigens (Figure 1). Chronic inflammation can lead to airway remodeling. 
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Figure 1. Key Characteristics of Asthma in Humans and Allergic Airway Disease in 

Mice. Airway hyperresponsiveness is increased as measured by responsiveness to 

acetylcholinesterase agonists, chronic eosinophilic inflammation due to repeated allergen 

exposure leads to airway remodeling and buildup of tissue in the bronchoalveolar lining.  
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These key features of asthma have been replicated in mouse models of allergic 

airway disease (AAD), typically elicited by allergic sensitization and challenge with 

ovalbumin (OVA), an egg protein. While effective, this technique does not replicate all 

of the cellular features evidenced in human allergic asthma. Some models have utilized 

representative human allergens, such as house dust mite (HDM). The use of this allergen 

in the mouse model has also been shown to trigger a strong Th17 response resulting in 

neutrophilia and acute AHR. Th17 cells can also exacerbate the eosinophilic 

inflammatory response of Th2 cells.  

Converse to Th17 cells, regulatory T cells (Tregs) mediate immune homeostasis 

through anti-inflammatory cytokines, including IL-10 and TGFβ (Figure 2). Treg cell 

development is dependent on the transcription factor, FOXP3, which, when 

dysregulated, impacts the expression of this cell population. Furthermore, B cell 

involvement is key in asthma development, particularly when inhaled allergen exposure 

is low (Dullaers et al. 2016). Specifically, B cells contribute to the adaptive immune 

response via allergen-specific Th2 cell expansion in the lungs and mediastinal lymph 

nodes.  
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Figure 2. Immune System Dysregulation in Asthmatic Phenotypes. In a normal immune 

system, there may be a higher percentage of Th1 type cells, regulated by IFN-γ. 

However, in asthma, there may be more Th2 type cells, induced by IL-4 and IL-5 

production. IL-17 may also push toward a higher percentage of Th17 type T cells and 

fewer Treg cells (induced by presence of IL-10 and TGFβ). FOXP3 is a transcription 

factor often found to be methylated in asthmatic patients leading to a downregulation of 

Treg cell population. 
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It has also been shown that the innate immune system, particularly innate 

lymphoid cell type 2 (ILC2), plays a large role in eosinophilic airway inflammation of 

asthma (KleinJan 2016). ILC2 cells are similar in function to T cells, producing IL-5 and 

IL-13, but they do not express antigen-specific receptors and are, therefore, nonspecific 

response mediators. Vroman et al. (2016) showed that mice lacking B cells or CD40L 

signaling (i.e., T cell signaling capabilities) still exhibited a robust eosinophilic 

infiltration to the lungs following chronic HDM exposure in response from ILC2 cells. 

This cellular infiltrate was insufficient to produce pulmonary remodeling or airway 

hyperresponsiveness though. This work indicates that inflammation and 

hyperresponsiveness may be uncoupled in allergic airway disease. ILC2 activation is 

contingent on PKCθ (Madouri et al. 2016). Surprisingly, PKCθ has also been shown to 

activate Treg cell production through the FOXP3 transcription factor (Gupta et al. 2008).  

Therefore, the classical Th1-Th2 paradigm and importance of Th17 and Treg 

cells require careful investigation in mouse models and asthmatics that may vary along 

the spectrum of disease severity and possess unique genetic factors. Indeed, the 

development of allergic asthma is influenced by both genetic and environmental factors. 

Although some genetic predisposing factors have been identified, these alone cannot 

account for the significant increase in childhood asthma incidence occurring over the 

past few decades. Therefore, it is likely that environmental factors are playing a larger 

role than previously believed in asthma etiology (Mukherjee and Zhang 2011).  
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1.3 Air Pollution 

Air pollution consists of a mixture of particles and gases that are classified as 

either primary (emitted directly into the atmosphere) or secondary (produced via 

interactions in the atmosphere) (Figure 3) (Zhang et al. 2015). Most primary air 

pollutants are produced as a result of anthropogenic activity, such as vehicle or industrial 

emissions. However, even in areas where no humans are present, primary particles are 

still found in low levels. The particulate phase or particulate matter (PM) is classified by 

the aerodynamic diameter of the particle. Those with a diameter between 10 µm and 2.5 

µm are designated coarse particulate matter or PM10. Particles under 2.5 µm in diameter 

are designated PM2.5 or fine particulate matter. PM2.5 presents a greater health threat than 

PM10 because its small size allows penetration deep into the lung. An area of emerging 

interest (and currently not regulated) are particles less than 100 nm in diameter, termed 

ultrafine PM. Ultrafine PM have a large surface area, a high capacity for redox reactions, 

and the ability to form radical species.  

Additionally, heavy metals and toxic organic compounds, namely polycyclic 

aromatic hydrocarbons (PAHs), are often adsorbed to these fine particles. PAHs 

represent a group of more than one hundred different chemicals that are formed as a 

result of incomplete combustion. All these factors can contribute to inflammatory 

effects, cellular DNA damage, or anti-inflammatory inhibition. Therefore, these 

products, present at high levels in air pollution, are likely to elicit detrimental effects 

upon exposure, particularly in vulnerable populations such as pregnant women and 

children. 
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Figure 3. Primary and Secondary Atmospheric Particle Formation. Primary particles are those produced by natural (volcanoes, 

lightning, etc.) or anthropogenic sources (industrial emissions, traffic-related air pollution, etc.). Secondary particles are 

formed by gas to particle conversion. These secondary particles can transport and lower into the breathable air space, thereby 

becoming components of inhaled air pollutants. 
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Detrimental effects of air pollution exposure can be influenced and modified by 

particle type and chemical composition. Industrial activity presence and amount of 

traffic in a metropolitan area will greatly predict particle composition. For example, 

although Beijing, China and Los Angeles, CA, USA are vastly different, the two cities 

have similar PM2.5 air pollutant chemical compositions. As compiled in Zhang et al. 

(2015), roughly 44% of PM2.5 in LA and Beijing is made up of organics, like black 

carbon and polycyclic aromatic hydrocarbons (PAHs). Levels of nitrate, sulfate, 

ammonium and chloride are also comparable between the two sites; however, the density 

of particles is far greater. 102 µg/m
3
, in Beijing compared to Los Angeles’ more closely 

regulated level of 12 µg/m
3
. The comparability in chemical composition may be 

attributed to multiple factors including the geographic situation of both cities in a sort of 

bowl around the harbor area trapping particulate, increasing primary particle interaction 

and secondary particle formation close to ground level. Further, both cities are highly 

populous and traffic-related air pollutants are widely emitted.  

However, cities with different industrial makeup such as Houston, TX, USA may 

have similar levels of overall PM2.5 levels as Los Angeles but a very different chemical 

composition. The oil industry in Houston contributes to its higher percentages of sulfate, 

ammonium, and chloride PM2.5 particles and lower traffic reduces the amount of 

organics attributed to traffic-related air pollution (TRAP). Additionally, levels and 

composition can also be affected by weather and temporal changes. For instance, if a 

strong wind is blowing, there will likely be lower particulate on that day. During the 
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winter months, people will be more likely to have an active heat source in their home 

and the type of fuel utilized will influence the type and amount of particle emitted.  

 

1.3.1 Health Effects of Air Pollution 

Mounting epidemiologic evidence points to the many detrimental health effects 

of exposure to air pollution, particularly over prolonged periods and in susceptible 

populations. Overall, the highest risk increases are found for cardiovascular and 

respiratory diseases. Estimates from the World Health Organization from 2012 place the 

number of premature deaths caused by exposure to outdoor air pollution at 3 million 

worldwide (World Health Organization, Media Centre September, 2016). 72% of those 

were attributed to ischaemic heart disease and strokes, 14% to chronic obstructive 

pulmonary disease or acute lower respiratory infections, and 14% to lung cancer. Based 

on a comprehensive literature review, the American Heart Association stated in 2004 

that exposure to air pollution is associated with an increased risk of cardiovascular 

disease (Brook et al. 2004). The International Agency for Research on Cancer classified 

outdoor air pollution as carcinogenic to humans in 2013, citing the PM10 component of 

air pollution as most closely associated with an increase cancer risk (International 

Agency for Research on Cancer, WHO 2013). Song et al. (2014) analyzed data from 

China, the United States, and European Union to show that chronic obstructive 

pulmonary disease incidence is significantly increased with increases in PM10 resulting 

in increased exacerbation of disease and mortality. Ambient air pollution exposure may 

also have an effect on metabolic disease and, in particular, susceptibility to type 2 
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diabetes (Eze et al. 2015; Thiering and Heinrich 2015). A recent review postulated that 

exposure to air pollution may be associated with cognitive decline in aging populations; 

however, more work is necessary to confirm this interaction (Peters et al. 2015). 

A systematic review recently reconfirmed the detrimental effects of outdoor air 

pollution exposure on respiratory health in children (Rodriguez-Villamizar et al. 2015). 

This review emphasizes that while the majority of included studies reported exposure 

levels below U.S. and Canadian standards, exposure still correlated with decreases in 

lung function, increased respiratory-related emergency doctor visits and hospitalizations 

with higher effect levels near industry or refinery areas. Significant association was 

found between exposure to nitrogen dioxide (NO2) in the third trimester and an increase 

in systolic blood pressure in 11-year-old children (Breton et al. 2016) indicating that the 

cardiovascular effects of air pollution may originate even before birth. 

Accumulating evidence suggests that air pollution exposure may cause adverse 

neurocognitive effects. Increased exposure to PAHs in utero were found to be inversely 

associated with full-scale and verbal IQ scores in children 5 years of age residing in New 

York City (Perera et al. 2009b). Prenatal exposure to particulate matter may be related to 

autism spectrum disorder; however, strong evidence for that link is currently absent 

(Lam et al. 2016).  Asthma and allergies are commonly present in children with autism 

spectrum disorder, indicating a possibility of mechanistic interaction (Lyall et al. 2015). 

Although there is no question that exposure to air pollution is a public health concern, 

there is still a necessity to identify a safe level of exposure to protect all members of the 
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population, particularly the most susceptible such as young children, pregnant women, 

and the elderly

 

1.3.2 Prenatal and Early Life Exposure to Air Pollution and Asthma Development 

The link between air pollution exposure during critical developmental windows, 

e.g., prenatal or early infancy periods, and the development of allergic asthma has 

become increasingly accepted as exposure assessment techniques have improved in 

epidemiologic studies and experimental models have been developed (de Planell-Saguer 

et al. 2014; Finkelman 2014). In a large cohort study conducted in British Columbia 

(n=37,401), investigators initially highlighted a significantly increased risk of asthma 

diagnosis for children ages 3-4 years exposed to ambient air pollutants throughout 

gestation and first year of life (Clark et al. 2010). Traffic-related pollutants, including 

nitrogen oxides (NO and NO2), carbon dioxide (CO2), and black carbon (BC) were 

associated with the highest risk estimates. Coarse particulate matter (PM10), sulfur 

dioxide (SO2), and residence near industrial point sources were also associated with 

elevated asthma risk. However, fine particulate matter (PM2.5), woodsmoke, and road 

proximity did not show elevated risk. Jedrychowski et al. (2010) found a positive 

association between prenatal PAH and PM2.5 exposures and number of wheezing days 

during the first two years of life. In another study utilizing repeated measures of 

geographic information system (GIS) indicators to represent long-term air pollution 

exposures of young children living in high-density New York City neighborhoods, 

positive associations were found between proximity to stationary sources of air pollution 
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and reported asthma (Patel et al. 2011). A more recent study examined the effects of 

prenatal exposure to PM2.5 estimated using spatio-temporal modeling (Hsu et al. 2015). 

Investigators found that higher prenatal exposure during mid-gestation was associated 

with asthma development by age 6 in boys. Children 5-18 years of age from the Greater 

Cincinnati Pediatric Clinic Repository (GCPCR) were found to have a significant 

association between severe asthma and high DEP exposure. It is worth noting that all 

children in this analysis suffered from asthma but that frequency of symptoms was the 

chosen determinant in the association model. A subset of the GCPCR, from the Pediatric 

Environmental Exposures Study (PEES), was evaluated for serum levels of IL-17A. 

High exposure to DEP was associated with increased IL-17A levels. Other cytokines 

were evaluated including IL-4, IL-5, and IL-13, but none were found to be significantly 

associated with DEP exposure. In an ongoing prospective birth cohort study, Cincinnati 

Childhood Allergy and Air Pollution Study (CCAAPS), children with positive 

aeroallergen sensitization had a higher risk of asthma development following early life 

exposure to DEP. In non-allergic children, this trend was not observed. The variation in 

these findings could be attributable to many factors including timing of exposure, 

composition of the pollutants of interest, and age of allergic testing. As these factors can 

be difficult to control for, animal models have become a useful tool to investigate 

specific exposure types and susceptible windows as they relate to childhood asthma 

development. With the knowledge that early life exposure to air pollutants can have 

profound effects on the immune system, mouse models have been essential components 

to examine the mechanisms of toxicity of air pollutants. 
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1.4 Mouse Exposure Models 

1.4.1 Mouse Models of Allergic Airway Disease  

Many adult mouse asthma models have utilized ovalbumin (OVA) to induce the 

allergic airway phenotype. OVA has been used to induce both acute and chronic effects 

(Daubeuf and Frossard 2012). Typically administered systemically upon first dose in the 

presence of an adjuvant, this exposure model is not extremely relevant to the human 

disease state. It has been found that inhalation tolerance is common with prolonged 

exposure; therefore, OVA has been most successful when used as an acute atopic factor. 

Even so, prenatal pollutant exposure models have utilized the OVA allergen. More 

recent literature points to the advantages of human-relevant allergen use in allergic 

airway disease induction. 

The human relevant allergen, house dust mite, has been reviewed by Yu et al. 

(2014) and utilized to induce allergic endpoints. In 1995, the house dust mite 

Dermatophagoides pteronissinus (Der p) was employed to assess nasal resistance and 

airway hyperresponsiveness in allergic rhinitis and allergic asthmatic rhinitis in human 

subjects (Tsai et al. 1995). Use of the two allergens, HDM and OVA, has been compared 

in a chronic exposure model in BALB/c mice (Johnson et al. 2004). Specifically, female 

BALB/c mice were exposed to either OVA or HDM without adjuvant 5 days per week 

for up to seven consecutive weeks. Significantly higher levels of total cell and 

eosinophilic infiltrates were observed in bronchoalveolar lavage fluid from animals 

exposed to HDM compared to OVA or controls. Serum total IgE and HDM-specific 

IgG1 levels in plasma were increased throughout 7 weeks of HDM exposure and 



 

18 

 

remained high for 7 weeks after the end of the exposure period. The cytokines IL-5 and 

IL-13 were increased in isolated splenocytes at each collection time point throughout 7 

weeks of exposure to HDM. Even after cessation of HDM exposure, isolated splenocytes 

continued to have increased HDM-induced IL-5 and IL-13 cytokine expression. These 

effects were not seen in the OVA-exposed animals. The two allergen exposures were 

compared in another study using BALB/c mice (Hongjia et al. 2010). Findings indicate 

that exposure to HDM induces a more robust response than OVA. Specifically, HDM-

induced effects are shown to be mediated through the toll-like receptor 4 (TLR4) 

pathway triggering alveolar macrophage responses, similar to those seen in allergic 

asthma patients. These studies underline the pitfalls of the OVA exposure model and 

point to the relevancy of HDM exposure to induce chronic allergic airway disease in 

BALB/c mice.  

The HDM exposure model has further been validated in male BALB/c mice in a 

study showing the integral part IL-13 plays in the HDM chronic response (Tomlinson et 

al. 2010). In this study, mice treated either prophylactically or therapeutically with anti-

IL-13 mouse antibody (mAb) demonstrated a reduced response to intranasal 

administration of HDM evidenced by reduced total cell infiltrate and eosinophils in the 

bronchoalveolar lavage fluid (BALF) and reduced goblet cell hypersecretion. 

Therapeutic treatment did not reduce airway hyperresponsiveness to methacholine 

whereas prophylactic treatment did so significantly. Another widely used asthma 

therapeutic, Budesonide (a glucocorticosteroid), was investigated in a C57Bl/6 mouse 

model of exposure to HDM (Raemdonck et al. 2016). Budesonide pre-treatment was 
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capable of reducing inflammatory response in bronchoalveolar lavage fluid and airway 

hyperresponsiveness to methacholine in this model. The group also validated that the 

HDM allergen exposure model is capable of producing a robust and persistent response 

in general among the C57Bl/6 strain tested. On the C57Bl/6 background, multiple 

knockout (KO) mice were also tested in the model. CD4+ T Cell KO mice had 

significantly reduced BALF inflammatory response and AHR; however, their 

neutrophilic response remained intact. CD8+ T Cell KO mice also had significantly 

attenuated response to HDM exposure. Interestingly, B Cell or IgE KO mice had 

equivalent inflammatory responses compared to wild-type (WT), emphasizing the 

importance of innate immune response in atopic disease.  

House dust mite-induced allergic airway disease has also been studied 

extensively in relation to other environmental exposures during adulthood. Growing 

literature is touting the benefits of exposure to farm-related activities on atopy. Hagner et 

al. (2013) examined the effects of co-exposure to the farm-derived bacterium, 

Staphylococcus sciuri W620, and HDM. Concomitant exposure to the bacterium 

significantly reduced inflammatory effects of allergen exposure. While bacterium co-

exposure elicited a positive effect on asthma, there are many co-exposures that have less 

favorable outcomes. β-glucan, a pathogen associated molecular pattern (PAMP) found in 

house dust mite feces, acts as an adjuvant in HDM-induced allergic airway responses 

(Hadebe et al. 2016). The addition of purified β-glucan during allergen sensitization led 

to a significantly increased eosinophilic inflammation in the lung.  
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Although many exposures such as β-glucan are virtually unavoidable, modifiable 

lifestyle factors may have enhanced effects on asthma outcomes. For instance, vitamin D 

deficiency can differentially regulate gene expression following HDM exposure (Foong 

et al. 2016). Surprisingly, PER2, a circadian clock gene, was found to be slightly 

upregulated in vitamin D deficient mice exposed to HDM. Other variably regulated 

genes are implicated in inflammatory cell recruitment and airway remodeling including 

MID1, ACOT1, ADM, ANGPTL4, and HILDPA. High fat diet, also known to interact 

with clock gene expression, was shown by Everaere et al. (2016) to have an effect on 

allergic airway inflammation in mice. High fat diet exhibited increased eosinophilic 

inflammation, airway hyperresponsiveness, and mucus production in lungs of mice 

exposed to house dust mite compared to low fat diet controls. ILC types 2 & 3 were 

increased in high fat diet-fed animals as well, indicating that this lifestyle factor may 

function through induction of the innate immune system. Signaling between the innate 

and adaptive immune system occurs through antigen presenting cells such as dendritic 

cells (DCs). In a mouse model of exposure to cigarette smoke during HDM sensitization, 

challenge, or both, DCs were a potential response mediator (Lanckacker et al. 2013). 

Concomitant cigarette smoke and HDM exposure over 3 weeks increased eosinophilic 

recruitment into lungs, mucin-producing goblet cells, Th2 cytokines, and AHR in male 

BALB/c mice.  

The hypothesis that response to certain inhaled pollutants may be mediated by 

dendritic cells is also supported in a model of early life exposure to combustion-derived 

particulate matter (CDPM) in C57Bl/6 mice (Saravia et al. 2014). Following exposure to 
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CDPM alone in early life, increases in IL-10 producing DCs, IL-10, and Treg cells were 

observed. With the addition of allergen exposure (CDPM/HDM), a reduction in allergic 

response was observed compared to Air/HDM controls, presumably as a result of the 

increased Treg presence and reduced Th2 skewing. To further examine the T cell 

response, investigators utilized OT-II mice and exposed to CDPM and OVA. OT-II mice 

are transgenic mice on a C57Bl/6 background with expression of OVA-specific T cell 

receptors which induce a greater response to antigen, allowing for easier interrogation of 

T lymphocyte response mechanisms. In this model, a similar immunosuppression was 

observed upon co-exposure in early life, however, a re-challenge later in life elicited an 

exacerbated immune response to OVA. Similarly, in two studies from the University of 

Cincinnati, co-exposure of diesel exhaust particulate and HDM resulted in enhanced and 

persistent allergic response compared to controls exposed to HDM only (Brandt et al. 

2013; Brandt et al. 2015). Specifically, response was characterized by a mixture of Th2 

and Th17 cell populations. Exacerbated response was seen even after re-exposure 7 

weeks following initial sensitization with HDM.  

 

1.4.2 Mouse Models of Air Pollution Exposure 

The most common effect found in animal models of exposure to air pollution 

includes an increase in oxidative stress and systemic inflammation. These outcomes, 

however, vary depending upon the composition of the exposure administered. For 

instance, in mice exposed to urban air particulate matter from Buenos Aires, adverse 

biological effects were observed including recruitment of phagocytes, reduction in air 
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spaces, and increase in mucous PAS positive cells contributing to increased 

inflammation in the lungs (Martin et al. 2007). Wan et al. (2010) demonstrated an 

increase in reactive oxygen species in vivo following PM2.5 exposure in a mouse model. 

The response was further characterized by increased expression of superoxide 

dismutase-1 and heme oxygenase-1 in primary macrophages. Further exacerbation of the 

systemic inflammatory response can be induced by high fat diet (HFD). Male offspring 

fed HFD following prenatal exposure to diesel exhaust particles experienced increased 

weight gain, insulin resistance, and anxiety-like behavior compared to vehicle-treated 

HFD controls (Bolton et al. 2014). Subsequent exposure to the allergen LPS produced 

exaggerated IL-1β peripheral response in males. Another study investigating the 

inflammatory effects of administration of lipopolysaccharide (LPS) found that 

concomitant exposure to diesel exhaust particulate (DEP) yielded increases in 

inflammation and endothelial damage, as well as disturbances in coagulation factors 

(Inoue et al. 2006). Further response characterization in this model revealed increased 

chemoattractant proteins in the serum of mice exposed to both DEP and LPS 3- to 5-fold 

compared to LPS alone (Arimoto et al. 2007).   

Systemic inflammation can also lead to alterations in adipose. Findings confirm 

exposure to ambient PM2.5 increased reactive oxygen species (ROS) while reducing 

mitochondrial size in brown adipose tissue and total number of mitochondria in both 

white and brown adipose tissue in male ApoE knockout mice, a model for 

dysbetalipoproteinemia (Xu et al. 2011). ApoE knockout mice were also used to probe 

for activity of mixed vehicle exhaust exposure on the blood brain barrier (BBB) 
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(Oppenheim et al. 2013). This exposure elicited increased ROS and mixed 

metallopeptidase activity compared to filtered air controls leading to increased BBB 

permeability and neuroinflammatory markers. Exposure during early pregnancy to diesel 

exhaust particulate can reduce viability of an embryo, as evidenced by a disruption in 

inner cell mass integrity even at low concentrations in a mouse model (Januario et al. 

2010). Another study investigated the effects of exposure to diesel exhaust particulate 

throughout gestation combined with stress (reduced nesting material) (Bolton et al. 

2013). Results indicate that male offspring of dams that underwent both stressors 

experienced impaired cognitive function, increased IL-1B levels in the brain, and 

increased TLR4 expression. Female offspring were less susceptible to the administered 

exposure.   

DEPs are also known to have an effect on the immune system. Siegel et al. 

(2004) demonstrated that the components of DEP (particulate v. organic) affect the 

immune system differently. Two types of engineered particles, diesel-enriched PM and 

carbon black particles, were tested in a mouse model naïve to PM exposure (Bezemer et 

al. 2011). It was shown that both exposures activated DCs in vivo and upregulated the 

innate immune response. Interestingly, early life exposure to PM with environmentally 

persistent free radicals (EPFRs) results in increased oxidative stress in the lung and 

reduced adaptive immune response to influenza virus (Lee et al. 2014).   
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Strain Maternal Exposure (route) Allergen Reference 

C57BL/6 DEP (oropharyngeal) & DE (inhaled) Ozone Auten et al. 2012 

C57BL/6 DEP (intranasal)  Ovalbumin Manners et al. 2013 

BALB/c DE (inhaled) A. fumigatus Corson et al. 2010 

BALB/c DEP (intranasal) Ovalbumin Fedulov et al. 2008 

BALB/c DEP (intranasal) & LPS (inhaled) Ovalbumin Reiprich et al. 2013 

BALB/c DE (inhaled) Ovalbumin Sharkhuu et al. 2010 
 

Table 1. Murine Models of Prenatal Exposure to Air Pollution and Allergic Airway Disease. Strain, maternal exposure type 

and route, and allergen utilized in previous mouse studies. Diesel Exhaust Particulate (DEP); Diesel Exhaust (DE); 

Lipopolysaccharide (LPS).  
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1.4.3 Mouse Models of Early Life Air Pollutant-Induced Allergic Airway Disease 

Recent in vivo experimental studies have begun to explore the association 

between prenatal exposure to air pollution and allergic airway disease (summarized in 

Table 1). Across all studies, pregnant mice were exposed to diesel exhaust (DE) or diesel 

exhaust particulate matter (DEPM) at various times throughout gestation and challenged 

with different allergens. Four of these studies demonstrated a positive correlation 

between prenatal exposure and asthmatic response (Auten et al. 2012; Fedulov et al. 

2008; Manners et al. 2014; Reiprich et al. 2013); however, one showed no effect 

(Sharkhuu et al. 2010), while another showed protection by addition of a fungal 

exposure (Corson et al. 2010). These disparities are likely due to differences in models, 

as well as mouse strain. Specifically, in the first study of its kind, Fedulov et al. (2008) 

dosed pregnant BALB/c mice with either DEP or TiO2 (inert particles) on gestation day 

(GD) 14 and examined allergic response to ovalbumin (OVA) in the offspring by 

measuring AHR and airway inflammation. They demonstrated that both “inert” and DEP 

increased asthmatic and inflammatory responses in offspring. Interestingly, in BALB/c 

dams chronically exposed to Aflatoxin fumigatus via the intranasal route prior to and 

during gestation, concomitant exposure to generated diesel exhaust appeared to decrease 

the inflammatory response in offspring compared to controls of DE or A. fumigatus 

alone (Corson et al. 2010). Varying doses of ozone (another component of 

environmental air pollution) exposure during pregnancy in BALB/c mice reduced 

sensitivity reactions to bovine serum albumin in offspring (Sharkhuu et al. 2010). 

Sensitization early in life of the offspring produced a more notable response than 



 

26 

 

sensitization later in life. Alternatively, diesel exhaust exposure during pregnancy was 

shown to worsen airway hyperresponsiveness induced by ozone exposure in offspring 

(Auten et al. 2012). Heightened response persisted for 4 weeks in offspring, and there 

were indications of impaired alveolar development in animals exposed to both DE and 

ozone.  

One study that included prenatal exposure to lipopolysaccharide (LPS) 

demonstrated protection from future allergic response to OVA (Reiprich et al. 2013). 

However, the protection was ameliorated by co-exposure to diesel exhaust particulate 

during pregnancy. A final compelling finding from this study found that the antioxidant 

N-acetyl cysteine could reverse the increased asthma risk in offspring of co-exposed 

dams. The most recent study involving prenatal exposure to diesel exhaust and postnatal 

allergen challenge was conducted in C57Bl/6 mice dosed repeatedly throughout 

pregnancy to diesel exhaust particles or PBS (Manners et al. 2014). Offspring were 

challenged with OVA or PBS and assessed for asthma phenotypes. Findings concluded 

that increased asthma susceptibility following prenatal exposure to diesel exhaust 

particles was contingent on natural killer cell responses and associated with upregulation 

of aryl hydrocarbon receptor and oxidative stress-related genes. Early life co-exposure to 

DEP and house dust mite (HDM) has also been characterized in a mouse model (Acciani 

et al. 2013). DEP significantly exacerbated response to HDM exposure, even at levels 

low enough to evoke no independent inflammatory response. 

The strains commonly employed in these models, BALB/c and C57Bl/6, have 

been shown to exhibit differing airway inflammatory responses in a postnatal model of 
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prolonged exposure to DE from birth to six months of age (Li et al. 2008). In addition, 

these strains showed varying susceptibility to the development of allergic airway disease 

when challenged with OVA following prolonged exposure to DE (Li et al. 2009). In 

summary, these studies continue to reveal that genetic factors play an important 

interactive role in response to environmental stimuli such as air pollution and allergen 

sensitization. Thus, in design of our experiment, we decided to compare response in two 

genetically and phenotypically distinct strains of mice.  

 

1.5 Epigenetic Mechanisms 

Recently, environmental epigenetic regulation has been recognized as an 

important mechanism in asthma development following early life exposure to outdoor 

air pollution (Begin and Nadeau 2014). Epigenetics encompasses multiple mechanisms 

by which DNA transcription can be controlled including methylation, 

hydroxymethylation, histone modifications, and microRNA (miRNA). Typically, 

methylation is thought to disable or at least reduce transcription by blocking action of 

transcription factors, whereas hydroxymethylation is considered to be a demethylation 

intermediate. Hydroxymethylation may also play some other roles in DNA repair, but its 

specific role is still being elucidated (Shukla et al. 2015). Histone modifications include 

various post-translational modifications such as acetylation that impact chromatin 

structure or histone modifier recruitment and can ultimately lead to alterations in gene 

expression. MicroRNAs are small non-coding RNAs that can act on the transcribed 

mRNA to, in effect, silence protein expression by cleavage or destabilization methods.  
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In the ENVIRonmental influence ON early AGEing (ENVIRONAGE) birth 

cohort, 210 mother-newborn pairs were investigated using a candidate miRNA approach 

(Tsamou et al. 2016). Specifically, PM2.5 and NO2 exposure were estimated during each 

trimester and compared to miRNA changes in the placental tissue. A positive association 

was found between PM2.5 exposure during the first trimester and upregulation of miRs-

20a and -21. miRs-16, -20a, -21, -146a, and -222 were found to be inversely associated 

with PM2.5 exposure during the second trimester ,and miR-146a was also found to be 

inversely associated with exposure during the third trimester. Janssen et al. (2013) 

investigated changes in global DNA methylation in placental tissue from the 

ENVIRONAGE cohort. On average, PM2.5 exposure was considered low, 17.4 µg/m
3
; 

however, even at this low level, there was an inverse association with global DNA 

methylation in the placenta. Broken down by trimester, they found the most significant 

association in the first trimester, particularly during the implantation stage. As with most 

other toxicant exposures during pregnancy, this indicates a potential window of 

increased susceptibility.  

Based on the literature indicating global demethylation following prenatal 

exposure to air pollution, investigators have probed specific genes related to DNA 

methylation including DNMT1, TET1, and TET2. It has been found that exposure to 

traffic-related air pollution (TRAP) is associated with increased TET1 promoter 

methylation at a single CpG site in nasal epithelial samples (Somineni et al. 2016). This 

pattern was also consistent across saliva and peripheral blood mononuclear cells 

(PBMCs). Further, loss of methylation at the same site and increased global 5-hmC 
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levels were associated with asthma in children. This differential response indicates a 

potential for interacting mechanisms in asthma development and TRAP exposure. 

Breton et al. (2016) examined the association between multiple air pollutants (including 

PM2.5, PM10, and NO2) and DNA methylation levels in LINE1 and AluYb8 measured in 

newborn blood spot tests. Findings included an inverse association between exposure to 

PM10 and O3 pollutants in the first trimester and DNA methylation in LINE1 and a 

positive association between O3 exposure during later pregnancy and LINE1 DNA 

methylation. In another study exploring NO2 exposure during pregnancy, exposure was 

found to be associated with altered cord blood DNA methylation in three CpG sites 

located in mitochondria-related genes (Gruzieva et al. 2017). One of the gene 

associations was significantly associated with exposure into later childhood. 

Collectively, these environmental epigenetic studies in exposed populations underscore 

the lasting impact early life air pollution may have on health effects even years after 

initial contact with pollutant.  

Accumulating epidemiologic and experimental evidence supports the hypothesis 

that in utero air pollution exposure alters epigenetic regulation of genes involved in T 

cell differentiation (Table 2) (Brand et al. 2012; Tang et al. 2012). In a subset of 

umbilical cord blood samples collected from a longitudinal cohort of children in New 

York City, methylation of the acyl-CoA synthetase long chain family member 3 

(ACSL3) 5’-CpG island was shown to be significantly associated with high levels of 

maternal polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy, largely 

from traffic-related combustion emissions, in children exhibiting asthma symptoms 
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(Perera et al. 2009a). Although the role of this gene in asthma is not yet elucidated, it 

could serve as a transplacental exposure marker for future exposure studies. In addition, 

in this same cohort, maternal PAH exposure was more recently associated with 

interferon-γ (IFNγ) promoter hypermethylation in cord blood DNA indicating a possible 

mechanism of Th1 silencing (Tang et al. 2012). In a population of asthmatic children in 

Fresno, California, increased ambient air pollution exposure was associated with 

hypermethylation of the forkhead box protein 3 (FOXP3) locus in circulating T cells, 

impaired Treg cell function, and worsened asthma symptom scores (Nadeau et al. 2010). 

Hew et al. (2015) went on to link higher PAH exposure to impaired Treg function and 

increased methylation in the FOXP3 locus in asthmatic children in Fresno, California 

exposed to high levels of particulate air pollution. In summary, increased Th1 or Treg 

methylation may underlie the skewing toward Th2/Th17 response in asthmatics.    

  



31 

Exposure  

(assessment method) 

Genes Affected Reference 

PAHs  

(personal air monitors) 

ACSL3 Perera et al. 2009 

PAHs  

(personal air monitors) 

IFNγ Tang et al. 2012 

Ambient air pollution  

(land use regression model) 

FOXP3 Nadeau et al. 2010 

PAHs  

(land use regression model) 

FOXP3 Hew et al. 2014 

Table 2. Epigenetic Alterations Following Prenatal Exposure to Air Pollution in 

Humans. ACSL3 (acyl-CoA synthetase long-chain family member 3), IFN-γ (interferon 

gamma), FOXP3 (forkhead box protein 3).  
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Evidence of epigenetic reprogramming following prenatal exposure to PM in 

animal models is scant. However, it is well known that T cell differentiation is controlled 

through epigenetic mechanisms (Wilson et al. 2009). Liu et al. (2008) showed 

hypomethylation in IL-4 promoter CpG sites (activation of Th2 response) and 

hypermethylation of IFNγ promoter CpG sites (silencing of Th1 response) occurred in 

adult BALB/c mice in a model of postnatal exposure to diesel exhaust particulate and 

allergen, Aspergillus fumigatus. Only one group has investigated epigenetic mechanisms 

after in utero diesel exhaust exposure demonstrating that the preventive effects of 

endotoxin are dependent on IFNγ histone acetylation (Reiprich et al. 2013). Isolated 

CD4+ T cells displayed a loss of histone 4 acetylation at the IFNγ promoter following 

co-exposure to diesel exhaust particles and endotoxin in utero and postnatal OVA 

challenge compared to offspring solely exposed to endotoxin in utero. Fedulov and 

Kobzik (2011) found that epigenetic DNA methylation present in dendritic cells from 

offspring of allergic dams was critical to confer allergic susceptibility to naïve adult 

mice.  

Investigation into lifestyle factors such as a methyl-rich diet during pregnancy 

has also revealed possible epigenetic components to allergen sensitization 

(Hollingsworth et al. 2008). In this group, C57Bl/6J mice were time-mated and given 

either a high methyl-donor or low methyl-donor diet until weaning. Eight- to twelve- 

week-old mice were then sensitized and challenged with OVA and assessed for 

asthmatic response. Animals exposed to high methyl-donor diet prenatally and during 

early life were more likely to develop more severe allergic airway disease and had 
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differential methylation in 82 gene-associated loci. Adult mice chronically exposed to 

house dust mite for 5 weeks were found to have differential methylation patterns, 

specifically in the transforming growth beta (TGFβ) signaling pathway (Cheng et al. 

2014).  Overall, these findings provide preliminary evidence that epigenetic regulation is 

an important mechanism by which prenatal environmental exposures predispose 

offspring to asthma development.  

Despite efforts to unravel health disparities among minority populations, current 

research neglects to explain the interaction of genetic differences and pertinent 

environmental factors, like air pollution, during important periods of lung and immune 

system development. Data in animal models is sparse and somewhat inconsistent. 

Comparisons can be drawn from tobacco smoke exposure since major constituents of air 

pollution are derived from similar incomplete combustion processes. Epigenetic studies 

indicate that prenatal exposure via maternal smoking during pregnancy can differentially 

regulate methylation patterns in newborn cord blood samples (Joubert et al. 2012). This 

particular study, conducted in the Norwegian Mother and Child Cohort Study (MoBa), 

investigated epigenome-wide alterations using the Illumina 450K Beadchip system and 

illustrated the vast impact that prenatal inhalation exposures can have on the newborn 

epigenome. Therefore, our overarching goal is to gain insight into epigenetic 

immunomodulatory mechanisms via a dual-strain animal model of prenatal particulate 

matter exposure and postnatal allergic airway disease induction. Furthermore, we hope 

to gain insight into the genetic and socioeconomic disparities of asthma by examining 
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exposure among a population with high childhood asthma prevalence (compared to the 

national average) in south Texas.  

 

1.6 Research Objectives 

While early life exposure to particulate matter air pollution increases asthma 

susceptibility, the role of epigenetic mechanisms is not yet fully explored. Moreover, a 

remaining fundamental challenge is the impact of genetic variation on epigenetic 

regulation and ultimately the development of asthma following prenatal exposure to air 

pollution. Thus, there is a critical need to identify epigenetic modifications in the context 

of genetic variability. In the absence of such information, the potential to predict asthma 

risk from early life exposures will likely remain limited. 

As a first step to investigate mechanisms of asthma pathogenesis, the major 

research goal of this dissertation was to develop a representative model of prenatal air 

pollution exposure to probe interacting determinants of increased susceptibility. To lay 

the foundation for translating the relevance of this model to exposed human populations, 

we conducted a pilot project to evaluate exposure to particulate air pollution during 

pregnancy in a high-risk population. Studies in this dissertation focus on developing the 

proof-of-principle for incorporating genetic variance in an air pollution prenatal 

exposure models, refining prenatal exposure offspring asthma models, and 

characterizing exposure in populations through the following specific objectives: 
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1) Examine changes in DNA methylation across strains following prenatal exposure 

to particulate air pollution;  

2) Characterize offspring responses to allergen challenge in an improved  model of 

prenatal particulate air pollution exposure; and 

3) Measure exposure to PM2.5 and PAH exposure in pregnant women in pilot study 

in South Texas in an area with a high prevalence of childhood asthma.  
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2. STRAIN-DEPENDENT DNA METHYLATION CHANGES FOLLOWING 

PRENATAL EXPOSURE TO PARTICULATE MATTER: PRELIMINARY 

STUDY 

2.1 Introduction 

It is increasingly recognized that early life exposure to particulate matter (PM) air 

pollution increases asthma susceptibility; however the underlying mechanisms are not 

yet fully understood. Emerging evidence suggests epigenetic modifications following 

prenatal PM exposure as a potential means of developmental reprogramming that may 

predispose offspring to allergic asthma development. Therefore, our initial study 

objective was to evaluate changes in DNA methylation status in response to prenatal 

diesel exhaust PM (DEPM), a primary component of particulate air pollution. Previous 

postnatal PM exposure models have demonstrated alterations in DNA methylation 

influence adaptive immunity and response to allergens (Liu et al. 2008; Soberanes et al. 

2012). While methylation status has yet to be evaluated in prenatal exposure models, 

epidemiological studies measuring intrauterine or early life exposure to PM-related 

pollutants, (e.g., polycyclic aromatic hydrocarbons (PAHs)), have revealed DNA 

methylation changes in peripheral blood cells are correlated with childhood asthma 

development (Breton et al. 2016; Gruzieva et al. 2017; Hew et al. 2015; Nadeau et al. 

2010; Perera et al. 2009a; Tang et al. 2012). Thus, to determine changes in target tissues 

in response to prenatal PM exposure, we leveraged our murine prenatal exposure model 

to assess DNA methylation status, specifically in offspring lung tissue.  
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The status of DNA methylation is frequently determined by measuring 5-

methylcytosine (5-mC) levels, which represent methyl groups derived from S-adenosyl-

L-methionine covalently attached to the fifth carbon of the cytosine ring (Bird 2002; 

Umer and Herceg 2013). More recently, the role of 5-hydroxymethylcytosine (5-hmC) 

has been recognized in epigenetic regulation, and 5-hmC is considered a marker of DNA 

demethylation. In mammals, enzymes in the ten-eleven translocation methylcytosine 

dioxygenase (TET) family catalyze the conversion of 5-mC to 5-hmC (Tahiliani et al. 

2009). Altered TET1 methylation status and resulting impact on global 5-hmC levels 

have been implicated in asthmatic patients exposed to traffic-related air pollution 

(Somineni et al. 2016). Evidence of global hydroxymethylation changes in lung tissue in 

experimental asthma models further suggests an important role of 5-hmC in asthma 

pathogenesis (Cheng et al. 2014).  

Importantly, asthma predisposition is impacted by genetic factors. Variance in 

host responses to oxidative stress response pathways therefore may further impact PM-

induced asthma. Original mechanistic studies in adult mouse models of DEPM-enhanced 

allergic asthma capitalized on strain differences in mouse models to reveal BALB/c mice 

mount a differential response to PM, enhancing subsequent inflammatory response to 

allergen challenge, compared with C57Bl/6 mice (Li et al. 2009). These differences were 

attributed to variation in host defense responses to oxidative stress. Since oxidative stress 

has been shown to affect TET expression and influence DNA methylation status (Niu et 

al. 2015), we hypothesized epigenetic changes could be differentially impacted across 

strains with known divergent oxidative stress responses This initial approach of 
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comparing PM-induced DNA methylation changes in C57Bl/6J and BALB/cJ mice 

could provide the proof-of-principle for genetically variable epigenetic modifications 

underlying asthma susceptibility, which would have important implications in 

genetically diverse human populations. 

 

2.2 Materials and Methods 

2.2.1 Chemicals and Reagents 

Diesel Particulate Matter Standard Reference Material (SRM 2975) was 

purchased from the National Institute of Standards and Technology (Gaithersburg, 

Maryland). Phosphate Buffered Saline (PBS) was purchased from Sigma Chemical Co. 

(St. Louis, Missouri) for use as a control. All other chemicals and reagents used were 

obtained commercially at the highest available purity.  

 

  2.2.2 Animals 

Male and female C57Bl/6J & BALB/cJ mice, approximately 8 weeks of age, 

were purchased from The Jackson Laboratory (Bar Harbor, Maine) and allowed to 

acclimate for 1 week under controlled conditions of temperature, humidity and light. 

Females received 9% fat breeder diet (Harlan, Indianapolis, Indiana) while males 

received standard rodent chow (4%) (LabDiet, St. Louis, Missouri).  Food and water 

were provided ad libitum and fresh diet was provided to animals at least twice per week. 

Mice were weighed each day of dosing and checked for signs of distress every day 

throughout the dosing period.  All experiments were approved by the Texas A&M  
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 Treatment Number of 

Dams 

Number of 

Pups Per 

Litter 

Total Pups 

C57Bl/6 PBS 2 5/2 7 

DEPM 2 4/0 4 

BALB/c PBS 1 6 6 

DEPM 3 8/5/0 13 
 

Figure 4. Experimental Protocol for Prenatal Diesel Exhaust Exposure in C57Bl/6 and 

BALB/c Mice. Maternal exposure was performed by intranasal (i.n.) dosing of 50 µg 

diesel exhaust particulate matter (DEPM) or PBS (control) six times during pregnancy 

on gestational days (GDs) 3, 6, 9, 12, 15, and 18. Following birth, pups were sacrificed 

at postnatal day 2 (PND 2).  

 

  

Prenatal Exposure 

50 µg DEPM or PBS i.n.  

GD 3, 6, 9, 12, 15, 18 

C57Bl/6 or BALB/c  

Pregnant female 
Delivery 

GD 19-21 

Sacrifice 

PND 2 
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University Animal Care and Use Committee (IACUC# 2014-0354) prior to 

experimentation. 

 

2.2.3 Overall Study Design and Procedures 

Mice were time-mated and checked for the presence of a vaginal plug to define 

gestational day (GD) 0. Following the same protocol as Manners et al. (2014) that 

previously demonstrated prenatal DEPM exposure leads to offspring asthma 

susceptibility, we exposed pregnant dams to 50 µg DEPM in 50 µL phosphate-buffered 

saline (PBS) or PBS alone via intranasal application (i.n.) (25 µL in each nostril 30 

seconds apart) on GDs 3, 6, 9, 12, 15, and 18 while under light isofluorane anesthesia 

(Figure 4). Dams were allowed to deliver spontaneously. On postnatal day (PND) 2, 

offspring from exposed or control dams were sacrificed, and tissues including lung, 

liver, and spleen were collected, immediately frozen in liquid nitrogen, and stored at -

80°C until analysis.  

 

2.2.4 Analyses 

DNA from lung tissue was extracted using either a Qiagen DNeasy Blood & 

Tissue Kit according to manufacturer’s instructions or using a slightly modified method 

based on Lambert et al. (2000). Briefly, lung tissue was excised and ~5 mg was cut and 

transferred to a 1.5 ml microcentrifuge tube containing TKM buffer. The cells were 

homogenized with a 200 µl filter-tip pipette; 400 µl TKM buffer and 37.5 µl SDS 10% 

were added and vortexed. The tube was incubated at 55° C from 5 min. Proteins were 
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precipitated by adding 200 µl of saturated NaCl, vortexing, and centrifugation for 5 min. 

An aliquot of the supernatant was transferred into a fresh microcentrifuge tube 

containing 900 µl 100% ethanol. The DNA was pelleted by centrifugation for 3 min and 

washed in 70% ethanol. Ethanol was removed and the DNA pellet was allowed to dry at 

room temperature for 3 min, then dissolved in 100 µl 10mM Tris HCl pH8 for 10 min at 

55° C. DNA concentration was read using a Qubit (Life Technologies, Eugene, Oregon) 

following manufacturer’s instructions. 

Lung samples were analyzed for global methylation and hydroxymethylation 

using enzyme-linked immunosorbent assays (ELISAs) (Zymo Research, Irvine, 

California) with detection antibodies for 5-methylcytosine (5-mC) and 5-

hydroxymethylcytosine (5-hmC). Results were confirmed in a subset of samples using a 

selected reaction monitoring mass spectrometry (MS) method at Zymo Research Corp.  

Sex-typing was performed using modified PCR methods from Clapcote & Roder 

(2005) employing the Jarid1F and Jarid1R primers, which bind to Jarid1c and Jarid1d, 

respectively, corresponding to the X and Y chromosomes. Electrophoresis was run using 

a Novex XCell SureLock system with the PowerEase500 as electrical source and 

detection using GreenGlo Safe DNA Dye (Dennville Scientific Inc., Holliston, 

Massachusetts). Gels were imaged using a LI-COR Oddysey Fc imaging system (LI-

COR Biosciences, Lincoln, Nebraska). Upon analysis, if two bands were present, the 

animal was classified as male, whereas if only one band was present, the animal was 

determined to be female. Adult animals of known sex were used as controls (Figure 5).  
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Figure 5. DNA Gel Image from Electrophoresis to Determine Offspring Sex. Primers 

utilized include Jarid1F and Jarid1R correspond to regions on the X and Y 

chromosomes, respectively. Therefore, if a sample had two bands, it was determined to 

be a male and if only one band was found to be present, it was determined to be a 

female. Known male and female controls were run on each gel for consistency. From left 

to right: 50 bp ladder, M control, F control, F, F, M, F, M, M, M, M, F.  

  



 

43 

 

2.2.5 Statistical Analysis 

Statistical analysis was run using SigmaPlot statistical software (Systat Software, 

Inc., San Jose, California). Groups were compared using a t-test and declared 

significantly different where p≤0.05. Where values did not pass normality testing, a 

Mann-Whitney Test was used instead.  

 

2.3 Results 

Following breeding, at least one litter per treatment group per strain was obtained 

with a minimum of four animals per group. Initial results using ELISA to detect global 

methylation and hydroxymethylation data indicated no differences between treatment 

groups (Figure 6 A&B). However, due to the large deviation in the methylation data, as 

well as biological basis of sex differences in methylation, we were interested in 

differentiating between male and female offspring. Following PCR-based sex-typing, we 

observed a reduced amount of global methylation in lung tissue from female offspring 

compared to males from the same treatment group (Figure 6C). Male and female levels 

of hydroxymethylation were not found to differ (Figure 6D).  
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Figure 6. DNA Methylation and Hydroxymethylation Status in Offspring Lung Tissue. (A) DNA methylation data as analyzed 

by ELISA, using detection antibodies for 5-methylcytosine (5-mC), separated by strain and (B) sex. (C) DNA 

hydroxymethylation data as analyzed by ELISA, using 5-hydroxymethylcytosine (5-hmC) antibodies, separated by strain and 

(D) sex. Shown as mean +/- standard error.  
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Figure 7. Global Percent Methylation and Hydroxymethylation Mass Spectrometry Data. 

A subset of samples were sent to Zymo Research Corp. to measure total 5-mC or 5-hmC 

using a selected reaction monitoring (SRM)-based mass spectrometry method. (A) 

Percent global methylation (5-mC) and (B) hydroxymethylation (5-hmC) shown as mean 

+/- standard error.  
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A subset of samples were sent to Zymo Research Corp. to measure total 

methylation (5-mC) or hydroxymethylation (5-hmC) using a highly quantitative mass 

spectrometry method. Average 5-mC and 5-hmC levels within this subset were not 

significantly different between treatment groups; however, C57Bl/6J mice prenatally 

exposed to DEPM had increased trend of percent global hydroxymethylation compared 

to PBS controls whereas BALB/c mice prenatally exposed to DEPM had decreased trend 

of percent global methylation compared to PBS controls (Figure 7). 

  

2.4 Discussion 

Results from this pilot study indicate a possible strain- and sex-specific alteration 

in lung tissue DNA methylation following intrauterine DEPM exposure. Findings from 

our initial ELISA analysis demonstrated no significant differences in global methylation 

or hydroxymethylation. 5-hmC levels in BALB/c pups exposed to DEPM in utero 

appeared slightly higher (albeit non-significant). Notably, sex played a role in 5-mC 

levels of offspring lung tissue; however, this contrast was not as apparent in the 5-hmC 

data. In the subset sent for mass spectrometry analysis, we noted a decrease in 5-mC 

levels in DEPM-exposed BALB/c pups. Levels of 5-hmC were not significantly 

different in this group, and the trending increase in %5-hmC was not as evident. Our 

initial finding of decreased methylation following prenatal PM exposure is consistent 

with previous literature (Janssen et al. 2013) indicating a lower degree of placental 

global DNA methylation in association with particulate air pollution exposure in early 

pregnancy, measured in a large birth cohort.   
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Due to the difference in sensitivity between ELISA and MS methods, it is 

unsurprising that we might see differences in our data following MS analysis. 

Nevertheless, the ELISA methylation data provided important initial information 

indicating possible differences in global methylation based on offspring sex. Since pups 

were sacrificed at two days-of-age, visual sex determination, a method that can be 

extremely inaccurate at this early time point, was not utilized. Initial clustering of the 

methylation data into two distinct groups prompted us to determine offspring sex using a 

PCR-based method determining X and Y chromosomes. After data were analyzed by 

sex, clear differences were observed. Therefore, we recommend in future studies to 

account for offspring sex distributions in power calculations to ensure adequate numbers 

of males and females are available for analysis.      

A major limitation of our current experiment was the lack of robust numbers of 

offspring to evaluate due to the loss of pregnancies in dams exposed throughout 

gestation. Since we lost many time-mated pregnancies in both the DEPM and control 

groups, we hypothesized the use of anesthesia itself for dosing may have impacted 

offspring outcomes. Moreover, this approach of dosing via an inhaled bolus of DEPM 

represents an unrealistic human exposure scenario. Therefore, results from this pilot 

study helped to inform our future studies by removing maternal anesthesia and utilizing   

a more representative inhalation exposure during gestation rather than the intranasal 

dosing method.  

In summary, findings from this preliminary study have important value since data 

reveal the impact of sex and strain on DNA methylation, an important epigenetic 
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modification. Furthermore, observed effects in BALB/c mice suggest epigenetic 

vulnerability in this strain, which has been shown to be at increased risk of allergic 

asthma development following postnatal DEPM exposure compared with C57Bl/6 mice 

(Li et al. 2009). These data support future research focused on the linkage between 

genetic differences in PM-induced oxidative stress responses and variable epigenetic 

changes that may reprogram offspring lung and immune system development. Future 

studies should also focus on gene-specific methylation patterns in lung tissue associated 

with in utero particulate exposure. The opportunity to probe these differences across 

strain, sex, and even tissue type using our prenatal exposure model therefore supports its 

role as a platform to inform translation studies reporting offspring DNA methylation 

changes in surrogate tissues, such as placenta or circulating blood cells. 
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3. STRAIN-DEPENDENT INFLAMMATORY RESPONSES TO HOUSE DUST 

MITE IN AN IMPROVED MOUSE MODEL OF PRENATAL PARTICULATE 

MATTER EXPOSURE 

 

3.1 Introduction 

Maternal exposure to air pollution during pregnancy has been associated with a 

significantly increased risk and severity of asthma in offspring. Asthma affects more 

children than any other chronic disease. While it is widely recognized that early life 

exposure to particulate matter (PM) air pollution plays a role in asthma pathogenesis, the 

mechanisms are not fully understood. Data support genetic background (both gender and 

ethnicity) influence childhood asthma incidence. During childhood, males are more 

likely to have asthma than females; however, after puberty, this trend switches to a 

higher prevalence of asthma in adult females (CDC, Center for Disease Control and 

Prevention 2015). In regards to interactions between environmental factors and gender-

specific risk, epidemiologic evidence shows timing of air pollution exposure during 

pregnancy influences asthma outcomes differently in boys and girls (Hsu et al. 2015). In 

addition to gender, different ethnic groups have different asthma prevalence rates. For 

instance, in 2014, the reported incidence of childhood asthma among white non-

Hispanics was 7.6% whereas for those of Puerto Rican descent, had the highest 

incidence of 16.5% (CDC, Center for Disease Control and Prevention 2015). Studies 

investigating genetic and environmental factors, which may explain these disparities, are 

relatively unexplored, particularly in experimental models that have the additional 
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benefit discerning underlying mechanisms. Thus, the need for an animal model to better 

understand the gaps in knowledge regarding asthma development following prenatal 

exposure to air pollution is clear. 

The few animal exposure models developed to date have relied on diesel exhaust 

PM as the primary maternal exposure. Although diesel exhaust is a major PM 

component of traffic-related air pollutants, expecting mothers are routinely exposed to 

complex PM mixtures of air pollutants from industrial sources and gasoline-powered 

vehicle emissions. Results from our preliminary study also indicated an adverse effect of 

maternal anesthesia (often employed during intranasal DEPM dosing) on offspring 

viability. Therefore, the main goal of this objective was to develop a model of inhalation 

exposure to air pollution during pregnancy creating aerosolized PM mixtures more 

representative of human exposures. The establishment of this model will provide a 

platform to explore the mechanisms underlying prenatal air pollution exposure and 

asthma susceptibility. To probe respiratory and inflammatory responses impacted by 

prenatal PM exposure, we incorporated offspring postnatal allergen challenge using 

house dust mite, a relevant human allergen.  Based on findings from our pilot work and 

previous adult exposure models (Raemdonck et al. 2016; Tomlinson et al. 2010), we 

repeated our approach comparing BALB/c and C57Bl/6 strains, to determine the 

phenotypic differences across varying genetic backgrounds.     
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3.2 Materials and Methods 

3.2.1 Chemicals and Reagents 

Diesel Particulate Matter Standard Reference Material (SRM 2975) was 

purchased from the National Institute of Standards and Technology (Gaithersburg, 

Maryland). House Dust Mite (Dermatophagoides farina, Lot 220744) greater than 99% 

purity was purchased from GREER (Lenoir, NC). Phosphate Buffered Saline was 

purchased from Sigma Chemical Co. (St. Louis, Missouri). All other chemicals and 

reagents used were obtained commercially at the highest available purity. 

 

3.2.2 Animals 

Male and female C57Bl/6J and BALB/cJ 8-week-old mice were purchased from 

The Jackson Laboratory (Bar Harbor, Maine). Mice were housed in a climate controlled 

room with 12/12h light/dark cycle. Females received 9% fat breeder diet (Harlan, 

Indianapolis, Indiana) while males received standard rodent chow (4%) (LabDiet, St. 

Louis, Missouri). Food and water were provided ad libitum. Breeder male weights were 

taken prior to first breeding, and breeder female weights were monitored daily 

throughout the study period. Mice were time-mated; the presence of a vaginal plug 

defined gestational day (GD) 0. The experimental protocol was reviewed and approved 

by the Texas A&M Institutional Animal Care and Use Committee (IACUC# 2015-

0279).  
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3.2.3 Study Design and Procedures for Maternal Inhalation Exposure 

Beginning on GD-0, dams were placed into whole body exposure chambers and 

exposed to either a representative particulate matter pollutant mixture (PM) or filtered 

air (FA) for 6 hours/day until GD18 (Figure 8). Exposure chambers consisted of a 12” x 

8” x 32” stainless steel box with 4 inner compartments and a ¼” clear cast acrylic lid 

(Figure 9A&B). The compact whole-body modular cages allowed for exposure of 

multiple animals, providing animal welfare while minimizing PM losses by deposition. 

The transparent top permitted direct observation of the animals during the exposure 

experiments, and the perforated cast acrylic removable floor suspended from the base of 

the pan maintained a clean environment for the animals. Air was continuously pumped 

through the chamber by stainless steel aerosol distribution lines attached to the lid and 

out return lines on the bottom. Particulate matter 2.5 (composition described in Figure 

9C) was generated from an aqueous solution utilizing a commercial constant output 

atomizer (TSI 3076). PM was conditioned, a process involving water vapor removal in a 

multi-tube Nafion drier, organic vapor removal in a denuder filled with Spectrum XB-17 

reactive adsorbent, and charge neutralization by a Po-210 bipolar diffusion charger. The 

concentration and size distribution of PM in the chambers were constantly monitored 

with a Scanning Mobility Particle Sizer (SMPS) system and adjusted by changing the 

corresponding PM dilution ratios at the source.  The SMPS operates with a sheath flow 

of 6.5 liters per minute and a sample flow of 1 liter per minute. The mass concentration 

of accumulation mode PM was maintained near 100 μg/m
3
 corresponding to a total 

number concentration of about 105 particles/cm
3
 for 150 nm geometric mean diameter 
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particles. This concentration is frequently observed in Beijing and is about a factor of 10 

higher than annual PM2.5 average observed in Houston, Texas. Following exposure on 

GD 18, mice were removed to individual housing and allowed to deliver spontaneously. 

Maternal blood samples were collected via submandibular bleed in a subset of pregnant 

dams on GD18.  

 

3.2.4 Offspring Allergen Challenge  

Offspring were maintained on a 9% fat breeder diet (Harlan, Indianapolis, 

Indiana) and monitored daily. To determine offspring response to allergen challenge 

following prenatal exposure, we followed a well-characterized protocol entailing chronic 

dosing with house dust mite (HDM) (Saravia et al. 2014). Starting on postnatal day 

(PND) 3, pups were briefly anesthetized with 3% isofluorane in oxygen and exposed to 

either 10 µg HDM in 10 µL PBS or 10 µL PBS alone intranasally (5 µL in each nostril 

30 seconds apart) on PNDs 3, 5, 7, 10, 12, and 14 (Figure 8). On PNDs 17, 19, 21, 24, 

26, and 28, pups were again briefly anesthetized and exposed to either 15 µg HDM in 15 

µL PBS or 15 µL PBS alone intranasally (7.5 µL in each nostril 30 seconds apart). 

Animals were weighed and measured for length on each exposure day while still under 

light anesthesia. Absolute control groups were similarly bred, allowed to deliver 

spontaneously, and weighed and measured; however, neither dams nor pups received 

any experimental treatment. 
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Figure 8. Experimental Protocol for Intrauterine PM Exposure and Early Postnatal Allergen Challenge in C57Bl/6 and 

BALB/c Mice. Maternal exposure was performed in custom-built rodent inhalation chambers. PM concentrations averaged 

101.94 µg/m3 from gestational day (GD) 0-18. Following birth, during postnatal weeks (PNW) 1-4, we challenged offspring 

intranasally (i.n.) with house dust mite extract (Greer Labs, Lenoir, NC). The house dust mite (HDM) model represents a 

clinically relevant allergen and widely accepted asthma model previously utilized in a neonatal mouse model.  
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Figure 9. Inhalation Exposure to PM. (A) Photo of our exposure chambers. (B) Schematic of our exposure chambers and 

monitoring system. DMA (differential mobility analyzer); Condensation particle counter (CPC). (C) Particle chemical 

compositions represent mass compositions measured in polluted urban air. Nitrate and sulfate mass fractions, generated from 

ammonium nitrate and ammonium sulfate; chloride mass fraction generated from potassium chloride; diesel soot generated 

from diesel exhaust PM (NIST, SRM 2975).  
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At least 1 male and 1 female from each litter were sacrificed on PND31 (72 

hours following the final allergen challenge). Animals were sacrificed and underwent a 

tracheotomy immediately following confirmation of death. Bronchoalveolar lavage 

(BAL) fluid was collected in EDTA tubes by tracheal cannulation and washing the lungs 

with 1.0 ml sterile PBS. BALF was kept on ice until analysis of airway inflammation.   

The left lung was then excised and inflated to a constant pressure of 25 cm with 10% 

formalin. Fixed lung tissue was then processed for routine histopathology. The right lung 

was immediately frozen in liquid nitrogen and stored at -80°C. Blood was collected into 

K2EDTA microtainer tubes (Becton Dickson, Franklin Lakes, New Jersey), separated 

within 8 hours of collection and stored at -80°C until analysis. Additional tissues were 

weighed and collected for histology or saved for future molecular biology analyses. 

These included brain, nasal epithelia, olfactory mucosa, spleen, liver, kidney, gonads, 

gonadal fat pad, skeletal muscle, and long bones of both legs. A portion of the remaining 

offspring were weaned and shipped to the University of Tennessee Health Science 

Center to undergo airway hyperresponsiveness testing at 8 weeks of age. The remaining 

animals were allowed to mature to 13 weeks of age and sacrificed at that time.  

 

3.2.5 Analyses 

Maternal blood samples were collected in a subset of pregnant dams on GD18 

following final exposure and serum cytokines were analyzed using a Milliplex MAP 

Mouse Cytokine/Chemokine Kit from Millipore (Millipore Corporation, Billerica, MA). 

The following cytokines were analyzed: eotaxin, G-CSF, GM-CSF, IFN, IL-1α, IL-1β, 
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IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, 

IL-17, IP-10, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1α, MIP-1β, MIP-2, RANTES, 

TNFα, and VEGF. Circulating cytokines and chemokines were also analyzed using this 

kit in serum from a subset of pups at the 4 week time point. 8-isoprostanes were 

analyzed in maternal serum by ELISA kit from Cayman Chemical (Ann Arbor, MI). 

BAL samples were analyzed at the Texas Veterinary Medical Diagnostic 

Laboratory (TVMDL). Total number of cells in BAL fluid was counted with a 

hemocytometer. Differential counts of leukocytes were performed using cytospin smear 

slides by technicians blinded to treatment group. Cells were classified as lymphocytes, 

macrophages, eosinophils, or neutrophils based on standard morphology.   

For measurement of airway hyperresponsiveness, mice were anesthetized and 

evaluated using FlexiVent forced oscillation maneuvers (Scireq, Montreal, QC, Canada) 

as previously reported (Saravia et al. 2014). Resistance was measured in response to 

increasing doses of methacholine (0, 12.5, 25, and 50 mg/mL).  

 

3.2.6 Statistical Analysis 

Statistical analysis was run using SigmaPlot statistical software (Systat Software, 

Inc., San Jose, California). Groups were compared using a t-test and declared 

significantly different where p≤0.05. Where values did not pass normality testing, a 

Mann-Whitney Rank Sum Test was used.  
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Figure 10. Maternal Serum Cytokines. (A) IFNγ, (B) Eotaxin, (C) LIX aka CXCL5, and 

(D) MIG aka CXCL9 analyzed by multiplex cytokine panel, (E) 8-Isoprostane analyzed

by ELISA kit. Values shown as mean +/- standard error *p<0.05.
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3.3 Results 

Final maternal exposure values had a mean of 101.94 µg/m
3
 with a standard error

of 0.0784. This corresponds to a mean 24-hour daily dose of 25 µg/m
3
. Maternal weight

gain during exposure was not significantly different between treatments. In addition, 

litter sizes were not significantly different between treatment groups. The following 

cytokines were detectable in maternal serum samples: eotaxin, G-CSF, IFN, IL-1a, IL-5, 

IP-10, LIX and MIG. An increasing trend is seen for IFNγ in C57Bl/6 mice prenatally 

exposed to PM (Figure 10A). Interestingly, eotaxin, an eosinophil recruitment factor, 

was significantly decreased in BALB/c dams exposed to PM compared to FA controls 

(Figure 10B). LIX, i.e., CXCL5, that acts as a chemoattractant for neutrophils, and MIG, 

i.e., CXCL9, that acts as a T cell chemoattractant, were also significantly decreased in

BALB/c mice exposed to PM compared to FA controls (Figure 10C&D). Since maternal 

serum was collected immediately following long-term chronic exposure, these 

alterations could point to the reduced reactivity of the immune system in PM-exposed 

animals. This reduction in inflammatory response is reiterated in the maternal serum 8-

isoprostane data which also shows a decreasing trend in both strains of the systemic 

oxidative stress marker (Figure 10E). 
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Figure 11. Weight and Length Trends. (A) BALB/c and (B) C57Bl/6 weights and (C) 

BALB/c and (D) C57Bl/6 lengths from birth until sacrifice (PND31). Plotted as weight 

v. length trends for (E) BALB/c and (F) C57Bl/6 by maternal treatment group. Values 

shown as mean +/- standard error.  
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Exposures in the current study were not sufficient to induce pup weight or length 

alterations between treatment groups in either BALB/c or C57Bl/6 mice (Figure 11). 

Normalized organ weights revealed differences between filtered air and particulate 

matter-exposed C57Bl/6 heart weights, particularly in female pups and in male testes 

(Figure 12). There is some indication in the literature that exposure to diesel exhaust in 

utero may have detrimental effects on male gonadal development (Takeda et al. 2004). 

We await histology results to determine whether there is a morphological basis for this 

difference in normalized organ weights.  

Although no overt birth size outcomes were detected in the current study, 

responses in the lung following postnatal allergen challenge were marked. Airway 

hyperresponsiveness (AHR) to methacholine was significantly increased in BALB/c 

mice exposed to house dust mite vs. PBS (p=0.0357) (Figure 13). We lacked the 

statistical power to determine difference between PM and FA prenatal exposure. 

C57Bl/6 offspring challenged with HDM did not exhibit increased airway resistance 

compared to the PBS control group. This reiterates strain differences in asthma 

susceptibility demonstrated in other asthma models (Li et al. 2009).   

White blood cells recovered in the BAL were consistently increased in offspring 

from the FA-HDM group compared to FA-PBS groups in both strains. This indicated the 

ability of HDM to produce airway inflammation. We originally hypothesized we would 

see an increased inflammatory response in HDM-challenged offspring exposed in utero 

to PM; however, we consistently observed a reduction in airway inflammation, based on 

total cell counts in BAL in the PM-HDM groups. (Figure 14). We did not observe 
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differences in PM-PBS vs. PM-HDM in either strain, whereas, FA-HDM BAL cell 

counts were significantly increased in C57BL/6 mice (vs. FA-PBS) (p=0.005). 6 weeks 

after the final allergen challenge, a subset of remaining animals were sacrificed to assess 

inflammatory response maintenance. White blood cell infiltrate in the BAL decreased in 

all treatment groups (Figure 15 A) and differential cell counts indicated minimal levels 

of neutrophils, lymphocytes, and eosinophils (Figure 15 B&C).  

Systemic immune response was measured by quantification of cytokines in pup 

serum collected at the time of sacrifice (4 weeks-of-age). In BALB/c mice, animals 

exposed to PM-HDM had significantly higher levels of IFNγ, IL-1β, IL-4, and IL-5 

compared to the PM-PBS group (Figure 16 A, B, D & E). Conversely, PM-HDM-treated 

mice had significantly lower levels of circulating IL-3 compared to the PM-PBS group 

(Figure 16 C). Significant differences were not observed between BALB/c mice exposed 

to FA-HDM vs. FA-PBS. Additionally, there were no significant differences in these 

cytokine levels in C57Bl/6 mice, although a similar trend in was noted in increased IL-4 

and IL-5 levels and decreased IL-3 levels in the PM-HDM-treated mice. Significant 

changes in cytokine levels in C57Bl/6 mice included reduction in systemic IL-9 and 

MIP-1α (i.e., CCL3) in PM-HDM mice compared to PM-PBS controls (Figure 16 F & 

I). In comparison to FA-HDM-treated mice, PM-exposed-HDM-treated mice had 

significantly higher IL-10 levels, a cytokine thought to suppress Th1 type immune 

response, and significantly lower MCP-1 (i.e., CCL2) levels (Figure 16 G & H).  
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Figure 12. Normalized C57Bl/6 Selected Organ Weights. (A) Normalized heart weights by treatment and (B) sex, (C) and 

normalized testes weights. Values shown as mean +/- standard error. *p<0.05.  
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Figure 13. Airway Hyperresponsiveness to Increasing Levels of Methacholine. Resistance was evaluated using FlexiVent 

forced oscillation maneuvers (Scireq, Montreal, QC, Canada) in response to the following doses of methacholine: 0, 12.5, 25, 

and 50 mg/mL. Values shown as mean +/- standard error. *p<0.05 (BFA-PBS v. BFA-HDM p=0.0357). 
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Figure 14. 4 Week Bronchoalveolar Lavage Cell Counts. (A) White blood cell counts (amount per µL BALF), and differential 

cell counts in (B) BALB/c and (C) C57Bl/6 treatment groups. Values shown as mean +/- standard error. “a” indicates 

significant difference from “b” where p<0.05 using a Mann-Whitney rank sum test. *indicates significant difference from all 

other groups within strain.   
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Figure 15. 12 Week Bronchoalveolar Lavage Cell Counts. (A) White blood cell counts (amount per µL BALF), and 

differential cell counts in (B) BALB/c and (C) C57Bl/6 treatment groups. Values shown as mean +/- standard error.  
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Figure 16. Offspring Serum Cytokines. (A) IFNγ, (B) IL-1β, (C) IL-3, (D) IL-4, (E) IL-5, (F) IL-9, (G) IL-10, (H) MCP-1, (I) 

M-CSF, and (J) MIP-1α analyzed by multiplex cytokine panel. Values shown as mean +/- standard error. *p<0.05.  
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3.4 Discussion 

 Collectively, data from our novel prenatal exposure model show offspring 

exposed to PM in utero and challenged with HDM do not develop as robust airway 

inflammatory response compared to filtered air-HDM exposed mice. This indicates an 

early immunosuppressive environment in the lung. Although contrary to other mouse 

exposure models using intranasal DEPM exposure with offspring ovalbumin challenge, 

these data are consistent with previous data from a complementary model of PM-HDM 

exposed infant mice (Saravia et al. 2014). Saravia et al. demonstrated a mechanism 

where PM exposure during the neonatal period leads to a dampened immune response to 

house dust mite by increasing regulatory T cells. Since mouse lung and immune system 

development occurs throughout gestation as well as the early postnatal period, we 

anticipate immune suppression may act through similar mechanisms.  

Inflammation levels in the lungs of our mice reduced after 6 weeks of no 

exposure. This effect is likely the result of the timing of exposures in this model. 

Pollutants were administered throughout pregnancy and allergen was administered 

immediately following birth which in the mouse is equivalent to the third trimester of 

human gestation. Based on previous literature, we conjecture that a repeat allergen 

exposure at a later time point would reveal an exacerbated response in older offspring. 

Upon rechallenge, almost 7 weeks after initial allergen exposure, Saravia et al. (2014) 

observed significant elevation in allergic response including increased Th2, Th17 and 

Treg cells. Animals also displayed AHR and increased peribronchial inflammation after 

adult allergen exposure.   
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In systemic inflammation data from BALB/c mice, we observed indications of 

increased inflammation, decreased T cell growth and differentiation and increase in Th2 

cell differentiation markers in animals exposed to both PM and HDM. This tracks with 

information from previous studies but does not explain the observed 

immunosuppression. In C57Bl/6 systemic cytokines, messages are more mixed. 

Observations indicate reduction in T cell growth and differentiation cytokine IL-3 but 

increase in IL-5, a typical Th2 cytokine, in animals exposed to HDM. IL-9 is thought to 

be a factor in bronchial hyperresponsiveness, however, we see decreased IL-9 in PM 

HDM groups and no significant differences in AHR.  IL-10 is elevated in animals 

exposed to both PM and HDM compared to those only exposed to HDM, indicating a 

potential suppression of Th1 cell differentiation in these animals. CCL2 and CCL3 were 

decreased systemically following HDM exposure in animals prenatally exposed to PM. 

Due to the fact that these are chemokines, the systemic levels may not adequately reflect 

a gradient if one exists in this system.  

Differences in our model compared to findings of other studies may be due to 

timing of pollutant exposure during what is estimated to be equivalent to the human 1
st
 

and 2
nd

 trimester periods and allergen exposure during early neonatal development. An 

asset to the current model includes the purity of our house dust mite allergen of greater 

than 99% with minimal to no lipopolysaccharide or beta-glucan contamination, and 

therefore no risk of adjuvant-type activity from unwanted constituents. Time of sacrifice 

at an early pre-pubertal life stage may also have impacted the observed outcomes. A 

potential window of susceptibility to upper respiratory infection may have been revealed 
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by this investigation based on the immunosuppressive effect elicited by prenatal 

exposure to PM. Histological analysis will aid in further characterization of these effects.  

In summary, our model provides a novel platform to explore mechanisms of 

immunosuppression and perhaps delayed asthma susceptibility over time and across 

strain. Innovative aspects of this model include inhalation exposure to a relevant mixture 

of air pollutants at a level commonly observed in highly populous cities and postnatal 

exposure to the germane allergen, highly purified house dust mite, in two strains of mice 

with uniquely developed immune response phenotypes. Using this model, we can probe 

population differences on a larger scale or delve into the mechanistic aspects of exposure 

in a single strain. 

 

   



4. PRENATAL EXPOSURE TO PARTICULATE MATTER: PRELIMINARY

EXPOSURE ASSESSMENT IN SOUTH TEXAS POPULATION AT HIGH RISK 

FOR ASTHMA 

4.1 Introduction 

In this study, we characterized the personal exposure to fine particulate matter 

(PM2.5) and polycyclic aromatic hydrocarbons (PAHs) in pregnant women in Hidalgo 

County, where childhood asthma prevalence and hospitalization rates are among the 

highest in the state of Texas. In Texas Public Health Region 11, which encompasses the 

lower Rio Grande Valley, including Hidalgo County, current childhood asthma 

prevalence rates are reported at 8.6% compared to the overall rate in Texas, which is 

7.8% (Wickerham and Bhakta 2013). Additionally, in a recent report, the age-adjusted 

hospitalization rates due to asthma were significantly higher in Hidalgo County than all 

of Texas (Wickerham 2014). The contribution of particulate air pollution on asthma 

exacerbation and development in children has yet to be investigated in this high-risk 

population, despite the known links between air pollution and asthma.  

Hidalgo County, located on the Texas-Mexico border, has a population of 

842,300 and a population density of 190/km² (Census Bureau 2016). Typically, sparsely 

populated regions are thought to be less polluted; however, the McAllen-Edinburg-

Mission region, the most populated region in Hidalgo County, is one of the fastest-

growing counties in the U.S., with a 19% increase in just 5 years (Zuniga et al. 2011). 

Residents of Hidalgo County primarily live in urban settings (93%), and the poverty rate 
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(41%) is 2.3 times the estimated statewide poverty rate (Zuniga et al. 2011). In order to 

determine if prenatal exposure to air pollution may be a risk factor for asthma 

development in children, our main goal was to characterize particulate air pollution 

exposure in pregnant women living in this region.  

Techniques to characterize air pollution exposure in human epidemiologic studies 

have relied upon various methods including: 1) personal monitoring, 2) regional 

monitoring (i.e., local ambient air monitoring), and 3) modeling exposure (e.g., through 

land use regression models or more recently geographic information systems (GIS) 

models), which may incorporate ambient air monitoring networks to estimate individual 

exposure. The preeminent standard for quantifying individual-level exposure is through 

personal monitoring, utilizing personal environmental monitoring samplers (PEMS); 

however, these monitors can be costly to use and maintain and bulky for participants to 

carry around. In the case of measuring exposure during important time periods, such as 

pregnancy, personal monitoring over short durations provides high spatial accuracy but 

lacks temporal coverage to quantify exposures over time. Thus, validation of modeling 

techniques is important in achieving a balance between accuracy and adequate coverage. 

A few studies have compared personal monitoring data obtained from PEMS to 

modeled exposures. Hannam et al. (2013) compared personal exposure to nitrogen 

oxides (NOx), using personal air monitors worn in the breathing zone, to multiple 

exposure estimation techniques, including land use regression, kriging, and inverse 

distance weighted models. Findings indicated that monthly adjusted exposure 

interpolation techniques incorporating modeled background concentrations and inverse 
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distance weighting were most correlated with actual measured exposures. Reported r 

values were still only around 0.6 showing that even these sophisticated models have 

difficulty predicting true exposure values. Jedrychowski et al. (2005; 2010; 2015) have 

reported multiple adverse respiratory outcomes in children exposed to air pollution in 

utero. Using personal monitoring employing PEMS to specifically quantify maternal 

PAH exposure in a prospective birth cohort in Krakow, Poland, this research correlated 

prenatal PAH exposure with increased susceptibility to respiratory infection in infants 

(Jedrychowski et al. 2005) and reductions in lung function in childhood  (Jedrychowski 

et al. 2010). Utilizing PEMS data from this cohort, Choi et al. (2008) compared personal 

measurements to modeled exposures developed from indoor and outdoor ambient 

monitors and personal questionnaires. Modeled results showed high precision and 

validity for individual-level exposure. Although this approach may reduce the need for 

personal monitoring, it requires adequate indoor and outdoor monitoring and may not be 

generalizable to other exposure settings.  

In Hidalgo County, ambient fine particulate matter air pollution (PM2.5) is 

measured at one site in the McAllen-Edinburg-Mission metropolitan area using a 

Continuous Ambient Monitoring Station (CAMS). Between 2010 and 2015, the annual 

PM2.5 concentration ranged between 9.6 and 11.1 µg/m
3
, with only 2 days in the 5 years 

exceeding the 24-hour PM2.5 standard of 35 µg/m
3
 (EPA July 2016; TCEQ 2016). Due 

to this sparse monitoring network and since indoor sources may also contribute to PM 

exposure, our approach was to investigate maternal PM exposure in Hidalgo County 

using personal monitoring (i.e., PEMS). This approach allowed us to quantify PM2.5 
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exposure, make comparisons to the existing CAMS station, and importantly, quantify 

exposure to PAHs, known toxic constituents of PM.  

 

4.2 Materials and Methods 

4.2.1 Participant Recruitment and Sample Collection 

Participants (n=17) in their third trimester of pregnancy were recruited from Rio 

Grande Regional Women’s Clinics located throughout Hidalgo County. Inclusion 

criteria included: residence in Hidalgo County, 21-35 years of age, non-asthmatic, non-

diabetic, non-smoking household, singleton pregnancy, and no history of preterm birth. 

All study procedures were approved by the Texas A&M University Institutional Review 

Board and written informed consent was obtained from each participant before 

enrollment into the study. Sampling took place between June 2015 and April 2016. 

Participants completed three non-consecutive 24-hour measurements within a 4-6 week 

period to reduce seasonal effects on personal measures. Approximately 24 hours prior to 

a scheduled prenatal care visit, participants were visited at home by a local community 

health worker and delivered a lightweight backpack containing air sampling equipment, 

a global positioning system (GPS) device, and instruments to measure temperature and 

humidity. Participants answered a questionnaire related to their home, commute, and 

work environment and background information at the first home visit. Following 24 

hours of wearing the backpack, it was returned at the regularly scheduled prenatal visit 

where participants also provided a urine sample and activity log from the measurement 

period. At the last appointment, participants also provided a hair sample to evaluate 
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environmental tobacco smoke exposure. Only one participant did not complete all three 

sampling days, resulting in 50 total sampling days.  

 

4.2.2 Personal Exposure Assessment  

Backpack contents included a personal DataRAM™ (pDR-1200, Thermo 

Scientific Corp., Waltham, Mass.) along with an external pump, a GPS receiver 

(BT1000XT, Qstarz International, Taiwan), and a HOBO Temperature and Humidity 

Data Logger (UX100-003, Onset Computer Corporation, Pocasset, MA, USA). Data 

were logged at 10-s resolution or higher for all instruments. The air intake inlet, mounted 

on the backpack’s shoulder strap, sampled air at the participant’s breathing level via a 

BGI air pump operated at a total flow rate of 4L per minute. Sampling pumps and inlets 

were averaged after each run and calibrated prior and post 24hr sampling periods. Air 

passed through a personal environmental monitor (PEM, MSP Inc.), acting as a single-

stage impactor PM2.5 inlet for the subsequent pDR. This light-scattering nephelometer, 

the pDR, contained a built-in filter to provide calibration for mass concentration 

estimations. A second line from the BGI pump pulled air in at 1L/min to pass through a 

2µm, 37mm polytetrafluoroethylene (PTFE) filter (Pall Corp, Zefluor) which collected 

particles encountered during the sampling period. PTFE filters were removed, 

individually placed in clean petri dishes, bagged and kept at -20° C for analysis. XAD-2 

sorbent tubes to collect any volatile compounds were in-line following the PTFE filter. 

XAD-2 tubes were also stored at -20° C until analysis. PM2.5 measurements were 
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corrected for the non-linear instrument response at RH values greater than 60% (Benton-

Vitz and Volckens 2008; Soneja et al. 2014).  

 

4.2.3 Laboratory Analyses of Polycyclic Aromatic Hydrocarbons  

PTFE filters were extracted prior to analysis utilizing NIOSH method 5515 

(Polynuclear Aromatic Hydrocarbons by GC). Briefly, filters were spiked with 

deuterated internal standard, sonicated in solvent for 15-20 minutes, followed by 

analysis via gas chromatography tandem mass spectrometry (GC-MS).  

 

4.2.4 Analysis 

 Means, medians, and quartile ranges were calculated using Microsoft Excel. 

 

4.3 Results 

 Participant information is summarized in Table 4. All participants identified as 

Hispanic and a majority of participants were not currently employed. Although 

individual PAH sample averages (Table 5) are not high, naphthalene was the most 

highly observed compound in our samples across all sampling rounds. Median overall 

total PAH exposure level was found to be 17.80 pg/m
3
. Total levels of PAHs are orders 

of magnitude lower than the observed levels of PM2.5. The median PM2.5 value was 

16.17 µg/m
3
 with a 75% quartile of 19.51 µg/m

3
. At the participant-level (Table 6), large 

temporal differences can be observed between sampling periods. For instance, while 

participant number 8 experienced low levels in rounds 1 and 3, the values for round 2 
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PAH and PM2.5 concentrations are much higher, indicative of a possible large exposure 

on that day. Therefore, a repeated measure approach is warranted in evaluating exposure 

data for PAHs and PM2.5.  

 

4.4 Discussion 

Observed differences between sampling days may be due to changes in behavior 

or activity from day to day including cooking, driving, and amount of time spent 

indoors. These discrepancies are difficult to account for using exposure modeling 

techniques, and emphasize the need for personal sampling. If we compare total PAH 

data from our study to that of other birth cohorts, we find that our levels are 

comparatively much lower. Only one of our sampling points would fall in the “high 

PAH group” according to Perera et al. (2009a) with a value of 10.58 ng/m
3
. 

Jedrychowski et al. (2010) demonstrated a median PM2.5 exposure level of 35.4 µg/m
3
 

among pregnant women living in Krakow, Poland. Only two of our individual sampling 

measurements exceed that level, and our overall median is almost half that reported in 

the aforementioned study. Recently, individual PAH levels were quantified in that 

population (Jedrychowski et al. 2017). Median total PAH concentration was reported to 

be 19.0 ng/m
3
, representing exposures 1000X higher than in our population.  
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Ethnicity  N %  

Hispanic  17 100 

Education     

< 12 years 7 41 

12 years 6 35 

> 12 years 1 6 

Unknown 3 18 

Smoking 
  

Never 12 71 

Before Pregnancy 2 12 

Unknown 3 18 

Employed      

Yes 2 12 

No 15 88 

 

Table 3. Study Participant Demographics. Information from survey conducted at the first 

home visit.  
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Round 1 

N=15 

Round 2 

N=14 

Round 3 

N=13 
Overall 

Naphthalene 3.79 (2.70, 5.37) 2.77 (2.12, 4.83) 2.40 (2.10, 2.69) 2.77 (2.4, 3.79) 

Acenaphthene 0.27 (0.24, 0.34) 0.28 (0.21, 0.52) 0.39 (0.32, 0.52) 0.28 (0.27, 0.39) 

Acenaphthylene 0.10 (0.07, 0.17) 0.08 (0.03, 0.12) 0.10 (0.06, 0.27) 0.10 (0.08, 0.10) 

Anthracene 0.08 (0.07, 0.15) 0.08 (0.06, 0.32) 0.08 (0.05, 0.21) 0.08 (0.08, 0.08) 

Phenanthrene 1.31 (0.78, 2.16) 0.97 (0.52, 2.84) 0.79 (0.52, 1.26) 0.98 (0.79, 1.31) 

Fluorene 0.27 (0.26, 0.34) 0.27 (0.23, 0.53) 0.32 (0.25, 0.39) 0.28 (0.27, 0.32) 

Fluoranthene 0.18 (0.16, 0.30) 0.23 (0.17, 0.58) 0.20 (0.15, 0.34) 0.20 (0.18, 0.23) 

Benzo(a)anthracene 0.33 (0.26, 0.51) 0.30 (0.21, 0.68) 0.37 (0.29, 0.58) 0.33 (0.30, 0.37) 

Chrysene 0.17 (0.13, 0.42) 0.22 (0.11, 0.47) 0.32 (0.26, 0.57) 0.22 (0.17, 0.32) 

Pyrene 0.27 (0.22, 0.54) 0.29 (0.23, 0.59) 0.29 (0.16, 0.40) 0.29 (0.27, 0.29) 

Table 4. Personal Exposure to Individual Polycyclic Aromatic Hydrocarbon Compounds, Total PAH, and 24 hr Average 

PM2.5. Values (pg/m
3
 unless otherwise indicated) from three prenatal monitoring periods (median values with quartile range).  
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Round 1 

N=15 

Round 2 

N=14 

Round 3 

N=13 
Overall 

Benzo(a)pyrene 0.23 (0.17, 0.30) 0.17 (0.07, 0.37) 0.25 (0.20, 0.63) 0.23 (0.17, 0.25) 

Benzo(b)fluoranthene 0.25 (0.10, 0.59) 0.18 (0.11, 0.47) 0.27 (0.20, 0.45) 0.25 (0.18, 0.27) 

Benzo(k)fluoranthene 0.06 (0.03, 0.15) 0.12 (0.07, 0.21) 0.22 (0.18, 0.64) 0.12 (0.06, 0.22) 

Dibenz(a,h)anthracene 0.05 (0, 0.12) 0.09 (0.04, 0.31) 0.15 (0.07, 0.33) 0.09 (0.05, 0.15) 

Benzo(g,h,i)perylene 0.58 (0.40, 1.73) 0.37 (0.19, 0.84) 0.32 (0.20, 0.55) 0.37 (0.32, 0.58) 

Indeno[1,2,3-cd]pyrene 0.20 (0.11, 0.44) 0.15 (0.06, 0.38) 0.17 (0.14, 0.51) 0.17 (0.15, 0.20) 

Total PAHs (pg/m
3

) 26.77 (18.71, 40.88) 17.80 (11.67, 44.23) 12.53 (9.37, 19.05) 17.80 (12.54, 26.77) 

PM
2.5 

(µg/m
3

) 11.09 (3.07, 17.39) 16.17 (9.22, 32.46) 19.51 (6.95, 25.4) 16.17 (11.09, 19.51) 

Table 4. Continued.  
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Participant Total PAHs (pg/m
3

) 24 hr PM
2.5

 (µg/m
3

) 

 
Round 

1 

Round 

2 

Round 

3 
Overall  

Round 

1 

Round 

2 

Round 

3 
Overall 

1 23.99 50.30 18.56 
23.99 

(30.95) 
2.74 10.86 5.04 

5.04 

(6.21) 

2 40.89 8.92 12.82 
12.82 

(20.88) 
31.06 29.81 34.81 

31.06 

(31.89) 

4 27.16 16.57 9.30 
16.57 

(17.68) 
7.48 10.09 7.1 

7.48 

(8.22) 

5 26.77 538.91 12.54 
26.77 

(192.74) 
13.30 32.41 26.15 

26.15 

(23.95) 

6 10.38 42.20 51.76 
42.20 

(34.78) 
17.04 32.61 27.72 

27.72 

(25.79) 

7 10.05 10.50 11.11 
10.50 

(10.55) 
9.85 25.38 20.66 

20.66 

(18.63) 

8 5.06 10581.78 8.89 
8.89 

(3531.91) 
3.07 114.25 23.42 

23.42 

(46.91) 

10 32.59 7.29 - 
19.94 

(19.94) 
17.39 14.69 - 

16.04 

(16.04) 

11 32.01 15.26 20.50 
20.50 

(22.59) 
11.09 73.45 20.40 

20.4 

(34.98) 

Table 5. Individual Exposure to Total PAH and 24 hr Average PM2.5. Values from three prenatal monitoring periods [depicted 

as median (mean)]. Data for participant numbers 3 & 9 were unavailable for this analysis. 
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Participant Total PAHs (pg/m
3

) 24 hr PM
2.5

 (µg/m
3

) 

 
Round 

1 

Round 

2 

Round 

3 
Overall  

Round 

1 

Round 

2 

Round 

3 
Overall 

12 491.58 19.03 - 
255.306 

(255.306) 
2.07 6.09 13.10 

6.09 

(7.09) 

13 171.61 22.99 15.84 
22.99 

(70.15) 
1.92 5.63 6.51 

5.63 

(4.69) 

14 20.45 24.75 8.84 
20.45 

(18.01) 
28.18 13.12 25.15 

25.15 

(22.15) 

15 42.23 12.06 9.44 
12.06 

(21.24) 
6.83 6.62 13.91 

6.83 

(9.12) 

16 18.71 - 12.80 
15.76 

(15.76) 
11.21 2.11 4.70 

4.70 

(6.01) 

17 24.68 12.69 12.30 
12.69 

(16.56) 
34.58 17.65 18.61 

18.61 

(23.61) 

Table 5. Continued.
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Our data demonstrates that individual exposure levels to PAHs and PM2.5 can 

vary widely day to day but that on average in this population, daily levels do not exceed 

standards set forth by the EPA. Future research will build on this preliminary exposure 

assessment to investigate low-level prenatal exposure levels and adverse respiratory 

risks in the children. Characterization of exposure at the resolution we have achieved can 

provide insight into why childhood asthma rates are increased in this unique population 

compared to the Texas average.  
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5. SUMMARY 

 

Exposure to ambient air pollutants is detrimental to health in multiple ways 

including cardiovascular disease, lung cancer, neurocognitive impairment, and even 

metabolic dysfunction. Vulnerable populations including pregnant women and young 

children are more susceptible to toxicant exposures. Furthermore, exposure during these 

periods may result in an increase in systemic inflammation and epigenetic alterations 

leading to disease later in life.  

Our first aim hoped to address these differing susceptibilities by examining 

prenatal intranasal exposure to diesel exhaust particulate, a major component of air 

pollution, in two strains of mice. We probed epigenetic alterations immediately 

following birth to establish a baseline response in the BALB/c and C57Bl/6 pups. 

Results indicate that there are small differences in global methylation between male and 

female pups following prenatal exposure to DEPM. When global methylation analysis 

was performed with MS, neither BALB/c mice or C57Bl/6 mice treatment groups were 

significantly different although a trend of decreased methylation in BALB/c mice was 

noted. As reflected in human data, this indicates that sex and genetic background play 

integral roles in response mediation. Implications include a need for environmental 

regulations to account for those individuals that are most susceptible to insult. 

Prenatal exposure to air pollution has also been associated with increases in 

asthma prevalence. This risk increase has been demonstrated in epidemiologic and 

animal model data; however, the mechanisms are largely unknown. Evidence generated 
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by animal models has failed to reach consistency due to difference in strain utilized and 

level, composition, route, and timing of exposure. A standard method of prenatal air 

pollutant administration has failed to be established and is indeed a necessary procedure 

for relevant experiment conduction. 

Thus, the secondary aim of this dissertation work was to develop a murine model 

of prenatal exposure to particulate matter air pollution and incorporate a postnatal 

chronic allergen challenge to investigate phenotypic response in two strains of mice. Not 

only did we see differing response between strains but also between sexes. Importantly, 

we have revealed a potential window of susceptibility to respiratory infection in 

offspring prenatally exposed to particulate matter air pollution as evidenced by a 

decrease in immune response following exposure to allergen. This data underlines 

previous findings indicating an early immunosuppression. It demonstrates that we can 

model variable response based on genetic background differences in inbred strains of 

mice. If this work were to continue into a population-based mouse strain such as 

collaborative cross, we could extrapolate findings to a wider base and investigate the 

specific traits or genes that may make certain individuals more vulnerable to insult.  

If we are to understand how vulnerable populations can be more susceptible to 

insult, sufficient characterization of exposures is essential. In Hidalgo County, Texas, 

there is an increased incidence of childhood asthma but the cause is unclear. Particulate 

matter monitors in the area do not reflect increases in exposure beyond national 

standards. Increased relative risk may be a result of an already genetically vulnerable 
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population thereby necessitating thorough interrogation of chemical exposure 

compositions.  

Therefore, we desired to assess exposure to PAHs in a small cohort of pregnant 

women in McAllen, Texas where there is a high prevalence of childhood asthma. The 

data reveals low levels of PAH and PM2.5 exposure in this population when compared to 

other PEMs cohort data. We demonstrate that total PAH levels may be magnitudes lower 

than PM2.5 exposure but the PAH component may represent an important cause of 

oxidative stress. Accurate analysis of pollutant constituents is necessary to fully assess 

exposure and comprehend potential health effects.  

In summary, detailed exposure characterization is an essential beginning to 

understanding the mechanisms by which prenatal exposure to air pollutants increase risk 

of childhood asthma development. Animal modeling techniques based on human 

exposure patterns will allow for closer interrogation of these mechanisms. The current 

work has laid a foundation upon which to build the knowledge base and investigate the 

health effects of prenatal exposure to air pollution, particularly effects on allergic 

asthma.   
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