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ABSTRACT 

 

 

In reservoir management, it is challenging to obtain an efficient production 

schedule and maximize the profits. An optimization workflow is usually used in 

maximizing/minimizing the production objective. However, production optimization is 

not an easy task and could be time-consuming since the reservoir and the production 

optimization itself consist of complex subsystems and uncertainties. Thus, many studies 

have been done to propose optimization methods that are efficient and yet practical in 

finding the optimal strategy. Most of these methods usually focus on the gradient-based 

approaches, where the information from gradients of the objective function with respect 

to control parameters is used in finding the optimal solutions.  

One of the gradient-based methods that recently has gained popularity in 

petroleum production optimization is Ensemble-based Optimization (EnOpt). In EnOpt, 

the gradient is approximated using a linear regression between an ensemble of control 

vectors and their corresponding objective function values. Thus, the computational cost of 

the method relies on the number of realizations in the control ensemble and is nearly 

independent of the number of control parameters. Moreover, the EnOpt can be used with 

any reservoir simulator without modification to the simulator. Many publications have 

demonstrated that EnOpt gave a good optimized-result on different reservoir models and 

recovery techniques. 
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In this thesis, we study the benefits of the EnOpt applied to waterflooding 

optimization problems using realistic reservoir data. In particular, the EnOpt is used to 

optimize the waterflooding process in a benchmark reservoir, namely UNISIM-I. The 

objective of this optimization is to maximize the expected net present value (NPV) over 

20 years of production. The control parameters are injection and production rates in 

injector and producer wells. We consider two optimization problems: random initial 

control settings and extended production from the production history. The EnOpt was 

successful in finding optimal solutions in both cases with significantly cheaper 

computational cost required in gradient calculations. In addition, we study the effect of 

discount rate use in calculating the NPV: the short-term EnOpt uses high discount rate, 

whereas the long-term EnOpt sets discount rate equal to zero. The different discount rates 

result in different optimal solutions. The high discount rate results in an increase of cash 

flow in the early stages of the production time while low to no discount rate results in an 

increase of cumulative cash flow throughout the production time. 
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1. INTRODUCTION 

 

Reservoir production optimization has always played a significant role in 

petroleum field developments as it seeks for an optimal control strategies that increases 

recovery of the petroleum in place. In the initial state of the production, the main driving 

force is the reservoir pressure. But, as oil is being produced from the reservoir, the 

reservoir pressure decreases. Therefore, processes called secondary recoveries are 

performed to maintain the reservoir pressure and to increase the oil recovery. Although 

many secondary recovery methods can be used together with the production optimization 

to improve petroleum recovery, the thesis focuses on a waterflooding process, a commonly 

used secondary recovery method.  

Optimization methods usually requires the use of reservoir simulation models to 

evaluate future production in order to select the new control strategy. Thus, this framework 

is sometimes called “Model-based production optimization”. However, the reservoir 

simulation is a time-consuming task due to the complexity of the reservoir model, and thus 

many optimization methods have been developed to reduce the model simulation 

requirements, while maintaining the accuracy in computing the optimal solution. The 

optimization techniques can be categorized into two classes: Stochastic algorithms, such 

as Genetic Algorithm and Simulated Annealing; and gradient-based algorithms, such as 

steepest ascent and quasi-Newton. Since the stochastics approaches rely on randomization 

principle, they usually find the optimal solution with a sufficiently large number of 

simulation runs. This makes stochastic approaches not practical for petroleum production 
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optimization. The gradient-based approaches, on the other hand, use the information from 

the gradient of the objective function with respect to control parameters to seek for an 

optimal solution. Hence, the approaches reach the optimal solution with fewer simulation 

runs. 

In this thesis, we focus on the production optimization using gradient-based 

approaches. Various methods have been developed to compute the gradient including 

numerical perturbation, adjoint method, and ensemble-based method. The numerical 

perturbation method (finite difference approximation) is very easy to implement. The 

gradient is computed by perturbing each control parameter and running the simulator to 

determine a perturbed objective function. Therefore, the number of simulation runs 

required is proportional to the number of control parameters. Since the production 

optimization problem usually consists of a large number of control parameters, the 

numerical perturbation method becomes extremely time consuming and not practical to 

use for gradient computation in our optimization scheme. 

The most efficient method in term of a computational requirement is the adjoint 

method. The method computes gradient using one forward simulation and one backward, 

or adjoint simulation, regardless of the size of a control vector. The method has been 

shown to work very well in production optimization (Brouwer et al. 2004, Sarma et al. 

2005). Unfortunately, implementing the adjoint method requires a modification to a 

reservoir simulator code, which is a time consuming and code-intrusive task. 

Alternatively, many methods that are non-intrusive to the simulator code have been 

developed. One of these methods that has gained popularity in petroleum production 
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optimization scheme is an Ensemble-based Optimization (EnOpt) proposed by Chen 

(2008). The method computes an approximate gradient using the sensitivity that is 

provided by the ensemble of control vectors and their corresponding objective function 

values. The concept of generating an approximate gradient from an ensemble of control 

vectors in optimization problem is actually originated by Lorentzen et al. (2006), followed 

by (Wang et al. 2007). The idea of the gradient approximation in these studies are based 

on the method called ensemble Kalman filter method (EnKF) used in data assimilation. 

However, the name EnOpt was proposed by Chen (2008). Do et al. (2013) make an 

analysis of the EnOpt and shows that the method is similar to other stochastic gradient 

estimation methods such as simultaneous perturbation stochastic approximation (SPSA) 

and the simplex gradient method (Conn et al. 2009). The method gives the flexibility to 

use different reservoir simulators and solution methods. The computational cost is nearly 

independent of the size of control parameters. Moreover, the quality of the gradient 

approximation depends on the number of realizations in the ensemble and the level of 

nonlinearity of the problem. Many studies (Chaurdhri et al. 2009, Chen et al. 2009, 

Fonseca et al. 2014, Leeuwenburgh et al. 2010) have shown that the ensemble-based 

method has worked very well in the production optimization problems. Also, many recent 

studies purpose a modified EnOpt formulation to achieve better optimization result 

(Chaurdhri et al. 2009, Fonseca et al. 2013, Fonseca et al. 2014, Fonseca et al. 2017).  
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1.1 Objective 

In order to test the EnOpt to a realistic production optimization case, in this thesis, 

we study the standard EnOpt proposed by Chen (2008) and apply the method to a large 

production scale in a synthetic reservoir namely UNISIM-I. The UNISIM-I is designed to 

be a comparative case for reservoir management, based on a real formation structure in 

Namorado oil field, located in Campos Basin, Brazil. Since it is shown that there was no 

previous study has used the EnOpt to optimize the production of the UNISIM-I, our goal 

is to study the benefits of the EnOpt on the production of the reservoir. The optimization 

objective is to maximize an expected net present value by adjusting injection and 

production rates in the injectors and producers. The production period for optimization is 

20 years with 1-year control steps. Moreover, we study an effect of a discount rate, a 

parameter in the net present value function, on the optimal solution. Two optimization 

cases with different discount rate are performed and the discussion is made on their results. 

There are five sections in the thesis. Section 2 briefly lay out the related 

background theories for production optimization. It discusses the production optimization, 

algorithm and the use of reservoir simulation. Section 3 discusses the EnOpt, as a gradient 

approximation method used with steepest ascent algorithm. Two illustrative examples are 

shown capturing the performance of EnOpt. Section 4 illustrates the application of the 

EnOpt on the UNISIM-I and the discussion on the results. Section 5 summarizes the 

principal conclusions from this study and discusses on future improvement for this study. 
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2. BACKGROUND THEORY 

 

2.1 Introduction of Reservoir Simulation 

The petroleum production optimization that is studied in this thesis can also be 

referred as a model-based production optimization. The term model refers to a reservoir 

simulation model, a type of porous media flow simulator that is used to simulate a flow 

profile of the liquid in the formation of a reservoir of interested. The reservoir simulation 

model consists of two types of sub-models, fluid flow model, and geological model. The 

fluid flow model is a mathematical model that describes how fluids flow in a porous 

medium. The geological model describes the rock formation, the reservoir. It gives 

information on the petrophysical properties as well as the geometry of the reservoir. In 

this section, we only discuss some basic idea of reservoir simulation. The detail of 

reservoir simulation can be found in Aziz et al. (1979), Chen et al. (2006), and Ertekin et 

al. (2001). 

The reservoir simulation model used in our studies is set up under the following 

assumptions: incompressible rock, and immiscible and incompressible fluids. In addition, 

the fluid system is composed of two phases: water - wetting phase, which is indicated by 

a subscript !, and oil – nonwetting phase indicated by ". To develop a generic system of 

flow equations for two-phase flow, we use the fundamental principle of mass 

conservation. For a system of 2 immiscible fluid phases, the conservation equation for 

each phase can be written as 
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 ##$ %&'(' = −* ∙ (',' + -'  ' = ", ! (1)  

where % is the porosity of the porous medium; &'  denotes saturation or fraction of the 

pore volume occupied by phase '; (' , ,' , and -'  are density, Darcy’s velocity, and mass 

flow rate of the phase ', respectively. 

The Darcy’s law, used in single phase flow, can be extended to multiphase flow as 

follow 

 ,' = − ./'0' 1 *2' − 3('*4   ' = ", ! (2)  

where 1 is the absolute permeability; ./' , 2' , and 0'  are the relative permeability, 

pressure, and viscosity of the phase ', respectively; 3 is gravitational acceleration; 4 is the 

vertical depth. For two-phase fluid system, the pore-volume is occupied by either oil or 

water. Hence, the relationship of the saturation of each phase is 

 &" + &! = 1 (3)  

Because of the surface tension, the equilibrium pressure in each phase will be different. 

The pressure difference between the two phases is given by the capillary pressure 25 , 

which is a function of water saturation &!, 

 25 &! = 2" − 2! (4)  

Now, we use (3) and (4) and combine variables to only oil pressure 2" and water 

saturation &! as the primary variables: 

 2 = 2", & = &! (5)  

Also, we define the total velocity, 

 , = ,6 + ,7 (6)  
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Under the assumption that the fluids are incompressible, we get 

 * ∙ , = - 2, & ≡ -! 2, & + -" 2, &  (7)  

 , = −1 9 & *2 − 9! & *25 − 9!(! + 9"(" 3*4  (8)  

where -! = -!(! and -" = -"(", and the phase mobility 9'  and total mobility 9 are defined as 

 9' &' = ./' &'0'  ' = !, " (9)  

 9 &! = 9! &! + 9" 1 − &!  (10)  

Combine (7) and (8), yields the pressure equation, 

 −* ∙ 19*2 = - − * ∙ 1 9!*25 + 9!(! + 9"(" 3*4  (11)  

Similarly, we apply (4), (6), and (8) into (1), (2) with ' = ! to obtain the saturation 

equation.  

% #&#$ =  -! 2, & − * ∙ 1:! & 9" & ;25;& *& + (" − (! 3*4 + :! & ,  (12)  

where the fractional flow :'  is 

 :' = 9'9  (13)  

Here, we solve (11), (12) for pressure and saturation using the implicit pressure, 

explicit saturation method (IMPES). To solve for pressure, it is assumed that 2, ,, and & 

are known at time $ and that we evolve the solution to time $ + ∆$. At the beginning of 

time step, we fix the saturation & and solve for 2 implicitly using (11). Then we use the 

updated , to solve for and updated saturation & at next time step using (12). Here, we 

discretize the left-hand side of (12) into time step ∆$=, 
 % #&#$ ≈ % &?+1 − &?∆$?+1  (14)  
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We use the MATLAB Reservoir Simulation Toolbox (MRST) as the reservoir 

simulator. The toolbox provides varieties of functions that can be used for gridding, 

discretization, and a solver for flow and transport in different kinds of reservoirs. Lie et 

al. (2012), and Lie (2016) give details of the available functions in MRST and how to set 

up the reservoir simulation model. 

 

2.2 Production Optimization 

The production optimization is a workflow that seeks for a new operating strategy 

that maximizes/minimizes the production objective. Mathematically speaking, production 

optimization problem can be written as 

 

max/min@∈B? 3 @  

subject to 5= C = 0 = ∈ D5= C ≥ 0 = ∈ F  
(15)  

where 3 @  denotes the objective function to be optimized, 5= where = ∈ D are the equality 

constraints, and 5= where = ∈ F  are the inequality constraints. In the scope of petroleum 

production optimization, the objective function can be from an expected net present value 

(NPV), the ultimate recovery (UR) of the reservoir, or other quantities depending on 

financial goals. The control parameters used in the optimization problem is denotes by the 

vector @ where 

 @ = C1, C2, … , CGC  (16)  

The vector of control parameters contains all the optimization constraints in all control 

steps. For the petroleum production, theses parameters can be, for example, water injection 

rate, liquid production rate, bottom hole pressure of injector or producer, etc. In addition, 
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we use GC to denote the total number of control parameters, which equals to the product 

of control parameters at each time steps and the number of control steps. For example, an 

optimization problem that optimizes the cumulative oil production through injection and 

production rate of a total of 20 wells with 30 control time steps would have the total 

number of control parameters GC = 600. 

Several optimization methods have been developed, such as genetic algorithm and 

simulated annealing, steepest ascent, conjugate gradient, and quasi-Newton. These 

optimization methods can be categorized into stochastic- and gradient-based approaches. 

The stochastics approaches rely on randomization principle. In each iteration, several 

control vectors are randomly sampled, and being evaluated using a reservoir simulator to 

determine the optimal solution. Thus, the stochastic optimization approaches require a 

sufficiently large number of simulation runs. Since the reservoir model is usually a very 

complex model, running each reservoir simulation is a time-consuming task. This makes 

stochastic approaches not practical for petroleum production optimization due to its 

computational requirement. The gradient-based approaches, on the other hand, seek for an 

optimal solution using the information from the gradient of the objective function with 

respect to control parameters. The approaches usually reach the optimal solution with 

fewer simulation runs. Hence, to reduce computational cost from a reservoir simulation, 

this thesis focuses only on the gradient-based approaches for the production optimization. 
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2.3 Gradient-based Production Optimization 

The gradient-based optimization methods refer to the optimization methods that 

require computations of the gradient *3 of an objective function 3 @  with respect to the 

control parameters @ to determine a search direction for optimal solution, 

 *3 = #3#C1 , #3#C2 , … , #3#CGC
 (17)  

Since a production optimization problem is usually a complex interplay of several 

subsystems, computing the gradient analytically, like in (17), is not possible. Therefore, 

several numerical gradient calculation methods have been proposed. One of the simplest 

ways to compute the gradient is by using numerical perturbation method. The gradient is 

numerically calculated as follow 

 #3#C= ≈ 3 C=+;C= −3 C=;C=  for = = 1, 2, . . . , GC (18)  

From (18), the gradient is computed by perturbing each control parameter C= + ;C= and 

running the simulator to determine a perturbed objective function 3 C= + ;C= . Thus, the 

number of simulation runs required to obtain a gradient is proportional to the number of 

control parameters. The major drawback of this method relies on the fact that the reservoir 

model is a complex system and running the model simulation is time-consuming. Wang 

et al. (2007) used the perturbation method to compute the gradient and concluded that 

since the optimization problem consists with a large number of control parameters and 

each perturbation requires one simulation run, the method is very time-consuming and not 

practical for the production optimization problem. 
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The adjoint method (Brouwer et al. 2004, Sarma et al. 2005) can significantly 

reduce the computational requirement for computing gradient. The method requires one 

forward simulation, and one backward simulation (fully implicit simulator) regardless of 

the size of control parameters @ to compute the gradient. Although this method is very 

efficient, its drawbacks are that the method is intrusive to the simulator code since it 

requires access to the simulator source code to get an implicit simulation (Sarma et al. 

2005). Moreover, when the optimization problem consists of a very large number of 

control parameters, the adjoint method becomes very expensive due to  its massive storage 

requirements (Chen et al. 2009). Also, calculating gradient using the adjoint method can 

result in gradients that lead to local minima since the method results in a linearization 

about the current model (Chen 2008). 

Wang et al. (2007) used a modified ensemble Kalman filter (EnKF), a data 

assimilation method, in a production optimization. The modified EnKF successfully 

optimized the problem although it gives a poor estimate of the optimal solution. Chen 

(2008) proposed an ensemble-based production optimization (EnOpt) based on the same 

idea. The optimization uses the steepest ascent method to update the control parameters 

where the gradient is approximated by the sensitivity of an ensemble of control samples 

and their corresponding objective function values. Chen (2008) demonstrated the 

proposed optimization approach on a synthetic reservoir with known properties. The result 

showed a significant increase in the NPV of the reservoir compared to the reference case. 

The EnOpt have advantages over both numerical perturbation method and adjoint 

method. Unlike numerical perturbation method, EnOpt approximates the gradient with 
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nearly independent of the number of control parameters. The quality of the gradient 

approximation depends on the size of the ensemble and the level of nonlinearity of the 

problem (Chen 2008, Fonseca et al. 2015). In addition, the EnOpt does not require a 

modification to a reservoir simulator. Thus, the method can be used with most commercial 

simulators. With these advantages in mind, the EnOpt seems to be a good method for 

gradient calculation when using gradient-based optimization. 

This thesis studies Chen’s (2008) EnOpt. The production optimizations are 

performed using steepest ascent method with the gradient approximated by EnOpt. The 

following section discusses steepest ascent method, and in Section 3, we discuss the detail 

of the gradient approximation using EnOpt. 

 

2.4 Steepest Ascent Method 

One of the simplest and well-known gradient-based methods for maximizing or 

minimizing a function is the steepest ascent method (Cauchy 1847, Meza 2010). 

Suppose that we would like to maximize an objective function 3(@) where C ∈ B? 

and that 3: B? → B. The idea of this maximization method is to find an iterate control 

vector @.+1 along search direction I1, with step size '. away from the current control 

vector @.,such that 3 @.+1 > 3 @.  

 @.+1 = @.  + '.I. where . = 0, 1, … (19)  

For steepest ascent method, the search direction I. is defined by a gradient *3. of the 

function 3 evaluated at @., 
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 I. = *3. (20)  

In this thesis, the gradient *3. is approximated using a so-called ensemble-based 

method. The detail of the gradient approximation using ensemble-based method will be 

discussed later in Section 3. In addition, to determine a step size '., we use the 

backtracking line search algorithm with sufficient increase condition (Nocedal et al. 

2006), which will be discussed in the following sections. 

 

2.4.1 Line search algorithm 

From equation (19), at each iteration, we need to choose the step size '. such that 

it gives a substantial increase in the function 3. In another word, we want to find the step 

size '. along the search direction I. such that it maximize the univariate function %(∙) 
defined by 

 % ' = 3 @.  + 'I. ,  ' > 0 (21)  

However, to identify an exact value of '. requires too many evaluations of the objective 

function 3 and its gradient *3. Instead, an inexact line search is performed to determine a 

step size '. that achieves an increase in 3 at minimal cost (Nocedal et al. 2006). 

We now discuss a popular inexact line search condition stipulates that '. should 

give sufficient increase in the objective function 3, as measured by the following 

inequalities: 

 
3 @.  + 'I.  ≥ 3 @. + 5' *3. J I. 

 % '  ≥ K(')    (22)  



14 

The function K ∙  has a positive slope 5 *3. J I., where 5 ∈ 0,1 . Thus, for a small 

positive value of ', the graph of K lies below the graph of % (see Figure 1). The sufficient 

increase condition accepts ' only if % ' ≥ K ' . Note that the value of 5 is chosen to be 

very small, 10−4 for our cases. 

Nocedal et al. (2006) point out that the sufficient increase condition (22) alone is 

not enough to ensure that the algorithm makes reasonable progress along the given search 

direction. Unless we use a so-called backtracking method, the second condition is required 

to rule out unacceptable short steps. Therefore, we choose to implement backtracking 

method with the sufficient increase condition to ensure that the step size is appropriately 

chosen. The algorithm of the backtracking method is shown in Figure 2. 

Figure 1: Sufficient increase condition (Modified from Nocedal et al. (2006)). 



 

 15 

 
 
Figure 2: Backtracking line search algorithm (Modified from Nocedal et al. (2006)). 

 
 

During line search, the new step size '′ = (' is chosen within the previous trial 

value of ', which was rejected for violating the sufficient increase condition. In another 

word, the previous trial step size was too long. Thus, the backtracking method ensures the 

selected step size '. is short enough to satisfy the sufficient increase condition but not too 

short. Moreover, with backtracking method, an acceptable step size will be found after a 

finite number of trials since the step size ' will eventually become small enough that the 

sufficient increase condition in (22) is satisfied. 

 

2.4.2 Initial step size 

In the case when using Newton or quasi-Newton methods for optimization, we can 

always use the initial step size '0. = 1. However, for the steepest ascent method, it does 

not produce well-scaled search direction. Therefore, it is important to use current 

information about the problem and the algorithm to make the initial guess for the step size 

(Nocedal et al. 2006). In each iteration, an initial step size '0. is determined under an 

Backtracking Line Search Algorithm 

Set '̅ > 0, ( ∈ (0,1) 
START 

1) ' = '̅ 
2) Check if 3(@.  + 'I.) ≥ 3(@.) + 5'(*3.)J I. 

YES: Terminate with '. = ' 
NO: Replace ' with (' 

END 
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assumption that the first-order change in the function at iterate @.  will be the same as the 

previous iteration, that is 

 '0. = '.−1 *3.−1 J I.−1
*3. J I.   . = 2, 3, … (23)  

At this point, we have discussed basic concepts used in production optimization. 

The remaining thing to do now is to determine a search direction 2. in the steepest ascent 

method, or the gradient *3 of the objective function with respect to the control parameters. 

In the following section, we will introduce the use of the ensemble method to approximate 

the gradient *3 used in steepest ascent for production optimization.  
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3. ENSEMBLE-BASED OPTIMIZATION (EnOpt) 

 

In this section, the main theory of the ensemble-based optimization (EnOpt) using 

steepest ascent method will be briefly discussed based on the original EnOpt by Chen 

(2008). For an in-depth discussion, the reader is referred to Chen (2008). The EnOpt is 

more efficient than an adjoint method in terms of simulator requirements. Unlike the 

adjoint method, EnOpt does not require any access to the simulator source code, thus, 

treats the simulator as a black box. The main idea of EnOpt is that the gradient is 

approximated using a linear regression between an ensemble of control parameters and 

their corresponding objective function values. Thus, the gradient approximation using 

EnOpt does not depend on the size of control parameters. However, the quality of an 

approximated gradient depends on the number of realizations contain in the ensemble. 

 

3.1 A Closer Look at EnOpt 

Recall the vector of control parameters namely @, defined in Section 2.2, which 

has a size of 1×GC. In this thesis, the objective function to be maximized is the net present 

value (NPV) of the reservoir, given as 

 3 @ = Q"R"= @ − Q!R!= @1 + /S $=/S
G$
==1  (24)  

where = is the time step index, G$ is the total number of time steps, /S  is a discount rate in 

term of time span S, and $= is the cumulative time since the start of the production. Q" and 

Q! are the price of oil and the cost of water disposal, respectively. R"= and R!= are the 



 

 18 

total oil and water production over time step ∆$=. It should be pointed out that the objective 

function 3 @  used in EnOpt is not limited to the form of NPV, as in (24). 

In Section 2.4, we introduced the steepest ascent method which is a method for 

maximizing the objective function 3 @ . The steepest ascent method use search direction 

as a gradient of the objective function with respect to the control parameters 

I. = *3 @. . Here, we modify the original steepest ascent method to be used with 

EnOpt. Recall the original steepest ascent in (19), Chen (2008) made a modification for 

EnOpt as follow 

 @.+1 = @.  + '. TCC. *3 @.  (25)  

We use I. = TCC. *3 @.  as a search direction instead of *3 @.  in original steepest 

ascent method. The use of ensemble (sample) covariance TCC in front of gradient provides 

a pre-conditioning for the steepest ascent method. The ensemble (sample) covariance TCC 

is defined as follow 

 TCC = 1GU − 1 VVJ  (26)  

where V is a mean-shifted ensemble matrix 

 
V    = C1,1 − C1 ⋯ CGC,1 − CGC⋮ ⋱ ⋮C1,GU − C1 ⋯ CGC,GU − CGC

 

    = @1 − @, @2 − @, … , @GU − @ J  

(27)  
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and 

 @ = C1, C2, … , CGC  (28)  

 C= = 1GU C=,KGUK=1  = = 1,2, … , GC (29)  

The gradient *3 @  can be obtained as a least-squares solution (Fonseca et al. 2014) as 

 *3 @ = VJ V −1VJ Z (30)  

where Z is a mean-shifted objective function vector, which is defined as follows 

 Z = 3(@1) − 3 3(@2) − 3 ⋯ 3(@GU) − 3 J  (31)  

 3 = 1GU 3(@K)GU
K=1  (32)  

Therefore, (30) can also be expressed as follow 

 *3 @ = TCC−1TC3  (33)  

The cross-covariance matrix TC3  is defined in similar a way as the ensemble covariance 

TCC is defined as, 

 TC3 = 1GU − 1 VJ Z  (34)  

Hence, the modified steepest ascent in (25) becomes 

 @.+1 = @.  + '.TC3.  (35)  

Chen (2008) proposed the used of the ensemble covariance TCC as a filtering 

(smoothing) matrix and the search direction I. becomes 

 I. = TCC. TC3.  (36)  

Thus, the steepest ascent method used in EnOpt becomes 
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 @.+1 = @.  + '.TCC. TC3.  (37)  

We will use (37) for production optimization throughout this thesis. 

 

3.2 Quality of an Approximated Gradient 

Many studies (Fonseca et al. 2015, Fonseca et al. 2013, Stordal et al. 2016) have 

been done to investigate the effect of the control ensemble to the quality of an 

approximated gradient. These studies show that the factors that affect the quality of an 

approximated gradient are sampling techniques, the perturbation size or the variance of 

the sample distributions, and the size of the ensemble. Fonseca et al. (2015) study the 

quality of an approximated gradient computed by ensemble method compare to an adjoint 

method. The author concludes that with proper perturbation size and the number of 

realizations in the ensemble, the ensemble method gives a good approximation of gradient 

with an ensemble size that smaller than the size of the control vector. 

 

3.3 Implementation of EnOpt 

The procedure of the EnOpt (Chen 2008) is summarized in Figure 3. The 

optimization uses steepest ascent method to update the control vector @.. In each iteration, 

the search direction I. and the step size '. is determined using (36) and backtracking 

algorithm with sufficient increase condition, respectively (see Figure 2). Note that we use 

. as an iteration index: @. is a vector of control parameters at .th iteration, and @K. for K =
1, 2, … , GU are realizations of the ensemble of control vectors.   
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1) Let . = 1. Generate initial control parameters @1 and initial ensemble of control 
parameters @K1 for K = 1, 2, … , GU. Here, the ensemble of control parameters @K1 
is generated in 2 steps. First, a mean control is sampled from a uniform 
distribution with suitable upper and lower limits. Second, a sample from 
temporally correlated Gaussian random field with zero mean is added to the 
mean control. 

2) Define initial guess for step size ' and ( to update the step size in line search 
algorithm 

Start of Loop: EnOpt 

3) If . ≥ 2, a sample from temporally correlated Gaussian random field with zero 
mean is added to the control @. to generate the ensemble @K. 

4) Run the simulator and compute the NPV for each realization of control 
parameters 3(@K.) using (24). 

5) Compute ensemble covariance TCC.  and the cross-covariance TC3.  using (34) 
6) For . = 1, the initial step size '01 = '. 

For . ≥ 2, compute initial step size '0. using (23) 

Start of Loop: Backtracking line search algorithm 

7) Compute the update control parameter @.+1 using (37). 
8) Run the simulator and evaluate the objective function 3 @.+1  
9) If 3 @.+1  satisfies the sufficient increase condition (22), overwrite @. with @.+1 and let . = . + 1. Otherwise keep @., and replace the step size ' with (' 

and go to step 6). 

End of Loop: Backtracking line search algorithm 

10)  Check if stopping criteria are satisfied. If not, go to step 3). Otherwise, set @ = @.. 

End of Loop: EnOpt 

 
Figure 3: Procedure of ensemble-based optimization (Modified from Chen (2008)). 
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3.4 Illustrative Examples 

In this section, two synthetic examples are considered for demonstrating the 

performance of EnOpt. The first example is a uniform reservoir with single control step 

(static control). The second example is a channelized reservoir with multiple control steps. 

However, since the production optimization problem is usually a high-dimensional 

nonlinear problem, judging if the optimized objective function has reached its maximum 

is not easy since the reservoir model and the production optimization itself consist with 

uncertainties. Instead, the control parameters and objective function value are optimized 

using EnOpt and compared with a base case. 

 

3.4.1 Uniform reservoir with a single control step 

This example is a replicate from Chen (2008) where the optimal solution was 

known. The example considers a two-dimensional uniform reservoir. The reservoir has 

the size of 2250×2250×30 ft3, which is uniformly discretized into 45×45 square grids. 

The permeability is 100 mD with the porosity of 0.2, and only oil and water are presented 

in the system. The reservoir has 9 producers and 4 injectors completed in repeated five 

spot pattern as shown in Figure 4. The injection rate in every injector is fixed at 1125 

bbl/day, and the total production rate is equal to total water injection rate. The production 

rate of all 9 producers are the control parameters for the optimization and fixed over the 

production time of 1000 days. The optimization objective function for this case is the NPV 

of the reservoir. 
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Since the injection and total production rate are both fixed, maximizing the 

objective function for this case is simply to optimize the time of water breakthrough, which 

occurs when all producers have same water breakthrough time. Thus, the purpose of this 

optimization is to allocate the production rate among the 9 producers. The optimization 

uses EnOpt with 30 control realizations, and the result is compared with an equal rate 

scenario and the known optimal control from pattern fraction (Chen 2008).  

Figure 5 shows the water cuts at producers from equal rate scenario (a), and EnOpt 

(b). For evenly distributed production rate scenario, producer P1, P3, P7, and P9 have the 

earliest water breakthrough, followed by producer P2, P4, P6, and P8, and producer P5 

has the latest water breakthrough. After optimization has been performed, water 

breakthrough time in all producers became closer. Figure 6 shows the water saturation at 

the end of year 1 for both cases. It demonstrates that the EnOpt distributed water more 

evenly in the reservoir. The production rate from EnOpt, shown in Figure 7, is closed to 

known optimal solution from pattern fraction (Chen 2008) although not the same. Chen 

(2008) suggest for this case that changing the objective function to water arrival time 

might make EnOpt result closer to the optimal solution. 
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Figure 4: The well locations for uniform permeability case (Modified from Chen 
(2008)). 

 

 

  
(a) Equals rates control (b) EnOpt 

Figure 5: Compare water cuts at 9 producers using different control strategies. 
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(a) Equals rates control (b) EnOpt 
Figure 6: Compare water saturation after 1 year of production using different control 
strategies 
 

 
 
Figure 7: Optimized controls from different control scenarios. EnOpt (diamonds), equal 
rate scenario (circles), and pattern fraction(triangle). 
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3.4.2 Channelized reservoir with multiple control steps 

In this second example, we consider a 2250×2250×30 ft3 channelized reservoir, 

which is uniformly discretized into 45×45 square grids. The reservoir model consists of 

two facies with uniform properties; a channel sand with a permeability of 8 D and a 

background shale with a permeability of 10 mD. The permeability field of the reservoir is 

shown in Figure 8. The porosity is assumed to be uniform and equal to 0.2. The reservoir 

has 9 producers and 4 injectors completed in repeated five spot pattern. Both injectors and 

producers are controlled by liquid rates. The total water injection rate is equal to total 

liquid production rate and equal to 4500 bbl/day. The optimization is done using NPV as 

an objective function where the oil price is $55/ bbl, and the cost of water disposal is $10/ 

bbl. The discount rate used in NPV function is 10% per year, and the time frame of the 

optimization is 1020 days. The control settings are changed every 60 days. Thus, there are 

17 control steps, and the total number of control parameters is a product of a number of 

well and number of control steps, 13×17 = 221. 

The initial control is set as an equally distributed injection and production rate 

scenario. The ensemble of control parameters is generated by adding samples from a 

temporally correlated Gaussian random field with zero mean to the initial control. For this 

example, an ensemble of 50 realizations is used. The optimization result is compared with 

a base case where all total water injection and total liquid production are both equally 

distributed among the injectors and producers. The goal of this optimization is to 

redistribute injection and production rate in each well to achieve higher NPV. 
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Figure 9 shows the changes of NPV with iterations (solid line) compare to the NPV 

from a based case. The EnOpt is terminated when the increase of NPV is less than 0.01%. 

The optimization increases the NPV by 4.26% compares to the base case. In Figure 10, it 

shows that the major contribution of the optimization is to delay and reduce water 

production while still maintain oil production. The oil recovery is slightly higher (3.36% 

higher) when the amount of water produced is significantly decreased (10.58% lower). 

The optimized control settings for injectors and producers are shown in Figure 11 and 

Figure 12, respectively. 

Throughout this section, we have briefly discussed the ensemble-based method for 

approximation of the gradient to be used in steepest ascent method. Two examples 

demonstrate that EnOpt successfully optimized the production and higher the NPV. In the 

next section, we apply the EnOpt into a bigger production scale, a synthesis reservoir, 

namely UNISIM-I.  
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Figure 8: The permeability field of the channelized reservoir with well locations. Gray 
indicates background shale (10mD) and white indicates channel sand (8 D) 

 
 

 
Figure 9: The change of NPV with iterations. The solid line indicates NPV from EnOpt, 
the dash line indicates NPV from an equal rate case. 
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(a) Cumulative oil production 

 
(b) Cumulative water production 

Figure 10: Comparison of cumulative oil and water production. The solid line indicates 
EnOpt result. The dash line indicates base case result. 
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(a) Injector 1 (b) Injector 2 

  
(c) Injector 3 (d) Injector 4 

Figure 11: Water injection rate of each injector at each iteration. Blue line indicates a base case, red line indicates optimization 
result. 
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(a) Producer 1 (b) Producer 2 (c) Producer 3 

   
(d) Producer 4 (e) Producer 5 (f) Producer 6 

Figure 12: Liquid production rate of each producer at each iteration. Blue line indicates a base case, red line indicates 
optimization result. 
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(g) Producer 7 (h) Producer 8 

 
(i) Producer 9 

Figure 12: Continued. 
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4. APPLICATION OF ENSEMBLE-BASED OPTIMIZATION 

(EnOpt) ON UNISIM-I 

 

4.1 Field Description and Optimization Scheme 

In this section, we apply the EnOpt on a larger production scale, UNISIM-I. The 

UNISIM-I is a synthetic reservoir model designed by UNISIM-Cepetro-Unicamp as a 

comparative case for reservoir management. The model was built based on the structural, 

facies and petrophysical model of the Namorado oil field, located in Campos Basin, Brazil 

with some modifications (Avansi et al. 2015, Gaspar et al. 2016, Gaspar et al. 2015). The 

original high-resolution model has a dimension of 326×234×157 cells, which 

approximately 3.4 million of the total cells are active cells. For the optimization case, the 

model is upscaled into about 37,000 active grid blocks. The field has been developed by 

11 injectors and 14 producers. The constraints for injectors and producers are shown in 

Table 1. Figure 13 and Figure 14 shows the porosity and permeability maps, respectively, 

with well locations of UNISIM-I reservoir. The fluid system in this problem is 

incompressible and immiscible and consists of oil and water with some properties shown 

in Table 2. Figure 15 shows the relative permeability plot of oil and water. 

 

Table 1: Well constraints 
Injector  
Water injection rate (m3/day) 0-5,000 
BHP (kgf/cm2) Max 350 
Producer  
Liquid production rate (m3/day) 0-2,000 
BHP (kgf/cm2) Min 190 
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Figure 13: Porosity map with well locations of UNISIM-I reservoir. Producers are 
indicated in red, and injectors are indicated in black. 

 

 

Figure 14: Permeability map with well locations of UNISIM-I reservoir. Producers are 
indicated in red, and injectors are indicated in black. 
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Table 2: Fluid properties 
 Water Oil 
Viscosity (cP) 1 5 
Density (kg/m3) 1,014 850 
Residual water saturation ("#$)  0.2 - 
Residual oil saturation ("%$)  - 0.2 

 

 

Figure 15: Relative permeability plot of water (blue) and oil (red). 
 
 

We use EnOpt to optimize the production of UNISIM-I by changing the injection 

and production schedule of the wells. The rates in all wells are changed every 1 year. 

Hence, the total control parameters in the control vector & for the optimization problem is 

25×20 = 500 control parameters. The ensemble of control parameters is generated by 

adding samples from a temporally correlated Gaussian random field with zero mean to the 

control vector. We use a 100-realization control ensemble to approximate the gradient. 
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The objective function to be maximized in the optimization of UNISIM-I 

production is the net present value (NPV) of the reservoir, recall from Section 3.1, 

 ' & = (%)%* & − (#)#* &1 + $, -*/,
.-
*=1  (38)  

The oil price (% and the water disposal cost (# used for calculating the NPV are $55 and 

$10, respectively. We test the EnOpt on 3 optimization scenarios. The first case is a case 

where all 500 initial control parameters are generated randomly. In the second case, we 

use a production data at the end of the production history provided in UNISIM-I-M case 

(Gaspar et al. 2016) to generate an initial control setting. For the first two cases, the 

discount rate $,  is 10% per year. In the last case, we run 2 optimizations with different 

discount rates. Therefore, the goal of this last case is to study how the optimal result is 

affected by different discount rate. 

 

4.2 Optimization with Random Initial Control Settings 

In the first case, we test EnOpt on UNISIM-I with random initial control settings. 

The production rate in each producer is randomly sampled from the uniform distribution 

with the upper and lower limits equal to the rate constraints of each well. This initial 

control is also used as a base case. Figure 16 and Figure 17 show the initial control settings 

with some realizations from initial control ensemble of the producers and injectors, 

respectively. 
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(a) 'NA1A' (b) 'NA2' 

  
(c) 'NA3D' (d) 'RJS19' 

  
(e) 'PROD005' (f) 'PROD008' 

Figure 16: Initial liquid production rates (black) and some realizations from an initial 
control ensemble (gray) in all producers. The well locations are shown in Figure 13. 
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(g) 'PROD009' (h) 'PROD010' 

  
(i) 'PROD012' (j) 'PROD014' 

  
(k) 'PROD021' (l) 'PROD023A' 

Figure 16: Continued. 
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(m) 'PROD024A' (n) 'PROD025A' 

Figure 16: Continued. 
 

  
(a) 'INJ003' (b) 'INJ005' 

  
(c) 'INJ006' (d) 'INJ007' 

Figure 17: Initial water injection rates (black) and some realizations from an initial 
control ensemble (gray) in all injectors. The well locations are shown in Figure 13. 
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(e) 'INJ010' (f) 'INJ015' 

  
(g) 'INJ017' (h) 'INJ019' 

  
(i) 'INJ021' (j) 'INJ022' 

Figure 17: Continued. 
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(k) 'INJ023' 

Figure 17: Continued. 
 

 

 
Figure 18: The change of NPV of UNISIM-I reservoir with iterations. The solid line 
indicates NPV from EnOpt, the dash line indicates NPV from an equal rate case. 
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The EnOpt increases the NPV of the reservoir from $7.43 billion to $8.73 billion, 

about 9.87% increase. The optimization converges in 12 iterations. Figure 18 shows the 

change of NPV with the iterations. The cumulative production for oil and water are shown 

in Figure 19 and Figure 20, respectively. The total oil production increases from 49.1 MM 

m3 to 51.2 MM m3 while the water production increases from 40.5 MM m3 to 46.7 MM 

m3. Figure 21 compares changes of water saturation in some layer with the production 

time from a base case and the EnOpt result. These changes in water saturation, from low 

to high, reflect the oil replacement in the reservoir by the water flooding process. Because 

the EnOpt increases both oil and water production, we can see that the water saturation 

maps for EnOpt case indicate higher water saturation in all three layers shown in the 

figure.  
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Figure 19: Comparison of cumulative oil production. The solid line indicates EnOpt 
result. The dash line indicates base case result. 

 

 
Figure 20: Comparison of cumulative water production. The solid line indicates EnOpt 
result. The dash line indicates base case result. 
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Top layer Layer 3 Layer 8 

(a) Base case at 5 year 

   
Top layer Layer 3 Layer 8 

(b) EnOpt at 5 year 
Figure 21: Saturation maps of some layers at different production time. 
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Top layer Layer 3 Layer 8 

(c) Base case at 10 year 

   
Top layer Layer 3 Layer 8 

(d) EnOpt at 10 year 
Figure 21: Continued. 
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Top layer Layer 3 Layer 8 

(e) Base case at 15 year 

   
Top layer Layer 3 Layer 8 

(f) EnOpt at 15 year 
Figure 21: Continued. 
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Top layer Layer 3 Layer 8 

(g) Base case at 20 year 

   
Top layer Layer 3 Layer 8 

(h) EnOpt at 20 year 
Figure 21: Continued. 
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4.3 Extended Production History from UNISIM-I-M 

For a more realistic optimization scenario, we use EnOpt to optimize a production 

of UNISIM-I when the production history is known. In this case, the optimization result 

is compared with a case where the production schedule is extended from the end of 

production history. Every well is assumed to have constant injection and production rate 

from the end of production history throughout the production time of 20 years. Figure 22 

and Figure 23 show liquid production and water injection rates of the initial, some 

iterations, and the optimal controls. 

 

  
(a) 'NA1A' (b) 'NA2' 

  
(c) 'NA3D' (d) 'RJS19' 

Figure 22: Initial liquid production rates, the 2nd- and 4th-iteration, and EnOpt result. 
The well locations are shown in Figure 13. 
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(e) 'PROD005' (f) 'PROD008' 

  
(g) 'PROD009' (h) 'PROD010' 

  
(i) 'PROD012' (j) 'PROD014' 

Figure 22: Continued. 
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(k) 'PROD021' (l) 'PROD023A' 

  
(m) 'PROD024A' (n) 'PROD025A' 

Figure 22: Continued. 
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(a) 'INJ003' (b) 'INJ005' 

  
(c) 'INJ006' (d) 'INJ007' 

  
(e) 'INJ010' (f) 'INJ015' 

Figure 23: Initial water injection rates, the 2nd- and 4th-iteration, and EnOpt result. Gray 
line indicates initial injection rate. Orange, green, blue lines indicate 2nd-, 4th-iteration, 
and EnOpt result, respectively. The well locations are shown in Figure 13. 
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(g) 'INJ017' (h) 'INJ019' 

  
(i) 'INJ021' (j) 'INJ022' 

 
(k) 'INJ023' 

Figure 23: Continued. 
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The EnOpt increases the NPV from $8.07 billion to $8.84 billion, 9.45% increases. 

The optimization converged in 7 iterations. Figure 24 shows changes of NPV with 

iterations. The cumulative oil production after optimization slightly increases from 49.58 

MM m3 to 51.65 MM m3, 4.17% increase (see Figure 25), while the cumulative water 

production significantly decreases from 62.42 MM m3 to 43.97 MM m3, 29.56% decrease 

(see Figure 26). Unlike the optimal solution from the previous case, the EnOpt’s optimal 

solution increases the NPV by slightly increases the total oil production but significantly 

decreases in total water production. The saturation maps in Figure 27 show that the EnOpt 

distributed water more evenly among the injectors. The saturation maps also reflect that 

the water production is lower in the EnOpt as the water saturation from the EnOpt is lower 

than the base case. 

Figure 24: The change of NPV with iterations for the extended production history case. 
The solid line indicates NPV from EnOpt, the dash line indicates NPV from an equal 
rate case. 
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Figure 25: Comparison of cumulative oil production for the extended production 
history case. The solid line indicates EnOpt result. The dash line indicates base case 
result. 

Figure 26: Comparison of cumulative water production for the extended production 
history case. The solid line indicates EnOpt result. The dash line indicates base case 
result. 
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Top layer Layer 3 Layer 8 
(a) Base case at 5 year

Top layer Layer 3 Layer 8 
(b) EnOpt at 5 year

Figure 27: Saturation maps of some layers at different production time. 
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Top layer Layer 3 Layer 8 

(c) Base case at 10 year 

   
Top layer Layer 3 Layer 8 

(d) EnOpt at 10 year 
Figure 27: Continued. 
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Top layer Layer 3 Layer 8 

(e) Base case at 15 year 

   
Top layer Layer 3 Layer 8 

(f) EnOpt at 15 year 
Figure 27: Continued. 
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Top layer Layer 3 Layer 8 
(g) Base case at 20 year

Top layer Layer 3 Layer 8 
(h) EnOpt at 20 year

Figure 27: Continued. 
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4.4 Long-term and Short-term Production Optimization 

A study on the effect of a discount rate !" , as in (38), to the cumulative cash flow 

is discussed in this section. The discount rate is usually used as a tuning parameter when 

considering interest rate in the computation of NPV as an objective function. The case 

where highly-discounted NPV is used as an objective function can be referred as a short-

term optimization. The computation of cash flow weights on early production periods 

more than later periods. If an undiscounted NPV is used as an objective function, the 

optimization can be referred as a long-term optimization. In this case, cash flow is equally 

weighted throughout the production time. Although we could apply both optimization 

schemes into the same reservoir, the goal of each scheme aims to maximize the cash flow 

in different time frame. The short-term optimization is usually used in the case when we 

want to increase a cash flow in the near-future time. The long-term, on the other hand, 

aims to maximize the overall cumulative cash flow throughout the reservoir life-cycle. 

To give a clearer picture, we run two optimizations using different discount rate. 

The optimized results are compared with the same base case used in random initial control 

settings case. The first case, a long-term production optimization, the discount rate is set 

to 0. The second case, a short-term production optimization, the discount rate is set to be 

high at 60% per year. Figure 28 shows the cumulative cash flow from two optimization 

cases and a base case. The optimal solution from short-term optimization shows an 

increase in the cumulative cash flow in early production period. However, as the 

production time approaches to the end, the long-term optimization yields higher 

cumulative cash flow. The cumulative oil production plot in Figure 29 show the same 
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trend as the cumulative cash flow. Figure 30 shows the cumulative water production from 

both optimized result and the base case. The short-term optimization increases the oil 

production in early of production time and also allows more water to be produced in the 

later production time. The water production produced in later production time in short-

term optimization decreases the net cash flow in those production time. The long-term 

optimization, on the other hand, constantly produces oil while keeps the water production 

low throughout the production time. This results in higher cumulative cash flow. In 

addition, Figure 31 also indicates that in short-term EnOpt, the reservoir is more saturated 

with water. As a result, more water is produced from the case. 

 

 
Figure 28: Comparison of cumulative cash flow from long-term, shot-term 
optimization and the base case. The solid line indicates long-term EnOpt, dash line 
indicates short-term EnOpt, and the dotted line indicates base case. 
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Figure 29: Comparison of cumulative oil production from long-term, shot-term 
optimization and the base case. The solid line indicates long-term EnOpt, dash line 
indicates short-term EnOpt, and the dotted line indicates base case. 

 

 
Figure 30: Comparison of cumulative water production from long-term, shot-term 
optimization and the base case. The solid line indicates long-term EnOpt, dash line 
indicates short-term EnOpt, and the dotted line indicates base case. 
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Fonseca et al. (2014) couple short-term and long-term production optimization into 

a method, so-called, hierarchical multi-objective production optimization. In the method, 

the long-term NPV serves as a primary objective function while the short-term NPV is 

used as a secondary objective function. The optimal control from an optimized primary 

objective function is used as a starting point for an optimization of a secondary objective 

function. The optimization method increases a cumulative cash flow in early production 

time while maintaining the life-cycle, or long-term, cumulative cash flow. 
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Top layer Layer 3 Layer 8 

(a) Short-term Optimization at 5 year 

   
Top layer Layer 3 Layer 8 

(b) Long-term Optimization at 5 year 
Figure 31: Saturation maps of some layers from short-term and long-term EnOpt at different production time. 
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Top layer Layer 3 Layer 8 

(c) Short-term Optimization at 10 year 

   
Top layer Layer 3 Layer 8 

(d) Long-term Optimization at 10 year 
Figure 31: Continued. 

 
 
  



 

 65 

 
 

   
Top layer Layer 3 Layer 8 

(e) Short-term Optimization at 15 year 

   
Top layer Layer 3 Layer 8 

(f) Long-term Optimization at 15 year 
Figure 31: Continued. 
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Top layer Layer 3 Layer 8 

(g) Short-term Optimization at 20 year 

   
Top layer Layer 3 Layer 8 

(h) Long-term Optimization at 20 year 
Figure 31: Continued. 
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5. CONCLUSION 

 

The EnOpt has gained its popularity over the past years in the reservoir simulation 

community. Many studies have shown that EnOpt has highly potential for future 

improvement. In this thesis, we have provided some insights of an ensemble-base 

optimization method (EnOpt) where the optimization is done using steepest ascent 

method, and the gradient is approximated by an ensemble method. We applied the EnOpt 

to the synthetic reservoir, namely UNISIM-I. Two optimization cases were performed: 

random initial control and extended production history. The EnOpt has successfully 

optimized both optimization cases. In addition, the study about an effect of the discount 

rate to an optimized solution has also been done. As results of this study, the optimization 

can be done in two scheme, long-term and short-term optimization. Each optimization 

scheme aims to maximize the production cash flow in different production time. The long-

term optimization aims to maximize the cash flow throughout the lifecycle of the reservoir 

where the short-term optimization, on the other hand, aims to maximize a cash flow of an 

early production period. Therefore, the short-term optimization yields higher cumulative 

cash flow in early production time but the long-term optimization usually results in higher 

cumulative cash flow at the end of production. 

For future improvement regarding the use of the short-term and long-term 

optimization, they can be coupled together in a method, so-called ensemble-based 

hierarchical multi-objective production optimization (Fonseca et al. 2014). The method 

has shown an improvement of the cash flow in early production time using short-term 
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optimization while maintaining the optimized cumulative cash flow at the end of 

production time from long-term optimization. 

Another approach for future study is to implement EnOpt in a close-loop reservoir 

management. Instead of using a single realization of reservoir model throughout the 

optimization, in close-loop optimization, the reservoir model is updated continuously once 

the new geological data is available, enhancing the optimization result to be more accurate. 

Lastly, we can improve the EnOpt through a modification of the EnOpt formula. 

Many recent studies purpose a modified EnOpt formula which demonstrates an 

improvement of the optimization. The modified EnOpt methods are such as conjugate 

gradient EnOpt (Chaurdhri et al. 2009), covariance matrix adaptation EnOpt (Fonseca et 

al. 2013), and Stochastic Simplex Approximate Gradient (Fonseca et al. 2017). 
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