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ABSTRACT 

Lithium ion batteries hold the potential to play a key role in meeting our future and 

increasing energy storage needs. Lithium ion batteries have the highest energy density of 

all battery systems currently available. Since their introduction to the modern battery 

market in the mid 90’s they have evolved and become the choice system for meeting 

energy needs in portable electronic devices. Lithium ion batteries, however, face many 

challenges preventing them from being utilized to their fullest potential. They suffer from 

self-discharge, degradation over repeated charging, not operating well at extreme low or 

high temperatures, and can suffer from the deposition of metallic lithium during charging. 

This deposition builds up on the surface of the graphite electrode and can lead to the 

formation of structures called dendrites. These dendrites can cause problems like internal 

short-circuits, ultimately resulting in the battery catching on fire. 

The focus of this work is to study the electrodeposition of lithium on graphite 

electrodes. Two main tools are used over the course of this study: modeling and 

experimentation. 

The first half of this work discusses the approach through computational modeling. 

A simple one dimensional, needle-like dendrite model is developed. Through analysis of 

the concentration gradient that occurs near the surface of the electrode and evaluation of 

the overpotentials that develop due to applied current at the surface of the electrode a 

relationship is found for the tip current density. Propagation of the dendrite is calculated 
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from determination of the tip current density and application of Faraday’s law. 

Appropriate verification through the method of manufactured solutions and validation by 

comparison to previously reported experimental data are discussed. 

 The second half of this work cover the experimental parts of this work to probe the 

electrodeposition of lithium on graphite electrodes. The development of the cell 

fabrication techniques and the characterization of the graphite electrode material used in 

these experiments is explained. The graphite used in these experiments was CMS graphite 

on a copper current collector with a specific capacity of 317 mAh/g. 

 The experimental investigation of electrodeposited lithium on graphite electrodes is 

studied by the development and utilization of a novel dynamic impedance measurement 

technique. The impedance response of the cell is captured across different states of charge 

of normally charged cells and of cells where electrodeposition was proven to occur. 

Through trends in the impedance data, and through utilization of equivalent circuit 

analysis, correlations of changes in the impedance with the electrodeposition of lithium 

are made. In the absence of lithium electrodeposition, the general impedance response of 

the cell is to increase with increasing SOC. However, this trend reverses under conditions 

where electrodeposition is occurring. The presence of electrodeposited lithium is verified 

using SEM imaging. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

Motivation and Challenges 

Energy storage is one of the most fundamental challenges faced by society in the 

21st century. Everything we do depends on the availability of stored energy: growing food, 

supplying drinking water, transporting goods, and communicating all rely on the 

availability of stored energy. There are many different ways to store energy. Gravitational 

potential energy is a way to store energy in a body based upon that body’s position relative 

to other bodies. Hydroelectric dams use the gravitational potential energy of accumulated 

water at a high elevation to drive turbines at a lower elevation and generate electricity. [1] 

Chemical potential energy or chemical potential is another way to store energy.[2] The 

chemical potential refers to the amount of energy that can be released (or absorbed) during 

a chemical reaction (ie. the breaking or forming of chemical bonds). The internal 

combustion engine is a common means of utilizing chemical potential energy through the 

combustion of a fuel, like gasoline, and finds itself in many applications. One of the most 

popular applications is in supplying the world’s transportation needs. [3] Nuclear potential 

energy is another form of potential energy that harnesses the energy stored in the bonds of 

an atom’s nucleus. Breaking atomic bonds releases a tremendous amount of energy and 

has been utilized from applications ranging from military weaponry that ended the Second 

World War to power plants which provide large amounts of stable electricity.[3-5]  

The method used for the production or storage of energy is application and 

situation specific. It is not possible to use Hoover Dam to power an automobile; it is better 
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to use an internal combustion engine. A submarine does not use an internal combustion 

engine, because that requires carrying large amounts of additional fuel, or refueling; rather 

is uses a nuclear reactor. The specific application and corresponding requirements dictate 

the possible means of energy production and storage. 

The electrochemical energy storage system is another means of energy storage 

available.[6] Electrochemical energy storage involves the conversion, or transduction of 

chemical energy into electrical energy or vice versa.[7] Common electrochemical systems 

include fuel cells, supercapacitors, and batteries. Batteries have been in the lime light of 

modern energy storage research in part because of the rise of modern electronics. Batteries 

are very applicable energy storage devices for all of our electronic devices. They are 

condense systems, have reasonable energy density, and are “all-in one” units. Everything 

needed for the production and the storage of energy is completely contained inside the 

battery cell. The fuel, reaction mechanisms, and all necessary components come in one 

package. This is in contrast to other energy systems where fuel is normally stored 

externally: fuel cells, internal combustion engine, etc. 

Batteries, however, have many short comings. They suffer from self-discharge-the 

loss of energy without actually being used- they degrade over time, and, if rechargeable, 

degrade over repeated charging. Furthermore, they take long periods of time to recharge 

and can only be recharged relatively slowly. In comparison to other forms of energy (like 

the internal combustion engine) batteries have low energy density. The short comings of 

batteries systems have prompted much research, the understanding of which requires some 

fundamental background knowledge. 
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Fundamental Electrochemistry and Basic Battery Operation 

A battery is an electrochemical system, and has been around for many years. 

Benjamin Franklin is credited with having first coined the phrase “battery” in 1749. He 

used to describe a system of linked capacitors. Thirty years later in 1780 Luiki Galvani 

(for whom the galvanic cell is named) described “animal electricity” when he created an 

electrical circuit through a frog. Though he did not realize it at the time, this was 

essentially the first battery. In 1800 Alessandro Volta discovered that in Galvani’s 

experiment the energy was not actually coming from the frog, but had a different source. 

He setup an experiment where he produced the first non-animal battery, which was termed 

the voltaic pile.[8] 

 Building on previous research, in 1836 John Frederic Daniell created the Daniell 

cell when investigating different ways to configure and overcome some of the problems 

associated with the voltaic pile. This work was followed by developments from William 

Robert Grove in 1844 who produced the Grove cell. In 1859 Gaston Plante created the 

world’s first rechargeable battery based on a lead-acid system.[8] 

 Following these initial discoveries, the field of battery research slowed in the latter 

19th century. The rise of the internal combustion engine and its utilization in the 

automobiles overshadowed the field of battery technology. Early attempts to create an 

electric vehicle proved futile as the internal combustion engine provided far more energy 

than the battery. The lead-acid rechargeable battery was integrated into automobiles to 

provide accessory power when the engine was not running and operate the starter, but any 

further research efforts into batteries were slowed.  
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In 1912 a new battery system was discovered: the lithium battery. This new battery 

held greater potential than previous battery systems. It promised both high energy and 

light weight characteristics. It would take almost the rest of the century, however, before 

this battery system’s potential was unlocked and it would find its niche application.  

In 1991 Sony produced the first lithium ion battery to be used in a portable 

electronic device. [9, 10] It has since become the industry standard battery and has been 

the power house behind some of the newest technological devices, such as the iPhone. 

As illustrated by the Ragone plot in Figure 1, the lithium ion battery has both the 

highest specific energy density (Wh/kg) and the highest volumetric energy density (Wh/L) 

of any modern battery system.[11] These properties makes the lithium ion battery system 

the most viable system for battery based energy storage applications.  

 

 

Figure 1. Ragone plot showing the high volumetric and specific energy density of lithium ion 

systems. This is ideal for applications like portable electronic devices and cars where size is a 

limiting factor.[11] 
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Lithium ion batteries can physically come in many configurations. Common 

configurations are shown in Figure 2 and Figure 3. Figure 2 shows a cylindrical lithium 

ion battery and the corresponding components. Cylindrical cells are often found in 

automotive applications. Figure 3 shows a rectangular, or pouch cell lithium ion battery 

configuration and the corresponding components. The pouch cell geometry is typically 

found in laptops or other portable electronics. Regardless of geometrical shape, all lithium 

ion batteries contain the same basic components—two electrodes, a separator, electrolyte, 

casing – and operate on the same fundamental principles.  

 

        

Figure 2. Cylindrical geometry lithium ion battery. Found in electric vehicle applications[12, 13] 
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Figure 3. Pouch geometry lithium ion battery. Found in laptop and other portable electronics [14, 

15] 

 

The fundamental operation of the battery is best explained using Figure 4. The 

fundamental components in a battery include: positive electrode (cathode), negative 

electrode (anode), electrolyte, and separator. The electrodes are made up of the electrode 

material and the current collector. The electrode materials are different for the anode and 

cathode. A common anode electrode material is graphite. [16, 17] Common cathode 

materials include lithium cobalt oxide (LiCoO2), lithium manganese oxide (LiMn2O4), and 

lithium nickel oxide (LiNiO2). [18] The current collector is a thin metal foil that electrode 

material is adhered to and provides electrons to the circuit. A common anode current 

collector is copper, and a common cathode current collector is aluminum. The metals used 

for a particular electrode are based upon how the metals react with the electrolyte and its 

operating voltage. [19] An anode and cathode electrode sheet are shown in Figure 5. 
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Figure 4. Schematic showing the flow of current in the external circuit and ions in the internal 

circuit.[20]  

 

 

Figure 5. Common electrode sheets. The anode electrode sheet consists of a copper current 

collector and graphite electrode material. The cathode electrode sheet consists of an aluminum 

current collector and LiCoO2 electrode material. 

 

 Two circuits exist in a battery and both must be connected simultaneously for the 

battery to work: an external electrical circuit and an internal electrochemical circuit. The 

external electrical circuit connects the positive current collector to the negative current 

collector; usually a wire is used to complete the circuit. When connected, current flows 

through the external circuit. During discharge current spontaneously flows from the 

Anode Electrode Sheet Cathode Electrode Sheet

Current collector

(Copper)
Electrode material

(graphite)

Electrode material

(LiCoO2)
Current collector

(aluminum)
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positive current collector to the negative current collector. During charge an 

external source provides an electromotive force to cause current to flow from the 

negative current collector to the positive current collector. The flow of current for charge 

and discharge is illustrated in Figure 4. 

The internal electrochemical circuit is the crux of battery operation. Inside 

the battery, the positive and negative electrodes are immersed in an electrolyte solution. 

The electrolyte solution is typically an organic solvent: ethylene, dimethyl, diethyl, 

and/or ethyl-methyl carbonates (EC, DMC, DEC, EMC) and a lithium salt are 

the basic components of the electrolyte solution. The alkyl carbonates are used due to 

their stability for voltages in the 4 V range. They also have high conductivities, a 

reasonable boiling and freezing point, and sufficiently low toxicity. The most common 

salt is LiPF6. Other lithium salts have been utilized, however each have their own 

draw backs.[16] LiAsF6 is poisonous, LiClO4 is explosive, LiBF4 interacts poorly 

with the anode, LiSO3CF3 possesses too low a conductivity, LiN(SO2CF3)2 and 

LiC(SO2CF3)3 interact poorly with the aluminum current collector.[16, 18, 19] 

Electrolyte performance – the ability for the electrolyte to withstand a wide range of 

temperatures, voltages, and possess a high conductivity – can be increased by 

utilizing electrolyte additives. Electrolyte additives, which usually account for no more 

that 5% by weight or volume of the electrolyte solution have been found to increase salt 

stability, prevent degradation of the anode and cathode, reduce the flammability of the 

electrolyte, and provide overcharge protection.[21] 

 The internal electrochemical circuit consists of positively charged lithium ions 

moving back and forth between the positive and negative electrode. To maintain charge-
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balance the positively charged lithium ions in the internal electrochemical circuit travel 

in the same direction as the negatively charged electrons moving in the external electrical 

circuit. During discharge lithium ions migrate from the negative electrode to the positive 

electrode. At each electrode different electrochemical processes take place that allow the 

lithium ions to insert or de-insert, through a process called intercalation, from the 

electrode material.  During charge lithium ions are driven from the positive electrode to 

the negative electrode.  

 Eq. 2, lithium ions intercalate into the carbon structure and are reduced to form 

Eq. 1 represents the electrochemical reaction that takes place at the cathode. During 

charge the active material, in this example LiCoO2, is oxidized and lithium ions are de-

intercalated from the electrode material. At the negative electrode, represented by  

LixC, the active material of the anode. During discharge the reverse reaction takes place. 

At the anode LixC is oxidized and lithium ions de-intercalate from the graphite structure 

of the anode. At the cathode lithium ions are reduced forming LiCoO2. [20] 

Figure 6. Schematic representation of the operation of the internal electrochemical circuit in a 

lithium ion battery. During charge lithium ions de-intercalate from the positive electrode and 

intercalate into the negative electrode. During discharge the reverse operation takes place. [11] 
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Eq. 1 

Complications and the Need for Improvement 

Like every technology, lithium ion batteries have their own set of complications 

and problems. In some situations, their problems become a safety hazard. Such problems 

have necessitated a plethora of scientific research. 

Boeing Corporation recently suffered from the effects of lithium ion battery failure 

in one of their aircraft, the Boeing 787 Dreamliner. This world class, long-range, mid-size, 

wide-body aircraft is one of Boeing’s elite commercial airplanes. A recent design change 

to replace the formerly standard internal combustion engine, used to provide power to the 

plane when on the ground with the turbines off, with lithium ion batteries proved to be 

detrimental and scathed the reputation of the company.[22] 

An issue occurred in which the lithium ion batteries in several Dreamliners 

suffered from thermal runaway. Thermal runaway is not a new issue with lithium ion 

batteries, but it is not completely understood. Several aircraft suffered because their 

lithium ion batteries experienced thermal runaway after only 52,000 flight hours rather 

discharge

charge

 Eq. 2 discharge

charge
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than after the 10 million flight hours as predicted by Boeing.[22]. The result of five 

incidents (electrical fires) in five days on 787s forced the Federal Aviation Administration 

to order the entire fleet of 787 Dreamliners be grounded until Boeing could investigate the 

problem and come up with a solution. This cost time, money, and tarnished the reputation 

of Boeing among the aviation community.[22] 

Implementing new technologies is never easy, and there are always obstacles that 

must be overcome. Fortunately, no one was hurt or killed in any of the incidents (most 

likely thanks to the quality engineering and safety systems), but the event illustrates the 

need for further research to develop a more comprehensive understanding of lithium ion 

batteries and their failure mechanisms so that they can be safely and effectively utilized 

to meet our energy needs.[13] 

Understanding Degradation and Failure Mechanisms in Lithium Ion Batteries 

Desired operating conditions for lithium ion batteries include high currents, a 

wide range of operating temperatures, fast charging rates, and high voltages. Many of 

these requirements stem from the fact that energy applications are very time dependent. 

Often end users have applications that need a source of energy and they need it 

immediately. Similarly, the time to build up stored energy is time dependent. An end 

user will not wait all day for their cell phone battery to charge. In applications such as 

regenerative braking, the energy is only available for a short period and has to be 

stored or dissipated very quickly. Furthermore, once the energy is stored it eventually 

needs to be reclaimed, and repurposed. In most applications, this needs to be 

accomplished repeatedly, so batteries 
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also have to have high cycle-ability. These operating conditions put high requirements on 

battery systems and consequently all battery systems undergo degradation, which 

ultimately leads to failure during operation. Degradation and failure is a culmination of 

many effects, including but not limited to temperature, charging rate, and mechanical 

shock. Two primary and interconnected degradation modes that affect lithium ion 

batteries, and have been widely studied is the formation of the Solid Electrolyte Interface 

(SEI layer) on the electrodes and dendrite growth. 

Solid Electrolyte Interface (SEI) 

The formation of a passivating film on the battery electrodes caused by a reaction 

between the organic electrolyte and the electrode material was first realized in the 

1970’s.[23] This passivating film, however, is not entirely bad. Once formed, it serves to 

protect the electrodes from further degradation and loss of cycleable lithium due to side 

reactions between the electrolyte and electrodes. The SEI layer mostly forms during the 

first charge-discharge cycle.[24] Its formation is a consequence of reactions with the 

electrolyte solvents and the salt. While its formation does account for approximately a 

10% loss in capacity during the formation cycle, due to the reaction consuming lithium, 

its presence has been acknowledged as essential to the overall operation of the battery.[25] 

Once the SEI layer is formed, continued growth of the film should theoretically not occur. 

An optimal SEI layer should have negligible electrical conductivity and high electrolyte 

diffusion resistance while simultaneously having high lithium ion selectivity and 

permeability.[23] These characteristics prevent further side reactions since electrons 

cannot travel through the SEI layer. In reality the SEI layer gradually grows and changes 
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during battery cycling due to electron transfer and exposure to the electrolyte or electrolyte 

diffusion through the layer to the electrode surface leading to a continuation of side 

reactions.[26, 27] The continued growth lowers the capacity of the battery and the 

Coulombic efficiency. However, the growth of the SEI after the formation cycle is 

significantly less.[23] 

The SEI that forms on graphite anodes is of particularly interest as this has been 

found to be the major cause of SEI related degradation. [28] An SEI-like layer does form 

on surface of the cathode; however, the effect of this layer on capacity loss and overall 

battery operational performance is significantly less. [25, 29] SEI on graphite anodes has 

been studied extensively and found to be affected by a variety of parameters including, 

but not limited to electrode size and relative geometries (N/P ratio), the current densities 

that occur in the electrode during operation, and the operating potentials of the electrodes. 

[26, 27, 29-31] The N/P ratio is the ratio of the capacity of the negative electrode (N) to 

the capacity of the positive electrode (P). In an ideal battery the N/P ratio would be 1:1. 

During charge and discharge the capacity of each electrode is fully utilized. However, due 

to the loss of cycleable lithium during formation cycles and the potential for dendrite 

growth on graphite anodes the capacity of the graphite anode used in a commercial battery 

is designed to be higher than the cathode.[25] Obtaining a higher capacity in the anode 

can be obtained in several ways. The thickness of the anode material can be increased, or 

the overall surface area of the anode can be increased.[32] However, each method has its 

drawbacks. An increase in the anode thickness changes the diffusion kinetics, which 

affects current densities in the electrode and charge rates.[33] Enlarging the surface area 
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means that a larger SEI layer will form to cover the surface of the electrode consuming 

more lithium, consequently leading to a larger capacity lose during the formation cycle. 

The operating voltages of the electrodes govern the formation of the SEI layer and 

the energies required for the oxidation and reduction reactions. Figure 7 shows the relative 

energies and potentials for an anode-cathode pair.[23, 34] The anode (µA) and the cathode 

(µC) sit at different electrochemical potentials. The stability window of the electrolyte is 

the difference in energy between the Lowest Unoccupied Molecular Orbital (LUMO) and 

the Highest Occupied Molecular Orbital (HOMO). If the potential of the anode (µA) is 

above the LUMO energy then the electrolyte will undergo reduction, leading to the 

formation of the SEI layer. Similarly, if the potential of the cathode (µC) is below the 

HOMO energy, the electrolyte will oxidize. The difference between LUMO and HOMO 

is the obtainable energy of the cell, Eg. To obtain the highest energy this separation needs 

to be as large as possible. Organic electrolytes used in lithium ion batteries have oxidation 

potentials close to 4.7 V vs. Li/Li+ . The reduction potentials of these electrolytes are 

around 1.0 V vs. Li/Li+. For lithium ions to intercalate into the graphite anode the potential 

of the anode needs to be between 0V and 0.25V. This voltage is outside the stability 

voltage window of the electrolyte; thus the electrolyte decomposes at the surface of the 

graphite forming the SEI layer. 
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Figure 7. Energy levels and relative voltages for lithium ion battery electrode pair. [23, 34] 

 

In general, the formation of the SEI layer can be broken down into a two-step 

process. In the first step, the graphite electrode is polarized. The polarization potential 

causes the reduction of components in the organic electrolyte forming new chemical 

species. The second step involves the precipitation of the decomposed species. The 

decomposed species begin to form the SEI layer until all surfaces of the graphite are 

covered with this passivating film. LiPF6 precipitates as LiF and LixPFy after reduction. 

Simultaneously, carbonates from the electrolyte precipitate with lithium ions forming 

Li2CO3, lithium akyl carbonate (ROCO2Li), or a similar organic compound. At the surface 

of the graphite insoluble products such as LiF, Li2O, and Li2CO3 collect forming the SEI 

layer.[23] 

The reduction processes responsible for the formation of the SEI layer take place 

between 0.2V and 0.8V vs Li/Li+. Simultaneously lithium ions are intercalating into the 

graphite structure forming LiC6. If the reduction and the intercalation rates are too high, 

the SEI layer may not fully develop. The continuous formation of SEI consumes cycleable 
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lithium and negatively affects the battery capacity. Additionally, the SEI layer serves to 

protect the battery electrode during operation. An incomplete SEI layer or breakdown in 

the SEI layer can lead to other detrimental degradation phenomenon like lithium plating 

or dendrite formation. 

Dendrite Formation 

Lithium plating or dendrite formation is the deposition of metallic lithium on the 

surface of the graphite anode, rather than the intercalation of the lithium into the graphite 

structure. The intercalation potential for lithium ions into graphite is very close to the 

Li/Li+ potential. The close proximity of these potentials can cause deposition of metallic 

lithium onto the graphite electrode depending on the charging conditions.[10] A complete 

understanding of dendrite formation and growth is currently lacking; however, it is 

generally agreed factors such as electrode current density, electrolyte composition and 

concentration, surface morphology, and temperature are the major factors affecting 

dendrite formation. [35-39]  

It is generally agreed that the current densities of the electrode surface play a big 

role in dendrite formation. Purushothaman and Landau provided a theoretical analysis to 

describe the conditions of lithium plating.[41] The conditions for lithium plating follow 

the buildup of lithium that accumulates at the surface of the negative electrode during 

charge. If the flux of the charge transfer reaction at the graphite/SEI layer is higher than 

the lithium diffusion flux into the graphite particles then it is likely plating will occur. In 

1998, Brissot et al. proposed that the growth velocity of the dendrite is proportional to the 

local current density. They observed dendrite growth at low current densities (0.2mA/cm2) 
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and at high current densities (0.7mA/cm2) and reported a strong dependence between the 

growth rate and current density.[40]  Orsini et al. thereafter reported the morphology of 

deposited lithium was affected by the current densities and display either moss-like or 

dendritic (needle-like) structures depending on the current density. Lower current 

densities resulted in the mossy structure, high current densities lead to the needle-like 

structure.[41] The difference in structure depending on current density has been further 

observed.[42] 

Integrally connected with the current density of the electrode is the concentration 

gradient that forms at the surface of the electrode in the electrolyte. The intercalation of 

lithium ions into the graphite electrode, and the evolution of the SEI layer forms a 

concentration gradient at the surface of the electrode that is different from the bulk 

concentration of the electrolyte. Crowther and West reported that the concentration 

gradient was not found to have a large effect on the initiation of the dendrite; however, 

after the dendrite precursor has formed on the surface of the electrode, the growth is highly 

dependent on the availability, or concentration, of lithium in the electrolyte near the 

surface of the electrode. [43] The mass transport of lithium to the surface is the driving 

factor for dendrite growth. The growth rate of the dendrite is related to the current density 

by Eq. 3.[44]  

𝑖𝑡𝑖𝑝 = 
𝑣𝑡𝑖𝑝𝐹

𝑉𝑚

Eq. 3 

where: 

itip= current density of dendrite tip 

vtip = velocity of dendrite tip (growth rate) 

F = Faraday’s constant 

Vm= is the molar volume of lithium 
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Due to the dependence of dendrite growth on the composition and concentration 

gradient in the electrolyte, some have looked into putting additives into the electrolyte to 

mitigate or eliminate dendrite nucleation and growth. Electrolyte additives have had the 

effect of reducing, but not completely mitigating, lithium dendrites. Researchers have 

found the growth of dendrites is highly sensitive to electrolyte additives. 

Wandt et al. reported the addition of fluorotheylene carbonate (FEC) additive 

helped distribute the occurrence of lithium plating and make it more homogeoues across 

the electrode. Homogeneous distribution can help reduce areas of high current densities 

leading to further plating or breakdown of the SEI layer. Furthermore, they noted with the 

FEC additive the plating was partially reversible, while with their standard electrolyte the 

plating process was almost completely irreversible.[10] Mogi et al evaluated the effect of 

three different additives on lithium plating: FEC, vinylene carbonate (VC), and ethylene 

sulfite (ES). [45] Electrolyte with 5 wt.% of each additive was evaluated across similar 

cells. They found FEC improved cycling efficiency and was the only additive effective at 

reducing the deposition and increasing the dissolution of lithium plating. Furthermore, 

FEC also decreases the lithium needed for the formation of the SEI layer, decreasing the 

initial capacity loss of a battery.[46] 

The microstructure of the negative electrode material, including lattice structure, 

particle size and shape, affects the characteristics of lithium dendrites. Park et al. studied 

the effects of lithium intercalation and deposition into graphite that had different surface 

geometries and particles sizes. Their findings showed the more spherical and smoother the 
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particles were the better the lithium ions intercalated into the graphite structure and the 

lower the rate of lithium deposition. The graphite particles that had rougher more defined 

edges, as shown in Figure 8, were more likely to be sites of lithium deposition.[47] The 

smoother graphite surface structure helped to facilitate lithium intercalation into the bulk 

of the electrode material, particularly at lower temperatures and enhanced capacity 

retention.[48] 

Figure 8. SEM image of graphite negative electrode (a) natural graphite with natural surface 

roughness (b) natural graphite prepared by TVD process [49], resulting in smoother particles. 

The graphite with smoother particles was found to better resist lithium deposition and allow 

better intercalation of lithium ions.[48] 

The temperature at which a battery is charged significantly affects dendrite growth. 

At lower temperatures lithium ion batteries are more prone to dendrite growth. Love et al. 

investigated the dendrite growth rate as a function of temperature by observing initiation 

time, and the number of dendrites formed at ambient and sub-ambient temperatures (-10C-
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20C).[36] At lower temperatures the dendrite initiation time decreased and growth rate 

increased. At lower temperatures dendrite growth is more significant because there is an 

increased mass transport resistance to lithium ions moving through the electrolyte and a 

reduced charge transfer resistance due to the thinner SEI layer. Lithium ions favor 

reducing to metallic lithium, according to Eq. 4, rather than intercalating into the electrode. 

The diffusion coefficient changes with temperature according to Eq. 5. The lower the 

temperature, the slower the diffusion. This is schematically represented in  Figure 9. The 

slower diffusion leads to an accumulation of lithium at the surface of the electrode. 

𝐿𝑖+ + 𝑒− = 𝐿𝑖0 Eq. 4 

 

𝐷 = 𝐷𝑜exp (−
𝐸𝐷

𝐾𝐵𝑇
) 

Eq. 5 

 

 

 Figure 9. Representation of diffusion processes slowing at low temperatures. Due to the low 

temperature, the diffusion of lithium into the graphite slows. Lithium ions backup at the surface 

of the electrode and deposit as metallic lithium rather than intercalating into the electrode. [36] 
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A critical temperature of -10C was identified as the temperature below which 

dendrites grow uncontrollably at their testing current of 5 mA/cm2.  Temperature 

significantly influenced the dendrite morphology. At lower temperature, the moss-like 

morphology was observed. This was attributed to the faster initiation rate of new dendrites, 

which subsequently prevents localized current distributions, helping the dendrites spread 

across the surface of the electrode. At higher temperatures, a more needle-like morphology 

was observed. [36] 

The danger and detrimental effects of dendrites comes from the fact that dendrites 

can cause internal short circuits, particularly dendrites that have a needle-like morphology.  

Needle-like dendrites can grow from the negative electrode and connect back to the 

positive electrode as shown schematically in Figure 10. Short circuits lead to an increase 

in internal heating which ultimately leads to thermal runaway and catastrophic failure of 

the battery.[9, 50] 

 

 

Figure 10. Representation of dendrites growing from the anode, puncturing the separator, and 

creating an internal short-circuit with the cathode. [11] 
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Scope of this Work 

The objective of this work is to investigate and bring an increased understanding 

of dendrite growth on graphite electrodes. There are many tools and approaches available 

to meet this objective the broadest of the tools being computational modeling and lab 

based experimentation. Both modeling and experimentation can be extremely insightful 

in trying to understand or answer a problem; however, both also have inherent weaknesses. 

Modeling can be helpful in building a fundamental understanding of the physics that is 

behind dendrite growth. It can be used to simulate many different scenarios in very 

controlled manners. A draw back to modeling is the model will only include and show the 

physics that is represented by the governing equations included in the model. If key 

assumptions used in the model are incorrect, or if elements are missing then the model 

maybe erroneous. Experimental techniques can serve to represent what will actually occur. 

They can be used to validate computational models and show that our understanding and 

physical assumptions are correct. Difficulties lie in controlling or setting up experiments 

to meet circumstances or test scenarios of interest. In the case of dendrites, experimental 

observation are often difficult due to the many factors such as their size, and 

reproducibility. Many techniques such as SEM, XRF, and optical microscopy have been 

used to study the growth of dendrites. Many of these techniques have draw backs in that 

they are either destructive techniques or they are difficult to setup and require a special 

setup that does not necessarily mimic the battery as it would be in full operation.  

The first part of this work presented in Chapter II seeks to understand and develop 

a computational model to gain insight into dendrite growth.  Development of such a model 
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requires exploring computational analysis methods, techniques, and appropriate 

verification and validation of the code. The model approach is relatively simple, being 

based off models found in the literature. It presents a one-dimensional approach to gaining 

insight and understanding of fundamental physics behind needle-like dendrite growth. 

Appropriate model verification, validation, and results are discussed. 

The second part of this work presented in Chapter III and Chapter IV includes the 

experimental aspects used to study dendrites. Chapter III documents characterization of 

CMS graphite, a common anode material. To understand the dendrite growth on graphite, 

it is first important to characterize the graphite that will be used experimentally and such 

analysis can increase understanding to how lithium intercalates into the graphite under 

normal operating conditions and without dendrite formation. Chapter IV delves into using 

Electrochemical Impedance Spectroscopy (EIS) to detect the formation of dendrites on 

the graphite electrode. Traditional methods such as SEM, XRF, and optical microscopy 

require opening the battery to look at the dendrites, thus destroying the battery and 

preventing further testing. In addition, any information collected is done ex-situ and 

provides no information about the dendrite growth process across different states-of-

charge. EIS was used to investigate the electrodeposition of lithium -dendrite growth- on 

graphite electrodes, quantified through equivalent circuit analysis. Finally, overall 

conclusions and recommendations are presented in Chapter V. 
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CHAPTER II  

UNDERSTANDING DENDRITE GROWTH THROUGH A FUNDAMENTAL 

MODEL 

Background 

Computational modeling can provide great insight and understanding into dendrite 

growth. Computational modeling offers control and repeatability that is not always 

available through experimental methods. It is possible to precisely control specific 

parameters and look at the effect of just one parameter or constraint on the system. The 

limitations of computational modeling are the model only represents the physics that is 

included in the model. If incorrect assumptions are made, or key relations are excluded 

from the model or not correctly included then the model is completely erroneous.  

Over the past 30 years, many models have been proposed to simulate dendrite 

growth and bring an increased understanding to their occurrence. Barton and Bockris 

created one of the earliest dendrite models. [44] They created a model to study the 

conditions for dendrite initiation and growth of silver deposition in well-understood 

electrolytes. Their model assumed surface tension was a key driving force in dendrite 

propagation. They assumed surface tension could be calculated by correlating it with an 

overpotential term caused by pressure variation inside and outside the dendrite tip. Their 

calculations predicted a parabolic shape of the dendrite tip. Barton and Bockris suggested 

that during the initiation stage the dendrite tip formed on the electrode with its own 

spherical diffusion layer. The dendrite tip protruded from the surface of the electrode and 

grew through the diffusion layer of the electrode. Barton and Bockris proposed that growth 
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is faster on protrusions from the electrodes because spherical rather than linear diffusion 

conditions dominate. Over time, a narrowing of the dendrite tip might occur due to the 

larger spherical diffusion flux. Their model incorporates surface forces to resist infinite 

dendrite tip thinning. 

Expansion of the Barton and Bockris model has taken place over the years. Diggle 

et al. extended the Barton and Bockris model by using a Butler-Volmer kinetic expression 

and relaxing the assumption that the dendrite is static. [51] Both Diggle et al. and Barton 

and Bockris models were found to compare well with experimental data. Monroe and 

Newman built off the Diggle et al. and Barton and Bockris models, but made some 

simplifying assumptions.[52] Their model assumes a dendrite is already protruding from 

the surface. They assume only one dendrite or that the dendrites are far enough apart that 

they do not affect each other and the dendrites are small enough that their presence does 

not greatly affect the concentration and potential profiles of the cell.   

Generally, most models are mechanistic models meaning they operate by 

describing how the system should work, i.e. solving the problem through the governing 

physical equations. Most models start by solving for the concentration profile near the 

surface of the electrode. From the concentration near the electrode surface, it becomes 

possible to derive a relation for the potential profile by assuming a Butler-Volmer or Tafel 

kinetic relationship. Generally, it is accepted that the current density is the primary suspect 

for dendrite growth, and can be related to deposition of lithium through Faraday’s law.[53]  

Work by Akolkar expands on the Monroe and Newman model by looking at 

relations between the overpotentials that develop due to dendrite growth and the dendrite 
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tip current density, which can be related to tip growth. [44, 52, 53] The overpotential 

analysis approach simplifies the otherwise computationally intensive approach by Monroe 

and Newman. The work presented in this chapter investigates the work done by Akolkar 

and builds a similar model to gain a fundamental understanding of dendrite growth 

physics, an understanding of the intricacies involved in model development, and the 

importance of model verification and validation. 

Model Development 

The development of a computational model begins long before a programmer takes 

to a computer and keyboard and begins typing out lines of code. To be successful and have 

a final product (i.e. a working computer code) that produces a meaningful and effective 

model of a physical system you first have to start with a well posed question: what is it 

you wish to do? Outlining the fundamental questions to answer is the first step. A detailed 

outline allows you to determine all the physical characteristics of a particular situation you 

wish to represent. This step requires gathering and solving for all governing equations, 

which will be used to represent a physical system through the computer model. This 

process requires making assumptions and simplifications: compressibility vs. 

incompressibility, constant boundary conditions vs. flux boundary conditions, linear-

terms vs. non-linear terms, etc.  All assumptions and simplifications need to be accounted 

for and justified for your own understanding, and for a future user who needs to understand 

the applications and limitations of the model. The aforementioned process constitutes the 

conceptual model.[54] The conceptual model accounts for the physics represented, any 

assumptions the programmer of a code makes, and the codes applicability and overall 
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purpose. It is important to keep in mind a model can only solve for and show the physics 

represented by the equations it solves. This becomes increasingly important to remember 

when trying to compare model results to experimental data. 

Once a conceptual model is developed, the numerical modeling can begin. The 

numerical model involves the details of solving the conceptual model i.e. the programming 

aspects. The programming language, input parameters, displays the outputs, the numerical 

methods and solvers, and many other details have to be decided. 

Verification and Validation 

The correctness of a numerical code and having confidence that the code is both 

solving the right equations and solving them correctly is of the utmost importance. The 

process of checking code is cast into two steps: verification and validation. [54] 

 Verification is solving the equations right  

 Validation is solving the right equations 

Verification and validation are important processes that every programmer and 

user of numerical codes should understand and practice; doing so will help ensure that 

obtained results are meaningful. By their nature, verification and validation are very 

different; however, the two are complimentary to each other and the order execution of 

the two processes does matter. 

Verification is strictly an exercise in mathematics. It is important to note that the 

verification process does not necessarily encompass source code analysis; reading through 

all the lines in a program does not count as verification (nor would you want to have to do 

that). Wide spread usage or even broad publication does not classify as code verification 
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either. Rather, code verification as defined by IEEE is “a formal proof of program 

correctness”.[55] Obtaining this “formal proof” is highly dependent on the code being 

used and the complexity of the equations being solved. Verifying a code that solves an 

equation, or series of equations, with an exact analytical solution is fairly straight forward. 

For example, a code that solves a classically defined Newtonian mechanics problem where 

a body falls without drag, or slides across a frictionless surface, can easily be verified. The 

analytical solutions to those governing ordinary differential equations are simple to obtain 

and can be used to verify the code. Codes that solve equations where an exact analytical 

solution is either not known or too difficult to obtain makes it much harder to obtain “a 

formal proof of program correctness”. For example, verifying a code that solves the non-

steady-state heat equation where the thermal diffusivity is not a constant, but a function of 

either time, position, or both is a more difficult code to verify. [56, 57]  

Validation refers to the science or engineering aspects involved with a code. As 

defined by Mehta, validation concerns: [57] 

“the process of assessing the credibility of the simulation model with its domain 

of applicability, by determining whether the right simulation model is developed 

and by estimating the degree to which this model is an accurate representation of 

reality from the perspective of its intended uses.”  

Validation is tricky because it often involves comparing the results of a code with 

experimental data. Experimental data frequently does not agree with itself, and can have 

large margins of error. Typically, validation of codes is also an ongoing process. 

Experiments can improve leading to refinement in code parameters.  
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Verification (at least for the first version of a code) is a process that can be 

completed. Verification of any code must be completed before attempting any validation. 

Skipping the verification of a code can lead to drawing erroneous conclusions from model 

results (that may align with experimental data!) and cause much future turmoil and 

complications. After verification is performed, it will no longer need to be repeated unless 

major code modifications are performed. 

Generally speaking, there are five categories into which errors are made during 

code verification:[58]  

1. In code generation (either by hand or using computer symbolic 

manipulation) 

2. In code instructions (in a user manual) 

3. In problem set-up 

4. In defining and coding a test case (analytical solutions are often more 

difficult to code than numerical solutions) 

5. In interpretation of code results 

The authors of the code typically cause the first two categories. These errors can 

be easily corrected and removed. The user can cause categories three through five. Thus, 

there is always some degree of code verification necessary.  

Dendrite Model Development 

The dendrite model is based upon the following: 

1. It is assumed that a dendrite precursor exists on the surface of the electrode. Thus, 

the model will not include or be representative of the nucleation of the dendrite. 
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2. A single needle-like dendrite will be modeled. It is assumed the dendrites are small 

enough and/or are far enough apart that they do not appreciably affect each other. 

3. The time-dependent concentration distribution near the surface of the electrode is 

computed numerically by solving the mass transport equation inside the diffusion 

boundary layer. [59] 

4. The dendrite propagation rate is directly dependent on the tip current density [44, 

52, 53]. The tip current density is calculated by analysis of the overpotentials that 

develop at the dendrite tip and on the electrode surface. 

5. Constants used assume a LiPF6 electrolyte.  

The initial model setup is illustrated in Figure 11. A dendrite precursor exists on 

the surface of the electrode. The precursor is assumed to be spherical in shape with a radius 

r. The current density of the surface of the electrode is denoted by if and the current density 

on the tip of the dendrite is denoted it. A concentration gradient of lithium ions exists in 

the diffusion layer between Z=0 and Z=. Delta denotes the thickness of the diffusion 

layer where the concentration at Z=  is the bulk concentration. An unsteady-state 

transport model governs lithium ion concentration. Since r<< the dendrite does not 

appreciably effect the lithium ion concentration profile in the diffusion layer. 
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Figure 11. Initial conditions for the dendrite model. A spherical dendrite precursor of radius r 

exists on the surface. The model solves for the concentration gradient near the surface between 

Z=0 and Z=. The surface current (if) and tip current (it) are calculated be relating the 

overpotentials that develop. 

 

The unsteady-state transport model is governed by the convention diffusion 

equation for a binary electrolyte represented in Eq. 6.[60] 

𝜕𝐶

𝜕𝑡
+ 𝑉⃗ ∙ ∇𝐶 =  ∇ ∙ (D∇C) − 

𝑖 ∙ ∇𝑡+
𝑛𝑍+𝐹

 
Eq. 6 

 

where: 

 C = concentration (mol/cm3) 

 t = time (second) 

 D = diffusion coefficient (cm2/s) 

 i = current density (mA/cm2) 

 t+ = lithium ion transport number 

 𝑉⃗ = velocity of fluid 

 Z+= charge number 

 F = Faraday’s constant (96,487 C/mol) 

 n = valence number; 1  

 

The first term on the left hand side of the equation represents the time-dependent 

concentration. The second term represents the convective transport inside the diffusion 

boundary layer. Inside the boundary layer this term is negligibly small and can be taken 

as zero.[53] The first term on the right hand side of the equation represents the diffusion 
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transport. The second term represents the ionic migration. In typical organic electrolytes 

the variation of the lithium ion transport number with salt concentration is negligible.[61] 

The transport model can be reduced to Eq. 7. In one dimension, this equation can be 

simplified according to Eq. 8. 

𝜕𝐶

𝜕𝑡
= ∇ ∙ (𝐷∇𝐶) 

Eq. 7 

 

 

𝜕𝐶

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝐷

𝜕𝐶

𝜕𝑧
) 

Eq. 8 

 

  

In Eq. 8 the diffusion coefficient can be taken as a constant or as a function of the 

concentration. Stewart and Newman provide a relationship for the diffusion coefficient 

with respect to concentration for LiPF6 electrolyte, Eq. 9. [59] 

𝐷 = 𝑎𝑒−𝑏𝐶 Eq. 9 

For LiPF6 it was experimentally determined a=2.582 x 10-5  and b = 2.856. The 

units for D is cm2/s and C is mol/L. The full form of the mass transport equation is given 

in Eq. 10. 

𝜕𝐶

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝑎𝑒−𝑏𝐶

𝜕𝐶

𝜕𝑧
) 

Eq. 10 

 

The boundary conditions used to solve Eq. 10 are as follows: 

t = 0;  C= C0 

Z= ; C= C0 

Z= 0; D
𝑑𝐶

𝑑𝑧
=

𝑖𝑓(1−𝑡+)

𝐹
 

where: 

 if is the current density of the flat electrode surface 

 Co is the initial bulk concentration 
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  The current density of the flat electrode surface can be taken as the average 

operating current density (iavg) when the growth of dendrites occurs on a small fraction of 

the electrodes surface. If the current density of the electrode surface approaches the 

limiting current density, the lithium ion concentration near the surface of the electrode 

approaches zero. Conversely, if the current density is well below the limiting current 

density the concentration at the surface of the electrode is close to the bulk current density. 

[53] 

 The bulk concentration of lithium ions in the electrolyte depends on electrolyte 

composition. A value of one molar was chosen. The thickness of the diffusion boundary 

layer can be measured experimentally. Ota et al. determined the thickness to be 

approximately 400m. [62] All constants used are summarized in Table 1. 

 

Table 1. Constants used in the mass transport model 

Bulk concentration (C0) 0.001mol/cm3 

Flat current density (if) 10 mA/cm2 

Boundary layer thickness () 400m 

Lithium ion transport number (t+) 0.2 

 

The concentration of the lithium at the surface of the electrode can be utilized to 

determine the current density of the dendrite tip. The relationship between concentration 

and current density can be derived from an analysis of the overpotential that develops at 

the electrode surface. The total overpotential (tf) that develops at the surface of the 
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electrode is the sum of the activation overpotential (af) and the concentration 

overpotential (cf) when a constant current density (if) is applied at the electrodes surface. 

Utilizing Tafel kinetics for the activation overpotential, the total overpotential can be 

represented according to  Eq. 11. The negative sign before the concentration overpotential 

terms is used because it is assumed all overpotentials are positive.[53] 

tf = af+ cf =
𝑅𝑇

∝𝑐𝐹
ln (

𝑖𝑓

𝑖𝑜
) − 

𝑅𝑇

𝑛𝐹
ln(

𝐶𝑒

𝐶𝑜
)   Eq. 11 

 

where: 

io= exchange current density 

c= cathodic transfer coefficient 

Ce= concentration at the surface of the electrode 

R= gas constant 

T= temperature 

 

At the dendrite tip, the total overpotential (tt) is the sum of the activation 

overpotential at the tip (at), the concentration overpotential at the tip (ct), and the surface 

energy of the tip (st). The overpotential due to surface energy is directly proportional to 

the surface tension at the electrode/electrolyte interface (𝛾) and inversely proportional to 

the dendrite tip radius (r). The total overpotential at the dendrite tip can be represented 

according to Eq. 12.  

where: 

it= tip current density 

K= molar volume of lithium 

ilt = limiting current density at dendrite tip 

 

tt = at+ ct + st =
𝑅𝑇

∝𝑐𝐹
ln (

𝑖𝑡

𝑖𝑜
) − 

𝑅𝑇

𝑛𝐹
ln (1 −

𝑖𝑡

𝑖𝑙𝑡
) + 

2𝛾𝐾

𝑛𝐹𝑟
 Eq. 12 
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At the tip of the dendrite, lithium ion diffusion follows a spherical geometry versus 

at the surface where linear diffusion occurs.[53] The limiting current density of the tip can 

be written: 

𝑖𝐿𝑡 =
𝑛𝐹𝐷𝐶𝑡

(1 − 𝑡+)𝑟
 

Eq. 13 

 

where: 

Ct= concentration of lithium at the dendrite tip 

r= radius of dendrite tip 

 

Substituting ilt into Eq. 12 results in Eq. 14. 

tt =
𝑅𝑇

∝𝑐𝐹
ln (

𝑖𝑡

𝑖𝑜
) − 

𝑅𝑇

𝑛𝐹
ln (1 −

𝑖𝑡(1−𝑡+)𝑟

𝑛𝐹𝐷𝐶𝑡
) + 

2𝛾𝐾

𝑛𝐹𝑟
 Eq. 14 

 

The potential applied to the electrode surface with respect to the Li/Li+ reference 

is V. By definition V-f =f and V-t =t for the electrode and dendrite tip. The difference 

in potential in solution near the dendrite tip (t) and the potential in solution near the 

electrode surface (f) is equal to the difference in overpotentials. 

tt -tf = t -f =  Eq. 15 

 

The difference in net overpotential at the electrode surface and that at the dendrite 

tip is equal to the solution potential difference  between the flat surface and the dendrite 

tip. This potential difference can be estimated by  =𝑖𝑎𝑣𝑔
𝐿𝑐

𝐾
. The characteristic length is 

taken to be ~10m, K as 10mS/cm, and iavg as 10mA/cm2. This gives ~1mV, which is 

negligible in comparison to the net overpotential, which are on the order of volts. Thus, 

the overpotential at the surface can be equated to the overpotential at the dendrite tip 

according to Eq. 16. 
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t = 
f
 

𝑅𝑇

∝𝑐 𝐹
ln (

𝑖𝑓

𝑖𝑜
) − 

𝑅𝑇

𝑛𝐹
ln (

𝐶𝑒

𝐶𝑜
)

=
𝑅𝑇

∝𝑐 𝐹
ln (

𝑖𝑡
𝑖𝑜

) − 
𝑅𝑇

𝑛𝐹
ln (1 −

𝑖𝑡(1 − 𝑡+)𝑟

𝑛𝐹𝐷𝐶𝑡
) + 

2𝛾𝐾

𝑛𝐹𝑟
 

Eq. 16 

 

The second term on the right hand side of the equation represents the concentration 

overpotential at the tip (Ct). The dendrite precursor must grow faster than the flat surface, 

thus this term must be negligibly small. This is met physically because the radius of 

curvature of the dendrite tip is usually on the order 10-5 to 10-4 cm releasing the tip from 

mass transport limitations.[44, 51, 53] This phenomenon has also been observed in zinc 

and silver systems. Furthermore, as the dendrite tip grows it experiences an increase in 

lithium concentration near the tip further diminishing the effect of the concentration 

overpotential.[53] Thus, Eq. 16 simplifies to Eq. 17. 

𝑅𝑇

∝𝑐 𝐹
ln (

𝑖𝑡
𝑖𝑓

) + 
𝑅𝑇

𝑛𝐹
ln (

𝐶𝑒

𝐶𝑜
) + 

2𝛾𝐾

𝑛𝐹𝑟
= 0 

Eq. 17 

 

The concentration near the electrode surface (Ce) is determined from the mass 

transport model. The tip current density (it) can be calculate as a function of dendrite radius 

(r). In this work a tip radius of  r=10-4 cm was used. From the tip, current density Faraday’s 

law can be used to compute the dendrite length as a function of time. 

𝐿 =
𝑀

𝑛𝜌𝐹
∫ 𝑖𝑡𝑑𝑡

𝑡

0

 
Eq. 18 

 

 The aforementioned governing equations and assumptions constitute the full 

dendrite model. The equations will be solved using Python.  
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FiPy 

Solving the partial differential equations that will be utilized in this model can be 

accomplished through a variety of numerical techniques. There exist many different 

numerical methods, which can be used to obtain approximate solutions to these very 

complex equations. The discussion of these various techniques is beyond the scope of this 

thesis, but can be found in literature.[63-65] This work will discuss the implementation of 

one numerical solver called FiPy which was used to obtain solutions to the partial 

differential equations in the dendrite model.  

FiPy is an object oriented, partial differential equation (PDE) solver written in 

Python. FiPy was developed by NIST to be a tool for scientists and engineers to use in 

solving the partial differential equations. The task of solving PDE’s is almost ubiquitous 

with solving many of today’s complex science and engineering problems. This task, 

however, can be rather daunting for many and can require an advanced background in 

mathematics. FiPy is a tool that can be used to make the task of solving PDE’s less 

daunting. It is an object-oriented solver that relies on the standard finite volume approach. 

The FiPy framework allows the programmer to easily include terms for transient diffusion, 

convection, and standard sources. The framework is designed to be easy to use, highly 

customizable, and is capable of providing solutions to an arbitrary combination of coupled, 

elliptical and parabolic PDE’s. [66] 

The Finite Volume Method (FVM) as implemented by FiPy divides the domain 

into discrete finite volumes over which the state variables are approximated with linear or 

higher order interpolations. The derivatives of each term are approximated through 
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discretization across the volume. The discretization varies based upon whether a transient, 

convection, diffusion, or source term is being utilized. Rigorous mathematical explanation 

of the discretization technique for each term can be found in the FiPy user’s manual. [66] 

Discretization permits the approximation of the continuous solution as a set of discrete 

linear equations that can be solved to obtain the dependent variables. The general form of 

each of the terms is shown in Eq. 19. 

 

Eq. 19 

 

The FVM requires the discretized solution domain be divided into non-

overlapping polyhedral elements or cells called a mesh in FiPy. A mesh is constructed 

from three components: vertices, faces, and cells. In the FVM approach, the variables of 

interest are averaged over the volume elements. In FiPy these volume elements are the 

cells, which are depicted in Figure 12. The solution to the PDE is approximated in each 

cell. These approximations followed by an iterative solving across all the cells make up 

the entire mesh, which constitutes an approximation of the solution to the PDE. 

 

 

Figure 12. Components that make up a mesh used by FiPy [66] 
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Method of Manufactured Solutions (MMS) 

Verification for complex codes that solve one or many equations (ODEs PDEs 

etc.) can take several forms. Systematic Grid Convergence studies, Richardson 

Extrapolation, Grid Convergence Index (GCI), and the Method of Manufactured Solutions 

(MMS) are all techniques with varying applicability that can be used in the verification 

process of numerical codes. A detailed discussion of each method is beyond the scope of 

this thesis, but can be found other places[54]. The method of interest for this work is the 

Method of Manufactures Solutions (MMS).[67, 68] 

MMS provides a means to verify the solutions of a numerical code by providing 

an exact analytical solution. As the name implies this method allows you to manufacture 

the solution to your problem. The manufactured solution has no physical meaning or 

representation, but that is perfectly acceptable. The process of verification is simply a 

mathematical exercise. By picking an appropriate manufactured solution, it is possible to 

rigorously evaluate the mathematics, including all the derivative terms of the governing 

equations, of a numerical code. When properly implemented MMS provides a 

straightforward and general procedure for generating solutions that can be used to verify 

codes and check for possible solution errors. 

 The avenues that a code could be caused to return an incorrect answer are almost 

limitless. Errors can result from incorrectly applied boundary conditions (Dirchlet, 

Neumann, Robin, etc.), from incorrectly solving when expanding dimensions (2-D, 3-D 

codes), incorrectly applying initial conditions, poorly specifying a domain, or incorrect 

discretization are just a few examples of where codes can generate errors. The MMS 
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procedure is general enough that it can be applied to test all the aforementioned causes of 

error. MMS provides an exact solution to some PDE by solving the problem backwards.  

Suppose the problem you are solving is a differential equation of the form 

Du=g 

 D is the differential operator, u is the solution, g is the source term. Traditionally 

to find an exact solution one chooses the function g and then using methods from classical 

applied mathematics and inverts the operator to solve for u. In MMS one first 

manufactures the solution u, applies D to u to find g. This procedure of going backwards 

is typically much easier. In addition, this manufactured solution is a fully general solution 

to the initial equation and can be solved by the code. A general solution to the equations 

is desired because you want to test all portions of the code. 

 To begin MMS you need to set the mathematical model in the form 

L(u)=0. 

  L() is the differential operator and u is the dependent variable. Next, choose the 

analytical form of the manufactured solution u.  

Let u=q and g=L(q) 

Then: L(u) = g= L(q) 

 The following examples are useful to illustrate the power of MMS and apply this 

theory. The two examples apply MMS to two forms of the diffusion equation, which is 

what needs to be solved for the mass transport part of the dendrite model. The first example 

assumes steady-state diffusion. The second example assumes non-steady-state diffusion. 

Both examples assume a constant diffusion coefficient. 
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Example 1. 

We desire to manufacture a solution to the equation 

0 = 𝐷
𝑑2𝑐

𝑑𝑥2
 

Where D represents the constant diffusion coefficient, x is the position in a 

Cartesian system, and c represents the concentration. This satisfies the form L(u)=0. We 

chose a solution of the form: 

q(x)=A + sin(Bx) 

Calculating the derivatives with respect to x gives: 

𝑑𝑞

𝑑𝑥
= 𝐵𝑐𝑜𝑠(𝐵𝑥) 

𝑑2𝑞

𝑑𝑥2
= −𝐵2sin (𝐵𝑥) 

Now by the procedure of MMS q(x) is a solution to the equation 

 

0 = 𝐷
𝑑2𝑞

𝑑𝑥2
+ 𝑔 

Where we can find the source term g is equal to: 

𝑔 = 𝐷𝐵2sin (𝐵𝑥) 

Thus, we have an analytical solution to our differential equation with the 

appropriate source terms. The differential equation can be solved using a numerical code. 

The numerical solution can be compared with the analytical solution to check the code for 

errors. 
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Example 2: 

Now let us increase the complexity of the differential equation and show the ease 

and power of the method of manufactured solutions. We now desire to apply MMS to the 

diffusion equation of the form: 

𝜕𝑐

𝜕𝑡
= 𝐷

𝑑2𝑐

𝑑𝑥2
 

Where D represents the constant diffusion coefficient, x is the position in a 

Cartesian system, c represents the concentration, t represents the time. To satisfy the form 

L(u)=0 the equation becomes: 

𝜕𝑐

𝜕𝑡
− 𝐷

𝑑2𝑐

𝑑𝑥2
= 0 

Let us choose a manufactured solution of the form: 

𝑞(𝑥, 𝑡) = 𝑒−𝑡sin (𝐵𝜋𝑥) 

We need to calculate the appropriate partial derivatives with respect to t and x. 

𝜕𝑞

𝜕𝑡
= −𝑒−𝑡sin (𝐵𝜋𝑥) 

𝜕2𝑞

𝜕𝑥2
= −𝑒−𝑡𝐵2𝜋2sin (𝐵𝜋𝑥) 

Therefore, q(x) is a solution to the equation 

𝜕𝑞

𝜕𝑡
− 𝐷

𝑑2𝑞

𝑑𝑥2
+ 𝑔 = 0 

Where g is equal to: 

𝑔 = −𝑒−𝑡 sin(𝐵𝜋𝑥) + 𝐷𝑒−𝑡𝐵2𝜋2sin (𝐵𝜋𝑥) 
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The constants A and B can be chosen based upon the initial condition and boundary 

conditions. B primarily functions as a scaling coefficient to scale the features of the sine 

function to the domain of interest. Boundary conditions need to be applied with care when 

using MMS as the boundary conditions (depending on the manufactured solution chosen) 

may become a function of time and or space. This is the reason, in Example 2, a 

manufactured solution of the form q= T(t)X(x) is chosen.  

Boundary Conditions are an important aspect of any numerical code and can 

frequently be a source of error. The beauty of MMS is boundary conditions are not solution 

dependent; different types of boundary conditions can be applied to the same 

manufactured solution. Below are examples of Dirichlet and Neumann boundary 

conditions for the examples above on a unit domain. 

 

Dirichlet  Q= q(x,y,z,t) 

Neumann 
𝜕𝑄

𝜕𝑛
= 𝑞(𝑥, 𝑦, 𝑧, 𝑡) 

 

Example 1: 

Dirchlet: Left= A | Right = A + sin(B) 

Neumann: Left = Bcos(B)| Right= Bcos(B) 

 

Example 2: 

Dirchlet: Left= 0 | Right=0 

Neumann: Left= B𝑒−𝑡|Right= -B𝑒−𝑡 
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It is possible to pick a poor manufactured solution that will either not properly 

exercise all the terms in the governing equation, or be of a form that is difficult to evaluate 

at the boundaries. The following lists some general guidelines that should be followed 

when manufacturing a solution.[68] 

1. Manufactured solutions should be composed of smooth analytic functions like 

polynomials, trigonometric functions, exponential functions. Smoothness is 

essential (no infinite series solutions). 

2. The solution needs to be general enough to exercise all the terms of the differential.  

3. The solution needs to have a sufficient number of non-trivial derivatives. This is 

why trigonometric and exponential functions are often used because their infinite 

differentiability allows for the exercising of higher order derivatives that may 

appear in the governing equation. 

4. A solution derivative should be bounded by a small constant. This ensures the 

solution is not strongly varying in time or space. 

5. The manufacture solution should not prevent the code from running successfully 

to completion during testing. i.e. work with assumptions that meet the criteria of 

the code. Things are positive when necessary, time sensitive, and scale sensitive. 

6. The solution should be constructed such that the differential operators in the PDE 

make sense. 
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Method of Manufactured Solution Results 

The code written to solve the mass transport equation, Eq. 10, was verified using 

MMS under the aforementioned circumstances. The results of this verification are shown 

in Figure 13. The code was verified to return the correct solution within 1e-3 of the 

analytical solution. 

 

 

Figure 13. Shows the verification of the non-steady state, non-linear code utilized to solve the 

mass transport part of the dendrite model, Eq. 10. The manufactured solution q(x,t)=e-tsin(Bx) 

was chosen. The two solutions match very well to a verified tolerance of 1e-3. 

 

Dendrite Model Results 

The calculations from the mass transport part of the dendrite model are shown in 

Figure 14. The parameters used are given in Table 1. Initially the concentration across the 

boundary layer is uniform. Once the current is applied to the electrode, representing 

charging, the concentration of lithium near the surface of the electrode begins diminishing, 



 

 46 

representing intercalation of lithium into the electrode. Knowing the concentration of 

lithium at the surface of the electrode as a function of time Eq. 17 can be utilized to solve 

for the dendrite tip current density. As shown in Figure 16 the dendrite tip initially has a 

current density close to the current density of the electrode surface. As time evolves and 

more charge is passed through the electrode the current density of the tip increases slightly. 

This supports the thought that an increase in the current density of the dendrite tip leads 

to growth. Utilizing Faraday’s law according to Eq. 18 it is possible to relate the charge 

passed to the growth of the dendrite, this is illustrated in Figure 15. Nishikawa et al. 

provides experimental data for the growth of dendrites. Their experimental data is 

represented by the gray shaded region in Figure 15. The shaded region represents the 

spread in their experimental data. The results from the model fall in the lower portion of 

their experimental data.  

 

 

Figure 14. Concentration profile at with an electrode current density of 10mA/cm2 
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(a)                                                             (b) 

Figure 15. (a) the dendrite tip current density as charge is passed, with a surface charge density 

of 10mA/cm2 (b) the dendrite length relative to the amount of charge passed. The green line 

shows the model results, the gray region represents measured dendrite lengths presented 

Nishikawa et al. 

 

Summary 

Modeling can be a powerful tool to increasing understanding of a physical situation 

and provide keen insight. The objective was to understand and develop a computational 

model of dendrite growth. The development of a computational model consists of many 

steps, which are important to follow to ensure model validity and understanding. 

 The model development began with investigating prior work to build an 

understanding and foundation. Following the background review and based off a particular 

model, a plan and the conceptual model was outlined. Key assumptions and governing 

equations were established that would be the framework of the model. From the 

conceptual model, the numerical model was developed using Python and supporting 

libraries, FiPy, to solve the necessary governing equations. The steps appropriate for code 

verification and validation were undertaken to ensure that both the right equations were 

being solved and that they were being solved right. Finally, a select set of input parameters 
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were run through the model and the model output was found to be comparable with 

experimental data. Discrepancies that the model data has from experimental data likely 

rise from the single dendrite assumption, especially when modeling different electrode 

current density. At low current densities, the needle-like dendrite structure is expected 

experimentally. At higher current densities, the bush-like dendrite structure is common, 

which the model would have issues properly representing. Overall, the work presented in 

this chapter provides a solid foundation for understanding and creating a computational 

model. The intricacies of model development, revision, and success were a major part of 

this work.  
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CHAPTER III  

CHARACTERIZATION OF CMS GRAPHITE ANODE MATERIAL 

Motivation 

The electrochemical processes that occur inside the battery and their performance 

– efficiency – is highly material dependent. Graphite is a typical anode material and is 

chosen for several reasons.[69] First, its crystal structure lends itself to holding lithium, 

and the lithium intercalation into graphite is a favorable process. [70] Secondly, the 

intercalation/deintercalation of lithium with graphite is a highly reversible process. The 

intercalation of lithium ions into graphite is shown schematically in Figure 16. Third, 

graphite has good electronic conductivity and a low electrochemical voltage compared to 

Li/Li+. [70] Fourth, during the lithium intercalation/deintercalation the volume change is 

less than 9%. [23, 71] 

 

 

Figure 16. The process of lithium intercalating into the graphite anode during charging. Initially 

pure graphite is present. Lithium ions begin entering the graphite structure and filling the 

interstitial positions between carbon atoms. The intercalation of Li+ into graphite continues until 

the interstitial sites are filled with lithium.[72] 

 

Graphite typically has a hexagonal –Bernal—structure as shown in Figure 17. [17] 

Carbon stacks in an ABABA sequence. However, graphite can also take a rhombohedral 

form, characterized by ABCABC stacking sequence. The latter, less common form, is 
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produced by using mechanical grinding or ultrasonic treatment.[17] Lithium intercalation 

into graphite changes based upon the structure. [17, 49, 73]  

 

 

Figure 17. Typical structure of hexagonal – Bernal – graphite. The stacking order is ABABA. 

Lithium ions intercalate into the structure and sit in the interstitial sites. 

 

The structure of graphite allows for a very high theoretical packing of lithium in 

the form LiC6. The theoretical specific capacity is 370 mAh/g.[71] In practice a graphite 

electrode does not obtain this theoretical specific capacity. The experimentally obtainable 

capacity of an electrode is dependent upon temperature, composition of the electrode 

sheet, treatment during fabrication, and many other factors.[74] Due to the variability of 

the actual specific capacity for an electrode sheet it is important to characterize the specific 

graphite prior to usage. 

Cell Fabrication 

The cells utilized in all experiments in this work were fabricated in-house with 

commercially available electrode sheets.[75] The manufacturer provides approximate 

specifications for the electrode sheet, presented in Table 2. 
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Table 2. Electrode sheet information provided by MTI 

Electrode 

sheet 

Material Specific 

capacity 

Active 

material 

density 

Active 

material 

proportion in 

powder 

Anode CMS graphite 

on copper foil 

330 mAh/g 60 g/m2 94.5% 

 

The electrodes for the coin-cells were punched from the electrode sheets using a 

leather punch set shown in Figure 18. The punch sizes available range from 1/8 inch to 1 

inch.  

 

 

Figure 18. Punch set utilized for creating the electrodes used in coin cells. 

 

Using the information provided by the material data sheet [75], it is possible to 

calculate a theoretical capacity for a given electrode size, according to  Eq. 20. 
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𝑄 =  𝜌𝐴𝑀𝐴𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒(%𝐴𝑀)𝑄𝑆𝑝𝑒𝑐  Eq. 20 

where: 

Q is the theoretical capacity of the punched electrode (mAh) 

 ρAM active material density (g/m2) 

AElectrode is the area of the electrode (m2) 

%AM is the percent of active material present in the powder,  

QSpec is the specific capacity of the active material (mAh/g) 

For each punch size the theoretical capacity was calculated as shown in Table 3  

 

Table 3. Theoretical capacities (mAh) of anode electrode at different punch sizes made from 

MTI sheets calculated using Eq. 20.  

 

 

The cells were assembled using 2032-coin cell hardware. The ½ inch punch was 

used to make the electrodes. This punch was chosen because of the nominal 2.4 mAh 

theoretical capacity and this size fits well in the geometry of the 2032-coin cell case. 

The electrodes were punched from the electrode sheet as demonstrated in Figure 

19. The mass of each electrode was recorded using a OHAUS AX224/E analytical scale, 

which reports to 0.1 mg with an accuracy of ± 0.2 mg and maximum capacity of 220 g. 

All cell fabrication was completed in an argon glove box, shown in Figure 20. The 

Punch Diameter 

(in)

Anode 

Capacity (mAh)

1/8 0.15

3/16 0.33

1/4 0.59

5/16 0.93

3/8 1.3

7/16 1.8

1/2 2.4

9/16 3.0

5/8 3.7
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components used in the assembly of the cell are shown schematically in Figure 21. First, 

the punched electrode is placed coated side up in the case. A small amount of electrolyte 

is added to cover the electrode and the bottom of the case. A BASF manufactured lithium 

hexafluorophosphate diethylcarbonate electrolyte was used for all cells. A ¾ inch punched 

25µm Trilayer polypropylene-polethylene-polypropylene membrane separator 

manufactured by Celgard is placed over the electrode to prevent physical contact between 

the graphite electrode and the second electrode.  Lithium metal is used as the second 

electrode. The use of lithium metal as an electrode, as opposed to lithium cobalt oxide 

(LiCoO2) or another commercially common electrode reduces the possible 

electrochemical processes and side reactions that can occur inside the cell. The goal is to 

study just the graphite electrode; using lithium metal as a second electrode/reference 

fulfills all needs. The configuration where lithium metal is used as the second electrode in 

the cell is commonly called a half cell. [76] After the lithium metal electrode is placed in 

the cell it is sealed using the MTI MSK-110 crimper, shown in Figure 20. The crimping 

pressure is 50 kg/cm2 (750 psi). The half-cell cycling and measurements were conducted 

on an MTI BST8-MA, shown in Figure 22. 
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(a)                                                      (b) 

Figure 19. (a) ½ electrode used in coin cells (b) punching electrode from electrode sheet 

 

   

(a)                                                      (b) 

Figure 20. (a) Argon glove box where all cells were fabricated (b) crimper used to seal the half 

cells. 

 

 

Figure 21. Schematic of the components used in the assembly of the half cells. 
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Figure 22.  MTI BST8-MA system used in the cycling of the half cells. 

 

Half Cell Operation vs. Full Cell Operation 

It is important to understand the fundamental operational differences between a 

half cell and a normal full cell. The differences can affect charging and discharging 

procedures due to differences in what is occurring electrochemically inside the cell. Figure 

23 (a) depicts the electrode configuration for a typical full cell battery. The higher potential 

electrode – verse the reference lithium – is LiCoO2 and the lower potential electrode – 

verse the reference lithium – is graphite. During charging the difference in potential of the 

two electrodes increases. At the graphite anode, lithium ions are intercalating into the 

graphite structure. During this intercalation, process is when lithium dendrites form. 

During discharge the potential difference between the two electrodes decreases. Lithium 

deintercalates from the anode. Figure 23 (b) depicts the electrode configuration in a half 

cell. The two electrodes are graphite and lithium metal. Graphite has the higher potential 

of the two electrodes making it the cathode of the cell. This reverses what occurs at the 

graphite electrode during charge and discharge. Now during charge lithium is 

deintercalated from the graphite electrode. The potential difference between the two 
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electrodes increases. During discharge, lithium intercalates into the graphite electrode and 

the potential difference between the two electrodes (or the potential of the cell) decreases. 

The graphite is considered full of lithium – 100% SOC— when the cell voltage reaches 

0.0 V during discharge. 

 

 

(a)             (b) 

Figure 23. Depiction of battery cell electrode interaction. (a) Shows the configuration for a 

typical full cell. (b) Shows the electrode configuration for a half cell. The key difference is the 

graphite electrode plays an opposite role in the two cells.  

 

  Cell Testing 

Properties of the graphite electrode can be determined from the Open Circuit 

Potential (OCP). The OCP is a thermodynamic property. It contains information about the 

tendency of metallic materials to participate in electrochemical corrosion reactions. [77] 

At the open circuit potential no current is flowing and the anodic and cathodic reaction 

rates are in equilibrium. When a current is applied, the cell potential drops below the OCP. 

When the current is halted, the system will relax back to the OCP. In practice, it is 
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impossible to obtain OCP curves at different SOC’s without applying any current; 

however, if the applied current is small enough the cell’s drop below the OCP is minimal 

and it becomes possible to experimentally obtain the OCP.  

 The primary challenge in determining the OCP is to use a low enough current to 

obtain a good approximation, but have that current be high enough so that the test can be 

finished in a reasonable amount of time. Three very low currents – 100µA, 200µA, 500µA 

– equivalent to approximately C/30, C/20, and C/10 were picked. Three identical half cells 

were cycled at one of the three currents. The testing protocol used is shown schematically 

in Figure 24. Before cycling, the cells were allowed to rest for at least 8 hours. This allows 

time for the initial reactions between the electrolyte and the electrodes to occur and reach 

equilibrium. After this initial rest the cell voltage was observed to be between 2.5-3.0V. 

Next the cells were cycled 5 times. A cycle consists of one discharge (2.5-0.0 V) and one 

charge (0.0-2.5 V). The first two cycles were deemed the formation cycles. During the 

formation cycles irreversible electrochemical reactions, such as SEI formation, occur and 

cycleable lithium is consumed, which results in a loss in capacity. After formation, cycling 

SEI and other side reactions can continue to occur, but the effects on capacity are minimal 

and the cell is assumed to be stable. [23]  Thus, cycles 3-5 are used for the data analysis 

and evaluation of the graphite electrode. Three data cycles were used to obtain statistically 

significant data. 

 



 

 58 

 

Figure 24. Schematic representing the protocol used to obtain OCP of half cells. 

 

Cell Testing Results 

The charge and discharge curves for three separate ½ inch punch graphite half cells 

are shown in Figure 25. The results show the cell cycled at 200 µA has the highest 

capacity. This is contrary to the anticipated results; a lower current should result in a higher 

capacity. As the current is lowered the results should converge give a close approximation 

for the actual cell capacity, from which the specific capacity can be calculated. The 

anomaly that the lowest current does not result in the highest capacity is likely related to 

differences between the cells due to fabrication. These cells are likely not identical even 

though the same punch size was used. During the punching of the electrode, some of the 

graphite around the edges of the electrode was noted to flake off. This small amount of 

missing material is likely the cause of the observed capacity difference. 
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Figure 25. Charge (solid lines) and discharge (dashed) curves for three ½ inch punch graphite 

half cells at three different currents; all data is from 2nd data cycle for each half cell. Results 

indicate the cell cycled at 200µA has the highest capacity. This is contrary to anticipated results; 

lower current should result in the highest capacity. The cause is likely related to differences in 

the cells due to fabrication. These cells are likely not identical even though the same punch size 

was used. 

 

The hypothesis that the anomalous results observed in Figure 25 is due to 

unavoidable discrepancies caused during fabrication was verified by cycling each cell at 

the same current. At the same cycling current, each cell should have approximately the 

same capacity. As shown in Figure 26 the variability of capacity across the three different 

half cells is significant. These cells were all cycled at 200µA. The difference across them 

is approximately 12%. 
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Figure 26. Charge-discharge curves for the three different half cells all cycled at 200 µA. Data 

shown is from 2nd data cycle for each cell. 

 

To obtain an accurate characterization of the graphite it is necessary to eliminate 

the effect of unavoidable discrepancies that occur during cell fabrication. Thus, each cell 

was run at each of the three currents. Within the same cell, an expected trend was observed 

between the current and capacity as shown in Figure 27. At the two lowest currents – 100 

µA and 200 µA—the OCP curves overlap and converge. This curve is taken to be the 

experimental representation of the OCP because as the current was lowered the same OCP 

curve was obtained. The capacity obtained by these low current tests is the maximum 

experimental capacity of the cell. 
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Figure 27. Charge-discharge profiles for the same half cell cycled at all three currents. At the two 

lowest currents –100µA and 200µA—the curves overlap and converge to a capacity. Data shown 

is from 2nd data cycle 

 

 

 Table 5, and Table 6. From the experimental data, the specific capacity (mAh/g) 

was calculated according to Eq. 21. The mass of the active material is determined from 

Eq. 22. To compare across the different cells, the normalized capacity was calculated 

according to Eq. 23.  

𝐶𝑠𝑝 =
𝐶𝐸

𝑀𝐴𝑀
 

Eq. 21 

 

where: 

 Csp is the specific capacity (mAh/g) 

 CE is the experimentally measured capacity (mAh) 

 MAM is the mass of active material (g) 

 

𝑀𝐴𝑀 = (𝑀𝑀 − 𝑀𝐶𝐶) ∗ %𝐴𝑐𝑡𝑖𝑣𝑒𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 Eq. 22 

 

where: 

 MAM is the active material mass (g) 

MM is the measured mass of the punched electrode (g) 
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MCC is the measured mass of the current collector (copper foil only) (g) 

𝐶𝑁𝑜𝑟𝑚 = (𝐶𝑐𝑦𝑐𝑙𝑒/𝐶𝑇ℎ𝑒𝑜𝑀𝑎𝑠𝑠) Eq. 23 

 

where: 

 CNorm is the normalized capacity 

 Ccycle is the experimentally measured capacity (mAh) 

 CTheoMass is the theoretical capacity based on mass (Csp x MAM) 

 

Table 4. Experimentally measured discharge data for each of the three data cycle. The discharge 

data is normalized by the theoretical capacity by mass 

 

 

 Table 5. Experimentally measured charge data for each of the three data cycles. The charge data 

is normalized by the theoretical capacity by mass. 

 

 

 

Experimental		

Capacity	mAh

Cell Discharge

Theoretical	capacity	

(mAh)	by	mass

Anode	Discharge Half Cell Current Cycle 1 Cycle 2 Cycle 3 1 2 3

A-1 Cell 1 100 uA 2.917 2.932 2.936 0.945 0.949 0.951

A-1 Cell 1 200uA 2.927 2.930 2.937 0.948 0.949 0.951

A-1 Cell 1 500uA 2.640 2.559 2.605 0.855 0.829 0.844

A-4 Cell 2 100uA 2.772 2.786 2.772 0.960 0.956 0.960

A-4 Cell 2 200 uA 2.774 2.784 2.789 0.956 0.956 0.960

A-4 Cell 2 500uA 2.537 2.564 2.585 0.877 0.875 0.884

A-8 Cell 3 100 uA 3.104 3.113 3.137 0.985 0.988 0.996

A-8 Cell 3 200uA 3.080 3.079 3.067 0.977 0.977 0.973

A-8 Cell 3 500 uA 2.843 2.808 2.819 0.902 0.891 0.895

Capacity (mAh)

Normalized by theoretical 

capacity by mass

3.088

3.338

3.151

Cell Charge

Theoretical capacity 

(mAh) by mass

Anode Charge Half Cell Current Cycle 1 Cycle 2 Cycle 3

A-1 Cell 1 100 uA 2.919 2.927 2.922 0.945 0.948 0.946

A-1 Cell 1 200uA 2.933 2.932 2.938 0.950 0.949 0.951

A-1 Cell 1 500uA 2.643 2.558 2.607 0.856 0.828 0.844

A-4 Cell 2 100 uA 2.798 2.802 2.797 0.964 0.966 0.964

A-4 Cell 2 200 uA 2.778 2.779 2.789 0.958 0.958 0.961

A-4 Cell 2 500 uA 2.522 2.555 2.579 0.869 0.881 0.889

A-8 Cell 3 100uA 3.097 3.112 3.146 0.983 0.988 0.998

A-8 Cell 3 200uA 3.09 3.087 3.083 0.981 0.980 0.978

A-8 Cell 3 500uA 2.843 2.813 2.821 0.902 0.893 0.895

Capacity (mAh)

Normalized by theoretical 

capacity by mass

3.088

3.338

3.151
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Table 6. Specific capacity during discharge for each half cell and each of the three data cycles. 

The three data cycles were averaged at each current for each half cell. The 100µA and the 

200µA cycles “avg per cell” were averaged to calculate the “average over cells” 

Table 7. Specific capacity during charge for each half cell and each of the three data cycles. The 

three data cycles were averaged at each current for each cell to create “avg per cell”. The 100µA 

and the 200µA cycles “avg per cell” were averaged to calculate the “average over cells” 

Summary 

Graphite is a common anode material in lithium ion batteries. During discharge, 

the graphite anode is the initiation site for dendrites due to the closeness of the Li/Li+ 

intercalation potential to the deposition potential of metallic lithium. To study the 

formation of dendrites on graphite electrodes it is first necessary to characterize the 

graphite under normal operating conditions without dendrites. The characterization of 

Experimental Specific

Capacity mAh/g

Experimental

Specific Capacity 

mAh/g

Anode Discharge Avg per cell Average over cells

Standard 

Deviation

Half Cell Current Cycle 1 Cycle 2 Cycle 3

Specific Capacity 

(mAh/g)

Specific Capacity 

(mAh/g)

Cell 1 100 uA 310.3 311.9 312.3 311.5

Cell 1 200uA 311.4 311.7 312.4 311.8

Cell 1 500uA 280.9 272.2 277.1 276.7

Cell 2 100uA 315.0 316.6 315.0 315.5

Cell 2 200 uA 315.2 316.4 316.9 316.2

Cell 2 500uA 288.3 291.4 293.8 291.1

Cell 3 100 uA 326.7 327.7 330.2 328.2

Cell 3 200uA 324.2 324.1 322.8 323.7

Cell 3 500 uA 299.3 295.6 296.7 297.2

Specific Capacity (mAh/g)Discharge

317.8 6.1

Anode Charge Avg per cell Average over cells

Standard 

Deviation

Half Cell Current Cycle 1 Cycle 2 Cycle 3

Specific Capacity 

(mAh/g)

Specific Capacity 

(mAh/g)

Cell 1 100 uA 310.5 311.4 310.9 305.7

Cell 1 200uA 312.0 311.9 312.6 312.2

Cell 1 500uA 281.2 272.1 277.3 276.9

Cell 2 100uA 318.0 318.4 317.8 318.1

Cell 2 200 uA 315.7 315.8 316.9 316.1

Cell 2 500uA 286.6 290.3 293.1 290.0

Cell 3 100 uA 326.0 327.6 331.2 328.2

Cell 3 200uA 325.3 324.9 324.5 324.9

Cell 3 500 uA 299.3 296.1 296.9 297.4

Specific Capacity (mAh/g)Charge

317.5 6.3
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graphite was performed using lithium metal half cells. An experimental procedure and 

setup was established to fabricate and test these half cells.  Issues due to fabrication that 

would affect the experimental results were discovered and eliminated allowing for the 

characterization of graphite through obtaining the OCP curve. An experimental specific 

capacity for the graphite was determined, which as expected is lower than the theoretical 

specific capacity provided by the manufacturer. The overall experimental specific capacity 

was found to be 317.5 ± 6.3 mAh/g for the discharge cycles and 317.8 ± 6.1 mAh/g for 

the charge cycles. These overall experimental specific capacities were found by averaging 

the specific capacities measured during each of the three data cycles of the 100µA and the 

200 µA cycles for each cell. The averages of the three data cycles for each cell were then 

averaged resulting in the overall experimental specific capacity for this graphite.  
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CHAPTER IV  

CHARACTERIZING DENDRITE GROWTH ON GRAPHITE ELECTRODES 

UTILIZING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY  

Motivation and Background 

Evaluation of dendrites on graphite anodes is difficult because they are often small, 

occur under only certain charging conditions, and if they are allowed to grow too much 

they short circuit the cell, which can lead to catastrophic failure and leave nothing to 

analyze. Throughout the literature, it is possible to find successful evaluations and 

examinations performed on dendrites related to lithium ion batteries. Common surface 

techniques like SEM [78, 79], TEM [80, 81], XPS [82, 83], AFM [84], and optical 

microscopy [85, 86] have been implemented to study dendrite growth.  Love et al. studied 

the growth of dendrites and the influence temperature has on their development. [36] Their 

study of dendrites utilized an “open face” electrode setup. Each electrode was placed 

between optically transparent quartz windows. This configuration allowed for the testing 

of a working battery cell while making it possible to observe the surface of the electrodes 

during operation. Dolle et al. similarly created a custom cell to study lithium plating 

utilizing SEM. [79] The vacuum requirements of SEM and the instability of lithium 

dendrites when exposed to air necessitated the utilization of a custom transfer mechanism 

that allowed them to test their open face battery and then transfer it into the SEM vacuum 

chamber for analysis. They were able to make observations of the dendrite morphology as 

related to applied electrode current density. At lower current densities, the structure was 

mossy whereas at higher current densities the dendrites had a more needle like structure. 
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Nishikawa et al. performed in situ observations of dendrite growth utilizing a laser 

scanning confocal microscope. [86] They evaluated the influence of the concentration of 

lithium ions in the electrolyte near the substrate with initiation time of the dendrites as 

influenced by current density. Higher current densities resulted in a lower initiation time 

and more prolific accumulation of dendrites on the surface of the electrode. 

 The downside of most of the techniques utilized is they require a special 

experimental setup and these types of tests cannot be performed on unmodified 

commercially available cells. In general, all these approaches are also cumbersome, and 

time consuming. Electrochemical Impedance Spectroscopy (EIS) is an analysis technique, 

which has the potential to reveal information about the electrochemical processes 

occurring in a battery cell, without opening the cell. EIS measures the response of an 

electrochemical system to a small-applied perturbation. The perturbation can be a small 

potential perturbation (5-10mV), or small current perturbation. [87] The response of the 

system, as a function of the frequency, can reveal internal information.  

In the literature, EIS has been utilized to study the State-of-Health (SOH) and 

State-of-Charge (SOC) of lithium ion batteries during operation. Love et al. was able to 

use single-point impedance to obtain SOH information on commercial 18650 type 

batteries. They were able to correlate changes in the impedance to SOC and identify when 

cells had experienced cycling abuse and may be compromised. This ability to identify 

individual cells that may have experienced cycling abuse and may be compromised is 

particularly important for applications like battery management systems used in electric 

vehicles. Typical battery packs have a multitude of individual batteries connected 
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together. If a single cell in one of the packs goes bad it may be impossible determine that 

by just looking at the health of the entire pack, as is commonly done. Rodrigues et al. 

utilized AC impedance to evaluate SOC of commercially sealed lithium ion batteries.[88] 

They applied an equivalent circuit model and non-linear least squares fitting to identify 

and correlate changes in the spectra to changes in internal resistance inside the battery due 

to SOC. Li et al used impedance spectra to look at commercially available prismatic 

lithium ion cells as they are repeatedly charged-discharged over many cycles. [89] They 

correlated changes in the size of the low frequency semi-circles with number of cycles. 

They noted an increase in the size of the low frequency semicircles due to cycling. This is 

likely due to the increase in interfacial resistance of both electrodes.   

Zhang et al. used EIS to measure the resistance of SEI film after cell fabrication 

and during initial cycling to study its development. [90] They characterized impedance 

spectra by the degree of lithiation of the graphite electrode and found the lithiation process 

takes place in five stages, which is reflected in the impedance spectra. In addition to 

studying the SEI, EIS has been used to study intercalation kinetics of lithium into a 

graphite anode [91, 92]. Takami et al. measured changes in the graphite structure using 

XRD and looked at the impedance profiles. They characterized the impedance profiles as 

containing two or three semicircles that overlap.[92] 

The difficulty in utilizing impedance data, particularly when trying to study 

dendrite formation, is in interpreting the data. Much discrepancy exists in the literature as 

to what each semi-circle in the Nyquist plot represents. It is almost impossible to determine 

which semi-circle in the impedance spectrum corresponds to which electrode (anode or 
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cathode).[93] Both electrodes contribute to the impedance spectrum and both electrode 

reactions can be of similar magnitude. [88, 94] However, most research has shown the 

medium-frequency – middle semi-circle – can be attributed to the passive film on the 

electrodes. [88, 95] The low frequency tail of the impedance spectrum is mostly attributed 

to diffusion effects through the bulk material. It is often referred to as Warburg impedance. 

Where the impedance spectrum crosses the real axis is known as the serial resistance, 

which represents the resistance across the cell. It is the contribution of ohmic resistances 

from electrolyte and separator. [96] The first, high-frequency, semi-circle, which may or 

may not be visible is attributed to the SEI formation on the surface of the anode.[96] To 

gain greater insight and better quantify the semi-circles, equivalent circuits are often 

utilized for analysis. Most circuits are composed of resistors and capacitors in series and 

in parallel to represent the capacitive and resistive effects of physical characteristics like 

the development of films on the electrodes, electrolyte and separator resistance, diffusion, 

and charge transfer. [88, 90-92, 97] Equivalent circuit workup by Chen et al. substituted 

capacitors with Constant Phase Elements (CPE). [98] CPE better represent the porosity 

that is present in electrodes and can better capture attributes of diffusion, ultimately 

leading to a better fit of the data. In some situations, CPE can be converted to equivalent 

resistors and capacitors to aid in physical interpretation and analysis of the circuit. 

EIS has the potential to reveal information about lithium plating occurring inside 

a battery. The challenge and the task at hand is to separate out the effects of lithium plating 

from other processes that may be represented by an EIS spectrum. The objective of this 

work is to cause metallic lithium to electrodeposit on graphite electrodes in a Li/graphite 



 

 69 

half cell and verify electrodeposition has occurred using SEM imaging. SEM imaging is 

a destructive approach because the half cell must be disassembled to image the electrode. 

Following confirmation that plating is being induced in the half cells the goal is to utilize 

Electrochemical Impedance Spectroscopy (EIS), a non-destructive approach, to detect and 

understand the development of lithium plating/dendrite growth on graphite anodes. The 

goal is to see how the electrodeposition of lithium is reflected in EIS spectra, quantified 

through equivalent circuit analysis. After an extensive literature review it has been found 

that no study has been done trying to utilize graphite half cells and electrochemical 

impedance spectroscopy to specifically study plating on graphite electrodes. 

In this study Li/graphite half cells are used. One of the advantages of half cells is 

they can simply the electrochemical processes occurring inside the cell by using a lithium 

metal counter electrode. Only the graphite electrode is of interest, so using lithium metal 

as opposed to another common electrode material simplifies the situation. Additionally, 

plating only occurs when the potential of the graphite anode drops below 0V vs Li/Li+. 

[99] In a half cell this is the measured cell potential, so potential of the graphite electrode 

can be monitored by just measuring the cell voltage eliminating any need for a third 

reference electrode. 

Electrochemical Impedance Spectroscopy (EIS) 

Electrical impedance is analogous to electrical resistance, and can be thought of as 

resistance with a frequency dependence. Ohm’s law relates voltage, current, and resistance 

according to Eq. 24. 
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𝑉 =
𝐼

𝑅
 

Eq. 24 

 

where: 

V= voltage (volts) 

I= current (amps) 

R = resistance (ohms) 

 

Ohm’s law provides a very useful relationship between these three electrical 

properties and is good for an ideal resistor; however, the ideal resistor has three major 

shortcomings.[87] 

1. Assumes this relationship is uniform and true regardless of the current and 

voltage level 

2. Assumes the resistance values are independent of frequency 

3. Assumes that the signals for AC current and voltage through a resistor are in 

phase 

In practice, the three assumptions are not always observed to be true. Thus, the 

introduction of the concept of impedance, or frequency dependent resistance, is necessary. 

Impedance, like resistance, is a measure of a circuit’s resistance to current flow, but 

impedance is not restricted by the three shortcomings of Ohm’s law. 

The general principle of EIS is to apply an AC potential, or sinusoidal signal, and 

measure the characteristic response from the cell, by measuring the current signal.[96] If 

the response of the cell is linear, or pseudo-linear, then the current signal can be analyzed 

as a sum of sinusoidal functions. A Fourier Series is the widely utilized mathematical tool 

to represent a sum of sinusoidal functions. 
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Implementing Fourier Series analysis requires the system be linear. A linear 

system is one that can be represented by the superposition of signals—the summation of 

sinusoidal functions. The responses of electrochemical cells are frequently non-linear as 

demonstrated in Figure 28. The doubling of the voltage does not necessarily correlate to a 

doubling of the current. However, if the analysis voltage window is small enough the 

system exhibits a linear response, as shown in the subset Figure 28. This is referred to as 

a pseudo-linear system and allows for linear analysis, which is much simpler than non-

linear analysis. 

 

 

Figure 28. The non-linear relationship that exists in an electrochemical cell between current and 

voltage. The subset shows that in analyzing a small voltage window the system can be 

represented as linear, leading to the pseudo-linear classification. 

 

When conducting an impedance measurement there is an applied excitation signal, 

and a response signal. The applied excitation signal (voltage) can be represented by Eq. 

25. The response signal (current) in a linear system will be shifted by phase Φ and have 
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different amplitude. The response signal can be represented by Eq. 26. The input signal 

and the corresponding response signal shifted by phase Φ are shown in Figure 29. 

𝑉𝑡 = 𝑉𝑜sin (𝜔𝑡) Eq. 25 

where: 

 Vt= voltage as a function of time 

 Vo= initial voltage amplitude 

 𝜔= radial frequency 

 t = time 

 

 

𝐼𝑡 = 𝐼𝑜sin (𝜔𝑡 + 𝛷) Eq. 26 

 

where: 

 It= current as a function of time 

 Io= initial voltage amplitude 

 𝜔= radial frequency 

 t = time 

 𝛷= phase shift 
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Figure 29. Input and response signal in a linear system. The output signal will be shifted by a 

phase shift Φ 

 

A representation of impedance that is analogous to Ohm’s law is represented in 

Eq. 27. The impedance is expressed in terms of the magnitude of the impedance ( Zo) and 

the phase shift(Φ). 

Phase	shift
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𝑍 =
𝑉𝑡

𝐼𝑡
=

𝐸𝑜sin (𝜔𝑡)

𝐼𝑜 sin (𝜔𝑡 + 𝛷)
= 𝑍𝑜

sin (𝑤𝑡)

sin (𝑤𝑡 + 𝛷)
 

Eq. 27 

 

 

Historically this information was represented as a Lissajous Figure illustrated in 

Figure 30. All analysis was done by comparing and looking at features on the Lissajous 

Figure. With the improvement in computational power and the development of the Fast 

Fourier Transform Method it became easier and more useful to express impedance as a 

complex function. 

 

 

Figure 30. Lissajous figure of lithium ion battery at 100% SOC, 50Hz [96] 

 

The Euler relationship states: 

exp(𝑗𝛷) = cos(𝛷) + 𝑗𝑠𝑖𝑛(𝛷) Eq. 28 

 

Using the Euler relationship, the current response and the voltage response can be 

rewritten as follows. 
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𝐸𝑡 = 𝐸𝑜exp (𝑗𝜔𝑡)   

Eq. 29 

𝐼𝑡 = 𝐼𝑜exp (𝑗𝜔𝑡 − 𝛷)  

The impedance response then has a complex representation. 

Z =
𝐸𝑡

𝐼𝑡
= 𝑍𝑜 exp(𝑗𝛷) = 𝑍𝑜(cos(𝛷) + 𝑗𝑠𝑖𝑛(𝛷)) 

Eq. 30 

 

The impedance can now be plotted in terms of the real (Z’) and imaginary parts 

(Z’’). This type of plot is commonly known as a Nyquist plot. A Nyquist plot makes it 

easier to visualize the influence of various cell parameters. Nyquist plots are the preferred 

method for evaluating impedance data; however, they have the disadvantage of not 

containing any information about the time. This makes it impossible to identify the 

frequency of a particular point. 

Analysis of impedance data is often done by creating equivalent circuits. The 

impedance can be represented by common electrical elements shown in Table 8. The 

impedance of a resistor has no imaginary part and is independent of frequency. The current 

signal through a resistor stays in phase with the voltage signal across the resistor. A 

capacitor’s impedance is frequency dependent. The impedance decreases as frequency 

increases. The Nyquist plot representation of a capacitor is a vertical line in the imaginary 

part (-Im(Z)>0). An inductor has an impedance that is the opposite of a capacitor. Its 

impedance is again frequency dependent, but the Nyquist representation of an inductor is 

a vertical straight line in the imaginary negative part (-Im(Z)<0). The constant phase 

element (CPE) is frequency dependent. The Nyquist representation is a straight line in the 

imaginary positive part (-Im(Z)>0) with an angle ∝ 𝜋/2 with the real axis. The impedance 
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of a CPE decreases with increasing frequency. In the expression of impedance for a CPE 

𝜔 = 2𝜋𝑓, T is a constant, and 0<m<1. When m=1 the CPE becomes a pure capacitor with 

T as the capacitance. When m=0.5 the CPE represents Warburg impedance. Warburg 

impedance, or the Warburg element is used to represent semi-infinite linear diffusion. 

Warburg impedance is an example of a constant phase element where the phase angle is 

constant at −𝜋/4 and is independent of frequency.[98, 100] 

 

Table 8. Impedance representation for common electrical components. 

Component Impedance 

Resistor (R) Z=R 

Capacitor (C) Z=
1

𝑗𝜔𝐶
 

Inductor (L) Z=j𝜔𝐿 

Constant Phase Element (Q) Z=1/(𝑖𝜔𝑇))𝑚 

Warburg Element (W) 
Z=

√2𝜎

√𝑖2𝜋𝑓
 

 

Each component listed in Table 8 creates a characteristic shape in the Nyquist plot, 

which can be used to understand and interpret data. Figure 31 shows the characteristic 

Nyquist plot for a resistor and capacitor in series. The resistor acts to shifts the plot along 

the real axis. The capacitor controls the magnitude along the imaginary axis. If the same 

resistor and capacitor were placed in parallel, the characteristic Nyquist plot takes the 

shape shown in Figure 32. The Nyquist plot forms a semi-circle with the resistor 

determining the magnitude along the real axis and the capacitor controlling the amplitude 
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of the semi-circle along the imaginary axis. Figure 33 shows a resistor (RS) is series with 

a resistor (RCT) that is parallel with a capacitor (CDL). This setup is referred to as the 

Randles cell. This is a fundamental configuration often used to represent impedance data 

for battery cells. Rs represents the “solution” resistance or the resistance across the cell 

caused by the electrolyte and separator. The solution resistance can be a significant factor 

in the cell and is dependent upon the ionic concentration. RCT represents the charge 

transfer resistance, or the polarization resistance present in the cell. Polarizing of the cell 

occurs whenever the potential of an electrode is forced away from its OCP. Polarization 

can result in current flow and subsequent reactions at the electrode surface. The capacitor, 

CDL, which is in parallel with RCT represents the double layer capacitance caused by the 

electrode and electrolyte interface.  This double layer is on the order of angstroms in 

thickness. Capacitance can range from 20-60µF for every 1cm2 of electrode surface area. 

Factors such as electrode potential, temperature, ionic concentration, and surface 

roughness all effect the electric double layer.[87] 

 

    

Figure 31. Characteristic Nyquist plot for a resistor in series with a capacitor. The resistor 

controls the shift along the real axis and the capacitor controls the magnitude along the 

imaginary axis. 

R C
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Figure 32. Nyquist plot for a resistor and capacitor in parallel. The resistor controls the 

magnitude along the real axis and the capacitor controls the amplitude along the imaginary axis. 

 

     

Figure 33. Randles cell configuration. Resistor (Rs) represents the electrolyte and separator 

resistance. RCT represents the charge transfer resistance. CDL represents the double layer 

capacitance. 

 

Diffusion related processes have a characteristic shape that appear in Nyquist plots. 

The associated impedance is referred to as the Warburg Impedance and appears at lower 

frequencies. As represented in Figure 34 the Warburg impedance appears as a straight 

line. Typically, the Warburg impedance creates the tail of the impedance spectrum. A 

typical full impedance spectrum from a Randles cell with Warburg impedance (i.e. 

diffusion effects) is shown in Figure 34. 
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Figure 34. Equivalent circuit representation for Randles cell with Warburg impedance- tail of the 

spectra. 

 

Due to the complex nature of an actual battery cell, there are a variety of equivalent 

circuits that can be fitted to a real cell and they can range in complexity. As mentioned, 

the Randles model shown in Figure 34 is a common starting place. This model has been 

used to characterize the electrode/electrolyte interface. [101] Takami et al used a Randles 

model to study the kinetics of lithium intercalation into carbon electrodes. [92] They 

termed their resistor (Rp) and capacitance (Cp) to represent all the polarizing and capacitive 

effects that occur inside a cell. However, on a carbon electrode a passivation film that 

forms primarily on the carbon electrode will typically influence the impedance spectra. 

This film can show up as a second semi-circle, particularly if the time constants of the 

processes related to the passivation film are significantly different from other processes 

occurring inside the cell. Itagaki et al. utilized and equivalent circuit with an additional 

resistor-capacitor pair to represent the effects of passivating films (SEI). Their measured 

impedance spectra and equivalent circuit are shown in Figure 35. They have no diffusion 

tail in their spectra because of the range in which they collected their measurements. Their 
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fit differentiates the influence from the passivation film on the surface, the first semi-circle 

in the Nyquist plot, from the charge transfer and double layer effects, second semi-circle.  

 

 

Figure 35. Equivalent circuit fit to impedance data for analyzing graphite electrodes and SEI 

growth by Itagaki et al. Impedance collected 10mHz-10Mhz[97] 

 

Zhang et al. reported an impedance study where they evaluated the SEI interface 

on graphite eletrodes using Li/graphite cells. They fit their data with the equivalent circuit 

illustrated in Figure 36. The first resistor (Re) represents the separator/electrolyte 

resistance. The first resistor and capacitor pair, (Rf, Cf) represent the SEI film, and RCt and 

Cdl represent the charge transfer resistance and the double layer capacitance. The values 

of each resistive component was evaluated during the first charge and discharge of the 

cell. They observed Re to remain constant, Rf  decreased with increasing lithiation of the 

carbon electrode, and Rct was generally lower at higher degrees of lithiation but showed 

much fluctuation. 
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Figure 36. Equivalent circuit and example impedance spectra of Li/graphite cell used by Zhang 

et al to study SEI formation on graphite half cells. Impedance collected 100kHz-0.01Hz [90] 

 

Chen et al. utilized equivalent circuit analysis with an impedance study on high 

power lithium ion cells. [98] Rather than using capacitors, they utilized constant phase 

elements (Q) to better represent the porous nature of electrodes. They found their proposed 

circuit, Figure 37, adequately fit their experimental data. Utilizing pseudo capacitance, 

they were able to convert some of the CPEs to capacitors during data analysis as shown in 

(b). From the magnitude of the capacitance values, they attributed the resistor-capacitor 

pairs to processes in the cell. R2Q2 was attributed to lithium ion transport to the surface 

because C2 was on the order of microfarads. R3Q3 and R4Q4 were both attributed to charge-

transfer processed because their capacitors C3 and C4 were on the order of millifarads. 
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Figure 37. Equivalent circuit proposed by Chen et al. to model a lithium-ion cell using CPEs 

rather than resistors.[98] 

 

In trying to interpret and understand impedance data, it is important to recognize 

what to look for and what to expect from an impedance spectrum. J.Y. Song conducted a 

two and three electrode impedance study on lithium ion batteries. In their work, they 

present the impedance spectra of a lithium symmetric cell, a graphite symmetric cell, and 

a lithium graphite half cell measured from 10Hz-50kHz. Their impedance results from a 

symmetric Li-Li cell are shown in Figure 38 (c). The general profile is a large semi-circle. 

They attribute the larger semi-circle to the nature of lithium metal and a passivated film 

that forms on the surface between the lithium metal and electrolyte. The changes in the 

impedance are a result of letting the symmetric cell sit for a period of time. The increase 

is attributed to an increase in the film. The C-C symmetric cell is shown in Figure 38 (a). 

Here the impedance profile is almost a vertical line representing the capacitive nature of 

graphite electrodes. It is important to note that this line is not due to diffusion as there can 

be none. Zooming in on the spectra as shown in Figure 38 (b), at very high frequencies 
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there is a small semi-circle forming. This is attributed to the formation of a passivating 

film forming on the surface of the graphite electrode. When the two electrodes are 

combined and assembled into a half cell and cycled, the impedance spectra reflect the 

contribution of each electrode shown in Figure 39. The spectra have a semi-circle followed 

by a tail. The figures progress from a lithiated state (0.133V) to a delithiated state (1.465V) 

with respect to the graphite electrode. In this case, the semi-circle is caused from 

contributions from the lithium metal and the SEI layer on the graphite electrode. However, 

the lithium metal passivation film should remain relatively constant; changes in the semi-

circle are likely an effect of the SEI on the graphite electrode. The tail that can be seen in 

the spectra in Figure 39 is a consequence of diffusion, not of the capacitive nature of the 

graphite electrode, as lithium has now intercalated into the graphite structure. This is 

further supported by the fact that the slope of the tail now represents the traditional 45-

degree angle characteristic of Warburg impedance as opposed to the conductive nature of 

the vertical line seen in Figure 37 (a). As the graphite electrode is delithiated we see the 

capacitive effect of the graphite electrode and the influence of the lithium electrode 

dominate. 
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(a)    (b) 

(c) 

Figure 38. (a) Impedance spectra from C-C symmetric cell (b) zoomed impedance spectra of C-C 

symmetric cell. (c) impedance spectra of Li-Li symmetric cell. All Spectra collected from 

10Hz-50kHz [93] 
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Figure 39. Impedance spectra from Li-C half cell. Starting at a lithiated (0.133V) state and 

moving to a delithiated state (1.465V). All Spectra collected from 10Hz-50kHz [93] 

 

Methodology 

Cell Fabrication 

The cells utilized in all experiments were Li/graphite half cells fabricated in house 

utilizing 2032-coin cell hardware as described in Chapter III. The electrodes used in the 

cell were punched out of the bulk material using a round ½ punch. The lithium electrode 

was punched from a 99.9% pure lithium ribbon from Sigma Aldrich.  The graphite 

electrode was punched from an electrode sheet manufactured by MTI Corporation. Single 

side CSM graphite coated copper foil sheet (241mm L x 200 mm W x 0.1 mm T) 94.5% 

active material proportion in powder, specific capacity 330mAh/g, active material mass 

5.0176 g. The cells were assembled in an argon glove box (ppm <  0.1 H2O,  ppm < 0.1 

O2). The mass of each punched graphite electrode was recorded before assembly in the 
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cell using an OHAUS AX224/E analytical scale, which reports to 0.1 mg with an accuracy 

of ± 0.2 mg and maximum capacity of 220 g. A BASF manufactured lithium 

hexafluorophosphate diethylcarbonate electrolyte was used for all cells. A ¾ inch punched 

25µm Trilayer polypropylene-polethylene-polypropylene membrane separator 

manufactured by Celgard was placed between the electrodes to prevent physical contact. 

The cell was sealed using an MTI-MSK-110 crimper at 50kg/cm2.  

After fabrication, each cell is allowed to rest for at least 8 hours before cycling. 

The after rest voltage of the cell was found to sit between 2.5-3.0 V. After rest, each cell 

was CC-cycled (discharge-charge) two times at C/10 (current determined from theoretical 

capacity). Cells were cycled using MTI BST8-MA battery tester. 

Impedance Measurements 

Impedance measurements were collected using a BioLogic MPG-2. The 

potentiostatic measurement protocol was utilized. Spectra was collected in the range 

1MHz-10mHz, 10 points per decade, with a single-sinusoidal perturbation of 10mV. 

Impedance was measured as the cell was cycled through different states-of-charge (SOC). 

The SOC refers to the lithiation of the graphite: 0% SOC is fully delithiated, 100% SOC 

is fully lithiated. The process of lithiation occurs during the discharge of a half cell. SOC 

increases as the cell is discharged; 100% SOC is when the cell potential reaches 0V. 

The process of cycling then taking impedance—dynamic impedance probing— at 

different SOCs is shown schematically in Figure 40. After formation cycling the cell is in 

a charged state: 0% SOC. At this point an impedance spectrum is collected, then the cell 

is discharged at C/10 for 1 hour, or by 10% SOC. The cell is allowed to rest for 30 
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minutes[96] then the impedance spectrum is collected at this new SOC. This process is 

repeated until the cell is discharged to the desired SOC. 

 

 

Figure 40. Representation of the dynamic impedance probing protocol used to collect impedance 

spectra at different SOCs  

 

SEM Imaging 

SEM images were collected using a VEGA3 TESCAN, 20 kV beam intensity, 

tungsten heated cathode. Because lithium metal is highly reactive in atmospheric 

conditions the cells were disassembled in an argon glove box. A set of needle-nose pliers 

were used to carefully pry apart the coin cell casing. The tips of the pliers were wrapped 

with electrical tape to prevent shorting of the cell. Inside the argon glove box the electrodes 

were rinsed with IPA to preserve any plated lithium [102], mounted with double sided 

carbon tape to the SEM pucks, and sealed in a plastic bag for transport outside the glove 

box. 

Equivalent Circuit 

The equivalent circuit used to analyze the impedance data collected in this work is 

shown in Figure 41. Similar to the work by Chen et al. this model implements CPEs (Q) 
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to compensate for the porosity and capacitive effects of the electrodes. The first resistor 

in the model, R3, represents the serial resistance of the electrolyte and separator.  The first 

CPE-resistor pair (Q1 R1) represent the film resistance and capacitance that will form, 

mostly on the graphite electrode. The next CPE-resistor pair (Q2 R2) represent the charge 

transfer resistance and double layer capacitance. Each CPE is in parallel with a resistor. 

From this configuration, each CPE can be converted to a capacitor by utilizing the pseudo-

capacitance characteristics. The pseudo-capacitance can be calculated for a CPE in an 

equivalent circuit of the form R1+(R2/Q2). The “+” represents a series relation and the 

“/” represents a parallel relation. The pseudo-capacitance corresponds to a capacitance 

value (C) at a frequency (fo) corresponding to the maximum imaginary part on the Nyquist 

circle obtained by fitting with the equivalent circuit R1+(R2/Q2). The value is a solution 

is computed according to Eq. 31.  

 

 

Figure 41. Equivalent circuit developed to analyze the complex impedance plots 
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1

2𝜋(𝑅𝑄)
1
𝛼 

=
1

2𝜋𝑅𝐶
 

Eq. 31 

 

where: 

 𝛼 and Q are CPE parameters 

R = resistance 

C= capacitance 

 

After utilizing the pseudo-capacitance relationship, the equivalent circuit can be 

represented as shown in Figure 42. The first element in the equivalent circuit is a resistor 

(Re). This resistor represents the electrolyte, separator, and other ohmic resistances that 

exist across the cell between the electrodes. This is in series with Cf and Rf , which 

represent the passivation film, typically SEI which forms on the  graphite electrode. This 

is followed in series by CDL and RCT, which represent the double layer capacitance and the 

charge transfer resistance. The electric double layer forms because when a metal electrode 

is dipped into a solution of its ions, two parallel layers of charge form on both the electrode 

and the electrolyte sides of the interface. This parallel layer of charge is called the electric 

double layer (EDL). This double layer causes ions to align at the electrode/electrolyte 

interface in a manner that can be thought of as a capacitor with the electrolyte acting as a 

sort of dielectric. Charge transfer resistance is the resistance against the electron transfer 

from one phase (electrode) to another (electrolyte). For example, in the electrolysis of 

water energy is required to move electrons from the metal electrode and join them with 

protons to produce hydrogen. The process of transferring electrons from the electrode to 

the hydrogen ions in the liquid phase has an associated resistance: the charge transfer 

resistance. The final element in the equivalent circuit is a Warburg element, which is a 
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CPE with a constant phase angle and no frequency dependence. The Warburg element is 

used to represent the semi-infinite diffusion effects present in the cell, particularly visible 

in the low frequency portion of the spectrum. 

 

 

Figure 42. Equivalent circuit where CPEs have been converted to equivalent capacitors through 

pseudo-capacitance relationship. Re represents the electrolyte and separator resistance, Cf and Rf 

represent the film resistance and capacitance, Cdl and Rct represent the electric double layer 

capacitance and charge transfer resistance, W represent the Warburg element. 

 

The various effects ( SEI, CT, diffusion, etc) are typically presented in different 

parts of the spectrum, however if their time constants are close together they will interfere 

with each other and their corresponding semi-circles on the Nyquist plot will overlap. This 

is shown in Figure 43 which show a measured impedance spectrum and how the elements 

of the equivalent circuit will individually be fit and combined to represent the 

experimentally acquired impedance spectra for the Li/C half cells. 
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Figure 43. Experimentally measured impedance spectrum (blue line) and circuit elements that 

combine to reflect the entire spectrum. 

 

Correlation Extraction 

The equivalent circuit shown in Figure 41 was fit to the experimental data using 

EC-Lab® Express Software V5.53 provided by BioLogic Science Instruments. EC-Lab® 

Express provides a tool called ZFit, which allows you to create equivalent circuits with 

common circuit elements, and provides a fitting method to fit your data. The method used 

was the Simplex method, which is a non-linear least squares fitting method. Simplex fits 

the best response in a multidimensional space where variables may be interrelated. The 

method is computationally slow, however it is quick and easy to implement. The basic 

idea is one changes a variable, notes the response and tries again. A simplex is a geometric 

figure with n+1 vertices in n-dimensional space. The method uses three vertices at a time. 

It picks the two vertices and adjust the system. Because the initial conditions the system 

starts at have a large influence on the fit, the EC-lab fitting method also includes a 

Film	

CT

Diffusion

Re
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randomize method to shuffle all the variables at the beginning of the fit and help more 

quickly and accurately narrow in on a solution. 

The Z Fit parameter window is shown in Figure 44 (a). The highlighted in blue is 

the drop down menu showing the circuit being fit to the experimental data. Z fit provides 

hundreds of common equivalent circuits that can be used to fit data or it allows you to 

create your own. It follows the convention where “+” represents a series relationship and 

“/” represents a parallel relationship. Highlighted in green are the individual parameters 

and values corresponding to the fit. The user can select which values to use in the simplex 

method, their range, etc. Highlighted in yellow is the fitting criteria. The fitting method is 

selected along with how many iterations are used in the fit. The weight option has either 

1 or |Z|. This weights the points when fitting. When “1” is selected each point is weighted 

equally, when |Z| is selected each point is weighted based upon the magnitude of the 

impedance. In this work “1” was used in all fits. Highlighted in orange at the bottom of 

the Z fit control window are options to save and copy the output from the fit. The PseudoC 

opens a new dialogue box shown in Figure 44 (b). Pseudo C calculates the equivalent 

circuit using pseudo capacitance as represented in Eq. 31. 
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(a)        (b) 

Figure 44. (a) Z Fit dialogue window (b) dialogue window from using PseudoC command 

 

Results 

 SEM Results  

To induce plating in a Li/graphite half cell requires the cell reach negative voltages. 

[76, 99] This can be accomplished in a variety of ways: charging at very high rates, 

charging at low temperatures, or high SOC. In this work high SOC reached at a low rate 

(C/10) was used to induce plating because 1) it assures the graphite electrode reaches a 

fully lithiated state, thus when the voltage does drop below zero it is likely that little or no 

more lithium intercalation is occurring. More likely, lithium is being electrodeposited on 

the surface 2) the lower charge rate assures that the deposition of metallic lithium is the 
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cause of the low cell voltage. At higher rates many other factors, like charge transfer, come 

into play and can cause the potential of the cell to appear to drop below zero when the 

actual potential of the electrode is not that low. This would be evident when the current is 

released and the cell potential jumps back to OCV. This phenomenon was observed in 1C 

discharge tests. 

Four electrodes were charged to different SOC’s: 0%, 50%, 100%, 120%. Pictures 

of the electrodes from inside the glove box are shown in Figure 45. All electrodes were 

rinsed with IPA. The 0% SOC and 50% SOC electrode generally have the black graphite 

appearance. The 100% SOC electrode appears gold. This is due to the intercalated lithium 

changing the optical properties of the graphite and is an expected result.[103] The 120% 

SOC electrode also shows the gold color, however the surface also appears to be partly 

covered with a silver material, likely electrodeposited lithium. This can be seen before 

IPA rinsing. After rinsing, the lithium turns a white color and becomes more obvious. The 

purpose of the IPA rinse is to form Li2CO3 which forms from a reaction with the metallic 

lithium and better preserves the deposited lithium on the surface for evaluation.[102] 

Figure 46 shows the discharge curve for the 120% SOC electrode and the approximate 

markings along the curve for the other electrodes. From the zoomed portion of the curve, 

it becomes clear that the cell voltage does indeed drop below zero volts. In addition, after 

the current is stopped (rest) the cell voltage does not jump up above zero volts as happens 

with all other cells.  
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Figure 45. Images of four electrodes at four different SOCs for SEM imaging 

 

 

(a)           (b) 

Figure 46. (a) Discharge curve through 120%SOC marked with each SOC (b) zoomed view of 

the discharge curve around 0V showing the drop in cell voltage below 0V allowing for plating of 

lithium on the graphite electrode. 

 

The SEM images of each electrode are shown in Figure 47 and Figure 48. The 0%, 

50%, and 100% SOC images clearly show the graphite particles. The 0% SOC assumes 

there is virtually no lithium in the graphite structure. The 50% SOC implies about half the 

available interstitial sites have lithium in them forming LiC6. The 100%SOC state assumes 

virtually all the interstitial sites for lithium ions to intercalate are filled. The electrode 

voltage at this state did not drop below zero volts. At 120% SOC the cell voltage did drop 
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below 0V and the electrode is assumed to be full of lithium. Now the graphite particles 

are covered with electrodeposited lithium. All images were captured with the same beam 

intensity and the magnification of the images are denoted in labels. 

Figure 47. SEM images of graphite electrode at different SOC’s. The 0% SOC, 50% SOC, and 

100% SOC all show graphite particles. The 120% SOC images shows graphite particles but there 

also appears to be a covering over a large portion of the electrode: electrodeposited lithium. All 

images taken at the same beam intensity (20.0kV) and 1kx magnification. 
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Figure 48. SEM images of graphite electrode at different SOCs. The 0% SOC, 50% SOC, and 

100% SOC all show only the graphite particles. The 120%SOC image shows the graphite 

particles covered with another material, plated lithium. All images taken at the same beam 

intensity (20.0kV) and magnification 5kx. 

 

 

Figure 49. SEM images of different parts of the electrode charged to 120%SOC. The green 

arrow in the right picture indicates it is possible to see an underlying graphite particle like seen 

in the other 5kX images. The graphite is covered with lithium dendrites, one of which appears to 

be protruding up as indicated by the red arrow. 
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Impedance Results 

 The dynamic impedance protocol, described in Figure 40, is used to measure the 

impedance response of several cells. Figure 51 shows the impedance response cycled at 

C/10 from 0-100% SOC with the impedance measured every 10% SOC. They cell was 

cycled three times. Figure 50 shows the discharges and the points where the impedance 

was taken. At low SOC, approximately 10%-80% the impedance remained relatively the 

same. From 90-100% SOC the impedance increased. With increasing cycles, the 

impedance at the highest SOC (90-100%) also increased.  

 

Figure 50. Discharge curve of a cell cycled three times at C/10. Impedance was taken every 10% 

SOC as denoted by the labels on the graph 

 

0%

10%
20% 30% 40% 50% 60% 70% 80% 90%100%
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Figure 51. Impedance at different SOC (10%-100%) over three discharge cycles. 

 

The equivalent circuit fit to the impedance data is shown in Figure 52. The 

equivalent circuit element corresponding to each particular graph is highlighted in blue. 

The separator/electrolyte resistance remains constant across different SOC. Both the film 

resistance (Rf) and charge transfer resistance (RCT) show an increase in resistance at high 

SOC. 
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Figure 52. Equivalent circuit resistive elements fit to C/10 impedance data. Equivalent circuit 

above each graph highlights which element is represented. 

 

With a baseline behavior established, a new cell was cycled at C/10. However, the 

SOC range is 0-150% SOC. The objective is to investigate the impedance response in a 

cell where lithium electrodeposition will occur. The impedance was again taken every 

10% SOC. The discharge curve is shown in Figure 53. Each 10% discharge is followed 

by a 30 minute rest (plateaus in the graph) at the end of which the impedance was 

measured. From 0-100% SOC the cell voltage remained above 0V; thus no plating 
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occurred. From 100%-110% SOC the cell voltage dropps below 0V. After the 110% 

discharge the cell voltage only relaxed to 0V and did not relax to a positive voltage as 

happened for 0-100%. 

 

 

Figure 53. Discharge curve at C/10 with impedance measured every 10%SOC. Each discharge is 

followed by a 30-minute rest (plateau in voltage) at the end of which the impedance was 

measured. Above 100%SOC the cell voltage stayed above 0V. After 100% SOC the cell voltage 

dropped below zero during charging and relaxed to approximately 0V after the current was 

released (rest). 

 

The impedance measured every 10%SOC is shown in Figure 54. The results shown 

in the Figure 54 are for two different half cells run under the same operating conditions. 

Repeat experiments had to be done using a fresh cell because once plating is induced in 

the cell it cannot be removed. The trends observed between the two cells are similar. Cell 

1 is shown in blue circles, Cell 2 orange triangles. At low SOC – 0-60% SOC—the 

measured impedance remains relatively constant. The size of the semi-circle and the tail 
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do not change appreciably. From 70-100% SOC the diameter of the semi-circle increases 

dramatically. The maximum size of the semi-circle occurs at 100% SOC and from 110-

150% SOC the semi-circle decreases. This trend is more easily observed in the 2D plot 

shown in Figure 55. For clarity only selective impedance spectra a shown. The 70-100% 

SOC spectra semi-circle (shown as blue squares) increases sequentially up to 100% SOC. 

The higher SOC spectra – 120% 130% 150% (chosen for clarity in the graph, the 110% 

and 140% SOC follow the trend) have semi-circles that decrease in magnitude. 

 

 

Figure 54. Plot of all impedance spectra measured from 10%-150% SOC. Cell 1 shown in blue 

circles, cell 2 shown in orange triangles. Similar trend observed between the two half cells. 
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Figure 55. Selective impedance spectra shown from Cell 1 for 70-150% SOC. As SOC increases 

to 100% SOC –shown in the spectra represented by blue squares— the magnitude of the semi-

circle increases. From 110-150% SOC – represented as green triangles—  the magnitude of the 

semi-circle decreases. Omitted SOC spectra follow this trend and were left off for clarity in the 

graph. 

 

The equivalent circuit previously discussed and shown in Figure 41 is fit to all the 

impedance spectra. An example fit is shown in Figure 56. In this example the measured 

impedance spectra, purple triangles, for 80% SOC is fit with the model, shown as blue 

line. The fit matches the data very well with an R2 value of 0.995. Similar R2 values are 

found for all other SOC fits. 



 

 104 

 

Figure 56. Example of an experimentally measured impedance spectra, purple triangles, fit with 

equivalent circuit model, blue line. R2 = 0.995 Similar R2 are found for all other SOC fits. 

 

The results from each of the elements of the equivalent circuit presented in Figure 

42  is shown in the following three figures. The first element, Re, which represents the 

electrolyte and separator resistance is shown in Figure 57. The resistance value remains 

constant across all SOCs. This is in agreement with previously reported results by Chen 

et al. and Zhang et al. [90, 98]  
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Figure 57. Resistance value for electrolyte and separator resistance, Re which remains constant 

across all SOCs. 

 

The resistance element values for Rct and Rf, are shown in Figure 58 and Figure 

59. The assignment of which resistor-capacitor pair corresponded to which physical 

phenomenon was determined by correlation with capacitance. One capacitor always 

returned values on the order of 𝜇F and the other on the order of F. Physically this smaller 

capacitance value logically correlates to the film capacitance and is the right order of 

magnitude. The larger capacitance value logically correlates to the double layer 

capacitance, which one would expect to be much larger. Thus, the resistor paired with Cf 

is Rf and the resistor paired with Cdl must be Rct. The film resistance and capacitance 

values over all SOCs is shown in Figure 58 and Figure 59. The resistance and capacitance 

trends are equal but opposite. The film resistance is relatively constant from 10%-80% 

SOC. The value dramatically increases from 80-100% SOC where it peaks and remains at 

a relatively constant, or slightly decreasing value. The film capacitance initially starts at a 
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higher value, and is reasonably constant for 10-50% SOC. From 60-100% SOC the 

capacitance dramatically decreases where it reaches a lower value and remains relatively 

constant from 110-150%SOC. The same trend is observed across both cells: Cell 1 is 

shown with blue squares, and Cell 2 is shown in orange triangles. 

 

 

(a)                                                          (b) 

Figure 58.  Resistance Rf (a) and capacitance Cf (b) values for film equivalent circuit elements. 

 

The results for the charge transfer resistance, Rct and double layer capacitance, Cdl 

are shown in Figure 59. The trends present in both the resistance and capacitance follow 

a similar trend. The charge transfer resistance remains relatively constant from 10-70% 

SOC. From 80-100% SOC the charge transfer resistance increases dramatically, to a peak 

value at 100% SOC. As the SOC is increased, 110-150% SOC the charge transfer 

resistance proceeds to decrease in value. This phenomenon is observed in both cells: Cell 

1 represented by blue squares, and Cell 2 represented by orange triangles. The double layer 
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capacitance, Cdl, shows a decreasing trend from 10% SOC to 90% SOC. From 90-100% 

SOC the capacitance drastically increases and then proceeds again to decrease.   

 

 

(a) (b) 

Figure 59. Resistance (a) and capacitance (b) for charge transfer, Rct, and double layer, Cdl, 

circuit elements. 

 

The dynamic impedance protocol is repeated on a new cell but at a rate of 1C rather 

than C/10. The impedance is still taken every 10% SOC as shown in Figure 60. The low 

SOC impedance remains relatively constant, but there is now significant variance between 

cycles, and the cycle two impedance decreased at high SOC (90-100% SOC) rather than 

increased with cycles as was observed in the C/10 tests. This trend is shown more clearly 

in Figure 62. A comparison of the Cycle 1 and Cycle 2 profiles shows that in Cycle 2 the 

impedance at equivalent SOC was lower. From the discharge curve of the 1C test shown 
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in Figure 61. It is evident that the higher charge rated caused the cell voltage to drop below 

0V, and this occurred early in the charge process, around 30% SOC. The equivalent circuit 

is fit to the 1C impedance data. The resistance element values are shown in Figure 63. The 

trends in the data are similar to those observed in the C/10 data. The notable difference is 

that Cycle 2 is lower in resistance than Cycle 1. 

 

 

Figure 60. Impedance response at different SOC for a cell cycled two times at 1C. 

 

 

Figure 61. Discharge curve for cell cycled at 1C 
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Figure 62. Selective high SOC impedance for cell cycled at 1C. During the second cycle the 

impedance was generally of lesser magnitude than during the first cycle. This is opposite the 

trend observed in the C/10 data. The difference is due to the charge C-rate this cell went to 

negative voltages. 

 

 

Figure 63. Equivalent circuit resistive elements fit to 1C data. Charge transfer (left) and film 

(right) 

 

In addition to rate of charge, long term cycling is also evaluated. Two cells are 

cycled at C/3. One cell is prevented from going to negative voltage by stopping the cell at 

0V. The other cell is allowed to go to negative voltage, but not excessively. This cell was 

stopped at -0.025V. This discharge difference is illustrated graphically in Figure 64. Just 
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a minor difference in voltages is used because it was not desirable to have the difference 

in voltage windows be a significant factor in capacity. As shown in Figure 65, which plots 

the normalized discharge capacity versus cycle, the cell that goes to negative voltage 

shows a larger capacity loss than the cell that is prevented from going to negative voltages. 

Between the two cells, the trends in the impedance data are also different over cycling, 

shown in Figure 66. Each impedance spectra was taken after they cycle number indicated 

and while the cell was in a discharged state (graphite is fully lithiated). The cell cycled 

only in positive voltage shows with increasing cycles the impedance generally increases. 

The cell that goes to negative voltages during cycling shows an opposite trend. As cycling 

increases, the impedance decreases. This decreasing impedance trend follows the trends 

observed in other situations where electrodeposition is occurring. 

 

 

Figure 64. Discharge curve for two difference cells cycled at C/3 indicating that on cell was kept 

in positive voltages, the other cell was allowed to drop to -0.025V while cycling. 

Negative
Positive
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Figure 65. Capacity fade for two cells cycled at C/3. 

 

 

Figure 66. Impedance spectra for the cell that was kept at positive voltage and for the cell that 

was allowed to go to negative voltages (-0.025V). Both cells cycled at C/3, impedance trends 

after 0, 5, 10, and 35 cycles are shown and trends are indicated with arrows. 

 

Discussion 

 In the first SEM image, shown in Figure 47, the 0% SOC image shows the graphite 

particles are clearly defined and the sharpness of the edges is easily noted. As the images 

progress too higher SOC (50-100%) the particle shape changes. Clusters appear to push 

together, and in certain areas the sharpness that the edges of the particles had is gone and 

Negative
Positive
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they appear more round and smooth. This same phenomenon is seen in the 5kx images 

shown in Figure 48. The electrode filling with lithium causes this apparent smoothing. In 

the 120% SOC image, shown in Figure 47, the graphite particles are largely non-

discernable and appear to be covered with something that is not present in the other three 

images: this covering is electrodeposited lithium. The evidence that this covering, which 

is not present at other SOC, is confirmed to be electrodeposited lithium by Figure 48 and 

Figure 49. In the 4kx figure it is possible see the graphite particles, as indicated by the 

green arrow. However, the surface is covered by electrodeposited lithium, forming 

dendritic like structures, some of them needle-like as indicated by the red arrow. 

 The behavior of the voltage in Figure 46 is indicative that lithium electrodeposition 

has occurred. After the discharge to 120% SOC and metallic lithium is deposited on the 

surface of the electrode, and the potential of the cell when the current is released-- marked 

rest-- remains around 0V. This behavior is also observable in Figure 53. It is due to the 

presence of electrodeposited lithium. Because there is lithium on both electrodes, there is 

no longer a potential difference between the two electrodes, like exists when lithium 

properly intercalates into the electrode and does not deposit on the surface.  The negative 

voltage that the cell reaches plateaus around 40 mV for the C/10 charging rate. This is due 

to the lower driving force provided by this lower current. At higher currents, like 1C, 

Figure 61, the cell reaches much lower voltages. Both situations favor the 

electrodeposition of lithium. It is likely at a more negative voltage and at a higher charging 

rate increase the rate of deposition. 
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 The dynamic impedance measurements shown in   Figure 51  show that the general 

trend is the impedance remains relatively constant until approaching high SOC. At high 

SOC the electrodes it is close too full, so there is an increased resistance to accepting more 

lithium. At low-mid SOC there are many interstitial sites for the lithium to intercalate to, 

and thus no reason for the resistance to dramatically increase. As the final 20% of charge 

tries to pass into the electrode it is expected that there would be a rise in resistance as there 

are fewer open spots for the lithium in the graphite structure. The equivalent circuit 

resistance elements Rct and Rf demonstrate this in Figure 52. Re remains constant across 

all SOC because the bulk composition of the electrolyte and separator does not appreciable 

change with SOC. 

 As shown in Figure 54 once the graphite electrode is mostly full and 

electrodeposition begins, the impedance drops. This makes sense for two reasons. First, 

metallic lithium is highly conductive and has a very low resistance. Secondly, the lithium 

is deposited on the surface of the electrode, so the lithium no longer has to intercalate into 

the electrode, reducing resistance. This trend is clearly illustrated in Figure 59, which 

shows the response of the equivalent circuit element labeled as the charge transfer 

resistance (Rct) versus SOC. The film resistance element (Rf) shows a different trend, 

Figure 58. At low SOC (10-70% SOC) the film resistance remains relatively constant. 

From 90-100% SOC the resistance jumps. At high SOC the lithium faces an increased 

resistance to intercalating into the electrode. Some of this lithium starts reacting with the 

existing film, thus increasing its resistance. The film resistance remains high as 

electrodeposition occurs because the electrodeposited lithium is going to break up sections 
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of the film and add surface to increase the film. The separator/electrolyte resistance 

element (Re) remains constant across SOC, Figure 57. This is expected because the bulk 

composition of the electrolyte should no change appreciably with varying SOC. The 

electrolyte acts to connect the two electrodes and transport ions. This constant behavior 

has also been observed in other work.[90] 

 At 1C the behavior of the cell indicates plating. As the graphite electrode reaches 

30% SOC and above the cell voltage drops below zero as shown in Figure 61. This drop 

below zero, which allows electrodeposition to occur, is reflected in the impedance 

behavior. The 1C impedance follows the behavior of the C/10 impedance when plating is 

present; that is the impedance trend (between cycles) decreases; this is shown in Figure 

62. 

 The long-term C/3 capacity fade data shown in Figure 65 shows the cell that goes 

to negative voltages experiences more capacity fade over many cycles than the cell that 

remains at positive voltages. This is due to the loss of cyclable lithium because 

electrodeposition is occurring in the cell that goes to negative voltages. It is worth noting 

that originally, for the first 10 cycles, the cell that stays above zero volts shows a larger 

loss in capacity. This is likely because the cell going to negative voltage has a larger 

voltage window, so experimentally more charge is passed into the cell making it appear 

to have a larger capacity. But over cycling as the effects of electrodeposition increase and 

more lithium is deposited on the surface of the graphite electrode, it’s observed that indeed 

the cell that is going to negative voltage has a larger capacity loss, due to electrodeposition. 

The impedance data further supports this analysis. The positive cell, which always stays 
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above 0V (i.e. will not have lithium plating), shows a trend in the impedance data where 

more cycling leads to an increase in the impedance. This is attributed to an increase in the 

SEI and degradation of the electrode with cycling. These same phenomena are present in 

the cell that goes to negative voltage. In addition, electrodeposition is also occurring, 

because the impedance data trend decreases, Figure 66. As discussed earlier, this is due to 

lithium metal being highly conductive and depositing directly on the surface of the 

electrode, leading to a decrease in the impedance. 

Conclusion 

The objective of the work of this chapter was to investigate electrodeposition of 

metallic lithium on graphite electrodes by probing the cell at different SOC. The probing 

consisted of looking at the potential data and impedance response of the cell. A procedure 

of dynamically taking impedance at different SOC is created. Different trends in the 

impedance data are found, certain aspects of the trends, such as the decrease in impedance, 

were a result of electrodeposition of lithium on the surface of the electrode. 

Electrodeposition is verified using SEM imaging. Imaging showed when the cell voltage 

dropped below zero electrodeposition could occur and lithium dendrites are observed on 

the graphite. No electrodeposition is observed on cells that remained above 0V. From 

probing at high charge rates and over repeated cycling, the same trends established in the 

C/10 probing regarding plating are observed. Overall, it is shown that electrochemical 

impedance spectroscopy is a powerful tool in understanding electrodeposition on graphite 

electrodes. EIS coupled with the application of equivalent circuit analysis detects 

deposited lithium on graphite in a manner that is non-destructive to the battery. Further 
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testing under a wider range of conditions such as C-rate, temperature, and refining the 

SOC window are the natural next steps. 
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CHAPTER V  

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

The overall objective of this work was to investigate and increase the 

understanding of the electrodeposition of lithium (dendrite growth) on graphite electrodes. 

This task is approached using two major tools: modeling and experimentation. From the 

modeling approach a fundamental understanding in model development, design, 

verification, and validation was established. Based upon previous work in the literature a 

basic needle-like dendrite model is coded in Python. The model code and numerical 

techniques are verified using the method of manufactured solutions. After verification, the 

model is validated by comparing the results with previously reported experimental data. 

Under the same conditions as the experimental data, the model is found to be in agreement 

with the experimental data. 

This model, of course, has limited applicability, and future expansion and 

evolution could include adding terms to account for dendrite tip morphology, relaxing the 

single-needle like assumption, expanding into further dimensions, and integrating into a 

multi-electrode, full scale, model through the utilization of other available codes like 

CAEBAT. 

The second tool, experimentation, makes up the second part of this work and aims 

to investigate the electrodeposition of metallic lithium on graphite electrodes. The 

experimental work includes several parts. The first part required coming up with the 

appropriate experimental procedure: cell fabrication, characterization of the materials 

used, and development of testing protocols. In particular, the novel dynamic impedance 
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probing protocol developed and utilized to study the impedance response of the 

experimental cells at different SOC. From the impedance response information it is 

possible to determine how the cell responds during normal charging conditions and under 

conditions in which lithium electrodeposition is occurring. Analysis of the impedance data 

and the implementation of tools like equivalent circuit analysis lead to the observation of 

trends in the data that make it possible to detect plating across conditions of high SOC, 

high charge rate, and repeated cycling. 

Future expansion of the work could naturally move to expanding the application 

of the dynamic probing protocol. More analysis at different C-rates and at a more refined 

and focused SOC interval can help further understand the development of plating. This 

can then be expanded to different temperature ranges, as all this work was conducted at 

room temperature.  

Overall, the objectives of this work were accomplished. While of course many 

questions remain to be answered this work uniquely touched upon and added for the author 

and the scientific community a broad range of tools and applications to aid in answering 

the scientific and engineering problems that exist now, and will exist in the future. 
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