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ABSTRACT

In this thesis, I demonstrate that existing mesh data structures in computer graphics
can be used to categorize and construct physical polygonal models. In this work, I present
several methods based on mesh data structures for transforming 3D polygonal meshes
into developable multi-panels that can be used in physical construction. Using mesh data
structures, I developed a system which provides a variety of construction methods. In
order to demonstrate that mesh data structures can be used to categorize and construct
physical polygonal models, this system visualizes the mathematical theory and generates
developable multi-panels that can be printed and assembled to shapes similar to original
virtual shapes. The mesh data structures include ones that are orientable: Quad-Edge,
Half-Edge, Winged-Edge; and also one that is non-orientable: Extended GRS.

The advantages of using mesh data structures as guides for physical construction in-
clude: There is no restriction on input design model as long as it is manifold, it can be of
any genus with n-sided polygon faces; Different mesh data structures provide more options
to better fit the input design while taking the physical constraints and material properties
in consideration; Developable panels are easy to obtain from thin planar materials using a
laser-cutter; When we use mesh data structures, it is also intuitive to assemble such planar
panels using mesh information.

Laser-cut developable panels based on mesh data structures provide, therefore, a cost-

efficient alternative to 3D printing when dealing with large structures.
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1. INTRODUCTION AND MOTIVATION

In this chapter, I will explain the motivation behind this research work, and then intro-
duce the goal of this project and the framework it is based on. Key concepts and algorithms
that this research uses will also be discussed as well as the motivation of using them.

With the increasing interest in unusual buildings and free-form designs, the Computer
Graphics community has been exploring new technologies to facilitate the construction of
large scale structures. The Walt Disney concert hall is constructed with hundreds of small
steel panels by wrapping them around the structure (see Figure 1.1). These panels were
measured and bended in certain directions to confirm to the curvature. This method can be
very labor intensive and the construction process highly depends on the design. There’s a

need for a generic economical solution for these large scale sculptures and buildings.

Figure 1.1: Walt Disney concert hall and the steel panels.

Since we’re going for an economical solution, 3D printing is not an answer. The
limitations of current 3D printing technology are the scale of printed object and the time

and cost of printing process and material.



So laser cut provides a great alternative. It is a common machine in architecture stu-
dios. There’s a wide range of materials that it can use. By assembling the cutted panels

together, we can build larger shapes.

Figure 1.2: Examples of a cube with a cutted corner unfolded to single-panel.

Since laser cutter operates on flat surfaces, we will need to unfold the 3D mesh to 2D
pieces. Single-panel unfolding presents a greater challenge because: first of all, there’s
not even proof that convex polyhedron can all be unfolded using only its edges; Secondly,
even for those shapes that can be unfolded flat, there could be overlapping with itself
(see Figure 1.2). Considering this is a simple cube with a cutted corner, it’s obvious that
more complex shapes especially those free-form designs will be either not unfold-able or
overlapping itself.

Hence, our solution is to unfold it into multiple panels which also gives us simpler
pieces. And with laser-cutting, we’re able to construct large scale structures in an eco-
nomical way.

Multi-panel Construction has been discussed in several research works [10, 11, 12, 13],
where their suggested methods focused on mass production and reduction of the time and
fabrication cost involved in it. However, mass production is not a strong requirement for

developable components [14]. Using planar panels, we can fabricate developable compo-
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nents in an economical way even if each of them is different from another. Such planar
panels can be individually manufactured by cutting them off paper, thin metal, or other
planar materials using laser-cutter.

The goal of this project is to unfold 3D virtual shapes to multiple planar panels for
physical construction of large scale shapes similar to original virtual shapes. I will present
an algorithm that uses different categories of mesh data structures that are widely used in
Computer Graphics as guides for physical construction. Given an arbitrary, user specified
3D mesh, constructed using any design interface, this algorithm generates a multi-panel
unfold-able developable surface that still preserves the same topology as the original mesh.
Since we focus on multi-panel construction, the resulting panels are relatively simpler
pieces that can be easily packed and assembled together.

When dealing with physical construction, in order to eliminate unnecessary inner ten-
sion, the panels and assemblies need to be developable, which means we need to make
sure that the faces are planar. In order to compensate the thickness of physical material,
we will be using Bézier surface instead of a sharp crease on corner. This would allow
for easier assembly. By redistributing the forces sharp creases would get along a wider

surface, the physical structure is inherently more stable.



2. PREVIOUS WORK

My research mainly focuses on multi-panel unfolding and construction. Since our goal
is to build large scale sculptures while keeping the production time minimal and the cost
economical enough for non-industrial usage, we’ve chosen laser cutter to be the fabrication

machine.
2.1 Fabrication Tool

Digital Modeling and Fabrication is a process that by using 3D modeling design soft-
ware or computer-aided design one joins the design with production. It is widely used in
construction industry where accuracy is crucial [15].

An increasingly common machine within the workshops of architecture schools, pro-
fessional model makers and even design practices, the laser cutter is an important tool
owing to the array of functions it offers [14].

The laser cutter is a machine that uses a laser to cut materials such as chip board, matte
board, thin sheets of wood. It is firstly introduced in 1965 to drill holes in diamond dies
[16]. Throughout the years, researchers have been improving this technique by innovating
new cutting tools and methods [17], increasing cutting efficiency [18], and introducing
new types of laser [19, 20].

Modern laser cutters are highly integrated with CAD systems. 2D vector based design
software(such as Adobe Illustrator [21] and AutoCAD [22]) are used to produce lines on a
grid and then send them to laser cutter. Lines defined in different configurations can either
cut through the material or score it.

Laser cutter usually requires an additional step of either automatic [17] or manual

assembly when constructing large scale or complex designs.



2.2 Modeling for Fabrication

Laser cutter cuts and scores the material based on the distance between laser module
and the material [15]. In order to precisely control the resulting pattern, planar materials
are preferred. This means that we need to unfold our 3D polygonal mesh into planar panels
which is developable.

A developable surface is a surface with zero Gaussian curvature, which is essentially
the envelope of a single-parameter family of planes [23]. In other words, it is a surface
that can be formed by bending or rolling a planar surface without stretching or tearing. For
some technical applications, this property is crucial if we want to construct objects using
paper, sheets of tin etc.

Computer aided geometric design emerged when there’s increasing demands in design-
ing and modeling free-form surfaces. This area is combined with applied geometry and
architecture. Researches done in this area generally focus on approximating 3D free-form

surfaces and geometric processing.
2.2.1 Modeling with continuous developables

Geometric modeling with continuous developables is an old topic, the general geomet-
ric design problem has not been solved. The contributions have been limited due to the
nonlinear nature of the developability constraint that prevented interactive design.

In 1968, Ferris [23] presented an explicit representation for a developable surface
which is defined as the envelope of single-parameter family of planes. However, his ap-
proach does not result in a Bézier or B-spline formulation, and it does not utilize control
planes in a manner that is similar to the way as in curve design.

Since then, rational Bézier and B-spline basis is widely used for designing developable
surface which also leads to an extensive amount of literature discussing the developable

Bézier surfaces based on both quadratic and cubic curve [24, 3, 1, 2].



Figure 2.1: Examples of developable Bézier surfaces that are: (a) Admissible and non-
admissible under the condition given by [1] (b) Cubic and have 5 degrees of freedom using
method described in [2]. (c) Free of singular point using algorithm described in [3].

In [1], Aumann gave the necessary and sufficient conditions under which developable
Bézier surfaces can be constructed with two boundary curves free of singular points (see
Figure 2.1(a)).

As known [25, 24], the surfaces which consist of parts of planes, cylinders, cones and
surfaces generated by the tangents of a (in general twisted) curve are developable. Every
developable surface is generated by a one parameter set of straight lines (’generators’).

Every one of these lines has the property, that there exists one and only one tangent plane



for all of its points. So a necessary condition of a Bézier surface for being developable is
the existence of a one parameter set of straight lines on the surface [24].

In 1998, Maekawa and Chalfant [26] performed geometric modeling for spline devel-
opables for the special case that boundary curves lie in parallel planes.

Chu and Séquin [2] extended the study to the design of developable Bézier surface
from two boundary curves. In a way, the authors present a more intuitive design interface
while introduced nonlinear constraints on surface. With one boundary curve freely speci-
fied, five more degrees of freedom are available for a second boundary curve of the same
degree (see Figure 2.1(b)). Therefore it provides more degrees of freedom for design,
no limitations in surface modeling, and simpler implementation solutions. However, only
solutions for quadratic and cubic cases are derived in this paper and the characterizing
equations becomes more complex for boundary curves of low degree.

In 2004 [3], Aumann introduced a new algorithm that gives an efficient and simple
method for computing a developable Bézier surface of arbitrary degree which is free from
singular points (see Figure 2.1(c)). Like the algorithm of Chu and Séquin, this algorithm
is also de Casteljau based. Extending on Chu and Séquin’s algorithm, it uses three of the
five degrees of freedom for a second boundary curve c to fix the starting point Cj of c. The
remaining two allow an easy control of singular points.

Later in the book by Pottmann and Wallner [27], the authors tried to avoid the non-
linear constraints in [2, 3]. Via duality such constraints can be avoided, however it results

in a less intuitive plane-based control structure.
2.2.2 Modeling with discrete developables

Trying to avoid the non-linear constraints, architects start leaning towards researches
that focus on geometric modeling with discrete developable Bézier surfaces.

Most of recent works approach the problem from the perspective of design. Bo and
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Figure 2.2: Examples of Computer Aided Geometric Design research results: (a) Devel-
opable paper petals and leaves design for a tulip using the sketch based system described
in [4]. (b) Developable surfaces of a closed paper strip generated from geodesic curves as
shown in [5]. (c) Control structures and the approximating developable surface using the
algorithm introduced in [6].

Wang [5] present a new way of modeling developable surface to simulate paper bending.
This method exploits the underlying geodesic on the developable surface. By manipulating
the geodesic, the authors were able to provide shape control for modeling paper bending
shapes as shown in Figure 2.2(a). Although their approach was flexible, the resulting
design is limited to paper composition shapes. Therefore, designing a free-form model
with this technique still presents a challenge.

In the same year, Rose et al. [4] introduced a more designer-friendly approach which
essentially takes in any polyline 3D boundary and generates the developable surface that
interpolates the boundary. Figure 2.2(b) shows the polyline and interpolated developable
surface.

There is also a commercial software that is designed by Paul Haeberli called Lamina
Design. Itis used to convert any given 3D surface to a set of developable panels [28]. Lam-

ina builds the physical structure by approximating the 3D shape with various 2D assembly



parts. The design mesh is approximated by a number of 2D parts that are numerically cut
and attached to fabricate the final structure.

A few of recent researchers have incorporated well-known geometric modeling al-
gorithms such as subdivision to approximating the design. In [6], Liu et al. showed a
new approach of constructing and approximating design using conical meshes which are
quadrilateral meshes with planar faces as shown in Figure 2.2(c). The authors introduced
conical meshes’ geometry properties and demonstrated their superiority over other types
of meshes from the perspective of architectural design. One property that makes it partic-
ularly useful for layer composition constructions is that when offsetting the conical mesh
face planes by a constant distance, it yields a planar mesh of the same connectivity, which
is again a conical mesh. The authors also proposed a new algorithm for converting quadri-
lateral mesh to conical mesh.

Extending on the ideas of [6], Pottmann et al. [2008] use splines for modeling de-
velopable surfaces. They use optimization to achieve approximate developability, using

integrals for target functionals.
2.2.3 Modeling developables with the dual representation

A different approach to modeling developables is to work with the dual representa-
tion. Here a developable is represented as the envelope of its tangent planes and is thus
recognized as the projective dual of a space curve.

The dual representation was firstly proposed by R.M.C. Bodduluri and B. Ravani
[29]. They presented a direct explicit representation for developable surfaces that is CAD-
oriented, using the Bézier and B-spline bases. By examining geometric duality between
points and planes, the authors consider a single-parameter family of planes (whose enve-
lope is the developable surface) as the dual of a curve with a Bézier or B-spline form.

Pottmann and Farin [7] extended the results of Bodduluri and Ravani [29] in various



(©)

Figure 2.3: Examples of Approximated developable surfaces in the context of dual rep-
resentation: (a) Developable piecewise (2, 1)-surface as approximation of a developable
surface which connects a circle and an ellipse [7]. (b) Approximation of a developable
surface (light grey) by a developable spline surface [8]. (c) Piecewise-developables which
approximate bunny using Tang et al.’s algorithm [9]. Composite surfaces and the rendered
result are shown.

ways: First, arbitrary NURBS representations are considered and a rigorous projective
treatment are provided. They also showed how to convert developable NURBS surfaces
from the dual form into a standard tensor product point representation. In particular, they
were trying to solve basic design problems such as connecting two curves with a devel-
opable surface (see Figure 2.3(a)).

A separate contribution [30] by Hoschek and Pottmann in 1995 describes the funda-
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mentals and the main ideas on interpolation and approximation with developable surfaces.
They also showed some initial results on this topic.

Since then, Pottmann and Wallner [8, 27] have done extensive study on approximation
algorithm for developable NURBS surfaces (see Figure 2.3(b)). The dual representation,
however, is not intuitive and it is difficult to control singularities.

Most recently, Tang et al. [9] present a new approach to o geometric modeling with
developable surfaces. They use a combined primal-dual spline representation for devel-
opables. They represent developables as splines and express the nonlinear conditions re-
lating to developability and curved folds as quadratic equations. An approximated bunny

is shown in Figure 2.3(c).
2.2.4 Other approaches

There has also been interest in developable surfaces for mesh parametrization [31] and
mesh segmentation [32].

In [33], Massarwi et al. introduced an algorithm for approximating a 2-manifold 3D
mesh by a set of developable surfaces. The approximation quality is controlled by user.
The approximation output is a developable surface which is a generalized cylinder repre-

sented as a strip of triangles not necessarily taken from the original mesh.
2.2.5 Practicality of fabrication

With the design and construction of more and more unusually shaped buildings, the
computer graphics community has started to explore new methods to reduce the cost of
the physical construction for large shapes.

A key problem with construction of free-form shapes is the approximation of the de-
sign surface by a union of panels, which can be manufactured with a selected technology
at reasonable cost. Surface approximation by planes is originally introduced by Cohen-

Steiner et al. [34]. Since then, various extensions have been proposed for additional
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surface types, €.g., spheres and cylinders [35], quadrics [36], or developable surfaces [31].
These methods focus on optimizing for surface segmentation.

There exist an extensive amount of research on unfolding with planar panels. In [37],
they looked into the planar quadrilateral facets for the Jerusalem Museum of Tolerance
project by Gehry Partners, in collaboration with Schlaich Bergermann & Partners, engi-
neers. D-Charts [31] is another algorithm developed to segment meshes into developable
charts. Fabric and paper based physical structures are produced by using this algorithm.

In 2009, Akleman et al. showed how to create plain-weaving over an arbitrary surface
[38]. By cross other cycles (or themselves) by alternatingly going over and under, they
are able to create a plain-weaving pattern. They proved that it is possible to create such
cycles, starting from any given manifold-mesh surface by simply twisting every edge of
the manifold mesh. They have developed a new system that converts plain-weaving cycles
to 3D thread structures. Using this system, it is possible to cover a surface without large
gaps between threads by controlling the sizes of the gaps.

As an extension of [38], Xing et al. [39] showed that it is always possible to create a
single-cycle plain- weaving starting from a mesh on an arbitrary surface. To extend the 2D
cycles to 3D threads, they extended the original projection method in [38] to be suitable to

handle non-twisted edges too.

Figure 2.4: Construction of a large bunny using physical version of GRS.
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In [40, 41], the authors focused on physical construction using developable compo-
nents such as thin metals or thick papers. This new approach is based on GRS, which
guarantees the topological consistency of the process. By connecting vertex components
together, they were able to construct large-scale shape economically.

More recently Akleman et al. [42] introduced a new method for large-scale shape
construction. By using quad edge data structure, the authors have developed a system
to unfold any polygonal mesh into laser-cutter fitted developable panels. This method
is particularly suitable to construct complicated sculptural and architectural shapes from

anisotropic materials that can only be bent in one direction.
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3. PRELIMINARY

A polygonal mesh consists of a set of vertices, edges, faces and neighboring relations
between them [43, 44]. Based on these relations, a data structure defines how each element
is stored and what references to its neighborhood it needs. Mesh data structure plays an
important role in geometric algorithms, such as mesh adaptation and mesh enhancement
[45].

Over the past decades, there has been a surge of interest in mesh data structure in
discrete and computational geometry society. Several different major data structures have
been implemented for static representation and dynamic handling of arbitrary polygonal
meshes [46, 47]. Most of these approaches focus on using mesh data structure in computer
geometry and digital modeling, few looks at the problem of bring these data structures to
physical world [40].

In this chapter, I will discuss the theoretical framework that this research is built upon,

followed by the mathematical background of mesh data structures.
3.1 GRS

In combinatorial mathematics, graph rotation systems encode the embedding of graphs
onto orientable surfaces, by describing the circular ordering of a graph’s edges around each
vertex [48, 49]. Such rotation at vertex is shown in Figure 3.1(a). By tracing the edges,
we can identify the face(see Figure 3.1(b)). In [49], the graph rotation system is defined

as follows:

Definition. A rotation at a vertex v of a graph G is a cyclic permutation of the edge-ends
incident on v. A rotation system for a graph G is an assignment of a rotation to every

vertex in GG.
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1

(a) The rotation of edges at a vertex. (b) Tracing edges belonging to a face.

Figure 3.1: An illustration of the classical GRS.

Heffter-Edmunds theorem asserts that there is a bijective correspondence between the
set of pure rotation systems of a graph and the set of equivalence classes of embeddings of
the graph in the orientable surfaces [50]. Hence, this theorem made GRS a powerful tool
to guarantee topological consistency which we need to ensure that the resulting physical
construction is similar to original virtual shapes.

A graph embedded in an orientable surface corresponds to a rotation system, namely,
the one in which the rotation at each vertex is consistent with the cyclic order of the
neighboring vertices in the embedding [48]. GRS has been explicitly used as a physical
mesh data structure as shown in Figures 2.4 to construct large shapes [40, 41]. GRS
have also been implicitly used in computer graphics for representing and manipulating
orientable (and non-orientable) 2-manifold surfaces in the guise of various data structures,

such as half-edges [45], quad-edges [51], winged-edges [44].
3.2 2D-Thickening

To convert GRS to 3D geometry for physical construction, we will be using a method
called 2D-thickening.
As shown in Figure 3.2(a), a finite graph G is embedded in a closed oriented surface

S. Each vertex of GG thickens to a polygon (or a disk) and each edge OF g thickens to
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a band (See Figure 3.2(b)). Thus, each polygon corresponds to a vertex and each band

corresponds to an edge that connects vertex regions.

(a)

Figure 3.2: An example of the 2D-thickening in topological graph theory. A graph GG in a
torus and the associated 2D-thickening.

By thickening the graph (G, we convert an abstract graph which is embedded on surface
to bands that have thickness and size and still represent the same graph GG. Hence it is the

fundamental method that enables physical construction.
3.3 Half-Edge

A half-edge is a half of an edge and is constructed by splitting an edge down its length.
Half-edges are directed and the two edges of a pair have opposite directions.

For Half-Edge mesh data structure, each edge is split into two half-edges as shown in
Figure 3.3. Each half-edge stores the vertex () it points to, the face L it is on, the next
half-edge b and prev half-edge a, and the half-edge pair. Note that implementation might
vary, here I’'m referencing OpenMesh [52].

To employ it onto a mesh, we treat each half-edge as a separate component. For each

half-edge, the vertices, half-edges, and face it references to consist a panel that essentially

16
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Figure 3.3: Half-Edge data structure and an illustration.

is a face band (see Figure 3.4). And the half-edge pair is the link to other panels so we will

need connectors on the border edges for assembly purposes.

Figure 3.4: 2D-thickened Half-Edge data structure.

3.4 Quad-Edge

For Quad-edge mesh data structure, each edge is split into 4 quad-edges. Each quad-
edge of an edge contains pointer to next quad-edge, faces, and neighboring vertices.
Since the edges are the only standard elements in a 2-manifold mesh consisting of

two edge-ends and two half-edges [51]. Any edge can therefore be easily thickened to a
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struct Q_edge

{
Vertex *start, *end;
Face *left, *right;

q.sym.next

q'rmo

q.rot.next

bi

struct Vertex

{
float =, v, z;
Q _edge *edge;

struct Face
[

Q_edge *edge;
b

Figure 3.5: Quad-Edge data structure and an illustration.

rectangular edge-band.

Quad-edge entities are usually depicted as crosses as shown in Figure 3.5 [51]. By
encapsulating the cross shape inside of a square (see Figure 3.6(a)), we show that each
quad-edge panel is actually a quadrilateral (as the name quad edge suggests). This addi-
tional depiction shows that the corners(regions drawn in yellow) of the quadrilaterals can
be considered as links. In quad-edge data structure, quad-edge panels that are linked to-
gether describe faces and vertices of 2-manifold meshes as shown in Figure 3.6(b). As it
can be seen in examples in Figures 3.6(b), closed cycles of directed links form boundaries
for faces and vertices. The face and vertex regions are shown as two white squares and six
yet-uncompleted cycles in Figure 3.6(b).

Based on this discussion, we can classify any multi-panel construction as quad-edge

based, if the panels and construction satisfy the following three conditions:

1. Panels must have exactly four corner connections;

2. Only two panels must be connected by each connection; and

3. Every connection must be used.
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Figure 3.6: Visual examples that demonstrate the concept of quad-edge. (a) provides
a depiction of quad-edge as a cross. We have drawn this cross inside a yellow-colored
square to demonstrate that each quad-edge element can also be considered a quadrilateral,
in which corners correspond to links to other quad-edge panels. These panels are linked
to describe faces and vertices of a 2-manifold mesh. (b) shows a group of linked panels.

Hence, to employ it onto a mesh, we created edge bands(dark blue region in Fig-
ure 3.7), and we extend the edge band to cover the links(on the corners of edge band) that

point to neighboring quad-edges.

Figure 3.7: 2D-thickened Quad-Edge data structure.
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3.5 Winged-Edge

For Winged-edge mesh data structure as shown in Figure 3.8, each edge stores the end
vertices P and (), the left face L and right face R it is on, and the left and right next and

prev edges a, b, ¢, d. It is given such name because of the extra edges it stores.

struct W_edge
{
Vertex *start, *end;
Face *left, *right;
W edge *left prev, *left next;

V; W_edge *right_prev, *right_next;

struct Vertex
{
fleat %, v, z;
W _edge *edge;
Yio T
struct Face
{

W_edge *edge;

}i

Figure 3.8: Winged-Edge data structure and an illustration.

Similar to quad-edge, each edge consists of two edge-ends and two half-edges, there-
fore they can be thickened to edge-band. With the additional links to neighboring edges,
we thicken them to wings. By extending the edge band (see Figure 3.9(a)), we show
that each winged-edge panel is actually a quadrilateral with wings. This shows that the

wings(regions drawn in yellow) of the quadrilaterals can be considered as links.
3.6 Extended GRS

As mentioned in previous works, GRS can also be used to represent and manipulate
non-orientable 2-manifold surfaces. An important concept in GRS is edge twisting. An

edge has type O if it is untwisted and type 1 if it is twisted [48].
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Cimt

(a) A single panel in 2D (b) in 3D

Figure 3.9: 2D-thickened Winged-Edge data structure.

Ve

(a) The initial mesh whose edges are not twisted (b) After twisting one edge vovs

Figure 3.10: Face boundary walk before and after twisting an edge.

The concept of edge twisting is extended in [38], the formal definition of extended

GRS is described as:

Definition. An extended graph rotation system (EGRS) is a graph rotation system with

extended edge twists. Note that the face-tracing algorithm can be applied to an EGRS.

To construct a plain-weaving pattern on orientable surface, we apply Face-Tracing
Algorithm with the extended edge-twisting operations. The following theorem is a foun-

dation for our development of cyclic plain-weaving (see [38] for a proof of the theorem):
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Theorem. Let py(G) be a graph rotation system with no twisted edges, which corresponds
to an embedding of the graph GG on an orientable surface S;,. Let A be an arbitrary subset
of edges of G. If we twist all edges in A positively, or if we twist all edges in A negatively,

then the resulting EGRS induces a cyclic plain-weaving on .Sj,.

As mentioned above, a fundamental algorithm on graph rotation systems known as
Face-Tracing. This algorithm applied to a graph rotation system py(G) on a surface S
returns a collection of graph cycles that are the boundary-walks of the faces in p(G). For
instance, for the face with twisted edge in Figure 3.10, the face boundary walk results in a

cyclically ordered set

Kl = {E007 ElO; E207 E307 Eﬁl? E517 E417 E31}

Such edge twisting method has been used to construct non-orientable surface virtually

[38].
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4. UNFOLDING: CONSTRUCTION WITH
ORIENTABLE-MANIFOLD MESH DATA STRUCTURE*

In this chapter, I will discuss in detail the algorithm of using three orientable-manifold
mesh data structures such as Half-Edge, Quad-Edge, and Winged-Edge for construction
purposes.

I will also show the process of using these data structures to unfold any polygonal mesh
into laser-cut developable panels that can be assembled to construct physical structures that

approximate original 3D polygonal meshes.
4.1 Half-Edge

As discussed in Preliminary section 3.3 at page 16, we observe that to employ Half-
Edge to mesh using the 2D-thickening method, we can simply create the face bands by

scaling the faces(see Figure 4.1). The detailed steps are described as follows:

V/O h Vo' gl \\B NS
: / /7% \ \\ N
4 / /\,;C’\\\ \ 4 -
/ * /// ////// \\\\\ \\ *< {{{{{{
< ////// - \\\\\\\
Original Mesh Create Face Band Half-Edge

Figure 4.1: Flowchart of construction with Half-Edge.

*Part of this chapter is reprinted with permission from "Construction with physical version of quad-
edge data structures" by Ergun Akleman, Shenyao Ke, You Wu, Negar Kalantar, AliReza Borhani, Jianer
Chen, in Computers & Graphics, vol. 58, pp. 172-183, 2016, Copyright 2016 by Elsevier Ltd. DOI link:
http://doi.org.ezproxy.library.tamu.edu/10.1016/j.cag.2016.05.008
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Step 1: Scale Face.

For each corner vertex v,, on a N-sided face f = vg, vy, ..., v, of the old mesh, create a
new vertex v], which is scaled towards the face center v, as in Figure 4.2. The new vertex
position is calculated as

vl = sv, + (1 — s)v, 4.1)

where s is the scaling factor that controls the thickness of face bands.

V1

Figure 4.2: Illustration of creating face bands.

Step 2: Create Face Band.
For each face of the old mesh, create a new face (as in Figure 4.2) by connecting all

the new vertices v, v, ..., v}, of the original face f.
4.2 Quad-Edge

As discussed in Preliminary section 3.4 at page 17, we know that to employ Quad-
Edge to mesh using the 2D-thickening method, we take in the original mesh, then we

create face bands and edge bands, then using face band as a reference, we create flaps to

cover links(connectors). We use the same face band generating algorithm as Half-Edge.
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A flowchart of the whole process is shown in Figure 4.3).

\V/

N 4

Original Mesh Quad—Edge |

o
- —\ N
v I AN N g
/ A n /s .
>3 \ \., N\ / \
S \ / PERN \
L A\ / o v / - < \
~\ ) / y - N \
N\ / © . AN
> \

Face Band Edge Band | Flap

Figure 4.3: Flowchart of construction with Quad-Edge.

The detailed steps are described as follows:
Step 1: Create Face Band.
Scale face and create face bands as described in Step 1 and 2 in section 4.2.

Step 2: Create Edge Band Control Mesh.

For edge bands, we use Bézier surface to preserve the curvature while keeping it de-

velopable. The prerequisite of constructing Bézier surface is to create control mesh.

For each edge of the old mesh, create two vertices v, v.; Which is scaled towards the

edge center v,. as shown in Figure 4.4. The new vertex position is calculated as

Veo = SUs + (1 — $)Vee

Vel = SVe + (1 — $)Vee
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where v, v, are the original edge endpoints and s is the scaling factor that controls the

thickness of edge bands.

Figure 4.4: Bézier control points on edge.

For each edge of the old mesh, find the neighboring faces’ new corner vertices vj, v;

and v/

%, 0%, that was scaled from edge endpoints v.,vs. Combined with the new edge

vertices Ve, Ve1, they form the control mesh. For example, in Figure 4.4, v} and v/, from
f1, v} and v§ from fy, and v, ve; form the control mesh.

Since face band is scaled towards face center, based on SAS Similarity Criterion, we
derive that the face edges m and m are parallel to original edge v,v.. Hence the control
points reside on three parallel lines. Such control mesh gives us a cylindrical Bézier mesh
which we prefer.

Step 3: Create Edge Band.

Now using this cylindrical control mesh, we can interpolate the Bézier surface by

discretely sampling the two Bézier curves. From the side view (see Figure 4.5), we can

see that we have three control points on one side, which forms a quadratic Bézier curve.
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A quadratic Bézier curve is the path traced by the function B(t),

B(t) = (1 —t)’v) 4+ 2(1 — t)tveg + 707,00 < t < 1. (4.4)

where v, V.9, and v} are control points.

Based on different number of samples, we calculate multiple B(t) positions and cre-
ate new vertices. Note that the number of samples and the sampling scheme is exactly
symmetrical on two sides of the Bézier surface, only by doing this we are able to keep it
cylindrical.

Create new faces by connecting these new interpolated vertices in order. Further con-

nect them with face edges, we get the edge band (see dark blue region in Figure 4.5).

(a) Bézier surface (side view). (b) Bézier surface as edge band.

Figure 4.5: Illustration of creating edge band.

Step 4: Create Flap.
Flap is designed to overlap with neighboring panels. We prefer the flap to be parallel
to the edge band and still can be scaled up or down relative to the face band. Hence, the

first step is to scale the face band vertices. Similar to creating face bands(see section ), we
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obtain new vertices by scaling inwards
vy = tu), + (1 — t)o. 4.5)

where v,. is face center.

As discussed in section 3.4, each Quad-Edge entity is created by encapsulating the
cross shape inside of a square. Each Quad-Edge panel is essentially a quadrilateral. Hence
the corners of the quadrilaterals can be considered as links.

So we extend the v{ and v; outwards to neighboring face band edges and find the

intersection of line v{jvs with the face band edges v{v] and vjv5.

v = intersect(vj vy, viviy1)

(4.6)

vp1 = intersect(vj vy, vjv;_1)

where we’re assuming the vertex numbering follows a counter-clockwise order as shown
in Figure 4.6.
Once we have the intersection points v and vy, we can create a flap with intersection

points and edge band boundary.
4.3 Winged-Edge

As discussed in Preliminary section 3.5 at page 20, we know that to employ Winged-
Edge to mesh using the 2D-thickening method, we go through a similar process as Quad-
Edge. We use the same face band and edge band generating algorithm as Quad-Edge.

The detailed steps are described as follows:

Step 1: Create Face and Edge Band.

Create face bands and edge band as described in Step 1 to 3 in section 4.2.
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Figure 4.6: Illustration of creating flap on Quad-Edge.

Step 3: Create Flap.

The only thing different from Quad-Edge is the flap. As stated in Preliminary section
3.5, the additional links to neighboring edges can be thicken to wings. By extending the
edge band, we create the flaps.

Hence first step is to scale the face band vertices towards face center using equation
4.5. Since the links region are on the wings, we extend the Quad-Edge quadrilateral region
of vy, vj, v4, v4 to include also the wing which is v and v}. An illustration is shown in

Figure 4.7.

Figure 4.7: Illustration of creating flap on Winged-Edge.

29



5. WOVEN: CONSTRUCTION WITH
NONORIENTABLE-MANIFOLD MESH DATA STRUCTURE

In this chapter, I will discuss the process of using non-orientable-Manifold Mesh Data
Structure which is extended GRS(woven) to weave any convex polygonal mesh into laser-
cut developable panels that can be assembled to construct physical structures that approx-
imate original 3D polygonal meshes.

I will also show the process step by step of using woven structure for construction
purposes.

As discussed in Preliminary section 3.6 at page 20, we observe that we can apply Face-
Tracing Algorithm with the extended edge-twisting operations to obtain plain-weaving

pattern. (see Figure 5.1).

4
/

{

O}iginal Mesh

Face Band Boundary Face Band Edge Twist

Figure 5.1: Flowchart of construction with Extended GRS(Woven).
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The detailed steps are described as follows:

Step 1: Create Face Band Boundary.

To create the face band, first we need to define the boundary. We follow the face tracing
algorithm with the edge twisted, and scale the face corners to form the boundary. Since
we want the resulting strip to be as straight as possible, we calculate the edge centers V;

and ‘/ei j

Vei= Vi+Viy)/2

(5.1)
Veij = (Vi+V5)/2
then the scaling pivot V,; is the middle of edge center line
Vi = (Vei + Veig) /2 (5.2)

where V;, V;, Vii are face corner vertices as shown in Figure 5.2. Note that this scheme

follows the De Casteljau’s algorithm for splitting cubic Bézier curve.

o Vj

V(i+1)

Figure 5.2: Illustration of face band scaling pivot.
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After we establish the pivot points, we scale twisted edge and its neighboring edge’s

vertices v; towards that pivot (as shown in blue triangle area in Figure 5.3),

vi = sv; + (1 — 8)vg (5.3)

where s is scaling factor.

V(i+1)

Figure 5.3: Illustration of face band boundary.

Step 2: Create Face Band.
Once we have the boundary, we scale them towards edge center line to create face band

(see Figure 5.4).

vio = tu; + (1 —t)v!,

v = tu, + (1 —t)v,,
5.4

Vi3 = tUZ/- + (1 — t)l)/

e

/

where v;,; and v, ; are the intersection of edge center line v.;v.;; and face band boundary.
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V(i+2)

V(i+1)'

Figure 5.4: Illustration of face band.

Step 3: Create Edge Band.
Edge band is created by connecting neighboring edge pairs. For example, in Figure 5.5,
edge band is the dark blue region {v;3, vi2, vj2, V)3 }.

Since face band is scaled towards scaling pivot, based on SAS Similarity Criterion, we

derive that the face edges v;3v;2 and v;,0;3 are parallel to original edge v;v;.

Figure 5.5: Illustration of strip edge patch.
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Step 4: Thickness Offsetting.

A strip is formed with 3 edge bands and 2 face bands interlacing together as shown
in Figure 5.6. Once we have the strip, we need to offset their position to compensate the
thickness of material. We do it by separately offsetting each segment of the strip along
the edge patch normal. Hence the middle segment always connect to top segment, then

connect to the bottom segment.

Vj2' :
Vj2 Vi3

Vi3

i2

Figure 5.6: Illustration of a strip.

First we calculate the edge band normal of each segment n,

\

%
= Vg — V;3 X Ujo — ¥;3 (5.5)

where X is cross product.
Then we offset each segment based on normal 77, a segment is defined as {v§3, Ul

v

s vg.g} where each vertex is calculated as

Vi, = (Vin + Vin—1)/2 (5.6)

where v;,, 1 is the v;,’s neighboring vertex in a counter-clockwise naming scheme.

34



To offset it by thickness 7,

Vo=l rm (5.7)

mn mn

Step 5: Weaving.
Continue the face-tracing algorithm with all the edges twisted, and do Step 1 to 4 on

each edge, we obtain the weaving pattern as shown in Figure 5.7.

Figure 5.7: Illustration of three strips weaving.
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6. IMPLEMENTATION AND RESULTS

6.1 Implementation

The developed software is called Unfolding[53]. It is open sourced on GitHub.

Qo @ 4T & <"

Figure 6.1: A screen-shot of the software interface.

6.1.1 Specifications

The software supports Modern OpenGL(3.3+) and high DPI display. It is written in
C++ for maximum efficiency. User interface is developed with Qt framework. It runs on
Windows while it is theoretically cross-platform with a few tweaks to conform to MacOS’s

clang and Linux’s gcc compilers.
6.1.2 Software

The development of this system is based on the framework that has been built by
Guo [54]. Guo’s framework reads in OBJ model and represents them using half-edge

mesh structure. The unfolding module which projects 3D developable panels to 2D planar
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pieces and the rendering module which handles graphics display are implemented by a
fellow graduate student.

Since we use Qt to handle the user interface, it allows a great range of freedom as for
the design. Hence it can as technically detailed or as user-friendly as it can be.

For the purpose of serving mainly as a research and educational software, the User
Interface is straight-forward and research-driven. Exact terms are used on the label, such
as Half-Edge and Quad-Edge. However, we hide the unnecessary complex mathematical
variable names from the user. For example, instead of "degree of curve", we use the notion

of "sample", which conveys the same information and is much easier to understand.
6.2 Results

In this section, I will show the software outputs and the physical constructed pieces.

Construction details will also be discussed.
6.2.1 Results of Half-Edge

Figure 6.2 shows the screenshots of the process of constructing a genus-2 quadrilateral
manifold with Half-Edge. Figure 6.2(a) shows the original mesh, Figure 6.2(b) is the
generated developable surface, Figure 6.2(c) shows one panel. The face band scale here is

100 %.

(a) Original Mesh (b) Developable surface (c) Single Panel

Figure 6.2: Constructing a genus-2 quadrilateral manifold with Half-Edge.
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6.2.2 Results of Quad-Edge

Figure 6.3 shows the screenshots of the process of constructing a genus-2 quadrilateral
manifold with Quad-Edge. Figure 6.3(a) shows the original mesh, Figure 6.3(b) is the
generated developable surface, Figure 6.3(c) shows one panel. The face band scale here is

50 %, flap scale is also 50 %.

(a) Original Mesh (b) Developable surface (c) Single Panel

Figure 6.3: Constructing a genus-2 quadrilateral manifold with Quad-Edge.

Tetrahedron Cube Concave

Figure 6.4: Platonic solids and concave shapes constructed with Quad-Edge.
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To test the construction process, we started with Platonic solids, then moved on to
concave designs(see Figure 6.4). We have also tested it on high-genus meshes as shown in

Figure 6.5.

(c) Constructed with Quad-Edge

Figure 6.5: 3-genus object constructed with Quad-Edge.

To demonstrate our method’s advantages when building large scale shapes, we have
also built a Stanford bunny which is approximately 4 feet tall. We start by simplifying
the original bunny mesh to 625 edges (see Figure 6.6(a)). Then we use Quad-Edge to
generate the developable panels(see Figure 6.6(b) and (c)), laser-cut and assembled them

together(see Figure 6.6(d) (e) and (f)).
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(b) Generated developable bunny

T

(e) Constructed bunny (f) Size compared to human

Figure 6.6: The process of constructing Stanford bunny. Approximately 600+ panels are
separated to 12 sheets of 18x24 inch Strathmore heavyweight papers. Laser cutting took
about 6 hours to complete. 4 people assembled it in 12 hours, using approximately 1200
fasteners. The total cost for all the material is approximately $60.

Our research received interests of Professor Negar Kalantar Mehrjardi and Professor
Alireza Borhani Haghighi in the Architecture Department of Texas A&M University. A
group of students used our software in a beginning level architecture studio to create and

construct their own designs. Figure 6.7 shows a collage of student works.
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Michael Hergert ~ Adeline Kim

Jessie Bullard  Michael Vandermate  Sarah Pearson Rachel Ruby Rachel Ruby

Michael Vandermate Arialle Dempsey

Figure 6.7: Examples of quad-Edge sculptures designed and constructed by students in a
beginning level architecture studio. The names of students who designed and constructed
sculptures are provided under each photograph.

6.2.3 Results of Winged-Edge

Figure 6.8 shows the screenshots of the process of constructing a genus-2 quadrilateral
manifold with Winged-Edge. Figure 6.8(a) shows the original mesh, Figure 6.8(b) is the
generated developable surface, Figure 6.8(c) shows one panel. The face band scale here is

50 %, flap scale is also 50 %, shift is set to left.
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(a) Original Mesh (b) Developable surface (c) Single Panel

Figure 6.8: Constructing a genus-2 quadrilateral manifold with Winged-Edge.

We have also tested the process of constructing concave shapes with Winged-Edge. We
expected because of its wings, it can provide a stronger structure. However, as soon as we
build one, we realized that it is hard to put together. Another problem is that winged-edge

panels do not pack well because of its wings (see Figure 6.9).

anels

(b) A structure constructed by winged edge panels and its detail

Figure 6.9: Examples of models that corresponds to winged-edge mesh data structures.
(a) shows flat and bent single panels and (b) shows a shape constructed by using such
winged-edge panels and its detail.
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6.2.4 Results of Woven

Figure 6.10 shows the screenshots of the process of constructing a genus-2 quadrilat-
eral manifold with Woven. Figure 6.10(a) shows the original mesh, Figure 6.10(b) is the
generated developable surface, Figure 6.10(c) shows one panel. The face band scale here

is 80 %, thickness offset is 0.1linch.

(a) Original Mesh (b) Developable surface (c) Single Panel

Figure 6.10: Constructing a genus-2 quadrilateral manifold with Woven.
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7. CONCLUSION AND FUTURE WORK

In conclusion, I presented a system to solve generic multi-panel unfolding problem.
Given any user specified 3D mesh which is constructed using any design interface, this
system generates a multi-panel unfold-able developable surface that still preserves the
same topology as the original mesh.

In this work, we ignored the thickness of the materials when constructing with Half-
Edge, Quad-Edge, and Winged-Edge. To include such an important physical property
would be useful for physical construction. Fortunately, there is a simple solution that
can be obtained by using two sandwich-layered panels as shown in Figure 7.1. With such
sandwich-layers, it is also possible to obtain desired bending by changing the relative sizes

of two panels. We are also planning to include this property in our implementation.

e

(@

Figure 7.1: Obtaining uniform thickness everywhere using two layers of panels.

Although multi-panel solution has many advantages, single-panel solution can also be
very interesting to explore. While multi-panel provides economical and simpler panels in

general, single-panel provides more intuitive assembly procedure.
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