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ABSTRACT 

In the midst of a controversial time in the energy industry, it is hard to deny the 

fact that petroleum-based combustion will be a mainstay for many years to come. In 

light of this reality, it is the task of the engineering community to make natural gas 

combustion as safe, efficient, and environmentally conscious as possible. This study 

considers the implementable changes of variable spark timing and reduced cooling fan 

loads on a natural gas reciprocating-piston internal combustion engine. Emissions are 

observed over a range of engine speed, engine load, and spark timing conditions.  

While active engine controls reduce fuel consumption and emissions, many 

natural gas pipeline engines in service today operate at set conditions. Each engine can 

then only be designed to have a small range of optimum performance for a given 

configuration. While installing controls is possible, it is an expensive endeavor, creating 

interest in optimizing an engine to its specific operating conditions. This investigation 

explores emissions and other engine performance data over three engine speeds, three 

engine loads, and five spark timing configurations on an Ajax E-565 natural gas engine.     

In addition to the spark timing study, an investigation into the cooling system is 

performed to see if and when the engine is exerting wasted energy into cooling itself. 

The study shows that the engine is in fact supplying too much energy to its fan for 

moderate climates, warranting further investigation into ways to reduce this parasitic 

loss.   
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NOMENCLATURE 

AERL Advanced Engine Research Lab 

AFR Air/Fuel Ratio 

Ajax Ajax E-565; Test Engine 

ATDC After Top Dead Center  

BHP Brake Horsepower  

BMEP Brake Mean Effective Pressure  

BTDC Before Top Dead Center  

BTU British Thermal Unit 

CAD Crank Angle Degree 

CFD Computational Fluid Dynamics 

CO Carbon Monoxide 

CO2 Carbon Dioxide 

COV Coefficient of Variance 

DAQ Data Acquisition System 

DI Direct Injection 

EGT Exhaust Gas Temperature 

FID Flame Ionization Detection 

HP Horsepower 

IC Internal Combustion 

IMEP Indicated Mean Effective Pressure 
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MEXA Horiba MEXA-7100D; Emissions Bench 

NDIR Non-Dispersive Infrared Detection 

NG Natural Gas  

NI National Instruments 

NOx Oxides of Nitrogen; NO + NO2 

O2 Oxygen 

ppm Parts Per Million 

ppmC Parts Per Million, Carbon Atom 

RoHR Rate of Heat Release 

THC Total Hydrocarbons 

Φ (Phi) Equivalence Ratio (<1 is lean, >1 is rich) 
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1 INTRODUCTION 

1.1 The Natural Gas Infrastructure  

The natural gas industry is a cornerstone to the American and worldwide 

economies, in both its energy value and the infrastructure required to keep it operational. 

While there are a variety of transportation methods of this fuel, the pipeline is arguably 

the safest, fastest, and most economical [1]. Conveniently, the engines used to propel the 

gaseous fuel can be fed by the same gas. The Ajax E-565, the test engine of this 

investigation, is an example of this. There is strong interest in its performance from both 

operators in the field as well as government regulation agencies. This challenges 

engineers with not only maximizing the performance from these engines, but also 

minimizing fuel consumption and harmful exhaust emissions [2].  

Many of the units in service today are antiquated, using technology from the early 

twentieth century [3]. This leaves many opportunities for improved performance by 

redesigning major components. However, there is high interest in possible modifications 

to improve existing units, since replacements are expensive and time-consuming to 

install. The focus of this study is to propose possible retrofits that can be installed in the 

field, namely an altered spark pickup bracket (to change spark timing) and a modified 

cooling fan. 

It is important to note that 87% of all U.S. domestic energy production is 

petroleum based, with a quarter of overall energy from natural gas. This, in conjunction 

with the 2 million miles of pipeline in the United States alone, gives light to the 
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immensity of this challenge [4]. Even if minimal, but consistent gains are realized, their 

impact would be significant if used across the industry. 

1.2 Two-Stroke Engine Design 

The engines that enable pipeline operation are available in many capacities and 

variations, from single-site pump jack units to multiple building-sized units forming 

compressor stations. This scope includes two- and four-stroke derivations, some 

naturally aspirated and others with forced induction [5]. The focus of this study is the 

naturally-aspirated two-stroke design. This configuration offers many advantages, 

especially to the often rugged worksites where these engines operate. The simplicity of a 

two-stroke engine eliminates the common failure points of traditional four-stroke 

engines, such as valves, camshafts, and timing sets [6]. The idea of natural aspiration 

(atmospheric intake pressure, thus lacking a super- or turbocharger) aligns with this 

minimalistic design. Finally, the modesty of the lubrication system make it more apt to 

survive frigid environments [7]. These factors are all important to the operator who 

maintains a fleet of engines, valuing reliability and durability over all else. Oftentimes, 

engines are installed in desolate and treacherous regions, which makes maintenance 

dangerous and costly. 

While durability is a paramount consideration for these engines, performance is 

also of high importance. The two-stroke engine design excels in this area as well, 

benefitting from a power stroke from every down stroke, as opposed to the “skipped 

stroke” of the four-stroke design. To achieve this, a two-stroke essentially combines the 
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combustion/expansion stroke and the exhaust stoke into one motion, thus increasing the 

power density of a given displacement of engine. This is demonstrated in Figure 1-1. 

Another interesting design parameter to consider for two-stroke engines is the in-

cylinder turbulence induced by the piston geometry. Because the piston is shaped to 

expel exhaust gases out of the exhaust ports while simultaneously allowing a fresh 

mixture in, swirl is induced. This turbulent flow is known to promote a more complete 

combustion cycle [9, 10]. The geometry of the piston can be seen in Figure 1-2 which is 

a negative imprint of the piston crown in the engine in this study. 

Figure 1-1: The two-stroke combustion process of the Ajax E-565, reprinted from [8] 
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Figure 1-2: Ajax clearance volume mold 

1.3 Tradeoffs in an Engine’s Operating Parameters 

Engine design is a balance between various metrics, nearly always leading to a 

compromise [11]. It is up to the engine designer and operator to understand the working 

conditions of their machine, and optimize the engine’s characteristics accordingly. For a 

given engine, its design parameters are best at a specific condition. While parameters are 

chosen in the design phase, it is only possible to capture the interactions of the variables 

in an experimental setting.  

This idea helped inspire the investigation into the coolant system of the Ajax E-

565. This engine is sold as a “one-size-fits-all” unit, which means it must endure the 

extremes of any environment where it is installed. The engine is known for its durability 
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in hot climates, so it is likely that the engine is over-cooling itself in moderate 

conditions, since the engine-driven fan is not actively controlled. 

1.4 Effects of Engine Emissions, a Literature Review 

An understanding of emissions formation and their effects is necessary in 

justifying the work done in this investigation. To begin this discussion, a simple 

stoichiometric combustion reaction between methane and air is given as: 

𝑪𝑯𝟒 + 𝟐(𝑶𝟐 + 𝟑. 𝟕𝟔𝑵𝟐) → 𝑪𝑶𝟐 + 𝟐𝑯𝟐𝑶 + 𝟕. 𝟓𝟐𝑵𝟐 1-1 

This idealized reaction represents an equivalence ratio of 1, which the engine in 

this study virtually never realizes [12]. Even when the engine is running at its richest 

condition, it still does not exceed a phi-value of 0.95. Typically, the engine operates at 

Φ=0.8. The emissions observed are thus a result of lean combustion. The IC engine 

community has a strong understanding of how emissions correlate with intake mixture 

equivalence ratio, which will serve as a validation of the data observed in this 

investigation [13]. Figure 1-3 depicts the well-documented emissions trends of various 

exhaust constituents over a range of equivalence ratios. 
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Figure 1-3: Emissions as a function of equivalence ratio, reprinted from [13]. 

1.4.1 Carbon Monoxide 

Carbon Monoxide (CO) is a tasteless, colorless, odorless gas that can cause 

serious respiratory damage [14]. The fatality rate to those unknowingly exposed exceeds 

600 deaths per year, with many other victims suffering from symptoms such as 

headache, nausea, and fatigue due to hypoxia. 

In the context of IC engines, CO is formed from incomplete combustion [15], by 

not reacting to the final CO2 state. This is often due to a fuel-rich mixture, where there is 

not sufficient oxygen to bring the product gas to CO2. Incomplete combustion can also 

occur in-cylinder from the engine geometry or operating conditions. 

A CO analyzer works on the principle of non-dispersive infrared detection 

(NDIR) [16]. The exhaust sample flows passed a comparison cell containing N2, both 

being exposed to an infrared light. A molecule will absorb infrared energy at a specific 
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wavelength, and the amount of infrared radiation absorbed by the sample can be 

measured. This method makes the analyzer useful for a variety of gases. 

1.4.2 Unburned Hydrocarbons 

A benefit of natural gas combustion over other petroleum combustion is the 

reduction of CO2 emissions, a greenhouse gas [17]. However, methane emissions have a 

similar effect in trapping solar heat when they are in the atmosphere [18]. It is estimated 

that over the course of a century, methane emissions are nearly 30 times more effective 

in trapping heat than carbon dioxide emissions [19]. There is strong motivation to reduce 

these emissions. 

Two-stroke engines are notorious for high unburned hydrocarbon (to be referred 

to as total hydrocarbons, or THC) emissions, due to their tendency to short-circuit fuel 

directly into the exhaust port [20]. As the intake and exhaust ports are both opened 

during part of the engine’s cycle, the fuel-air mixture from the intake escapes with the 

exhaust gases. This overlap can be seen in Figure 3-22: Ajax E-565 timing diagram. 

The THC analyzer uses what is referred to as FID, or hydrogen flame ionization 

detection [21]. The analyzer creates a flame with H2 as a fuel, and introduces exhaust 

sample gas into this fuel flow. Once the carbon atoms from the sample are exposed to 

the flame, they emit ions that are detected as current in the machine’s electrodes. It is 

important to note that this method only detects the number of carbon atoms, and cannot 

distinguish between various hydrocarbons. 
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1.4.3 Nitrogen Oxides 

Nitrogen oxides, commonly referred to as NOx, are comprised of NO and NO2 

[22]. These are highly poisonous gases, and a lead contributor to smog [23]. It is a 

respiratory irritant when inhaled, and can be fatal. NOx formation is correlated to high 

temperature, and is formed when nitrogen is oxidized. The following reactions occur 

between dissociated nitrogen and oxygen (hence, the strong temperature dependence) 

[24]: 

𝑁2 + 𝑂 → 𝑁𝑂 + 𝑁 

𝑁 +  𝑂2 → 𝑁𝑂 + 𝑂 

𝑁 + 𝑂𝐻 → 𝑁𝑂 + 𝐻 

1-2 

Spark timing has a strong effect on NOx formation, as in-cylinder pressures 

directly correlate to temperatures. Retarding spark timing shifts the peak pressure from 

combustion past TDC, where the engine sees its highest in-cylinder pressure from the 

minimized chamber volume. Thus, the net peak pressure is lower, reducing NOx 

formation. Conversely, advanced timings align peak combustion pressure near the TDC 

point, resulting in high pressures, temperatures, and NOx formation. This is illustrated in 

Figure 1-4, showing a clear increase in NOx for the full-advanced timing case [25]. 
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Figure 1-4: NOx concentrations vs equivalence ratio for various spark timings, reprinted from [25] 

The analyzer used to quantify NO emissions works on the principle of 

chemiluminescence [26]. NO is introduce to O3 in a reactor, resulting in an “excited 

state” of NO2, denoted as NO2
*. This state of NO2 emits light, which represents how 

much NO underwent this reaction. The amount of light observed by the analyzer is given 

as an amount of NO found in the exhaust sample gas. The analyzer observes the 

following reactions: 

𝑁𝑂 + 𝑂3 → 𝑁𝑂2
∗ + 𝑂2

𝑁𝑂2
∗ → 𝑁𝑂2 + 𝑙𝑖𝑔ℎ𝑡 

1-3 

This method is not capable of measuring the NO2 from the original exhaust 

sample, necessitating an additional step for analysis. NO2 is converted to NO through a 

reaction with carbon, and can then be analyzed with the other NO constituents in the 

exhaust sample. This study reports both nitrogen oxides as NOx. 
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1.4.4 Carbon Dioxide 

Carbon dioxide (CO2) is well-publicized for its ability to trap solar energy in the 

atmosphere, earning the reputation as being the most significant human-created 

greenhouse gas [27]. CO2 analysis is done with the same equipment used to analyze CO, 

again using the principle of NDIR [16]. The exhaust sample flows past a cell containing 

N2, both being exposed to an infrared light. CO2 is distinguishable from CO because it 

absorbs a different wavelength of light. 

1.4.5 Oxygen 

O2 emissions are helpful in deducing an equivalence ratio when it is difficult to 

do so at the air and fuel intakes, as is the case with the Ajax engine. Intake air and fuel 

measurements are not reliable, but oxygen readings prove to be consistent and trend 

predictably with the engine. 

The oxygen analyzer works on the principle of magneto-pneumatic detection 

[28]. The exhaust sample gas passes through a magnetic field, with its oxygen 

constituents being attracted to the magnetic poles in the field. The analyzer then 

measures the increase in pressure at the pole, and corresponds that to an oxygen 

concentration.  

1.4.6 Utilizing In-Cylinder Pressure Data 

As discussed, emissions formation are often highly temperature dependent. For 

the case of an IC engine, the trapped gas will experience an increased temperature when 

the pressure is increased. There are two main causes for pressure rises in the combustion 
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chamber – the first is mechanically induced as the piston compresses the mixture, and 

the second is from the combustion event. The ability to empirically trace both of these 

curves for various conditions gives insight as to why the emissions are the way that they 

are. 

The pressure data is also used in the derivation of the rate of heat released, 

expressed in a plot that depicts the energy released from the fuel as a function of crank 

angle. This is found using Heywood’s Gross Heat-Release Rate Equation [29]: 

𝛿𝑄𝑐ℎ

𝛿𝜃
=

𝛾

𝛾 − 1
𝑝

𝑑𝑉

𝑑𝜃
+

1

𝛾 − 1
𝑉

𝑑𝑃

𝑑𝜃
1-4 

The ratio of specific heats for this equation is denoted as 𝛾. A value of 1.3 is 

appropriate to use for natural gas and thus used for the derivation in this study. The rate 

of heat release curves give good insight to the effects of spark timing, especially as this 

directly shifts where the peak pressure due to combustion will occur. 

1.5 Objective 

The Ajax E-565 engine is a fair representation of other engines in its class, 

including multi-cylinder and much larger NG engines. While alternative energy 

technologies are undoubtedly on the rise, the oil and gas industry still has a stronghold 

on energy cost and capacity. As such, there is great motivation in making antiquated, 

already implemented technology cleaner. Strategies are being considered in all aspects 

of the infrastructure, including the well, pipeline, and engines. Considering the 
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thousands of NG engines used to mobilize gas along the pipeline, a clear understanding 

of how to make these units cleaner is of interest to operators and government officials 

alike. The empirical approach of this study aims to improve the exhaust emissions of 

these legacy engines, both those already in the field and those still to be manufactured in 

two ways – first, a spark timing sweep over a variety of speed and load conditions. 

Second, a study of the cooling system is performed to understand if the engine is 

overloaded in any of the test conditions by its mechanical fan system. 
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2 EXPERIMENTAL SETUP 

2.1 Experimental Procedure for Spark Timing Sweep 

2.1.1 Methodology 

The parameters that are varied for this study are engine speed, engine load, and 

spark timing. Engine speed is evaluated in three cases: 350 RPM, 450 RPM, and 525 

RPM. The load is set at a percentage of full load, or stalling load, also in three cases: 

50%, 75%, and 100%. Finally, spark timing is observed at 1.2, 6.2, 11.2, 16.2, and 21.2 

CAD BTDC. The timing that the engine is sold with is 11.2 CAD BTDC; the test sweep 

includes a range 10 CAD advanced and 10 CAD retarded of the conventional location. 

The device used to sweep the spark timing can be seen in Figure 2-1: Mechanical spark 

timing controller. 

 

Figure 2-1: Mechanical spark timing controller 

To analyze each combination of these variables, 45 distinct test conditions are 

observed, as shown in Table 1. Each configuration is observed twice, in a random order, 

ensuring repeatability and reducing the effect of hysteresis. It is important to note that 
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one test condition – 350 RPM, 100% load, and 10 CAD retarded timing was 

unsustainable; the engine simply could not maintain this condition. Because of this, 44 

test conditions are presented. To accurately acquire emissions data, the engine must 

reach a steady-state condition. This is verified by observing the exhaust temperature. 

Once the EGT stabilizes, the emissions readings are taken, and the DAQ observes 300 

sequential cycles to write a summary file of the in-cylinder pressure data. Throughout 

the test cases, the engine stabilized between 8 and 12 minutes. 

Test Condition Engine Speed (RPM) Engine Load (%) Spark Timing (CAD BTDC) 

1 350 50 1.2 

2 350 75 1.2 

3 350 100 1.2 

4 350 50 6.2 

5 350 75 6.2 

6 350 100 6.2 

7 350 50 11.2 

8 350 75 11.2 

9 350 100 11.2 

10 350 50 16.2 

11 350 75 16.2 

12 350 100 16.2 

13 350 50 21.2 

14 350 75 21.2 

15 350 100 21.2 

… … … … 

45 525 100 21.2 
 

 

Table 1: Data matrix for three test parameters 

 

2.1.2 Data Analysis 

Engine exhaust emissions are something that have been studied for many 

decades, both for their polluting and greenhouse gas effects [23, 30, 31]. This study 

quantifies the NOx, CO, CO2, THC, and O2 that is emitted from the exhaust during each 
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test condition. NOx and CO have especially harmful respiratory affects that are required 

to be minimized [22]. The interactions between each constituent is fascinating, and 

previous studies suggest strong correlations between them [32]. These known trends 

help explain the results seen from the study. 

In-cylinder pressure reveals much about what is occurring inside the combustion 

chamber, as it can be used to derive the rate of heat released by the mixture [29]. This 

pressure data is useful to the engine experimentalist, as the data is time-variant (rather, 

compared to piston position), thus allowing for the start and propagation of combustion 

to be visualized [33]. This data, in addition to a chemical understanding of exhaust 

emission formation mechanisms, allows researchers to more accurately reduce 

emissions. In fact, correlations between pressure data and NOx emissions have been 

found in literature to be strong enough to be able to program an engine controller [34].  

2.2 Experimental Procedure for Coolant System Study 

2.2.1 Methodology 

The second part of this study is an investigation into the load that the cooling 

system imposes on the engine, and if any action could be taken to reduce this [35]. The 

thermo-siphon cooling system on the Ajax test engine has no pumping mechanism; its 

flow is induced by the density gradient between region around the combustion chamber 

and the radiator [6]. The radiator is cooled by natural convection, as well as a belt-driven 

fan from the crankshaft. However, the fan has no controls – when the engine spins, so 
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does the fan, and at a proportional rate. The system is illustrated in Figure 2-2, with the 

thermal gradients and fluid flow direction shown. 

 

Figure 2-2: Principle of thermo-siphon cooling, reprinted from [6] 

 

A system like this is optimized for one working condition (likely, the harshest), 

and can cause a significant, unwarranted load in other conditions. This design recalls the 

aforementioned discussion on reliability and durability, yet opens a door for efficiency 

improvements. A study into how this cooling system can be improved is included in this 

overall investigation.  

Since the flow inside the cooling jacket has no pump, any instrumentation used 

to assess the flowrate cannot be too restrictive, as this could starve the engine of coolant 

and overheat it. A venturi-style flowmeter is commercially available for the coolant pipe 

size on the engine, and doesn’t over-restrict the system. A manometer is fitted to the 

flowmeter to observe the pressure drop across the venturi, a value necessary for the 

flowrate derivation. The system designed to measure the coolant flowrate specifically for 

this engine is outlined in Figure 2-3: Flowmeter installed on cooling system. 
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Figure 2-3: Flowmeter installed on cooling system 

The coolant pipes are instrumented with thermocouples in four locations – before 

and after the water passes over the combustion chamber, and before and after the water 

falls through the radiator. T-type thermocouples are used for their accuracy in the 

expected temperature range [36]. This data is used for the derivation of flowrate, as the 

density of the working fluid is necessary for the calculation. It is also used to calculate 

how much heat is added to the system from the combustion events and how much is 

removed from the radiator. Figure 2-4 depicts the thermocouple location on the upper 

coolant pipe before the radiator. 
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Figure 2-4: Thermocouple mounted before radiator 

 

2.2.2 Data Analysis 

The metric for determining “effectivity” of the cooling system on the Ajax E-565 

is the heat transfer rate across the radiator. In order to complete this calculation, the 

flowrate of the coolant must be quantified. Information from the flowmeter and the 

coolant temperature derive flowrate, based on the continuity equation.  The flowmeter is 

fit with a manometer across the venturi. Once the engine reaches steady state, the 

readings are taken across both lines, resulting in a pressure differential. The ratio of inlet 

to throat diameter, denoted as the beta ratio, is given by the manufacturer to be 393.  

The expansion coefficient (Y) is 1, since the working fluid is water. The 

temperature used to find the density of the coolant is found from the thermocouple 

downstream of the radiator. The observed temperature is immediately before the inlet of 



19 

 

the venturi, giving the high accuracy to the state of the coolant where it is measured. 

These calculations are shown in Appendix C - Coolant Flowrate. 

The heat transfer rate across the radiator is derived from the heat equation, using 

the flowrate derived in the aforementioned calculations. This equation can be found in 

Appendix C - Heat Transfer Rate. The temperatures used for this derivation are helpful 

in seeing how much heat is input into the cooling system by the combustion chamber 

and how much is removed by the radiator. The engine can be determined to be removing 

too much heat if the water temperature does not reach or exceed its boiling temperature. 

In addition to quantifying heat removal and determining if it is an appropriate, it is 

useful to the AERL team to know how different speeds and loads affect heat input into 

the cooling system, a sign of wasted energy.  
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2.3 Equipment 

2.3.1 Engine 

The engine of interest for this study is the Ajax E-565, as show in Figure 2-5. 

This is a 9.3L displacement, two-stroke, single-cylinder, naturally aspirated engine. The 

bore measures 8.5” and the stroke 10” [8]. It is damped by a 48” diameter, 1,500 lbs. 

flywheel. Further details on the engine can be found in Table 2: Ajax E-565 

specifications.  

 
 

Figure 2-5: Ajax E-565 at Texas A&M AERL 

 

The gas composition that is burned in the engine is sourced from the city of 

College Station, TX and is roughly 93% methane, 4% ethane, and the remainder heavier 

hydrocarbons, nitrogen, and carbon dioxide. A detailed composition report is found in 

Appendix A. The gas is manually controlled by a mechanical valve that feeds the 

stuffing box prior to being inducted into the combustion chamber. 
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Rated Continuous BHP at 100° F (38° C) Ambient 40 HP (29.8 kW) 

Rated RPM 525 

Bore x Stroke 8-1/2" x 10" (216 mm x 254 mm) 

Piston Displacement 567 in3 (9.29L) 

Rated Piston Speed 875 ft/mn (267 m/min) 

Weight (including flywheel) 4716 lb (2139 kg) 

BMEP 53.6 psi (3.67 kg/cm^2) 

Compression Ratio 6:01 

Torque 400 ft-lb (542 N-m) 
 

 

Table 2: Ajax E-565 specifications 

The engine is instrumented with both air and fuel measuring equipment, however 

neither are able to provide useful data. This is attributed to the oscillatory intake-purge 

process that occurs in the stuffing box and the fact that there are not multiple cylinders 

with shifted intake phasing to smooth out this pressure data. In an attempt to mitigate 

these effects, a surge tank is installed in the gas line (Figure 2-6), which acts as a gas 

intake plenum to reduce the observed pulsations [37].  

 

 

Figure 2-6: Surge tank installed in gas line 
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Gas flow readings are still unusable with this installation. Fuel flow rate data is 

helpful to determine fuel consumption and equivalence ratio, which must be 

hypothesized from emissions data after combustion. 

2.3.2 Dynamometer  

The engine resides in an enclosed laboratory setting, and has a mechanical clutch 

connecting to a Taylor eddy-current dynamometer. The 150 HP, 3,500 RPM full load 

capabilities of this dyno far exceed what the Ajax is capable of producing [38]. The load 

is manually controlled with a potentiometer, setting voltages with a Fluke voltmeter to 

calibrated torque loads. The physical specifications are found in Table 3: Taylor 

dynamometer specifications, DEA150. The engine/dyno setup are seen in Figure 2-7: 

Taylor dynamometer. 

Length 17.5 in 444.5 mm 

Mounted Holes - Width 39.13 in 993.9 mm 

Height 49 in 1,245 mm 

Weight 1300 lbs. 590 kg 

Heat Load from Dyno (per hour) 115 kW 382,000 BTU 
 

 

Table 3: Taylor dynamometer specifications, DEA150 
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Figure 2-7: Taylor dynamometer 

 

2.3.3 Data Acquisition System 

The DAQ system is largely comprised of components by National Instruments. 

The NI system has input signals from an encoder (engine speed), pressure transducer (in-

cylinder and otherwise), and various temperature measurements. The real-time ability of 

this system allows for a range of engine parameters and their interactions to be observed. 

Pressure curves are calibrated by phasing BDC to the atmospheric pressure of the area 

during the testing. This condition is analyzed at ambient pressure, since the exhaust port 

is equalized with the atmosphere. The user interface is shown in Figure 2-8. 
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Figure 2-8: User interface for DAQ 

The primary information gathered from the DAQ is in-cylinder pressure as a 

function of crank angle. After the engine reaches steady state for a condition, a summary 

file of 300 consecutive cycles is compiled to give an average pressure curve. This is 

useful in not only comparing peak pressures between conditions, but also seeing where 

in the cycle they occur. If, for example, the peak pressure is too far advanced, some of 

the heat released is during the compression stroke, thus expanding against the direction 

of piston motion. The pressure curve is also utilized in deriving the rate of heat released 

curve, which evaluates engine performance as well as explains exhaust emissions trends. 

2.3.4 Emissions Monitoring Equipment 

Engine exhaust emissions, specifically NOx, THC, CO, CO2, and O2, are 

recorded and analyzed for this study. This is done with the Horiba MEXA-7100D 
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emissions bench. The user interface for the equipment is shown in Figure 2-9. Before 

each use, the analyzers are purged with nitrogen for roughly 10 minutes to remove any 

condensation that may contaminate the data. Also, before each test campaign, the 

analyzers are zeroed and calibrated to a span gas of known concentration.  

 

Figure 2-9: MEXA-7100D user interface 
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3 RESULTS AND DISCUSSION 

3.1 Emissions 

Exhaust emissions and in-cylinder pressure data are acquired after the engine is 

shown to have reached steady-state conditions, confirmed by a stabilized exhaust gas 

temperature. Of the 45 test conditions in the test matrix, one was not able to be 

sustained: at 350 RPM, fully retarded spark timing, and full load. As such, the following 

data points are from 44 test conditions, each being run twice. The test condition order 

was randomized between the two test campaigns to minimize any effects of previous 

conditions, or hysteresis. 

While consistent and expected trends are apparent with the results, some 

conditions present a lot of uncertainty. This is an expected reality, given the type of 

engine in this study. The slow-speed, single-cylinder, large-bore design induces 

significant cyclic variation. The slow speed of the engine prolongs the interaction 

between the intake and exhaust ports, allowing this fresh charge to affect exhaust 

emission constituents in an inconsistent manner. This, of course, is also consequence of 

the two-stroke design. The single-cylinder design complicates readings because the 

piston oscillations are not balanced as they would be in a multi-cylinder engine. This is 

the same reason that intake air and fuel readings cannot be taken with certainty. Finally, 

the large-bore chamber adds uncertainty to the mixture interactions (such as turbulence, 

swirl, etc.) and mixture homogeneity, which is a significant parameter in an emissions 

analysis. 
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 Another consequence of this is an inability to accurately measure air and fuel 

intake rates to the stuffing box. Even though both channels have large surge tanks to 

suppress the pressure oscillation, flowmeters on these channels cannot give consistent 

reading. An important observation regarding equivalence ratio effects for various test 

cases – while there is no direct measurement of how much fuel is fed to the engine, it 

was consistently apparent that the retarded spark timing cases required significantly 

more fuel to keep the engine from stalling, making those cases notably richer than the 

standard and advanced timing cases. Equivalence ratio will be further discussed based on 

emissions trends.  

3.1.1 Engine Stability 

While the nuances of the two-stroke, large bore engine inherently lead to high 

uncertainty in some measurements, it is possible to relatively quantify how stable each 

engine configuration is. The term used for this is the COV of IMEP, or the coefficient of 

variance of the indicated mean effective pressure [39].  IMEP is a normalized parameter 

dividing work produced per cycle by the displaced volume per cycle [40].This is ratio of 

the standard deviation of the in-cylinder pressure divided by the mean of this data, as 

found over 300 cycles. This ratio represents the variation of work output of the engine; 

higher values indicated lower combustion stability  

The trends of COV of IMEP support what is qualitatively observed during testing 

– most significantly, that increasing the engine load reduces misfires. The most extreme 

cases of cyclic variation are at 50% load, with the low speed, fully advanced case 

nearing a COV ratio of 1. At full load, all engine speeds and ignition timings have a 
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COV of IMEP below 10%. These trends are shown in Figure 3-1, Figure 3-2, and Figure 

3-3. 

 

Figure 3-1: COV of IMEP at 50% Load 
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Figure 3-2: COV of IMEP at 75% Load 

These illustrations are used in the discussion of the emissions trends seen in the 

following sections. Specifically, the NOx emissions at high load are much higher than 

low loads. This correlates to the high combustion stability at high load, increasing the in-

cylinder temperature. The misfires observed at low load cases not only add less heat 

from combustion to the cylinder, but also convectively cool the cylinder walls as the 

fresh mixture cycles through. 
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Figure 3-3: COV of IMEP at 100% Load 

3.1.2 Carbon Monoxide 

CO is traditionally prevalent in fuel-rich mixtures, as there is not enough O2 to 

oxidize the carbon atoms to CO2. The trends from the low-load case appear to follow 

this theory – as spark timing is retarded, more fuel is required to keep the engine from 

stalling. However, the trend is not shown with enough statistical significance to say with 

certainty, as seen in Figure 3-4, Figure 3-5, and Figure 3-6. Due to the lean-running 

nature of the engine in all conditions, the relatively low CO values never increase 

significantly. 
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Figure 3-4: CO emissions at 50% load 

 

 

Figure 3-5: CO emissions at 75% load 
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A stronger explanation for the observed behavior is that there is not enough 

combustion energy at low load to complete the reaction to CO2, “freezing” the 

constituents in their CO state. The flame is not able to completely propagate through the 

large cylinder cavity. 

The range of CO emissions for the 75% and 100% load cases are similar, again 

with the 95% confidence intervals for many of the data points overlapping. However, the 

general trend is for an increased engine load to reduce CO emissions, suggesting more 

complete combustion at high-load cases. This lack of drastic trends between speed, load, 

and spark timing suggests incomplete combustion for most of the Ajax engine’s 

operating conditions.  

 

Figure 3-6: CO emissions at 100% load 
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3.1.3 Unburned Hydrocarbons 

THC emissions production for two-stroke engines is largely contributed to the 

short-circuiting phenomenon, where the intake fuel is directly exhausted [41]. There are 

approximately 80 CAD where the intake and exhaust ports are interacting with the 

combustion chamber simultaneously, as illustrated in Figure 3-22: Ajax E-565 timing 

diagram. With this in mind, the observation that slower engine speeds contribute to 

higher unburned hydrocarbons is expected, as each CAD takes more time to complete, 

giving the fuel more time to short-circuit. Cases where more fuel is introduced to the 

mixture will contribute to THC emissions, corresponding with reduced O2 emissions. 

These expected trends are more apparent in the O2 results than the THC data. 

 

Figure 3-7: THC emissions at 50% load 

 

Engine load trends inversely with THC emissions, although not drastically. The 

engine’s stability is stronger at high load, reducing misfire events. This reduces THC in 
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the sample, since a misfire results in raw fuel being directly exhausted. This is apparent 

in the trends of CO2, which also increase with load, a sign of complete combustion. The 

outlier in this discussion is the high load, low speed case, having consistently higher 

values than the other speeds. There are two variables that can explain this. In order to 

maintain low speed at the high load, significantly more fuel was introduced into the 

mixture. Again, this is the only configuration that resulted in an unsustainable test case. 

Also, the slow speed means that the overlap of the intake and exhaust port openings 

allows more fuel to escape combustion. Outside of the low speed, high load case, there is 

too much uncertainty to definitively explain the trend of THC emissions with speed, as 

seen in Figure 3-7, Figure 3-8, and Figure 3-9. 

 

 

Figure 3-8: THC emissions at 75% load 
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 Retarding spark timing is expected to increase THC emissions, because a richer 

mixture is needed to sustain the same load and the combustion is less complete. 

However, this trend is not seen in the data. The low load case even suggests that 

retarding timing reduces THC emissions. The low load cases have the most misfired 

events, which may be due to an advanced spark not successfully igniting the mixture. As 

with speed, the confidence intervals overlap in such a way that a strong conclusion 

cannot be justified. 

 

Figure 3-9: THC emissions at 100% load 

 

3.1.4 Nitrogen Oxides  

NOx emissions data are the only values from this study requiring a magnified 

scale to be able to compare all three load cases against each other, as the range is so 

large. Other studies that compare NOx with spark timing see similarly large ranges, 
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relieving concern that the values are erroneous [3, 42]. This shows that increasing the 

load increases NOx formation drastically – high load cases can reach nearly 2000ppm, 

while low load cases read so low as to suggest reaching the analyzer’s minimum 

detection limit [43]. There is good reasoning to justify this. First of all, as load is 

increased, the COV of IMEP decreases [3]. This means that the engine has higher 

stability, and is misfiring less. The result of stable combustion is an increase in 

temperature, a known strong contributor to NOx formation. At low load, the engine 

misfires frequently, reducing temperature by both convectively cooling the combustion 

chamber as well as reducing the heat produced from a successful firing event. 

Additionally, for the engine to be able to sustain the high loads, the equivalence ratio 

must be increased. The Φ-values required for high loads approach that of peak in-

cylinder temperature, again adding to the thermal NOx mechanism.  

  

Figure 3-10: NOx emissions at 50% load Figure 3-11: NOx emissions at 50% load, magnified 

The effects of engine speed are not as clear to deduce, due to the high uncertainty 

of the measurements. The trend from all load conditions suggests that increasing the 
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speed reduces NOx formation, a result that may be explained by the cooling system. The 

cooling fan is mechanically connected to the engine’s crankshaft, and rotates 

proportionally. At high speeds, the fan is removing much more heat from the cooling 

system, which may be reducing in-cylinder temperatures. The radiator inlet temperature 

is similar between high and low speeds when fully loaded, yet the heat removed is 

substantially more for the high speed case, as seen in Table 5. 

This data suggests that the engine is more efficient with heat removal at high 

speeds than at low speeds, which can be seen in Figure 3-10, Figure 3-12, and Figure 

3-14. With this hypothesis in mind, it would be of interest to instrument the combustion 

chamber with a thermocouple in the future to directly measure in-cylinder temperatures 

for various cases. 

  

Figure 3-12: NOx emissions at 75% load Figure 3-13: NOx emissions at 75% load, magnified 

Unfortunately, as with engine speed, the uncertainty between the various timing 

cases makes a definitive conclusion difficult. However, the apparent trends confirm what 

is found in literature and confirms what should be happening in-cylinder. As spark 
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timing is retarded, the combustion pressure curve shifts passed TDC, or the minimum 

chamber volume condition. This results in a lower overall pressure and temperature, 

reducing N2 dissociation and NOx formation. These trends are verified by the pressure 

data found for the rate of heat release data given in a following section. 

 

Figure 3-14: NOx emissions at 100% load 

 

3.1.5 Carbon Dioxide 

Recalling Equation 1-1, CO2 emissions are the result of a complete combustion 

reaction. An expected trend is to see CO2 and CO emissions inversely related. The CO2 

results appear to compliment the CO results, while also showing trends with respect to 

spark timing, something not seen in the CO data. As load is increased, so are CO2 

emissions values, likely due to a more thorough combustion process. 
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Figure 3-15: CO2 emissions at 50% load 

 

The impact of engine speed cannot be stated with any confidence due to 

overlapping error margins, except for the 350 RPM, 100% load condition. CO2 

emissions do clearly directly correlate with load, an expected outcome. As load is 

increased with this engine, so is the firing stability, resulting in better burning. 

CO2 increases with retarded timing as the mixture is richened. Recall that a richer 

mixture is still lean of stoichiometric for this engine, meaning that a richer case brings 

the flame temperature closer to its peak. The peak flame temperature for a flame occurs 

just rich of an equivalence ratio of 1. The trends seen in Figure 3-15, Figure 3-16, and 

Figure 3-17 are justified by what is found in literature. 
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Figure 3-16: CO2 emissions at 75% load 

 

 

 

Figure 3-17: CO2 emissions at 100% load 
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3.1.6 Oxygen 

O2 constituents in the exhaust are a good indication of how lean a mixture is [44]. 

Given the poor fuel and air measuring capabilities of this engine test cell, these 

emissions offer some of the best indication to the equivalence ratio for each test 

condition. Fortunately, the O2 readings exhibit predicable behavior, lending validation to 

the emissions results as a whole. Retarding spark timing removes oxygen content from 

the exhaust, implying an increased equivalence ratio as spark timing is delayed. Throttle 

requirements to maintain load during testing confirm this. 

 

Figure 3-18: O2 emissions at 50% load 

 

Increasing the load results in a decrease of oxygen in the exhaust samples. In 

order to maintain the high load cases, the gas throttle is noticeably opened to allow for 

more fuel to enter the combustion chamber. This increases the equivalence ratio (adding 
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more fuel) to maintain the higher load. This pattern serves as another validation for the 

data collected – a higher work demand warrants higher energy input. 

 

Figure 3-19: O2 emissions at 75% load 

 

 The relationship between speed and oxygen emissions is less apparent, except for 

the high load, low speed case (Figure 3-18). This outlier is consistent with both the THC 

and CO2 emissions results. The inverse relationship shows that the high load, low speed 

requires the richest equivalence ratio to maintain (Figure 3-19, Figure 3-20). This is 

qualitatively confirmed by the experiment – this is the hardest configuration to maintain, 

with the engine on the verge of stalling. Additionally, this is the case with the lone 

unsustainable data point, further describing the engine’s operating behavior. 
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Figure 3-20: O2 emissions at 100% load 

 

3.1.7  Further Discussion 

There is no single engine configuration that reduces all unwanted emissions, as 

there is a tradeoff between each of their formations. It is helpful to view different test 

cases against multiple emissions, to directly illustrate this compromise. Natural gas 

combustion balances a reduction in NOx and THC, with the effects of unburned 

hydrocarbons especially prevalent in the test engine’s two-stroke design. In Figure 3-21: 

THC vs NOx at 100% load, a unique trend is apparent for both of the higher speed cases. 

These two conditions at full load are depicted because they are the most common 

configuration of the Ajax E-565 in the field.  
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Figure 3-21: THC vs NOx at 100% load 

As discussed, NOx formation is temperature driven. There are two mechanisms 

at play that justify the unique trends seen in the data. First of all, as timing is retarded, 

the mixture must be richened, bringing the combustion event closer to the peak flame 

temperature. This is shown clearly from the conventional timing (-11.2 °ATDC) to the 

fully retarded condition (-1.2 °ATDC), with NOx concentrations increasing. The other 

side of the curves, from the conventional timing to the fully advanced condition (-21.2 

°ATDC), trends with the high peak pressures observed. The net pressure is higher for 

these cases, as the apex of the combustion pressure curve coincides with the motoring 

curve of the engine, resulting in higher mixture temperatures.  
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3.1.8  Pressure Data (Rate of Heat Release) 

Pressure data is used in the derivation of the rate of heat release, a value that 

shows the energy released from the fuel as a function of crank angle. The pressure 

values used to derive RoHR are found in Appendix D – Pressure Curves. The rate of 

heat release is derived from Equation 4 and shown for 450 RPM and 525 RPM at 100% 

load, the most common load case for the Ajax engine in the field.  

Figure 3-22: Ajax E-565 timing diagram adds physical relevance to the crank 

angle position shown in the RoHR curves. Top dead center (TDC) is denoted as 0°, and 

the condition where the piston is closest to the cylinder head, with a minimum chamber 

volume. Combustion begins at ignition (varied by spark timing) and carries through the 

expansion stroke to 120.4°, where the exhaust port lets the burned gas escape the 

combustion chamber.  

 

Figure 3-22: Ajax E-565 timing diagram  

Courtesy of Thomas Hurley, GE Oil and Gas and Abdullah Bajwa [45] 
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Roughly 18 CAD later, the intake is opened, allowing a fresh mixture into the 

chamber and helping to purge burned gases out. This process carries through bottom 

dead center (BDC) and to the compression stroke, as seen in Figure 3-23 and Figure 

3-24. 

 

Figure 3-23: Rate of heat released at 450 RPM and 100% load 

The RoHR curves start at -50°, during the compression stroke. The initial value 

is essentially zero for all spark timings. While the mixture is being compressed, it has 

not released any of its energy yet. The curves begin to rise at the start of combustion, 

which directly corresponds to spark timing. The curves for both speeds show the fully 

advanced case reaching its peak heat release very close to TDC, with a large amount of 

energy released on the expansion stroke. In this case, the combustion process is fighting 

against the piston, which is detrimental to power output. If timing is advanced too much, 

it can cause engine knock [46], which can damage internal components. Testing at the 
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fully advanced configuration showed signs of this, with some firing sequences making 

this noise. 

The two most retarded spark timings have peak energy release too far into the 

expansion stroke to be able to fully utilize the energy released. This explains why more 

fuel was needed for these cases to compensate for this lack of efficiency. The emissions 

that suggest rich mixtures in retarded spark timing cases coincide with this conclusion. 

Not surprisingly, the spark timing that the engine is sold with (11.2° BTDC) has 

a peak heat release rate soon after TDC, near the 20° that is most effective [29].  Based 

on the rate of heat release data, it would interesting to see a finer resolution between 

conventional timing and the 5° spark advance case, as this appears to define the useful 

range of good peak heat release placement. 

 

Figure 3-24: Rate of heat released at 525 RPM and 100% load 
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3.3 Coolant System Study 

The coolant flowrate analysis performed by students in the AERL was an industry-

first for this engine, and provided useful insight to experts who use this unit regularly. 

The results for various speeds and loads are found in Table 4: Ajax E-565 coolant 

flowrates. This study serves to illustrate the parasitic load that the cooling system 

imposes when not operating in an extreme climate environment, such as the AERL test 

facility. 

Load Speed Flowrate (gpm) 

Low (150 ft-lb) Low (375 RPM) 1.43 

Low (150 ft-lb) High (525 RPM) 1.65 

High (350 ft-lb) Low (375 RPM) 1.80 

High (350 ft-lb) High (525 RPM) 2.15 
 

 

Table 4: Ajax E-565 coolant flowrates 

The heat transfer rate as the fluid passes through the radiator illustrates another 

phenomenon that may explain some trends in the emissions data. NOx values decrease 

as the engine speed picks up, supporting the observation that the engine has better 

relative cooling in this case.  

Table 5 shows how the high speed, high load case is more effective in cooling, 

since the fan is spinning faster to remove more heat. This reduces the temperatures in the 

water jacket around the combustion chamber. Interestingly, the inlet temperature to the 

radiator (a representation of the heat given off by combustion) is practically the same 

value for both speeds at while at high load. This suggests that the in-cylinder 

temperature is higher for the low speed scenario, contributing to an increase in NOx 

formation. 
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Load Speed 
Radiator Inlet 

Temp. [°C]   
Radiator Heat 

Transfer Rate [kW] 

Low (150 ft-lb) Low (375 RPM) 67.8 10.2 

Low (150 ft-lb) High (525 RPM) 68.3 12.7 

High (350 ft-lb) Low (375 RPM) 79.5 14.1 

High (350 ft-lb) High (525 RPM) 80.5 20.6 
 

Table 5: Radiator inlet temperature and heat transfer rate for the load and speed sweep 

The fan removes more heat from the engine than necessary during testing in every 

configuration, as the boiling temperature of the cooling fluid was never realized. This 

shows the parasitic power loss to the engine to cool itself, at least for the temperate test 

environment. While the engine is designed for a worst-case scenario, there are many 

climates that are similar to the AERL. The engine could be modified for milder working 

conditions to reduce wasted energy. 

The emissions study showed strong correlations between NOx and CO2 production 

and increased load, both constituents of the exhaust that are harmful. The cooling fan 

increases the load on the engine, thus possibly contributing to the concentration of these 

emissions. To confirm this, further work needs to be done to directly reduce parasitic 

losses to the fan, while also considering the effects of reduced cooling. It is possible that 

the reduced cooling is more significant in contributing to NOx formation than the 

reduced engine load would be. 
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4 CONCLUSIONS 

This study considers the implementable changes of modified spark timing and 

reduced cooling fan loads to an Ajax E-565 natural gas engine. The interest of this study 

aims to improve the exhaust emissions of natural gas engines already in use, by a seeing 

the effects of various spark timings and investigating the parasitic losses found in the 

cooling fan. 

 The emissions data and rate of heat release curves confirm some expectations had 

prior to this study. Primarily, there is little to be gained by retarding the start of ignition 

from where it is originally. This makes the combustion event less effective, occurring 

farther into the expansion stroke. Also, the additional fuel required to maintain a 

constant load while the timing is retarded increases fuel consumption. The most 

advanced timing location of this study, at 21° BTDC, is not a good choice because of the 

spike in NOx emissions. The heat released from this advanced timing appears premature, 

occurring too far into the compression stroke. 

The two best spark timings of this test are at the original 11.2° BTDC and the 5° 

advanced 16.2° BTDC. It would be a useful endeavor to repeat this study over a finer 

range between these two values. Figure 3-21: THC vs NOx at 100% load shows how 

both emissions are lowest around these spark timings. Also, the heat release rate profile 

trends with what is known to maximize power for an engine. An advantage to the 

ignition system on this engine is that a spark timing adjustment is simple and 

inexpensive – a modified bracket can be installed to shift the spark pickup to adjust 
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spark timing. This solution aligns with the intent of this study, providing readily 

implementable change to engines in service. 

The cooling system is over-designed for the test environment of this study, wasting 

energy in turning its own fan. Of course, the test facility does not represent all locations 

that the engine will be used, but makes a point that for milder environments, a modified 

cooling system could be specified. The easiest option to implement would be a different 

sized fan pulley, to adjust how much the fan spins with respect to the engine, and thus 

reducing parasitic losses. A more complicated, yet precise method would be to actively 

control the fan on a clutch, to remove the appropriate amount of heat for any situation. 
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5 FUTURE WORK 

The Advanced Engines Research Laboratory at Texas A&M University acquired the 

Ajax E-565 engine in the summer of 2013. Since becoming operational, this engine has 

served as a reliable unit to educate both those new to internal combustion engines and 

experienced enthusiasts alike. The studies done by the group today are paving the 

foundation for many more investigations by future students. Two modifications are 

expected to begin at the conclusion of this study: a direct injection retrofit and an 

increased spark-duration device. 

A direct injection system is desired for a variety of reasons. First of all, it is 

estimated that up to half of the fuel introduced into the cylinder is “short-circuited”, or 

discharged directly to the exhaust. Not only is this a massive waste of fuel, but unburned 

hydrocarbon emissions are oftentimes worse than their oxidized products of combustion 

[31]. A DI system also allows for a leaner in-cylinder mixture. This reduces overall fuel 

consumption, while maintaining sufficient stoichiometric ratios to ensure a stable 

combustion event [47].  For the purpose of research and development, the DI system 

allows the user much more controllability of the volume of fuel injected and its timing, 

making for an interesting study for upcoming students. 

Since the Ajax engine is spark-ignited, the other part of the combustion equation is 

the ignition. Spark energy is often a point of discussion, but studies have found little 

improvements for these engines by simply increasing the localized spark energy [5]. 

However, flame propagation improvements have been found in multiple spark plug 

cylinder heads and prolonged-duration spark events, on the order of 40 CAD [5, 48]. 
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In the future, with regards to the cooling system, a study into various fan pulley 

sizes could by explored to see how much energy is saved. There is motivation to study 

this from the results of this investigation. Alternatively, the fan could be retrofit with a 

controller to more precisely adjust how much heat is being removed. 

Finally, there is useful instrumentation that will add accuracy to data collected in 

future experiments. As much of the temperature-based analysis in this study was done 

theoretically, an in-cylinder thermocouple would make future experiments more accurate 

and clarify some of the emissions trends. Also, an electronically controlled gas throttle 

will enable quantitative assessments as to how much more fuel is needed for the various 

cases seen in this study. 
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APPENDIX A - GAS COMPOSITION REPORT 
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APPENDIX B - INSTRUMENTATION 

Dynamometer Load Cell Calibration 

 

Figure B-1: Dynamometer load cell linearity 
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MEXA-7100D Error  

 

Figure B-2: Oxygen analyzer error 

 

 

Figure B-3: Total hydrocarbon analyzer error 
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Figure B-4: Carbon monoxide/carbon dioxide analyzer error 

 

 

Figure B-5: Nitrogen oxides analyzer error  
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APPENDIX C - CALCULATIONS 

Error in Emissions Measurements 

Uncertainty in emissions data is given as a 95% confidence interval based on the 

mean and standard deviation of each test condition. Each condition was observed twice 

(N=2). 

From Student’s t-Table (for a 95% confidence interval) [49]: 

𝑧𝛼
2⁄ = 1.96 

𝑥̅ ± 𝑧𝛼
2⁄

𝑆

√𝑁
  

This error margin defines the error bars above and below the mean for each data point. 

Coolant Flowrate 

The mass flow rate of the coolant is derived from the continuity equation, 

Bernoulli’s equation, and venturi flowmeter specifications [50]: 

𝑚̇ = 𝜌𝑣𝐴 

𝑚̇ = 𝜌
𝜋

4
𝐷𝑡ℎ𝑟𝑜𝑎𝑡

2
𝐶

√1 − 𝛽4
𝑌√

2∆𝑃

𝜌
 

Heat Transfer Rate 

The coolant flowrate previously derived is used in the heat transfer rate equation 

[51]: 

𝑄̇ = 𝑚̇𝑐𝑝Δ𝑇 
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APPENDIX D - PRESSURE CURVES 

Figure D-1: Pressure curves from 450 RPM and 100% load 

Figure D-2: Pressure curves from 525 RPM and 100% load 
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