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ABSTRACT

In this study nonlinear finite element models for beams and plates considering general

higher-order expansions of the displacement fields have been developed, The models

account for Cosserat continuum having constrained micro-rotation. The models can

be used to analyze solid continua with very small inclusions or small scale structures

in which material length scales, that classical continuum mechanics fails to capture,

play a role. The beam and plate models developed herein are used to study the ef-

fect of different length scale parameters and the orientation of small inclusions. Also,

the classical plate theory for rotation gradient dependent potential energy (Cosserat

continuum for constrained micro-rotation) is applied to model nano-indentation on

a carbon nanotube (CNT)-reinforced hard coating on an elastic substrate to see the

effect of CNT reinforcement, which is modeled by small material length scale pa-

rameters. A general higher-order one-dimensional theory has also been developed

in cylindrical and curvilinear cylindrical coordinate systems by considering a very

general displacement approximation of arbitrary cross-section of a body in polar co-

ordinates. Based on this approximation, the governing equations of motion have been

derived using the principle of virtual displacements for large deformation case. Fur-

ther, a nonlinear finite element model is developed to determine nonlinear response

using the theories presented. In the numerical examples, the finite element model

is used to analyze shell and rod-like structures for large deformation. Also, these

higher-order one-dimensional theories are very relevant for the analysis of shell and

rod-like structures of Cosserat continuum for constrained micro rotation because all

gradient elasticity theories require C1 or higher-order continuity of the displacement

variables, which is hard to achieve in the case of two or three dimensions, especially

for non-rectangular grids. The one-dimensional theory developed herein allows conti-

nuity of any desired order of the variables by general Hermite interpolation functions

in the finite element model.
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102 for simply supported homogeneous and FGM beam for the
general third order plate theory. . . . . . . . . . . . . . . . . . . . . . 69

4.1 Indentation depth for various grid density and computational do-
main for indenting force, F0 = 10 mN . . . . . . . . . . . . . . . . . . 88

5.1 Linear FEM solutions for maximum radial displacement of a
cylindrical shell under internal pressure, P0 = 0.04 MPa with
fixed end boundary condition. . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Comparison of maximum radial displacement of cylindrical shell
by one dimensional (1-D) theory and 7-parameter shell theory by
nonlinear analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Linear FEM solutions for maximum displacement of a cylindrical
shell considering various order of approximation of displacement
in case of point pinching forces with fixed end boundary condition. . 112

6.1 Linear FEM solutions for displacement of a point, P1 considering
various order of approximation of displacement in case of point
extension force, applied at one end with another end fixed. . . . . . . 132

xii



6.2 Linear FEM solutions for displacement of a point on a spiral
duct considering various order of approximation of displacement
in case of internal and external pressure with fixed end boundary
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xiii



1. INTRODUCTION

There has been surge of research in recent decades in the area of nonclassical or nonlo-

cal continuum mechanics, in an attempt to model micro and nano sized structures, for

example, nematic elastomers, fibrous composites (e.g., carbon nanotube-reinforced

coating), granular solid, liquid crystal with rigid molecules, polarization inertia in

ferroelectrics, intrinsic spin in ferromagnetics, to name a few. For such applications,

the classical continuum mechanics fails to predict a response that correlates with the

observed response. In small scale structures, the strain energy due to deformation

of the material particles or microstructure, which could be a unit cell in the case of

crystalline solid or stiff inclusions in fibrous or granular solid, becomes significant. In

these cases, the response depends on several material length scale parameters which

are very small compared to the structural dimensions. In the case of large-scale

structures, when the ratio of the length scale to the structural dimensions is very

small, the classical continuum model is adequate for mathematical modeling of the

response. But as the structural length of the specimen becomes comparable to the

characteristic length of the material, one must consider nonlocal and nonclassical

continuum models.

In the nonlocal continuum models, the axiom of local action of classical mechan-

ics is relaxed and hence the stress at a point is not only a function of the strain at

that point but also of the region around that point. In some cases the nonlocality is

limited and the material points of the body have orientation and move rigidly while

undergoing deformation. Linear couple stress theory and Eringen’s micropolar theo-

ries provide examples of this case. In general, such solids are referred to as Cosserat

solids for which there could be six degrees of freedom, namely, three translations

and three rotations, at each material point. Further, rotations of the material par-

ticles (or microstructures/stiff inclusions) could be considered as constraints, that

is, the microrotation of the material points are same as the macrorotation at that

point, and there is no “rotational mismatch energy.” The additional internal rota-

tional degrees of freedom modifies the balance of angular momentum and gives rise

to couple stresses and non-symmetric stress tensor along with “surface tension” like

forces in the case of solids. The existence of internal degrees of freedom could be

of mechanical nature or nonmechanical nature in origin, for example, polarization

1



inertia in ferroelectrics and intrinsic spin in ferromagnetics. The existence of body

couples (e.g., in electromagnetism: P × E, where P is the dipole moment and E is

the electric field) could also result in asymmetric Cauchy stress tensor. The present

study deals with the nonlinear analysis of structural elements like beams and plates

made of such materials and accounts for the effect of a length scale parameter on the

response in case of moderate and finite rotation and strain fields.

1.1. Background

Many researchers have contributed to the development of the theory of deformable

continua in the last six decades. The inception of the theories began with the seminal

work of the Cosserat brothers in 1909 [1]. Under the influence of Darboux curvilinear

coordinates and moving triad, Cosserats attached rigidly rotating directors to the

cross-section of a rod to model the response of the rod as a one-dimensional body.

In a similar manner, they attached a rigid director to the line perpendicular to the

shell in the case of the two-dimensional body to model the response (which are now

called Cosserat’s rod and Cosserat’s shell theory, respectively; see Rubin [2]). In

the case of a three-dimensional body, that is, a solid continuum, Cosserat attached

moving triad to each material point, which gave rise to Cosserat’s continuum (see

Maugin [3]). This way, their work includes rotational as well as translational degrees

of freedom at any material point of the body, resulting in asymmetric stress tensor

and the notion of couple stress in the Cosserat or oriented- or polar-continua. The

idea of couple stress can also be traced back to Viogt in the 1800s.

In the decade of 1960s, Truesdell and Toupin [4] formalized Cosserat’s work in

the modern thermo-mechanics continuum framework, followed by Toupin [5], who

attempted to find the constitutive relation for finite deformation elasticity with cou-

ple stress. Mindlin and Tiersten [6] have studied couple stress in linear elasticity

for centrosymmetric (material point, the microstructure, or unit cell having center

of inversion symmetry; e.g., FCC unit cell) isotropic material, which require only

one length scale parameter following the constitutive relation given by Toupin. In

this case, elastic strain energy is shown to be a function of symmetric part of stress

tensor and the deviatoric part of couple stress. The skew symmetric part of the

stress tensor and volumetric part of the couple stress are left indeterminate. Mindlin

[7] also studied microstructure in elastic solid considering the unit cell of crystalline

solid or grain of granular solid as rigidly rotating particle to obtain the acoustic and
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optical branches of the same character as those found at long wavelengths in crystal

lattice theories. In all these studies micro rotation at a point is considered to be

same as the macrorotation. These theories are termed as couple stress theories in

the literature.

Eringen and Suhubi [8, 9] introduced the nonlinear theory of a general deformable

material, in which material points not only undergo rigid rotation but a general de-

formation, which they later termed as micromorphic elasticity. Their theory contains

stress moments, inertial spin, and the mechanism of surface tension type behavior in

solids. The concept for the conservation of microinertia was also introduced, which

was missing in earlier theories. Eringen and Suhubi [8, 9] also presented the con-

stitutive equations for what they called “simple microelastic solid,” which account

for material frame indifference and thermodynamic restrictions. Followed by these

works, Eringen [10] considered micro-deformation of a material point as rigid rotation

only, which is not constrained with macro rotation at that point, in linear elasticity

framework, and termed it as the linear micropolar theory. The case of constrained

micro rotation can be a special case of this when micro and macro rotation at a point

are the same. Later, Eringen and co-workers have also extended the linear microp-

olar theory in the case of viscoelastic material [11], polar elastic dielectrics [12, 13],

and ferromagnetic materials [14, 15], to name a few among a large body of work by

Eringen and his colleagues. Later he summarized the kinematics, field equations,

and constitutive equations for micromorphic, microstretch, and micropolar elastic

solids, and all together termed as the microcontinuum field theory [16] for solids.

In relatively recent times, in the case of constrained micro-rotation of material

points, Yang et al. [17], in their modified couple stress theory, proposed higher order

moment balance law (i.e., balance of the couple of a couple), which suggests that the

couple stress tensor should be symmetric, so that the strain energy density function

should depend on the symmetric part of curvature tensor in the linear framework.

Steinmann [18] studied the micropolar elastoplasticity in the case of finite deforma-

tion and finite rotation using Euler–Rodrigues formula for rotation tensor to develop

generalized continuum in the nonlinear framework. More recently, Srinivasa and

Reddy [19] have developed the nonlinear Cosserat/micropolar continuum formula-

tion in the case of constrained finite rotation of material particles/microstructure.

Starting from the physical reasoning, they established the energy dependence on

rotation gradient through material frame indifference and presented the governing

3



equations and boundary conditions for the von Kármán plate and beam theories in

the case of moderate rotation. The presence of surface tension like term is also shown

in their work. In the case of beams and plates, they considered a general quadratic

functional for the potential energy and a general shape and orientation of material

particle/inclusions, that is, the material is not necessarily centrosymmetric, which

allows more than one length scale parameter, depending upon the orientation of the

inclusions as well as the kinematics.

In spite of seemingly fully developed theoretical framework in Cosserat contin-

uum, challenges lie in the determination of the various length scale parameters for

given material. The determination of material length scales of proposed constitu-

tive relation requires comparison of theoretical solutions to the experimental results.

Many researchers have attempted to obtain the length scale information from a com-

parison of experimental results and analytical solutions. Gauthier and Jahsman [20]

conducted an experiment for a composite material with aluminum uniformly dis-

tributed throughout an epoxy matrix, but for their given resolution of measurement,

they observed classical elastic material behavior only and hence, concluded that de-

tection of possible micropolar phenomena will require either higher resolution static

measurements or a series of dynamic tests. Askar [21] did optical (Raman or infrared)

experiments on lattice of molecular crystal of KNO3 and determined the numerical

value for KNO3 crystal considering micropolar continuum theory. Pouget and Mau-

gin [22] studied crystals equipped with a polar group such as NaNO2. Lakes [23]

conducted experiments on the specimen of dense polyurethane foam and syntactic

foam to determine the bending and torsional rigidity of the microstructure and found

that dense polyurethane foam has small length scale effect. He obtained the value

of length scale related to torsion and bending based on isotropic micropolar linear

elastic constitutive relation and observed that the length scale is comparable to the

dimensions (e.g., the diameter of a shaft and height of a beam) of the microstructure

of the material. Lakes [24] has also reviewed the experimental work done in the

Cosserat elasticity. Lam et al. [25] conducted bending experiment on micron sized

beam using nano-indenter and observed increased beam’s bending rigidity with a

reduction in the beam height, which indicates the existence of the strain gradient

effect in small-scale structures.

In the last decade, many papers appeared on modeling the response of structural

elements like beams, plates, and shells, accounting for the length scale effects. These

4



include parametric studies to determine the effect on bending and vibration response.

Park and Gao [26] and Ma et al. [27, 28] have studied the Bernoulli–Euler, Tim-

oshenko, and Reddy–Levinson beams in the case of modified couple stress theory.

Santos and Reddy [29] have studied vibrations of beams, while Reddy [30], Arbind

and Reddy [31], and Arbind et al. [32] studied functionally graded, microstructure

dependent beams considering the von Kármán nonlinearity. Gao et al. [33] stud-

ied plates by extending Reddy’s third-order plate theory [34, 35] to account for the

modified couple stress term in the strain energy function. Kim and Reddy [36, 37]

obtained analytical and finite element solutions for functionally graded plates. In all

these studies, constitutive relations for centrosymmetric material (see Mindlin [7])

or isotropic cosserat solid (as termed in Eringen’s micropolar theory), are used and

rotations of the material particles or inclusions have been considered constrained.

For this reason, the curvature tensor is obtained from the deformation field of the

matrix material itself. The studies show that the material length scale contributes

some extra stiffness to the structure as compared to the conventional theories. Reddy

and Srinivasa [38] has summarized the modified couple stress theory and the rota-

tion gradient dependent theory and also formulated the finite element models for

moderate rotation of Bernoulli–Euler and Timoshenko beam theories.

1.2. Motivation and scope for present study

The theory suggested by Srinivasa and Reddy [19, 38] have generalized the linear

micropolar theory in the case of large constrained rotation and finite strain for

a general class of materials, which requires more than one length scale to char-

acterize a more general shape/structure and orientation of inclusions or material

particles/microstructure. The analysis of structures like beams, plates, and shells

discussed in the previous literature review are based on the constitutive relation in

which material points or the small inclusions are centrosymmetric or fully isotropic.

The linear modified couple stress theory has been used for mathematical modeling

of the structural elements for moderate rotation case in the aforemention literature.

In the present study, we wish to extend to study of the nonlinear response of beams

and plates, in view of a broad class of materials with the use of the rotation gra-

dient dependent theory, to account for finite rotations and strains. We formulate

nonlinear weak form finite element model of beams with the von Kármán geometric

nonlinearity using a general Taylor’s series expansion of the displacement field and
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then we specialize this to the case of the Bernoulli–Euler, Timoshenko, and a general

third-order beam theories. Further, we also present the weak form finite element

model of plates in the case of a general power series expansion for the displacement

field, which later specialized to the classical, first-order, and a general third-order

plate theories considering the von Kármán geometric nonlinearity. Analytical solu-

tion for simply supported beam and plate have also been obtained. The effect of the

various length scales is studied. Keeping in mind the need of continuity requirement

of a higher-order derivative in the case of a rotation gradient dependent theory, the

mixed finite element model for the von Kármán plate is also developed. Based on a

mixed finite element analysis, a rather simple model of nanoindentation on the thin

CNT reinforced coating on an elastic substrate is presented, which can give some

idea about material length scale parameters by comparing with the experimental

results.

The strain gradient dependent theories require higher-order inter-element conti-

nuity, which is difficult to achieve for higher order approximations in two or three-

dimensional cases especially in the case of non-rectangular grid in displacement finite

element model. To overcome this difficulty, in our study, we have formulated a general

higher order one-dimensional theory. In this theory, we approximate the displace-

ment field of a cross-section or slice of an object which is perpendicular to the axis

of the object considered by general two-dimensional basis functions; for example,

polar Fourier series in the cylindrical coordinate system. Based on this approxi-

mated displacement field we develop the governing equation of motions for general

one-dimensional theories in polar cylindrical and curvilinear polar cylindrical coor-

dinate systems. The theories in cylindrical coordinate systems have been applied in

the analysis of shells and rod in case of classical continuum mechanics. In the final

chapter, we present the summary and conclusions along with some suggestion for

future works.

1.3. Cosserat continuum theory for finite deformation and constrained

micro-rotation

Consider a body B in which a particle X occupies a position X in the reference frame

at time t = 0, and after deformation at time t it occupies position x. Let F be the

deformation gradient and Θ be the orientation tensor of the directors attached to

the material points; then the potential energy can be expressed as (see Srinivasa and
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Reddy [19] for details):

ψ = ψ̄(F,Θ,∇Θ) (1.1)

where ∇Θ is the gradient of the orientation tensor with respect to the reference

frame. By applying the principle of invariance under superposed rigid body motion,

it can be shown that the potential energy has the following dependence

ψ = ψ̂(C,RT ·Θ,RT ·∇Θ) (1.2)

where C = U2 is the right Cauchy–Green stretch tensor and R is the orthogonal

rotation tensor. In the case of fully constrained directors, the orientation tensor can

be stipulated as the rotation tensor, and hence the potential energy functional can

be expressed as1

ψ = ψ(U,RT ·∇R) (1.3)

where U and R are symmetric and proper orthogonal tensors, respectively; their

variation are δU = δUT and δR = δΩ ·R, where δΩ is skew-symmetric tensor. let

us consider that the body force f is acting on the body which causes the displace-

ment field u. To obtain the equation of equilibrium, we will consider the following

lagrangian:

L =

∫
B
ψ(U,RT ·∇R)− tr(PT ·G)− f · u dV, where, G = R ·U− F (1.4)

where P is the Lagrange multiplier and G = 0 is the constraint condition. In the

case of stable equilibrium the potential energy can be minimised with respect to

the displacement field with given constrain conditions whereas in case of unstable

equilibrium (e.g, bucking of beam) or neutral equilibrium of the system, the equa-

tion of equilibrium can be obtained by putting the first variation of the above la-

grangian equal to zero, that is, from the stationarity condition. Hence to obtain the

Euler–Lagrange equations (a general equilibrium equations) we put the stationarity

condition resulting from δL = 0, which can be given as following (see Appendix A

1The functions ψ̄, ψ̂ and ψ of the right hand side of Eqs. (1.1),(1.2) and (1.3), respectively,
represent various function with different functional dependence of the same physical quantity, that
is, the potential energy stored in the body during deformation denoted by ψ. We note that ψ in
the RHS of Eq. (1.3) also represents the functional.
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for a detail derivation):

δU :
∂ψ

∂U
=

1

2
(PT ·R + RT ·P)

δΩ : Div(M) = (P · FT − F ·PT )

δu : Div(P) = f

δP : G = 0

(1.5)

where P is the first Piola–Kirchhoff stress tensor and M is the third-order couple

stress tensor given by

MijC = −MjiC :=
∂ψ

∂θABC
(RiARjB −RjARiB), where θABC := RiARiB,C (1.6)

and considering closed and smooth boundary surface, we have the following primary

and secondary variables, either one of which may be specified at each boundary

points:

δu : P ·N + (∇s ·N)N ·Mn −Divs(M
n)

∂δu

∂n
: Mn ·N

(1.7)

where ∇s and Divs are surface gradient and surface divergence operators, respec-

tively, in the reference configuration (see [39]) and the various components of the

second order tensor Mn can be given as:

Mn
jK =

∂RiB

∂FjK

∂ψ

∂θABC
RiANC (1.8)

which is the surface tension like tensor for the solid, and N is the unit outward

normal vector to the surface in the reference configuration, and n is the coordinate

along N.
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2. ANALYSIS OF COSSERAT BEAM FOR CONSTRAINED

MICRO-ROTATION *

The theory suggested by Srinivasa and Reddy [19, 38] is a generalization of the

linear micropolar theory to the case of large constrained microrotation and finite

strain for a general class of materials, which requires more than one length scale to

characterize an arbitrary shape/structure. In the literature, the analysis of structures

like beams, plates, and shells is based on the constitutive relation in which material

points or the small inclusions are centrosymmetric or fully isotropic. And also, the

linear modified couple stress theory has been used for mathematical modeling of the

structural elements for moderate rotation case (see [17, 27, 28, 31, 32, 40, 36, 37]).

In this chapter, we extend the study of nonlinear response of beams, in view of a

broad class of materials with the use of the rotation gradient dependent theory, to

account for moderate rotations and strains. We develop a weak-form finite element

model of beams with the von Kármán geometric nonlinearity. First, we formulate a

general higher-order beam theory based on Taylor’s series expansion of the displace-

ment field about the centroidal axis for classical as well as microstructure dependent

beams and then specialize it to the case of the Bernoulli–Euler, Timoshenko, and

general third-order beam theories. Based on this, we develop a nonlinear weak-form,

displacement-based, finite element model. We also present the analytical solution

for simply supported linear beams to provide a benchmark for the finite element

solution.

2.1. Governing equations of beam

Consider a rectangular cartesian coordinate system (x, y, z) in the reference configu-

ration in which a beam of length L is placed along the x-axis. The y- and z-axes are

along the height and width, respectively, of the beam. The beam is allowed to bend

in the xz-plane due to applied loads in the xz-plane. Let A denote the cross-sectional

area of the beam, which could be of any arbitrary shape and may vary along the

x-axis.

*Reprinted with permission from “Nonlinear analysis of beams with rotation gradient dependent
potential energy for constrained micro-rotation” by A. Arbind, J. N. Reddy and, A. R. Srinivasa,
2017. European Journal of Mechanics-A/Solids, 65, 178-194, Copyright [2017] by Elsevier.
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2.1.1. Displacement field

We begin with the following displacement field (in case of general higher order beam

theory; see Arbind and Reddy [32]) for a straight beam bent by forces in the xz-plane

(i.e., bending about the y-axis):

u = u1 ê1 + u2 ê2 + u3 ê3

u1 =
n∑
i=0

ziφ(i)

x (x, t) = AxΦx, u2 = 0, u3 =

p∑
i=0

ziφ(i)

z (x, t) = AzΦz

(2.1)

where ê1, ê2 and ê3 are unit basis vectors along x, y and z directions respectively.

Here φ(0)
x = u and φ(0)

z = w are midplane displacements along the x and z directions,

respectively, and φ(i)
x and φ(i)

z have the following meaning:

φ(i)

x =
1

(i)!

(
∂iu1

∂zi

)
z=0

, φ(i)

z =
1

(i)!

(
∂iu3

∂zi

)
z=0

(2.2)

and

Ax =

[
1 z z2 . . . zn

]
, Az =

[
1 z z2 . . . zp

]
Φx =

[
φ(0)
x φ(1)

x φ(2)
x . . . φ(n)

x

]T
, Φz =

[
φ(0)
z φ(1)

z φ(2)
z . . . φ(p)

z

]T (2.3)

Let e and W be the symmetric2 and skew-symmetric parts, respectively, of the

displacement gradient. We will make assumptions that (1) ||e|| is of order of ε and

(2) ||W|| is of order
√
ε in view of moderate rotation, where ε is small, and neglect

all terms of order O(εk) for k > 1. In this case, the Green–Lagrange strain tensor

and the rotation tensor can be approximated as

E ≈ e− (1/2)W2

R ≈ I + W +
1

2
W2 (2.4)

θ := RT ·∇R ≈∇W

2The notation e used for symmetric part of the displacement gradient should not be confused
with the basis vectors of the coordinate system assumed.
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The nonzero von Kármán nonlinear strain components associated with the displace-

ment field (2.1) are

εxx =
∂u1

∂x
+

1

2

(
∂φ(0)

z

∂x

)2

= Ax
∂Φx

∂x
+

1

2

(
∂φ(0)

z

∂x

)2

γxz =
∂u1

∂z
+
∂u3

∂x
=
∂Ax

∂z
Φx + Az

∂Φz

∂x

εzz =
∂u3

∂z
=
∂Az

∂z
Φz +

1

2
(φ(1)

x )
2

(2.5)

Here we note that for φ(1)
x and ∂φ

(0)
z

∂x
are of same order

√
ε for moderate rotation;

hence, we keep those two nonlinear terms in the strain components and neglect the

higher-order nonlinear terms. Then W and the θ can be expressed as follows:

W =


0 0 ωy

0 0 0

−ωy 0 0

 , ωy =
1

2

(
∂u1

∂z
− ∂u3

∂x

)
=

1

2

(
∂Ax

∂z
Φx −Az

∂Φz

∂x

)

θ = θαβγ êαêβêγ =
∂Wβγ

∂xα
êαêβêγ

and

θ113 = −θ131 =
∂ωy
∂x

=
1

2

(
∂Ax

∂z

∂Φx

∂x
−Az

∂2Φz

∂x2

)
θ313 = −θ331 =

∂ωy
∂z

=
1

2

(
∂2Ax

∂z2
Φx −

∂Az

∂z

∂Φz

∂x

) (2.6)

Further, the strain tensor can be expressed in vector form as

ε =


εxx

εzz

γxz

 = (A1 +
1

2
Anl1)Φ + (A2 +

1

2
Anl2)

dΦ

dx
(2.7)

The components of θ can be written in the following vector form:

χ =

θ113

θ313

 =


∂ωy
∂x

∂ωy
∂z

 = B1Φ + B2
dΦ

dx
+ B3

d2Φ

dx2
(2.8)
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where

A1 =


0 0

0 Az,z

Ax,z 0

 , A2 =


Ax 0

0 0

0 Az

 , Anl1 =


0 0

bnl 0

0 0

 , Anl2 =


0 anl

0 0

0 0


B1 =

1

2

 0 0

Ax,zz 0

 , B2 =
1

2

Ax,z 0

0 −Az,z

 , B3 =
1

2

0 −Az

0 0

 , Φ =

Φx

Φz


(2.9)

The only nonzero element of anl is anl11 = φ(0)
z,x = w,x and that of bnl is bnl12 = φ(1)

x ;

( ),x denotes the derivative with respect to x.

2.1.2. Equations of motion

Next, we will apply the principle of virtual displacements (see Reddy [41]) to obtain

the governing equations of motion for the beam when the potential energy depends

on rotation gradient and strains. For the given displacement field (see Eq. (2.1)) of

beam, we have three nonzero components of strain and two nonzero components of θ

tensor on which potential energy would depend. For linear hyperelastic material (see

Reddy[42]), the strain energy potential can be considered as a quadratic function of

the components of strain and θ:

U =

∫ L

0

∫
A

1

2
ε ·C · ε+

1

2
χ ·Cl · χ dAdx (2.10)

where C and Cl are the elasticity constant and material length scale, respectively.

For positive potential energy, both C and Cl should be positive-definite tensors. The

nonzero components symmetric part of stress tensor and couple stress tensor can be

expressed in a vector form as

Ss =


Ssxx

Sszz

Ssxz

 = C · ε, and m =

m113

m313

 = Cl · χ (2.11)
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The first variation of the strain energy potential is

δU =

∫ L

0

∫
A

δε · Ss + δχ ·m dAdx

=

∫ L

0

∫
A

(
(A1 + Anl1)δΦ + (A2 + Anl2)

dδΦ

dx

)
· Ss

+

(
B1δΦ + B2

dδΦ

dx
+ B3

d2δΦ

dx2

)
·m dAdx

=

∫ L

0

δΦ ·
(∫

A

(
(AT

1 + AT
nl1

)Ss + BT
1 m
)
dA

)
+
dδΦ

dx
·
(∫

A

(
(AT

nl2
+ AT

2 )Ss + BT
2 m
)
dA

)
+
d2δΦ

dx2
·
(∫

A

BT
3 m dA

)
dx (2.12)

Let us define

Mj =

∫
A

AT
j Ss dA for j = 1, 2 and Mnl1 =

∫
A

AT
nl1

Ss dA

Mj =

∫
A

BT
j m dA for j = 1, 2, 3 and Mnl2 =

∫
A

AT
nl2

Ss dA

(2.13)

so that the first variation of the strain energy potential can be rewritten as

δU =

∫ L

0

[
δΦ · (M1 + M1 + Mnl1) +

dδΦ

dx
· ((Mnl2 + M2) + M2)

+
d2δΦ

dx2
·M3

]
dx (2.14)

The virtual work done by external forces is given by

δV = −
∫ L

0

[∫
A

(fxδu1 + fzδu3) dA+ qtxδu1(x,
h

2
) + qbxδu1(x,−h

2
)

+ qtzδu3(x,
h

2
) + qbzδu3(x,−h

2
)
]
dx

= −
∫ L

0

[ m∑
i=0

F (i)

x δφ
(i)

x +
m−1∑
i=0

F (i)

z δφ
(i)

z

]
dx = −

∫ L

0

δΦ · F̂ dx (2.15)
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where

F̂ =

[
F (0)
x F (1)

x · · · F (n)
x F (0)

z F (1)
z · · · F (m)

z

]T
f (i)

x =

∫
A

zifx dA, f (i)

z =

∫
A

zifz dA

F
(i)
ξ = f

(i)
ξ +

(
h

2

)i [
qtξ + (−1)iqbξ

]
(ξ = x, z)

(2.16)

Here fx and fz denote, respectively, the distributed axial and transverse loads per

unit volume of the beam whereas qtx and qtz denote the distributed axial and transverse

loads per unit length at the top surface and (qbx, q
b
z) represent the same at the bottom

surface of the beam. Using the principle of virtual displacements, we obtain

0 = δU + δV

=

∫ L

0

[
δΦ · (M1 + M1 + Mnl1) +

dδΦ

dx
· ((Mnl2 + M2) + M2)

+
d2δΦ

dx2
·M3 − δΦ · F̂

]
dx

=

∫ L

0

δΦ ·
(

(M1 + M1 + Mnl1)− d

dx
((Mnl2 + M2) + M2) +

d2M3

dx2
− F̂

)
dx

+

[
δΦ ·

(
(Mnl2 + M2) + M2 −

dM3

dx

)
+
dδΦ

dx
·M3

]L
0

(2.17)

Hence the equation of motion (the Euler–Lagrange equations) is

(M1 + M1 + Mnl1)− d

dx
((Mnl2 + M2) + M2) +

d2M3

dx2
− F̂ = 0 (2.18)

and the primary and secondary variables are

δΦ : (Mnl2 + M2) + M2 −
dM3

dx
dδΦ

dx
: M3.

(2.19)

In the boundary expressions, we note that the secondary variable M3, which is dual

to the primary variable dΦx

dx
, is zero.
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2.2. Constitutive relation

2.2.1. Homogeneous and isotropic beam

In the case of the general third-order (or possibly any higher-order beam theory),

we will assume plane stress state considering the normal stress component along y-

direction is very small and can be neglected. Hence the relation between symmetric

part of the stress and the strain, for isotropic and linear elastic material in the case

of homogeneous beam, can be expressed as
Ssxx

Sszz

Ssxz

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1−ν)
2



εxx

εzz

γxz

 (2.20)

where E and ν are the modulus of elasticity and Poisson’s ratio, respectively. Next,

consider that the material is reinforced with very tiny chopped stiffer fibers or phases

compared to the host (matrix) material, which can be considered rotating rigidly with

the matrix material. The orientations of the reinforcing fibers are along the length

and height of the beam (and possibly some fibers are oriented along the width of the

beam also). Since we have assumed a displacement field such that there could only be

rotation in xz-plane, there could be two different material length scale parameters:

`1 related to the fibers oriented along the length of the beam and the other `2 related

to the fibers oriented along the height of the beam. Then the relation between the

couple stresses and the components of θ can be written asm113

m313

 = G

`2
1 0

0 `2
2

θ113

θ313

 (2.21)

If the rotation gradient dependent terms of the potential energy are due to micro

structure of the material, then, for centro-symmetric material, we can have the length

scale parameters `1 and `2 as equal (say `). The material length scale parameter is the

square root of the ratio of the modulus of curvature to the modulus of shear, and it

is a physical a property measuring the effect of couple stress (see Mindlin [43]). This

could also be the case of equally oriented stiff small inclusions or granular inclusion

embedded in the comparatively soft matrix of isotropic material. Comparing with
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Eq. (2.11), we have

C =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2

 , Cl = G

`2
1 0

0 `2
2

 (2.22)

2.2.2. Functionally graded beam

A typical material property of a functionally graded beam through the thickness is

assumed to be represented by a power-law (see Praveen and Reddy [44] and Reddy

[45])

P (z) = [P1 − P2] f(z) + P2, f(z) =

(
1

2
+
z

h

)n̂
(2.23)

where P1 and P2 are the values of a typical material property, such as the modulus,

density, and conductivity, of material at the top (at z = h/2) and bottom (at z =

−h/2) surface of the beam, respectively; n̂ denotes the volume fraction exponent,

called power-law index. When n̂ = 0, we obtain the single-material beam (with

property P1). In the present analysis, we will consider Poisson’s ratio as a constant.

Then we have

C(z) =
E(z)

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2

 , Cl = G(z)

`2
1 0

0 `2
2

 (2.24)

In the case of a rotation gradient dependent functionally graded beam, the length

scale is taken as constant, which can be considered as effective value of the length

scale parameter in the case of varying microstructure size (or small inclusions)

through thickness.
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2.2.3. Orthotropic beam

In the case of orthotropic beam, the elasticity tensor C for plane stress case is given

by

C =


Q11 Q13 0

Q13 Q33 0

0 0 Q66

 , Cl = Q66

`2
1 0

0 `2
2

 (2.25)

where

Q11 =
E1

1− ν13ν31

, Q13 =
ν13E3

1− ν13ν31

=
ν31E1

1− ν13ν31

Q33 =
E3

1− ν13ν31

, Q66 = G13

(2.26)

2.2.4. Stress resultant

For all types of beams, the generalized stress resultants can be defined as follows:

Mi =

(∫
A

AT
i C(A1 + 1

2
Anl1) dA

)
Φ +

(∫
A

1
2
AT
i CAnl2 + AT

j CA2 dA

)
dΦ

dx

Mnl1 =

(∫
A

AT
nl1

C(A1 + 1
2
Anl1) dA

)
Φ +

(∫
A

1
2
AT
nl1

CAnl2 + AT
nl1

CA2 dA

)
dΦ

dx

Mnl2 =

(∫
A

AT
nl2

C(A1 + 1
2
Anl1) dA

)
Φ +

(∫
A

1
2
AT
nl2

CAnl2 + AT
nl2

CA2 dA

)
dΦ

dx

Mj =

(∫
A

BT
j ClB1 dA

)
Φ +

(∫
A

BT
j ClB2 dA

)
dΦ

dx
+

(∫
A

BT
j ClB3 dA

)
d2Φ

dx2

(2.27)

for i = 1, 2 and j = 1, 2, 3.

2.3. Finite element model

The domain Ω̄ = [0, L] is divided into a number of non-overlapping finite elements

Ω̄ = ∪Ω̄e, a typical element being Ω̄e = [xe1, x
e
2]. Then the weak form of the equation

of motion, Eq. (2.18), over a typical element in terms of the generalized displacements

17



is obtained as

0 =

∫ xe2

xe1

∫
A

{[
(A1 + Anl1)δΦ + (A2 + Anl2)

dδΦ

dx

]
·C
[
(A1 + 1

2
Anl1)Φ

+ (A2 + 1
2
Anl2)

dΦ

dx

]
+

[
B1δΦ + B2

dδΦ

dx
+ B3

d2δΦ

dx2

]
·

Cl

[
B1Φ + B2

dΦ

dx
+ B3

d2Φ

dx2

]
dA− δΦ · F̂

}
dx (2.28)

We approximate the vector of generalized displacements as

Φ(x) = Ψ(x)Ū (2.29)

where Ψ(x) is the matrix of shape functions and Ū is vector of the nodal values of

the generalized displacements3,

Ψ =



ψ(1)

1 . . . ψ(1)

ñ1
0 . . . 0 . . . 0 . . . 0

0 . . . 0 ψ(2)

1 . . . ψ(2)

ñ2
. . . 0 . . . 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 . . . 0 0 . . . 0 . . . ψ(r̄)

1 . . . ψ(r̄)

ñr̄


(2.30)

Ū =

[
u11 . . . u1ñ1

u21 . . . u2ñ2
. . . ur̄1 . . . ur̄ñr̄

]T
(2.31)

where ñ1, ñ2, . . . ñr̄ are the number of nodal values for u1, u2, . . . , ur̄, respectively, in

the considered element where r̄ = n+p+ 2 is the total number of degrees of freedom

(dofs), and

u1 = φ(0)

x , u2 = φ(1)

x , · · · un+1 = φ(n)

x

un+2 = φ(0)

z , un+3 = φ(1)

z , · · · ur̄ = φ(p)

z

(2.32)

We substitute the approximation for all dependent variables and δΦ = Ψl̃ (where

l̃ is the column vector with all elements unity, and the number of elements are the

3Here distinction should be made between Ū and U; U is the right stretch tensor of chapter 1,
section 1.3, whereas Ū is vector of nodal dofs. We note that, in this work, differently superposed
symbol (superposed hat or dash) have different meanings.
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same as columns of Ψ) into Eq. (2.28) to arrive at the following equation:

0 =

∫ xe2

xe1

{∫
A

[
(A1 + Anl1)Ψ + (A2 + Anl2)

dΨ

dx

]
l̃ ·C

[
(A1 + 1

2
Anl1)Ψ

+ (A2 + 1
2
Anl2)

dΨ

dx

]
Ū +

(
B1Ψ + B2

dΨ

dx
+ B3

d2Ψ

dx2

)
l̃·

Cl

(
B1Ψ + B2

dΨ

dx
+ B3

d2Ψ

dx2

)
Ū dA−Ψl̃ · F̂

}
dx

= l̃ ·
∫ xe2

xe1

{∫
A

[
(A1 + Anl1)Ψ + (A2 + Anl2)

dΨ

dx

]T
C
[
(A1 +

1

2
Anl1)Ψ

+ (A2 +
1

2
Anl2)

dΨ

dx

]
Ū +

(
B1Ψ + B2

dΨ

dx
+ B3

d2Ψ

dx2

)T
Cl

(
B1Ψ + B2

dΨ

dx
+ B3

d2Ψ

dx2

)
Ū dA−ΨT F̂

}
dx (2.33)

From the above equation, we obtain the following finite element equation:

(K + Kl)Ū− f = 0 (2.34)

where K is the stiffness matrix related to the conventional beam and Kl is the

stiffness matrix related to the length scale parameter of the material, which can be

given as

K =

∫ xe2

xe1

ΨT

(
H1Ψ + H2

dΨ

dx

)
+
dΨ

dx

T (
H3Ψ + H4

dΨ

dx

)
dx

Kl =

∫ xe2

xe1

ΨT

(
Ĥ1Ψ + Ĥ2

dΨ

dx
+ Ĥ3

d2Ψ

dx2

)
+
dΨ

dx

T (
Ĥ4Ψ + Ĥ5

dΨ

dx
+ Ĥ6

d2Ψ

dx2

)
+
d2Ψ

dx2

T (
Ĥ7Ψ + Ĥ8

dΨ

dx
+ Ĥ9

d2Ψ

dx2

)
dx

f =

∫ xe2

xe1

ΨT F̂ dx (2.35)

where

H1 =

∫
A

(A1 + Anl1)TC(A1 +
1

2
Anl1) dA, H2 =

∫
A

(A1 + Anl1)TC(A2 +
1

2
Anl2) dA

H3 =

∫
A

(A2 + Anl2)TC(A1 +
1

2
Anl1) dA, H4 =

∫
A

(Anl2 + A2)TC(A2 +
1

2
Anl2) dA

Ĥi =

∫
A

BT
j ClBk dA, where i = 1, 2, ..., 9. and j =

[
i

3

]
+ 1, k = (i%3) (2.36)
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In the above equation, [n] represents the greatest integer less than n and (i%3) is

the remainder when i is divided by 3. Also we note here that matrix Anl1 and

Anl2 depend on the displacement hence the stiffness matrix is nonlinear. We apply

Newton’s method (see Reddy [46]) to solve the nonlinear algebraic Eq. (2.34), which

can be rewritten in the following form:

g(Ū) = (K + Kl)Ū− f = 0 (2.37)

For the guess solution Ū0, we can write the following linear approximation of any

vector-valued function,

g(Ū) = g(Ū0) +Dg(Ū0)(Ū− Ū0) (2.38)

where Dg is (Fréchet) derivative of g(Ū) with respect to Ū defined at (Ū = Ū0);

that is, Dg = ∂g
∂Ū

∣∣
(Ū=Ū0)

. We determine Ū such that g(Ū) = 0. Thus we have

Dg(Ū0)(Ū− Ū0) = −g(Ū0) (2.39)

For (r + 1)st iteration of Newton’s method, the solution can be expressed as

T(Ūr)δŪr+1 = −(K(Ūr) + Kl(Ūr))Ūr + f(Ūr), and, Ūr+1 = Ūr + δŪr+1(2.40)

where T = Dg is called the tangent matrix, which is given by

T = D((K + Kl)Ū + f) = (DK)Ū + K + Kl

= K + Kl +

∫ xe2

xe1

[
ΨT

(
H̃1Ψ + H̃2

dΨ

dx

)
+
dΨ

dx

T (
H̃3Ψ + H̃4

dΨ

dx

)]
dx

+

∫ xe2

xe1

[
ΨTPnl1Ψ +

dΨ

dx

T

Pnl2
dΨ

dx

]
dx (2.41)

where

H̃1 =
1

2

∫
A

(A1 + Anl1)TCAnl1 dA, H̃2 =
1

2

∫
A

(A1 + Anl1)TCAnl2 dA

H̃3 =
1

2

∫
A

(A2 + Anl2)TCAnl1 dA, H̃4 =
1

2

∫
A

(Anl2 + A2)TCAnl2 dA

(2.42)

and Pnl1 and Pnl2 are (r̄ × r̄) matrix with only nonzero element Pnl122 =
∫
A
Sszz dA

and Pnl2(n+2)(n+2)
=
∫
A
Ssxx dA. We note that the tangent matrix is symmetric.
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2.4. Analytical solution

For a general higher-order beam theory, the linear governing equation is

(M1 + M1)− d

dx
(M2 + M2) +

d2M3

dx2
− F̂ = 0 (2.43)

where the various stress resultants from (2.27), in the linear case, can be simplified

as

Mi = M̄(i1)Φ + M̄(i2)
dΦ

dx
, for i = 1, 2

Mj = M̄(j1)Φ + M̄(j2)
dΦ

dx
+ M̄(j3)

d2Φ

dx2
for j = 1, 2, 3.

(2.44)

where

M̄(jk) =

∫
A

AT
j CAk dA, for j, k = 1, 2

M̄(jk) =

∫
A

BT
j ClBk dA, for j, k = 1, 2, 3

(2.45)

For a simply supported beam, we assume the solution in the following form:

φ(i)

x (x) =
∞∑
r=1

U (i)

r cos
rπx

L
, ψ(i)

z (x) =
∞∑
r=1

W (i)

r sin
rπx

L
(2.46)

Then, the vector of unknown degrees of freedom and their derivatives can be obtained

as

Φ =
∞∑
r=1

Φr, Φr = ur

cosαrx

sinαrx

 ,
dnΦr

dxn
= urα

n
r

cosαrx

sinαrx

 (2.47)

where αr = rπ
L

and

ur =

U (0)
r U (1)

r · · · U (n)
r 0 0 · · · 0

0 0 · · · 0 W (0)
r W (1)

r · · · W (p)
r


T

, αr =

 0 −αr

αr 0

 (2.48)

and the applied transverse force is expressed as

f(x) =
∞∑
r=1

Fr sinαrx, and F̂ =
∞∑
r=1

fr

cosαrx

sinαrx

 (2.49)
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where

fr =

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 F (0)
zr F (1)

zr · · · F (p)
zr


T

, and F (i)

zr =

∫
A

ziFr dA. (2.50)

Substituting the force vector F̂ and dof vector Φ along with its derivatives in the

stress resultants and then into the equation of motion (2.43), we obtain

0 =
∞∑
r=1

[
(M̄(11) + M̄(11))ur + (M̄(12) + M̄(12) − M̄(21) − M̄(21))urαr

+(M̄(13) − M̄(22) − M̄(22) + M̄(31))urα
2
r

+(M̄(32) − M̄(23))urα
3
r + M̄(33)urα

4
r − fr

]cosαrx

sinαrx

 (2.51)

The coefficient matrix of the vector having sine and cosine functions, in Eq. (2.51),

would be equal to zero for each r in the summation due to orthogonality of sine

and cosine functions. The coefficient matrix results in system of 2(n+ p+ 2) linear

equations and it can be shown that only half of these equations would be nonzero

equations, which results in a system of (n + p + 2) linear equations, which can be

solved for (n+ p+ 2) dof unknowns. The system of linear equations can be written

as following form by simplifying the obtained set of equations from Eq. (2.51),

Kr∆r = f̄r (2.52)

where

Kr = (M̄(11) + M̄(11)) + (M̄(12) + M̄(12) − M̄(21) − M̄(21))A(1)

r

+ (M̄(13) − M̄(22) − M̄(22) + M̄(31))A(2)

r

+ (M̄(32) − M̄(23))A(3)

r + M̄(33)A(4)

r (2.53)

∆r =

[
U (0)
r U (1)

r · · · U (n)
r W (0)

r W (1)
r · · · W (p)

r

]T
f̄r =

[
0 0 · · · 0 F (0)

zr F (1)
zr · · · F (p)

zr

]T
(2.54)
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and A(i)
r for i = 1, 2, 3, 4 are (n + p + 2) × (n + p + 2) diagonal matrices with their

respective diagonal vectors, d(i)
r defined as follows:

d(1)

r = [d(1)

1 d(1)

2
]T , d(1)

1 = αr12In, d(1)

2 = αr21Ip

d(2)

r = [d(2)

1 d(2)

2
]T , d(2)

1 = α2
r11

In, d(2)

2 = α2
r22

Ip

d(3)

r = [d(3)

1 d(3)

2
]T , d(3)

1 = α3
r12

In, d(3)

2 = α3
r21

Ip

d(4)

r = [d(4)

1 d(4)

2
]T , d(4)

1 = α4
r11

In, d(4)

2 = α4
r22

Ip

(2.55)

where In and Ip are matrices of size 1 × (n + 1) and 1 × (p + 1), respectively, with

all elements as unity; αkrij is the (ij)th element of kth power of matrix αr.

2.5. Specialization to beam theories

2.5.1. The general third order beam theory

We take n = 3 and p = 2 in Eq. (2.1) and obtain the following displacement field for

the general third-order beam theory for bending of beam about the y-axis,

u = u1 ê1 + u2 ê2 + u3 ê3 where,

u1 = u+ zφ(1)

x + z2φ(2)

x + z3φ(3)

x , u2 = 0, u3 = w + zφ(1)

z + z2φ(2)

z

(2.56)

In the case of the general third-order beam theory, cross-section perpendicular to

centroidal axis does not remain plane, as reflected in the displacement field; hence,

two length scale parameters, namely `1 and `2, related to the inclusions oriented

along x- and z-axes, would contribute in the stiffness of the beam while considering

the rotation gradient dependent potential energy. Equations of motion and the

corresponding finite element model can be obtained by putting n = 3 and p = 2 in

the formulation presented in the above section. For the general third-order or any

higher-order beam theory, plane stress condition should be assumed owing to the

fact that the stress in the y-direction is very small.
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2.5.2. The Timoshenko (First order) beam theory

For the Timoshenko beam theory, we take n = 1 and p = 0 in the power (Taylor)

series expansion of displacement field. Equation (2.1) becomes

u = u1 ê1 + u2 ê2 + u3 ê3 where,

u1 = u+ zφ(1)

x , u2 = 0, u3 = w

(2.57)

In the Bernoulli–Euler and the Timoshenko beam theories, the plane perpendicular

to the centroidal axis remains plane after deformation and consequently the ma-

terial length scale parameters related to the fibres (inclusions) oriented along the

perpendicular plane do not contribute to the stiffness of the beam. Hence, only

one length scale parameter related to the inclusions oriented along the length of the

beam contributes to the bending stiffness of the beam for this case. In the case of

the Timoshenko and Bernoulli–Euler beam theories, we neglect εzz in Eq. (2.5) as

the first-order displacement fields are not equipped to deal with εzz as linear term in

εzz is zero for given displacement field and only nonlinear term would be there for

εzz, which is not enough to model the variation in εzz along height of the beam. The

nonzero strain components for the Timoshenko beam are

εxx =

[
∂u

∂x
+

1

2

(
∂w

∂x

)2]
+ z

∂φ(1)
x

∂x
, γxz = φ(1)

x +
∂w

∂x
. (2.58)

The uniaxial stress–strain relations are assumed:

Ssxx = Eεxx, Ssxz = SzGγxz (2.59)

where Sz is the shear correction factor. Also, θ331 would be equal to zero. By

comparing the constitutive relation given in Eq. (2.20) and (2.21), we can use the

following material constant matrices in the aforemention formulation to get the finite

element solution as well as the analytical solution for the linear case.

C =


E 0 0

0 0 0

0 0 SzG

 , Cl = G

`2 0

0 0

 (2.60)
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Also, we put Anl1 = 0 for the Timoshenko beam.

2.5.3. The Bernoulli–Euler beam theory

In the Bernoulli–Euler beam theory also, we take n = 1 and p = 0 but with the

constrain φ(1)
x = −dw

dx
in the Eq. (2.1). Then the displacement field becomes

u = u1 ê1 + u2 ê2 + u3 ê3 where,

u1 = u− zdw
dx
, u2 = 0, u3 = w

(2.61)

In this case, the plane perpendicular to the centroidal axis remain perpendicular and

plane after deformation hence there is only one material length scale parameter which

will contribute to the bending stiffness of the beam as in the case of the Timoshenko

beam. The nonzero component of von Kármán strain and θ from Eqs. (2.5) and

(2.6) take the form

εxx =
du

dx
− zd

2w

dx2
+

1

2

(
dw

dx

)2

= A2
dΦ

dx
+

1

2
Anl

dΦ

dx
+ A3

d2Φ

dx2

(2.62)

θ131 =
d2w

dx2
= B

d2Φ

dx2

where

A2 = [1 0], A3 = [0 −z], Anl = [0 dw
dx

], B = [0 1], Φ = [u w]T (2.63)

Further, the constitutive relation is

Ssxx = Eεxx, m113 = G`2θ131 (2.64)

After minimizing the potential energy given in Eq. (2.10), we can have the equation

of motion

− d

dx
(M2 + Mnl) +

d2

dx2
(M3 + M)− f = 0 (2.65)
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The primary and secondary variables are of the form

δΦ : (Mnl + M2)− d

dx
(M3 + M)

dδΦ

dx
: M3 + M

(2.66)

where

M2 =

∫
A

AT
2 S

s
xx dA, M3 =

∫
A

AT
3 S

s
xx dA

(2.67)

Mnl =

∫
A

AT
nlS

s
xx dA, M =

∫
A

BTm113 dA, f = [fx fz]
T

Here fx and fz are the axial and transverse forces per unit length of the beam. In

the case of Bernoulli–Euler beam also, we note that the corresponding terms in the

natural boundary term M and M3 for du
dx

is zero; hence, dw
dx

is a primary variable.

By approximating the dofs as given in Eq. (2.30), we can have the nonlinear finite

element equation of the form in Eq. (2.34) and then by applying Newton’s method,

we will have the algebraic equation of the form in Eq. (2.39). The stiffness matrix

and force vector of the finite element model are

K =

∫ xb

xa

dΨT

dx
H1

dΨ

dx
+
dΨT

dx
H2

d2Ψ

dx2
+
d2ΨT

dx2
H3

dΨ

dx
+
d2ΨT

dx2
H4

d2Ψ

dx2
dx

Kl =

∫ xb

xa

d2ΨT

dx2
Hl
d2Ψ

dx2
dx, F̂ =

∫ xb

xa

ΨT f dx (2.68)

where

H1 =

∫
A

(AT
2 + AT

nl)E(A2 +
1

2
Anl) dA, H2 =

∫
A

(AT
2 + AT

nl)EA3 dA

H3 =

∫
A

AT
3E(A2 +

1

2
Anl) dA, H4 =

∫
A

AT
3EA3 dA

Hl =

∫
A

BTG`2B dA

(2.69)

For Newton’s method, the tangent matrix can be computed as

T = K + Kl +

∫ xb

xa

dΨT

dx
(Ĥ1 + H̃1)

dΨ

dx
+
d2ΨT

dx2
Ĥ3

dΨ

dx
dx (2.70)
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where

Ĥ1 =

∫
A

1

2
(AT

2 + AT
nl)EAnl dA, Ĥ3 =

∫
A

1

2
AT

3EAnl dA, H̃1 =

∫
A

0 0

0 Ssxx

 dA

(2.71)

Although the stiffness matrix is not symmetric in this case, the tangent matrix is

symmetric. In the case of simply supported beam, we can obtain the analytical

solution of the form given in (2.46) for the linear case. The linear governing equation

is

−dM2

dx
+

d2

dx2
(M3 + M)− f = 0 (2.72)

where

M2 = M̄(22)
dΦ

dx
+ M̄(23)

d2Φ

dx2
, M3 = M̄(32)

dΦ

dx
+ M̄(33)

d2Φ

dx2
, M = M̄d2Φ

dx2

(2.73)

and

M̄(jk) =

∫
A

EAT
j Ak dA, for j, k = 2, 3

(2.74)

M̄ =

∫
A

G`2(BTB) dA

Following the same process as described in section 2.4, we obtained the following

system of equations:

Kr∆r = f̄r (2.75)

where

Kr = −M̄(22)α2
r + (M̄(32) − M̄(23))α3

r Î + (M̄(33) + M̄)α4
r

(2.76)

Î =

0 1

1 0

 , ∆r =

Ur
Wr

 , f̄r =

 0

Fr


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2.6. Numerical results

For all numerical examples presented here, functionally graded as well as homoge-

neous beams, the following geometric and material parameters are considered:

E1 = 14.4 GPa, E2 = 1.44 GPa, ν = 0.38,

(2.77)

h = 17.6× 10−6 m, b = 2h, L = 20h

In the case of homogeneous beams the power index, n̂, is taken as zero.

2.6.1. Analytical and linear finite element method solution for simply

supported beam

For analytical and linear finite element analysis, simply supported beam under uni-

formly distributed load is considered. In the case of the linear FEM solution, only

half of the beam is analysed due to the symmetry of the problem. The boundary

conditions for various beam theories are:

Eular-Bernoulli beam theory : at x = 0 : w = 0,

at x =
L

2
: u = 0,

dw

dx
= 0

Higher order beam theories : at x = 0 : φ(i)

z = 0 for i = 0, 1, 2, ..., p,

at x =
L

2
: φ(j)

x = 0 for j = 0, 1, 2, ..., n,

φ(i)

z,x = 0 for i = 0, 1, 2, ..., p.

(2.78)

where φ(i)
z,x represents the derivative with respect to x. For the conventional beam (` =

0), quadratic Lagrange interpolation functions (40 elements) are used for all variables

for the Timoshenko and general third-order beam theory (TOBT), whereas in case

of the rotation gradient-dependent beam, Hermite cubic interpolation functions are

used for φ(i)
z , and linear Lagrange interpolation functions are used for φ(j)

x for all beam

theories. A mesh of 60 such elements is considered for linear FEM solutions. In the

case of the analytical solution, as large a value of r (see Eq. (2.46)) is used as required

to obtain error in the transverse displacement less than 10−8. The analytical and

linear FEM results for non-dimensional central transverse deflection (ŵ = wEI/q0L
4)
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are presented in Table 2.1 for homogeneous and functionally graded beams under

uniformly distributed transverse load (q0 = 1 N/m), considering conventional and

rotation gradient-dependent Bernoulli–Euler (BET) and Timoshenko beam (TBT)

theories. In Table 2.2, the same are tabulated for the general third-order beam

theory for various combination for material length scale parameters (`1, `2) when

load is applied as the traction on the top surface and also when the load is treated

as the body force.

Table 2.1. Analytical and linear FEM solutions for center deflection ŵ×102 for sim-

ply supported homogeneous and FGM beam considering Bernoulli–Euler

(BET) and Timoshenko (TBT) beam theories.

n̂ `/h BET TBT
Analytical Linear FEM Analytical Linear FEM

0 0 1.302083 1.302083 1.310708 1.310708
0.2 1.109182 1.109182 1.116575 1.116765
0.4 0.767895 0.767895 0.773342 0.773315
0.6 0.507592 0.507592 0.511753 0.511726
0.8 0.344229 0.344229 0.347672 0.347654
1 0.243479 0.243479 0.246514 0.246501

1 0 3.047429 3.047375 3.063111 3.063111
0.2 2.490001 2.489963 2.502943 2.503203
0.4 1.607746 1.607729 1.616889 1.616816
0.6 1.010823 1.010816 1.017770 1.017714
0.8 0.665106 0.665103 0.670920 0.670885
1 0.461965 0.461963 0.467159 0.467136

In the tables 2.1,2.2, we observe that the results for the displacements in the case of

BET, TBT, and TOBT for `1 = `2 are the same as in the case of the modified couple

stress theory (see [32]), which uses only the symmetric part of the curvature tensor,

which is triangular matrix for given coordinate system and displacement field of the

beam theories considered. For this reason, the symmetric part of curvature tensor is

the same as θ for moderate rotation of the present study.

2.6.2. Nonlinear finite element method solution

For nonlinear response, beams with the same geometric and material parameters as

given in Eq. (2.77) are considered. Following two types of boundary conditions are
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Table 2.2. Analytical solution for center deflection ŵ × 102 for simply supported

homogeneous and functionally graded beam for general third-order beam

theory.
n̂ `/h TOBT ( Load as traction at top surface) TOBT ( Load as body force)

`1 = `, `2 = ` `1 = `, `2 = 0 `1 = `, `2 = ` `1 = `, `2 = 0
Analy- Linear Analy- Linear Analy- Linear Analy- Linear
tical FEM tical FEM tical FEM tical FEM

0 0 1.30982 1.30981 1.30982 1.30981 1.31081 1.31081 1.31081 1.31081

0.2 1.11547 1.11541 1.11568 1.11561 1.11631 1.11625 1.11652 1.11646

0.4 0.77232 0.77229 0.77250 0.77247 0.77290 0.77287 0.77309 0.77306

0.6 0.51093 0.51091 0.51102 0.51101 0.51131 0.51130 0.51141 0.51140

0.8 0.34699 0.34699 0.34704 0.34703 0.34725 0.34725 0.34730 0.34730

1 0.24593 0.24592 0.24595 0.24595 0.24611 0.24611 0.24614 0.24613

1 0 3.06242 3.06242 3.06242 3.06242 3.06284 3.06284 3.06284 3.06284

0.2 2.50166 2.50153 2.50202 2.50189 2.50201 2.50188 2.50237 2.50224

0.4 1.61551 1.61545 1.61582 1.61577 1.61574 1.61568 1.61605 1.61599

0.6 1.01659 1.01657 1.01675 1.01673 1.01674 1.01671 1.01690 1.01688

0.8 0.66991 0.66990 0.66999 0.66998 0.67001 0.67000 0.67008 0.67007

1 0.46625 0.46625 0.46629 0.46629 0.46632 0.46632 0.46636 0.46636

used:

Pinned-Pinned connected beam:

Eular-Bernoulli beam theory : at x = 0 : w = 0, u = 0,

at x = L : w = 0, u = 0

Higher order beam theories : at x = 0 : φ(0)

x = 0, φ(0)

z = 0,

at x = L : φ(0)

x = 0, φ(0)

z = 0

(2.79)
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Clamped-Clamped connected beam:

Bernoulli–Euler beam theory : at x = 0 : u = 0, w = 0, w,x = 0

at x = L : u = 0, w = 0, w,x = 0

Higher order beam theories : at x = 0 : φ(i)

x = 0, φ(j)

z = 0, φ(j)

z,x = 0

at x = L : φ(i)

x = 0, φ(j)

z = 0, φ(j)

z,x = 0

for i = 0, 1, 2, ..., n and j = 0, 1, 2, ..., p

(2.80)

The same kind of finite element approximations as discussed for the linear analysis are

used. For a full domain, 60 quadratic lagrange elements are used for the conventional

TBT and TOBT, whereas 80 elements with the Hermite cubic and linear Lagrange

interpolations for φ(i)
z and φ(j)

x , respectively, are used for BET and rotation gradient-

dependent higher-order beam theories. The error tolerance used for the nonlinear

analysis is 10−4. The loading conditions are also assumed to be the same as in the

linear analysis. In fig. 2.1, transverse deflections (w̄ = q0ŵ × 102) as a function of

the dimensionless length (x/L) of the beam are plotted for different values of the

material length scale parameters (` = `1 = `2) to the height (h) ratio for pinned-

pinned and clamped-clamped boundary conditions for uniformly distributed load

(q0 = 1 N/m). Figure 2.2 shows the variation of maximum value of w̄ with length

scale considering the general third-order beam theory. In fig. 2.3, maximum bending

moment, (M̄ = ML/(E1bh
3/12)) which is the secondary variable dual to w,x in the

case of Bernoulli–Euler beam theory (see Eq. (2.66)), is plotted against material

length-scale to height ratio (`/h) for homogeneous and functionally graded beams

for the two aforementioned boundary conditions. It is noted that the total bending

moment doesn’t depend on the length scale as it comes from the force equilibrium

(provided that there is not much geometric nonlinearity). The bending moment has

two components as given in Eq. (2.66), one depends on the length scale and another

is the classical component. Their variations with the length scale parameter are

also shown in the figure. Figure 2.4 shows the distribution of stress components

S̄xx = SxxL/q0 along the length of the clamped beam at various heights designated by

the color map for clamped beam for homogeneous microstructure dependent beam

and classical functionally graded beam. Figure 2.5 shows the symmetric part of
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Fig. 2.3 Variation of Maximum bending moment with material length scale param-

eter Using BET

shear stress, S̄symxz = Ssymxz L/q0, along the height at various cross-sections of the beam

depicted by the color map for the same beams. We note here that the symmetric

part of the shear stress is not zero at the shear-free surfaces (i.e., top and bottom

surfaces) of the beam in case of microstructure dependent (i.e., ` 6= 0) beam. Stresses

are calculated at each element considering one Gauss-point. In this case, there would

be nonzero skew-symmetric part of shear stress, which along with the symmetric part

of the shear stress will result in zero shear stress at the top and bottom shear-free

surfaces. The skew symmetric part of the second Piola–Kirchhoff stress tensor (S)

can be obtained by mean of angular momentum conservation equation of Eq. (1.5)

as follows:

Sa =
1

2
(S− ST ) =

1

2
F−1(Div(M))F−T (2.81)

The variation of dimensionless symmetric and skew symmetric parts of the shear

stress, Sxz are plotted along the length of the beam at various heights for the mi-

crostructure dependent beam in fig. 2.6. Figure 2.7 shows the variation of total

shear stress along the height at various cross-section along the length for the same

beam. Here the total shear stress is zero at the shear free top and bottom surfaces

as expected.
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Fig. 2.4 Variation of non-dimensional Sxx with along the length of the beam Using

general third order beam theory
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Fig. 2.5 Variation of non-dimensional Sxz with along the length of the beam Using

general third order beam theory
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Fig. 2.6 Variation of non-dimensional symmetric and skew-symmetric part of Sxz

along the length at various height of the clamped beam using general third

order beam theory
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various cross-section along the length of the clamped beam using the general

third order beam theory

2.7. Chapter summary and conclusions

In the present study, we have developed a nonlinear finite element model for mod-

erate rotation condition (i.e., the von Kármán strains) for beams having rotation

gradient-dependent potential energy. A general Taylor’s series based higher-order

beam theory is used for homogeneous and functionally graded beams. Specializa-

tion to a general third-order, Timoshenko, and Bernoulli–Euler beam theories are

presented. Analytical solutions for the simply supported beam in the linear case

are also presented. Numerical examples for various boundary conditions show the

stiffening effect of the beam while considering the rotation gradient term in the po-

tential energy functional for a given small length scale parameter of the beam. In

the post-processing of the nonlinear FEM analysis, the maximum bending moment

and stresses are plotted and it is shown that both classical strain energy term and

the rotation gradient-dependent potential energy terms contribute to the bending

moment and stresses. Also, we note that the symmetric part of shear stress (shear

component of second Piola–Kirchhoff stress), which depends on the Green–Lagrange

shear strain component, is not zero at the shear-free top and bottom surfaces but
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the total shear stress, which includes skew-symmetric part of shear stress (which

depends on rotation gradient term or curvature also) is zero at those shear-free sur-

faces. Hence caution should be taken while modeling the microstructure dependent

beam or plate (couple stress theory, modified couple stress theory or microcontinuum

theories dependent beam or plate) by the third-order beam theories, which is based

on a displacement field which results in zero shear strain to have zero shear stress

(e.g. Reddy third-order theory). In the case of microstructure dependent beam, zero

shear strain does not result in zero shear stress owing to the skew-symmetric part

of the stress tensor. Hence modifications would be required in such displacement

field to incorporate the skew-symmetric part of shear stress in order to apply for

microstructure dependent beam. A general third-order beam theory or Taylor series

based higher-order beam theory should be preferred in the analysis of microstructure

dependent beam.
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3. ANALYSIS OF COSSERAT PLATE FOR CONSTRAINED

MICRO-ROTATION

With the technological advances of manufacturing of small-scale structures of various

new class of manmade or natural materials, which defy analysis using the classical

continuum mechanics due to either their structural length scale or small scale mate-

rial embeddings, non-classical or generalized continuum model have gained enormous

attention of many researchers in recent times. Such materials include fibrous compos-

ites, carbon nanotube (CNT)-reinforced coatings (Bakshi et. al [47]) and composites

with aligned CNT inclusions (Thostenson and Chou [48]) , granular solids, liquid

crystal elastomers, polarization inertia in ferroelectrics, and intrinsic spin in ferro-

magnetic, and others. For such solids, Srinivasa and Reddy (see [19]) have developed

a model for Cosserat continua in the case of large deformation and finite constrained

micro-rotation (i.e. the micro-rotation is considered to be constrained with macro-

rotation of the continua). They proposed that the strain energy potential should

also depend on the rotation gradient along with strain in such cases of Cosserat

solid. Also, their model is not limited to isotropic Cosserat solid (or centrosymmet-

ric microstructure) and thus would be able to model the anisotropic response due

ordered orientation of microstructure (see Thostenson and Chou [48]) by using ap-

propriate constitutive relation. For example, large anisotropic deformation of liquid

crystal elastomer in response to many stimuli such as light and heat (see Warner

et al.[49, 50, 51]). Further, in their work Srinivasa and Reddy [19] have specialized

their continuum model in the case of moderate rotation (von Kármán nonlinearity)

in the case of the classical plate and Euler-Bernoulli beam theories. The nonlinear

finite element model for the beam based on the rotation gradient dependent potential

energy had been developed by Arbind, Reddy, and Srinivasa [52].

In this chapter, we develop the weak form nonlinear finite element model for

bending of plates, in view of a broad class of materials with the use of the rota-

tion gradient dependent theory (see Srinivasa and Reddy [19]), which accounts for

moderate rotations and strains. Summary of this theory is discussed in Section 3.1.

The formulation can be used for the analysis for a general class of material, which

requires more than one length scale to characterize an arbitrary shape/structure and

orientation of the material particles. First, we formulate a general higher order plate
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theory based on Taylor’s series expansion of the displacement field about the mid-

plane displacement of the plate for conventional as well as Cosserat solid plates and

then we specialize it in the case of the classical, first order, and a general third-order

plate theories. Based on this, we develop nonlinear weak form finite element model.

We also present the analytical solution for simply supported linear plates.

3.1. Cosserat continuum theory for finite constrained micro-rotation

Let us consider a body B in which particle X is at position X in reference frame

at time, t = 0 and after deformation at time t it occupies position x. Let F be the

deformation gradient and Θ be the orientation tensor of the directors attached to

the material points; then the potential energy can be expressed as (see Srinivasa and

Reddy [19] for details):

ψ := ψ̂(F,Θ,∇Θ) (3.1)

where ∇Θ is the gradient of the orientation tensor with respect to the reference

frame. By applying the principle of invariance under superposed rigid body motion,

it can be shown that the potential energy has the following dependance in case of

constrained micro-rotation:

ψ = ψ̂(E,RT · ∇R) (3.2)

where E is the Green–Lagrange strain tensor and R is the proper orthogonal rotation

tensor respectively. Let e and W be the symmetric and skew symmetric part of

displacement gradient. Then in view of moderate rotation, we will make a priory

assumptions that (1) ||e|| is of order of ε, (2) ||W|| is of order
√
ε , where ε is small and

we neglect all the terms of order O(εk) for k > 1. In this case, the Green–Lagrange

strain tensor and the rotation tensor (see Reddy [42]) can be approximated as

E ≈ e− (1/2)W2

R ≈ I + W +
1

2
W2

Ω := RT · ∇R ≈ ∇W (3.3)

Hence in case of moderate rotation, the dependance of the potential energy depen-

dence can be approximated as following:

ψ ≈ ψ̂(e− (1/2)W2,∇W) (3.4)
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Based on the above potential energy, we formulate the governing equations and its

finite element model for the bending of plates.

3.2. Governing equation of plates

Consider the (x, y, z) rectangular cartesian co-ordinate system in the reference frame

and a plate of arbitrary geometry and height h lies in xy-plane with the central plane

of the plate coincide with xy-co-ordinate plane in its natural configuration and the

height of the plate is along z-axis.

3.2.1. Displacement field

We begin with the following very general displacement field, which can later be

specified as a general third-order, first-order, and classical plate theories:

u = u1 ê1 + u2 ê2 + u3 ê3 where

u1 =
n∑
i=0

ziφ(i)

x (x, y) = AxΦx(x, y),

u2 =
m∑
i=0

ziφ(i)

y (x, y) = AyΦy(x, y),

u3 =

p∑
i=0

ziφ(i)

z (x, y) = AzΦz(x, y)

(3.5)

Where φ(0)
x = u(x, y), φ(0)

y = v(x, y) and φ(0)
z = w(x, y) are the displacements of the

mid plane at point (x, y) in x, y and z direction respectively. Various variables in

the above displacement field can be expressed as follows:

φ(i)

x =
1

(i)!

(
∂iu1

∂zi

)
z=0

, φ(i)

y =
1

(i)!

(
∂iu2

∂zi

)
z=0

, φ(i)

z =
1

(i)!

(
∂iu3

∂zi

)
z=0

(3.6)

Ax =

[
1 z z2 . . . zn

]
, Φx =

[
φ(0)
x φ(1)

x φ(2)
x . . . φ(n)

x

]T
Ay =

[
1 z z2 . . . zm

]
, Φy =

[
φ(0)
y φ(1)

y φ(2)
y . . . φ(m)

y

]T
Az =

[
1 z z2 . . . zp

]
, Φz =

[
φ(0)
z φ(1)

z φ(2)
z . . . φ(p)

z

]T (3.7)
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In the case of moderate rotation plates, using Eq. (3.3), we have following approxi-

mated strain components:

εxx = u1,x + (1/2)
(
φ(0)

z,x

)2
= AxΦx,x + (1/2)

(
φ(0)

z,x

)2

εyy = u2,y + (1/2)
(
φ(0)

z,y

)2
= AyΦy,y + (1/2)

(
φ(0)

z,y

)2

εzz = u3,z + (1/2) (φ(1)

x )
2

+ (1/2)
(
φ(1)

y

)2
= Az,zΦz + (1/2) (φ(1)

x )
2

+ (1/2)
(
φ(1)

y

)2

γyz = u2,z + u3,y = Ay,zΦy + AzΦz,y

γzx = u1,z + u3,x = Ax,zΦx + AzΦz,x

γxy = u1,y + u2,x = AxΦx,y + AyΦy,x + φ(0)

z,xφ
(0)

z,y (3.8)

In the above expression of strain components, (u3,x)
2, (u3,y)

2, u3,xu3,y, (u1,z)
2 and

(u2,z)
2 are approximated as

(
φ(0)
z,x

)2
,
(
φ(0)
z,x

)2
, φ(0)

z,xφ
(0)
z,y, (φ(1)

x )2 and
(
φ(1)
y

)2
respectively

owing to the fact that the square of higher order term in the displacement field

are small and thus neglected. Further, in the vector form the strain tensor can be

rewritten as,

ε = (A1 +
1

2
Anl)Φ + A2xΦ,x + A2yΦ,y +

1

2
AnlxΦ,x +

1

2
AnlyΦ,y (3.9)

where

ε =

[
εxx εyy εzz γyz γzx γxy

]T
, Φ =

[
ΦT
x ΦT

y ΦT
z

]T

A1 =



0 0 0

0 0 0

0 0 Az,z

0 Ay,z 0

Ax,z 0 0

0 0 0


, A2x =



Ax 0 0

0 0 0

0 0 0

0 0 0

0 0 Az

0 Ay 0


, A2y =



0 0 0

0 Ay 0

0 0 0

0 0 Az

0 0 0

Ax 0 0



Anl =



0 0 0

0 0 0

anl bnl 0

0 0 0

0 0 0

0 0 0


, Anlx =



0 0 anlx

0 0 0

0 0 0

0 0 0

0 0 0

0 0 anly


, Anly =



0 0 0

0 0 anly

0 0 0

0 0 0

0 0 0

0 0 anlx


(3.10)
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In the above expression, anlx and anly are (1×p) matrices with only nonzero compo-

nents anlx11 = φ(0)
z,x and anly11 = φ(0)

z,y respectively. anl and bnl are (1×n) and (1×m)

matrices respectively with only nonzero element anl12 = φ(1)
x and bnl12 = φ(1)

y . And

( ),x represent the derivative with respect to x and so on; W and the Ω are defined

as

W =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 ,
ωx = (1/2) (u3,y − u2,z) = (1/2) (AzΦz,y −Ay,zΦy)

ωy = (1/2) (u1,z − u3,x) = (1/2) (Ax,zΦx −AzΦz,x)

ωz = (1/2) (u2,x − u1,y) = (1/2) (AyΦy,x −AxΦx,y)

Ω = Ωαβγ êαêβêγ =
∂Wβγ

∂xα
êαêβêγ (3.11)

The unique component of Ω are

2ωx,x = AzΦz,xy −Ay,zΦy,x, 2ωx,y = AzΦz,yy −Ay,zΦy,y

2ωx,z = Az,zΦz,y −Ay,zzΦy, 2ωy,x = Ax,zΦx,x −AzΦz,xx

2ωy,y = Ax,zΦx,y −AzΦz,xy, 2ωy,z = Ax,zzΦx −Az,zΦz,x

2ωz,x = AyΦy,xx −AxΦx,xy, 2ωz,y = AyΦy,xy −AxΦx,yy

2ωz,z = Ay,zΦy,x −Ax,zΦx,y.

(3.12)

Let us write the components of Ω in the following vector form:

χ =

[
2ωx,x 2ωx,y 2ωx,z 2ωy,x 2ωy,y 2ωy,z 2ωz,x 2ωz,y 2ωz,z

]T
= B1Φ + B2xΦ,x + B2yΦ,y + B3xΦ,xx + B3xyΦ,xy + B3yΦ,yy (3.13)

where

B1 =



0 0 0
0 0 0
0 −Ay,zz 0
0 0 0
0 0 0

Ax,zz 0 0
0 0 0
0 0 0
0 0 0


, B2x =



0 −Ay,z 0
0 0 0
0 0 0

Ax,z 0 0
0 0 0
0 0 −Az,z

0 0 0
0 0 0
0 Ay,z 0


, B2y =



0 0 0
0 −Ay,z 0
0 0 Az,z

0 0 0
Ax,z 0 0
0 0 0
0 0 0
0 0 0

−Ax,z 0 0


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B3x =



0 0 0
0 0 0
0 0 0
0 0 −Az

0 0 0
0 0 0
0 Ay 0
0 0 0
0 0 0


, B3xy

=



0 0 Az

0 0 0
0 0 0
0 0 0
0 0 −Az

0 0 0
−Ax 0 0
0 Ay 0
0 0 0


, B3y =



0 0 0
0 0 Az

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−Ax 0 0
0 0 0


. (3.14)

Let us consider the strain energy due to strain and rotation gradient as follows:

U =

∫
A

∫ h/2

−h/2

1

2
ε ·C · ε+

1

2
χ ·Cl · χ dz dxdy (3.15)

where C and Cl are the material constant of elasticity and material constant with

material length scale. For a positive potential energy, both C and Cl should be

positive-definite tensor. The symmetric part of stress and couple stress can be given

as

Ss = C · ε, and m = Cl · χ (3.16)

The first variation of the strain energy is

δU =

∫
A

∫ h/2

−h/2
δε · Ss + δχ ·m dz dxdy

=

∫
A

∫ h/2

−h/2

(
(A1 + Anl)δΦ + A2xδΦ,x + A2yδΦ,y + AnlxδΦ,x + AnlyδΦ,y

)
· Ss

+
(
B1δΦ + B2xδΦ,x + B2yδΦ,y + B3xδΦ,xx

+B3xyδΦ,xy + B3yδΦ,yy

)
·m dz dx dy

=

∫
A

[
δΦ ·

(∫ h/2

−h/2

(
AT

1 Ss + BT
1 m
)
dz

)

+δΦ,x ·

(∫ h/2

−h/2

(
(AT

nlx + AT
2x)S

s + BT
2xm

)
dz

)

+δΦ,y ·

(∫ h/2

−h/2

(
(AT

nly + AT
2y)S

s + BT
2ym

)
dz

)
+ δΦ,xx ·

(∫ h/2

−h/2
BT

3xm dz

)

+δΦ,xy ·

(∫ h/2

−h/2
BT

3xym dz

)
+ δΦ,yy ·

(∫ h/2

−h/2
BT

3ym dz

)]
dx dy (3.17)
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Let us define the following generalized stress and couple stress resultants,

M1 =

∫ h/2

−h/2
AT

1 Ss dz, M2j =

∫ h/2

−h/2
AT

2j
Ss dz, for j = x, y

Mnl =

∫ h/2

−h/2
AT
nlS

s dz, Mnlj =

∫ h/2

−h/2
AT
nlj

Ss dz for j = x, y

M1 =

∫ h/2

−h/2
BT

1 m dz, M2j =

∫ h/2

−h/2
BT

2j
m dz for j = x, y

M3xx =

∫ h/2

−h/2
BT

3xxm dz, M3xy =
1

2

∫ h/2

−h/2
BT

3xym dz, M3yy =

∫ h/2

−h/2
BT

3yym dz

(3.18)

Then the variation in strain energy can be rewritten as

δU =

∫
A

[
δΦ · (M1 + Mnl + M1) + δΦ,x · (Mnlx + M2x + M2x)

+δΦ,y ·
(
Mnly + M2y + M2y

)
+ δΦ,xx ·M3x

+2δΦ,xy ·M3xy + δΦ,yy ·M3y

]
dx dy (3.19)

and virtual work done by external forces is

δV = −
∫
A

[∫ h/2

−h/2
(fxδu1 + fyδu2 + fzδu3) dz + qtxδu1(x, y,

h

2
) + qbxδu1(x, y,−h

2
)

+qtyδu2(x, y,
h

2
) + qbyδu2(x, y,−h

2
) + qtzδu3(x, y,

h

2
) + qbzδu3(x, y,−h

2
)
]
dx dy

= −
∫
A

δΦ · F̂ dx dy (3.20)

where

F̂ =

[
Fx Fy Fz

]T
Fx =

∫ h/2

−h/2
fxAx(z) dz + qtxAx(h/2) + qbxAx(−h/2)

Fy =

∫ h/2

−h/2
fyAy(z) dz + qtyAy(h/2) + qbyAy(−h/2)

Fz =

∫ h/2

−h/2
fzAz(z) dz + qtzAz(h/2) + qbzAz(−h/2) (3.21)

where fx, fy and fz are the body forces acting per unit volume of the plate in x, y and

z directions, respectively; qtx and qbx are forces acting on the top and bottom surfaces,
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respectively, of the plate per unit area in the x direction. Similarly, qty and qby are

forces acting on the top and bottom surfaces of the plate per unit area in y direction

and qtz and qbz are forces per unit area at top and bottom surfaces, respectively, of

the plate in the z direction. Further, from the principle of virtual displacement (see

Reddy [41]), we have the following:

0 = δU + δV

=

∫
A

[
δΦ · (M1 + Mnl + M1 − F) + δΦ,x · (Mnlx + M2x + M2x)

+δΦ,y ·
(
Mnly + M2y + M2y

)
+ δΦ,xx ·M3x

+2δΦ,xy ·M3xy + δΦ,yy ·M3y

]
dx dy

=

∫
A

δΦ ·
[

(M1 + Mnl + M1 − F)− (Mnlx + M2x + M2x),x

−
(
Mnly + M2y + M2y

)
,y

+ M3x,xx + 2M3xy ,xy + M3y ,yy

]
dx dy

+

∮
Γ

δΦ · [
(
Mnlx + M2x + M2x −M3x,x −M3xy ,y

)
nx

+
(
Mnly + M2y + M2y −M3y ,y −M3xy ,x

)
ny]

+δΦ,x · (M3xnx + M3xyny) + δΦ,y · (M3yny + M3xynx) ds

(3.22)

Along the boundary of the plate, we can write the derivative of the displacement

variable in terms of the normal and tangential derivatives as follows:

Φ,x = Φ,nnx −Φ,sny, Φ,y = Φ,nny + Φ,snx, (3.23)

where n and s are co-ordinate along the outward normal and tangential direction

at the boundary curve of the plate. nx and ny are the component of outward unit

normal along x− and y− axes respectively. Then the part of the boundary integral

can be rewritten as:∮
Γ

[δΦ,x · (M3xnx + M3xyny) + δΦ,y · (M3yny + M3xynx)] ds

=

∮
Γ

δΦ,n · (M3xn
2
x + 2M3xynxny + M3yn

2
y)

+δΦ,s · ((M3y −M3x)nxny + M3xy(n
2
x − n2

y)) ds (3.24)
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Further, for a smooth boundary, the boundary term in Eq. (3.22) can be modified

as follows:

0 =

∫
A

δΦ ·
[

(M1 + Mnl + M1 − F)− (Mnlx + M2x + M2x),x

−
(
Mnly + M2y + M2y

)
,y

+ M3x,xx + 2M3xy ,xy + M3y ,yy

]
dx dy

+

∮
Γ

[
δΦ · [

(
Mnlx + M2x + M2x −M3x,x −M3xy ,y

)
nx

+
(
Mnly + M2y + M2y −M3y ,y −M3xy ,x

)
ny

−((M3y −M3x)nxny + M3xy(n
2
x − n2

y)),s]

+δΦ,n · (M3xn
2
x + 2M3xynxny + M3yn

2
y)
]
ds (3.25)

Then the Euler–Lagrange equations of the plate are

F̂ = (M1 + Mnl + M1)− (Mnlx + M2x + M2x),x −
(
Mnly + M2y + M2y

)
,y

+M3x,xx + 2M3xy ,xy + M3y ,yy (3.26)

and the primary and secondary variables are

Φ : P

Φ,n : (M3xn
2
x + 2M3xynxny + M3yn

2
y)

(3.27)

where

P = [
(
Mnlx + M2x + M2x −M3x,x −M3xy ,y

)
nx

+
(
Mnly + M2y + M2y −M3y ,y −M3xy ,x

)
ny

−((M3y −M3x)nxny + M3xy(n
2
x − n2

y)),s] (3.28)

3.3. Constitutive relation

The relation between the symmetric part of stress and strain for the isotropic and

homogeneous material can be given as

Ss = Cε (3.29)
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where

C =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0

ν
1−ν

ν
1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν)

0

0 0 0 0 0 1−2ν
2(1−ν)


ε =

[
εxx εyy εzz γyz γzx γxy

]T
Ss =

[
Ssxx Ssyy Sszz Ssyz Sszx Ssxy

]T
(3.30)

where E and ν are the modulus of elasticity and Poisson’s ratio, respectively. Further,

the relation between χ and its energy conjugate, namely, the couple stress m , can

be given as

m = Clχ. (3.31)

The long ordered orientation of small inclusions in the matrix of isotropic materials

could bring anisotropic effect in the overall response of the material, for example, as

in the case of liquid crystal elastomers. In this study, we will consider the material

constant Cl as diagonal tensor with the diagonal elements given by

Clii = G`2
i (3.32)

where G is the shear modulus and `i are the material length scale related to the

corresponding rotation gradient component.

The present formulation of the bending of plates will also be valid for the spatial

variation of material properties, for example, if the small inclusions are embedded in

functionally graded plate or varying orientation of the microstructure or embedding.

In the numerical example, we have considered a power law functionally graded plate

with small embedding for which the constitutive relation can be assumed as the

power law variation of the material properties through its thickness,

P (z) = [P1 − P2] f(z) + P2, f(z) =

(
1

2
+
z

h

)n̂
(3.33)
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where P1 and P2 are the values of a typical material property, such as the modulus,

density, and conductivity, of material at the top (at z = h/2) and bottom (at z =

−h/2) surface of the plate respectively; n̂ denotes the volume fraction exponent,

called power-law index. When n̂ = 0, we obtain the single-material plate (with

property P1). Poisson’s ratio is considered as a constant. We have the material

constants C and Cl of same form as in Eqs. (3.30) and (3.32) with the modulus of

elasticity and shear modulus varying according to Eq. (3.33) along the thickness of

the plate; the material length scale is taken as constant in the numerical examples

of the present study. The material length scale can also vary spatially, for example,

in the case of functionally graded material with varying microstructure (see [53]) or

in case of spatial variation of orientation of mesogen in liquid crystal elastomer (e.g.

spiral orientation of mesogenic molecules in Cholesteric liquid crystal elastomers; see

[49]).

3.4. Finite element model

We discretize the computational domain into non-overlapping sub-domain (elements),

Ωe. The weak form of the governing equations (3.26) for an element can be given as

follows:

0 =

∫
Ωe

[
δΦ ·

(
H0

1Φ + H0
2xΦ,x + H0

2yΦ,y +
1

2
H0
nlΦ +

1

2
H0
nlxΦ,x +

1

2
H0
nlyΦ,y

)
+δΦ ·

(
H1Φ + H2xΦ,x + H2yΦ,y +

1

2
HnlΦ +

1

2
HnlxΦ,x +

1

2
HnlyΦ,y

)
+δΦ,x ·

(
H1

1Φ + H1
2xΦ,x + H1

2yΦ,y +
1

2
H1
nlΦ +

1

2
H1
nlxΦ,x +

1

2
H1
nlyΦ,y

)
+δΦ,y ·

(
H2

1Φ + H2
2xΦ,x + H2

2yΦ,y +
1

2
H2
nlΦ +

1

2
H2
nlxΦ,x +

1

2
H2
nlyΦ,y

)
+δΦ ·

(
N1Φ + N2xΦ,x + N2yΦ,y + N3xxΦ,xx + N3xyΦ,xy + N3yyΦ,yy

)
+δΦ,x ·

(
N1

1Φ + N1
2xΦ,x + N1

2yΦ,y + N1
3xxΦ,xx + N1

3xyΦ,xy + N1
3yyΦ,yy

)
+δΦ,y ·

(
N2

1Φ + N2
2xΦ,x + N2

2yΦ,y + N2
3xxΦ,xx + N2

3xyΦ,xy + N2
3yyΦ,yy

)
+δΦ,xx ·

(
N3

1Φ + N3
2xΦ,x + N3

2yΦ,y + N3
3xxΦ,xx + N3

3xyΦ,xy + N3
3yyΦ,yy

)
+δΦ,xy ·

(
N4

1Φ + N4
2xΦ,x + N4

2yΦ,y + N4
3xxΦ,xx + N4

3xyΦ,xy + N4
3yyΦ,yy

)
+δΦ,yy ·

(
N5

1Φ + N5
2xΦ,x + N5

2yΦ,y + N5
3xxΦ,xx + N5

3xyΦ,xy + N5
3yyΦ,yy

)
−δΦ · F̂

]
dxdy (3.34)

48



where

H0
j =

∫ h/2

−h/2
AT

1 CAj dz, Hj =

∫ h/2

−h/2
AT
nlCAj dz

H1
j =

∫ h/2

−h/2
(AT

nlx + AT
2x)CAj dz, H2

j =

∫ h/2

−h/2
(AT

nly + AT
2y)CAj dz

where, j = 1, 2x, 2y, nl, nlx, nly

Ni =

∫ h/2

−h/2
BT

1 ClBi dz, N1
i =

∫ h/2

−h/2
BT

2xClBi dz,N
2
i =

∫ h/2

−h/2
BT

2yClBi dz

N3
i =

∫ h/2

−h/2
BT

3xxClBi dz, N4
i =

∫ h/2

−h/2
BT

3xyClBi dz, N5
i =

∫ h/2

−h/2
BT

3yyClBi dz,

where, j = 1, 2x, 2y, 3xx, 3xy, 3yy. (3.35)

We approximate the vector of generalized displacements as

Φ(x) = Ψ(x)U (3.36)

where Ψ(x, y) is the matrix of shape functions and Ū is vector of the nodal values1

of the generalized displacements,

Ψ =



ψ(1)

1 . . . ψ(1)

ñ1
0 . . . 0 . . . 0 . . . 0

0 . . . 0 ψ(2)

1 . . . ψ(2)

ñ2
. . . 0 . . . 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 . . . 0 0 . . . 0 . . . ψ(r̄)

1 . . . ψ(r̄)

ñr̄


(3.37)

U =

[
u11 . . . u1ñ1

u21 . . . u2ñ2
. . . ur1 . . . urñr

]T
(3.38)

where ñ1, ñ2, · · · ñr̄ are the number of nodal values for u1, u2, · · · , ur̄ respectively in

the considered element. r̄ = (n+m+p+3) is the total number of degrees of freedom

1U in this chapter represent the vector of the nodal values and should not be confused with the
right stretch tensor of chapter 1.
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(dofs), and

u1 = φ(0)

x , u2 = φ(1)

x , · · · un+1 = φ(n)

x

un+2 = φ(0)

y , un+3 = φ(1)

y , · · · un+m+2 = φ(m)

y

un+m+3 = φ(0)

z , un+m+4 = φ(1)

z , · · · ur̄ = φ(p)

z .

(3.39)

We substitute the approximation of dofs and δΦ = Ψl̃ (where l̃ is vector with each

element is unity and same size as Φ ) into Eq. (3.34) to arrive at the following finite

element equation:

(K + Kl)U− f = 0 (3.40)

where K is the stiffness matrix related to the conventional plate and Kl is the stiffness

matrix related to the length scale parameters of the material, and are given as:

K =

∫
Ωe

[
ΨT

(
H0

1Ψ + H0
2xΨ,x + H0

2yΨ,y +
1

2
H0
nlΨ +

1

2
H0
nlxΨ,x +

1

2
H0
nlyΨ,y

)
+ΨT

(
H1Ψ + H2xΨ,x + H2yΨ,y +

1

2
HnlΨ +

1

2
HnlxΨ,x +

1

2
HnlyΨ,y

)
+ΨT

,x

(
H1

1Ψ + H1
2xΨ,x + H1

2yΨ,y +
1

2
H1
nlΨ +

1

2
H1
nlxΨ,x +

1

2
H1
nlyΨ,y

)
+ΨT

,y

(
H2

1Ψ + H2
2xΨ,x + H2

2yΨ,y +
1

2
H2
nlΨ +

1

2
H2
nlxΨ,x +

1

2
H2
nlyΨ,y

)]
dxdy

Kl =

∫
Ωe

[
ΨT

(
N1Ψ + N2xΨ,x + N2yΨ,y + N3xxΨ,xx + N3xyΨ,xy + N3yyΨ,yy

)
+ΨT

,x

(
N1

1Ψ + N1
2xΨ,x + N1

2yΨ,y + N1
3xxΨ,xx + N1

3xyΨ,xy + N1
3yyΨ,yy

)
+ΨT

,y

(
N2

1Ψ + N2
2xΨ,x + N2

2yΨ,y + N2
3xxΨ,xx + N2

3xyΨ,xy + N2
3yyΨ,yy

)
+ΨT

,xx

(
N3

1Ψ + N3
2xΨ,x + N3

2yΨ,y + N3
3xxΨ,xx + N3

3xyΨ,xy + N3
3yyΨ,yy

)
+ΨT

,xy

(
N4

1Ψ + N4
2xΨ,x + N4

2yΨ,y + N4
3xxΨ,xx + N4

3xyΨ,xy + N4
3yyΨ,yy

)
+ΨT

,yy

(
N5

1Ψ + N5
2xΨ,x + N5

2yΨ,y + N5
3xxΨ,xx + N5

3xyΨ,xy + N5
3yyΨ,yy

) ]
dxdy

f =

∫
Ωe

ΨT F̂ dxdy (3.41)

Also we note here that stiffness matrix is not symmetric and depends on the dis-

placement hence is nonlinear. We will apply Newton’s method to solve the nonlinear
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algebraic Eq. (3.40), which can be rewritten in the following form:

g(U) = (K + Kl)U− f = 0 (3.42)

For the guess solution U0, we can write the following linear approximation of any

vector-valued function,

g(U) = g(U0) +Dg(U0)(U−U0) (3.43)

where Dg is (Fréchet) derivative of g(U)with respect to U defined at (U = U0) i.e.

Dg = ∂g
∂U

∣∣
(U=U0)

. We need to obtain U such that g(U) = 0. Thus we have

Dg(U0)(U−U0) = −g(U0) (3.44)

For (r + 1)st iteration of Newton’s method, the solution can be expressed as

T(Ur)δUr+1 = −(K(Ur) + Kl(Ur))Ur + f(Ur), and, Ur+1 = Ur + δUr+1 (3.45)

where T = Dg is called the tangent matrix, which is given as following:

T = D((K + Kl)U + f) = (DK)U + K + Kl

= K + Kl +

∫
Ωe

[1

2

(
ΨT

(
H0
nlΨ + H0

nlxΨ,x + H0
nlyΨ,y

)
+ΨT

(
HnlΨ + HnlxΨ,x + HnlyΨ,y

)
+ ΨT

,x

(
H1
nlΨ + H1

nlxΨ,x + H1
nlyΨ,y

)
+ΨT

,y

(
H2
nlΨ + H2

nlxΨ,x + H2
nlyΨ,y

))
+ ΨTPnlΨ + ΨT

,xP
x
nlΨ,x

+ΨT
,yP

y
nlΨ,y + ΨT

,xP
xy
nlΨ,y + +ΨT

,yP
xy
nlΨ,x

]
dxdy (3.46)

where Pnl, Px
nl, Py

nl and Pxy
nl are (r̄×r̄) matrices with only following nonzero element,

Pnl22 =

∫ h/2

−h/2
Sszz dz, Pnl(n+3)(n+3)

=

∫ h/2

−h/2
Sszz dz

P x
nl(n+m+3)(n+m+3)

=

∫ h/2

−h/2
Ssxx dz

P y
nl(n+m+3)(n+m+3)

=

∫ h/2

−h/2
Ssyy dz

P xy
nl(n+m+3)(n+m+3)

=

∫ h/2

−h/2
Ssxy dz, (3.47)

Here we note that the tangent matrix is symmetric.
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3.5. Analytical solution for simply supported linear plate

let us consider a rectangular plate with dimension (a× b) and height h with simply

supported boundary condition. The governing equation of the plate in linear case

can be given as following:

F̂ = (M1 + M1)− (M2x + M2x),x −
(
M2y + M2y

)
,y

+M3x,xx + M3xy ,xy + M3y ,yy (3.48)

where

Mξ = M̄ξ1Φ + M̄ξ2xΦ,x + M̄ξ2yΦ,y for ξ = 1, 2x, 2y

Mη = M̄η1Φ + M̄η2xΦ,x + M̄η2yΦ,y + M̄η3xΦ,xx + M̄η3xyΦ,xy + M̄η3yΦ,yy

for η = 1, 2x, 2y, 3x, 3xy, 3y (3.49)

and

M̄ξγ =

∫ h/2

−h/2
AT
ξ CAγ dz for ξ, γ = 1, 2x, 2y

M̄ηδ =

∫ h/2

−h/2
BT
η ClBδ dz for η, δ = 1, 2x, 2y, 3x, 3xy, 3y (3.50)

The above generalized stress resultant at any point (x, y) can be function of spatial

co-ordinate x or y for varying material properties (e.g. varying material length scale

parameter) or possibly varying height of the plate. let us assume the solution for the

generalized displacement in the following form, which satisfies the simply supported

boundary condition:

φ(i)

x (x) =
∞∑
α=1

∞∑
β=1

U (i)

αβ cos
(απx

a

)
sin

(
βπy

b

)
φ(i)

y (x) =
∞∑
α=1

∞∑
β=1

V (i)

αβ sin
(απx

a

)
cos

(
βπy

b

)
φ(i)

z (x) =
∞∑
α=1

∞∑
β=1

W (i)

αβ sin
(απx

a

)
sin

(
βπy

b

)
(3.51)
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and also, the transverse force per unit area of the plate can be written as:

q =
∞∑
α=1

∞∑
β=1

qαβ sin
(απx

a

)
sin

(
βπy

b

)
, where

qαβ =
4

ab

∫ a

0

∫ b

0

q sin
(απx

a

)
sin

(
βπy

b

)
dxdy (3.52)

In vector form, we can write the generalized displacement vectors as following:

Φαβ
x = Uαβ cos(απx/a) sin(βπy/b)

Φαβ
y = Vαβ sin(απx/a) cos(βπy/b)

Φαβ
z = Wαβ sin(απx/a) sin(βπy/b)

F̂αβ
z = qαβ sin(απx/a) sin(βπy/b) (3.53)

The linear governing Eq.(3.48) can be rewritten in terms of displacement vector as

following:

F̂ = M̂1Φ + M̂2xΦ,x + M̂2yΦ,y + M̂3xΦ,xx + M̂3xyΦ,xy + M̂3yΦ,yy

+M̂41Φ,xxx + M̂42Φ,xxy + M̂43Φ,xyy + M̂44Φ,yyy

+M̂51Φ,xxxx + M̂52Φ,xxxy + M̂53Φ,xxyy + M̂54Φ,xyyy + M̂55Φ,yyyy(3.54)

where

M̂1 = M̄11 + M̄11 − M̄2x1,x − M̄2y1,y − M̄2x1,x

−M̄2y1,y + M̄3x1,xx + M̄3xy1,xy + M̄3y1,yy

M̂2x = M̄12x − M̄2x1 − M̄2x2x,x − M̄2y2x,y

−M̄2x2x,x − M̄2y2x,y + M̄3x2x,xx + M̄3xy2x,xy + M̄3y2x,yy

M̂2y = M̄12y − M̄2y1 + M̄12y − M̄2y1 − M̄2x2y ,x − M̄2y2y ,y

−M̄2x2y ,x − M̄2y2y ,y + M̄3x2y ,xx + M̄3xy2y ,xy + M̄3y2y ,yy

M̂3x = −M̄2x2x − M̄2x2x + M̄13x + M̄3x1 − M̄2x3x,x − M̄2y3x,y

+M̄3x3x,xx + M̄3xy3x,xy + M̄3y3x,yy

M̂3xy = −M̄2x2y − M̄2y2x − M̄2x2y − M̄2y2x + M̄13xy + M̄3xy1

−M̄2x3xy ,x − M̄2y3xy ,y + M̄3x3xy ,xx + M̄3xy3xy ,xy + M̄3y3xy ,yy

M̂3y = −M̄2y2y + M̄13y + M̄3y1 − M̄2y2y − M̄2x3y ,x

−M̄2y3y ,y + M̄3x3y ,xx + M̄3xy3y ,xy + M̄3y3y ,yy

M̂41 = M̄3x2x − M̄2x3x

M̂42 = M̄3x2y + M̄3xy2x − M̄2x3xy − M̄2y3x
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M̂43 = M̄3xy2y + M̄3y2x − M̄2x3y − M̄2y3xy

M̂44 = M̄3y2y − M̄2y3y

M̂51 = M̄3x3x

M̂52 = M̄3x3xy + M̄3xy3x

M̂53 = M̄3x3y + M̄3xy3xy + M̄3y3x

M̂54 = M̄3xy3y + M̄3y3xy

M̂55 = M̄3y3y (3.55)

Now we substitute the assumed solution for generalized displacement (3.53) to obtain

the following algebraic equation for (αβ)th coefficient of the solution as following:
K11
αβ K12

αβ K13
αβ

K21
αβ K22

αβ K23
αβ

K31
αβ K32

αβ K33
αβ




Uαβ

Vαβ

Wαβ

 =


0

0

qαβz

 (3.56)

where

K11
αβ = M̂11

1 − (απ/a)2M̂11
3x − (βπ/b)2M̂11

3y

+(απ/a)4M̂11
51

+ (απ/a)2(βπ/b)2M̂11
53

+ (βπ/b)4M̂11
55

K12
αβ = −(απ/a)(βπ/b)M̂12

3xy + (απ/a)3(βπ/b)M̂12
52

+ (απ/a)(βπ/b)3M̂12
54

K13
αβ = (απ/a)M̂13

2x − (απ/a)3M̂13
41
− (απ/a)(βπ/b)2M̂13

43

K21
αβ = −(απ/a)(βπ/b)M̂21

3xy + (απ/a)3(βπ/b)M̂21
52

+ (απ/a)(βπ/b)3M̂21
54

K22
αβ = M̂22

1 − (απ/a)2M̂22
3x − (βπ/b)2M̂22

3y

+(απ/a)4M̂22
51

+ (απ/a)2(βπ/b)2M̂22
53

+ (βπ/b)4M̂22
55

K23
αβ = (βπ/b)M̂23

2y − (απ/a)2(βπ/b)M̂23
42
− (βπ/b)3M̂23

44

K31
αβ = −(απ/a)M̂31

2x + (απ/a)3M̂31
41

+ (απ/a)(βπ/b)2M̂31
43

K32
αβ = −(βπ/b)M̂32

2y + (απ/a)2(βπ/b)M̂32
42

+ (βπ/b)3M̂32
44

K33
αβ = M̂33

1 − (απ/a)2M̂33
3x − (βπ/b)2M̂33

3y

+(απ/a)4M̂33
51

+ (απ/a)2(βπ/b)2M̂33
53

+ (βπ/b)4M̂33
55

(3.57)

The superscripts of the stress resultant coefficients (see Eq. (3.55)) in the above

expression represent the same block matrices as of Kαβ in Eq. (3.56).
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3.6. Specialization to plate theories

3.6.1. The general third order plate theory

For general third order plate, we take n = 3, m = 3 and p = 2 in the above

formulation. The displacement field for a general third order plate theory can be

specialised as following:

u = u1 ê1 + u2 ê2 + u3 ê3 where,

u1 = u+ zφ(1)

x + z2φ(2)

x + z3φ(3)

x ,

u2 = v + zφ(1)

y + z2φ(2)

y + z3φ(3)

y ,

u3 = w + zφ(1)

z + z2φ(2)

z

(3.58)

In the case of the general third-order plate theory, straight lines perpendicular to

mid plane do not remain straight after deformation as reflected in the displacement

field; hence, there is a possibility of nonzero length scale parameters for all possible

rotations related to the small inclusions oriented along the x, y or z directions.

Hence, these would contribute to the stiffness of the plate while considering the

rotation gradient dependent potential energy along with conventional strain energy.

The governing equation and the corresponding finite element model can be obtained

by putting n = 3, m = 3 and p = 2 in the formulation presented in above sections.

3.6.2. The first order plate theory

For the first-order plate theory, we take n = 1, m = 1, and p = 0 in the displacement

field, Eq. (3.5). In the case of the first-order plate theory, straight lines perpendic-

ular to midplane remain straight after deformation as reflected in the specialized

displacement field:

u = u1 ê1 + u2 ê2 + u3 ê3 where

u1 = u+ zφ(1)

x = AxΦx, u2 = v + zφ(1)

y = AyΦy, u3 = w = AzΦz

(3.59)
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where

Ax =

[
1 z

]
, Φx =

[
u φ(1)

x

]T
Ay =

[
1 z

]
, Φy =

[
v φ(1)

y

]T
Az =

[
1

]
, Φz =

[
w

] (3.60)

In the case of moderate rotation, the nonzero components of the von Kármán strain

tensor are:

εxx = u1,x + (1/2) (w,x)
2 = AxΦx,x + (1/2) (w,x)

2

εyy = u2,y + (1/2) (w,y)
2 = AyΦy,y + (1/2) (w,y)

2

γyz = u2,z + u3,y = Ay,zΦy + AzΦz,y

γzx = u1,z + u3,x = Ax,zΦx + AzΦz,x

γxy = u1,y + u2,x = AxΦx,y + AyΦy,x + w,xw,y (3.61)

These strain components can be written in vector form as

ε = A1Φ + A2xΦ,x + A2yΦ,y +
1

2
AnlxΦ,x +

1

2
AnlyΦ,y (3.62)

where

ε =

[
εxx εyy γyz γzx γxy

]T
, Φ =

[
ΦT
x ΦT

y ΦT
z

]T

A1 =



0 0 0

0 0 0

0 Ay,z 0

Ax,z 0 0

0 0 0


, A2x =



Ax 0 0

0 0 0

0 0 0

0 0 Az

0 Ay 0


, A2y =



0 0 0

0 Ay 0

0 0 Az

0 0 0

Ax 0 0


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Anlx =



0 0 anlx

0 0 0

0 0 0

0 0 0

0 0 anly


, Anly =



0 0 0

0 0 anly

0 0 0

0 0 0

0 0 anlx


(3.63)

W and the Ω (see Eq. (3.3) for definition) can be given as following:

W =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,
ωx = (1/2) (u3,y − u2,z) = (1/2) (AzΦz,y −Ay,zΦy)

ωy = (1/2) (u1,z − u3,x) = (1/2) (Ax,zΦx −AzΦz,x)

ωz = (1/2) (u2,x − u1,y) = (1/2) (AyΦy,x −AxΦx,y)

Ω = Ωαβγ êαêβêγ =
∂Wβγ

∂xα
êαêβêγ (3.64)

The unique nonzero components of Ω are

2ωx,x = AzΦz,xy −Ay,zΦy,x, 2ωx,y = AzΦz,yy −Ay,zΦy,y

2ωy,x = Ax,zΦx,x −AzΦz,xx, 2ωy,y = Ax,zΦx,y −AzΦz,xy

2ωz,x = AyΦy,xx −AxΦx,xy, 2ωz,y = AyΦy,xy −AxΦx,yy

2ωz,z = Ay,zΦy,x −Ax,zΦx,y

(3.65)

Now let us also write the nonzero components of Ω as following vector:

χ =

[
2ωx,x 2ωx,y 2ωy,x 2ωy,y 2ωz,x 2ωz,y 2ωz,z

]T
= B2xΦ,x + B2yΦ,y + B3xΦ,xx + B3xyΦ,xy + B3yΦ,yy (3.66)

where

B2x =



0 −Ay,z 0
0 0 0

Ax,z 0 0
0 0 0
0 0 0
0 0 0
0 Ay,z 0


, B2y =



0 0 0
0 −Ay,z 0
0 0 0

Ax,z 0 0
0 0 0
0 0 0

−Ax,z 0 0


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B3x =



0 0 0
0 0 0
0 0 −Az

0 0 0
0 Ay 0
0 0 0
0 0 0


, B3xy

=



0 0 Az

0 0 0
0 0 0
0 0 −Az

−Ax 0 0
0 Ay 0
0 0 0


, B3y =



0 0 0
0 0 Az

0 0 0
0 0 0
0 0 0
−Ax 0 0
0 0 0


(3.67)

The relation between the symmetric part of stress and strain tensors for the isotropic

material can be written as,

Ss = Cε (3.68)

where

C =
E(z)(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν 0 0 0

ν
1−ν 1 0 0 0

0 0 Ks
1−2ν

2(1−ν)
0 0

0 0 0 Ks
1−2ν

2(1−ν)
0

0 0 0 0 1−2ν
2(1−ν)


ε =

[
εxx εyy γyz γzx γxy

]T
Ss =

[
Ssxx Ssyy Ssyz Sszx Ssxy

]T
(3.69)

and Ks is the shear correction factor. Further, the relation between χ and its energy

conjugate, m (couple stress), can be given as:

m = Clχ. (3.70)

In this study, we will consider the material constant Cl as diagonal matrix and the

components can be given as,

Clii = G(z)`2
i , (no sum on repeated index). (3.71)

With the above definition of strain and rotation gradient term along with the consti-

tutive relation, the governing equation, boundary variables are the same as Eq. (3.26)
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and (3.27), respectively, with M1 = 0 and F̂ defined as:

F̂ =

[
fu 0 fv 0 fw

]T
(3.72)

where fu, fv, and fw are the forces acting per unit area of the plate in x, y, and

z directions, respectively. The nonlinear finite element formulation also would have

same form as described in section 3.4 with Anl = 0 and consequently Pnl = 0 in the

definition of tangent matrix. The linear analytical solution described in section 3.5

can also be specialized for the first-order plate theory by taking B1 = 0.

3.6.3. The classical plate theory

3.6.3.1. The governing equation

For the classical plate theory, we take n = 1, m = 1 and p = 0 in the displacement

field of Eq. (3.5) but with the constraint, φ(1)
x = −w,x and φ(1)

y = −w,y. Hence the

displacement field becomes

u = (u(x, y)− zw,x) ê1 + (v(x, y)− zw,y) ê2 + w(x, y) ê3. (3.73)

The nonzero components of von Kármán strain can be given as following:

εxx = u,x − zw,xx + (1/2) (w,x)
2

εyy = v,y − zw,yy + (1/2) (w,y)
2

γxy = (u,y + v,x)− 2zw,xy + w,xw,y (3.74)

Let Φ = [u v w]T and ε = [εxx εyy γxy]
T . Then Eq. (3.74) can be rewritten as

following:

ε = (A2x + (1/2)Anlx)Φ,x + (A2y + (1/2)Anly)Φ,y

+A3xΦ,xx + 2A3xyΦ,xy + A3yΦ,yy (3.75)

where

A2x =


1 0 0

0 0 0

0 1 0

 , A2y =


0 0 0

0 1 0

1 0 0

 , Anlx =


0 0 w,x

0 0 0

0 0 w,y

 , Anly =


0 0 0

0 0 w,y

0 0 w,x


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A3x =


0 0 −z

0 0 0

0 0 0

 , A3xy =


0 0 0

0 0 0

0 0 −z

 , A3y =


0 0 0

0 0 −z

0 0 0

 , (3.76)

W and the Ω can be given as following,

W =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,
ωx = (1/2) (u3,y − u2,z) = w,y

ωy = (1/2) (u1,z − u3,x) = −w,x

ωz = (1/2) (u2,x − u1,y) = (1/2)(v,x − u,y)

Ω = Ωαβγ êαêβêγ =
∂Wβγ

∂xα
êαêβêγ (3.77)

The unique nonzero components of Ω are

2ωx,x = 2w,xy, 2ωx,y = 2w,yy

2ωy,x = −2w,xx, 2ωy,y = −2w,xy

2ωz,x = v,xx − u,xy, 2ωz,y = v,xy − u,yy

(3.78)

which can also be arranged in vector form as following:

χ =

[
2ωx,x 2ωx,y 2ωy,x 2ωy,y 2ωz,x 2ωz,y

]T
= B3xΦ,xx + 2B3xyΦ,xy + B3yΦ,yy (3.79)

where

B3x =



0 0 0

0 0 0

0 0 −2

0 0 0

0 1 0

0 0 0


, B3xy =



0 0 1

0 0 0

0 0 0

0 0 −1

−0.5 0 0

0 0.5 0


, B3y =



0 0 0

0 0 2

0 0 0

0 0 0

0 0 0

−1 0 0


. (3.80)

We will apply the plane stress condition because the stresses in the z-direction are

very small. Hence, the constitutive relation between symmetric part of the stress
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and the strain are

Ss = Cε (3.81)

where

C =
E(z)

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2

 , Ss =


Ssxx

Ssyy

Ssxy

 (3.82)

The relation between χ and its energy conjugate m (couple stress) is considered

same as Eqs. (3.70) and (3.71). In the case of CPT and FOPT, the material length

scale parameters (`11 and `44) which correspond to ωx,x and ωy,y are related to the

twist of the embedded inclusions oriented along the x and y directions, respectively.

Similarly, `22 and `33, which correspond to ωx,y and ωy,x, are related to out of plane

curvature of embedded inclusions oriented along x and y directions, respectively.

The parameters `55 and `66 corresponds to in-plane curvature of the inclusions or

microstructures. We obtain the equation of equilibrium from the principle of virtual

displacement as

F̂ = − (Mnlx + M2x),x −
(
Mnly + M2y

)
,y

+(M3x + M3x),xx + 2(M3xy + M3xy),xy + (M3yy + M3yy),yy (3.83)

where

M2j =

∫ h/2

−h/2
AT

2j
Ss dz, Mnlj =

∫ h/2

−h/2
AT
nlj

Ss dz dz for j = x, y

M3xx =

∫ h/2

−h/2
AT

3xS
s dz, M3xy =

∫ h/2

−h/2
AT

3xyS
s dz, M3yy =

∫ h/2

−h/2
AT

3yS
s dz

M3xx =

∫ h/2

−h/2
BT

3xm dz, M3xy =

∫ h/2

−h/2
BT

3xym dz, M3yy =

∫ h/2

−h/2
BT

3ym dz

F̂ = [fx fy fz]
T (3.84)
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where fx, fy, and fz are the forces per unit area of the plate in the x, y, and z

directions, respectively. The boundary conditions are:

Φ : P

Φ,n : ((M3x + M3x)n
2
x + 2(M3xy + M3xy)nxny + (M3y + M3y)n

2
y)

(3.85)

where

P =
(
Mnlx + M2x − (M3x + M3x),x − (M3xy + M3xy),y

)
nx

+
(
Mnly + M2y − (M3y + M3y),y − (M3xy + M3xy),x

)
ny

−((M3y + M3y −M3x −M3x)nxny + (M3xy + M3xy)(n
2
x − n2

y)),s]

(3.86)

3.6.3.2. Finite element model

We approximate the displacement field given in Eqs. (3.36), (3.37),(3.38) to obtain

the nonlinear finite element equation as in Eq. (3.40), with the following definitions

of stiffness matrix and force vector:

K =

∫
Ωe

[
ΨT
,x

(
H1

2xΨ,x + H1
2yΨ,y +

1

2
H1
nlxΨ,x +

1

2
H1
nlyΨ,y

+H1
3xΨ,xx + 2H1

3xyΨ,xy + H1
3yΨ,yy

)
+ΨT

,y

(
H2

2xΨ,x + H2
2yΨ,y +

1

2
H2
nlxΨ,x +

1

2
H2
nlyΨ,y

+H2
3xΨ,xx + 2H2

3xyΨ,xy + H2
3yΨ,yy

)
+ΨT

,xx

(
G1

2xΨ,x + G1
2yΨ,y +

1

2
G1
nlxΨ,x +

1

2
G1
nlyΨ,y

+G1
3xΨ,xx + 2G1

3xyΨ,xy + G1
3yΨ,yy

)
+2ΨT

,xy

(
G2

2xΨ,x + G2
2yΨ,y +

1

2
G2
nlxΨ,x +

1

2
G2
nlyΨ,y

+G2
3xΨ,xx + 2G2

3xyΨ,xy + G2
3yΨ,yy

)
+ΨT

,yy

(
G3

2xΨ,x + G3
2yΨ,y +

1

2
G3
nlxΨ,x +

1

2
G3
nlyΨ,y

+G3
3xΨ,xx + 2G3

3xyΨ,xy + G3
3yΨ,yy

)]
dx dy

Kl =

∫
Ωe

[
ΨT
,xx

(
N1

3xΨ,xx + 2N1
3xyΨ,xy + N1

3yΨ,yy

)
+ΨT

,xy

(
2N2

3xΨ,xx + 4N2
3xyΨ,xy + 2N2

3yΨ,yy

)
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+ΨT
,yy

(
N3

3xΨ,xx + 2N3
3xyΨ,xy + N3

3yΨ,yy

)]
dx dy

f =

∫
Ωe

ΨT F̂ dx dy (3.87)

where

H1
j =

∫ h/2

−h/2
(AT

nlx + AT
2x)CAj dz

H2
j =

∫ h/2

−h/2
(AT

nly + AT
2y)CAj dz, where j = 2x, 2y, nlx, nly, 3x, 3xy, 3y

G1
i =

∫ h/2

−h/2
AT

3xCAi dz, G2
i =

∫ h/2

−h/2
AT

3xyCAi dz, G3
i =

∫ h/2

−h/2
AT

3yCAi dz,

where j = 2x, 2y, nlx, nly, 3x, 3xy, 3y.

N1
i =

∫ h/2

−h/2
BT

3xClBi dz, N2
i =

∫ h/2

−h/2
BT

3xyClBi dz, N3
i =

∫ h/2

−h/2
BT

3yClBi dz,

where j = 3x, 3xy, 3y. (3.88)

The nonlinear finite element equation can be solved by Newton’s method, with the

tangent matrix given by

T = K + Kl +

∫
Ωe

[1

2

(
ΨT
,x

(
H1
nlxΨ,x + H1

nlyΨ,y

)
+ ΨT

,y

(
H2
nlxΨ,x + H2

nlyΨ,y

)
+ΨT

,xx

(
G1
nlxΨ,x + G1

nlyΨ,y

)
+ 2ΨT

,xy

(
G2
nlxΨ,x + G2

nlyΨ,y

)
+ΨT

,yy

(
G3
nlxΨ,x + G3

nlyΨ,y

))
+ ΨT

,xP
x
nlΨ,x

+ΨT
,yP

y
nlΨ,y + ΨT

,xP
xy
nlΨ,y + ΨT

,yP
xy
nlΨ,x

]
dx dy (3.89)

where Px
nl, Py

nl and Pxy
nl are (3× 3) matrices with following only nonzero element,

P x
nl33

=

∫ h/2

−h/2
Ssxx dz, P y

nl33
=

∫ h/2

−h/2
Ssyy dz, P xy

nl33
=

∫ h/2

−h/2
Ssxy dz (3.90)

In case of classical plate theory also, we note that the tangent matrix is symmetric.

3.6.3.3. Analytical solution for simply supported linear plate

The nonlinear governing equation for classical plate theory can be linearized as fol-

lows:

F̂ = −M2x,x −M2y ,y + (M3x + M3x),xx

+2(M3xy + M3xy),xy + (M3y + M3y),yy (3.91)
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where

Mξ = M̄ξ2xΦ,x + M̄ξ2yΦ,y + M̄ξ3xΦ,xx + 2M̄ξ3xyΦ,xy + M̄ξ3yΦ,yy

for ξ = 2x, 2y, 3x, 3xy, 3y

Mη = M̄η3xΦ,xx + 2M̄η3xyΦ,xy + M̄η3yΦ,yy for η = 3x, 3xy, 3y (3.92)

and

M̄ξγ =

∫ h/2

−h/2
AT
ξ CAγ dz, for ξ, γ = 2x, 2y, 3x, 3xy, 3y

M̄ηδ =

∫ h/2

−h/2
BT
η ClBδ dz, for η, δ = 3x, 3xy, 3y (3.93)

Further the linear equation can be expressed in terms of displacement variables as

follows:

F̂ = M̂2xΦ,x + M̂2yΦ,y + M̂3xΦ,xx + M̂3xyΦ,xy + M̂3yΦ,yy

+M̂41Φ,xxx + M̂42Φ,xxy + M̂43Φ,xyy + M̂44Φ,yyy

+M̂51Φ,xxxx + M̂52Φ,xxxy + M̂53Φ,xxyy + M̂54Φ,xyyy + M̂55Φ,yyyy(3.94)

where

M̂2x = −M̄2x2x,x − M̄2y2x,y + M̄3x2x,xx + 2M̄3xy2x,xy + M̄3y2x,yy

M̂2y = −M̄2x2y ,x − M̄2y2y ,y + M̄3x2y ,xx + 2M̄3xy2y ,xy + M̄3y2y ,yy

M̂3x = −M̄2x2x − M̄2x3x,x − M̄2y3x,y + M̄3x3x,xx + M̄3x3x,xx

+2M̄3xy3x,xy + 2M̄3xy3x,xy + M̄3y3x,yy + M̄3y3x,yy

M̂3xy = −M̄2x2y − M̄2y2x − 2M̄2x3xy ,x − 2M̄2y3xy ,y + 2M̄3x3xy ,xx + 2M̄3x3xy ,xx

+4M̄3xy3xy ,xy + 4M̄3xy3xy ,xy + 2M̄3y3xy ,yy + 2M̄3y3xy ,yy

M̂3y = −M̄2y2y − M̄2x3y ,x − M̄2y3y ,y + M̄3x3y ,xx + M̄3x3y ,xx

+2M̄3xy3y ,xy + 2M̄3xy3y ,xy + M̄3y3y ,yy + M̄3y3y ,yy

M̂41 = −M̄2x3x + M̄3x2x

M̂42 = −2M̄2x3xy − M̄2y3x + M̄3x2y + 2M̄3xy2x

M̂43 = −M̄2x3y − 2M̄2y3xy + 2M̄3xy2y + M̄3y2x

M̂44 = −M̄2y3y + M̄3y2y

M̂51 = M̄3x3x + M̄3x3x

M̂52 = 2M̄3x3xy + 2M̄3x3xy + 2M̄3xy3x + 2M̄3xy3x

M̂53 = M̄3x3y + M̄3x3y + 4M̄3xy3xy + 4M̄3xy3xy + M̄3y3x + M̄3y3x
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M̂54 = 2M̄3xy3y + 2M̄3xy3y + 2M̄3y3xy + 2M̄3y3xy

M̂55 = M̄3y3y + M̄3y3y (3.95)

In this case also, the generalized stress resultants can be function of point coordi-

nates (x, y). The solution of the form Eq. (3.51) can be assumed for simply supported

boundary condition, and each (αβ)th coefficient of the assumed displacement vari-

ables function can be obtained by solving the system of equations which is given by

Eq. (3.56) with the coefficient matrix K defined as in Eq. (3.57) with M̂1 equal to

zero.

3.7. Numerical examples

For the numerical examples, we consider the plates with microstructure embedded

in functionally graded or homogeneous matrix of material with following geometric

and material parameters:

E1 = 14.4 GPa, E2 = 1.44 GPa, ν = 0.38,

h = 10× 10−6 m, a = b = 20h (3.96)

where a and b are the length and width of the plate and h is the height of plate. In

the case of the plate with homogeneous matrix material, the power index n̂ is taken

as zero and the modulus of elasticity becomes E1.

3.7.1. Analytical and finite element method solution for simply sup-

ported linear plate

For analytical and linear finite element method (FEM) solutions, simply supported

isotropic Cosserat solid plate under uniformly distributed load is considered. The

boundary conditions for various plate theories for simply supported plate are follow-

ing:

The classical plate theory : at x = 0, a : u,x = u,xy = v = v,y = w = w,y = 0

at y = 0, b : u = u,x = v,y = v,xy = w = w,x = 0

(3.97)
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Higher order plate theories : at x = 0, a : φ(i)

x,x = φ(i)

x,xy = 0 for i = 0, ..., n

φ(i)

y = φ(i)

y,y = 0 for i = 0, ...,m

φ(i)

z = φ(i)

z,y = 0 for i = 0, ..., p

at y = 0, b : φ(i)

x = φ(i)

x,x = 0 for i = 0, ..., n

φ(i)

y,y = φ(i)

y,xy = 0 for i = 0, ...,m

φ(i)

z = φ(i)

z,x = 0 for i = 0, ..., p

(3.98)

The maximum value of non-dimensional transverse central deflections (ŵ = wEh3

q0(ab)2 )

are presented in Tables 3.1, 3.2, and 3.3 (comparing the analytical and linear FE

solutions) for homogeneous and functionally graded plates with embedded inclusions

(microstructure) for the classical, first-order, and general third-order plate theories,

respectively. Different combinations of the material length scale parameters have

been used in such a way that the deflections remain the same in the x and y directions,

that is, same material length scale parameter corresponds to out of plane, in-plane

curvatures, and twist of the inclusion oriented along the x, y, and z axes are used.

For analytical solution, the maximum values of α and β (see Eq. (3.51)) are taken

as 100 and for linear FEM solution, 16 × 16 mesh is used for the full plate. In the

finite element analysis, conforming rectangular elements, which can be obtained by

tensor product of hermite cubic function for one dimension are used. In case of

classical and first-order plate theories, three groups of nonzero material length scale

parameters have been considered: (1) correspond to the out of plane curvature of

embedded inclusions oriented along x and y direction, (2) correspond to in plane and

out of plane curvatures of microstructure at the same time, and (3) accounts for out

of plane curvature and twist of directors together. Here we note that the material

length scales correspond to in-plane curvature of microstructure have negligible effect

on the bending of the plate. In the case of a general third-order plate theory, the

material scales corresponding to six curvatures and three twists come into play. The

material length scales for in plane curvature of directors of microstructure are taken

as zero, as it have been shown, in the case of classical and first-order plate theories,

to have negligible effect on the bending response. In this case four groups of length

scale are considered, which correspond to: (1) out of plane curvature of directors
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oriented along x and y directions, (2) out of plane curvature of directors oriented

along x and y directions along with curvature of director oriented along z direction,

(3) out of plane curvature and twist of directors oriented along x and y directions and

(4) all possible curvature and twist of directors oriented along the x-, y-, and z-axes,

except the inplane curvature of directors oriented along the x and y directions. Here,

we note that the central deflection results for the first and second group of material

length scales do not differ much. In the case of the thin plate limit, this difference

would be negligible, whereas for thick plates they will show some difference due to

the curvature of directors of inclusions oriented along the z direction. In all cases the

stiffening effect due the consideration of microstructure is evident. The analytical and

linear FEM solutions are in good agreement. Also, we will see in the nonlinear FEM

solution presented in the forthcoming section that different length scale parameters

for inclusions oriented along x and y directions would bring anisotropic effect in the

deflection.

Table 3.1. Analytical and linear FEM solutions for center deflection ŵ×102 for sim-

ply supported homogeneous and FGM beam for the classical plate theory.
n̂ `/h Classical plate theory

(1) `2 = `3 = ` (2) `2 = `3 = ` (3) `2 = `3 = `
`5 = `6 = ` `1 = `4 = `

Analytical Linear FEM Analytical Linear FEM Analytical Linear FEM

0.0 4.1699 4.1709 4.1699 4.1709 4.1699 4.1709
0.2 3.2238 3.2245 3.2238 3.2245 2.6141 2.6147

0 0.4 1.9160 1.9164 1.9160 1.9164 1.2334 1.2337
0.6 1.1426 1.1429 1.1426 1.1429 0.6560 0.6561
0.8 0.7300 0.7302 0.7300 0.7302 0.3963 0.3964
1.0 0.4985 0.4986 0.4985 0.4986 0.2626 0.2627
0.0 9.7594 9.7578 9.7594 9.7617 9.7594 9.7578
0.2 7.0827 7.0844 7.0827 7.0844 5.5258 5.5271

1 0.4 3.8808 3.8817 3.8808 3.8817 2.4011 2.4016
0.6 2.2124 2.2130 2.2124 2.2130 1.2361 1.2364
0.8 1.3811 1.3814 1.3811 1.3814 0.7361 0.7363
1.0 0.9312 0.9314 0.9312 0.9314 0.4842 0.4844

3.7.2. Nonlinear finite element method solution

For nonlinear solution, plates with the same geometric and material parameters as

given in Eq. (3.96) are considered. The general third order plate theory has been used
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Table 3.2. Analytical and linear FEM solutions for center deflection ŵ × 102 for

simply supported homogeneous and FGM beam for the first order plate

theory.
n̂ `/h First order plate theory

(1) `2 = `3 = ` (2) `2 = `3 = ` (3) `2 = `3 = `
`5 = `6 = ` `1 = `4 = `

Analytical Linear FEM Analytical Linear FEM Analytical Linear FEM

0.0 4.2309 4.2334 4.2309 4.2334 4.2309 4.2323
0.2 3.2722 3.2729 3.2722 3.2727 2.6544 2.6550

0 0.4 1.9488 1.9493 1.9488 1.9490 1.2590 1.2592
0.6 1.1675 1.1678 1.1675 1.1676 0.6764 0.6765
0.8 0.7511 0.7512 0.7511 0.7511 0.4145 0.4146
1.0 0.5176 0.5177 0.5176 0.5176 0.2798 0.2798
0.0 9.8703 9.8813 9.8703 9.8813 9.8703 9.8735
0.2 7.1661 7.1678 7.1661 7.1674 5.5937 5.5950

1 0.4 3.9355 3.9364 3.9355 3.9359 2.4440 2.4446
0.6 2.2543 2.2549 2.2543 2.2545 1.2712 1.2715
0.8 1.4171 1.4175 1.4171 1.4173 0.7681 0.7682
1.0 0.9643 0.9645 0.9643 0.9643 0.5147 0.5148

to analyse the plate in this section. Uniformly distributed load of q0 = 1MN/m2 is

applied at the top surface of the plate to do the nonlinear analysis with the following

two types of boundary conditions:

Simply supported (pinned edges) plate:

Classical plate theory : at x = ±a
2
, and y = ± b

2
:u = v = w = 0

Higher order plate theories : at x = ±a
2
, and y = ± b

2
:φ(0)

x = φ(0)

y = φ(0)

z = 0

(3.99)
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Table 3.3. Analytical and linear FEM solutions for center deflection ŵ × 102 for

simply supported homogeneous and FGM beam for the general third order

plate theory.

n̂ `/h Third order plate theory
(1) `2 = `4 = ` (2) `2 = `4 = ` (3) `2 = `4 = ` (4) `2 = `4 = `

`3 = `6 = ` `1 = `5 = ` `3 = `6 = `
`1 = `5 = `9 = `

Analytical Linear FEM Analytical Linear FEM Analytical Linear FEM Analytical Linear FEM

0.0 4.2222 4.2232 4.2222 4.2232 4.2222 4.2232 4.2222 4.2232
0.2 3.2641 3.2649 3.2625 3.2632 2.6471 2.6477 2.6460 2.6466

0 0.4 1.9424 1.9429 1.9417 1.9421 1.2538 1.2541 1.2535 1.2538
0.6 1.1625 1.1628 1.1622 1.1625 0.6724 0.6725 0.6723 0.6724
0.8 0.7469 0.7471 0.7468 0.7469 0.4111 0.4112 0.4110 0.4111
1.0 0.5139 0.5140 0.5138 0.5140 0.2766 0.2767 0.2766 0.2767
0.0 9.8635 9.8657 9.8635 9.8657 9.8635 9.8657 9.8635 9.8657
0.2 7.1579 7.1595 7.1540 7.1557 5.5854 5.5867 5.5831 5.5844

1 0.4 3.9275 3.9284 3.9256 3.9266 2.4370 2.4375 2.4363 2.4369
0.6 2.2474 2.2479 2.2467 2.2472 1.2652 1.2655 1.2650 1.2653
0.8 1.4110 1.4113 1.4107 1.4110 0.7626 0.7627 0.7625 0.7627
1.0 0.9586 0.9588 0.9584 0.9587 0.5095 0.5096 0.5095 0.5096

Plate with clamped edges:

Classical plate theory : at x = −a
2
,
a

2
, and y = − b

2
,
b

2
:

u = v = w = 0, w,x = w,y = w,xy = 0

Higher order plate theories : at x = −a
2
,
a

2
, and y = − b

2
,
b

2
:

φ(0)

x = φ(0)

y = φ(0)

z = 0, φ(1)

x = φ(1)

y = φ(0)

z,x = φ(0)

z,y = 0

(3.100)

For nonlinear analysis, similar type of meshes and elements, as described in section

3.7.1 for linear analysis, are used. Newton’s method is employed to obtain converged

solutions. The error tolerance used for the nonlinear analysis is 10−4. Two types

of microstructure dependent plates are used along with the conventional plate; that

is, when the small inclusions are oriented along x and y directions and material

length scale corresponds to out of plane curvature of the director are used, `4 6= 0.
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Figure 3.1 shows the transverse displacement (w̄ = q0ŵ × 102) of the conventional

plate, plates with the inclusion oriented along the x and y directions for the simply

supported boundary condition. The material length scale corresponds to the out of

plane curvature of the inclusions. The anisotropic effect is evident in the microstruc-

ture dependent plate due to the ordered orientation of the small inclusions embedded

in isotropic matrix of material. The stiffening effect due to the microstructure is

(a) `i = 0 (b) `4 = 1.5h (c) `2 = 1.5h

Fig. 3.1 Transverse deflection w̄ (a) of conventional plate (b) of plate with inclu-

sions oriented along x−direction (c) of plate with inclusions oriented along

y−direction for simply supported boundary condition using general third or-

der plate theory.

shown in fig. 3.2 for simply supported and clamped plates, considering homogeneous

and functionally graded plates with microstructure, employing the general third-

order plate theory. The maximum transverse deflection, w̄max, is plotted against

the material length scale considering equal length scales related to curvature and

twist of inclusions in all directions, except the same related to the in-plane curva-

ture of inclusions is taken as zero because it is shown to have negligible effect on

the bending response. Further, the components of the stress tensor, which includes

both symmetric and skew symmetric part of the stress tensor are plotted for simply

supported plate. The skew symmetric part of stress tensor can be obtain by mean

of the angular conservation equation as following:

Sa =
1

2
(S− ST ) =

1

2
F−1(Div(M))F−T (3.101)

where M is the third order couple stress tensor defined for the finite rotation case

(see [19]) and F is the deformation gradient. The divergence is calculated with
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Fig. 3.2 Variation of maximum transverse deflection w̄max with material length scale
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(a) S̄xx for `i = 0 (b) S̄xx for `4 = 1.5h (c) S̄xx for `2 = 1.5h

(d) S̄yy for `i = 0 (e) S̄yy for `4 = 1.5h (f) S̄yy for `2 = 1.5h

(g) S̄xy for `i = 0 (h) S̄xy for `4 = 1.5h (i) S̄xy for `2 = 1.5h

Fig. 3.3 Distribution of the stress components S̄xx, S̄yy and S̄xy at the top surface of

plate for conventional and microstructure dependent simply supported plate

under uniformly distributed load considering general third order plate theory.
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respect to the reference frame. For a detailed derivation of the skew symmetric part

of the stress tensor in th e case of the general third (or higher) order plate theory,

see appendix B. The stress components are computed at one Gauss point for each

finite elements. Figure 3.3 shows the distribution of the stress components S̄xx, S̄yy

and S̄xy of the total stress at the top surface of simply supported conventional and

microstructure dependent plate where S̄ = (a2/Eh2)S. The stress component S̄skewxy

is found to be not very significant in the plate bending as shown in fig. 3.4 and hence

the component S̄yx would have almost similar distribution as S̄xy. Figure 3.5 shows

the distribution of the transverse shear components of the stress tensor namely S̄xz

and S̄yz (which gives the shear force on integrating through cross-section) at the

mid surface of the plate. In all these plots the direction effect on the distribution of

stress components due to the specific orientation of the small inclusions are evident.

Further, the distribution of S̄zz, S̄zx and S̄zy with respect to the height of the plate is

plotted in fig. 3.6 and fig. 3.7, respectively, at x = −a/32 and various y (depicted by

the color code) considering the microstructure oriented along x−direction considering

the length scale corresponding to out of plane curvature of director. Here we note

that the component S̄zz away from the plate boundary at the top surface is same

as the uniformly distributed load applied on the plate, as expected. Also the shear

components (S̄zx and S̄zy) are zero at the shear free top and bottom surfaces of the

plate, as expected.

3.8. Chapter summary and conclusion

In the present study, we have developed a nonlinear finite element model for moder-

ate rotation condition (i.e., von Kármán strains) for plates having rotation gradient

dependent strain energy potential. A general Taylor’s series based higher-order plate

theory is used in the case of homogeneous or spatially varying material properties.

Specialization to a general third-order, first-order, and the classical plate theories is

also presented. Analytical solutions for simply supported linear plates are presented.

The stiffening effect of the plate while considering the rotation gradient term in po-

tential energy is shown in the numerical examples considered. Also, the anisotropic

response is observed due to the ordered orientation of the small inclusions embedded

in the plate, which is modeled through the rotation gradient dependent term in the

potential energy. In the post-processing of the nonlinear FEM analysis, distribution

of various stress components, which includes both symmetric and skew-symmetric
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(a) S̄skewxy for `4 = 1.5h (b) S̄skewxy for `2 = 1.5h

Fig. 3.4 Distribution of the stress components S̄skewxy at the top surface of microstruc-

ture dependent simply supported plate under uniformly distributed load con-

sidering general third order plate theory.

parts in the case of microstructure dependent plate, are plotted. The thickness pro-

file of shear stress components showed zero in-plane shear at the shear-free top and

bottom surfaces, as expected. Also, the normal stress at the top surface is found to

be same as the applied uniformly distributed load and zero at the bottom surface,

as one would expect. As a concluding remark, we want to highlight the possibility

of anisotropic response, along with the stiffening effect, due to the ordered orienta-

tion of microstructure considering different material length scales corresponding to

the curvatures and twists in different directions as opposed to the centrosymmetric

microstructure considered in all the previous studies in the literature.
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(a) S̄xz for `i = 0 (b) S̄xz for `4 = 1.5h (c) S̄xz for `2 = 1.5h

(d) S̄yz for `i = 0 (e) S̄yz for `4 = 1.5h (f) S̄yz for `2 = 1.5h

Fig. 3.5 Distribution of the transverse shear stresses, S̄xz and S̄yz at the mid surface

of conventional and microstructure dependent simply supported plate under

uniformly distributed load considering general third order plate theory.
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microstructure dependent simply supported plate with the inclusions oriented

along x−axis considering general third order plate theory.
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Fig. 3.7 Variation of non-dimensional shear stress components S̄zx and S̄zy through

the height of the microstructure dependent simply supported plate with the

inclusions oriented along x−axis considering general third order plate theory.
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4. MODELLING OF THIN CARBON NANOTUBE REINFORCED

HARD COATING ON ELASTIC SUBSTRATE

In this chapter, we discuss one of the possible applications of the Cosserat contin-

uum theory with constrained micro-rotation. Composites with very small inclusions,

for example, carbon nanotube (CNT)-reinforced composites can be thought of as a

Cosserat solid where the small constituents (CNT strands) rotate with its matrix

and there is no rotational mismatch or gap created during the deformation. In this

chapter, we model indentation of a thin hard CNT reinforced coating on an elastic

substrate by the rotation gradient dependent theory of Srinivasa and Reddy [19]. We

use the classical plate theory for the rotation gradient dependent theory developed

in chapter 3 to model deformation of the hard coatings due to an indentation in a

circular computational domain with the indentation at the center. Circular compu-

tational domain requires non-rectangular finite element mesh in the finite element

grid for which a C1 continuous approximation function is hard to achieve. Hence,

we employ a mixed finite element model to obtained the solution. A schematic di-

agram of the nano-indentation is shown in fig. 4.1. To model the contact between

the substrate and the coating, we assume a smooth Hertzian contact between them.

The effect of CNT-reinforcement is modeled by various length scale parameters. It is

assumed that the CNT strands are distributed uniformly and are randomly oriented.

Hence, all the length scale related to various curvatures (see Chapter 3) are taken as

equal and the length scale related to twist is taken as zero.

4.1. Mixed finite element model for microstructure dependent plate on

elastic substrate

4.1.1. Governing equations of motion

Consider the (x, y, z) rectangular cartesian coordinate system in the reference frame

and a plate of arbitrary geometry and height h lies in xy-plane with the central

plane of the plate coincide with xy-coordinate plane in its natural configuration and

the height of the plate is along z-axis. The displacement field for the classical plate
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Fig. 4.1 Schematic diagram for the indentation on a CNT-reinforced hard coating

on elastic substrate.

theory is given by

u = (u(x, y)− zw,x) ê1 + (v(x, y)− zw,y) ê2 + w(x, y) ê3. (4.1)

where u(x, y), v(x, y), and w(x, y) are the displacements of the central plane of the 
plate along the x, y, and z directions, respectively. The governing equations of motion 
of the classical plate theory on elastic foundation, considering the rotation gradient 
dependant strain energy for moderate constrained micro-rotation ( see Arbind et al.

[57] or chapter 3), are

F̂ = − (Pnlx + P2x),x −
(
Pnly + P2y

)
,y

+(M3x + M3x),xx + 2(M3xy + M3xy),xy + (M3yy + M3yy),yy + kΦ

(4.2)

where Φ = [u v w]T . And k is (3× 3) matrix with only nonzero element k33 = k,

where k is the contact stiffness between the coating and the elastic substrate. The
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generalized forces in Eq. (4.2) are defined as follows:

P2j =

∫ h/2

−h/2
AT

2j
Ss dz, Pnlj =

∫ h/2

−h/2
AT
nlj

Ss dz dz for j = x, y

M3xx =

∫ h/2

−h/2
AT

3xS
s dz, M3xy =

∫ h/2

−h/2
AT

3xyS
s dz, M3yy =

∫ h/2

−h/2
AT

3yS
s dz

M3xx =

∫ h/2

−h/2
BT

3xm dz, M3xy =

∫ h/2

−h/2
BT

3xym dz, M3yy =

∫ h/2

−h/2
BT

3ym dz

(4.3)

Here Ss = C · ε is the symmetric part of the second Piola–Kirchhoff stress compo-

nents and ε = [εxx εyy γxy]
T are Green–Lagrange strain tensor components ap-

proximated for moderate rotation case (see [57]); m = Clχ are components of couple

stress tensor; χ = [2ωx,x 2ωx,y 2ωy,x 2ωy,y 2ωz,x 2ωz,y]
T are various curvatures and twists 

of the microstructure oriented along x and y directions (see chapter 3 or [57]

for details); C and Cl are matrix of material properties which, and for homogeneous

isotropic material with microstructures embedding, are given as

C =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2

 , Clii = G`2
i , (no sum on i) and i = 1, 2, ..6

(4.4)

where E, G, and ν are modulus of elasticity, shear modulus, and Poisson’s ratio,

respectively, and `i are various material length scale parameters. In the case of CPT,

the material length scale parameters `1 and `4 which correspond to ωx,x and ωy,y are

related to twist of the embedded inclusions oriented along the x and y directions,

respectively, and `2 and `3 corresponding to ωx,y and ωy,x are related to the out

of plane curvature of embedded inclusions oriented along the x and y directions,

respectively. These length scales parameters contribute to the bending moments of

the plate. The parameters `5 and `6 corresponds to the inplane curvature of the

inclusions or microstructures, and they contribute to the drilling type moment (see
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[19]). Also, we have

A2x =

1 0 0

0 0 0

0 1 0

 , A2y =

0 0 0

0 1 0

1 0 0

 , Anlx =

0 0 w,x
0 0 0

0 0 w,y

 , Anly =

0 0 0

0 0 w,y
0 0 w,x


A3x =

0 0 −z
0 0 0

0 0 0

 , A3xy =

0 0 0

0 0 0

0 0 −z

 , A3y =

0 0 0

0 0 −z
0 0 0

 , (4.5)

and

B3x =



0 0 0

0 0 0

0 0 −2

0 0 0

0 1 0

0 0 0


, B3xy =



0 0 1

0 0 0

0 0 0

0 0 −1

−0.5 0 0

0 0.5 0


, B3y =



0 0 0

0 0 2

0 0 0

0 0 0

0 0 0

−1 0 0


. (4.6)

The force vector is defined as:

F̂ = [fx fy fz]
T (4.7)

where fx, fy, and fz are the forces per unit area of the plate in the x, y, and z

directions, respectively. The force resultants used in Eq. (4.2) are known in terms of

the generalized displacements as follows:

Pnlx + P2x =

∫ h/2

−h/2
(AT

2x + AT
nlx)C ((A2x + (1/2)Anlx)Φ,x

+(A2y + (1/2)Anly)Φ,y

)
dz

Pnly + P2y =

∫ h/2

−h/2
(AT

2y + AT
nly)C ((A2x + (1/2)Anlx)Φ,x

+(A2y + (1/2)Anly)Φ,y

)
dz

(4.8)
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and, similarly, various moments are given as

M1 = M3x + M3x =


0

M1

M11


M2 = M3xy + M3xy =

1

2


−M1

M2

M12


M3 = M3y + M3y =


−M2

0

M22

 (4.9)

where

M11 = (4hG`2
3 +D1)w,xx +D2w,yy

M12 = (4hG(`2
1 + `2

4) + 2D3)w,xy

M22 = D2w,xx + (4hG`2
2 +D1)w,yy

M1 = hG`2
5 (v,xx − u,xy)

M2 = hG`2
6 (v,xy − u,yy) (4.10)

and

D1 =
Eh3

12(1− ν2)
, D2 =

νEh3

12(1− ν2)
, D3 =

Eh3

12(1 + ν)
(4.11)

Then the governing equation is

F̂ = − (Pnlx + P2x),x −
(
Pnly + P2y

)
,y

+ M̂1
,xx + 2M̂2

,xy + M̂3
,yy + kΦ (4.12)

and Eqs. (4.10) can be rewritten as following:

0 = −∆ w,xx +D11M11 +D12M12 +D13M22

0 = −∆ w,xy +D21M11 +D22M12 +D23M22

0 = −∆ w,yy +D31M11 +D32M12 +D33M22

0 = −hG`2
5 (v,xx − u,xy) +M1

0 = −hG`2
6 (v,xy − u,yy) +M2 (4.13)
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where Dij are various components of matrix D defined as

D =


D1+4hG`22

D2
0 −1

0 ∆
2D3+4hG(`21+`24)

0

−1 0
D1+4hG`23

D2

 (4.14)

with

∆ =
(4hG`2

3 +D1)(4hG`2
2 +D1)

D2

−D2 (4.15)

We consider the governing equation (4.2) along with various moments equations

(4.13) to obtain the solution by the mixed finite element model, treating displace-

ments and moments as unknown variables (see Reddy [41]).

4.1.2. Weak form of governing equations

The weak form of the governing equation (4.2) is∫
Ω

δΦ · F̂ dx dy =

∫
Ω

[
δΦ,x ·

(
H1

2xΨ,x + H1
2yΦ,y +

1

2
H1
nlxΦ,x +

1

2
H1
nlyΦ,y

)
+δΦ,y ·

(
H2

2xΦ,x + H2
2yΦ,y +

1

2
H2
nlxΦ,x +

1

2
H2
nlyΦ,y

)
+δΦ,x · (−M1

,x −M2
,y) + δΦ,y(−M2

,x −M3
,y) + δΦ · kΦ

]
dx dy

−
∮
∂Ω

δΦ[(Pnlx + P2x −M1
,x −M2

,y)nx + (Pnly + P2y −M2
,x −M3

,y)ny] ds

(4.16)

where

H1
j =

∫ h/2

−h/2
(AT

nlx + AT
2x)CAj dz

H2
j =

∫ h/2

−h/2
(AT

nly + AT
2y)CAj dz, where j = 2x, 2y, nlx, nly (4.17)

and the weak forms of Eqs. (4.13) are

0 =

∫
Ω

[
∆ δM11,xw,x +D11δM11M11 +D12δM11M12 +D13δM11M22

]
dx dy

−
∮
∂Ω

∆δM11w,xnxds
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0 =

∫
Ω

[∆

2
(δM12,xw,y + δM12,yw,x) +D21δM12M11 +D22δM12M12

+D23δM12M22

]
dx dy −

∮
∂Ω

∆

2
δM12(w,ynx + w,xny)ds

0 =

∫
Ω

[
∆ δM22,yw,y +D31δM22M11 +D32δM22M12 +D33δM22M22

]
dx dy

−
∮
∂Ω

∆δM22w,ynyds

0 =

∫
Ω

[hG`2
5

2
(−δM1,xu,y − δM1,yu,x + 2δM1,xv,x) + δM1M1

]
dx dy

−
∮
∂Ω

δM1((vx − uy)nx − u,xny) ds

0 =

∫
Ω

[hG`2
6

2
(−2δM2,yu,y + δM2,yv,x + δM2,xv,y) + δM2M2

]
dx dy

−
∮
∂Ω

δM2((vx − uy)ny + v,ynx) ds

(4.18)

Let us write the augmented vector of unknown variables as

Φa = [u v w M11 M12 M22 M1 M2]T

F̂a = [fx fy fz 0 0 0 0 0]T (4.19)

We can write the above weak form in the following vector form:∫
Ω

δΦa · F̂a dx dy =

∫
Ω

[
δΦa · (BΦa) + δΦa

,x · (BxxΦ
a
,x + BxyΦ

a
,y)

+δΦa
,y · (ByxΦ

a
,x + ByyΦ

a
,y) + δΦa

,x ·
(

1

2
Ĥ1
nlxΦ

a
,x +

1

2
Ĥ1
nlyΦ

a
,y

)
+δΦa

,y ·
(

1

2
Ĥ2
nlxΦ

a
,x +

1

2
Ĥ2
nlyΦ

a
,y

)]
dx dy −

∮
∂Ω

δΦa ·V ds (4.20)

where

B =

k 0

0 D̃

 , Bxx =

H1
2x Gxx

Nxx 0

 , Bxy =

H1
2y Gxy

Nxy 0

 ,
Byx =

H2
2x Gyx

Nyx 0

 , Byy =

H2
2y Gyy

Nyy 0

 , D̃ =

D 0

0 I

 (4.21)
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Ĥ1
nlx =

H1
nlx

0

0 0

 , Ĥ1
nly =

H1
nly

0

0 0

 , Ĥ2
nlx =

H2
nlx

0

0 0

 , Ĥ2
nly =

H2
nly

0

0 0


(4.22)

Gxx =

 0 0 0 0 0

0 0 0 −1 0

−1 0 0 0 0

 , Gyy =

0 0 0 0 1

0 0 0 0 0

0 0 −1 0 0


Gxy = Gyx =

0 0 0 0.5 0

0 0 0 0 −0.5

0 −0.5 0 0 0

 (4.23)

Nxx =


0 0 ∆

0 0 0

0 0 0

0 hG`2
5 0

0 0 0

 , Nyy =


0 0 0

0 0 0

0 0 ∆

0 0 0

−hG`2
6 0 0

 ,

Nxy = Nyx =


0 0 0

0 0 ∆
2

0 0 0

−hG`25
2

0 0

0
hG`26

2
0


(4.24)
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and the boundary term V is:

V =



(Pnlx + P2x −M1
,x −M2

,y)nx + (Pnly + P2y −M2
,x −M3

,y)ny

∆w,xnx

∆
2

(w,ynx + w,xny)

∆w,yny

(−uy + vx)nx − u,xny

(−uy + vx)ny + v,ynx



(4.25)

4.1.3. Finite element model

We discretize the computational domain into a set of non-overlapping subdomains

(elements), Ωe and approximate the vector of unknown variables as

Φa(x) = Ψ(x)U (4.26)

where Ψ(x, y) is the matrix of approximation (or interpolation) functions and U is

vector of the nodal values of Φa ,

Ψ =



ψ(1)

1 . . . ψ(1)
n1

0 . . . 0 . . . 0 . . . 0

0 . . . 0 ψ(2)

1 . . . ψ(2)
n2

. . . 0 . . . 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 . . . 0 0 . . . 0 . . . ψ(8)

1 . . . ψ(8)
n8


(4.27)

U =

[
u11 . . . u1ñ1

u21 . . . u2n2
. . . u81 . . . u8n8

]T
(4.28)

Here n1, n2, · · ·n8 are the number of nodal values of u1, u2, . . . , u8, respectively, in

the element, and

u1 = u, u2 = v, u3 = w, u4 = M11, u5 = M12, u6 = M22, u7 = M1, u8 = M2.

(4.29)

We substitute the approximations of the degrees of freedom (dofs) and δΦa = Ψl

(where l is vector with each element as unity and of the same size as Φa ) into
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Eq. (4.20) and arrive at the following finite element equations:

KU− f = 0 (4.30)

where K is the stiffness matrix, which is given as follows:

K =

∫ e

Ω

[
ΨTBΨ + ΨT

,x(BxxΨ,x + BxyΨ,y) + ΨT
,y(ByxΨ,x + ByyΨ,y)

+ΨT
,x

(
1

2
Ĥ1
nlxΨ,x +

1

2
Ĥ1
nlyΨ,y

)
+ ΨT

,y

(
1

2
Ĥ2
nlxΨ,x +

1

2
Ĥ2
nlyΨ,y

)]
dx dy

f =

∫ e

Ω

ΨT F̂a dx dy (4.31)

Here we note that stiffness matrix is not symmetric and depends on the displacement

(i.e., nonlinear). We will apply Newton’s method to solve the nonlinear algebraic

equations in Eq. (4.30). For (j+ 1)st iteration of Newton’s method, the solution can

be expressed as

T(Uj)δUj+1 = −K(Uj)Uj + f(Uj), and Uj+1 = Uj + δUj+1 (4.32)

where T is the tangent matrix,

T = K +

∫
Ωe

[1

2

(
ΨT
,x

(
H1
nlxΨ,x + H1

nlyΨ,y

)
+ ΨT

,y

(
H2
nlxΨ,x + H2

nlyΨ,y

)
+ΨT

,xP
x
nlΨ,x + ΨT

,yP
y
nlΨ,y + ΨT

,xP
xy
nlΨ,y + ΨT

,yP
xy
nlΨ,x

]
dx dy (4.33)

and Px
nl, Py

nl and Pxy
nl are (8× 8) matrices with following nonzero coefficients,

P x
nl33

=

∫ h/2

−h/2
Ssxx dz, P y

nl33
=

∫ h/2

−h/2
Ssyy dz, P xy

nl33
=

∫ h/2

−h/2
Ssxy dz (4.34)

We note here that the tangent matrix is symmetric.

4.1.4. Contact stiffness of the elastic substrate

To model the nano indentation of hard coating on an elastic substrate, we model the

coating as a classical plate resting on an elastic substrate. A flat circular punch of

very small radius is applied at the center of computational domain of the coating by

a rigid indenter. As the plate bends due to the applied load at the center, the flat

surface of the coating becomes curved and can be approximated as a part of a sphere

of large radius. This curved surface can be modeled as the contact region between
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the rigid sphere (as hard coating) on the elastic half space. But we do not know the

radius of the sphere or the contact radius in advance. Therefore, we guess an initial

area of influence in the numerical calculations and then increase the area to obtain

a convergent indentation depth for contact area iteratively. The Hertzian pressure

distribution (see [54]) for this case is given by

p̂(r) = p0

(
1− r2

a2

) 1
2

(4.35)

where p̂(r) is the pressure distribution at a distance r from the center of the contact

circle and p0 is the limiting pressure at the center. The transverse displacement of

the substrate at any distance r from the centre in the contact circle can be expressed

as (see [54]):

ûz(r) =
πp0

4E∗a

(
2a2 − r2

)
(4.36)

Then the contact stiffness can be computed as

k0 =
p̂(r)

ûz
(4.37)

Here the contact between the coating and the substrate has been considered as very

smooth and frictionless. No surface roughness has been taken into account, which

could result in an elevated contact stiffness (see Polycarpou [55]) and hence this

approximation would result in lesser indentation depth as compared to an exper-

imental value; nevertheless, we can study the effect of the length scale parameter

on indentation. The model can be improved by taking roughness and friction into

account.

4.2. Numerical study

Let us consider CNT-reinforced coating with matrix material as aluminium on an

aluminum substrate. The material properties of the coating and substrate and the

height of the coating are taken as follows:

E = 69 GPa, ν = 0.34, h = 20 µm (4.38)

For the finite element analysis of the indentation on such coatings, we approximate

the unknown variables of the mixed formulation discussed in the preceding section
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using linear Lagrange interpolation functions. The computational domain is consid-

ered as an annular plate with inner radius the same as the radius of the indenter’s

tip. In the present numerical examples, we consider indenter of radius 10−6 m (1

micron). The outer radius of the computational domain is same as the contact radius

between the coating and the substrate, which we do not know in advance. The mesh

used for the finite element analysis is shown in fig. 4.2; 30 quadrilateral elements are

used on each concentric circle, and the size of the element is such that radial length

of the element is the same as the length of the side, which is near the center. This

way the mesh density and the total number of elements are governed by the outer

radius of the domain and the number of element in each concentric circle (let us call

this number nc). The CNT reinforcement is modeled by the material length scale.

Since the CNT strands are randomly oriented, we take all the length scale related to

the various curvatures as equal, that is, `2 = `3 = `5 = `6 = `. The material length

scale related to the twist are taken as zero owing to the fact that the diameter of the

CNT strands are small compared to their length, and hence it resists the bending

prominently than twisting. The boundary conditions at the outer circumference of

the computational domain are taken as free. Table 4.1 shows the indentation depth

on the coating for different mesh densities (governed by nc); the indentation force is

equal to 10 mN and `/h = 0.5. It can be observed that the indentation depth con-

verged for denser mesh densities. For further study, we take nc = 30 and the radius

Table 4.1. Indentation depth for various grid density and computational domain for

indenting force, F0 = 10 mN

Router wmax (nm) wmax (nm) wmax (nm) wmax (nm) wmax (nm)

(µm) nc = 10 nc = 15 nc = 20 nc = 25 nc = 30

50 0.1928 0.1973 0.1988 0.1995 0.1999

100 0.1919 0.1969 0.1986 0.1994 0.1998

150 0.1919 0.1968 0.1986 0.1994 0.1998

200 0.1919 0.1968 0.1986 0.1994 0.1998

of computational domain as 200 µm. Figure 4.3 shows a plot of indentation for vari-

ous values of the material length scale. We observe that as the material length scale

88



-200 -150 -100 -50 0 50 100 150 200

-200

-150

-100

-50

0

50

100

150

200

x(7m)

y
(7

m
)

Fig. 4.2 The grid for the computational domain for FE analysis.

increases the indentation depth decreases, and the indentation gets little bit more

spread over the area. As the larger value of the material length scale characterized

by denser CNT reinforcement, one can expect such behavior because the coating be-

comes harder in such cases. Figure 4.4 shows the variation of the indentation depth

with respect to the indentation force for various values of the material length scale

and the same with respect to the material length scale for different values of the

indentation force.

4.3. Chapter summary and conclusions

In this chapter, we have applied the rotation gradient dependent theory to analyze

nanoindentation of CNT-reinforced hard coatings on elastic substrates. Since such

gradient dependent theory requires C1 continuity of the displacement variables, which

is difficult to achieve in the case of a general quadrilateral element, a mixed finite

element formulation that requires C0 continuity of displacements and moments is

developed. The contact stiffness is obtained assuming smooth contact between the

coating and the substrate. We observe a stiffer response in the case of larger values
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(a) `/h = 0 (b) `/h = 0.3

(c) `/h = 0.5 (d) `/h = 1

Fig. 4.3 Indentation on the CNT reinforced coating on elastic substrate considering

different material length scale.
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of the material length scale parameter. In the present model of contact between

coating and substrate, no friction or roughness of the surfaces has been taken into

consideration; this omission may result in elevated values of the contact stiffness and

hence a stiffer response. To obtain a more realistic model, both the surface roughness

and the friction should be considered.
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5. A GENERAL HIGHER-ORDER THEORY FOR

ONE-DIMENSIONAL ANALYSIS

5.1. Introduction

In this chapter, we develop a general higher-order theory to analyze three-dimensional

body by one-dimensional model. All solid bodies are three-dimensional and can be

analyzed by 3-D elasticity to obtain their response due to various stimuli. The re-

duction of dimensionality is very common in solid mechanics. For example, various

beam theories convert the 3-D problem into 1-D problem by approximating the kine-

matics of deformation of the beam cross-section. Similarly, various plate and shell

theories (see Reddy [56]) convert the 3-D problem into 2-D problem by approximat-

ing the deformation of lines perpendicular to the mid-surface of the plate or shell.

The approximation of the deformation of cross-section in the case of beam theories

is such that it can be said to be a good approximation if the width and height are

less compared to the length of the body; similar is the case of plate and shell the-

ories when the thickness is very small compared to the inplane dimensions. In the

present study, we generalize the assumed approximation of the displacement field of

the cross-section or slices of the solid body by considering general basis functions in

the polar coordinate system in the plane of the cross-section, for example, by the

Fourier series in polar coordinate or other similar series of polynomial basis func-

tions. In such approximations of the displacement field, the coefficients of various

basis functions have attenuating values for higher-order basis functions. Hence trun-

cated Fourier series or other appropriate polynomial series would be good enough for

approximating the displacement field of the cross-section of a body. Based on such

prior general displacement approximation, we use the principle of virtual displace-

ment to obtain the governing differential equation of a three-dimensional body, with

the coefficients of the basis functions used in approximation as unknowns in the case

of large deformation.

The present formulation of converting three-dimensional problem to one-dimensional

problem and developing its finite element model have not been reported in present

solid mechanics literature. Solid mechanics problems of three- or two-dimensional

bodies can be analyzed by three- or two-dimensional finite element models, but
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one-dimensional analysis of such problem certainly reduces the computational effort.

One-dimensional finite element model allows higher-order continuity (i.e., Cn, n > 0

continuity) or any order with any number of nodes with the general Hermite inter-

polation functions, which is not possible in the case of two- or three-dimensional

problems. Problems with higher-order continuity requirement of the unknown vari-

ables arises very often in Cosserat continuum and other nonlocal continuum theories;

for example, rotation gradient dependent theory for Cosserat continua (see Srinivasa

and Reddy [19] and Arbind, Reddy and Srinivasa [52, 57]) require C1 continuity

of the dependent variables in the case of beam, plate, and shell structures. Other

higher-order strain gradient-dependent theories (see Khodabakhshi and Reddy [58])

require C2 or higher-order continuity of unknown variables. In such cases, reduction

of 2-D or 3-D problem to 1-D analysis would be very useful as far as finite element

modeling is concerned.

For the present higher-order theory, a nonlinear finite element model is also de-

veloped. This model can be used to analyze various shell structures (e.g., cylindrical

with constant or varying radius or structures with solid arbitrary cross-sections).

Other applications could be to model straight ducts or beams with arbitrary cross

sections under a system of body or traction forces in three dimensions. The existing

2-D or 3-D beam theories would not be able to model such a phenomenon.

5.2. The governing equation of motion

Let us consider a cylindrical coordinate system (x, r, θ) in the reference frame of the

solid body, whose axis coincide with the x-axis. The polar coordinate (r, θ) define

the cross-section of the body, whose normal is along the x-axis. The solid body is

acted upon a system of body and traction forces which tend to deform the body.

The displacement field at a point in the assumed coordinate system is given by

u = uxêx + urêr + uθêθ (5.1)

where êx, êr, and êθ are orthonormal basis vectors. In full generality, we approximate

the components of displacement field of the cross-section of the body as follows:

ux = φ(0)

x (x) +

nθ∑
j=1

nr∑
i=0

fi(r)(sin(jθ)φ(k1)

x (x) + cos(jθ)φ(k2)

x (x)) = AxΦx
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ur = φ(0)

r (x) +

mθ∑
j=1

mr∑
i=0

fi(r)(sin(jθ)φ(k1)

r (x) + cos(jθ)φ(k2)

r (x)) = ArΦr

uθ = φ(0)

θ (x) +

pθ∑
j=1

pr∑
i=0

fi(r)(sin(jθ)φ(k1)

θ (x) + cos(jθ)φ(k2)

θ (x)) = AθΦθ (5.2)

where

Ax = [ax (cos θ)ax (sin θ)ax (cos 2θ)ax (sin 2θ)ax . . . (cosnθθ)ax (sinnθθ)ax]

Ar = [ar (cos θ)ar (sin θ)ar (cos 2θ)ar (sin 2θ)ar . . . (cosmθθ)ar (sinmθθ)ar]

Aθ = [aθ (cos θ)aθ (sin θ)aθ (cos 2θ)aθ (sin 2θ)aθ . . . (cos pθθ)aθ (sin pθθ)aθ]

(5.3)

where

ax = [1 f1(r) f2(r) . . . fnr(r)]

ar = [1 f1(r) f2(r) . . . fmr(r)]

aθ = [1 f1(r) f2(r) . . . fpr(r)] (5.4)

and

Φx = [φ(0)
x φ(1)

x φ(2)
x . . . φ(ñ)

x
]T , ñ = (1 + nr)(1 + 2nθ)

Φr = [φ(0)
r φ(1)

r φ(2)
r . . . φ(m̃)

r
]T , m̃ = (1 +mr)(1 + 2mθ)

Φθ = [φ(0)

θ φ(1)

θ φ(2)

θ . . . φ(p̃)

θ
]T , p̃ = (1 + pr)(1 + 2pθ) (5.5)

where fi(r) are basis functions of r, which could a polynomial of the type fi(r) = ri

or linear combination of Bessel functions of the first and second kinds. If we consider

linear combination of Bessel functions of the first and second kinds for fi(r), the

approximations of displacement components become the Fourier series in the polar

coordinate system; φ(0)
x = u, φ(0)

r = v, and φ(0)

θ = w are the displacements of the

centroid of the cross-section along the unit basis vectors of the assumed coordinate

system, namely, êx, êr, and êθ, respectively. The displacement vector at a point can
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be written as:

u = AΦ, where A =

Ax 0 0

0 Ar 0

0 0 Aθ

 , Φ =


Φx

Φr

Φθ

 , u =


ux
ur
uθ

 (5.6)

Based on the above displacement field, the components of Green–Lagrange strain

tensor in the assumed cylindrical coordinate system can be given as follows:

Exx = AxΦx,x + (1/2)((AxΦx,x)
2 + (AθΦθ,x)

2 + (ArΦr,x)
2)

Err = Ar,rΦr + (1/2)
(
(Ar,rΦr)

2 + (Aθ,rΦθ)
2 + (Ax,rΦx)

2
)

Eθθ = (1/r)(ArΦr + Aθ,θΦθ) + (1/2r2)((Ar,θΦr −AθΦθ)
2

+(ArΦr + Aθ,θΦθ)
2 + (Ax,θΦx)

2)

2Erθ = (1/r)Ar,θΦr + Aθ,rΦθ − (1/r)AθΦθ + (1/r)((Ar,rΦr)(Ar,θΦr −AθΦθ)

+(Aθ,rΦθ)(ArΦr + Aθ,θΦθ) + (Ax,rΦx)(Ax,θΦx))

2Erx = ArΦr,x + Ax,rΦx + (Ar,rΦr)(ArΦr,x) + (Aθ,rΦθ)(AθΦθ,x)

+(Ax,rΦx)(AxΦx,x)

2Eθx = AθΦθ,x + (1/r)Ax,θΦx + (1/r)((Ar,θΦr −AθΦθ)(ArΦr,x)

+(Aθ,θΦθ + ArΦr)(AθΦθ,x) + (Ax,θΦx)(AxΦx,x)) (5.7)

where ( ),x represent the derivative with respect to x and so on. The Green-Lagrange

strain tensor can be rewritten in vector form as:

E = (A1 +
1

2
Anl)Φ + (A2 +

1

2
Anlx)

dΦ

dx
(5.8)

where

E =

[
Exx Err Eθθ 2Erθ 2Erx 2Eθx

]T
, Φ =

[
ΦT
x ΦT

r ΦT
θ

]T

A1 =



0 0 0

0 Ar,r 0

0 (1/r)Ar (1/r)Aθ,θ

0 (1/r)Ar,θ Aθ,r − (1/r)Aθ

Ax,r 0 0

(1/r)Ax,θ 0 0


, A2 =



Ax 0 0

0 0 0

0 0 0

0 0 0

0 Ar 0

0 0 Aθ


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Anl =



0 0 0

ux,rAx,r ur,rAr,r uθ,rAθ,r

ux,θ
r2 Ax,θ

1
r2

{
(ur,θ − uθ)Ar,θ

+(ur + uθ,θ)Ar

} 1
r2

{
(uθ − ur,θ)Aθ

+(ur + uθ,θ)Aθ,θ

}
1
r

{
ux,rAx,θ

+ux,θAx,r

} 1
r

{
(ur,θ − uθ)Ar,r

+ur,rAr,θ + uθ,rAr

} 1
r

{
(ur + uθ,θ)Aθ,r

+uθ,rAθ,θ − ur,rAθ

}
ux,xAx,r ur,xAr,r uθ,xAθ,r

ux,x
r

Ax,θ
1
r

{
ur,xAr,θ + uθ,xAr

}
1
r

{
uθ,xAθ,θ − ur,xAθ

}



Anlx =



ux,xAx ur,xAr uθ,xAθ

0 0 0

0 0 0

0 0 0

ux,rAx ur,rAr uθ,rAθ
1
r
ux,θAx

1
r
(ur,θ − uθ)Ar

1
r
(uθ,θ + ur)Aθ


(5.9)

Now, let us consider the following potential energy due to strain,

U =

∫ L

0

∫
A

1

2
E ·Ce · E dAdx (5.10)

Where L is the length of the body along the x-axis, A is the cross-sectional area and

Ce is the material constant of elasticity. And the energy conjugate stress tensor of

the Green-Lagrange strain tensor i.e. the second Piola stress tensor can be obtained

as following vector form:

S = Ce · E (5.11)

Further the first variation in potential energy can be given as:

δU =

∫ L

0

∫
A

δE · S dAdx
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=

∫ L

0

δΦ · (M1 + Mnl) +
dδΦ

dx
· (Mnlx + M2) dx (5.12)

where

Mj =

∫
A

AT
j S dA for j = 1, 2

Mnl =

∫
A

AT
nlS dA, Mnlx =

∫
A

AT
nlxS dA (5.13)

Now let us consider that fb is the body force applied on per unit deformed volume and

qi are traction force applied on the ith boundary surfaces (inner and outer surfaces in

case of hollow structures) of the body in the deformed (current) configuration, then

the virtual work done by the applied forces in the course of virtual displacement δu

in the deformed configuration can be given as following:

δV = −
(∫

v

fb · δu dv +

∫
S̄i

qi · δu dS̄i
)

(5.14)

where dv and dS̄i are the infinitesimal volume and area element in the deformed con-

figuration. The corresponding volume and area element dV and dSi in the reference

configuration can be given as following:

dv = det(F) dV, dS̄in = det(F) F−T · (dSiN) (5.15)

where F is the deformation gradient and n and N are the outward unit normal vector

to the area element in deformed and the reference configuration respectively (see

Appendix C for the expression of N for an arbitrary surface in assumed cylindrical

coordinate system in reference configuration). The magnitude of area element and

the normal vector can be transformed back to the reference frame as following:

dS̄i = det(F)
√

(C−1 ·N) ·N dSi, n =
F−T ·N√

(C−1 ·N) ·N
(5.16)

where C = FT · F is the right Cauchy–Green deformation tensor. Using eqs. (5.14),

(5.15) and (5.16), the virtual work done by the external forces can be rewritten as

following:

δV = −
∫
V

(det(F)fb) · δu dV −
∫
Si

(
det(F)

√
(C−1 ·N) ·N

)
qi · δu dSi
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= −
∫ L

0

[ ∫
A

(det(F)fb) · δu dA+

∫ 2π

0

(
det(F)

√
(C−1 ·N) ·N

)
qi · δu

√
Gi dθ

]
dx

= −
∫ L

0

δΦ · f̂ dx (5.17)

where f̂ is defined as follows (given fb = fbx êx +fbr êr +fbθ êθ and qi = qxi êx + qri êr +

qθi êθ):

f̂ =

[
f̂x f̂r f̂θ

]T
,

f̂x =

∫
A

det(F)fbxA
T
x dA+

∫ 2π

0

√
Gi

(
det(F)

√
(C−1 ·N) ·N

)
qxiA

T
x dθ

f̂r =

∫
A

det(F)fbrA
T
r dA+

∫ 2π

0

√
Gi

(
det(F)

√
(C−1 ·N) ·N

)
qriA

T
r dθ

f̂θ =

∫
A

det(F)fbθA
T
θ dA+

∫ 2π

0

√
Gi

(
det(F)

√
(C−1 ·N) ·N

)
qθiA

T
θ dθ

(5.18)

and Gi is the determinant of covariant matric tensor for surface coordinate (x, θ) for

the ith boundary surface of the body which is defined by ri(x, θ) in the reference

frame (see Appendix C for details). For an arbitrary boundary surface, Gi can be

given as following:

Gi =

(
∂ri(x, θ)

∂θ

)2

+ (ri(x, θ))
2 +

(
ri(x, θ)

∂ri(x, θ)

∂x

)2

(5.19)

If the body force is given as force per unit mass then it can be expressed as fb = ρfm =

(ρ0/det(F))fm. Here ρ and ρ0 are the mass density of the body in the deformed and

reference configuration respectively. A very common example of distributed traction

force at the boundary surface is pressure force which can be given as qi = P0in =

(P0i/
√

(C−1 ·N) ·N)F−T ·N, where P0i is the magnitude of the pressure. The point

load at any point can be considered as dirac delta function in two dimensions for the

surface traction force and but it should be noted that constant point force means

the volume under such dirac-delta function should be taken as constant and it would

not depend on the deformation. Further, from the principle of virtual displacement

(see Reddy [41]), we can write the following:

0 = δU + δV
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=

∫ L

0

δΦ ·
(

(M1 + Mnl)−
d

dx
(M2 + Mnlx)− f̂

)
dx+ [δΦ · (M2 + Mnlx)]

L
0

(5.20)

From the above equation, we arrive at the following Euler-Lagrange equation (the

equation of motion):

(M1 + Mnl)−
d

dx
(M2 + Mnlx)− f̂ = 0 (5.21)

and the essential and natural boundary variables are

δΦ : M2 + Mnlx
(5.22)

The equation of motion (Eq. (5.21)) can be solved for the unknown displacement

variables by various numerical methods like finite element method or finite difference

method. In the following sections we have developed a nonlinear finite element model

to obtain the solution of the governing equation.

5.3. Constitutive relation

In this study, we will consider isotropic and homogeneous material with the linear

relation between second Piola stress tensor and Green-Lagrange strain tensor:

S = Ce · E (5.23)

where

Ce =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν)

0

0 0 0 0 0 1−2ν
2(1−ν)


E =

[
Exx Err Eθθ 2Erθ 2Erx 2Eθx

]T
S =

[
Sxx Srr Sθθ Srθ Srx Sθx

]T
(5.24)

where E and ν are the modulus of elasticity and Poisson’s ratio respectively.
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5.4. Weak form finite element model

In order to develop a weak form finite element model for the above formulation, we

divide the computational domain [0, L] into non-overlapping finite elements, Ωe =

[xe1, x
e
2]. Further we write the weak form the governing equation of motion Eq. (5.21)

in terms of displacement variables as following:

0 =

∫ xe2

xe1

∫
A

[(
(A1 + Anl)δΦ + (A2 + Anlx)

dδΦ

dx

)
·Ce

(
(A1 +

1

2
Anl)Φ

+(A2 +
1

2
Anlx)

dΦ

dx

)
− δΦ · f̂

]
dAdx (5.25)

We approximate the degrees of freedom vector as:

Φ(x) = Ψ(x)U (5.26)

where Ψ(x) is matrix of shape functions which are function of x and U is vector of

displacement variables at nodal points which is defined as following:

Ψ =



ψ(1)

1 . . . ψ(1)

ñ1
0 . . . 0 . . . 0 . . . 0

0 . . . 0 ψ(2)

1 . . . ψ(2)

ñ2
. . . 0 . . . 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 . . . 0 0 . . . 0 . . . ψ(n)

1 . . . ψ(n)

ñp


(5.27)

U =

[
u11 . . . u1ñ1

u21 . . . u2ñ2
. . . un1 . . . unñn

]T
(5.28)

where ñ1, ñ2, · · · ñn are the number of nodal values for u1, u2, · · · , un respectively in

the considered element. n is the total number of Dofs. And

u1 = φ(0)

x , u2 = φ(1)

x , · · · u(ñ) = φ(ñ)

x

uñ+1 = φ(0)

r , uñ+2 = φ(1)

r , · · · uñ+m̃ = φ(m̃)

r

uñ+m̃+1 = φ(0)

θ , uñ+m̃+2 = φ(1)

θ , · · · uñ+m̃+p̃ = φ(p̃)

θ .

(5.29)

We substitute the approximation of dofs and δΦ = Ψl̃ (where l̃ is the column vector

with all element unity and as many elements as the columns of Ψ) into the weak
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form Eq. (5.25) to arrive at the following finite element equation:

KU− f = 0 (5.30)

where K and f are the stiffness matrix and force vector respectively, which are given

as follows:

K =

∫ xe2

xe1

ΨT

(
H1Ψ + H2

dΨ

dx

)
+
dΨ

dx

T (
H3Ψ + H4

dΨ

dx

)
dx

f =

∫ xe2

xe1

ΨT f̂ dx (5.31)

where

H1 =

∫
A

(A1 + Anl)
TCe(A1 +

1

2
Anl) dA, H2 =

∫
A

(A1 + Anl)
TCe(A2 +

1

2
Anlx) dA

H3 =

∫
A

(A2 + Anlx)
TCe(A1 +

1

2
Anl) dA, H4 =

∫
A

(Anlx + A2)TCe(A2 +
1

2
Anlx) dA

(5.32)

We note here that matrices Anl and Anlx depend on the displacement variables hence

the stiffness matrix is nonlinear and also not symmetric. The nonlinear finite element

equation can be solved by direct (Picard) method or Newton’s method (see Reddy

[46]). For the (t+ 1)th iteration of Newton’s method, the solution can be expressed

as:

T(Ut)δUt+1 = −(K(Ut))Ut − f(Ut), and, Ut+1 = Ut + δUt+1 (5.33)

where T is the tangent matrix, which is given by

T = D(KU− f) = (DK)U + K−Df

= K +

∫ xe2

xe1

ΨT

(
H̃1Ψ + H̃2

dΨ

dx

)
+
dΨ

dx

T (
H̃3Ψ + H̃4

dΨ

dx

)
dx

+

∫ xe2

xe1

ΨT

(
P̃1Ψ + P̃2

dΨ

dx

)
+
dΨ

dx

T (
P̃3Ψ + P̃4

dΨ

dx

)
dx−

∫ xe2

xe1

ΨT P̃fΨ dx

(5.34)

where D(K) represent the derivative of K with respect to U and

H̃1 =
1

2

∫
A

(A1 + Anl)
TCeAnl dA, H̃2 =

1

2

∫
A

(A1 + Anl)
TCeAnlx dA
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H̃3 =
1

2

∫
A

(A2 + Anlx)
TCeAnl dA, H̃4 =

1

2

∫
A

(A2 + Anlx)
TCeAnlx dA

(5.35)

and

P̃1 =

∫
A


P11

1 0 0

0 P22
1 P23

1

0 P32
1 P33

1

 dA, P̃2 =

∫
A


P11

2 0 0

0 P22
2 P23

2

0 P32
2 P33

2

 dA

P̃3 =

∫
A


P11

3 0 0

0 P22
3 P23

3

0 P32
3 P33

3

 dA, P̃4 =

∫
A


P11

4 0 0

0 P22
4 0

0 0 P33
4

 dA (5.36)

The block components of matrix P̃i for i = 1, 2, 3, 4 are given as following:

P11
1 = SrrA

T
x,rAx,r +

1

r2
SθθA

T
x,θAx,θ +

1

r
Srθ(A

T
x,θAx,r + AT

x,rAx,θ)

P22
1 = SrrA

T
r,rAr,r +

1

r2
Sθθ(A

T
r,θAr,θ + AT

r Ar) +
1

r
Srθ(A

T
r,rAr,θ + AT

r,θAr,r)

P23
1 =

1

r2
Sθθ(−AT

r,θAθ + AT
r Aθ,θ) +

1

r
Srθ(−AT

r,rAθ + AT
r Aθ,r)

P32
1 =

1

r2
Sθθ(−AT

θ Ar,θ + AT
θ,θAr) +

1

r
Srθ(A

T
θ,rAr −AT

θ Ar,r)

P33
1 = SrrA

T
θ,rAθ,r +

1

r2
Sθθ(A

T
θ Aθ + AT

θ,θAθ,θ) +
1

r
Srθ(A

T
θ,rAθ,θ + AT

θ,θAθ,r)

P11
2 = SrxA

T
x,rAx +

1

r
SθxA

T
x,θAx

P22
2 = SrxA

T
r,rAr +

1

r
SθxA

T
r,θAr

P23
2 =

1

r
SθxA

T
r Aθ

P32
2 = −1

r
SθxA

T
θ Ar

P33
2 = SrxA

T
θ,rAθ +

1

r
SθxA

T
θ,θAθ

P11
3 = SrxA

T
xAx,r +

1

r
SθxA

T
xAx,θ

P22
3 = SrxA

T
r Ar,r +

1

r
SθxA

T
r Ar,θ

P23
3 = −1

r
SθxA

T
r Aθ

P32
3 =

1

r
SθxA

T
θ Ar
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P33
3 = SrxA

T
θ Aθ,r +

1

r
SθxA

T
θ Aθ,θ

P11
4 = SxxA

T
xAx

P22
4 = SxxA

T
r Ar

P33
4 = SxxA

T
θ Aθ (5.37)

And P̃f is the matrix related to nonlinear force term in the tangent matrix. If

the body force is given as force per unit mass then the body force can be given as

fb = ρfm = (ρ0/det(F))fm.

f̂ =

[
f̂x f̂r f̂θ

]T
,

f̂x =

∫
A

ρ0fmxA
T
x dA+

∫ 2π

0

√
Gi qxi ζA

T
x dθ

f̂r =

∫
A

ρ0fmrA
T
r dA+

∫ 2π

0

√
Gi qri ζA

T
r dθ

f̂θ =

∫
A

ρ0fmθA
T
θ dA+

∫ 2π

0

√
Gi qθi ζA

T
θ dθ (5.38)

where ζ =
(

det(F)
√

(C−1 ·N) ·N
)

. If the force (per unit area) vector qi does

not depends on deformed configuration (i.e. the magnitude and direction of qi is

independent of deformed configuration) then the matrix P̃f used in tangent matrix

can be given as following:

P̃f =

∫ 2π

0

√
Gi

qxi
∂ζ
∂ux

AT
xAx qxi

∂ζ
∂ur

AT
xAr qxi

∂ζ
∂uθ

AT
xAθ

qri
∂ζ
∂ux

AT
r Ax qri

∂ζ
∂ur

AT
r Ar qri

∂ζ
∂uθ

AT
r Aθ

qθi
∂ζ
∂ux

AT
θ Ax qθi

∂ζ
∂ur

AT
θ Ar qθi

∂ζ
∂uθ

AT
θ Aθ

 dθ (5.39)

The constant point force with fixed direction, qi can be expressed as dirac-delta

function in two dimensions. But in this case, we note that constant point force

means the volume under the two dimensional dirac-delta function should be taken as

constant and it would not depend on the deformation. And further, the derivative
∂ζ
∂α

in Eq. (5.39) for α = ux, ur, uθ can be given as following:

∂ζ

∂α
=
∂det(F)

∂α

√
(C−1 ·N) ·N)− det(F)

2
√

(C−1 ·N) ·N)

(
(C−1 · ∂C

∂α
·C−1) ·N

)
·N

(5.40)
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where

∂det(F)

∂α
= cofactor(Fij)

∂Fij
∂α

,
∂C

∂α
=
∂FT

∂α
· F + FT · ∂F

∂α
(5.41)

and Fij are the components of F in the assumed coordinate system, and sum on

repeated indices is implied.

Another very common example of the distributed traction force at the boundary

surface is the pressure, which can be given as qi = P0in = (P0i/
√

(C−1 ·N) ·N)F−T ·
N, where P0i is the magnitude of the pressure. If we use two-dimensional Dirac delta

function for P0 such that the volume under the Dirac delta function (of x and θ)

remains constant, we obtain a constant follower force, which acts always along the

normal direction to the surface at the point of application. In such cases we have,

f̂x =

∫ 2π

0

√
Gi P0i ζxA

T
x dθ, f̂r =

∫ 2π

0

√
Gi P0i ζrA

T
r dθ, f̂θ =

∫ 2π

0

√
Gi P0i ζθA

T
θ dθ

(5.42)

where ζ = det(F) F−T ·N = ζxêx+ζrêr +ζθêθ. Then the the matrix P̃f can be given

as following:

P̃f =

∫ 2π

0

√
Gi P0i


∂ζx
∂ux

AT
xAx

∂ζx
∂ur

AT
xAr

∂ζx
∂uθ

AT
xAθ

∂ζr
∂ux

AT
r Ax

∂ζr
∂ur

AT
r Ar

∂ζr
∂uθ

AT
r Aθ

∂ζθ
∂ux

AT
θ Ax

∂ζθ
∂ur

AT
θ Ar

∂ζθ
∂uθ

AT
θ Aθ

 dθ (5.43)

where the derivative ∂ζ
∂α

for α = ux, ur, uθ can be given as following:

∂ζ

∂α
=

∂ζx
∂α

êx +
∂ζr
∂α

êr +
∂ζθ
∂α

êθ

=
∂det(F)

∂α
F−T ·N− det(F)

(
F−T · ∂FT

∂α
· F−T

)
·N (5.44)

We note that the tangent matrix is not symmetric due to Df in Eq. (5.34) but the

part of the tangent matrix coming from the derivative of KU is symmetric. To keep

the symmetry, the tangent matrix can be approximated by dropping Df terms from

the expression. This may make the convergence slower.
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5.5. Numerical examples

In this section, we employ the formulation developed herein to analyse cylindrical

shell structures under internal pressure and constant point forces.

5.5.1. Cylindrical shell with fixed edges subjected to internal pressure

Let us consider a hollow cylinder under constant internal pressure, with the following

geometrical properties:

L = 20 m, r1 = 5 m, r2 = 5.01 m (5.45)

where L is the length of the cylinder and r1 and r2 are the inner and outer radii

of the cylinder (see fig. 5.1). The material properties of the cylinder are taken as

Fig. 5.1 Original shape of the cylindrical shell.

follows:

E = 0.7× 109 N/ m2, ν = 0.3 (5.46)

This problem is one of the cases considered in the work of Rivera and Reddy [59] using

a 7-parameter shell theory; they have only considered non-displacement dependent
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internal pressure, that is, the pressure force is taken as radially distributed force and

have been calculated over the internal surface area of the cylinder in the reference

frame for all subsequent load steps. In the present study, we consider the nonlinearity

of pressure force due to the change in the inner surface area of the cylinder and the

normal direction at any point of the inner surface during the deformation. We also

consider the non-displacement dependent pressure to compare our results from the

7-parameter shell theory of Rivera and Reddy [59].

5.5.1.1. Linear analysis

The linear response for the maximum radial displacement of the cylindrical shell,

with both ends fixed, is presented in Table 5.1 for different orders of approximation

(nr, nθ), (mr,mθ) and (pr, pθ) of the three different components of the displacement

vector, using fi(r) = ri and fi(r) = Ji(r) as the radial basis functions in Eq. (5.2),

where Ji(r) is the Bessel function of the first kind. The internal pressure, P0, is taken

as 0.4 MPa in the linear analysis. All the unknown displacements (i.e., the degrees

of freedom) are approximated by either linear or quadratic Lagrange interpolation

functions. As can be seen from Table 5.1, the response for the maximum radial

displacement agrees with each other for the power of r or Bessel functions as radial

basis functions in Eq. (5.2). Further, we notice that the radial displacements are

not affected by the values of nθ, mθ, and pθ, which is expected because the problem

has a radial symmetry and hence the displacement vector should not depend on θ.

We also note that approximation up to the second order of radial basis functions

is good enough for the thickness of considered cylindrical shell. Also, Since the

problem has the radial symmetry, uθ will always be zero; hence we can remove the

terms that contain uθ from the analysis to reduce the size of the problem. So, if

we take nr,mr = 2 and uθ = 0 for this problem, there will be only six degrees of

freedom at each cross-section of the cylindrical shell; hence the size of the system

of algebraic equation can be reduced drastically as compared to shell theory for the

radially symmetric problems.

5.5.1.2. Nonlinear solution

Deformed shape of the same cylindrical shell which is described by Eqs. (5.45) and

(5.46) has been shown in figs. 5.2(a) and (b) for internal pressures, P0 = 0.6, 1 MPa,

respectively. For the nonlinear finite element analysis, twenty linear Lagrange inter-
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Table 5.1. Linear FEM solutions for maximum radial displacement of a cylindrical

shell under internal pressure, P0 = 0.04 MPa with fixed end boundary

condition.
order of approximation

Magnitude of displacement (in m) at (x, r, θ) = (10 m, r2, π/2).
of ux, ur and uθ

nr, nθ mr,mθ pr, pθ

linear element Quadratic element
no. of fi(r) = ri fi(r) = Ji(r) no. of fi(r) = ri fi(r) = Ji(r)

elements disp. disp. elements disp. disp.

1,0 1,0 1,0

20 0.13138 0.13135 10 0.13033 0.13030
40 0.13121 0.13117 20 0.13086 0.13083
60 0.13101 0.13097 30 0.13062 0.13059
80 0.13090 0.13086 40 0.13052 0.13048

2,0 2,0 2,0

20 0.13138 0.13138 10 0.13033 0.13033
40 0.13121 0.13121 20 0.13086 0.13086
60 0.13101 0.13101 30 0.13062 0.13062
80 0.13090 0.13090 40 0.13051 0.13051

3,0 3,0 3,0

20 0.13138 0.13138 10 0.13033 0.13033
40 0.13121 0.13121 20 0.13086 0.13086
60 0.13101 0.13101 30 0.13062 0.13062
80 0.13091 0.13090 40 0.13051 0.13051

1,1 1,1 1,1

20 0.13138 0.13135 10 0.13033 0.13030
40 0.13121 0.13117 20 0.13086 0.13083
60 0.13101 0.13097 30 0.13062 0.13059
80 0.13090 0.13086 40 0.13052 0.13048

1,2 1,2 1,2

20 0.13138 0.13135 10 0.13033 0.13030
40 0.13121 0.13117 20 0.13086 0.13083
60 0.13101 0.13097 30 0.13062 0.13059
80 0.13090 0.13086 40 0.13052 0.13048

1,3 1,3 1,3

20 0.13138 0.13135 10 0.13033 0.13030
40 0.13121 0.13117 20 0.13086 0.13083
60 0.13101 0.13097 30 0.13062 0.13059
80 0.13090 0.13086 40 0.13052 0.13048
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polation functions have been used for approximating all degrees of freedom.The or-

ders of the approximation for the displacement components are taken as nr = mr = 2,

and nθ = mθ = 0 (with uθ = 0). Newton’s method has been employed to solve the

nonlinear finite element equations with error tolerance of 10−3. In Table 5.2, maxi-

(a) P0 = 0.6 MPa (b) P0 = 1 MPa

Fig. 5.2 Deformed shape of cylindrical shell under internal pressure.

mum radial displacements of the cylindrical shell are presented for various values of

the internal pressure for non-displacement dependent as well as fully nonlinear cases.

Twenty linear Lagrange elements are used in the nonlinear finite element analysis.

To solve the nonlinear equations, the Direct (Picard) method is used with the error

tolerance of 10−2. The maximum radial displacements from the 7-parameter shell

theory1 (see Rivera and Reddy [59]) are also tabulated for comparison. Also, fig. 5.3

shows the variation of the maximum radial displacements with respect to the magni-

tudes of internal pressure (for both non-displacement dependent and fully nonlinear

internal pressure) from the one-dimensional theory presented in this study and those

of Rivera and Reddy [59]. The response from two studies agrees with each other

for the non-displacement dependent internal pressure. But for fully nonlinear pres-

sure, when the pressure increases, difference between responses from the two different

analyses (non-displacement dependent and nonlinear pressure) differ, which is justi-

1The solution data for 7-parameter shell theory, using finite element method, is provided by
Dr. Miguel G. Rivera.
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fied because, in the case of nonlinear pressure, the change in inner boundary surface

area (and its normal direction) of the cylindrical shell is taken into consideration

and hence the pressure force increases with deformation and hence the deflection

increases in comparison to the same from non-displacement dependent pressure.

Table 5.2. Comparison of maximum radial displacement of cylindrical shell by one

dimensional (1-D) theory and 7-parameter shell theory by nonlinear anal-

ysis.

Internal Max. radial displacement (in m)

pressure 7-parameter 1-D theory 1-D theory

(MPa) shell theory (non-disp. dependent (Fully nonlinear

(see [59]) pressure) pressure)

0.12 0.3497 0.3515 0.3748

0.24 0.6427 0.6456 0.7244

0.36 0.8984 0.9003 1.0547

0.48 1.1274 1.1308 1.3741

0.60 1.3359 1.3395 1.6831

0.72 1.5280 1.5315 1.9897

0.84 1.7068 1.7105 2.2956

0.96 1.8744 1.8783 2.5976

5.5.2. Pinched cylindrical shell with fixed edges

For the second example, we consider a cylindrical shell of the following geometric

and material properties:

L = 4 in, r1 = 0.5 in, r2 = 0.51 in (5.47)

E = 10× 106 psi, ν = 0.3, (5.48)

Both ends of the cylinder are completely fixed. Two pinching point forces are applied

at the middle point of the cylinder at θ = 0 and θ = π towards the central axis of

the cylinder, as shown in fig. 5.4.

110



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Internal pressure (MPa)

M
ax

. r
ad

ia
l d

is
p.

 (m
)

 

 

Shell theory [59] (non-displ. dependent pressure)
1-D theory (non-displ. dependent pressure)
1-D theory (fully nonlinear pressure)

Fig. 5.3 Comparison of maximum radial displacement of cylindrical shell by present

one-dimensional theory and 7-parameter shell theory.

Fig. 5.4 Original shape of cylindrical shell with applied point force.
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5.5.2.1. Linear analysis

The radial displacements at the point of pinching are tabulated in Table 5.3 for

various order of approximation of the displacements, considering the polynomial and

Bessel function of the first kind as radial basis function. The value of each point force

is taken as 0.2 kip. The displacement variables or the coefficients are approximated

by of linear and quadratic Lagrange elements. Here we observe that approximation

order up to two for all approximation orders nr,mr, pr, nθ,mθ, and pθ give convergent

response for both the radial basis functions used.

Table 5.3. Linear FEM solutions for maximum displacement of a cylindrical shell

considering various order of approximation of displacement in case of point

pinching forces with fixed end boundary condition.
order of approximation

Magnitude of displacement (in m) at (x, r, θ) = (0, r2, 0).
of us, ur and uθ

nr, nθ mr,mθ pr, pθ

linear element Quadratic element
no. of fi(r) = ri fi(r) = Ji(r) no. of fi(r) = ri fi(r) = Ji(r)

elements Disp. Disp. elements Disp. Disp.

1,2 1,2 1,2

20 0.06200 0.06212 10 0.06971 0.06986
40 0.06941 0.06956 20 0.07276 0.07292
60 0.07178 0.07194 30 0.07456 0.07473
80 0.07308 0.07324 40 0.07571 0.07587
100 0.07394 0.07411 50 0.07641 0.07658

1,3 1,3 1,3

20 0.06200 0.06212 10 0.06971 0.06986
40 0.06941 0.06956 20 0.07276 0.07292
60 0.07178 0.07194 30 0.07456 0.07473
80 0.07308 0.07324 40 0.07571 0.07587
100 0.07394 0.07411 50 0.07641 0.07658

2,2 2,2 2,2

20 0.06268 0.06268 10 0.07057 0.07057
40 0.07025 0.07025 20 0.07368 0.07368
60 0.07267 0.07267 30 0.07555 0.07555
80 0.07400 0.07400 40 0.07677 0.07677
100 0.07489 0.07489 50 0.07755 0.07755

2,3 2,3 2,3

20 0.06268 0.06268 10 0.07057 0.07057
40 0.07025 0.07025 20 0.07368 0.07368
60 0.07267 0.07267 30 0.07555 0.07555
80 0.07400 0.07400 40 0.07677 0.07677
100 0.07489 0.07489 50 0.07755 0.07755

3,3 3,3 3,3

20 0.06268 0.06268 10 0.07057 0.07057
40 0.07025 0.07025 20 0.07368 0.07368
60 0.07267 0.07267 30 0.07555 0.07555
80 0.07400 0.07400 40 0.07677 0.07677
100 0.07489 0.07489 50 0.07755 0.07755
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5.5.2.2. Nonlinear solution

For the nonlinear analysis, Newton’s method is employed with the error tolerance

equal to 10−3. Forty linear Lagrange elements have been used and all approximation

orders, nr,mr, pr, nθ,mθ, and pθ, are taken as 2. The deformed shape for two different

loads, F0 = 1 and 2 kip, are shown in figs. 5.5(a) and 5.5(b), respectively. Figure 5.6

shows the distribution of various components of the second Piola–Kirchhoff stress

tensor on the deformed configuration through the colormap.

(a) F0 = 1 kip (b) F0 = 2 kip

Fig. 5.5 Deformed shape of pinched cylindrical shell with both end fixed.

5.6. Chapter summary and conclusions

In the present chapter, we have developed a general higher-order theory for one-

dimensional analysis of 3-D solids based on a very general approximation of the

displacement field of the cross-section in the polar coordinate system. Based on

this displacement field, we have derived a one-dimensional governing equation by

using the principle of virtual displacement for large deformation. Further, we have

developed a weak-form finite element model for the same and applied in the analysis

of cylindrical shells under internal pressure and pinching point forces. The numerical

results have been validated against the results from a 7-parameter shell theory. Since

the present theory results in one-dimensional finite element model, 1-D higher order

continuity functions can be used. They proved to be very useful for the gradient

dependent theories, which require higher-order continuity. Also, for cases like radial
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(a) Sxx (b) Srr

(c) Sθθ (d) Srθ

(e) Srx (f) Sθx

Fig. 5.6 Various components of stress tensor for deformed pinched cylinder.
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symmetry, the size of obtained algebraic equations of the finite element formulations

is reasonable, as described in the numerical section. However, there is some limitation

as far as applying various boundary conditions, which is a limitation of this theory;

we can only apply the fixed boundary condition to any cross-section. Any other type

of boundary conditions can be applied as constraint condition in the finite element

model (something that is yet to be done).
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6. A GENERAL HIGHER ORDER ROD THEORY

6.1. Introduction

Rods are structural elements whose centroidal axes can be defined by a space curve

and are allowed to move in three-dimensional space. The simulation of rod-like

structures in three-dimensional space have many applications, for example, the ap-

plications in biophysics like simulation of DNA, surgical simulations or in other ar-

eas like, simulation of underwater cables, atomistic simulation of single-wall carbon

nanotube (SWCNT), or in computer graphics and robotics, gaming and animation

applications in simulating hair or other rod-like objects, to name a few. Histori-

cally, the study of bending of elastic rod dates back to 1691 by the work of James

Bernoulli. Euler [60] developed the statical theory of rods to analyze bending in its

own plane. He also developed a theory of bending of the skewed rod. Then, work

of St. Venant introduced the twist and principal torsion about the flexural axis.

The exact general equations were given in principle, but obscurely, by Kirchhoff and

explicitly by Clebsch, which were capable of modeling both bending and torsion of

rods. However, his treatment differs considerably from the modern treatments. In

the early years of the 20th century, the Cosserat brothers presented a formulation

of Kirchhoffs rod theory using what we now call directors in reference. Truesdell

and Ericksens studied the Cosserat brothers work on deformable media [1, 61]. The

term “director was introduced by Ericksen and Truesdell in 1958 [62]. The Kirch-

hoff’s rod theory has bending and torsional strains and an inextensible centerline

and doesn’t exhibit transverse shearing or dilations of the cross section, which can

be considered as a special case of Cosserat rod theory. The Cosserat rod theory

that accommodates the above additional effects is presented by Green, Naghdi, and

Wenner [63, 64]. The continuum formulation of the motion of aforementioned special

theory of Cosserat rod or Kirchhoff’s rod theory is well established due to the work of

Antman[65], Simo[66], and others. In order to obtain a numerical solution, Simo[67]

used linearized weak forms of the balance equations and obtained the finite element

formulation of three-dimensional finite strain rod model in which, for configuration

update, he used an exponential map instead of Euler angle. Goyal, Perkins, and Lee

[68] have studied nonlinear behavior of a rod to understand the mechanics of DNA
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and underwater cable in three-dimensional space by generalized alpha-method us-

ing a finite difference approach to solve the governing differential equations. Goyal,

Perkins, and Lee [69] also studied the nonlinear dynamic behavior of intertwining of

the rod with self-contact. Kumar, Mukherjee, Fang and co-workers [70, 71, 72, 73]

have studied the static deformation of single-walled carbon nanotube using Cosserat

rod model by weak form finite element model. Arbind and Reddy [74] have studied

the dynamic behavior of Kirchhoff rod using least-square finite element method.

To the best of our knowledge, there has not been any reported research for a

general rod theory which can model the deformation of the cross-section of the rod,

that is, shearing, dilations, and warping of the cross section of the rod in the ex-

isting literature. Most treatments of the rod are based on the rigid motion of the

cross-section of the rod during deformation. To fill this gap, we present a general

higher order rod theory, which can model a very general deformation of the cross-

section of the rod, which is not only specific to thin rod but can also model the

deformation of the rod having considerable dimensions as compared to its length

(see fig. 6.1). In the present general higher order rod theory, we consider a very

general approximation of the displacement field of the cross-section perpendicular

to the tangent of the central axis in the curvilinear cylindrical coordinate system.

The approximation function could be a general polar Fourier basis functions, which

has the attenuating values of the coefficient of higher-order basis functions. Based

on this displacement approximation, we develop the governing equation of motion

using the principle of virtual displacement for large deformation for the static case.

Further, to obtain the solution, we also develop the nonlinear finite element model,

followed by some numerical examples of applying the theory discussed herein. This

theory can be thought of as an extension of a general higher-order one-dimensional

theory in cylindrical coordinates of the previous chapter to a curvilinear cylindrical

coordinate system.

6.2. The governing equation of motion

Let us consider a curvilinear- cylindrical coordinate system (r, θ, s) in the reference

frame of the rod under investigation, where s is the arc length coordinate measured

along the reference curve of the rod and the cross-section of the rod lies in the plane

perpendicular to the tangent vector of the reference curve. The coordinate system

is shown in fig. 6.2 depicting (r, θ, s) coordinates . And at each point on the curve,
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(a) Spiral pipe (b) Spiral pipe with variable ra-
dius

(c) Torus (d) Trefoil knot

Fig. 6.1 Various bodies with the central axes defined by space curve.

the tangent T, principal normal P and binormal Q (see Appendix E for details) are

shown which form the orthonormal basis vectors. The θ coordinate are measured

from the principal normal to the binormal vector at any point of the reference curve

and r is the radial distance of any point from the reference curve in the normal plane.

Now let us consider that ês, êr and êθ are orthonormal basis vectors at any arbitrary

point in the curvilinear cylindrical coordinate system. The displacement field in this

coordinate system can be written as following:

u = usês + urêr + uθêθ (6.1)

In the full generality, we approximate the components of displacement field of the

cross-section of the rod as following:

us = φ(0)

s (s) +

nθ∑
j=1

nr∑
i=0

fi(r)(sin(jθ)φ(k1)

s (s) + cos(jθ)φ(k2)

s (s)) = AsΦs

ur = φ(0)

r (s) +

mθ∑
j=1

mr∑
i=0

fi(r)(sin(jθ)φ(k1)

r (s) + cos(jθ)φ(k2)

r (s)) = ArΦr
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Fig. 6.2 Curvilinear cylindrical coordinate system.

uθ = φ(0)

θ (s) +

pθ∑
j=1

pr∑
i=0

fi(r)(sin(jθ)φ(k1)

θ (s) + cos(jθ)φ(k2)

θ (s)) = AθΦθ (6.2)

where

As =

[
as (cos θ)as (sin θ)as (cos 2θ)as (sin 2θ)as . . . (cosnθθ)as (sinnθθ)as

]
Ar =

[
ar (cos θ)ar (sin θ)ar (cos 2θ)ar (sin 2θ)ar . . . (cosmθθ)ar (sinmθθ)ar

]
Aθ =

[
aθ (cos θ)aθ (sin θ)aθ (cos 2θ)aθ (sin 2θ)aθ . . . (cos pθθ)aθ (sin pθθ)aθ

]
(6.3)

where

as =

[
1 f1(r) f2(r) . . . fnr(r)

]
ar =

[
1 f1(r) f2(r) . . . fmr(r)

]
aθ =

[
1 f1(r) f2(r) . . . fpr(r)

]
(6.4)
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and

Φs =

[
φ(0)
s φ(1)

s φ(2)
s . . . φ(ñ)

s

]T
, ñ = (1 + nr)(1 + 2nθ)

Φr =

[
φ(0)
r φ(1)

r φ(2)
r . . . φ(m̃)

r

]T
, m̃ = (1 +mr)(1 + 2mθ)

Φθ =

[
φ(0)

θ φ(1)

θ φ(2)

θ . . . φ(p̃)

θ

]T
, p̃ = (1 + pr)(1 + 2pθ) (6.5)

where fi(r) are basis functions in variable r which could the polynomial fi(r) = ri or

linear combination of Bessel function of first and second kind. If we consider Bessel

functions for fi(r), the approximations of displacements components becomes the

Fourier series in polar coordinate system. And φ(0)
s , φ(0)

r and φ(0)

θ are the displace-

ment of the centroid of the cross-section along the unit basis vectors of the assumed

coordinate system namely along ês, êr and êθ respectively. Then the displacement

vector at a point can also be written as following:

u = AΦ, where A =

As 0 0

0 Ar 0

0 0 Aθ

 , Φ =


Φs

Φr

Φθ

 , u =


us
ur
uθ

 (6.6)

The Green-Lagrange strain tensor can be given as following:

E =
1

2
(∇u + (∇u)T + (∇u) · (∇u)T ) (6.7)

Based on the displacement field given in Eq. (6.2), the components of Green-Lagrange

strain tensor in the assumed cylindrical curvilinear co-ordinate system (see Appendix

D for detail derivation) can be given as following:

Ess = (AsΦs,s − κ cos θArΦr + κ sin θAθΦθ) +
1

2
(AsΦs,s − κ cos θArΦr

+κ sin θAθΦθ)
2 +

1

2
(ArΦr,s + κ cos θAsΦs − τ AθΦθ)

2

+
1

2
(AθΦθ,s − κ sin θAsΦs + τArΦr)

2

Err = Ar,rΦr +
1

2
(As,rΦs − κ cos θAsΦs)

2 +
1

2
(Ar,rΦr)

2 +
1

2
(Aθ,rΦθ + τ AsΦs)

2

Eθθ =
1

r
(Aθ,θΦθ + ArΦr) +

1

2

[(
1

r
As,θΦs + κ sin θAsΦs

)2
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+

(
1

r
Ar,θΦr − τ AsΦs −

AθΦθ

r

)2

+

(
1

r
Aθ,θΦθ +

ArΦr

r

)2
]

2Erθ =
1

r
Ar,θΦr −

AθΦθ

r
+ Aθ,rΦθ + (As,rΦs − κ cos θAsΦs)

(
1

r
As,θΦs

+κ sin θAsΦs) + (Ar,rΦr)

(
1

r
Ar,θΦr − τ AsΦs −

1

r
AθΦθ

)
+ (Aθ,rΦθ + τ AsΦs)

(
1

r
Aθ,θΦθ +

1

r
ArΦr

)
2Eθs = AθΦθ,s +

1

r
As,θΦs + τArΦr

+

(
1

r
As,θΦs + κ sin θAsΦs

)
(AsΦs,s − κ cos θArΦr + κ sin θAθΦθ)

+

(
1

r
Ar,θΦr − τ AsΦs −

AθΦθ

r

)
(ArΦr,s + κ cos θAsΦs − τAθΦθ)

+
1

r
(Aθ,θΦθ + ArΦr) (AθΦθ,s − κ sin θAsΦs + τArΦr)

2Esr = As,rΦs + ArΦr,s − τ AθΦθ

+ (AsΦs,s − κ cos θArΦr + κ sin θAθΦθ) (As,rΦs − κ cos θAsΦs)

+(Ar,rΦr) (ArΦr,s + κ cos θAsΦs − τAθΦθ)

+ (AθΦθ,s − κ sin θAsΦs + τArΦr) (Aθ,rΦθ + τ AsΦs) (6.8)

where ( ),s represent the derivative with respect to s and so on. The strain tensor

can be rewritten in vector form as follows:

E = (A1 +
1

2
Anl)Φ + (A2 +

1

2
Anls)

dΦ

ds
(6.9)

where

E =

[
Ess Err Eθθ 2Erθ 2Eθs 2Esr

]T
, Φ =

[
ΦT
s ΦT

r ΦT
θ

]T

A1 =



0 −κ cos θAr κ sin θAθ

0 Ar,r 0

0 (1/r)Ar (1/r)Aθ,θ

0 (1/r)Ar,θ −(1/r)Aθ + Aθ,r

(1/r)As,θ τAr 0

As,r 0 −τAθ


, A2 =



As 0 0

0 0 0

0 0 0

0 0 0

0 0 Aθ

0 Ar 0


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Anls =



(us,s − κ cos θ ur
+κ sin θ uθ)As

(ur,s + κ cos θ us
−τuθ)Ar

(uθ,s − κ sin θ us
+τur)Aθ

0 0 0

0 0 0

0 0 0(
1
r
us,θ + κ sin θ us

)
As

(
1
r
ur,θ − τus − 1

r
uθ
)

Ar

(
1
r
uθ,θ + 1

r
ur
)

Aθ

(us,r − κ cos θ us) As ur,rAr (uθ,r + τus) Aθ


(6.10)
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The potential energy due to strain can be given as following:

U =
1

2

∫ L

0

∫
A

E ·Ce · E dAds (6.12)

Where Ce is the material constant of elasticity. The component of second Piola-

Kirchhoff stress tensor which is the energy conjugate of Green-Lagrange strain tensor,

can be given as following:

S = Ce · E (6.13)

Further the first variation in the potential energy is:

δU =

∫ L

0

∫
A

δE · S dAds

=

∫ L

0

∫
A

(
(A1 + Anl)δΦ + (A2 + Anls)

dδΦ

ds

)
· S dAds

=

∫ L

0

δΦ · (M1 + Mnl) +
dδΦ

ds
· (Mnls + M2) ds (6.14)

where

Mj =

∫
A

AT
j S dA for j = 1, 2

Mnl =

∫
A

AT
nlS dA, Mnls =

∫
A

AT
nlsS dA (6.15)

Now let us consider that fb is the body force applied on per unit deformed volume and

qi are traction force applied on the ith boundary surfaces (inner and outer surfaces in

case of hollow structures) of the body in the deformed (current) configuration, then

the virtual work done by the applied forces in the course of virtual displacement δu

in the deformed configuration can be given as following:

δV = −
(∫

v

fb · δu dv +

∫
S̄i

qi · δu dS̄i
)

(6.16)

where dv and dS̄i are the infinitesimal volume and area element in the deformed con-

figuration. The corresponding volume and area element dV and dSi in the reference

configuration can be given as following:

dv = det(F) dV, dS̄in = det(F) F−T · (dSiN) (6.17)
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where F is the deformation gradient and n and N are the outward unit normal vector

to the area element in deformed and the reference configuration respectively (see

Appendix F for the expression of N for an arbitrary surface in assumed cylindrical

coordinate system in reference configuration). The magnitude of area element and

the normal vector can be transformed back to the reference frame as following:

dS̄i = det(F)
√

(C−1 ·N) ·N dSi, n =
F−T ·N√

(C−1 ·N) ·N
(6.18)

where C = FT · F is the right Cauchy–Green deformation tensor. Using eqs.(6.16),

(6.17) and (6.18), the virtual work done by the external forces can be rewritten in

the reference frame as following:

δV = −
∫
V

(det(F)fb) · δu dV −
∫
Si

(
det(F)

√
(C−1 ·N) ·N

)
qi · δu dSi

= −
∫ L

0

[ ∫
A

(det(F)fb) · δu dA+

∫ 2π

0

(
det(F)

√
(C−1 ·N) ·N

)
qi · δu

√
Gi dθ

]
ds

= −
∫ L

0

δΦ · f̂ ds (6.19)

where f̂ is defined (given fb = fbs ês + fbr êr + fbθ êθ and qi = qsi ês + qri êr + qθi êθ) as

follows:

f̂ =

[
f̂s f̂r f̂θ

]T
,

f̂s =

∫
A

det(F)fbsA
T
s dA+

∫ 2π

0

√
Gi

(
det(F)

√
(C−1 ·N) ·N

)
qsiA

T
s dθ

f̂r =

∫
A

det(F)fbrA
T
r dA+

∫ 2π

0

√
Gi

(
det(F)

√
(C−1 ·N) ·N

)
qriA

T
r dθ

f̂θ =

∫
A

det(F)fbθA
T
θ dA+

∫ 2π

0

√
Gi

(
det(F)

√
(C−1 ·N) ·N

)
qθiA

T
θ dθ

(6.20)

here Gi is the determinant of covariant matric tensor of the surface co-ordinate

(s, θ) for ith boundary surface in the curvilinear cylindrical coordinate system, (see

Appendix F for detail derivation) and can be given as following:

Gi = (1− κri(s, θ) cos θ)2

((
∂ri(s, θ)

∂θ

)2

+ (ri(s, θ))
2

)
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+

(
ri(s, θ)

∂ri(s, θ)

∂s
− τ ri(s, θ)

∂ri(s, θ)

∂θ

)2

(6.21)

where ri(s, θ) defines the ith boundary surface and κ and τ are the curvature and

the torsion of the reference space curve of the rod at arc-length coordinate s (see

Appendix E). If the body force is given as force per unit mass then it can be expressed

as fb = ρfm = (ρ0/det(F))fm. Here ρ and ρ0 are the mass density of the body in

the deformed and reference configuration respectively. A very common example of

distributed traction force at the boundary surface is pressure force which can be

given as qi = P0in = (P0i/
√

(C−1 ·N) ·N)F−T ·N, where P0i is the magnitude of

the pressure. For the point load at any point, the surface traction force can be given

as two dimensional dirac delta function. But it should be noted that constant point

force means the area under the dirac-delta function should be taken as constant and

it would not depend on the deformation. Similarly, line load can be given by one

dimensional dirac delta function. Further, from the principle of virtual displacement

(see Reddy [41]), we can write the following:

0 = δU + δV

=

∫ L

0

(
δΦ · (M1 + Mnl) +

dδΦ

ds
· (M2 + Mnls)− δΦ · f̂

)
ds

=

∫ L

0

δΦ ·
(

(M1 + Mnl)−
d

ds
(M2 + Mnls)− f̂

)
ds

+ [δΦ · (M2 + Mnls)]
L
0 (6.22)

Hence the equation of motion (Euler-Lagrange equation) can be given as:

(M1 + Mnl)−
d

ds
(M2 + Mnls)− f̂ = 0 (6.23)

and the essential and natural boundary variables are

δΦ : M2 + Mnls (6.24)

6.3. Constitutive relation

In this study, we will consider isotropic and homogeneous material with the linear

relation between second Piola stress tensor and Green-Lagrange strain tensor:

S = Ce · E (6.25)
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where

Ce =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν)

0

0 0 0 0 0 1−2ν
2(1−ν)


E =

[
Ess Err Eθθ 2Erθ 2Eθs 2Esr

]T
S =

[
Sss Srr Sθθ Srθ Sθs Ssr

]T
(6.26)

where E and ν are the modulus of elasticity and Poisson’s ratio respectively.

6.4. Finite element model

In order to develop a weak form finite element model for the above formulation, we

divide the computational domain [0, L] into non-overlapping finite elements, Ωe =

[se1, s
e
2]. Further we write the weak form the governing equation of motion Eq. (6.23)

in terms of displacement variables as following:

0 =

∫ se2

se1

∫
A

[(
(A1 + Anl)δΦ + (A2 + Anls)

dδΦ

ds

)
·Ce

(
(A1 +

1

2
Anl)Φ

+(A2 +
1

2
Anls)

dΦ

ds

)
− δΦ · f̂

]
dAds (6.27)

We approximate the degrees of freedom vector as:

Φ(s) = Ψ(s)U (6.28)

where Ψ(s) is matrix of shape functions which are function of arc-length coordinate

s and U is vector of displacement variables at nodal points which are defined as
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following:

Ψ =


ψ(1)

1 . . . ψ(1)

ñ1
0 . . . 0 . . . 0 . . . 0

0 . . . 0 ψ(2)

1 . . . ψ(2)

ñ2
. . . 0 . . . 0

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 . . . 0 0 . . . 0 . . . ψ(n)

1 . . . ψ(n)

ñp

 (6.29)

U =

[
u11 . . . u1ñ1

u21 . . . u2ñ2
. . . un1 . . . unñn

]T
(6.30)

where ñ1, ñ2, · · · ñn are the number of nodal values for u1, u2, · · · , un respectively in

the considered element. n is the total number of Dofs. And

u1 = φ(0)

s , u2 = φ(1)

s , · · · u(ñ) = φ(ñ)

s

uñ+1 = φ(0)

r , uñ+2 = φ(1)

r , · · · uñ+m̃ = φ(m̃)

r

uñ+m̃+1 = φ(0)

θ , uñ+m̃+2 = φ(1)

θ , · · · uñ+m̃+p̃ = φ(p̃)

θ .

(6.31)

We substitute the approximation of dofs and δΦ = Ψl̃ (where l̃ is the column vector

with all element unity and as many elements as the columns of Ψ) into the weak

form Eq. (6.27) to arrive at the following finite element algebraic equation:

KU− f = 0 (6.32)

where K and f are the stiffness matrix and force vector respectively, which are given

as follows:

K =

∫ se2

se1

ΨT

(
H1Ψ + H2

dΨ

ds

)
+
dΨ

ds

T (
H3Ψ + H4

dΨ

ds

)
ds

f =

∫ se2

se1

ΨT f̂ ds (6.33)

where

H1 =

∫
A

(A1 + Anl)
TCe(A1 +

1

2
Anl) dA, H2 =

∫
A

(A1 + Anl)
TCe(A2 +

1

2
Anls) dA

H3 =

∫
A

(A2 + Anls)
TCe(A1 +

1

2
Anl) dA, H4 =

∫
A

(Anls + A2)TCe(A2 +
1

2
Anls) dA

(6.34)

We note here that matrices Anl and Anls depends on the displacement variables

hence the stiffness matrix is nonlinear and also not symmetric. The nonlinear finite
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element equation can be solved by direct (Picard) method or Newton’s method (see

Reddy [46]). For (t+1)th iteration of Newton’s method, the solution can be expressed

as:

T(Ut)δUt+1 = −(K(Ut))Ut − f(Ut), and, Ut+1 = Ut + δUt+1 (6.35)

where T is the tangent matrix given as:

T = D(KU− f) = (DK)U + K−Df

= K +

∫ se2

se1

ΨT

(
H̃1Ψ + H̃2

dΨ

ds

)
+
dΨ

ds

T (
H̃3Ψ + H̃4

dΨ

ds

)
ds

+

∫ se2

se1

ΨT

(
P̃1Ψ + P̃2

dΨ

ds

)
+
dΨ

ds

T (
P̃3Ψ + P̃4

dΨ

ds

)
ds−

∫ se2

se1

ΨT P̃fΨ ds

(6.36)

where D(K) represent the derivative of K with respect to U and

H̃1 =
1

2

∫
A

(A1 + Anl)
TCeAnl dA, H̃2 =

1

2

∫
A

(A1 + Anl)
TCeAnls dA

H̃3 =
1

2

∫
A

(A2 + Anls)
TCeAnl dA, H̃4 =

1

2

∫
A

(A2 + Anls)
TCeAnls dA

(6.37)

and

P̃1 =

∫
A

P11
1 P12

1 P13
1

P21
1 P22

1 P23
1

P31
1 P32

1 P33
1

 dA, P̃2 =

∫
A

P11
2 P12

2 P13
2

P21
2 P22

2 P23
2

P31
2 P32

2 P33
2

 dA

P̃3 =

∫
A

P11
3 P12

3 P13
3

P21
3 P22

3 P23
3

P31
3 P32

3 P33
3

 dA, P̃4 =

∫
A

P11
4 0 0

0 P22
4 0

0 0 P33
4

 dA (6.38)

The block components of the matrix P̃i and P̃f are given in Appendix G. We note

that the tangent matrix is not symmetric due to the Df in the Eq. (6.36) but the

part of the tangent matrix coming from the derivative of KU is symmetric. To keep

the symmetry, the tangent matrix can be approximated by dropping Df from the

expression. The convergence might get slower due to this approximation.
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6.5. Numerical examples

For the numerical examples, let us consider a spiral duct with the central reference

spiral curve given by following parametric equation in rectangular cartesian coordi-

nate system:

x = cos

(
t√
2

)
, y =

t√
2
, z = sin

(
t√
2

)
(6.39)

where t is an arbitrary parameter for this space curve and the arc length coordinate

s is same as the parameter t for this particular case. Both the curvature (κ) and

torsion (τ) of the spiral curve are constant and equal to 0.25 per inch and the −1.125

per inch respectively. The axis of the reference spiral curve lies along the y− axis.

The material properties of the all the numerical examples presented in this section

are considered as follows:

E = 10× 106 psi, ν = 0.3, (6.40)

Where E and ν are the modulus of elasticity and Poisson’s ratio respectively.

6.5.1. Spiral duct under extension or compression point forces

Fig. 6.3 Original spiral duct with applied point forces.
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The geometric properties of the spiral pipe are considered as follows:

L = 10 in, r1 = 0.2 in, r2 = 0.21 in (6.41)

where L is the length of the spiral pipe measured along the arc-length of central

reference spiral curve and r1 and r2 are the inner and outer radius of the pipe re-

spectively. One end of the pipe is clamped and point forces are applied at the other

end at the points where outer circumference coincide with the binormal direction of

the reference spiral curve as shown in the fig. 6.3.

6.5.1.1. Linear analysis

For linear finite element analysis, linear and quadratic elements are considered for

approximating all the degrees of freedom. Table 6.1 gives the magnitude of the

displacement at point P1 where one of the point forces is applied (see fig. 6.3),

for various order of approximation of different displacement components considering

linear and quadratic element in case of two different thickness of the pipe keeping

the inner radius of the duct same as given in Eq. (6.41). It can be observed in

Table 6.1 that for quadratic elements, the magnitude of the displacement of point

P1 converge faster as we increase the number of elements used in the FE analysis.

Also, it is noted that as we increase the order of approximation of us, ur and uθ that

magnitude starts to converge for both thicknesses considered.

6.5.1.2. Nonlinear results

For nonlinear finite element analysis, 24 linear Lagrange elements are used to ap-

proximate all the degrees of freedom. Also, the order of approximation of us, ur

and uθ are taken as 3 for both in r and θ basis functions. The Newton’s method

has been employed to obtained the converged solution for the error tolerance 0.005.

Figure 6.4 shows deformed shape under two different extension point loads for 0.01

inch thickness. Here, we note that the cross-section of the pipe get deformed when

we increase the extension force, which we cannot get if we model by Kirchhoff rod

theory or other rod theories which consider

the cross-section moving as a rigid plane in course of the deformation. Further,

fig. 6.5 shows the shape of spiral pipe in case of compressive point loads. Figure 6.6

shows the nonlinear variation of the magnitude of displacement of the point P1

with respect to the point load applied in the case of extension and compression.
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Table 6.1. Linear FEM solutions for displacement of a point, P1 considering various

order of approximation of displacement in case of point extension force,

applied at one end with another end fixed.
order of approximation

Magnitude of displacement of point P1 in inches.
of us, ur and uθ

nr, nθ mr,mθ pr, pθ

linear element Quadratic element
(thickness (thickness (thickness

no. of = 0.02 in.) no. of = 0.02 in.) = 0.01 in.)
elements F0 = 22 lbf elements F0 = 22 lbf F0 = 21 lbf

displacement displacement displacement

1,1 1,1 1,1

40 0.4866 20 0.5668 1.1778
60 0.5140 30 0.5697 1.1839
80 0.5285 40 0.5702 1.1851
100 0.5381 50 0.5704 1.1855

1,2 1,2 1,2

40 0.5073 20 0.5972 1.3783
60 0.5371 30 0.6010 1.3911
80 0.5531 40 0.6018 1.3938
100 0.5637 50 0.6021 1.3947

1,3 1,3 1,3

40 0.5075 20 0.5975 1.3832
60 0.5374 30 0.6013 1.3963
80 0.5534 40 0.6021 1.3990
100 0.5640 50 0.6024 1.4000

2,2 2,2 2,2

40 0.5231 20 0.6174 1.4241
60 0.5545 30 0.6214 1.4384
80 0.5712 40 0.6222 1.4414
100 0.5823 50 0.6225 1.4424

2,3 2,3 2,3

40 0.5234 20 0.6178 1.4311
60 0.5548 30 0.6218 1.4458
80 0.5716 40 0.6226 1.4489
100 0.5827 50 0.6229 1.4499

3,3 3,3 3,3

40 0.5234 20 0.6178 1.4313
60 0.5549 30 0.6219 1.4459
80 0.5716 40 0.6227 1.4490
100 0.5827 50 0.6230 1.4500
120 0.5908 60 0.6232 1.4505
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(a) 2F0 = 60 lbf (b) 2F0 = 120 lbf

Fig. 6.4 Deformed shape of spiral pipe under extension by nonlinear analysis.

(a) 2F0 = −60 lbf (b) 2F0 = −120 lbf

Fig. 6.5 Deformed shape of spiral pipe under compression by nonlinear analysis.
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Fig. 6.6 Variation of magnitude of displacement (w) of point P1 with respect to the

total load applied in case of extension and compression.

Further in fig. 6.7, various components of the true stress are depicted in the case of

extension point load 2F0 = 120 lbf. The second Piola-kirchhoff stress components

are calculated at one gauss point in each element and then the Cauchy stress (true

stress) has been obtained from the second Piola-kirchhoff stress as following:

σ =
1

det(F)
F · S · FT (6.42)

where F and S are the deformation gradient and second Piola-kirchhoff stress tensor

respectively. Figure 6.8 shows the distribution of von mises stress in the case of

compression and extension.

6.5.2. Spiral duct under internal or external pressure

Let us consider a spiral duct (see fig. 6.9) under uniform internal or external pressure.

The geometric specification of the duct are considered as following:

L = 15 inch, r1 = 0.3 inch, r2 = 0.31 inch (6.43)

here also the length of the duct, L is measured along the arc-length of the central

reference spiral curve and r1 and r2 are the inner and outer radius of the duct

respectively. The reference central spiral curve of the duct and material properties

are given by Eqs. (6.39) and (6.40) respectively. The duct is completely fixed at both
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(a) σss (b) σrr

(c) σθθ (d) σrθ

(e) σθs (f) σsr

Fig. 6.7 Various components of true stress tensor for deformed spiral pipe.
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(a) Extension (b) Compression

Fig. 6.8 von-Mises stress in case of extension and compression

Fig. 6.9 Original shape of spiral duct.
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of its ends.

6.5.2.1. Linear analysis

In the linear analysis, the deformation results for the different order of approxima-

tion of the displacement components, element type (linear or quadratic Lagrange

element), number of elements and duct thickness are tabulated as in the case of

previous example. The magnitude of the displacement of the point at s = 7.5 inch

at the outer surface which coincide with the principal normal direction (i.e. θ = 0)

are tabulated in Table 6.2 for linear and quadratic Lagrange elements for internal

and external pressure applied for the duct with geometric properties described in

Eq. (6.43) along with one thicker duct keeping inner radius same, for different order

of approximation of us, ur and uθ. In this case, also, we note the convergence of

the magnitude of the point displacement as we increase the order of approximation.

And the quadratic elements give faster convergence of the displacement value with

respect to the number of elements considered.

6.5.2.2. Nonlinear results

(a) P0 = 1 ksi (b) P0 = 1.6 ksi

Fig. 6.10 Deformed shape of spiral pipe under internal pressure.

For nonlinear finite element analysis, 36 linear Lagrange elements are used to ap-

proximate all the degrees of freedom. Also, the order of approximation of us, ur

and uθ are taken as 3 for both in r and θ basis functions as in the example before.
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Table 6.2. Linear FEM solutions for displacement of a point on a spiral duct con-

sidering various order of approximation of displacement in case of internal

and external pressure with fixed end boundary condition.
order of approximation

Magnitude of displacement (in inch) at (s, r, θ) = (7.5 in, r2, 0).
of us, ur and uθ

nr, nθ mr,mθ pr, pθ

linear element Quadratic element
(thickness (thickness (thickness (thickness
= 0.01 in.) = 0.01 in.) = 0.01 in.) = 0.05 in.)
P0 = 10 ksi P0 = 10 ksi P0 = 10 ksi P0 = 50 ksi

no. of (int. P0) no. of (int. P0) (ext. P0) (int. P0)
elements Disp. elements Disp. Disp. Disp.

1,1 1,1 1,1

40 0.06736 20 0.05456 0.05883 0.04997
60 0.06349 30 0.05356 0.05775 0.04913
80 0.06082 40 0.05339 0.05757 0.04900
100 0.05897 50 0.05334 0.05752 0.04896

1,2 1,2 1,2

40 0.09282 20 0.08223 0.08757 0.05401
60 0.09052 30 0.07959 0.08474 0.05301
80 0.08850 40 0.07902 0.08413 0.05284
100 0.08679 50 0.07883 0.08393 0.05279

1,3 1,3 1,3

40 0.09586 20 0.08537 0.09088 0.05404
60 0.09358 30 0.08246 0.08777 0.05304
80 0.09157 40 0.08179 0.08704 0.05287
100 0.08985 50 0.08155 0.08679 0.05282

2,2 2,2 2,2

40 0.09440 20 0.08415 0.08958 0.05486
60 0.09223 30 0.08136 0.08659 0.05382
80 0.09029 40 0.08075 0.08594 0.05365
100 0.08863 50 0.08055 0.08572 0.05359

2,3 2,3 2,3

40 0.09823 20 0.08819 0.09384 0.05490
60 0.09609 30 0.08506 0.09048 0.05386
80 0.09419 40 0.08431 0.08968 0.05368
100 0.09253 50 0.08405 0.08940 0.05363

3,3 3,3 3,3

40 0.09823 20 0.08820 0.09384 0.05492
60 0.09610 30 0.08507 0.09049 0.05388
80 0.09420 40 0.08432 0.08968 0.05370
100 0.09254 50 0.08405 0.08940 0.05365
120 0.09113 60 0.08392 0.08926 0.05362
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(a) P0 = 1 ksi (b) P0 = 2 ksi

Fig. 6.11 Deformed shape of spiral pipe under external pressure.

The Newton’s method has been employed to obtained the converged solution for the

error tolerance 0.01. Figures 6.10 and 6.11 show the deformed shape of the duct

under uniform internal and external pressure respectively for given pressure P0. And

figs. 6.12 and 6.13 depicts the distribution of von-Mises stress in both internal and

external pressure cases and components of Cauchy (true) stress in case of internal

pressure respectively.

(a) Internal pressure (b) External pressure

Fig. 6.12 von-Mises stress in case of internal and external pressure
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(a) σss (b) σrr

(c) σθθ (d) σrθ

(e) σθs (f) σsr

Fig. 6.13 Various components of stress tensor for deformed spiral pipe subjected to

internal pressure.
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6.6. Chapter summary and conclusions

In this chapter, a general higher-order theory for the analysis of rods in three-

dimensional space has been presented. The displacement field of the cross-section of

the rod has been approximated by general basis functions in two-dimensional polar

(r, θ) coordinate system. Further, based on the principle of virtual displacements,

the governing equations have been obtained in the curvilinear cylindrical coordinate

system to model any arbitrarily shaped rod in three dimensions for large deformation.

In the numerical examples section the theory has been used to analyze spiral shaped

duct under the extensional and compressive point loads and internal and external

pressures. Such analysis can not be performed by the existing rod theory because

the approximation of the rigid cross-section made in those theories hold good for

thin rods only. In the theory discussed herein, we use a very general approximation

for the displacement field of the cross-section, and hence can model wide range of

phenomenon for thick rod of any arbitrary cross-section (hollow or solid).
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7. SUMMARY, CONCLUSIONS AND FUTURE WORKS

In the present study, nonlinear finite element models have been developed for beams

and plates in the context of general higher-order beam and plate theories, considering

Cosserat continuum for constrained micro-rotation (rotation gradient dependent the-

ory). Chapter 1 presents general introduction and literature review of experimental

and theoretical developments for the Cosserat continuum.

In Chapters 2 and 3, the nonlinear finite element model for beams and plates

have been developed for the case of rotation gradient dependent strain energy along

with the classical strain energy, and studies have been carried to see the effect of

material length scale parameters and orientation of small inclusions embedded in

the material. We observed stiffening effect due to the inclusion of material length

scale parameters and the anisotropic effect due to the ordered orientation of small

inclusions in the case of plate bending.

In Chapter 4, the rotation gradient dependent classical plate theory is employed

to analyze nanoindentation on CNT-reinforced hard coatings on elastic substrates.

The CNT reinforcement is modeled using the material length scale parameter. Since

the circular computational domain requires non-rectangular finite elements, for which

the C1 continuity is hard to achieve, which is required for all the gradient dependent

theories, a mixed finite element model has been developed to obtained the solution.

The contact between coating and substrate is considered to be smooth, which results

in higher contact stiffness and hence stiffer response to the indentation as compared

to the experimental values in the case of zero length scale. Nevertheless, the stiffen-

ing effect of the CNT reinforcement, via the small material length scale parameters

in the mathematical model, has been observed. As a future work, the consideration

of surface roughness and friction between the contacting surfaces, that is, the coat-

ing and the substrate, is suggested while obtaining the contact stiffness. Then the

indentation response can be compared to the experimental results to have an idea of

the values of material length scale parameter for a given CNT reinforcement.

In chapters 5 and 6, a general higher-order one-dimensional theory has been

developed for the classical continuum mechanics in the linear case and curvilinear

cylindrical coordinate system for the large deformation case. Based on a very general

approximation of the displacement field of the cross-section of the body considered,
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the governing equations are obtained. A weak-form nonlinear finite element model

has been developed to obtain the solution. These models have been applied to ana-

lyze shell structures and beams of hollow cross-sections in 3-D. Such models are very

much relevant to the linear or nonlinear finite element analysis of the Cosserat contin-

uum for constrained micro-rotation or other strain gradient-dependent theories; such

theories requires C1 or higher order continuity for the displacement variables in the

finite element model, which is very difficult to achieve in two- or three-dimensional do-

mains specially for non-rectangular domains, where the higher-order one-dimensional

theories discussed herein allows higher-order continuity element (general Hermite in-

terpolation functions) owing to their one-dimensional nature of analysis. As a future

work, these theories can be extended to the rotation gradient dependent theories

(Cosserat continuum for constrained micro-rotation) which can be applied in the

analysis of shell structure of Cosserat solid by nonlinear finite element model.

The main contributions of the present study are summarized here:

1. The development of nonlinear finite element models of beams and plates for

the case of rotation gradient dependent strain energy potential and bring out

the effect of material length scale parameter and orientation of small inclusions

embedded in the material on the structural response.

2. The rotation gradient dependent classical plate theory is employed to analyze

nanoindentation on a CNT-reinforced hard coating on an elastic substrate. A

mixed finite element model has been developed to obtain the solution.

3. Developed a general higher-order theory for one-dimensional analysis of 3-D

objects based on a very general approximation of the displacement field of

the cross-section of the object in the polar coordinate system. Cylindrical

shells under internal pressure and pinching point forces, often solved using a

shell finite element, is employed to illustrate the usefulness of the developed

formulation.

4. A general higher-order theory for the analysis of rods in three-dimensional space

is developed, where the displacement field of the cross-section of the rod has

been approximated by a very general basis functions in the two-dimensional

polar coordinate system. The formulation is used to analyze spiral shaped duct

under extension, compressive point loads, and internal and external pressures.
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Such analysis can not be performed by the existing rod theory as the approx-

imation of rigid cross-section made in those theories hold good for thin rods

only.
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APPENDIX A

THE DERIVATION OF THE GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS FOR COSSERAT CONTINUA (THREE-DIMENSIONAL) FOR 

CONSTRAINED MICRO-ROTATION

In this appendix, we present a detailed derivation of the governing equations and

the boundary conditions for the three-dimensional hyperelastic Cosserat continuum

with constrained micro-rotation for finite deformation (and finite rotation) from a

Lagrangian mechanics point of view. The idea was put forth by Srinivasa and Reddy

[19]. Let us consider a body B of fixed material. Let a particle X occupy position

X in the reference frame at time t = 0 and it occupies position x at any subsequent

time t. Let f be the body forces acting on the body and u be the displacement field

caused by the forces. To obtain the governing equations of motion, we set the first

variation of the following Lagrangian to zero:

L =

∫
B
{ψ(UAB, RiARiB,C)− PiAGiA − fiui} dV (A.1)

where P is the Lagrange multiplier, ψ is the potential energy stored in the body due

to deformation, U is the symmetric positive-definite right stretch tensor, and R is

orthogonal rotation tensor. The upper and lower case subscript index of tensors or

vectors represent components of the tensor in reference and current configurations,

respectively. In the case of stable equilibrium, the above condition also minimise the

potential energy with respect to the displacement field for given constrained condi-

tion, whereas in the case of unstable or neutral equilibrium it would not minimise

the potential energy but still gives the equations of equilibrium. Let us define the

following quantities:

θABC = RiARiB,C (A.2)

and the constraint condition

GiB = RiAUAB − xi,B, where xi,B = FiB, and F = RU (A.3)

where F is the deformation gradient. We also have the following conditions from the

symmetric and orthogonal properties of U and R respectively:

δUAB = δUBA, δRiA = δΩijRjA, δΩij = −δΩji (A.4)
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For minimizing (in the case of stable equilibrium) the Lagrangian considered in

Eq. (A.1), with the above given conditions, we put δL = 0 and obtain the following

equation:

0 =

∫
B

[
∂ψ

∂UAB
δUAB +

∂ψ

∂θABC
(δRiARiB,C +RiAδRiB,C)

−δPiAGiA − PiAδGiA − fiδui] dV

=

∫
B

[
δUAB

(
∂ψ

∂UAB
− PiBRiA

)
+ δRiA

(
∂ψ

∂θABC
RiB,C − PiBUAB

)
+δRiB,C

∂ψ

∂θABC
− δPiAGiA + PiAδxi,A − fiδxi

]
dV (A.5)

Integrating by parts and using δRiA = δΩijRjA, we obtain the following equation:

0 =

∫
B

[
δUAB

(
∂ψ

∂UAB
− PiBRiA

)
+ δΩijRjA

(
∂ψ

∂θABC
RiB,C − PiBUAB −

(
∂ψ

∂θABC

)
,C

)
−δPiAGiA − (PiA,A + fi)δxi

]
dV +

∮
∂B

[
δRiB

∂ψ

∂θABC
RiANC + δxiPiANA

]
︸ ︷︷ ︸

Boundary terms

dS

(A.6)

where N is the unit normal at the boundary surface in the reference frame. Using

the fact that U and Ω are symmetric and skew symmetric tensors, respectively, we

obtain the following Euler–Lagrange equations:

δUAB :

(
∂ψ

∂UAB
− PiBRiA

)
sym

= 0 =⇒ ∂ψ

∂U
=

1

2
(PtR + RtP)

δΩij :

[
RjA

(
∂ψ

∂θABC
RiB,C − PiBUAB −

(
∂ψ

∂θABC

)
,C

)]
skewsym

= 0

=⇒ Div(M) = PFt + FPt, where MijC = −MjiC =
∂ψ

∂θABC
(RiARjB −RjARiB)

δxi : PiA,A = fi =⇒ Div(P) = f

δPiA : GiA = 0 =⇒ G = 0 (A.7)

Here the “Div” means the divergence in the coordinate frame of the reference con-

figuration. The boundary condition is∮
∂B

[
δRiB

∂ψ

∂θABC
RiANC + δxiPiANA

]
dS = 0 (A.8)
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Let us write the boundary condition as, without the loss of generality,∮
∂B

[∂RiB

∂FjK

∂ψ

∂θABC
RiANCδFjK + δxiPiANA

]
dS = 0 (A.9)

Let us define Mn, a second order “surface tension” like tensor for the solid, compo-

nents of which can be given as

Mn
jK =

∂RiB

∂FjK

∂ψ

∂θABC
RiANC (A.10)

Then the boundary condition becomes∮
∂B

[
Mn

jKδFjK + δxiPiANA

]
dS = 0 =⇒

∮
∂B

Mn : δ∇x + δx · (P ·N) dS = 0(A.11)

The boundary condition can be further simplified for a smooth boundary surface as∮
∂B

(Mn ·N) · ∂δx
∂n
−DivsM

n · δx + (DivsN)N · (Mn · δx) + δx · (P ·N) dS = 0

(A.12)

where n is the coordinate along the normal direction (N) to the surface and Divs is

the surface divergence operator. Hence, the primary and corresponding secondary

boundary variables are

δx : P ·N + (∇s ·N)N ·Mn − divs(M
n)

∂δx

∂n
: Mn ·N (A.13)

The boundary conditions are

x = constant = X or P ·N + (∇s ·N)N ·Mn − divs(M
n) = 0

∂x

∂n
= constant or Mn ·N = 0 (A.14)
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APPENDIX B

COMPUTATION OF SKEW-SYMMETRIC PART OF STRESS TENSOR 
FOR MICROSTRUCTURE DEPENDENT PLATE

The skew-symmetric part of the second Piola–Kirchhoff stress tensor (S) can be

obtained by means of balance of angular momentum (see [19, ?]) as follows:

Sa =
1

2
(S− ST ) =

1

2
F−1(div(M))F−T (B.1)

In the indicial notation, we can write

Sakp =
1

2
F−1
ki (div(M))ij F

−T
jp (B.2)

where F is the deformation gradient and M is the third-order couple stress tensor

defined in the case of finite rotation (see [19]). The divergence of M is taken with

respect to the reference configuration and can be given as follows:

(div(M))ij =

(
∂ψ

∂ΩCAB

)
,C

(RiARjB −RjARiB)

+
∂ψ

∂ΩCAB

(RiA,CRjB −RjA,CRiB +RiARjB,C −RjARiB,C)(B.3)

where ψ is the potential energy density function, R is the rotation tensor at any

point, and Ω is defined in Eq. (3.3). From Eq. (3.13), we have

χ =

[
2ωx,x 2ωx,y 2ωx,z 2ωy,x 2ωy,y 2ωy,z 2ωz,x 2ωz,y 2ωz,z

]T
= 2

[
−Ω123 −Ω223 Ω323 Ω113 Ω213 Ω313 −Ω112 −Ω212 −Ω312

]T
= 2χ̂ (B.4)

We also have

ΩCAB = −ΩCBA (B.5)

Let us consider the case A = 1, B = 2 and A = 2, B = 1 in the following divergence

definition,

(div(M))ij =

(
∂ψ

∂ΩCAB

(RiARjB −RjARiB)

)
,C

(B.6)
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and use eq. (B.5) to obtain the following expression:(
∂ψ

∂ΩC12

(Ri1Rj2 −Rj1Ri2)

)
,C

+

(
∂ψ

∂ΩC21

(Ri2Rj1 −Rj2Ri1)

)
,C

=

(
∂ψ

∂ΩC12

(Ri1Rj2 −Rj1Ri2)

)
,C

+

((
− ∂ψ

∂ΩC12

)
(−(Rj2Ri1 −Ri2Rj1))

)
,C

=

(
2
∂ψ

∂ΩC12

(Ri1Rj2 −Rj1Ri2)

)
,C

(B.7)

When we treat ΩC12 = −ΩC21 = χ̂C (say) in the energy density function as one

variable, then Eq. (B.7) becomes,(
2
∂ψ

∂ΩC12

(Ri1Rj2 −Rj1Ri2)

)
,C

=

(
∂ψ

∂χ̂C
(Ri1Rj2 −Rj1Ri2)

)
,C

(B.8)

From Eq. (3.16), we have

m = Clχ =
∂ψ

∂χ
=

1

2

∂ψ

∂χ̂
(B.9)

Then the divergence of the third-order couple stress tensor, M, can be obtained by

summing over all the nine terms of mi with their corresponding rotation terms:

(div(M))ij = 2[(m1(Ri2Rj3 −Rj2Ri3)),x + (m2(Ri2Rj3 −Rj2Ri3)),y
+ (m3(Ri2Rj3 −Rj2Ri3)),z + (m4(Ri1Rj3 −Rj1Ri3)),x
+ (m5(Ri1Rj3 −Rj1Ri3)),y + (m6(Ri1Rj3 −Rj1Ri3)),z
+ (m7(Ri1Rj2 −Rj1Ri2)),x + (m8(Ri1Rj2 −Rj1Ri2)),y
+ (m9(Ri1Rj2 −Rj1Ri2)),z] (B.10)

where (),x, for example, represents the derivative with respect to x. The above

expression requires the computation of derivative of the rotation tensor, which is

given as follows:

R,i = (F,i −RU,i)U
−1, for i = x, y, z (B.11)

where U is the right stretch tensor, and it’s derivative (see Hoger and Carlson [75])

can be given as

U,i = a1U
2(C,i)U

2 + a2{U2(C,i)U + U(C,i)U
2}

+a3{U2(C,i) + (C,i)U
2}+ a4U(C,i)U}

+a5{UC,i + C,iU}+ a6δC (B.12)
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where

a1 =
4

∆s

I1 a4 =
4

∆s

(I3
1 + I3)

a2 = − 4

∆s

I2
1 a5 = − 4

∆s

I2
1I2

a3 =
4

∆s

(I1I2 − I3) a6 =
4

∆s

[I2
1I3 + (I1I2 − I3)I2]

∆s = 8(I1I2 − I3)I3

(B.13)

Here I1, I2, and I3 are principal invariants of U, C is the right Cauchy–Green defor-

mation tensor, and it’s derivative can be obtained as follows:

C = FTF, C,i = FT
,iF + FTF,i for i = x, y, z (B.14)

where the deformation gradient in terms of the variables in displacement field con-

sidered (see Eq. (3.5)) in the general higher-order plate theory is given as follows:

F = ∇u + I (B.15)

Here I is third-order identity tensor and ∇u is the displacement gradient tensor:

∇u =


∂u1

∂x
∂u1

∂y
∂u1

∂z

∂u2

∂x
∂u2

∂y
∂u2

∂z

∂u3

∂x
∂u3

∂y
∂u3

∂z

 =


Axφx,x Axφx,y Ax,zφx

Ayφy,x Ayφy,y Ay,zφy

Azφz,x Azφz,y Az,zφz

 (B.16)

The derivative of the deformation gradient can be obtained as follows:

F,x =


Axφx,xx Axφx,xy Ax,zφx,x

Ayφy,xx Ayφy,xy Ay,zφy,x

Azφz,xx Azφz,xy Az,zφz,x



F,y =


Axφx,xy Axφx,yy Ax,zφx,y

Ayφy,xy Ayφy,yy Ay,zφy,y

Azφz,xy Azφz,yy Az,zφz,y


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F,z =


Ax,zφx,x Ax,zφx,y Ax,zzφx

Ay,zφy,x Ay,zφy,y Ay,zzφy

Az,zφz,x Az,zφz,y Az,zzφz

 . (B.17)
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APPENDIX C

AREA ELEMENT AND NORMAL VECTOR FOR ARBITRARY SURFACE IN 
A CYLINDRICAL COORDINATE SYSTEM

Consider an arbitrary surface embedded in three-dimensional Euclidean space, R3,

as shown in fig. C.1. We consider the x-axis as the axis of the surface, reference

to which we will consider a cylindrical coordinate system with surface coordinates,

z1 = x and z2 = θ, as shown in fig. C.1. The radius r of the cross-section (see

fig. C.1) measured from the x-axis defines the geometry of the surface and hence

given as r(x, θ) at each point c on the x-axis. Consider an arbitrary point p on the

Fig. C.1 Arbitrary surface in cylindrical coordinate system.

surface and its corresponding point c on the x-axis. Then the position vector of point

p with respect to the origin is given by

R = Rc + rp = Rc + r(x, θ) cos θ ey + r(x, θ) sin θ ez (C.1)
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where Rc is the position vector of point c and rp is the position vector of point p

with respect to point c; ex, ey and ez are the unit vectors along the x, y and z axis.

Further, the covariant basis for the surface coordinate (x, θ) can be given as follows:

zx =
∂R

∂x
= ex +

∂r

∂x
cos θ ey +

∂r

∂x
sin θ ez

zθ =
∂R

∂θ
=

(
∂r

∂θ
cos θ − r sin θ

)
ey +

(
∂r

∂θ
sin θ + r cos θ

)
ez

(C.2)

If G be the covariant matric tensor then its components are given by

Gxx = 1 +

(
∂r

∂x

)2

Gθθ =

(
∂r

∂θ

)2

+ r2

Gxθ = Gθx =
∂r

∂x

∂r

∂θ
(C.3)

The determinant, G, of the covariant matric tensor is defined by

G = r2 +

(
∂r

∂θ

)2

+

(
r
∂r

∂x

)2

(C.4)

Hence, the area element on the surface can be written as

dS =
√
Gdθ dx =

√
r2 +

(
∂r

∂θ

)2

+

(
r
∂r

∂x

)2

dθ dx (C.5)

If the radius r is function of x only (as in the case of surface of revolution), the area

element reduces to:

dS =

√
1 +

(
∂r

∂x

)2

r dθ dx (C.6)

and for constant radius (r), the area element reduce to r dθ dx as expected. The

covariant basis vectors span the tangent plane and hence the outward normal vector

of the surface can be given by the normalized cross product of the covariant basis

vectors as followins:

N =
zθ × zx
|zθ × zx|

=
1

|zθ × zx|

[
− r ∂r

∂x
ex +

(
∂r

∂θ
sin θ + r cos θ

)
ey
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−
(
∂r

∂θ
cos θ − r sin θ

)
ez

]
(C.7)

where

|zθ × zx| =

√
r2 + r2

(
∂r

∂x

)2

+

(
∂r

∂θ

)2

(C.8)

We also have

ey = cos θer − sin θeθ, ez = sin θer + cos θeθ (C.9)

where ex, er and eθ is an orthonormal basis in the (x, r, θ) (cylindrical) coordinate

system. In the cylindrical coordinate system, the outward unit normal vector to the

surface at any arbitrary surface point can be given as

N =
1

|zθ × zx|

[
− r ∂r

∂x
ex + r er −

∂r

∂θ
eθ

]
(C.10)

In the case of surface of revolution (i.e., for r(x)), we put ∂r
∂θ

= 0 in the above

expression, and for constant radius (r), we have the following result:

|zθ × zs| = r, N = er (C.11)
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APPENDIX D

GREEN–LAGRANGE STRAIN TENSOR IN A CYLINDRICAL CURVILINEAR 
COORDINATE SYSTEM

Let us consider a curve C in a three-dimensional Euclidean space. Let s be the curvi-

linear coordinate along the the curve. Let us associate a right-handed orthogonal

unit vector triplet T,P, and Q at each point of the space curve, C, and T be the

unit tangent vector along the curve; P and Q be the principal normal and binormal

vectors, respectively (see Appendix E). Now, let us also consider a polar coordinate

system (r, θ) in the normal plane at each point of the curve C. The angle, θ, is mea-

sured from the principal normal P towards the binormal Q. Then r, θ along with

the coordinate s constitutes a curvilinear cylindrical coordinate system (see fig. 6.2).

Let us define the coordinates z1 = s, z2 = r, and z3 = θ in the indicial notation

convention. Now, if R is the position vector of any arbitrary point P from the origin

O, then the covariant basis vectors can be defined as

es =
∂R

∂s
= T, er =

∂R

∂r
, eθ =

∂R

∂θ
(D.1)

We note that the basis vectors are not necessarily unit vectors. Now the nonzero

component of covariant matric tensor and, consequently, the contravariant matric

tensor can be given as follows:

gss = 1, grr = 1, gθθ = r2

gss = 1, grr = 1, gθθ =
1

r2
(D.2)

The contravariant basis vectors can be obtained by raising the indices of covariant

basis vectors as

es = gskek = es = T, er = er, eθ =
1

r2
eθ (D.3)

where the repeated indices imply summation. In terms of the vectors P and Q, the

basis vectors can be given as follows:

es = T, er = cos θP + sin θQ, eθ = −r sin θP + r cos θQ (D.4)
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and also

P = cos θ er −
sin θ

r
eθ, Q = sin θ er +

cos θ

r
eθ (D.5)

For the given displacement field u = uses + urer + uθeθ = uiei, the gradient ∇u can

be obtained as,

∇u = (∇iu
j)eiej =

(
∂uj

∂zi
+ Γjiku

k

)
eiej (D.6)

where ∇i denotes the covariant derivative operator for i = s, r, θ and Γjik are the

Christoffel symbols, which are defined as

Γjik = ej · ∂ei
∂zk

(D.7)

There are 27 various Christoffel symbols for the cylindrical curvilinear coordinate

system adopted. In order to calculate various Christoffel symbols, we first consider

the following Frenet formula for a spatial curve:

∂T

∂s
= κP,

∂P

∂s
= −κT + τQ,

∂Q

∂s
= −τP (D.8)

where κ and τ are the curvature and the twist of the spatial curve and can be function

of the curvilinear coordinate s of the space curve: Using Eqs. (D.4), (D.5), and (D.8)

we have the following derivatives:

∂es
∂s

= κ cos θ er −
κ

r
sin θ eθ,

∂er
∂s

= −κ cos θ es +
τ

r
eθ,

∂eθ
∂s

= κr sin θ es − τr er

∂er
∂r

= 0,
∂er
∂θ

=
1

r
eθ,

∂eθ
∂θ

= −r er (D.9)

Now using Eqs. (D.7) and (D.9), various Christoffel symbols can be computed as:

Γsss = 0, Γrss = κ cos θ, Γθss = −κ
r

sin θ

Γsrs = Γssr = −κ cos θ, Γrrs = Γrsr = 0, Γθrs = Γθsr =
τ

r
Γsθs = Γssθ = κr sin θ, Γrθs = Γrsθ = −τr, Γθθs = Γθsθ = 0

Γθθr = Γθrθ =
1

r
, Γrθθ = −r, Γsrr = Γrrr = Γθrr = 0

Γsrθ = Γsθr = Γrrθ = Γrθr = Γsθθ = Γθθθ = 0 (D.10)

Further, using Eqs. (D.6), (D.10), and (D.3), the gradient of the displacement field
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can be given as following:

∇u =

(
∂uj

∂zi
+ Γjiku

k

)
eiej =

(
∂us

∂s
− κ cos θ ur + κr sin θ uθ

)
eses

+

(
∂ur

∂s
+ κ cos θ us − τ r uθ

)
eser +

(
∂uθ

∂s
− κ

r
sin θ us +

τ

r
ur
)

eseθ

+

(
∂us

∂r
− κ cos θ us

)
eres +

∂ur

∂r
erer +

(
∂uθ

∂r
+
τ us

r
+
uθ

r

)
ereθ

+

(
∂us

∂θ
+ κ r sin θ us

)
eθes +

(
∂ur

∂θ
− τ r us − r uθ

)
eθer

+

(
∂uθ

∂θ
+
ur

r

)
eθeθ

=

(
∂us

∂s
− κ cos θ ur + κr sin θ uθ

)
eses

+

(
∂ur

∂s
+ κ cos θ us − τ r uθ

)
eser +

(
∂uθ

∂s
− κ

r
sin θ us +

τ

r
ur
)

eseθ

+

(
∂us

∂r
− κ cos θ us

)
eres +

∂ur

∂r
erer +

(
∂uθ

∂r
+
τ us

r
+
uθ

r

)
ereθ

+
1

r2

(
∂us

∂θ
+ κ r sin θ us

)
eθes +

1

r2

(
∂ur

∂θ
− τ r us − r uθ

)
eθer

+
1

r2

(
∂uθ

∂θ
+
ur

r

)
eθeθ (D.11)

Let us introduced the unit covariant basis vectors as

ês = es, êr = er, êθ =
1

r
eθ (D.12)

Then the displacement field can be expressed in terms of the unit basis as follows:

u = ûsês + ûrêr + ûθêθ =⇒ ûs = us, ûr = ur, ûθ = r uθ (D.13)

Then the gradient of the displacement field takes the form:

∇u =

(
∂ûs

∂s
− κ cos θ ûr + κ sin θ ûθ

)
êsês

+

(
∂ûr

∂s
+ κ cos θ ûs − τ ûθ

)
êsêr +

(
∂ûθ

∂s
− κ sin θ ûs + τ ûr

)
êsêθ

+

(
∂ûs

∂r
− κ cos θ ûs

)
êrês +

∂ûr

∂r
êrêr +

(
∂ûθ

∂r
+ τ ûs

)
êrêθ

+

(
1

r

∂ûs

∂θ
+ κ sin θ ûs

)
êθês +

(
1

r

∂ûr

∂θ
− τ ûs − ûθ

r

)
êθêr
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+
1

r

(
∂ûθ

∂θ
+ ûr

)
êθêθ (D.14)

The transpose of the displacement gradient is

∇uT =

(
∂ûs

∂s
− κ cos θ ûr + κ sin θ ûθ

)
êsês

+

(
∂ûs

∂r
− κ cos θ ûs

)
êsêr +

(
1

r

∂ûs

∂θ
+ κ sin θ ûs

)
êsêθ

+

(
∂ûr

∂s
+ κ cos θ ûs − τ ûθ

)
êrês +

∂ûr

∂r
êrêr +

(
1

r

∂ûr

∂θ
− τ ûs − ûθ

r

)
êrêθ

+

(
∂ûθ

∂s
− κ sin θ ûs + τ ûr

)
êθês +

(
∂ûθ

∂r
+ τ ûs

)
êθêr

+
1

r

(
∂ûθ

∂θ
+ ûr

)
êθêθ (D.15)

For the given displacement field u, the Green–Lagrange strain tensor takes the form

E = Eij êiêj =
1

2
(∇u + (∇u)T + (∇u) · (∇u)T ) (D.16)

The Green–Lagrange strain tensor components in terms of the components of dis-

placement vector can be given as

Ess =

(
∂ûs

∂s
− κ cos θ ûr + κ sin θ ûθ

)
+

1

2

(
∂ûs

∂s
− κ cos θ ûr + κ sin θ ûθ

)2

+
1

2

(
∂ûr

∂s
+ κ cos θ ûs − τ ûθ

)2

+
1

2

(
∂ûθ

∂s
− κ sin θ ûs + τ ûr

)2

Err =
∂ûr

∂r
+

1

2

(
∂ûs

∂r
− κ cos θ ûs

)2

+
1

2

(
∂ûr

∂r

)2

+
1

2

(
∂ûθ

∂r
+ τ ûs

)2

Eθθ =
1

r

(
∂ûθ

∂θ
+ ûr

)
+

1

2

[(
1

r

∂ûs

∂θ
+ κ sin θ ûs

)2

+

(
1

r

∂ûr

∂θ
− τ ûs − ûθ

r

)2

+

(
1

r

∂ûθ

∂θ
+
ûr

r

)2
]

2Erθ =
1

r

∂ûr

∂θ
− ûθ

r
+
∂ûθ

∂r
+

(
∂ûs

∂r
− κ cos θ ûs

)(
1

r

∂ûs

∂θ
+ κ sin θ ûs

)
+
∂ûr

∂r

(
1

r

∂ûr

∂θ
− τ ûs − ûθ

r

)
+

(
∂ûθ

∂r
+ τ ûs

)(
1

r

∂ûθ

∂θ
+
ûr

r

)
2Eθs =

∂ûθ

∂s
+

1

r

∂ûs

∂θ
+ τ ûr +

(
1

r

∂ûs

∂θ
+ κ sin θ ûs

)(
∂ûs

∂s
− κ cos θ ûr + κ sin θ ûθ

)
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+

(
1

r

∂ûr

∂θ
− τ ûs − ûθ

r

)(
∂ûr

∂s
+ κ cos θ ûs − τ ûθ

)
+

1

r

(
∂ûθ

∂θ
+ ûr

)(
∂ûθ

∂s
− κ sin θ ûs + τ ûr

)
2Esr =

∂ûs

∂r
+
∂ûr

∂s
− τ ûθ +

(
∂ûs

∂s
− κ cos θ ûr + κ sin θ ûθ

)(
∂ûs

∂r
− κ cos θ ûs

)
+
∂ûr

∂r

(
∂ûr

∂s
+ κ cos θ ûs − τ ûθ

)
+

(
∂ûθ

∂s
− κ sin θ ûs + τ ûr

)(
∂ûθ

∂r
+ τ ûs

)
(D.17)

For zero curvature κ and twist τ the curve becomes straight line, and the above strain

components would reduced to the strain in cylindrical-coordinate system. Also the

deformation gradient, F, can be obtained as F = ∇u + I.
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APPENDIX E

PRINCIPAL NORMAL, BINORMAL, TANGENT VECTOR, CURVATURE 
AND TORSION OF SPACE CURVE

Let us consider a curve C embedded in three-dimensional Euclidean space, R3. Fur-

ther, we consider a rectangular cartesian system for the ambient space and the curve

is parameterized by the arbitrary coordinate, t. Let us also associate a coordinate s

with the curve C. The position vector of any arbitrary point P on the curve C with

respect to the origin O is given as

R = x(t)êx + y(t)êy + z(t)êz (E.1)

Then the unit tangent vector can be given as

C

Q P

T

P

R

y

z

O

x

Fig. E.1 Space curve with its tangent, principal normal and binormal vector.

T =
dR

ds
=

1√
U

dR

dt
, where U =

dR

dt
· dR
dt

(E.2)

The Frenet formula for a spatial curve is

dT

ds
= κP,

dP

ds
= −κT + τQ,

dQ

ds
= −τP (E.3)
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where P and Q are the principal normal and binormal vector, respectively; κ and τ

are curvature and torsion of space curve, respectively. The curvature can be obtained

as follows:

κ =

∣∣∣∣dTds
∣∣∣∣ =

√
1

U

(
dT

dt
· dT
dt

)
(E.4)

The principal normal and binormal are

P =
1

κ

dT

ds
=

1

κ
√
U

dT

dt
, Q = T×P (E.5)

and we can obtain the torsion by the following Frenet formula:

τQ =
dP

ds
− κT =

1√
U

dP

dt
− κT (E.6)

Also, the curvilinear coordinate can be given in terms of arbitrary parametrization

as follows:

s =

∫ t2

t1

√
U dt (E.7)

In the case of a planar curve, the tangent T and principle normal P at all points of

the curve lie in the same plane; hence, the binormal vector Q is constant along the

curve which lies out of curve plane as shown in the fig. E.2 and the torsion (τ) for

the planer curve is zero.

Q

T

P

C

Fig. E.2 Plane curve with its tangent, principal normal and binormal vector.

168



APPENDIX F

AREA ELEMENT AND NORMAL VECTOR FOR ARBITRARY SURFACE IN 
CURVILINEAR CYLINDRICAL COORDINATE SYSTEM

Consider an arbitrary surface embedded in three-dimensional Euclidean space, R3, as

shown in fig. F.1. We consider a space curve, C, as the axis of the surface, reference

to which we will consider a curvilinear cylindrical coordinate system with surface

coordinates z1 = s and z2 = θ, as shown in fig. ??. The radius r from the reference

curve C define the geometry of the surface and hence given as function r(s, θ) at each

point c on the reference curve.

Fig. F.1 Arbitrary surface in curvilinear cylindrical coordinate system.

Consider a arbitrary point p on the surface and its corresponding point c on the

reference curve. Then the position vector of point p with respect to the ambient

coordinate system can be given as

R = Rc + rp = Rc + r(s, θ) cos θP + r(s, θ) sin θQ (F.1)

where Rc is the position vector of point c and rp is the position vector of point p

with respect to point c. The vectors P, Q, and T are the unit principal normal,
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binormal, and the tangent vector, respectively, of the reference curve C at point c.

Further, the covariant basis for the surface coordinate (s, θ) can be given as follows:

zs =
∂R

∂s
= (1− κr cos θ)T +

(
∂r

∂s
cos θ − τ r sin θ

)
P +

(
∂r

∂s
sin θ + τ r cos θ

)
Q

zθ =
∂R

∂θ
=

(
∂r

∂θ
cos θ − r sin θ

)
P +

(
∂r

∂θ
sin θ + r cos θ

)
Q

(F.2)

If G is the covariant matric tensor, then its components can be obtained as follows:

Gss = (1− κr cos θ)2 +

(
∂r

∂s
cos θ − τ r sin θ

)2

+

(
∂r

∂s
sin θ + τ r cos θ

)2

= (1− κr cos θ)2 +

(
∂r

∂s

)2

+ τ 2 r2

Gθθ =

(
∂r

∂θ

)2

+ r2

Gsθ = Gθs =
∂r

∂s

∂r

∂θ
+ τr2 (F.3)

Further, the determinant G of the covariant matric tensor can be given as

G = (1− κr cos θ)2

((
∂r

∂θ

)2

+ r2

)
+

(
r
∂r

∂s
− τ r∂r

∂θ

)2

(F.4)

Hence, the area element on the surface can be obtained as follows:

dS =
√
Gdθ ds =

√√√√(1− κr cos θ)2

((
∂r

∂θ

)2

+ r2

)
+

(
r
∂r

∂s
− τ r∂r

∂θ

)2

dθ ds

(F.5)

In the case of a pipe of constant radius (r), the area element reduce to

dS = r(1− κr cos θ) dθ ds (F.6)

The covariant basis vector spans the tangent plane, and the outward normal vector

can be obtained by the normalized cross product of the covariant basis vectors as

follows:

N =
zθ × zs
|zθ × zs|

=
1

|zθ × zs|

[
r

(
τ
∂r

∂θ
− ∂r

∂s

)
T + (1− κr cos θ)

(
∂r

∂θ
sin θ + r cos θ

)
P
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−(1− κr cos θ)

(
∂r

∂θ
cos θ − r sin θ

)
Q

]
(F.7)

where

|zθ × zs| =

√√√√r2

(
τ
∂r

∂θ
− ∂r

∂s

)2

+ (1− κr cos θ)2

((
∂r

∂θ

)2

+ r2

)
(F.8)

Now from Eqs. (D.4),(D.5), and (D.12), we obtain

P = cos θêr − sin θêθ, Q = sin θêr + cos θêθ, T = ês (F.9)

where ês, êr and êθ form orthonormal basis vectors in the (s, r, θ) coordinate system.

Then, in this coordinate system, the outward unit normal vector to the surface can

be given as

N =
1

|zθ × zs|

[
r

(
τ
∂r

∂θ
− ∂r

∂s

)
ês + (1− κr cos θ)

(
r êr −

∂r

∂θ
êθ

)]
(F.10)

In the case of a pipe of constant radius (r) we have

|zθ × zs| = r (1− κr cos θ), N = êr (F.11)

If the radius of the surface is a function of s only, then the unit normal vector to the

surface can be obtained by substituting ∂r
∂θ

= 0 in the expression (F.10).
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APPENDIX G

COMPONENTS OF ˜Pi AND P˜ 
f USED IN TANGENT MATRIX FOR THE 

HIGHER-ORDER ROD THEORY

The block components of P̃i for i = 1, 2, 3, 4 in Eq. (6.38) are given as follows:

P11
1 = κ2SssA

T
s As + Srr

{
(AT

s,r − κ cos θAT
s )(As,r − κ cos θAs) + τ 2AT

s As

}
+Sθθ

{(1

r
AT
s,θ + κ sin θAT

s

)(
1

r
As,θ + κ sin θAs

)
+ τ 2AT

s As

}
+Srθ

{(1

r
AT
s,θ + κ sin θAT

s

)
(As,r − κ cos θAs)

+
(
AT
s,r − κ cos θAT

s

)(1

r
As,θ + κ sin θAs

)}
− 2τκ cos θ SθsA

T
s As

−2τκ sin θ SsrA
T
s As

P12
1 = −κτ sin θSssA

T
s Ar −

τ

r
SθθA

T
s Ar,θ + Srθ

{
− τAT

s Ar,r +
τ

r
AT
s Ar

}
+Sθs

{
− κ cos θ

(1

r
AT
s,θ + κ sin θAT

s

)
Ar +

1

r
κ cos θAT

s Ar,θ −
1

r
κ sin θAT

s Ar

}
+Ssr

{
− κ cos θ

(
AT
s,r − κ cos θAT

s

)
Ar + κ cos θAT

s Ar,r + τ 2AT
s Ar

}
P13

1 = −κτ cos θ SssA
T
s Aθ + τSrrA

T
s Aθ,r +

τ

r
SθθA

T
s Aθ +

τ

r
SrθA

T
s Aθ,θ

+Sθs

{κ sin θ

r
AT
s,θAθ + (κ2 sin2 θ − 1

r
κ cos θ + τ 2)AT

s Aθ −
1

r
κ sin θAT

s Aθ,θ

}
+Ssr

{
κ sin θ

(
AT
s,r − κ cos θAT

s

)
Aθ − κ sin θAT

s Aθ,r

}
P21

1 = −κτ sin θ SssA
T
r As −

τ

r
SθθA

T
r,θAs + τSrθ

(1

r
AT
r As −AT

r,rAs

)
+Sθs

(
− κ cos θAT

r

(
1

r
As,θ + κ sin θAs

)
+
κ cos θ

r
AT
r,θAs −

κ sin θ

r
AT
r As

)
+Ssr

(
− κ cos θAT

r (As,r − κ cos θAs) + κ cos θAT
r,rAs + τ 2AT

r As

)
P22

1 =
(
(κ2 cos2 θ + τ 2)Sss +

1

r2
Sθθ +

2τ

r
Sθs
)
AT
r Ar + SrrA

T
r,rAr,r +

1

r2
SθθA

T
r,θAr,θ

+
1

r
Srθ
{
AT
r,θAr,r + AT

r,rAr,θ

}
P23

1 = −κ2 cos θ sin θ SssA
T
r Aθ +

1

r2
Sθθ
(
AT
r Aθ,θ −AT

r,θAθ

)
+

1

r
Srθ
(
−AT

r,rAθ + AT
r Aθ,r

)
+
τ

r
Sθs
(
AT
r Aθ,θ −AT

r,θAθ

)
+τSsr

(
AT
r Aθ,r −AT

r,rAθ

)
P31

1 = (
τ

r
Sθθ − κτ cos θ Sss)A

T
θ As + τSrrA

T
θ,rAs +

τ

r
SrθA

T
θ,θAs

+SθsA
T
θ

(
κ sin θAT

θ

(
1

r
As,θ + κ sin θAs

)
+ τ 2AT

θ As
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−κ cos θ

r
AT
θ As −

1

r
κ sin θAT

θ,θAs

)
+Ssr

(
κ sin θAT

θ (As,r − κ cos θAs)− κ sin θAT
θ,rAs

)
P32

1 = −κ2 sin θ cos θ SssA
T
θ Ar +

1

r2
Sθθ
(
AT
θ,θAr −AT

θ Ar,θ

)
+

1

r
Srθ
(
−AT

θ Ar,r + AT
θ,rAr

)
+
τ

r
Sθs
(
AT
θ,θAr −AT

θ Ar,θ

)
+τSsr

(
AT
θ,rAr −AT

θ Ar,r

)
P33

1 = (κ2 sin2 θ + τ 2)SssA
T
θ Aθ + SrrA

T
θ,rAθ,r +

1

r2
Sθθ
(
AT
θ Aθ + AT

θ,θAθ,θ

)
+

1

r
Srθ
(
AT
θ,θAθ,r + AT

θ,rAθ,θ

)
+

2τ

r
SθsA

T
θ Aθ

P11
2 = Sθs

(1

r
AT
s,θAs + κ sin θAT

s As

)
+ Ssr

(
AT
s,r − κ cos θAT

s

)
As

P12
2 = (κ cos θ Sss − τSθs)AT

s Ar

P13
2 = (−κ sin θ Sss + τSsr)A

T
s Aθ

P21
2 = −κ cos θ SssA

T
r As

P22
2 =

1

r
SθsA

T
r,θAr + SsrA

T
r,rAr

P23
2 = τSssA

T
r Aθ +

1

r
SθsA

T
r Aθ

P31
2 = κ sin θ SssA

T
θ As

P32
2 = −(τSss +

1

r
Sθs)A

T
θ Ar

P33
2 = SsrA

T
θ,rAθ +

1

r
SθsA

T
θ,θAθ

P11
3 = SθsA

T
s

(
1

r
As,θ + κ sin θAs

)
+ SsrA

T
s (As,r − κ cos θAs)

P12
3 = −κ cos θ SssA

T
s Ar

P13
3 = κ sin θ SssA

T
s Aθ

P21
3 = (κ cos θ Sss − τSθs)AT

r As

P22
3 =

1

r
SθsA

T
r Ar,θ + SsrA

T
r Ar,r

P23
3 = −(τSss +

1

r
Sθs)A

T
r Aθ

P31
3 = (−κ sin θ Sss + τSsr)A

T
θ As

P32
3 = (τSss +

1

r
Sθs)A

T
θ Ar

P33
3 =

1

r
SθsA

T
θ Aθ,θ + SsrA

T
θ Aθ,r

P11
4 = SssA

T
s As

P22
4 = SssA

T
r Ar

P33
4 = SssA

T
θ Aθ (G.1)
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If the body force is defined as force per unit mass, then we have fb = ρfm =

(ρ0/det(F))fm, where ρ and ρ0 are the mass densities of the body in the deformed

and reference configurations, respectively. Then the force vector in Eq. (6.20) can

be expressed as:

f̂ =

[
f̂s f̂r f̂θ

]T
,

f̂s =

∫
A

ρ0fmsA
T
s dA+

∫ 2π

0

√
Gi qsi ζA

T
s dθ

f̂r =

∫
A

ρ0fmrA
T
r dA+

∫ 2π

0

√
Gi qri ζA

T
r dθ

f̂θ =

∫
A

ρ0fmθA
T
θ dA+

∫ 2π

0

√
Gi qθi ζA

T
θ dθ (G.2)

where ζ =
(

det(F)
√

(C−1 ·N) ·N
)

. If the force (per unit area) vector qi does not

depend on the deformed configuration, then the matrix P̃f used in tangent matrix

is given as follows:

P̃f =

∫ 2π

0

√
Gi


qsi

∂ζ
∂us

AT
s As qsi

∂ζ
∂ur

AT
s Ar qsi

∂ζ
∂uθ

AT
s Aθ

qri
∂ζ
∂us

AT
r As qri

∂ζ
∂ur

AT
r Ar qri

∂ζ
∂uθ

AT
r Aθ

qθi
∂ζ
∂us

AT
θ As qθi

∂ζ
∂ur

AT
θ Ar qθi

∂ζ
∂uθ

AT
θ Aθ

 dθ (G.3)

where the derivative ∂ζ
∂α

for α = us, ur, uθ can be given as following:

∂ζ

∂α
=
∂det(F)

∂α

√
(C−1 ·N) ·N)− det(F)

2
√

(C−1 ·N) ·N)

(
(C−1 · ∂C

∂α
·C−1) ·N

)
·N

(G.4)

where

∂det(F)

∂α
= cofactor(Fij)

∂Fij
∂α

,
∂C

∂α
=
∂FT

∂α
· F + FT · ∂F

∂α
(G.5)

where Fij are the components of F in the assumed coordinate system, and summation

convention ion the repeated indices is implied. Also, the constant point force with

fixed direction, qi, can be expressed in terms of the Dirac delta function in two

dimensions. In this case, we note that constant point force means the volume under

the two-dimensional Dirac delta function should be taken as a constant, and it would
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not depend on the deformation, giving P̃f = 0.

Another common example of distributed traction force at the boundary surface

is the pressure force, which is as qi = P0in = (P0i/
√

(C−1 ·N) ·N)F−T ·N, where

P0i is the magnitude of the pressure. If we use the Dirac delta function for P0 with

constant magnitude, we obtain a constant follower point force always acting along

the normal direction to the surface at the point of application. In such cases, we

have,

f̂s =

∫ 2π

0

√
Gi P0i ζsA

T
s dθ, f̂r =

∫ 2π

0

√
Gi P0i ζrA

T
r dθ, f̂θ =

∫ 2π

0

√
Gi P0i ζθA

T
θ dθ

(G.6)

where ζ = det(F) F−T ·N = ζsês+ ζrêr + ζθêθ. Then the the matrix P̃f can be given

as following:

P̃f =

∫ 2π

0

√
Gi P0i


∂ζs
∂us

AT
s As

∂ζs
∂ur

AT
s Ar

∂ζs
∂uθ

AT
s Aθ

∂ζr
∂us

AT
r As

∂ζr
∂ur

AT
r Ar

∂ζr
∂uθ

AT
r Aθ

∂ζθ
∂us

AT
θ As

∂ζθ
∂ur

AT
θ Ar

∂ζθ
∂uθ

AT
θ Aθ

 dθ (G.7)

where the derivative ∂ζ
∂α

for α = us, ur, uθ is given as

∂ζ

∂α
=

∂ζs
∂α

ês +
∂ζr
∂α

êr +
∂ζθ
∂α

êθ

=
∂det(F)

∂α
F−T ·N− det(F)

(
F−T · ∂FT

∂α
· F−T

)
·N (G.8)

and

∂F

∂us
=


βs1 βs2 − κ cos θ 1

r
βs3 + κ sin θ

−κ cos θ 0 −τ

−κ sin θ τ 0

 ,

∂F

∂ur
=


−κ cos θ 0 0

βr1 βr2
1
r
βr3

τ 0 1
r

 , ∂F

∂uθ
=


κ sin θ 0 0

−τ 0 −1
r

βθ1 βθ2
1
r
βθ3

 (G.9)
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with

βs1 =
us,ss
us,s

+
us,sr
us,r

+
us,sθ
us,θ

βr3 =
ur,θs
ur,s

+
ur,θr
ur,r

+
ur,θθ
ur,θ

βs2 =
us,rs
us,s

+
us,rr
us,r

+
us,rθ
us,θ

βθ1 =
uθ,ss
uθ,s

+
uθ,sr
uθ,r

+
uθ,sθ
uθ,θ

βs3 =
us,θs
us,s

+
us,θr
us,r

+
us,θθ
us,θ

βθ2 =
uθ,rs
uθ,s

+
uθ,rr
uθ,r

+
uθ,rθ
uθ,θ

βr1 =
ur,ss
ur,s

+
ur,sr
ur,r

+
ur,sθ
ur,θ

βθ3 =
uθ,θs
uθ,s

+
uθ,θr
uθ,r

+
uθ,θθ
uθ,θ

βr2 =
ur,rs
ur,s

+
ur,rr
ur,r

+
ur,rθ
ur,θ

(G.10)
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