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ABSTRACT 

 

The microbial community present in the gastrointestinal tract is an important 

component of the host defense against pathogen infections. Prior work from our lab 

demonstrated that indole, a microbial metabolite of tryptophan, reduces 

enterohemorrhagic Escherichia coli O157:H7 attachment to intestinal epithelial cells and 

biofilm formation, suggesting that indole may be an effector/attenuator of colonization for 

a number of enteric pathogens. Here, we show that indole attenuates Salmonella 

Typhimurium (Salmonella) virulence and invasion as well as increases resistance of host 

cells to Salmonella invasion. Indole-exposed Salmonella colonized mice less effectively 

compared to solvent-treated controls, as evident by competitive index values less than 1 

in multiple organs. Indole-exposed Salmonella demonstrated 160-fold less invasion of 

HeLa epithelial cells and 2-fold less invasion of J774A.1 macrophages, compared to 

solvent-treated controls. However, indole did not affect Salmonella intracellular survival 

in J774A.1 macrophages, suggesting that indole primarily affects Salmonella invasion.  

The decrease in invasion was corroborated by a decrease in expression of multiple 

Salmonella Pathogenicity Island-1 (SPI-1) genes. Indole also reduced Salmonella motility 

and acts as a chemo-repellent through the Tsr chemoreceptor. We also identified that the 

effect of indole on Salmonella virulence was mediated by both PhoPQ-dependent and 

independent mechanisms. Further investigation of PhoPQ-dependent mechanism using 

Autodock Vina, Molecular Dynamic simulations and in vitro mutagenesis experiments 

revealed that indole does not bind to the periplasmic domain of PhoQ. Computational 
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analysis predicted indole-binding to the cytoplasmic catalytic domain. Indole also 

synergistically enhanced the inhibitory effect of a short chain fatty acid cocktail on SPI-1 

gene expression. Lastly, indole-treated HeLa cells were 70% more resistant to Salmonella 

invasion suggesting that indole also increases resistance of epithelial cells to colonization. 

Our results demonstrate that indole is an important microbiota metabolite that has direct 

anti-infective effects on Salmonella and host cells, revealing novel mechanisms of 

pathogen colonization resistance.  
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1. INTRODUCTION   

 

1.1 Overview 

The human microbiota, or the microbial population (~1014 microorganisms) that 

inhabits multiple mucosal surfaces in the body, co-exists with human cells and outnumber 

host cells by a factor of 10 [2]. A major proportion of the microbiota reside in the 

gastrointestinal (GI) tract [3] with approximately 1012 organisms/mL, belonging to 30 

genera and 500 species, present in the lumen of the large intestine alone [4]. These 

organisms share a mutualistic relationship with the host where they assist with metabolism 

of indigestible dietary compounds, synthesis of essential nutrients, help in defense against 

pathogen colonization, and promote development of the intestinal architecture of the host 

[5, 6]. The intestinal bacteria interact with the host’s immune cells and participate in the 

development of the mucosal immune system [7] as well as condition and maintain a state 

of homeostasis in the gut [8, 9]. This indigenous human intestinal microflora has been 

referred to as an “essential organ” for its indispensable functional role in human 

physiology and health [10-12]. 

As a metabolically active “organ”, the microbiota is extensively involved in the 

degradation and biotransformation of several dietary and non-dietary molecules in the GI 

tract [13]. This results in a broad range of metabolites that are generated, some of which 

are also substrates for other microorganisms. The roles for some of these metabolites such 

as short chain fatty acids (SCFAs) have been identified [14, 15]; however, a majority of 



 

2 

 

the metabolites produced by the microbiota have not been identified or characterized in 

terms of their function in the human GI tract.  

Recent studies have identified the roles for a few classes of molecules (e.g., 

SCFAs, bile acids and bacteriocins), present in the GI tract, in the modulation of 

pathogenic microorganism virulence and infection [14]. Metabolites derived from the 

aromatic amino acid tryptophan have been recently recognized for their ability to prevent 

colonization of pathogenic microorganisms and promote homeostasis in the GI tract. One 

such tryptophan-derived metabolite is indole.  

Indole is produced when bacteria use the tryptophanase enzyme (TnaA) to produce 

indole, pyruvate, and ammonia from tryptophan [16]. Indole regulates different aspects of 

bacterial physiology and has been accepted as an intercellular signal in microbial 

community development [17-19]. At least 85 bacterial species, some of which (E. coli, 

Bacteroides thetaiotamicron, Bacteroides sp. etc.) are present in the gut, are known to 

produce indole [18]. In the gastrointestinal tract, indole has been estimated to be present 

at a concentration of 0.3-6.64 mM based on a mean concentration of 2.59 mM in human 

fecal matter [20-22]. Previous studies in our lab showed that indole reduced motility, 

attachment to epithelial cells and biofilm formation by enterohemorrhagic Escherichia 

coli O157:H7 (EHEC) [23]. Indole has also been reported to attenuate virulence factors of 

the fungal pathogen Candida albicans that repressed the pathogen’s ability to form 

biofilms and attach to epithelial cells [24]. However, the effect of indole on the virulence 

of a common food borne pathogen Salmonella enterica serovar Typhimurium has not been 

studied in detail.  
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Since the effect of indole on Salmonella virulence has not been investigated, the 

regulatory molecules and signaling network involved in the indole-mediated expression 

of virulence genes have also not been determined. This work builds on our knowledge of 

indole’s effect on virulence of the enteric pathogen EHEC and aims to further our 

understanding on how the gut microbiota-metabolite indole modulates Salmonella 

virulence, an intra-kingdom signaling event occurring in the gut environment. This study 

also provides insight into the regulatory molecule(s) that are engaged by indole and the 

regulatory system involved in indole-mediated signal transduction within the pathogen.  

 

1.2 Specific Aims 

Specific aim 1: To determine the effect of indole on the virulence of the pathogenic 

microorganism Salmonella enterica serovar Typhimurium. 

In this study, we investigated the effect of indole on the virulence of Salmonella. 

Specifically, we studied the competitiveness of indole treated Salmonella to cause 

infection in vivo, invasion of epithelial cells in vitro, invasion and survival within 

macrophages, and the effects of indole on motility of the bacterium. We also studied gene 

expression changes using β-gal reporter strains for four SPI-1 genes (hilA, prgH, invF, 

sipC).  
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Specific aim 2: To investigate the mechanism by which indole affects Salmonella 

virulence and chemotaxis. 

SdiA has been shown to be involved in indole-mediated effects in E.coli [25] and 

we proposed that SdiA might be involved in indole-mediated virulence down-regulation 

in Salmonella; therefore, we investigated its role in indole-mediated effects on Salmonella 

virulence.  

Virulence gene expression is known to be controlled by several regulators under 

the influence of different environmental signals [26-28] which may be involved in indole 

signaling as well. The PhoPQ two-component regulatory system has been shown to be 

involved in down-regulating SPI-1 gene expression [29-31]; therefore, we investigated the 

role of PhoPQ in indole mediated signaling. 

Motility is an important virulence factor in pathogens such as Campylobacter, 

Salmonella and E. coli [32]. We investigated the effect of indole on Salmonella motility 

and chemotaxis as well as determine the chemoreceptor involved. 

 

Specific aim 3: To study the interaction of the microbial signal- indole with the Salmonella 

membrane bound sensor protein PhoQ. 

Environmental signals are detected by bacteria through membrane bound receptors 

that initiate signal transduction to regulate gene expression. The molecular level 

interaction between the ligand with the receptor results in conformational changes and 

modifications in the receptor that initiate signal transduction. A combination of 

computational modeling and in vitro experiments was used to investigate the interaction 
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of the microbial-metabolite indole, with the bacterial sensor PhoQ. The results from these 

experiments helped understand the nuances of signaling of microenvironments by 

bacterial protein sensors, specifically involving indole. 

 

1.3 Novel Aspects 

The gut milieu is extremely complex where several dietary molecules, hormones 

and microbial metabolites are present. An enteric pathogen will encounter these molecules 

when it enters the host GI tract. Few studies have been conducted to investigate the effect 

of the microbial metabolites and hormones on pathogen virulence. Thus, the first novel 

element in this work is investigating the effect of a specific metabolite, indole, on the 

virulence of a major enteric pathogen Salmonella enterica serovar Typhimurium (ie. 

cause-and-effect studies). Since the effect of indole on Salmonella virulence has not been 

extensively investigated previously, a second novel aspect is identifying the receptor 

involved in indole-mediated signaling. Third, developing a mechanistic understanding of 

the interaction of indole with specific amino acid residues in the identified membrane 

bound receptor using a combination of computational and experimental approaches is also 

novel. 
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2. LITERATURE REVIEW  

 

2.1 Enteric Bacterial Pathogens 

Foodborne illnesses in the Unites States are caused by 31 pathogenic agents- 

bacteria, viruses and parasites- amounting to 9.4 million cases each year according to the 

report by Scallan et al [33]. Norovirus was the most common reported causative agent 

followed by non-typhoidal Salmonella spp., Clostridium perfringens and Campylobacter 

spp. Of these, Salmonella spp., Toxoplasma gondii, Listeria monocytogenes and norovirus 

were also leading causes of hospitalizations and deaths due to foodborne illnesses in the 

Unites States [33].  

Campylobacter, Salmonella, E. coli O157 and Listeria are the most common 

foodborne infection agents of adults ≥65 years of age in the United States [34], whereas, 

the 5-major bacterial enteric pathogens responsible for illnesses among children <5 years 

old are nontyphoidal Salmonella, Campylobacter, Shigella, Yersinia enterocolitica and E. 

coli O157. It is estimated that the most common cause of hospitalizations and deaths in 

children <5 years is nontyphoidal Salmonella [35]. The global burden of nontyphoidal 

salmonellosis is an estimated 93.8 million cases per year with a likelihood of 80.3 million 

cases being food-borne [36].  

The symptoms for most of the enteric bacterial pathogen infections such as 

salmonellosis, shigellosis, Campylobacter enteritis, Yersinia and E. coli infections include 

diarrhea, abdominal cramps and vomiting, sometimes with associated fever [37]. The 

duration and severity of infection varies with the agent, host and treatment measures with 



 

7 

 

emergence of drug-resistant organisms being a cause of concern. Therefore, it is of 

importance to understand the disease causing mechanisms of pathogens as well as the role 

of microbiota in preventing infections. 

 

2.2 Salmonella 

Salmonella is a Gram-negative facultative anaerobe that causes intestinal infection 

commonly referred to as salmonellosis. The associated symptoms include diarrhea, fever 

and abdominal cramps and the effects are likely to be more severe in the elderly, infants 

and persons with an impaired immune system. Salmonella enterica serovar Typhimurium 

can cause inflammatory diarrhea in a range of hosts including humans such as cattle, pigs, 

sheep, horses, poultry and rodents [38].  

Non-typhoidal Salmonella causes over one million cases of foodborne illness in 

the United States every year, averaging 19,000 hospitalizations and 380 deaths (Centers 

for Disease Control and Prevention, CDC). However, the global burden of non-typhoidal 

Salmonella gastroenteritis is estimated to be 93.8 million cases per year [36]. Consumption 

of the contaminated food (especially meats such as poultry and ground beef) culminates 

in disease in individuals who are more susceptible to Salmonella infection. In the year 

2016, there have been 6 Salmonella outbreak investigations, currently underway by CDC, 

some traced back to eggs, Alfalfa sprouts and live poultry. Salmonella is one of the top 

five pathogens known to cause foodborne illness in the United States and it is the pathogen 

that causes the maximum deaths resulting from foodborne illnesses [33].  
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Salmonella is ingested upon consumption of contaminated food and it infects the 

small intestine. Invasion of the host’s intestinal microfold cells (M-cells) has been 

suggested to be the first step for the establishment of a Salmonella infection [39]. The M-

cells transport the bacteria to the underlying Peyer’s patches where they encounter 

lymphoid (T and B) cells and macrophages. Salmonella can survive in the microbicidal 

environment of the macrophages and the internalized bacteria multiply intracellularly in 

endosomal compartments. A systemic infection may ensue when the infected immune 

cells disseminate throughout the reticuloendothelial system (RES) and spread to the spleen 

and liver (Figure 1) [1, 40].  

Several virulence proteins are involved in the invasion and intracellular survival 

of Salmonella and these are encoded by genes present on SPI-1 (Salmonella Pathogenicity 

Island-1) and SPI-2, respectively which are part of the type III secretion system (TTSS). 

The TTSS forms a needle-like injection apparatus [41] that transports bacterial effectors 

to the host cell cytoplasm. The functions of these proteins have been studied extensively 

and reviewed in [42, 43].  

The SPI-1 encoded TTSS translocates effector proteins to the host cell cytoplasm 

that induce membrane ruffling and cause bacterial mediated endocytosis of Salmonella in 

non-phagocytic cells. The effector proteins that are involved in this process include SipA, 

SipC, SopB, SopE and SopE2, and result in actin bundling and polymerization. The actin 

remodeling and cytoskeletal rearrangements result in the formation of membrane 

invaginations that allow bacterial internalization [43-48]. After bacterial uptake by the 
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host, the host cell membrane organization restoration is mediated by another effector 

protein SptP [49]. 

 

 

 

 

 

Figure 1. Schematic representation of host–pathogen interactions during 

pathogenesis of Salmonella infections. SPI-1 function is required for the initial stages of 

salmonellosis, i.e. the entry of Salmonella into non-phagocytic cells by triggering invasion 

and the penetration of the gastrointestinal epithelium. Furthermore, SPI-1 function is 

required for the onset of diarrheal symptoms during localized gastrointestinal infections. 

The function of SPI-2 is required for later stages of the infection, i.e. systemic spread and 

the colonization of host organs. The role of SPI-2 for survival and replication in host 

phagocytes appears to be essential for this phase of pathogenesis. Reprinted with 

permission from Elsevier from [1], Hansen-Wester I, Hensel M: Salmonella pathogenicity 

islands encoding type III secretion systems. Microbes and infection 2001, 3(7):549-559. 
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SPI-2 encoded TTSS translocates effectors essential for maintenance and 

maturation of Salmonella in the Salmonella containing vacuole (SCV). SifA induces the 

formation of tubular structures called Salmonella induced filaments (Sifs) and regulates 

the location of SCVs [50, 51]. The TTSS-1 effector SipA is also involved in localization 

of the SCV in the perinuclear region [51-53]. SseG and SseF form a complex that tethers 

the SCV to the Golgi apparatus which is essential for bacterial replication within the SCV 

[54, 55]. SseJ, SopD2, PipB and PipB2 are other effectors that localize to the SCV and 

modulate SCV tubulation [43, 51, 56].  

The SPI-1 and SPI-2 TTSS along with the translocated effectors are important 

virulence factors that enable Salmonella to invade and survive within the host. These 

pathogenicity factors are expressed in response to environmental signals within the host 

microenvironments and their expression is controlled by several regulators [26-28]. 

  

2.3 Microbiota 

The intestinal microbiota (the dynamic community of ~1014 microorganisms 

present in the human gastrointestinal (GI) tract) is an important mediator of several aspects 

of health, including promoting defense against pathogen colonization [57, 58]. The 

protective effect of the microbiota against pathogenic infections is termed as colonization 

resistance [59]. Several factors contribute to this phenomenon including competition 

between the indigenous microorganisms and the pathogen for nutrients [60, 61] and 

adhesion sites [62, 63], production of bacteriocins [64-66] and metabolites such as short 

chain fatty acids (SCFAs) [67-69] by the microbiota, and modulation of host defense 
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mechanisms [57, 70]. It is well documented that alterations in the abundance and 

composition of the microbiota leads to an increased susceptibility to pathogen colonization 

[70-72]. However, the underlying mechanisms are not completely understood. 

Disruption of the mouse gut microbiota by streptomycin treatment has been shown 

to increase susceptibility of mice to Salmonella and reduce LD50 by several orders of 

magnitude [73-75]. The reduction in concentration of SCFAs in streptomycin-treated mice 

(due to a disruption of the normal microflora or dysbiosis) has been attributed to the 

increase in Salmonella proliferation in the mouse gut [73, 76]. Recent studies have used 

humanized mouse models [77] as well as defined microbial communities [78] to better 

understand the role of microbiota in human diseases. While a simple mono-association 

model does not capture complex community interactions, they are nevertheless useful to 

analyze the mechanisms underlying bacteria-host interactions.  

Defined microbiota communities have been used to study factors affecting 

Salmonella infection in the mouse host [79, 80]. Germ-free mice colonized with a low 

complexity microbiota (Altered Schaedler flora [81]; low complexity is based on the 

number and diversity of operational taxonomic units (OTUs) detected post inoculation 

[82]) were more susceptible to Salmonella infection than mice with an intact microbiota 

suggesting that microbiota dysbiosis impacts pathogen colonization. Similarly, an 

enrichment of Enterobactericeae (E. coli) correlated with Salmonella-induced colitis [82]. 

A defined consortium of 15 murine intestinal bacteria (12 strains in the Oligo-Mouse-

Microbiota, Oligo-MM12, along with 3 facultative anaerobic strains FA3) demonstrated 

conventional-like colonization resistance (CR) against Salmonella [80]. Oligo-MM12 
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provided partial CR towards Salmonella in mice, which was enhanced upon co-

transplantation with FA3 consortium to the level existing in conventional mice. These 

facultative anaerobes may compete for the same niche as Salmonella, such as oxygen or 

other anaerobic electron acceptors such as nitrate, thereby boosting resistance to 

Salmonella colonization in mice. 

Colonization resistance is just one of the roles of microbiota related to host health. 

Microbiota dysbiosis has been linked to several other diseases such as inflammatory bowel 

disease (IBD), diabetes, obesity, allergies and colorectal cancer [83, 84] and emphasizes 

the importance of microbiota in health and disease. 

 

2.4 Environmental Factors Affecting Salmonella Virulence 

 Salmonella pathogenesis is widely studied using the mouse model of infection. 

The serovar Typhimurium is used as the infection agent because it causes a typhoid-like 

disease in mice which induces intestinal and extra-intestinal lesions similar to those of 

typhoid in humans [85]. Mice infected with Salmonella develop enteritis in the small 

intestine and spread to the mesenteric lymph nodes, liver and spleen to cause a systemic 

disease. Since Salmonella infections are mostly food-borne, the pathogen will encounter 

different signals in the GI tract. It is, therefore, important to understand the environmental 

cues as well as the Salmonella-induced changes in the gut that favor or impede this 

pathogen’s ability to infect. 
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2.4.1 Modulation of Salmonella infection by microbiota metabolites  

The intestinal microbiota community (and their metabolites) is encountered by 

enteric pathogens as they transit through the gastrointestinal tract of the host. Therefore, 

it is not surprising that microbiota-derived metabolites modulate pathogen virulence and 

infection. Several classes of microbiota metabolites, including SCFAs, bile acids, and 

bacteriocins have been identified as modulators of enteric pathogen infection. Of these, 

SCFAs are probably the most-studied  class and has been shown to modulate Salmonella, 

Listeria, Campylobacter, Shigella, and E. coli infections (reviewed in [14]). Acetate, 

propionate and butyrate are the three SCFAs abundant in the cecum and the colon [86-

88]. The SCFAs propionate [69] and butyrate [67] decrease virulence of the enteric 

pathogen Salmonella. However, not all SCFAs have the same effect on Salmonella 

infection. Lawhon et al reported acetate increases Salmonella invasion gene expression 

through SirA [89]. Formate is another signal present in the distal ileum that induces 

Salmonella invasion [90].   

Other bioactive small molecules, such as bacteriocins, can also inhibit growth of 

competing bacteria. Plantaricin MG, a bacteriocin produced by Lactobacillus plantarum 

KLDS1.0391 has be shown to have bactericidal activity against Salmonella Typhimurium, 

by forming pores in the cytoplasmic membrane [65]. Plantaricin NC8, produced by 

Lactobacillus plantarum ZJ316 [91], and nisin, produced by Lactococcus lactis [92], are 

other examples of bacteriocins active against Salmonella.  

The resident intestinal microbiota can also transform host molecules that can 

influence pathogen virulence and infection. An important example for this category are 
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bile acids (primary and secondary) that have been shown to repress Salmonella invasion 

gene expression [93, 94]. Cholate and chenodeoxycholate are the two primary bile acids 

in humans which undergo modification by the host and the intestinal microbiota to 

secondary bile acids [95]. The secondary bile acid deoxycholate (converted from cholate 

by the resident microflora possessing 7α-dehydroxylase activity [96, 97]) was reported to 

be the most potent bile acid to repress Salmonella invasion gene expression [94]. 

 

2.4.2 Microbiota metabolite indole 

Another class of microbiota metabolites derived from tryptophan, such as indole, 

[98] have been recently identified as modulators of enteric pathogen virulence. The 

enzymatic action of tryptophanase on tryptophan yields indole, pyruvate and ammonia 

[16] (Figure 2). Indole is present in the GI tract at high concentrations ranging from 0.3-

6.64 mM [20-22] and is likely encountered by enteric pathogens when ingested along with 

food. Bansal et al., showed that indole inhibits motility, biofilm formation, and in vitro 

attachment to epithelial cells of enterohemorrhagic E. coli (EHEC) [23]. Similarly, Oh et 

al reported that indole repressed Candida albicans biofilm formation and its attachment 

to epithelial cells [99]. On the contrary indole increases Pseudomonas aeruginosa biofilm 

formation but reduces expression of genes involved in synthesis of virulence factors that 

are regulated by quorum sensing [100]. Indole also decreases biofilm formation and 

exopolysaccharide production in the marine pathogen Vibrio campbellii [101]. 
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However, indole has also been suggested to indirectly promote pathogen 

colonization by enhancing antibiotic tolerance. Indole signaling induces persister 

formation in E. coli populations [102]. Vega et al demonstrated that exposure to low 

concentrations (0-500 µM) of indole improves the survival of E. coli and Salmonella to 

antibiotic exposure primarily through the OxyR regulon [102, 103].  Thus, pathogens that 

do not produce indole (such as Salmonella) have been proposed to potentially benefit from 

indole-mediated signaling leading to increased antibiotic resistance. Indole has also been 

reported to up-regulate expression of Salmonella’s AcrAB-TolC multidrug efflux system 

in a RamA/RamR dependent manner [104, 105] thus providing evidence for indole’s 

involvement in efflux-mediated multidrug resistance. 

 Indole is an intercellular signaling molecule [18] that influences biofilm 

formation in E. coli through induction of sdiA [19, 106]. SdiA is a LuxR-homologue that 

L-tryptophan Water 

Tryptophanase 

Pyruvate Indole Ammonia 

Figure 2. Tryptophanase reaction: conversion of tryptophan to indole, pyruvate and 

ammonia. The 2D structures were sourced from the open chemistry database: PubChem 

(https://pubchem.ncbi.nlm.nih.gov) CIDs: 6305 (L-tryptophan), 962 (water), 798 (indole), 

107735 (pyruvate) and 222 (ammonia). 
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senses N-acylhomoserine lactones (AHLs) from other bacterial species [107-109]. 

Sabag-Daigle et al reported that indole, at concentrations higher than 100µM, inhibits 

AHL sensing by SdiA in E. coli and Salmonella [110]. The mechanisms of indole 

sensing are not well understood and further research is this area is required.  

 

2.4.3 Salmonella benefits from gut inflammation 

 Intestinal microbiota impedes pathogen colonization through various mechanisms, 

collectively known as colonization resistance. However, Salmonella can compete with the 

microbiota and utilize the microenvironment to its advantage during infection [111]. For 

example, Salmonella can take advantage of pre-existing inflammatory state in the host 

intestinal tract to promote its growth and overcome colonization resistance conferred by 

the normal gut microbiota. Salmonella benefits from the reactive oxygen species generated 

during inflammation, by using the tetrathionate formed (from thiosulfate) as an electron 

acceptor [112]. Production and utilization of tetrathionate provides a growth advantage to 

Salmonella to compete with the luminal microbiota. Salmonella can also selectively utilize 

ethanolamine as a nutrient for growth in the presence of tetrathionate [113, 114], thereby 

gaining advantage over the competing microflora in the inflamed gut. 

 In addition to utilizing the pro-inflammatory molecules to its advantage, 

Salmonella can also directly induce inflammation in the GI tract and establish a foothold. 

Salmonella SPI-1 effector genes sipA, sopE and sopE2 have also been shown to induce 

inflammatory responses in the mouse intestine [115]. SopE increases mucosal inducible 

nitric oxide (NO) synthase (iNOS) expression [116] that results in NO generation, which 
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on reaction with reactive oxygen species (ROS), produces nitrate (NO3
-) [117]. Nitrate can 

be used as terminal electron acceptor by Salmonella [118, 119] and SopE induced host-

derived nitrate production promotes Salmonella proliferation in the mouse lumen [116]. 

  

2.4.4 Signals in the Salmonella containing vacuole 

Salmonella’s infection lifecycle comprises of extracellular and intracellular 

phases. Once Salmonella breaches the intestinal epithelial barrier, it can survive and 

replicate within host cells. The survival of Salmonella within the phagosomal environment 

of macrophages is pertinent to its ability to cause systemic disease [120]. Acidic pH, 

reactive oxygen and nitrogen species as well as antimicrobial proteins and peptides are the 

antimicrobial features of phagosomes that the pathogen has to circumvent in order to 

survive in the SCV [121]. 

PhoP/PhoQ and OmpR/EnvZ are known modulators of SPI-2 gene expression in 

the intracellular microenvironment [122-124]. PhoPQ is a well-studied two-component 

regulatory system known to sense signals within the phagosome [125-131]. PhoQ gets 

activated in acidified phagosomes containing cationic antimicrobial peptides (CAMPs) 

and divalent cations [127, 129]. OmpR, was identified to respond to changes in osmolarity 

and regulate porin gene expression in E. coli [132]. However, it could also regulate porin 

gene expression in response to acidic pH [133, 134]. In Salmonella’s intracellular 

environment, OmpR/EnvZ regulate Sif formation [135] and translocon release for effector 

secretion [136] which are important for Salmonella’s survival. 
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3. INDOLE DOWN-REGULATES SALMONELLA VIRULENCE 

 

3.1 Introduction 

The intestinal microbiota (the dynamic community of ~1014 microorganisms 

present in the human gastrointestinal (GI) tract) is an important mediator of several aspects 

of health, including promoting defense against pathogen colonization [57, 58]. The 

protective effect of the microbiota against pathogenic infections is termed as colonization 

resistance [59]. Several factors contribute to this phenomenon including competition 

between the indigenous microorganisms and the pathogen for nutrients [60, 61] and 

adhesion sites [62, 63], production of bacteriocins [64-66] and metabolites such as short 

chain fatty acids (SCFAs) [67-69] by the microbiota, and modulation of host defense 

mechanisms [57, 70]. It is well documented that alterations in the abundance and 

composition of the microbiota [71, 72] leads to an increased susceptibility to pathogen 

colonization. 

 Non-typhoidal Salmonella is among the top five causative pathogens of foodborne 

illness in the United States (Centers for Disease Control and Prevention, 2011 estimates). 

It is also the primary cause of hospitalizations and deaths, resulting from foodborne 

illnesses. Salmonella infection involves activation of two distinct Type III Secretion 

Systems (TTSS), essential for bacterial invasion and intracellular survival. These TTSSs 

are virulence factors encoded by Salmonella pathogenicity island 1 (SPI-1) and SPI-2, 

respectively, and are required for Salmonella infections [1, 40]. 
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Pathogen virulence factors are known to be modulated by several microbiota-

derived compounds. Of these, SCFAs are a well-studied  class with an established role in 

the modulation of enteric infections by Salmonella, Listeria, Campylobacter, Shigella, and 

E. coli [14]. While propionate [69] and butyrate [67] decrease virulence of the enteric 

pathogen Salmonella; formate [90] and acetate [89] have been shown to increase 

Salmonella virulence and infection. Previous work has shown that metabolites derived 

from tryptophan such as indole [98] are another class of molecules that inhibit colonization 

of pathogens like enterohemorrhagic E. coli (EHEC) and Candida albicans [23, 99]. On 

the other hand, indole has been shown to improve the survival of E. coli and Salmonella 

under antibiotic stress [17, 103]; thus, pathogens that do not produce indole (such as 

Salmonella) can potentially benefit from indole-mediated signaling and have been 

reported to have an increased antibiotic resistance primarily through the OxyR regulon 

[103].  

The molecular basis for the effects of indole on pathogenic bacteria is not fully 

understood. Nikaido et al [104] reported that indole induced expression of multidrug 

efflux pumps in Salmonella. Using a genome-wide analysis, they determined that indole 

exposure leads to a decrease in the expression of SPI-1 genes, reduction in flagellar 

motility and in vitro invasion, along with an increase in the expression of genes involved 

in efflux-mediated multidrug resistance [105]. They demonstrated that while the indole-

mediated up-regulation of the AcrAB-TolC multidrug efflux system was RamA/RamR 

dependent, the down-regulation of virulence genes was not. Therefore, the mechanism(s) 

involved in mediating the effects of indole on Salmonella virulence is not clear.  
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In this study, we investigated the effect of indole exposure on Salmonella virulence 

and infection. A competitive index assay was used to compare the fitness of indole-treated 

and non-treated Salmonella in infecting mice. In addition, the effect of indole on other 

Salmonella functions important for infection such as motility, invasion, intracellular 

survival, and SPI-1 gene expression was also investigated. Our results show a marked 

decrease in Salmonella motility, invasion of epithelial cells and macrophages, and down-

regulation of virulence gene expression upon exposure to indole as well as lower 

competitiveness of indole-treated Salmonella in mice. 

Another aspect studied was the combinatorial effect of indole on SPI-1 gene 

expression in the presence of SCFAs, another constituent of the gut environment. Since 

we previously reported that indole attenuates host cell inflammation and increases 

intestinal epithelial cell barrier integrity [22], we further investigated the susceptibility or 

resistance of indole-conditioned epithelial cells, to Salmonella invasion. Our results 

suggest that tryptophan-derived microbiota metabolites could be important mediators of 

colonization resistance to Salmonella infection in the GI tract. 

 

3.2 Materials and Methods 

3.2.1 Bacterial strains, cell lines, media and chemicals 

 Salmonella enterica serovar Typhimurium (ATCC 14028s) was grown and 

maintained in Luria-Bertani (LB) medium at 37oC supplemented with appropriate 

antibiotics where necessary. Salmonella SPI-1 reporter strains for hilA, prgH, invF and 

sipC [137] were a kind gift from Dr. Sara D. Lawhon. The ΔSPI-1, ΔSPI-2, ΔmotA and 
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ΔsdiA deletion mutants [138] and the isogenic Nalidixic acid resistant (NalR) [139] strains 

were generous gifts from Dr. Helene Andrews-Polymenis.  

 For all indole exposure experiments, cells were grown in LB overnight with or 

without indole, diluted to an O.D.600nm of ~0.05 and further grown for ~2 h in a shaker 

incubator (New Brunswick Scientific) at 37oC, 250 rpm to obtain an exponential phase 

culture (O.D.600nm of ~1.0), unless stated otherwise. 70% ethanol was used as the solvent 

control.  

 The murine macrophage cell line J774A.1 (ATCC), was maintained in the RPMI 

(Roswell Park Memorial Institute) 1640 medium with 10% fetal bovine serum, 1 mM 

sodium pyruvate, 10 mM HEPES, 2 g/L sodium bicarbonate, 0.05 mM 2-mercaptoethanol, 

100 U/ml penicillin and 100 µg/ml streptomycin, at 37°C in 5% CO2. The HeLa cell line 

(ATCC) was maintained in DMEM (Dulbecco’s Modified Eagle Medium) supplemented 

with 10% bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin and 2 g/L 

sodium bicarbonate at 37°C in 5% CO2 during normal growth and culture.  

 

3.2.2 Motility assay 

Motility assays were performed as described by Bansal et al [23]. Briefly, 

Salmonella was cultured in LB medium at 37°C or 30°C to exponential phase. Indole (1 

mM) in 70% ethanol or the equivalent volume of solvent was added to motility agar plates 

(1% tryptone, 0.25% NaCl, and 0.3% agar), and the sizes of the motility halos were 

measured after 8 h. Four motility plates were used for each condition. A motA mutant was 
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used as the negative control. Images were obtained using the Bio Rad VersaDoc imaging 

system model 3000.  

 

3.2.3 In vitro invasion assay and intracellular survival assay 

HeLa cells were cultured in a 24-well tissue culture plate at a cell density of ~5 × 

105 cells/well and infected with late log phase Salmonella cells at an MOI ~ 50:1 for 1 h 

to allow invasion. At the end of the incubation period, the media was replaced with 

medium containing gentamicin (100 μg/mL) and incubated for an additional hour to kill 

the Salmonella cells that did not invade. The HeLa cell monolayers were then washed 

twice with PBS and cells lysed with a 0.2% sterile solution of NP40 to release the invaded 

bacteria. The lysate was serially diluted and spread on LB agar plates to determine the 

number of invaded bacteria. The starting inoculum was also plated to obtain the initial 

count of bacterial cells used for infection. The percentage invasion was calculated as the 

ratio of bacterial cells invaded to cells inoculated.  

J774A.1 macrophage cells were also used for invasion and intracellular survival 

assay. Cells were plated in a 24 well plate at a density of ~5 × 105 cells/well and treated 

with serum-free RPMI medium overnight to synchronize them in a quiescent state. Prior 

to infection, the serum-free medium was replaced with RPMI medium supplemented with 

10% heat-inactivated serum. The protocol for the invasion assay was similar to that used 

for HeLa cells, except that a lower MOI ~10:1 was used since the macrophages are 

inherently phagocytic. 
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The intracellular survival of Salmonella at 4 h and 8 h post-invasion was 

determined by incubating the invaded J774A.1 cells in heat-inactivated serum RPMI 

media supplemented with 5µg/mL gentamicin at 37°C, 5% CO2. Intracellular bacterial 

counts were obtained by lysing J774A.1 cells and plating serial dilutions on LB agar 

plates. The extent of survival was calculated as the ratio of the surviving intracellular 

bacteria to the number of bacteria that invaded. 

 

3.2.4 Salmonella SPI-1 reporter assays 

Salmonella SPI-1 reporter strains for hilA, prgH, invF and sipC with the β-

galactosidase (β-gal) gene fused to each gene [137], were grown overnight in LB at 37°C 

and 250 rpm. Cells were diluted to an O.D.600 of ~0.05 in LB with 1 mM indole and grown 

to exponential phase, unless stated otherwise. β-gal activity measurements were made for 

the collected samples using a fluorogenic substrate (Resorufin β-D-galactopyranoside, 

AnaSpec) using a microplate scanning spectrofluorometer (SpectraMax, Gemini EM, 

Molecular Devices) with excitation and emission wavelengths as 544 nm and 590 nm, 

respectively. Fluorescence readings were normalized to the growth absorbance and fold 

changes were calculated with respect to the control. The effect of other tryptophan 

metabolites such as tryptamine, indole-3-acetic acid and indole-3-pyruvic acid was also 

investigated, on hilA expression at a concentration of 1 mM. For investigating synergism 

between indole and SCFAs, a mixture of SCFAs at published concentrations in cecal 

luminal contents (110 mM sodium acetate, 70 mM sodium propionate and 20 mM sodium 

butyrate) was used [89]. Cecal indole concentrations, as reported in [98], of 100 µM and 
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250 µM were tested. To control for osmolarity changes introduced by addition of sodium 

salts of SCFAs, 200 mM NaCl was used. All experiments were performed in duplicate 

and repeated with at least three biological replicates. 

 

3.2.5 In vivo competitive index experiment 

Female C57BL/6 mice (6-8 weeks old) were obtained from The Jackson 

Laboratories (Bar Harbor, ME). All mice were housed in specific pathogen-free conditions 

and cared for in accordance with Texas A&M Health Science Center and System 

Institutional Animal Care and Use Committee guidelines. Wild-type Salmonella and a 

naladixic acid resistant isogenic strain were cultured to exponential phase in the absence 

and presence of 1 mM indole, respectively. The two cultures were mixed together in equal 

ratio based on O.D.600 and the cell suspension was used for infection. Five mice were used 

for each group at each time point and the experiment was repeated for two infection doses. 

Approximately ~ 5 × 107 (low dose LD) and ~ 5 × 108 cells (high dose HD) were gavaged 

with feeding needles (22 × 11/2 with 11/4 mm ball, no. 7920, Popper & Sons, Inc., New 

Hyde Park, NY).  

After bacterial challenge, bacterial burden in infected tissues was determined. At 

different time points (days 1 and 3 post-infection), fecal pellets, liver, spleen, mesenteric 

lymph nodes, Peyer’s patches and cecum were harvested. The samples were homogenized 

in sterile 0.1% NP40 using a motorized homogenizer (Omni International), the 

homogenates were serially diluted in sterile 0.1% NP40, and multiple dilutions from each 
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organ were plated in duplicates. Two sets of plates, with and without naladixic acid at a 

concentration of 50µg/mL, were used to obtain total and NalR bacterial counts, 

respectively, in the different tissues. Two types of media (LB or XLD) were used 

depending on the organ and its inherent microflora. LB agar plates were used for plating 

samples from the spleen, liver, Peyer’s patches and the mesenteric lymph nodes whereas 

XLD agar plates were used for fecal and cecum samples to differentiate Salmonella (black-

colored colonies) from other microbes that are present. Colony forming unit (CFU) counts 

were determined after overnight incubation at 37°C. 

The competitive index (CI) in each sample was calculated as [(cfu of indole-treated 

strain in the organ/cfu of control strain in the organ)]/[(cfu of indole treated strain used in 

the inoculum/cfu of control strain used in the inoculum)].  

 

3.2.6 Statistical analysis 

Graph Pad Prism, version 5.0, software was used for statistical analysis and 

plotting the competitive index data. Wilcoxon signed-rank non-parametric test was used 

to determine significance of difference between the numbers of two groups: indole-treated 

and the control (solvent-treated). Student’s t-test was performed for the measured values 

of the in-vitro experiments and p < 0.05 was considered as statistically significant. 
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3.3 Results 

3.3.1 Indole exposure decreases Salmonella invasion in vivo 

A competitive index (CI) assay was used to determine the effect of indole on the 

ability of Salmonella to invade the murine GI tract. Figure 3  shows the CI of indole-

treated Salmonella on day 1 and day 3 after infection for a low dose (LD) and high dose 

(HD) Salmonella inoculum. For the LD group, no significant difference between the 

counts of indole- and solvent-treated bacteria was observed in the Peyer’s patches (PPs) 

and feces on days 1 and 3 (Figure 4 and 5). However, the number of indole-treated 

bacteria in the cecum was significantly lower (p < 0.05) than the control, on days 1 and 3, 

(Figure 3, 4 and 5Error! Reference source not found.). Beyond the GI tract, indole-treated 

almonella was not detectable in the spleen and liver on day 1 (Figure 3 and 4). On day 3, 

solvent-treated Salmonella were recovered from the spleen and liver of all mice but indole-

treated Salmonella were recovered from livers and spleens of ~50% of the mice (Figure 

5). Both indole- and solvent-treated Salmonella were not recovered from mesenteric 

lymph nodes (MLN) on day 1. However by day 3, solvent-treated Salmonella were present 

in MLNs of all mice but indole-treated Salmonella were present in only 50% of the mice 

(Figure 3 and 5).  

For the HD group, the number of indole-treated bacteria, recovered from the cecum 

was significantly lower (p < 0.05) than the number of solvent-treated bacterial numbers, 

on both day 1 and day 3, post inoculation (Figure 3, 6 and 7). The counts of indole-treated 

bacteria were significantly lower (p < 0.05) in the PPs on day 1 and feces on day 3 (Figure 

6 and 7). No difference in the counts of indole- and solvent-treated Salmonella was 
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observed in the spleen on days 1 and 3. The liver had significantly lower (p < 0.05) 

numbers of indole-treated bacteria compared to solvent-treated Salmonella on day 1, while 

the difference was less significant (p < 0.10) on day 3 (Figure 3, 6 and 7). In the MLNs, 

significantly lower (p < 0.05) number of indole-treated Salmonella was detected compared 

to the solvent-treated Salmonella on days 1 and day 3. 
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3.3.2 Indole decreases Salmonella motility  

Since motility is a virulence factor for enteric pathogens [32], we determined the 

effect of indole on Salmonella motility in vitro by measuring the halo diameter in the 

presence or absence of indole as a measure of motility. Exposure to indole reduced 

Salmonella motility by ~ 60% upon exposure to indole at 37oC as compared to solvent-

treated controls (Figure 8). A similar inhibition in motility was also observed when 

Salmonella were exposed to 1 mM indole at 30oC (~ 40% decrease in motility as compared 

to controls; see Figure 9).  
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Figure 8. Effect of indole on Salmonella swimming motility at 37°C. (A) 

Representative photographs of the swimming motility agar plates spotted with WT 

Salmonella. (B) Measured halo diameters for the different test conditions. Diameters were 

measured using Vernier calipers, 8 hours post spotting. ΔmotA was spotted on swimming 

motility agar plates as a negative control for motility. (* indicates p < 0.05) 
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3.3.3 Indole decreases Salmonella invasion but not its intracellular survival 

We investigated the effect of indole on invasion of epithelial cells by Salmonella. 

A 160–fold decrease in invasion of the HeLa epithelial cell line was observed when 

Salmonella was treated with 1 mM indole prior to in vitro infection (Figure 10). No 

change in invasion was observed with a SPI-1 mutant (ΔSPI-1) upon indole treatment. 

Since Salmonella invades and replicates inside macrophages after breaching the epithelial 

cell layer, we also investigated the effect of indole exposure on invasion and intracellular 

survival of macrophages. Figure 11A shows that Salmonella exposed to 1mM indole 

invaded J774A.1 murine macrophages approximately 2-fold less than the untreated 

controls. Figure 11B shows that indole exposure did not significantly alter intracellular 

survival in J774A.1 macrophages up to 8 h.   
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Figure 9. Effect of indole on Salmonella swimming motility at 30°C. Measured 

halo diameters for the different test conditions. Diameters were measured using 

Vernier calipers, 8 hours post spotting. ΔmotA was spotted on swimming motility 

agar plates as a negative control for motility. (* indicates p < 0.05) 
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Figure 10. Invasion of epithelial cells with indole-treated Salmonella. Invasion in 

HeLa epithelial cell line with Salmonella treated with or without 1mM indole. Infection 

with the ΔSPI-1 strain was used as control. A MOI of 50:1 was used for HeLa cells and 

the data shown is intracellular bacteria recovered. (* indicates p < 0.05) 
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Figure 11. Invasion and intracellular survival within macrophages with indole-

treated Salmonella. Invasion (A) and intracellular survival (B) in J774A.1 cells. Infection 

with the ΔSPI-1 and ΔSPI-2 strains were used as controls. A MOI of 10:1 was used and 

data shown are intracellular bacteria recovered and fold changes in survival (at 4 and 8 h 

post invasion) relative to the invasion. (* indicates p < 0.05) 
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3.3.4 Indole decreases Salmonella virulence gene expression 

A β-gal reporter assay was used to determine whether the decrease in invasiveness 

of Salmonella was mirrored by changes in the expression of genes in the Salmonella 

pathogenicity island. Figure 12 shows that the expression of hilA, sipC, invF, and prgH 

were all down-regulated to different degrees upon exposure to 1 mM indole. The 

expression of hilA was decreased significantly by 23-fold upon exposure to indole, 

whereas the expression of prgH, invF, and sipC decreased by 12-, 8-, and 3-fold, 

respectively. Therefore, the reduced expression of genes involved in the invasion process 

was consistent with the decrease in invasion of epithelial cells by Salmonella upon indole 

treatment. 
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Figure 12. SP I-1 virulence gene expression change in WT Salmonella upon 

treatment with 1 mM indole. SPI-1 reporter strains for hilA, prgH, invF and sipC 

were treated overnight with and without 1 mM indole and the β-gal activity was 

measured in exponential phase cultures after dilution. Data shown are the fold decrease 

in expression with indole-treatment relative to the solvent-treated control which was 

statistically significant with p < 0.05. 
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3.3.5 Indole synergizes with SCFAs 

Given the likely interactions among GI tract metabolites to mediate colonization 

resistance, we hypothesized indole’s effect on Salmonella virulence may be augmented 

when present along with other GI tract microbiota metabolites. We specifically focused 

on short chain fatty acids (SCFAs) as they are abundant in the GI tract [86-89] and are 

important modulators of pathogen virulence [14].  Therefore, we investigated the 

combined effect of indole (100 μM and 250 μM) and SCFAs (110 mM acetate, 70 mM 

propionate and 20 mM butyrate for a total concentration of 200 mM) on hilA expression. 

The average fold decrease in hilA expression upon treatment with cecal SCFAs alone was 

1.8-fold and the decrease in hilA expression with 100 μM and 250 μM indole alone was 

1.6- and 5.0-fold, respectively (Figure 13). However, when 100 μM or 250 μM indole 

was present with cecal SCFAs, the observed average decrease in hilA expression was 3.7-

fold and 19.3-fold, respectively. These observations suggest that 250 μM indole and cecal 

SCFAs synergistically enhance the down-regulation of hilA in a dose-dependent manner.  
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Figure 13. Effect of indole in combination with cecal SCFAs on hilA expression. SPI-

1 reporter strain for hilA was treated overnight with and without indole (100 μM and 250 

μM) in the presence of 200 mM cecal SCFAs or 200 mM NaCl, and the β-gal activity was 

measured in exponential phase cultures after dilution. Data shown are the fold decrease in 

expression of hilA with treatment relative to the control: hilA expression in presence of 

200 mM NaCl, and was statistically significant with p < 0.05. 

 

 

3.3.6 Effect of other tryptophan metabolites on hilA expression 

Indole is not the only microbiota metabolite of tryptophan metabolism. Several 

other tryptophan metabolites have been detected in murine cecal contents such as indole-

3-pyruvate, indole-3-acetate and tryptamine [98] (see Table 5 for structure information), 

which we tested for effect on hilA expression. Indole-3-pyruvic acid decreased hilA 

expression by 3-fold whereas tryptamine and indole-3-acetic acid down-regulated hilA 

expression by 1.3- and 1.5-fold, respectively (Figure 14). 
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3.3.7 Indole increases epithelial cells resistance to Salmonella invasion 

To determine whether indole also impacted the ability of host cells to resist 

Salmonella invasion, we exposed HeLa epithelial cells to indole prior to infection with 

Salmonella (not exposed to indole) and determined the extent of Salmonella invasion. 

Figure 15 shows that, compared to untreated HeLa cells, a statistically-significant 70% 

decrease in invasion was observed when indole-conditioned epithelial cells were infected 
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Figure 14. Effect of tryptophan metabolites on hilA expression. SPI-1 reporter 

strain for hilA was treated overnight with and without 1 mM tryptophan metabolites: 

tryptamine, indole-3-acetic acid, indole-3-pyruvic acid and indole, and the β-gal 

activity was measured. Data shown are the fold decrease in expression of hilA with 

treatment relative to the solvent-treated control which was statistically significant 

with p < 0.05. 
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with wild type Salmonella. This suggests that indole increases resistance of host cells to 

Salmonella invasion in addition to attenuating Salmonella virulence. 

  

3.4 Discussion 

The link between prevention of pathogen colonization and the GI tract microbiota 

has been long established [59], and a number of contributing factors such as nutrient 

competition [61], steric hindrance [140], production of bacteriocins [64-66] and specific 

metabolites such as SCFAs [67-69] have been reported to play a role in this phenomenon 

[57, 58]. However, besides SCFAs, few other specific classes of molecules have been 
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Figure 15. Effect of indole on resistance of HeLa epithelial cells to Salmonella 

invasion. HeLa cells were seeded in a 24 well plate and conditioned with 1 mM 

indole for 24 h prior to infection. A MOI of 10:1 was used for infection. Data shown 

are intracellular bacteria recovered from infected HeLa monolayers with indole 

treatment or control (solvent treatment). (* indicates p < 0.05) 
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identified that impact pathogen colonization. Here, we report that indole, an abundant 

tryptophan-derived microbiota metabolite, attenuates Salmonella infectivity in vivo and 

virulence in vitro, as well as increases resistance of host cells to Salmonella invasion in 

vitro.  

Indole is produced from tryptophan by the enzyme trytophanase (TnaA) [16] that 

is present in E. coli and several other microorganisms present in the GI tract belonging to 

the phyla- Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria- [18]. Indole is 

an abundant microbiota metabolite in the GI tract luminal microenvironment where 

pathogen colonization is initiated. Indole concentrations of ~40 nmol/g tissue in murine 

cecum were reported by Whitt et al. using an enzymatic assay [141]. Recently, we used 

mass spectrometry to determine that indole is present at 10 - 40 nmol/g sample wet weight 

in murine cecum; based on unpublished data from our lab that the extraction efficiency of 

indole from cecal contents is ~15% and assuming that cecal contents have a density similar 

to that of water, the effective concentration of indole in cecal contents is ~100-300 M. 

Another recent study determined fecal indole levels in 53 healthy adults to vary from 0.3 

mM to 6.64 mM with a mean of 2.59 mM [21] (i.e., comparable to concentrations at which 

a response was observed in this study).  

The reduced colonization in vivo by indole-treated Salmonella in mice is apparent 

from the statistically significant difference in the number of indole-treated and non-treated 

Salmonella detected in the cecum for both the LD and HD groups post infection (Figure 

4, 5, 6 and 7). Since Salmonella were exposed to indole prior to infection, our observations 

suggest that comparatively fewer indole-treated Salmonella invaded the intestinal 
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epithelium and colonized the cecum. Since the cecum is reportedly a reservoir for 

Salmonella intestinal persistence and fecal shedding in mice [142, 143], it is interesting to 

observe the lower competitiveness of indole-treated Salmonella to colonize the cecum 

with CI < 1 (Figure 3).  

The marked decrease in Salmonella motility, invasion of epithelial cells and 

macrophages, and decrease in virulence gene expression upon exposure to indole is similar 

to our previous report on indole’s effect on EHEC motility, biofilm formation, and its 

colonization of epithelial cells [23]. However, to our knowledge, this is the first in vivo 

study demonstrating that indole’s effect on pathogen virulence translates to reduced 

infectivity in mice. A striking aspect of our results is the concordance between 

observations at multiple levels or stages of Salmonella infection. Another interesting 

observation is the temporal coordination in the effect of indole on SPI-I gene expression.  

The hilA gene is the master regulator of the SPI-I regulon [144] and an indole-mediated 

decrease in expression of hilA was observed first, when a time-course study was 

conducted, followed by decrease in expression of prgH, invF and sipC. HilA is a 

transcriptional regulator which activates the expression of structural type III secretion 

genes such as prgH and the transcription factor invF [144]. SipC, on the other hand, is a 

secreted effector (translocase) that is activated by invF. Thus the reduced invasion in vitro 

and infectivity in vivo are likely the result of coordinated decrease in SPI-1 gene cluster 

expression.  

While indole markedly attenuated invasion and the expression of SPI-I genes, it 

did not significantly affect intracellular survival of Salmonella in macrophages. The lack 
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of effect on intracellular survival suggests that indole impacts functions related to 

extracellular infection. The intracellular phase of Salmonella’s infection cycle allows 

Salmonella within macrophages to escape from Peyer’s patches to the lymph nodes and 

spread to the liver and spleen resulting in systemic disease. Distal ileum (in proximity to 

the cecum), with Peyer’s patches rich in lymphoid cells, is considered to be the primary 

enteric site for Salmonella infection causing systemic disease [145]. The CI < 1 observed 

for the systemic organs such as liver, spleen and mesenteric lymph nodes (Figure 3), is 

likely a result of the initial lower invasion and colonization by indole-treated Salmonella, 

based on our in vitro results showing that indole did not modulate intracellular survival. 

The mechanism(s) underlying indole’s effects on pathogen virulence are poorly 

understood. Few transcriptional regulators and two-component systems have been 

reported to be involved in indole signaling. Kanamaru et al., [146] showed that the 

expression of virulence factors in EHEC is controlled by sdiA and that indole acts through 

sdiA [19]. Therefore, we were interested in investigating whether SdiA is involved in 

indole-mediated down-regulation of Salmonella virulence (Section 4). 

Although we observed strong attenuation of Salmonella virulence and invasion 

with indole, it should be noted that several other metabolites can be derived by the 

microbiota from dietary tryptophan, and are present in the lumen of the GI tract such as 

indole-3-acetate, indole-3-pyruvate and tryptamine [98]. However, not all tested 

metabolites had the same effect on Salmonella as indole. Indole-3-pyruvic acid decreased 

hilA expression by 3-fold whereas tryptamine and indole-3-acetic acid down-regulated 

hilA expression by 1.3- and 1.5-fold, respectively. Thus, there appears to be some 
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variability in the anti-infective effect of microbiota-derived tryptophan metabolites. 

Further structure-function studies are required to identify feature(s) that are required to 

elicit the observed phenotype. 

Apart from tryptophan metabolites, SCFAs constitute the other major class of 

microbiota metabolites abundant in the gut lumen. The total concentration of the SCFAs 

varies along the length of the GI tract- low (~20 mM) in the ileum and high (~140-200 

mM) in the cecum and the colon [86-88]. The relative concentration of the individual 

components- acetate, propionate and butyrate- also varies in the ileal and colonic 

segments. Since SCFAs are known modulators of Salmonella virulence [67, 69, 89, 90], 

our data on the synergy between indole (at a concentration of 250 μM) and SCFAs in 

down-regulating hilA expression further underscores the importance of indole as a potent 

virulence-attenuating signal in the GI tract. 

In addition to decreasing pathogen virulence phenotypes, we also observed that 

exposing epithelial cells to indole decreased Salmonella invasion. This suggests that 

indole (and presumably, other microbiota metabolites) could attenuate pathogen invasion 

and colonization by both inhibiting virulence factors directly in the pathogen while, 

simultaneously, increasing the resistance of host cells. This observation is also consistent 

with previous work from our laboratory and another research group showing that indole 

increased anti-inflammatory cytokine production and epithelial cell tight junction 

resistance in HCT-8 enterocytes [22, 147]. In this regard, indole is similar to the SCFA 

butyrate in its scope of action. Butyrate is a major source of energy for colonocytes [148, 

149] and inhibits bacterial pathogenesis through its effect on colonocytes as demonstrated 
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by studies with Campylobacter jejuni [68]. Current work in our laboratory is focusing on 

elucidating the mechanism(s) underlying indole’s effect on host cells.  

In summary, our observations demonstrate indole’s role in inhibiting Salmonella 

virulence and colonization. Taken together with our prior work showing that indole 

attenuates inflammatory gene expression in intestinal epithelial cells, our results suggest 

that microbiota metabolites such as indole could play an important role in determining the 

susceptibility of the host to pathogen infection in the GI tract.  
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4. MECHANISM OF INDOLE-MEDIATED DOWNREGULATION OF 

VIRULENCE AND CHEMOTAXIS IN SALMONELLA 

 

4.1 Introduction 

Indole is a microbiota product secreted into the gut lumen and will be encountered 

by Salmonella inside the host. Our results show that indole reduces Salmonella motility 

and down-regulates SPI-1 gene expression, invasion and virulence in vivo. However, the 

mechanism of indole’s action is not known.  

Several groups have reported the effect of indole on the virulence of multiple 

pathogens, including EHEC [23], Candida albicans [99], Pseudomonas aeruginosa [100] 

and Vibrio campbellii [101]. SdiA (suppressor of cell division inhibition) has been shown 

to be involved in reducing EHEC biofilm formation, controlling expression of virulence 

factors and reducing adherence to epithelial cells [19, 146, 150].  SdiA is a LuxR 

homologue encoded by E. coli and Salmonella Typhimurium that detects quorum sensing 

signals, such as N-acylhomoserine lactones (AHLs), from other species [107-109]. The 

SdiA homolog in Salmonella Typhimurium regulates genes on the virulence plasmid 

encoding the Salmonella plasmid virulence locus (spv) [151]. Therefore, we tested 

whether sdiA was involved in indole mediated down-regulation of Salmonella virulence. 

Two component regulatory systems mediate bacterial signal transduction in 

response to environmental stimuli. TCSs consist of a sensor kinase and a cognate response 

regulator that modulate gene expression in response to environmental changes of the 

bacterium. One such regulatory system is the PhoPQ two-component system where PhoQ 
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is the sensor kinase and PhoP is the cognate response regulator. The PhoPQ system has 

been extensively studied and senses signals such as divalent cations (Mg2+ and Ca2+) [128, 

152], cationic antimicrobial peptides [127] and pH changes [129]. PhoPQ has also been 

reported to down regulate SPI-1 gene expression [29-31]. 

In this work, we investigated whether SdiA and the PhoPQ system are involved in 

mediating the decrease in epithelial cell invasion and Salmonella virulence upon indole 

exposure. Deletion mutants for different regulatory genes were constructed and their effect 

on invasion and expression of SPI-1 genes was determined to assess the role for each 

regulator.  

Another aspect of virulence is the motility of the pathogen and the ability to find 

the appropriate niche to infect, where chemotaxis plays an important role. Indole is a 

chemorepellent for EHEC [23] and is sensed by the chemoreceptor Tsr in E. coli [153]. 

We observed that indole reduces Salmonella’s motility and chemotaxis and, therefore, 

investigated whether tsr homolog in Salmonella was the chemoreceptor involved in 

indole’s repellent response. 

 

4.2 Materials and Methods 

4.2.1 Bacterial strains, cell lines, media and chemicals 

 Salmonella enterica serovar Typhimurium (ATCC 14028s) was grown and 

maintained in Luria-Bertani (LB) medium at 37oC supplemented with appropriate 

antibiotics where necessary. Salmonella SPI-1 reporter strains for hilA, prgH, invF and 

sipC [137] were a kind gift from Dr. Sara D. Lawhon. The ΔSPI-1, ΔSPI-2, Δtsr, ΔmotA 
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and ΔsdiA deletion mutants [138] were generous gifts from Dr. Helene Andrews-

Polymenis. Salmonella Typhimurium LT2 (ATCC 700720) strain [154] was a kind gift 

from Dr. Mustafa Akbulut. Salmonella LT2 was electroporated with pCM18 gfpmut3-

encoding plasmid [155] and used in chemotaxis plug assays. 

 For all indole exposure experiments, cells were grown in LB overnight with or 

without indole, diluted to an O.D.600nm of ~0.05 and further grown for ~2 h in a shaker 

incubator (New Brunswick Scientific) at 37oC, 250 rpm to obtain an exponential phase 

culture (O.D.600nm of ~1.0), unless stated otherwise. 70% ethanol was used as the solvent 

control.  

 The murine macrophage cell line J774A.1 (ATCC), was maintained in the RPMI 

(Roswell Park Memorial Institute) 1640 medium with 10% fetal bovine serum, 1 mM 

sodium pyruvate, 10 mM HEPES, 2 g/L sodium bicarbonate, 0.05 mM 2-mercaptoethanol, 

100 U/ml penicillin and 100 µg/ml streptomycin, at 37°C in 5% CO2. The HeLa cell line 

(ATCC) was maintained in DMEM (Dulbecco’s Modified Eagle Medium) supplemented 

with 10% bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin and 2 g/L 

sodium bicarbonate at 37°C in 5% CO2 during normal growth and culture.  

 

4.2.2 Generation of Salmonella deletion mutants 

 The ΔphoPQ mutations were generated in the Salmonella wild type and SPI-1 

reporter strains using the Datsenko and Wanner method [156]. Briefly, gene deletion 

fragments encoding the kanamycin resistance gene flanked by upstream and downstream 
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regions of gene to be deleted were generated using the designed primers and pKD13 

plasmid as template (Table 1). The DNA fragments were purified and the desired 

fragment length product was digested with DpnI followed by purification. These were 

then electroporated into the wild-type Salmonella and SPI-1 reporter strains containing 

the pKD46 plasmid encoding recombinase. The recombinant deletion mutants were then 

selected using kanamycin and verified for the gene deletion using PCR. 

Table 1. Primers for generation and verification of phoPQ deletion in Salmonella. 

Primer name Sequence (5' - 3') 

Primers for generation of phoPQ deletion 

phoP::Kan Forward CATAATCAACGCTAGACTGTTCTTATTGTTAAC

ACAAGGGAGAAGAGATGATTCCGGGGATCCGT

CGACC 

phoQ::Kan Reverse GAGATGCGTGGAAGAACGCACAGAAATGTTTA

TTCCTCTTTCTGTGTGGGTGTAGGCTGGAGCTG

CTTCG 

Primers for verification of phoPQ deletion 

phoP Upstream Forward ATTATATCGGTCGCGCTGTG 

phoQ Downstream Reverse AGAAAGTCGGGCCAGTTAAG 

phoP Forward GATGAAGACGGCCTTTCCTT 

phoQ Reverse GGCGATCCACAGTAAAGGAA 

K1 Reverse [156] CAGTCATAGCCGAATAGCCT 
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4.2.3 Motility assay 

Motility assays were performed as described by Bansal et al [23]. Briefly, 

Salmonella was cultured in LB medium at 37°C or 30°C to exponential phase. Indole (1 

mM) in 70% ethanol or the equivalent volume of solvent was added to motility agar plates 

(1% tryptone, 0.25% NaCl, and 0.3% agar), and the sizes of the motility halos were 

measured after 8 h. Four motility plates were used for each condition. A motA mutant was 

used as the negative control. Images were obtained using the Bio Rad VersaDoc imaging 

system model 3000.  

 

4.2.4 In vitro invasion assay and intracellular survival assay 

HeLa cells were cultured in a 24-well tissue culture plate at a cell density of ~5 × 

105 cells/well and infected with late log phase Salmonella cells at an MOI ~ 100:1 for 1 h 

to allow invasion. At the end of the incubation period, the media was replaced with 

medium containing gentamicin (100 μg/mL) and incubated for an additional hour to kill 

the Salmonella cells that did not invade. The HeLa cell monolayers were then washed 

twice with PBS and cells lysed with a 0.2% sterile solution of NP40 to release the invaded 

bacteria. The lysate was serially diluted and spread on LB agar plates to determine the 

number of invaded bacteria. The starting inoculum was also plated to obtain the initial 

count of bacterial cells used for infection. The percentage invasion was calculated as the 

ratio of bacterial cells invaded to cells inoculated.  
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J774A.1 macrophage cells were also used for invasion and intracellular survival 

assay. Cells were plated in a 24 well plate at a density of ~5 × 105 cells/well and treated 

with serum-free RPMI medium overnight to synchronize them in a quiescent state. Prior 

to infection, the serum-free medium was replaced with RPMI medium supplemented with 

10% heat-inactivated serum. The protocol for the invasion assay was similar to that used 

for HeLa cells, except that a lower MOI ~10:1 was used since the macrophages are 

inherently phagocytic. 

The intracellular survival of Salmonella at 8 h post-invasion was determined by 

incubating the invaded J774A.1 cells in heat-inactivated serum RPMI media 

supplemented with 5µg/mL gentamicin at 37°C, 5% CO2. Intracellular bacterial counts 

were obtained by lysing J774A.1 cells and plating serial dilutions on LB agar plates. The 

extent of survival was calculated as the ratio of the surviving intracellular bacteria to the 

number of bacteria that invaded. 

 

4.2.5 Salmonella SPI-1 reporter assays 

Salmonella SPI-1 reporter strains for hilA, prgH, invF and sipC with the β-

galactosidase (β-gal) gene fused to each gene [137], were grown overnight in LB at 37°C 

and 250 rpm. Cells were diluted to an O.D.600 of ~0.05 in LB with 1 mM indole and grown 

to exponential phase, unless stated otherwise. β-gal activity measurements were made for 

the collected samples using a fluorogenic substrate (Resorufin β-D-galactopyranoside, 

AnaSpec) using a microplate scanning spectrofluorometer (SpectraMax, Gemini EM, 

Molecular Devices) with excitation and emission wavelengths as 544 nm and 590 nm, 
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respectively. Fluorescence readings were normalized to the growth absorbance and fold 

changes were calculated with respect to the control.  

 

4.2.6 Chemotaxis plug assay 

 The Salmonella LT2 strain expressing GFP from the pCM18 plasmid was used for 

the qualitative plug assay to investigate the repellent response to indole as pCM18 was not 

stable in 14028s strain and was being lost resulting in non-fluorescent cells. Briefly, 

overnight culture was diluted in LB to an O.D.600nm ~ 0.05 and grown to O.D.600nm ~ 0.5 

at 37°C, 250 rpm. The cells were harvested by centrifuging at 400 rcf for 10 min at RT. 

The supernatant was discarded and cells were re-suspended in CB at O.D.600nm ~ 0.25. 

Plugs were prepared with low melting agarose (Sigma) by dissolving in CB at 55°C. Plugs 

were formed by sandwiching 5-10 µL of signal containing agarose between a slide and a 

coverslip (raised using double sided tape) [23, 157]. It was then allowed to cool before 

introducing cells. The plug boundary was imaged using Zeiss microscope. 

 

4.2.7 Capillary assay 

 The capillary assay was modified for Salmonella chemotaxis from a previous 

report for E. coli [158]. Briefly, an overnight culture was grown at 37oC, 250 rpm and 

back diluted to an O.D.600nm~ 0.05 and grown to O.D.600nm ~ 0.5. The cells were 

centrifuged (in round bottom tubes), at 400g for 10 minutes, gently resuspended in 2/3rd 

volume of chemotaxis buffer (CB: 1× PBS, 0.1 mM EDTA (pH 8.0), 0.01 mM L-

methionine and 10 mM DL-lactate). Chemotaxis chambers were prepared using C-rings 



 

55 

 

sandwiched between a glass slide and cover slip and the cell suspension was loaded into 

the chambers. Chemoeffector signals were prepared fresh and loaded in MICROCAPS 

capillaries prior to inserting into the culture-filled chambers. The capillaries were 

incubated for 45 minutes at 37oC and the contents were expelled into tubes containing 500 

µL of CB on ice. Serial dilutions were prepared and plated on LB plates. Colonies were 

counted after overnight incubation at 37oC and bacterial accumulation in each capillary 

was calculated. 

  

4.3 Results 

4.3.1 Indole’s effect on motility of sdiA mutant 

The ΔsdiA mutant also demonstrated comparable decrease in motility to the wild-

type strain upon indole exposure at 37oC (65% and 42% decrease, respectively; Figure 

16). These results indicate that indole’s effect on Salmonella motility is not mediated 

through sdiA. 
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Figure 16. Effect of indole on Salmonella swimming motility in ΔsdiA strain. 

Swimming motility assay observations of Salmonella (A) ΔsdiA strain at 37°C 

and (B) ΔsdiA strain at 30°C. Data shown are the measured halo diameters for 

the different test conditions - no additive, solvent and 1 mM indole at 8 h post-

spotting. Diameters were measured using Vernier calipers. ΔmotA was spotted 

on swimming motility agar plates as a negative control for motility. (* indicates 

p < 0.05) 
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4.3.2 Indole’s effect on invasion and survival of sdiA mutant 

The decrease in invasion of HeLa epithelial cells due to indole exposure by ΔsdiA 

strain was to the same extent as WT (Figure 17). A 2.8-fold decrease in invasion of 

macrophages and no significant change in intra-cellular survival was observed with the 

ΔsdiA strain (Figure 18). This decrease in invasiveness and the lack of effect on intra-

cellular survival in J774.A1 macrophages, observed with the ΔsdiA strain, was comparable 

to that observed with the WT which further confirmed that sdiA is not involved in indole-

mediated effects on Salmonella. 
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Figure 17. Invasion of epithelial cells with indole-treated 

Salmonella ΔsdiA. Invasion in HeLa epithelial cell line with 

Salmonella treated with or without 1mM indoleA MOI of 100:1 

was used and data shown are % invasion, normalized to the solvent-

treated control. (* indicates p < 0.05) 
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Figure 18. Invasion and intracellular survival within 

macrophages with indole-treated Salmonella ΔsdiA. Invasion (A) 

and intracellular survival (B) in J774A.1 cells. A MOI of 10:1 was 

used and data shown are % invasion or survival fold changes, relative 

to the invasion, normalized to the solvent-treated control. (* indicates 

p < 0.05) 
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4.3.3 Indole’s effect on SPI-1gene expression in phoPQ mutant 

Salmonella with a constitutively expressed phoP (part of the phoPQ two-

component signaling system) is known to reduce the expression of prg loci genes that are 

part of SPI-1 [29]. We investigated whether the effect of indole was mediated through the 

phoPQ two-component system by investigating the effect of indole on SPI-1 gene 

expression in a phoPQ deletion mutant. Exposure to 1 mM indole decreased the expression 

of the four SPI-1 genes tested (hilA, prgH, invF and sipC) by 8-, 11-, 8- and 4-fold, 

respectively, in the ΔphoPQ mutant; however, the magnitude of attenuation was ~2-fold 

less than that observed in wild type cells i.e. 23-, 20-, 13- and 6-fold, respectively, for 

hilA, prgH, invF and sipC (Figure 19). This suggests that phoPQ decreases SPI-I gene 

expression and Salmonella virulence using PhoPQ-dependent and independent 

mechanisms.  
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4.3.4 Indole’s effect on invasion by phoPQ mutant 

Epithelial cell invasion assays with the ΔphoPQ mutant were consistent with the 

previous observation on SPI-1 gene expression. The decrease in invasion with the ΔphoPQ 

mutant upon indole treatment was ~ 9-fold, which was ~ 3-fold less than that observed for 

the WT strain (~ 26-fold) (Figure 20). 
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Figure 19. Role of phoPQ in indole mediated down-regulation of SPI-1 gene 

expression using β-gal assay. The ΔphoPQ mutation was generated in the four 

SPI-1 reporter strains for hilA, prgH, invF and sipC. The WT and the ΔphoPQ 

reporter strains were treated overnight with and without 1 mM indole and the β-gal 

activity was measured in exponential phase cultures after dilution. Data shown are 

the fold decrease in expression with indole-treatment relative to the solvent-treated 

control. (* indicates p < 0.05) 
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4.3.5 Indole’s effect on Salmonella chemotaxis 

We observed that indole treatment reduces Salmonella motility (Figure 8) and 

were interested in further investigating whether indole acts as a repellent using a plug 

assay. We observed that Salmonella LT2 cells expressing GFP accumulated at the 

boundary of the plug containing 1 mM serine whereas no accumulation was observed at 

the interface of the plug containing 1 mM indole or the CB control (Figure 21). This 

suggests either no response or a chemorepellent response to indole by Salmonella cells. 

To further confirm the chemorepellent response and determine the chemoreceptor 

involved, capillary assays were conducted. 
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Figure 20. Role of phoPQ in indole mediated down-regulation of 

epithelial cell invasion. Invasion in HeLa epithelial cell line with Salmonella 

WT and ΔphoPQ strain treated with or without 1mM indole. A MOI of 100:1 

was used and the data shown is the fold decrease in invasion by indole-treated 

relative to solvent-treated Salmonella and was statistically significant with p 

< 0.05. 
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CB 

1 mM Indole 

1 mM Serine 

Figure 21. Indole’s chemorepellent response in a plug assay. Motile Salmonella 

Typhimurium LT2 cells, expressing GFP from pCM18, were introduced in a chamber 

with a plug containing either 1 mM indole or 1 mM serine (or no signal i.e. CB). 

Accumulation or the lack thereof, of cells at the plug boundary represent a 

chemoattractant or chemorepellent/no response, respectively. Images were taken after 20 

min incubation at 37°C using a 10× objective. 
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4.3.6 Indole’s repellent response in capillary assay 

  Capillary assays were performed with Salmonella 14028s with indole, serine and 

aspartate as signals; however, based on accumulation numbers in response to 1 mM indole, 

it was difficult to distinguish the lack of response from a repellent response. Therefore, 

the experimental design was modified to determine indole’s repellent response by 

introducing it along with an attractant such as serine or aspartate and probe for a reduction 

in accumulation when indole is present along with an attractant (compared to attractant 

alone). We observed that 1 mM indole when present along with an attractant, i.e. 10 mM 

serine or 1 mM aspartate, decreased bacterial accumulation in the capillary by ~2-fold 

(Figure 22). These results suggested that indole acts as a repellent for Salmonella 

chemotaxis. 

 Indole is a known chemorepellent for E. coli and Tsr was identified as the 

chemoreceptor that senses indole in E. coli [153]. Therefore, we investigated whether 

Salmonella with a tsr deletion would respond to indole in a capillary assay. Our results 

show that 1 mM indole did not significantly reduce accumulation in the capillary when 

present along with 1 mM aspartate (an attractant) (Figure 23) and, therefore, suggests that 

indole is sensed by Tsr in Salmonella as well. 
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Figure 22. Capillary assay with Salmonella Typhimurium 14028s. Bacterial 

accumulation in capillaries in response to 1mM indole (Ind), 10 mM serine (Ser), 1 mM 

aspartate (Asp) and their combinations after 45 minute incubation at 37°C. (* indicates 

p < 0.05) 
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4.4 Discussion 

The mechanism(s) underlying indole’s effects on pathogen virulence are poorly 

understood. Few transcriptional regulators and two-component systems have been 

reported to be involved in indole signaling. Kanamaru et al., [146] showed that the 
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Figure 23. Capillary assay with Salmonella Typhimurium 14028s Δtsr. Bacterial 

accumulation in capillaries in response to 1mM indole (Ind), 10 mM serine (Ser), 1 

mM aspartate (Asp) and their combinations, after 45 minute incubation at 37°C. 
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expression of virulence factors in EHEC is controlled by sdiA and that indole acts through 

sdiA [19]. It has also been reported that high indole concentrations inhibit detection of 

AHLs by SdiA [110]. However, our in vitro data with motility and invasion suggest that 

SdiA is not involved in mediating indole’s effects in Salmonella. The decrease in motility 

of a ΔsdiA mutant upon indole treatment was comparable to the wild-type strain at 37oC 

and 30oC (Figure 16). These results indicate that indole’s effect on Salmonella motility is 

not mediated through sdiA. The decrease in invasion of HeLa epithelial cells and J774A.1 

macrophages (and the lack of effect on intra-cellular survival) with indole-treated ΔsdiA 

mutant was also similar to that observed by the WT strain (Figure 17 and 18), which 

further confirmed that sdiA is not involved in indole-mediated effects on Salmonella.  

Several bacterial two-component systems sense environmental signals (such as 

pH, cations, cationic antimicrobial peptides, osmolarity, etc) and one such regulatory 

system, phoPQ, has been reported to down regulate SPI-1 gene expression [29-31]. Our 

data indicate that the phoPQ two-component system is at least partially involved in 

mediating the effects of indole in Salmonella, as the change in expression of SPI-I genes 

upon indole exposure was neither unaltered nor completely abrogated in the ΔphoPQ 

mutant strains compared to the WT. These results also suggest that other pathways are 

involved in indole mediated signaling that regulate virulence gene expression. Nikaido et 

al [105] found that while ramA is involved in indole signaling, the down-regulation of 

virulence gene expression with indole was independent of RamA/RamR. Vega et al., 

reported that pathogens such as Salmonella (which do not produce indole) may benefit 

from indole-mediated signaling through the OxyR regulon, increasing their antibiotic 
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resistance [103]; however, OxyR has been reported to not influence Salmonella virulence 

[159]. Therefore, while our data clearly shows a role for phoPQ in the down-regulation of 

Salmonella virulence by indole, further work needs to be done to fully elucidate the 

additional underlying mechanism(s). 

Motility is an important virulence factor in pathogens such as Campylobacter, 

Salmonella and E. coli [32]. Presence of flagella was required for efficient colonization 

by Salmonella in mice and has been attributed to chemotaxis [160]. Three chemoreceptors: 

Trg, Tsr and Aer, have been reported to be important in Salmonella colonization in the 

mice infection model [161]. Trg is a methyl-accepting chemotaxis protein (MCP) that 

senses galactose, an abundant residue in the cecal mucosa [162]. Tsr and Aer were 

determined to provide a luminal growth advantage to Salmonella in an inflamed intestine 

and were involved in energy taxis. Tsr and Aer mediated chemotaxis towards electron 

acceptors nitrate and tetrathionate (present in the inflamed gut), respectively [161]. Most 

of the studies involved in identifying luminal signals are focused on attractants. In this 

study we show that microbiota-metabolite indole is a repellent for Salmonella chemotaxis 

and is sensed by the Tsr chemoreceptor. Indole might, therefore, play a role in preventing 

Salmonella colonization in the cecum by reducing the directed migration of the pathogen 

towards the epithelium. 
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5. INTERACTION OF INDOLE WITH PHOQ  

 

5.1 Introduction 

Bacteria can sense environmental signals via two-component systems, comprising 

a transmembrane sensor kinase and a cytosolic response regulator. The signal transduction 

pathway for such two-component systems is well studied. Briefly, the sensor kinase is 

autophosphorylated at the histidine residue in an ATP-dependent manner. When a signal 

from the environment such as a chemical molecule, interacts with the periplasmic domain 

of the sensor kinase, structural changes are induced that are transmitted across the 

transmembrane segment of the sensor, and the phosphoryl group is transferred from the 

sensor kinase to an aspartate residue in the response regulator protein. This activates the 

response regulator, which then binds to promoter regions of target genes and regulates 

gene expression. 

In order to determine the mechanism by which indole is sensed by Salmonella 

through the PhoQ sensor kinase, a computational approach was used to scan the PhoQ 

receptor for possible binding sites using AutoDock Vina [163] and SwissDock [164] 

programs. Molecular dynamic simulations were employed to assess the stability of the 

ligand interaction with the receptor based on free energy calculations. Application of these 

computational tools provided a list of candidate amino acid targets, narrowing the scope 

of search for the mutagenesis experiments.  

We explored indole’s interaction with the periplasmic and cytoplasmic domains of 

PhoQ using computational modeling and tested the predictions in vitro using alanine 
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substitutions of amino acids that were predicted to interact with indole. Our results suggest 

that indole most likely interacts with the cytoplasmic domain of PhoQ in the ATP-binding 

pocket. 

 

5.2 Materials and Methods 

5.2.1 Bacterial strains and cloning 

Salmonella enterica serovar Typhimurium (ATCC 14028s) was grown and 

maintained in Luria-Bertani (LB) medium at 37oC supplemented with appropriate 

antibiotics where necessary. Salmonella SPI-1 reporter strains for hilA [137] was a kind 

gift from Dr. Sara D. Lawhon (Department of Veterinary Pathobiology, Texas A&M 

University). The ΔphoQ mutation were generated in the Salmonella WT and SPI-1 hilA 

reporter strain using the Datsenko and Wanner method [156]. Briefly, gene deletion 

fragments encoding the kanamycin resistance gene flanked by upstream and downstream 

regions of gene to be deleted were generated using the designed primers and pKD13 

plasmid as template (Table 2). The DNA fragments were purified and the desired 

fragment length product was digested with DpnI followed by purification. These were 

then electroporated into the wild-type Salmonella and SPI-1 reporter strains containing 

the pKD46 plasmid encoding recombinase. The recombinant deletion mutants were then 

selected using kanamycin and verified for the gene deletion using PCR. 
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Table 2. Primers for generation and verification of phoQ deletion in Salmonella and 

cloning Salmonella phoQ on pCA24N. 

Primer name Sequence (5' - 3') 

Primers for generation of phoQ deletion 

phoQ::Kan Forward GTCATTACCACCGTACGCGGACAAGGATATCT

TTTTGAATTGCGCTAATGATTCCGGGGATCCGT

CGACC 

phoQ::Kan Reverse GAGATGCGTGGAAGAACGCACAGAAATGTTTA

TTCCTCTTTCTGTGTGGGTGTAGGCTGGAGCTG

CTTCG 

Primers for verification of phoQ deletion 

phoQ Upstream Forward ATCCGCACGATGTCATTACC 

phoQ Forward ATGACGATGATGCCGAGATG 

phoQ Reverse GGCGATCCACAGTAAAGGAA 

K1 Reverse [156] CAGTCATAGCCGAATAGCCT 

Primers for cloning phoQ in pCA24N 

StmPhoQ_N-terminal [Phos]GCCAATAAATTTGCTCGCCATTT 

StmPhoQ_C-terminal [Phos]CCTTCCTCTTTCTGTGTGGGATG 
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The Salmonella phoQ gene was cloned in pCA24N using the strategy reported in 

[165] for PhoQ complementation and periplasmic domain-mutagenesis studies. pCA24N 

was a generous gift from Dr. Katy Kao (Department of Chemical Engineering, Texas 

A&M University). Briefly, genomic DNA was isolated from the Salmonella Typhimurium 

WT strain using the PowerSoil DNA isolation kit from MO BIO laboratories Inc. The 

gDNA was then used as template for amplifying the phoQ gene using the high fidelity 

Phusion DNA polymerase (NEB) and the StmPhoQ_N-terminal and StmPhoQ_C-

terminal primers (Table 2). The PCR product was run on 1% agarose gel and the amplified 

fragment was gel extracted using the Promega Wizard gel extraction and PCR clean up 

kit. The pCA24N plasmid was extracted using the Promega plasmid isolation kit and 

digested with the NEB restriction enzyme StuI. The restricted ends were then 

dephosphorylated using the NEB alkaline phosphatase, CIP, followed by clean up using 

the Promega PCR clean up kit. Ligation of the insert in the vector was carried out using 

T4 DNA ligase (NEB) at 16°C, overnight followed by heat inactivation at 65°C, 10 

minutes (Insert:Vector ~3:1 was used). The ligation reaction product was transformed into 

chemically competent E. coli DH5α cells (NEB C2992) using heat shock method. The 

desired clones were selected on LB agar plates containing 30 µg/mL chloramphenicol 

(Cm) verified by digesting the plasmid with SfiI at 50°C, 1 h and the digest was run on 

1% agarose gel. The appropriate clones resulted in 2 bands corresponding to ~1.5 kb band 

for the gene and ~5 kb band corresponding to the vector backbone. Since pCA24N vector 

contains a gfp tag, the desired clone of pCA24NStmPhoQ was digested using NotI, 

followed by purification using gel extraction and self-ligation using T4 DNA ligase. The 
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ligated reaction mixture, now comprising pCA24NStmPhoQ -gfp, was transformed into 

chemically competent E. coli DH5α cells (NEB C2992). The desired clones were verified 

using SfiI digestion and agarose gel electrophoresis. The verified pCA24NStmPhoQ –gfp 

plasmid was then used for PhoQ complementation as well as site-directed mutagenesis 

studies and was electroporated into Salmonella ΔphoQ strains. 

Studies with the cytoplasmic domain of PhoQ were conducted using the pGEX-

KG construct encoding the catalytic domain of Salmonella PhoQ (Stm PhoQcat) residues 

332-487, kindly provided by Dr. Rui Zhao at University of Colorado, Denver [166, 167]. 

The construct was verified using PCR (see Table 3 for primers used) for the presence of 

the following gene sequences: tac promoter, GST tag, thrombin cleavage site and 

sequence corresponding to PhoQcat; and transformed into E. coli BL21 cells for 

overexpression and purification. 

Table 3. Primers for verification of Stm PhoQcat cloned in pGEX-KG. 

Primer name Sequence (5' - 3') 

GST Forward TTAAGGGCCTTGTGCAACC 

GST Reverse GGCACATTGGGTCCATGTATAA 

Tac promoter Forward TGACAATTAATCATCGGCTCGTATAATGT 

Thrombin site Forward TCTGGTTCCGCGTGGAT 

StmPhoQcat Forward AAGTGATGGGCAACGTACTG 

StmPhoQcat Reverse CCGGCGTATTGTTCCGTAAT 
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 For all indole exposure experiments, cells were grown in LB overnight with or 

without indole, diluted to an O.D.600nm of ~0.05 and further grown for ~2 h in a shaker 

incubator (New Brunswick Scientific) at 37oC, 250 rpm to obtain an exponential phase 

culture (O.D.600nm of ~1.0), unless stated otherwise. 70% ethanol was used as the solvent 

control. 

 

5.2.2 Indole-PhoQ periplasmic domain interaction 

 Possible binding sites of indole to the periplasmic domain of Salmonella’s PhoQ 

receptor were determined using two open source molecular docking programs: AutoDock 

Vina [163] and SwissDock [164]. The crystal structures of Salmonella’s PhoQ periplasmic 

domain were obtained from Protein Data Bank (PDB) [168, 169]. PDB ID: 1YAX [128] 

is the crystal structure of Salmonella PhoQ periplasmic domain in the Ca2+ bound state 

and the PDB ID: 4UEY [130] is the structure of the periplasmic domain of PhoQ double 

mutant W104C and A128C engineered for restrained conformational flexibility by 

forming a disulfide bond. The 4UEY structure was used for docking after computationally 

correcting the mutations to WT amino acids in the structure, using SCWRL4 [170]. The 

entire receptor was used as the search space for docking using the SwissDock server and 

the AutoDock Vina program. Indole’s structure (ZINC ID:14516984) was obtained from 

the ZINC database [171, 172].  
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5.2.3 Site-directed mutagenesis  

The key amino acid, in the identified binding pockets of the PhoQ periplasmic 

domain where indole was predicted to interact, was mutated to alanine using the NEB Q5® 

site-directed mutagenesis kit. Briefly, primers (Table 4) were designed using 

NEBaseChanger™ v1.2.4 tool to substitute the codons corresponding to the identified key 

charged amino acids to the codon encoding alanine, thereby switching the key amino acid 

with alanine upon translation. “GCG” was the codon used for alanine as it was determined 

to have the highest frequency (32.4 per thousand) in the Salmonella Typhimurium genome 

(http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=602) [173]. 
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Table 4. Primers designed for site-directed alanine mutagenesis. 

Substitution Primer name Sequence (5' - 3') 

R100A 

CGC → GCG 

StmPhoQ_R100A_F ATGGACGCAGgcgAACATTCCCTGG 

StmPhoQ_R100A_R AATAATTTGCCCGTTTCATC 

R50A 

CGU → GCG 

StmPhoQ_R50A_F AACCACCTTTgcgTTGCTGCGCG 

StmPhoQ_R50A_R TTATCAAAACTTACGCTATAGC 

K186A 

AAA → GCG 

StmPhoQ_K186A_F 

GATAGAACTAgcgCGCTCCTATATGGT

GTG 

StmPhoQ_K186A_R GGAATGGTATCGACCACC 

K115A 

AAA → GCG 

StmPhoQ_K115A_F GGAATGGTTAgcgACGAACGGCTTC 

StmPhoQ_K115A_R GGTTGAATGCTTTTAATCAGC 

Primers for sequencing pCA24NStmPhoQ mutants 

F-CA [165] 

CATTAAAGAGGAGAAATTAACTATGA

GAGG 

pCA24N-gfpR CGTCAGTCAGTCACGATGAA 

 

The primers designed for alanine site-directed mutagenesis were used to amplify 

the plasmid pCA24N clone encoding the Salmonella phoQ gene using the Q5 Hot Start 

High-Fidelity master mix as recommended by manufacturer (NEB). The KLD mixture, 

provided in the kit, was then used to phosphorylate and ligate the ends of the amplified 

product (comprising the mutation) and circularize the plasmid clone as well as to digest 

the parent plasmid backbone, according to manufacturer’s protocol. The ligated plasmid 
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was then transformed into chemically competent E. coli cells (NEB C2992) using heat 

shock. The clones were streaked on a fresh LB agar plates containing 30 µg/mL 

chloramphenicol to purify and were verified by sequencing using primers specified in 

Table 4.  

 

5.2.4 Effect of site-directed alanine mutations on hilA expression using β-galactosidase 

reporter assay 

 Site-directed mutagenesis of identified amino acids in the PhoQ periplasmic 

domain was carried out by substituting the codon for the key amino acid with the codon 

GCG, coding for alanine, in the Salmonella phoQ genetic sequence cloned in pCA24N. 

The verified clones (pCA24NStmPhoQ WT as well as those with single amino acid 

alanine substitutions) were transformed into the Salmonella ΔphoQ HilA reporter strain. 

The Salmonella ΔphoQ strains harboring pCA24N, encoding either the WT or the mutant 

PhoQ, were grown overnight in LB at 37°C and 250 rpm. Cultures were diluted to an 

O.D.600 of ~0.05 in LB with 1 mM indole and grown to exponential phase, unless stated 

otherwise. β-gal activity measurements were made for the collected samples using a 

fluorogenic substrate (Resorufin β-D-galactopyranoside, AnaSpec) using a microplate 

scanning spectrofluorometer (SpectraMax, Gemini EM, Molecular Devices) with 

excitation and emission wavelengths as 544 nm and 590 nm, respectively. Fluorescence 

readings were normalized to the growth absorbance and fold changes were calculated with 

respect to the control. 
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5.2.5 Indole’s interaction with the PhoQ cytoplasmic domain 

 AutoDock Vina [163] was used to determine possible binding sites of indole to the 

cytoplasmic domain of Salmonella PhoQ. The crystal structure for the Salmonella PhoQ 

cytoplasmic domain (residues 331 – 485) was obtained from PDB (PDB ID: 3CGZ but 

residues 423 – 444 are unresolved) [166] and used for simulation studies. The structure 

for the unresolved residues (423 – 444) was built using SWISS-MODEL [174]. The 

docking poses generated by AutoDock Vina were equilibrated for 1 nanosecond (ns) and 

underwent 10 ns explicit solvent MD simulations with 20 picosecond (ps) snapshots. 

Interaction free energy between PhoQ residue R and indole (L) was calculated, for 2.5 ns 

segments (125 snapshots), for the most stable binding pose using the following equation 

(Eq. 1) [175-177]: 
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Eq. 1 

 

Where, the polar component of the interaction free energy between R and L is 

represented by the sum of the electrostatic,
Eij

Elec

, and polar solvation, 
Eij

GB

, free energy 

terms. The non-polar component of the interaction free energy between R and L is 

represented by the sum of the Van der Waals,
vdW

ijE , and non-polar solvation, 
g ×SASA
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, free energy terms. The sum of the per residue interaction free energies across the 2.5 ns 

segment is averaged over the number of snapshots used in the calculation, f (=125). 

The electrostatic interaction contribution represents the interaction between 

residue R and L, and the polar solvation contribution represents the interaction of residue 

R with the solvent polarization potential induced by L. The van der Waals contribution 

represents the non-polar interaction between residue R and L, and the non-polar solvation 

contribution represents the non-polar interactions with the surrounding solvent and cavity 

contributions due to binding. The solvation terms were determined using the Generalized 

Born with simple SWitching (GBSW) model [178]. The interaction free energy 

calculations were performed using a non-polar surface tension coefficient, γ, of 0.03 

kcal/(molÅ2).  

 

5.2.6 Expression and purification of Salmonella PhoQ cytoplasmic catalytic domain 

 E. coli BL21 cells carrying pGEX-KG plasmid encoding Stm PhoQcat tagged with 

GST was used for overexpression of the desired protein. Briefly, an overnight culture was 

grown in LB media (containing ampicillin at 100µg/mL concentration) at 30°C, 250 rpm 

and diluted 1:100 in 200 mL LB media (in 5 flasks amounting to 1L) containing ampicillin 

and incubated at 30°C, 250 rpm until an O.D.600nm ~ 0.4-0.6 was achieved. The culture 

was then induced with 100 µM IPTG (Isopropyl β-D-galactopyranoside) overnight at RT. 

The cells were harvested by centrifugation at 10,000g, 4°C for 15 min and resuspended in 

50mM Tris-HCl, pH 7.5, 50mM NaCl containing 200 µM of the protease inhibitor PMSF 

(phenylmethanesulfonyl fluoride). The suspension was sonicated using BRANSON 
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Digital Sonifier and centrifuged at 10,000 ×g, 4°C for 1 h and the supernatant containing 

the soluble fraction was collected for purifying the desired protein. 

 The StmPhoQcat domain is fused to the Glutathione S-transferase (GST) tag 

through a thrombin cleavage site; therefore, a strategy involving affinity purification with 

Glutathione Sepharose® 4B (GS4B), followed by on-column cleavage of GST tag using 

thrombin protease, and thrombin removal using Benzamidine Sepharose® Fast Flow 

(BSFF) was employed [166, 179]. GE products were used for the purification steps and 

manufacturer recommended protocols were followed. Samples were collected at various 

steps and protein concentrations were determined based on the absorbance at 280 nm on 

a Nanodrop (Thermo Scientific). Samples were analyzed using SDS-PAGE to assess 

purity of the the desired protein. A 12.5% resolving gel was cast to obtain separation and 

gels were stained using LabSafe GEL Blue™ (G-BIOSCIENCES®) as per recommended 

procedure. The Pierce™ BCA (bicinchoninic acid) protein assay kit (Thermo Scientific™) 

was used to determine concentration of purified protein samples. 

 

5.2.7 TNP-ATP displacement assay 

 The fluorometric TNP-ATP displacement assay was used to investigate indole 

binding to the PhoQ catalytic domain, as described in [166, 167]. Briefly, the purified Stm 

PhoQcat protein was mixed with the fluorogenic substrate TNP-ATP (2’,3’-O-(2,4,6-

Trinitrophenyl) adenosine 5’-triphosphate tetrasodium salt) in the ratio ~100 µM:100 µM. 

Aliquots of the premixed protein and substrate were then incubated in the presence of test 

signals/controls (1 mM indole, 1 mM radicicol or DMSO) for 15 min followed by 
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recording fluorescence readings using Mithras LB 940 multimode microplate reader from 

Berthold Technologies with 405nm excitation and 535nm emission filters. A reduction in 

fluorescence, compared to DMSO control, in the presence of a test chemical was used as 

the indicator of competitive binding to the catalytic site. 

 

5.3 Results 

5.3.1 Identification of the indole binding sites in the PhoQ periplasmic domain 

 We used AutoDock Vina and SwissDock to scan the PhoQ periplasmic domain for 

possible binding sites and over 500 potential binding pockets were identified (Figure 24). 

The key charged residues in the top 4 potential binding pockets (based on lowest 

AutoDock Vina score) were: Arg100 (R100), Arg50 (R50), Lys186 (K186) and Lys115 

(K115) (Figure 25).  
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Figure 24. PhoQ crystal structure with representative indole-

binding sites determined using docking algorithms such as 

AutoDock Vina and SwissDock. Generated binding poses of indole 

were clustered (shown in line representation) and the most favorable 

conformation within each cluster is shown in licorice representation. 

The PhoQ periplasmic crystal structure is shown in grey cartoon 

representation. 
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Figure 25. Indole docking representations for the four key binding pockets using 

AutoDock Vina. A candidate pose for indole in the binding pocket with the key charged 

residue A) Arg100 (R100), B) Arg50 (R50), C) Lys186 (K186) and D) Lys115 (K115). 
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5.3.2 Indole’s effect on hilA expression in PhoQ periplasmic alanine mutants  

The key residues, in the PhoQ periplasmic domain, potentially interacting with 

indole, were changed to alanine in Salmonella phoQ gene cloned on pCA24N. The Q5® 

Site-directed mutagenesis kit (NEB) was used to substitute arginine 100, lysine 186, and 

lysine 115 to alanine (R100A, K186A and K115A). The plasmids encoding the WT and 

mutant phoQ were transformed into the hilA- reporter Salmonella ΔphoQ strain. The effect 

of indole on hilA expression was observed using the β-gal reporter assay to determine the 

influence of the alanine substitutions in PhoQ’s periplasmic domain on indole-mediated 

virulence. Our data (Figure 26) suggested that these are not the binding sites as the 

response to indole with the alanine-substituted PhoQ was not significantly different 

compared to that observed with the native PhoQ.  

We further investigated the stability of indole’s interaction with these residues in 

the binding pockets using Molecular Dynamics (MD) simulations. Our analysis suggested 

that indole did not interact with PhoQ stably in these four binding pockets. Briefly, the 

two docking programs/servers (SwissDock and AutoDock Vina) were used to search 

indole binding to the PhoQ crystal structures: 1YAX and 4UEY. For 1YAX and 4UEY, 

SwissDock produced 256 structures and AutoDock Vina produced 9 poses. The 9 binding 

poses predicted by AutoDock Vina for both structures were investigated through short (5 

ns) MD simulations. For SwissDock produced structures, clustering analysis was carried 

out. The SwissDock structures were first scored using AutoDock Vina's scoring function 

and then ranked based on energy (lowest, most favorable to highest energy). WORDOM 

[180, 181] was used to conduct RMSD based clustering using leader method with cutoff 
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RMSD of 5 Å (Angstrom). The lowest energy structure, per cluster, was then investigated 

using short 5 ns MD simulations. A total of 21 binding poses from SwissDock were 

evaluated after clustering. The MD simulations showed indole leaving the binding site for 

all of the binding pockets investigated indicating that indole’s interaction with the 

periplasmic domain was unstable.  

 

Figure 26. Effect of indole on hilA expression in PhoQ single amino acid mutants. 

hilA virulence gene expression using β-gal assay. The ΔphoQ mutation was generated in 

the hilA reporter and transformed with pCA24N plasmid encoding WT phoQ, 

phoQR100A, phoQK186A and phoQK115A. The reporter strains were treated overnight 

with and without 1 mM indole and the β-gal activity was measured in exponential phase 

cultures after dilution. Data shown are the fold decrease in expression with indole-

treatment relative to the solvent-treated control. 
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5.3.3 Investigation of indole interaction with the cytoplasmic domain of Salmonella 

PhoQ 

 We extended our computational analysis of indole-PhoQ interactions to the 

cytoplasmic domain.  AutoDock Vina [163] was used to determine possible indole-

binding sites in the cytoplasmic PhoQ domain (residues 331 – 485).  Nine docking poses 

were generated by AutoDock Vina and eight of these shared the same binding site as ATP. 

The predicted poses were equilibrated for 1 ns and short 10 ns explicit solvent MD 

simulations were conducted. Interaction free energy was calculated using Eq. 1 between 

the PhoQ residue R and indole (L). The average interaction free energies per PhoQ residue 

and their standard deviation is represented in Figure 27. 
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Figure 27. Preliminary average interaction free energies (kcal/mol) per residue for 

indole binding to the PhoQ cytoplasmic domain. Red bars and blue bars represent the 

non-polar and polar components of the total per residue interaction free energies, 

respectively. 

 

 Preliminary results show that indole is primarily stabilized by non-polar 

interactions. The aromatic ring of Tyr394 forms π-π interactions with the aromatic rings 

of indole. The side chains of Val387, Asn390, Ala391, Val414, Arg440, Pro441, Ala471, 

Met473, and Leu447 as well as the backbone atoms of Glu415 and Arg442 form the walls 

of the binding site and, due to their proximity to indole, interact with indole through non-

polar interactions. These results also indicate that the position of Tyr394 is stabilized by 

cation-π interactions between the aromatic ring of Tyr394 and the charged group of 
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Lys393. The orientation of indole is largely guided by the strong, stable hydrogen bond 

formed between the amide group of indole and the carboxyl side chain of Asp416 (Figure 

28).  

 

 

 

 

 Other tryptophan metabolites such as indole-3-acetic acid, indole-3-pyruvic acid 

and tryptamine did not decrease hilA expression in Salmonella to the extent exhibited by 

indole treatment (Figure 14). Therefore, to test whether these other tryptophan 

metabolites interact with PhoQ in the ATP-binding pocket, we docked the three 

Figure 28. Simulation of indole binding to the cytoplasmic domain of 

Salmonella PhoQ. The PhoQ receptor is shown in gray, new cartoon 

representation. Key receptor residues are shown in thin licorice 

representation, labeled in black. The hydrogen bond between indole and 

Asp416 (D416) is shown by a dotted black line. 
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compounds to the crystal structure of PhoQ using AutoDock Vina and conducted short 

MD simulations. Preliminary simulations showed that indole-3-acetic acid and indole-3-

pyruvic acid were being pulled out of the ATP-binding site (Figure 29). Tryptamine, on 

the contrary, was stable in the ATP-binding site; however, it is likely trapped in the 

periplasmic domain that is rich in negatively charged residues such as aspartic and 

glutamic acid (Figure 30). Tryptamine’s transport to the cytoplasm might be limited due 

to its interaction with PhoQ’s periplasmic domain, thereby restricting its access to the 

cytoplasmic domain of PhoQ. This may explain why we do not observe a significant 

decrease in hilA expression with tryptamine treatment.  
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A 

B 

Figure 29. Docking of tryptophan metabolites with PhoQ cytoplasmic domain using 

AutoDock Vina. A candidate pose for A) indole-3-acetate and B) indole-3-pyruvate in 

the ATP-binding pocket of PhoQ crystal structure. Indole-3-acetate and indole-3-

pyruvate are in licorice representation and PhoQ in new cartoon representation. 



 

90 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Experimentally resolved crystal structure of PhoQ’s 

periplasmic domain with aspartic and glutamic acids shown in 

licorice representation. The negatively charged amino acid residues 

likely trap tryptamine in the periplasmic domain. 
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Table 5. Chemical structures (2D) of indole, other tryptophan metabolites, radicicol 

and ATP analogs. (Sourced from the open chemistry database: PubChem, 

https://pubchem.ncbi.nlm.nih.gov) 

Chemical Name Chemical Structure PubChem CID 

Indole 798 

Indole-3-acetic 

acid 

802 

Indole-3-pyruvic 

acid 

803 
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Tryptamine 1150 

Radicicol 5359013 

ATP 5957 

TNP-ATP 24820759 

Chemical Name Chemical Structure PubChem CID 

Table 5. Continued
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5.3.4 Indole’s interaction with the catalytic domain of Salmonella PhoQ 

 Computational analysis of indole binding to the PhoQ cytoplasmic domain 

predicted that indole occupies the ATP binding site in the PhoQ catalytic domain. We used 

the TNP-ATP displacement assay to determine indole’s interaction with the catalytic 

domain of Salmonella PhoQ (Stm PhoQcat) in vitro. The ~17 kDa Stm PhoQcat protein was 

expressed in E. coli BL21 and purified as described in the methods section. Samples from 

purification steps were collected and run on SDS PAGE to verify presence of the desired 

protein (Figure 31). 

 The purified fraction containing Stm PhoQcat was used in the TNP-ATP 

displacement assay to determine indole’s interaction with PhoQ. Radicicol was used as a 

control because it is a known to bind Salmonella PhoQ in the ATP-binding site and reduce 

fluorescence by 50% in the TNP-ATP displacement assay [166]. Our observations with 

radicicol and indole in the TNP-ATP displacement assay were not as expected. The 

decrease in fluorescence was ~10% with 1 mM radicicol compared to the expected ~50% 

(Figure 32). Indole did not show a decrease in fluorescence at either of the concentrations 

tested (1 and 5 mM). The observations from the TNP-ATP displacement assay are 

inconclusive as the control (1 mM radicicol) did not result in the expected decrease in 

fluorescence. Future experiments will be aimed at optimizing the assay with respect to 

testing a range of concentrations (protein and ligand) as well as interaction time i.e. 

incubation period of the TNP-ATP:PhoQ complex with indole. We also propose to 

investigate radicicol in the hilA reporter assay to determine whether radicicol can 

downregulate hilA expression in a manner similar to that observed for indole. 
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Figure 31. SDS PAGE images of Stm PhoQcat purification fractions. A) Sonicated 

lysate (lanes 2, 3), unbound fractions from GS4B (lanes 4,5), washes from GS4B (lanes 6-

8), PageRuler™ Plus ladder (lane 9), thrombin cleavage fraction (lane 10), GS4B matrix 

bound to Stm PhoQcat-GST (lane 11), uninduced whole cell lysate (lane 13) and induced 

whole cell lysate (lane 14). 

B) Fractions containing Stm PhoQcat post thrombin cleavage (lanes 2-5), purified Stm 

PhoQcat post thrombin removal (lane 6), PageRuler™ Plus ladder (lane 8), GS4B matrix 

post thrombin cleavage (lane 9), GS4B matrix bound to Stm PhoQcat-GST (lane 12) and 

BSFF matrix post thrombin removal (lane 14). 
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Figure 32. TNP-ATP displacement assay to assess indole’s interaction with Stm 

PhoQcat cytoplasmic domain in the ATP-binding pocket. TNP-ATP was mixed with 

Stm PhoQcat in the ratio of 1:1 and fluorescence intensity was recorded after addition of 

control and test signals. Data shown is representative of two independent measurements 

from a single batch of purified Stm PhoQcat.  

 

 

5.4 Discussion 

 Microorganisms sense changes in their environments through two-component 

systems (TCSs). These two-component systems are encoded in genomes of most bacteria 

with an average of 52 TCSs [182, 183] consisting of a sensor kinase and a cognate 

response regulator pair. About thirty putative sensor kinases have been identified in the 

Salmonella Typhimurium genome [184] and some of these TCS genes, such as phoPQ 

[29], ompR/envZ [185], pmrAB [186] and ssrAB [187], are important for systemic 

infection in mice. 
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The β-gal reporter and invasion assay data with ΔphoPQ mutants provided 

evidence for PhoPQ involvement in indole-mediated down-regulation of Salmonella 

virulence. PhoQ is the sensor for cations and cationic antimicrobial peptides that interact 

with the periplasmic domain [128, 130]. In order to determine the indole sensing 

mechanism for Salmonella, we used computational analysis of indole’s interaction with 

the sensor kinase PhoQ followed by in vitro experiments to verify predictions. Since TCSs 

sense a wide range of environmental signals [183] and the most common mode of  

interaction occurs through binding to the periplasmic domain, we first scoped PhoQ’s 

periplasmic domain for indole binding. Our simulations and in vitro data for indole 

binding to PhoQ suggest that indole does not interact with the periplasmic domain of 

PhoQ. Further computational analysis of PhoQ-indole interaction indicated that indole 

might interact with the cytoplasmic domain of PhoQ in the ATP-binding pocket (Figure 

33A).  

Free energy calculations for indole’s interaction with the PhoQ catalytic domain 

(Figure 27) as well as reported interaction of radicicol with the PhoQ catalytic domain 

(Figure 33B) strongly support the possibility of indole’s interaction with the PhoQ 

cytoplasmic region. However, further experimentation is required to verify these 

predictions. 
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Figure 33. Molecular modeling of indole and radicicol binding to cytoplasmic 

domain of PhoQ in comparison to ATP. A) Binding pose of indole (opaque licorice 

representation) in the ATP-binding site of cytoplasmic domain of PhoQ (grey new 

cartoon representation). According to simulations, indole binds in the same location as 

the adenine rings of ATP (transparent licorice representation from protein alignment 

using Match Maker in Chimera).  

B) Radicicol (opaque licorice representation) binding to the cytoplasmic domain of 

PhoQ (grey new cartoon representation). Loop residues 420-446 in PhoQ are omitted 

for clarity. 
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Although most of the ligands studied are known to interact with their receptor at 

the periplasmic domain, there is evidence that the EnvZ receptor mediates signal sensing 

via the cytoplasmic domain instead of the periplasmic domain [188]. Contingent upon 

verification, indole sensing by PhoQ may be another example of signal sensing through 

the cytoplasmic domain. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS  

 

Exposure to indole reduced the extent of Salmonella infection in mice. We 

observed lower competitiveness of indole treated Salmonella in the cecum, which is a 

known site for intestinal persistence and fecal shedding. The decrease in Salmonella 

virulence is due, in part, to the reduced motility and competence in invasion of mammalian 

cells. The phenotype of reduced epithelial cell invasion is a result of down-regulation of 

SPI-1 genes due to indole treatment. We also demonstrated that indole-mediated decrease 

in invasion is not limited to the bacterial cells but also extends to the mammalian cells, 

and indole-treated epithelial cells were found to be partially resistant to Salmonella 

invasion. 

Indole’s modulation of Salmonella virulence gene expression was not exhibited by 

other tryptophan metabolites such as indole-3-acetic acid, indole-3-pyruvic acid and 

tryptamine, suggesting a structure-function relationship for the different tryptophan 

metabolites in regulating SPI-1 gene expression. Indole also synergized with SCFA’s 

(cecal concentrations) to down-regulate hilA expression in vitro, further supporting 

indole’s importance as a virulence-mitigating signal in the gut. 

We were also interested in determining the regulatory proteins involved in indole-

mediated down-regulation of Salmonella invasion and virulence. Our current data shows 

that SdiA is not involved in the indole-mediated decrease in Salmonella invasion. A well-

studied two-component regulatory system, PhoPQ, was determined to be partially 

involved in mediating indole’s down-regulatory effect on Salmonella virulence as 
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determined by in vitro invasion and β-gal reporter assays. This leads us to surmise that 

other regulatory systems may also contribute to indole-mediated modulation of 

Salmonella virulence. We further investigated the mechanism of indole’s interaction with 

PhoQ using computational approaches, such as ligand docking and molecular modeling, 

followed by in vitro experimentation. Our data suggests that indole might interact with the 

cytoplasmic catalytic domain of the PhoQ receptor rather than the periplasmic domain. 

Indole also reduced Salmonella motility in vitro and acts as a chemorepellent. We 

confirmed that the repellent response to indole is mediated via indole sensing through the 

MCP Tsr in Salmonella. The chemorepellent property may be responsible in mitigating 

Salmonella’s migration to the infection niche in the GI tract, thereby strengthening 

colonization resistance in vivo. 

Future directions for this work include further investigation into the role of 

indole in vivo as well as other mechanisms of indole-mediated modulation of Salmonella 

virulence. It would also be interesting to study indole’s interaction with Tsr to 

understand the molecular mechanism underlying Salmonella’s chemorepellent response 

to indole. Some of the proposed future work is as follows:  

1. Investigate the role of indole in colonization resistance in vivo 

Gut microbiota protect the host from enteric infections using a phenomenon 

termed colonization resistance, however, the underlying mechanisms are not completely 

understood. It will be interesting to investigate whether indole plays a role in colonization 

resistance towards Salmonella infection in vivo. In order to test this, a defined microbiota 

community such as the Oligo-MM12 along with FA3 [80] can be used that confers 
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conventional-like colonization resistance against Salmonella infection. However, the 

consortium member strains would need to either not have tnaA activity or be genetically 

modified to delete the tnaA gene so that the gut environment is devoid of indole. The 

colonization ability of Salmonella in the presence of the modified ΔtnaA microbiota can 

be evaluated to understand indole’s role in vivo pathogen colonization resistance. 

SCFAs have been attributed to colonization resistance and a reduction in 

concentration of SCFAs in streptomycin-treated mice (due to a disruption of the normal 

microflora) resulted in an increase in Salmonella proliferation in the mouse gut [73, 76]. 

We observed that indole synergistically enhanced the down-regulation of hilA in vitro. 

This could be another factor contributing towards/enhancing colonization resistance and 

it would be interesting to ascertain the mechanism of indole’s synergistic behavior on SPI-

1 gene expression and regulation. 

 

2. Investigate role of indole as a chemorepellent with respect to Salmonella 

colonization 

The motility-apparatus flagella and the ability of directed movement, i.e. 

chemotaxis, are important for efficient colonization by Salmonella in mice [160]. 

Chemoreceptors can sense luminal signals and guide pathogens to favorable niches in the 

host to colonize and infect. Trg, Tsr and Aer are three such chemoreceptors that sense 

galactose, nitrate and tetrathionate, respectively, and promote Salmonella colonization in 

the mouse infection model [161]. In the present study, we demonstrate that indole is a 

chemorepellent sensed by the Tsr chemoreceptor. It would be interesting to investigate 
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whether indole’s repellent response is stronger than the attractant response of the gut 

luminal signals such as galactose, nitrate and tetrathionate. Capillary assay with competing 

signals can be used to determine indole’s potency as a chemorepellent in the presence of 

attractant signals that Salmonella encounters in the gut environment.  

 

3. Determine indole-binding site on the Tsr chemoreceptor using docking and in vitro 

experimentation 

We showed that indole is sensed by Tsr in Salmonella but little is known about 

how indole interacts with the chemoreceptor. A docking approach can be used to predict 

the sites of molecular interaction of the ligand indole with the protein chemoreceptor Tsr. 

The predictions can be verified experimentally by generating mutations in Tsr at the 

positions predicted to be important for indole interaction. These mutants can be evaluated 

for their chemotactic response using capillary assays to further our understanding on 

molecular interactions between indole and Tsr. Indole might play a role in preventing 

Salmonella colonization in the cecum and it will be worthwhile to further investigate the 

role of indole-Tsr interaction in vivo using the tsr mutants that do not respond to indole. 

 

4. Investigate other mechanisms of indole-mediated down-regulation of Salmonella 

virulence: 

In the present study we show that PhoPQ is only partially involved the indole-

mediated down-regulation of Salmonella virulence. Therefore, further investigation to 

completely understand the other underlying mechanisms is needed. Bacteria sense 
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environmental signals using two component systems that signal their preparation for 

survival or infection. Salmonella Typhimurium genome has about thirty putative sensor 

kinases [184] which can be examined for their involvement in indole-mediated down-

regulation of Salmonella virulence. An exploratory approach can be employed using 

sensor kinase gene deletion mutants for evaluation of indole’s effect on hilA (master 

regulator of SPI-1 genes) expression. Abrogation of indole’s response in a deletion mutant 

would suggest involvement of the deleted gene in indole-mediated modulation of hilA 

expression, hence Salmonella virulence. 
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APPENDIX 

  

The Salmonella phoQ clones were sent for sequencing to Eton Bioscience Inc. in 

order to verify the presence of desired mutation. The sequences for the correct clones with 

the two primers: F-CA and pCA24N-gfpR are as follows: 

1) Sequence data for pCA24NStmPhoQ, -gfp clone with F-CA primer: 

CTTNNCCCATTCACCATCACCATACGGATCCGGCCCTGAGGGCCAATA

AATTTGCTCGCCATTTTCTGCCGCTGTCGCTGCGGGTTCGTTTTTTGCT

GGCGACAGCCGGCGTCGTGCTGGTGCTTTCTTTGGCATATGGCATAGT

GGCGCTGGTCGGCTATAGCGTAAGTTTTGATAAAACCACCTTTCGTTT

GCTGCGCGGCGAAAGCAACCTGTTTTATACCCTCGCCAAATGGGAAA

ATAATAAAATCAGCGTTGAGCTGCCTGAAAATCTGGACATGCAAAGC

CCGACCATGACGCTGATTTACGATGAAACGGGCAAATTATTATGGAC

GCAGCGCAACATTCCCTGGCTGATTAAAAGCATTCAACCGGAATGGT

TAAAAACGAACGGCTTCCATGAAATTGAAACCAACGTAGACGCCACC

AGCACGCTGTTGAGCGAAGACCATTCCGCGCAGGAAAAACTCAAAGA

AGTACGTGAAGATGACGATGATGCCGAGATGACCCACTCGGTAGCGG

TAAATATTTATCCTGCCACGGCGCGGATGCCGCAGTTAACCATCGTGG

TGGTCGATACCATTCCGATAGAACTAAAACGCTCCTATATGGTGTGGA

GCTGGTTCGTATACGTGCTGGCCGCCAATTTACTGTTAGTCATTCCTTT

ACTGTGGATCGCCGCCTGGTGGAGCTTACGCCCTATCGAGGCGCTGG

CGCGGGAAGTCCGCGAGCTTGAAGATCATCACCGCGAAATGCTCAAT
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CCGGAGACGACGCGTGAGCTGACCAGCCTTGTGCGCAACCTTAATCA

ACTGCTCAAAAGCGAGCGTGAACGTTATAACAAATACCGCACGACCC

TGACCGACCTGACGCACAGTTTAAAAAACGCCGCTCGCGGGTTTTGC

AGAGTACGTTACGCTCTTTACGCAACGAAAGATGAGCGTCAGCAAAG

CTGAACCGGTGATGCTGGAACAGATCAGCCGGATTTTCCCAGCAGAT

CGGCTATTATCTGCATCGCGCCCAGTATGCGCGGTAGCGGCGTGTTGT

AAANCNGCGAACTGCATCCGGTCGCCGCCGTTGTTAAGAATAAACCC

TG 

 

2) Sequence data for pCA24NStmPhoQ R100A, -gfp clone with F-CA primer: 

NCCCTTCCCATGCACCATACGGATCCGGCCCTGAGGGCCAATAAATTT

GCTCGCCATTTTCTGCCGCTGTCGCTGCGGGTTCGTTTTTTGCTGGCGA

CAGCCGGCGTCGTGCTGGTGCTTTCTTTGGCATATGGCATAGTGGCGC

TGGTCGGCTATAGCGTAAGTTTTGATAAAACCACCTTTCGTTTGCTGC

GCGGCGAAAGCAACCTGTTTTATACCCTCGCCAAATGGGAAAATAAT

AAAATCAGCGTTGAGCTGCCTGAAAATCTGGACATGCAAAGCCCGAC

CATGACGCTGATTTACGATGAAACGGGCAAATTATTATGGACGCAGG

CGAACATTCCCTGGCTGATTAAAAGCATTCAACCGGAATGGTTAAAA

ACGAACGGCTTCCATGAAATTGAAACCAACGTAGACGCCACCAGCAC

GCTGTTGAGCGAAGACCATTCCGCGCAGGAAAAACTCAAAGAAGTAC

GTGAAGATGACGATGATGCCGAGATGACCCACTCGGTAGCGGTAAAT

ATTTATCCTGCCACGGCGCGGATGCCGCAGTTAACCATCGTGGTGGTC
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GATACCATTCCGATAGAACTAAAACGCTCCTATATGGTGTGGAGCTG

GTTCGTATACGTGCTGGCCGCCAATTTACTGTTAGTCATTCCTTTACTG

TGGATCGCCGCCTGGTGGAGCTTACGCCCTATCGAGGCGCTGGCGCG

GGAAGTCCGCGAGCTTGAAGATCATCACCGCGAAATGCTCAATCCGG

AGACGACGCGTGAGCTGACCAGCCTTGTGCGCAACCTTAATCAACTG

CTCAAAAGCGAGCGTGAACGTTATAACAAATACCGCACGACCCTGAC

CGACCTGACGCACAGTTTAAAAACGCCGCTCGCGGTTTTGCAGAGTA

CGTTACGCTCTTTACGCAACGAAAAGATGAGCGTCAGCAAAGCTGAA

CCGGTGATGCTGGAACAGATCAGCCGGATTTCCCAGCAGATCGGCTA

TTATCTGCATCGCCGCCAGTATGCGCGTAGCGGCGTGTGTTAGCCGCG

AACTGCATCCCGTCGCGCGTGTAGAATACCTGATTTCTGCGCTAAATA

AGTTATCAGCGTAAGGGGTGATATCAGGTATGATATNACCAGAAATC

AGTTTGTCCGCGAGCCAAACGACCTGTCGAGTGATGNNACGNNCTGN

NNANNNTGGANATATGGCCTGGCAGTTGGTCCGAGAATTCCCGGGNN

TNCN 

 

3) Sequence data for pCA24NStmPhoQ R100A, -gfp clone with pCA24N-gfpR 

primer: 

NNGGNTCCGGCGGCAACCGAGCGTTCTCGAACAAATCCAGATGGAGT

TCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCTCAGCTAAT

TAAGCTTGGCTGCAGGTCGACCCTTAGCGGCCGCATAGGCCTTCCTCT

TTCTGTGTGGGATGCTGTCGGCCAAAAACGACCTCCATACGGGCGCC
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ACCGAGCAGACTGTCGCTGGCAATGATCTGCCCGGCGTATTGTTCCGT

AATCTCGCGCGCGACAGCCAGCCCCACGCCTTGTCCTGGTCGTAGGGT

ATCGGCGCGCTGACCGCGATCAAACACCAGGGAACGTTTGCTGTGGG

GAATGCCTGGGCCGTCATCTTCGACGAAAATATGCAAATGATCGTCG

GTCTGGCGAGCCGAAATCTCGACAAACTCCAGACAATATTTACAAGC

GTTGTCCAGTACGTTGCCCATCACTTCGACAAAGTCGTTTTGCTCGCC

GACAAAACTGATTTCTGGTGAAATATCCATACTGATATTCACCCCTTT

ACGCTGATAAACTTTATTTAGCGCAGAAATCAGGTTATCTAACAACG

GCGCGACGGGATGCAGTTCGCGGCTTAACAACACGCCGCTACCGCGC

ATACTGGCGCGATGCAGATAATAGCCGATCTGCTGGGAAATCCGGCT

GATCTGTTCCAGCATCACCGGTTCAGCTTTGCTGACGCTCATCTTTTCG

TTGCGTAAAGAGCGTAACGTACTCTGCAAAACCGCGAGCGGCGTTTT

TAAACTGTGCGTCAGGTCGGTCAGGGTCGTGCGGTATTTGTTATAACG

TTCACGCTCGCTTTTGAGCAGTTGATTAAGGTTGCGCACAAGGCTGGT

CAGCTCACGCGTCGTCTCCGGATTGAGCATTTCGCGGTGATGATCTTC

AAGCTCGCGGACTTCCCGCGCCAGCGCCTCGATAGGGCGTAAGCTCC

ACCAGGCGGCGATCCACAGTAAAGGAATGACTACAGTAAATTGGCGG

GCAGCACGTATACGAACCAGCTCCACACCATATAGGAGCGTTTAGTT

CTATCGGAATGGNATCGACCACCACGATGGTAACTGCGCATCCGCGC

CGTGCCAGATAAATATTTACCGCTACGGATGGATCATCTCGNATCATC

GTCATCTNACGTACTTCTTTGAGTTTNCTGGCCCGGAATGNNTTNNNN

NACACGGNCTGG 
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TGCGNCTACGTTGNNTTCCAANTTTCATATGCGGAAANCNN 

 

4) Sequence data for pCA24NStmPhoQ K115A, -gfp clone with F-CA primer: 

ANCNGCGGATGCCGGCCCTGAGGGCCAATAAATTTGCTCGCCATTTTC

TGCCGCTGTCGCTGCGGGTTCGTTTTTTGCTGGCGACAGCCGGCGTCG

TGCTGGTGCTTTCTTTGGCATATGGCATAGTGGCGCTGGTCGGCTATA

GCGTAAGTTTTGATAAAACCACCTTTCGTTTGCTGCGCGGCGAAAGCA

ACCTGTTTTATACCCTCGCCAAATGGGAAAATAATAAAATCAGCGTTG

AGCTGCCTGAAAATCTGGACATGCAAAGCCCGACCATGACGCTGATT

TACGATGAAACGGGCAAATTATTATGGACGCAGCGCAACATTCCCTG

GCTGATTAAAAGCATTCAACCGGAATGGTTAGCGACGAACGGCTTCC

ATGAAATTGAAACCAACGTAGACGCCACCAGCACGCTGTTGAGCGAA

GACCATTCCGCGCAGGAAAAACTCAAAGAAGTACGTGAAGATGACG

ATGATGCCGAGATGACCCACTCGGTAGCGGTAAATATTTATCCTGCCA

CGGCGCGGATGCCGCAGTTAACCATCGTGGTGGTCGATACCATTCCG

ATAGAACTAAAACGCTCCTATATGGTGTGGAGCTGGTTCGTATACGTG

CTGGCCGCCAATTTACTGTTAGTCATTCCTTTACTGTGGATCGCCGCCT

GGTGGAGCTTACGCCCTATCGAGGCGCTGGCGCGGGAAGTCCGCGAG

CTTGAAGATCATCACCGCGAAATGCTCAATCCGGAGACGACGCGTGA

GCTGACCAGCCTTGTGCGCAACCTTAATCAACTGCTCAAAAGCGAGC

GTGAACGTTATAACAAATACCGCACGACCCTGACCGACCTGACGCAC

AGTTTAAAAACGCCGCTCGCGGTTTTGCAGAGTACGTTACGCTCTTTA
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CGCAACGAAAAGATGAGCGTCAGCAAAGCTGAACCGGTGATGCTGG

AACAGATCAGCCGGATTTCCCAGCAGATCGGCTATTATCTGCATCGCC

GCCAGTATGCGCGGTAGCGGCGTGTTGTTAGCCGCGAACTGCATCCG

TCGCCGCGTTGTAGAATAACTGATTTCTGCGCTAAATAAAGTTATCAG

CGTAAAGGGGGTGAATATCAGTATGGNTATTTCACCAGAAATCAGNT

TTGTTCGCGAGCAACGACCTTGTCCGAGGTGTATGCACGTACTGNNN

ACGCCGTGGCAAAAT 

ATGNNNTGGGAGTTGTGTGCGAGAATTTTCGGNNNNNN 

 

5) Sequence data for pCA24NStmPhoQ K115A, -gfp clone with pCA24N-gfpR 

primer: 

NTTGGGTTTACCATAAAAACGCCCGGCGGCAACCGAGCGTTCTGAAC

AAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAG

TCCAAGCTCAGCTAATTAAGCTTGGCTGCAGGTCGACCCTTAGCGGCC

GCATAGGCCTTCCTCTTTCTGTGTGGGATGCTGTCGGCCAAAAACGAC

CTCCATACGGGCGCCACCGAGCAGACTGTCGCTGGCAATGATCTGCC

CGGCGTATTGTTCCGTAATCTCGCGCGCGACAGCCAGCCCCACGCCTT

GTCCTGGTCGTAGGGTATCGGCGCGCTGACCGCGATCAAACACCAGG

GAACGTTTGCTGTGGGGAATGCCTGGGCCGTCATCTTCGACGAAAAT

ATGCAAATGATCGTCGGTCTGGCGAGCCGAAATCTCGACAAACTCCA

GACAATATTTACAAGCGTTGTCCAGTACGTTGCCCATCACTTCGACAA

AGTCGTTTTGCTCGCCGACAAAACTGATTTCTGGTGAAATATCCATAC
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TGATATTCACCCCTTTACGCTGATAAACTTTATTTAGCGCAGAAATCA

GGTTATCTAACAACGGCGCGACGGGATGCAGTTCGCGGCTTAACAAC

ACGCCGCTACCGCGCATACTGGCGCGATGCAGATAATAGCCGATCTG

CTGGGAAATCCGGCTGATCTGTTCCAGCATCACCGGTTCAGCTTTGCT

GACGCTCATCTTTTCGTTGCGTAAAGAGCGTAACGTACTCTGCAAAAC

CGCGAGCGGCGTTTTTAAACTGTGCGTCAGGTCGGTCAGGGTCGTGC

GGTATTTGTTATAACGTTCACGCTCGCTTTTGAGCAGTTGATTAAGGT

TGCGCACAAGGCTGGTCAGCTCACGCGTCGTCTCCGGATTGAGCATTT

CGCGGTGATGATCTTCCAAGCTCGCGGACTTCCCGCGCCAGCGCTTCG

ATAGGGCCGTAAGCTCCACCAGGCGGCGATCCACAGTAAAGGAATGA

CTAACAGTAAATTGGCCGGCAAGCACGTATACGACCAGCTCCACACC

ATTATAGGGAGCGTTAGTCTATCGGAATGNNATCGACCACACGGATG

TACTGCGCATCCGCGCGTGCAGGATAANNACGCTACGAGTGNNCATC

CGGCATCATCGCCATCCTNCGTACTCTGANTTTCCTGNCCGATGGTCT

CNNTCAACAGG 

 

6) Sequence data for pCA24NStmPhoQ K186A, -gfp clone with F-CA primer: 

NCCATGCGCCATACGGATCCGGCCCTGAGGGCCAATAAATTTGCTCG

CCATTTTCTGCCGCTGTCGCTGCGGGTTCGTTTTTTGCTGGCGACAGCC

GGCGTCGTGCTGGTGCTTTCTTTGGCATATGGCATAGTGGCGCTGGTC

GGCTATAGCGTAAGTTTTGATAAAACCACCTTTCGTTTGCTGCGCGGC

GAAAGCAACCTGTTTTATACCCTCGCCAAATGGGAAAATAATAAAAT
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CAGCGTTGAGCTGCCTGAAAATCTGGACATGCAAAGCCCGACCATGA

CGCTGATTTACGATGAAACGGGCAAATTATTATGGACGCAGCGCAAC

ATTCCCTGGCTGATTAAAAGCATTCAACCGGAATGGTTAAAAACGAA

CGGCTTCCATGAAATTGAAACCAACGTAGACGCCACCAGCACGCTGT

TGAGCGAAGACCATTCCGCGCAGGAAAAACTCAAAGAAGTACGTGA

AGATGACGATGATGCCGAGATGACCCACTCGGTAGCGGTAAATATTT

ATCCTGCCACGGCGCGGATGCCGCAGTTAACCATCGTGGTGGTCGAT

ACCATTCCGATAGAACTAGCGCGCTCCTATATGGTGTGGAGCTGGTTC

GTATACGTGCTGGCCGCCAATTTACTGTTAGTCATTCCTTTACTGTGG

ATCGCCGCCTGGTGGAGCTTACGCCCTATCGAGGCGCTGGCGCGGGA

AGTCCGCGAGCTTGAAGATCATCACCGCGAAATGCTCAATCCGGAGA

CGACGCGTGAGCTGACCAGCCTTGTGCGCAACCTTAATCAACTGCTCA

AAAGCGAGCGTGAACGTTATAACAAATACCGCACGACCCTGACCGAC

CTGACGCACAGTTTAAAAACGCCGCTCGCGGTTTTGCAGAGTACGTTA

CGCTCTTTACGCAACGAAAAGATGAGCGTCAGCAAAGCTGAACCGGT

GATGCTGGGAACAGATCAGCCGGATTTCCCAGCAGATCGGCTATATC

TGCATCGCGCCAGTATGCGCGGTAGCGGCGTGTTGTAAGCCGCGAA 

CTGCATCCCGTCGCGCGTGTAGATACCTGATTCTGCGCTAATAAAGTT

ATCAGCGTAAGGGTGATATCAGTANNNTATTCACCAGAAATTCANTN

GTCGCGAGCAACGACTTGTCGANNNTGGCACGTACTGGNCAGGCTTG

TTAAAATATTGGNCTGGA 
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7) Sequence data for pCA24NStmPhoQ K186A, -gfp clone with pCA24N-gfpR 

primer: 

NCGACCCGGCGGCACCGAGCGTTCTGAACAATCCAGATGGAGTTCTG

AGGTCTTACTGGATCTATCAACAGGAGTCCAAGCTCAGCTAATTAAG

CTTGGCTGCAGGTCGACCCTTAGCGGCCGCATAGGCCTTCCTCTTTCT

GTGTGGGATGCTGTCGGCCAAAAACGACCTCCATACGGGCGCCACCG

AGCAGACTGTCGCTGGCAATGATCTGCCCGGCGTATTGTTCCGTAATC

TCGCGCGCGACAGCCAGCCCCACGCCTTGTCCTGGTCGTAGGGTATCG

GCGCGCTGACCGCGATCAAACACCAGGGAACGTTTGCTGTGGGGAAT

GCCTGGGCCGTCATCTTCGACGAAAATATGCAAATGATCGTCGGTCTG

GCGAGCCGAAATCTCGACAAACTCCAGACAATATTTACAAGCGTTGT

CCAGTACGTTGCCCATCACTTCGACAAAGTCGTTTTGCTCGCCGACAA

AACTGATTTCTGGTGAAATATCCATACTGATATTCACCCCTTTACGCT

GATAAACTTTATTTAGCGCAGAAATCAGGTTATCTAACAACGGCGCG

ACGGGATGCAGTTCGCGGCTTAACAACACGCCGCTACCGCGCATACT

GGCGCGATGCAGATAATAGCCGATCTGCTGGGAAATCCGGCTGATCT

GTTCCAGCATCACCGGTTCAGCTTTGCTGACGCTCATCTTTTCGTTGCG

TAAAGAGCGTAACGTACTCTGCAAAACCGCGAGCGGCGTTTTTAAAC

TGTGCGTCAGGTCGGTCAGGGTCGTGCGGTATTTGTTATAACGTTCAC

GCTCGCTTTTGAGCAGTTGATTAAGGTTGCGCACAAGGCTGGTCAGCT

CACGCGTCGTCTCCGGATTGAGCATTTCGCGGTGATGATCTTCAAGCT

CGCGGACTTCCCGCGCCAGCGCCTCGATAGGGCGTAAGCTCCACCAG
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GGCGGCGATCCACAGTAAAGGAATGACTACAGTAAATTGGCGGGCCA

GCACGTATACGAACCAGCTCCACACCATATAGGAGCGCCGCT 

AGTCTATCGGATGNATCGACCACCCACGATGGTNACTGCGCATCCGC

GCCGTGCCAGATAATATTAACCCGCTACCGAGTGNNCATCTCGNATC

ATCGTCATCCTNNACGTTACCTCTNGNTTNTCTGGGCCCGGATGNNTT

CGCCCCTCCAACAANCNN 

 




