
APPLICATION CENTRIC NETWORKS-ON-CHIP DESIGN SOLUTIONS FOR

FUTURE MULTICORE SYSTEMS

A Dissertation

by

RAHUL BOYAPATI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Eun Jung Kim
Committee Members, Valerie Taylor

Rabi Mahapatra
Peng Li

Head of Department, Dilma Da Silva

May 2017

Major Subject: Computer Engineering

Copyright 2017 Rahul Boyapati

ABSTRACT

With advances in technology, future multicore systems scaled to 100s and 1000s of

cores/accelerators are being touted as an effective solution for extracting huge perfor-

mance gains using parallel programming paradigms. However with the failure of Dennard

Scaling all the components on the chip cannot be run simultaneously without breaking

the power and thermal constraints leading to strict chip power envelops. The scaling up

of the number of on chip components has also brought upon Networks-On-Chip (NoC)

based interconnect designs like 2D mesh. The contribution of NoC to the total on chip

power and overall performance has been increasing steadily and hence high performance

power-efficient NoC designs are becoming crucial.

Future multicore paradigms can be broadly classified, based on the applications they

are tailored to, into traditional Chip Multi processor(CMP) based application based sys-

tems, characterized by low core and NoC utilization, and emerging big data applica-

tion based systems, characterized by large amounts of data movement necessitating high

throughput requirements. To this order, we propose NoC design solutions for power-

savings in future CMPs tailored to traditional applications and higher effective throughput

gains in multicore systems tailored to bandwidth intensive applications. First, we pro-

pose Fly-over, a light-weight distributed mechanism for power-gating routers attached to

switched off cores to reduce NoC power consumption in low load CMP environment.

Secondly, we plan on utilizing a promising next generation memory technology, Spin-

Transfer Torque Magnetic RAM(STT-MRAM), to achieve enhanced NoC performance to

satisfy the high throughput demands in emerging bandwidth intensive applications, while

reducing the power consumption simultaneously. Thirdly, we present a hardware data

approximation framework for NoCs, APPROX-NoC, with an online data error control

ii

mechanism, which can leverage the approximate computing paradigm in the emerging

data intensive big data applications to attain higher performance per watt.

iii

DEDICATION

To my parents for their support.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr.Eun Jung Kim, for first motivating me to pursue a

doctoral degree and then supporting me with her guidance and patience through the course

of my PhD. I would like to thank Dr.Peng Li, Dr.Rabi Mahapatra and Dr.Valerie Taylor

for serving as my committee members. I also thank Dr.Ki Hwan Yum for helping me with

meticulous feedback on my research and paper writing.

I would like to thank all the members of Dr.Kim’s research group who helped me

with research and were there for me throughout this journey. I would especially like to

thank Jiayi Huang who worked with me on the research detailed in chapters II and IV, and

Hyunjun Jang who collaborated with me for research presented in chapter III.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

The work needed for this research was completed by me with support from a disserta-

tion committee consisting of Professors Dr.Eun Jung Kim(Advisor), Dr.Valerie Taylor and

Dr.Rabi Mahapatra of the Department of Computer Science and Engineering and Professor

Dr.Peng Li of the Department of Electrical Engineering.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University and a

dissertation research fellowship from NSF Foundation.

vi

NOMENCLATURE

NOC Networks-on-Chip

FLOV Fly-Over mechanism

STT-MRAM Spin-Transfer Torque Magnetic Random Access
Memory

ECC Error Correcting Codes

VAXX Value Approximation mechanism

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES vi

NOMENCLATURE . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . xi

LIST OF TABLES . xiv

1. INTRODUCTION . 1

2. DISTRIBUTED POWER GATING MECHANISM 7

2.1 Introduction . 7
2.2 Related Work . 8
2.3 FLOV Router Architecture . 11

2.3.1 Baseline NoC Router Architecture 11
2.3.2 FLOV Router Architecture . 11

2.4 Restricted FLOV and Generalized FLOV Handshake Protocols 13
2.4.1 Restricted FLOV . 13
2.4.2 Generalized FLOV . 19

2.5 Dynamic Routing Algorithm . 21
2.5.1 FLOV NoC Architecture . 21
2.5.2 Dynamic Routing Algorithm . 22
2.5.3 Overhead Analysis . 25

2.6 Experimental Evaluation . 26
2.6.1 Experimental Methodology . 26
2.6.2 Synthetic Workload Evaluation 27

2.6.2.1 Performance . 30
2.6.2.2 Power Consumption 32

viii

2.6.2.3 Real Workload Evaluation 34
2.6.3 Reconfiguration Overhead Analysis 34

2.7 Conclusions . 35

3. POWER-EFFICIENT AND RELIABLE ON-CHIP INTERCONNECTS US-
ING STT-MRAM ROUTERS . 37

3.1 Introduction . 37
3.2 Background and Design Challenges . 40

3.2.1 STT-MRAM . 41
3.2.2 Fine-tuning STT-MRAM for High Performance NoCs 41

3.2.2.1 Retention Time . 41
3.2.2.2 Switching Current and Switching Time 42
3.2.2.3 Cell Area . 43
3.2.2.4 Impact of Process Technology 44

3.2.3 STT-MRAM Design Challenges 44
3.2.3.1 Retention Failure and Error Protection 44
3.2.3.2 Determining Proper Retention and Switching Times . . 45

3.3 Motivation . 47
3.3.1 STT-MRAM for NoC Routers 47

3.4 STT-MRAM Router Architecture . 48
3.4.1 Baseline Router Architecture . 48
3.4.2 STT-MRAM Router Design . 49

3.4.2.1 Multibank STT-MRAM Buffer 49
3.4.2.2 Read/Write and Refresh Logic 53
3.4.2.3 Handling Uncorrectable Errors in Refresh Operations . 55

3.4.3 Nonvolatility-Relaxed STT-MRAM Buffer 56
3.4.3.1 Refresh with ECC Scheme 56
3.4.3.2 Dynamic Buffer Refresh Schemes 58

3.5 Evaluation . 61
3.5.1 System Configuration . 61
3.5.2 Performance and Power Analysis 65
3.5.3 Sensitivity Analysis . 70

3.6 Discussion . 71
3.6.1 Impact of Write Delays of STT-MRAM 71
3.6.2 Comparison with Other NoC Techniques 72
3.6.3 Impact of End-to-End and Per-Hop Error Protection 74

3.7 Related Work . 74
3.8 Conclusions and Future Work . 77

4. NOC DATA APPROXIMATION FRAMEWORK 78

4.1 Introduction . 78

ix

4.2 Related Work . 80
4.2.1 Approximation . 80
4.2.2 NoC data compression . 81

4.3 Motivation and challenges . 82
4.3.1 Motivation . 82

4.3.1.1 Data movement is becoming the critical component in
multicore systems . 82

4.3.1.2 Frequently repeated patterns appear in applications . . . 82
4.3.1.3 Data accuracy is not required 83
4.3.1.4 Defining approximate data similarity is necessary 83

4.3.2 Challenges . 84
4.3.2.1 Value approximation and compression are not cheap . . 84
4.3.2.2 Quality control is important 84

4.4 Approx-NoC Framework Architectural Overview 85
4.4.1 APPROX-NoC Framework . 86
4.4.2 Approximate Value Compute Logic Design 88

4.5 Implementation of APPROX-NoC . 90
4.5.1 Frequent-Pattern Mechanisms 90

4.5.1.1 FP-VAXX Implementation 91
4.5.2 Dictionary-Based Mechanisms 92

4.5.2.1 DI-VAXX Implementation 95
4.5.3 Latency Overhead . 98

4.6 Evaluation . 98
4.6.1 Methodology . 98

4.6.1.1 Experimental Setup 98
4.6.1.2 Workloads . 100

4.6.2 Performance Analysis . 101
4.6.2.1 Impact on Performance 103
4.6.2.2 Throughput Analysis 107

4.6.3 Sensitivity Studies . 107
4.6.3.1 Error Threshold . 108
4.6.3.2 Approximable Packets Ratio 109

4.6.4 Full System Impact Analysis . 109
4.6.4.1 Overall Application Output Error 109
4.6.4.2 Overall Application Performance 112

4.6.5 Power Consumption and Area Overhead 113
4.7 Conclusions . 113

5. CONCLUSIONS . 115

REFERENCES . 117

x

LIST OF FIGURES

FIGURE Page

2.1 Baseline NoC Router Architecture. 12

2.2 FLOV Router Architecture. 13

2.3 Router Power State Transition Diagram. 15

2.4 An Example of rFLOV in Timeline from (a) to (f). 17

2.5 FLOV NoC Architecture. 21

2.6 Destination Partitioning in a 2D Mesh Network (a), Turns Allowed/Not
Allowed in the Escape Sub-Network (b). 22

2.7 Routing Algorithm Examples: X indicates a power-gated router. 24

2.8 Average Latency, Dynamic and Total Power Comparison for Injection Rates
of 0.02 (top row) and 0.08 (bottom row) flits/node/cycle with Uniform
Random Traffic. 28

2.9 Average Latency, Dynamic and Total Power Comparison for Injection Rates
of 0.02 (top row) and 0.08 (bottom row) flits/node/cycle with Tornado
Traffic. 28

2.10 Packet Latency Breakdown (a,b), and Full system evaluations (c,d). 29

2.11 Static Power Comparison of FLOV with RP and Baseline. 33

2.12 Reconfiguration Overhead of RP and Comparison with gFLOV. 35

3.1 Per-Application Intra-Router Latency Distribution (canneal in PARSEC
Benchmarks) . 39

3.2 STT-MRAM Cell Structure . 41

3.3 The Relationship between Switching Current and Switching Time for Dif-
ferent MTJ Retention Times . 43

3.4 BCH ECC Decoder Block Diagram . 44

xi

3.5 Performance Comparison between SRAM and STT-MRAM based Routers
under the Same Area Budget . 47

3.6 Baseline Router Architecture . 48

3.7 Multibank STT-MRAM Buffer . 51

3.8 Dual-Bank STT-MRAM Buffer Example (Sequence of Operations: 1© ∼ 5©) 52

3.9 A Baseline SRAM Input Buffer (a) and A Dual-Bank STT-MRAM Input
Buffer (b) . 54

3.10 A General Multibank STT-MRAM Buffer (k: Total Number of Flits Buffered,
To Hide n-cycle Write Latencies, n-1 Latches and n Banks Are Needed.) 54

3.11 Circular Queue for Dual-Bank STT-MRAM Buffer (Assuming all errors
are correctable / Sequence: (a) ∼(d)) . 55

3.12 Probability of the Number of Bits Flipped (Note that the sum of error prob-
abilities under a specific residence time is 100 %) 59

3.13 An Example of a 2-bit Global Counter (GC) Refresh Logic (Assuming
refresh time is 80 cycles (40 ns in 2 GHz)) 60

3.14 Performance Comparison with Different Synthetic Workloads 63

3.15 Performance Comparison with Different Topologies 64

3.16 Normalized Power Consumption - SRAM/Hybrid/STT-MRAM with Dif-
ferent Refresh Rates (Low-ECC: Low Refresh Rate (80ns) / Opt-ECC:
Optimal Refresh Rate (40ns), See Section 3.4.3.1 for details.) 66

3.17 PARSEC Benchmark Results . 66

3.18 Sensitivity Analysis . 69

3.19 Normalized STT-MRAM Density under the Same Per-Router Area Budget 71

3.20 Comparisons with BLESS and WPF (UR) 72

3.21 Comparisons between Different ECC Schemes (End-to-End vs. Per-Hop) 73

3.22 Normalized Number of Packets Retransmitted under Different ECC Schemes 75

4.1 APPROX-NoC Architectural Overview. 85

xii

4.2 APPROX-NoC Operation Flowchart. 86

4.3 Compression and Decompression of a 6-Word Cache Block. 87

4.4 Approximate Value Compute Logic. 89

4.5 Frequent Pattern Compression. 91

4.6 FP-VAXX Microarchitecture. 92

4.7 The Encoder PMT at Node 3 and the Decoder PMT at Node 6. 93

4.8 DI-VAXX Microarchitecture. 96

4.9 Average Packet Latency Breakdown and Overall Approximation Quality. . 102

4.10 Fraction of Encoded words Breakdown to Exact Compression and Ap-
proximation (a) and Compression Ratio Improvement of VAXX (b). . . . 103

4.11 Reduction in Number of Injected Flits. 104

4.12 Throughput Analysis with Different Benchmark Data Traces Under Uni-
form Random (UR) and Transpose (TR) Traffic Patterns. 106

4.13 Error Threshold Sensitivity Analysis. 108

4.14 Approximable Packets Ratio Sensitivity Analysis. 108

4.15 Application Output Accuracy and Normalized Performance. 110

4.16 Approximate versus Precise Output of Bodytrack. 111

4.17 Dynamic Power Consumption Normalized to Baseline. 112

xiii

LIST OF TABLES

TABLE Page

2.1 Simulation Testbed Parameters . 27

3.1 CMP System Configuration . 61

3.2 SRAM and STT-MRAM Parameters with Different Retention Times (The
Hybrid Buffer scheme utilizes 10 ms.) 62

4.1 APPROX-NoC Simulation Configuration. 99

xiv

1. INTRODUCTION

With advances in technology [1], future multi core systems scaled to 100s and 1000s

of cores/accelerators, are touted as an efficient solution for extracting huge performance

gains using parallel programming paradigms. However with the failure of Dennard Scal-

ing [2], all the components on the chip cannot be run simultaneously without breaking

the power and thermal constraints. Thus future Multicore systems will have to work un-

der strict power envelops. The scaling up of on chip components has also brought upon

Networks-On-Chip (NoC) based interconnect designs like 2D mesh. The contribution

of NoC to the total on chip power and overall performance has been increasing steadily.

Recent studies [3, 4, 5] have shown that NoCs consume about 10% to 36% of the total

on-chip power budget. Therefore designing power-efficient NoCs which can deliver the

performance required by future multicore systems is critical.

Emerging applications/workloads that are being executed on the future multicore sys-

tems can be classified broadly to traditional Chip MultiProcessor (CMP) applications and

Big data applications. Traditional CMP applications are usually characterized by low core

utilization [6, 7] and lower communication load on the NoC. Standard NoC designs are

usually over provisioned with respect to such low communication loads and hence efficient

designs that can save power are crucial for CMPs. But in parallel, with the advent of the

big data era, a multitude of traditional applications and systems are unable to efficiently

process massively large data sets. In sharp contrast to traditional CMP applications, these

emerging memory intensive applications in the big data era place a significant amount of

stress on the interconnection network for high memory throughput, triggering many de-

signs that try to solve the memory bandwidth issue [8, 9, 10, 11]. Hence designing an

interconnection network that can efficiently provide high throughput, has become critical

1

to overall system performance for such applications.

We propose to tackle the issue of over-provisioning in traditional CMPs using a power-

saving technique. Next, to get higher performance per watt in future multicore systems

with bandwidth intensive workloads, we propose the following two techniques. We plan on

utilizing a promising next generation memory technology, namely Spin-Transfer Torque

Magnetic RAM(STT-MRAM), to achieve enhanced NoC performance, to satisfy the high

throughput demands in emerging bandwidth intensive applications, while reducing the

power consumption. In addition, we propose novel techniques that increase the effective

throughput without requiring additional network resources by leveraging the approximate

computing paradigm in big data applications.

First, we propose to investigate a light-weight distributed power-gating mechanism

for NoCs to reduce the static power consumption. Static power consumption of the on-chip

circuitry is increasing at an alarming rate with the scaling down of feature sizes and chip

operating voltages towards near-threshold levels. Previous studies [12, 13, 14, 15, 16] have

shown that the percentage of static power in the total NoC power consumption increases

from 17.9% at 65nm, to 35.4% at 45nm, to 47.7% at 32nm and to 74% at 22nm. According

to this trend, as we reach towards sub-10nm feature sizes, static power will become the

major portion of the NoC power consumption.

Power-gating, cutting off supply current to idle chip components, is an effective circuit-

level technique that can be used to mitigate the worsening impact of on-chip static power

consumption. Due to low average core utilization in most modern workloads [6, 7], sig-

nificant number of studies have proposed efficient mechanisms for power-gating cores

with marginal impact on performance [17, 18, 19]. Some studies [20, 16] have proposed

power-gating selected router components in a fine-grained fashion using topology recon-

figuration. However limited research [21, 14, 22] has been done regarding mechanisms

for power-gating routers, which will reduce NoC static power consumption.

2

Previous research has been proposed to power-gate routers, either by reacting to the

network traffic [14] or based on the power state of the attached core [21]. Significant re-

search at Operating System (OS) level has been proposed for achieving static power sav-

ings in CMPs by power-gating idle cores by consolidating the thread executions to fewer

cores [17, 18, 19, 23]. Therefore, it is imperative to design router power-gating mech-

anisms that can work in synergy with OS level core power-gating mechanisms. Router

Parking (RP) [21] power-gates routers whose attached cores are power-gated, but requires

a centralized fabric manager for network reconfiguration, which creates a huge synchro-

nization overhead, and the whole network has to stall until the reconfiguration is com-

pleted. RP also creates a single point of failure if the centralized fabric manager goes

down.

We propose Fly-Over (FLOV), a light-weight distributed power-gating mechanism that

eliminates the need for centralized control to power-gate routers. FLOV tries to power-

gate routers as soon as the attached cores are powered down by the OS, in a distributed

manner. Since such a distributed power-gating mechanism may create interconnect par-

titions without communication paths, FLOV links in power-gated routers are provided to

enable incoming packets to travel straight through for network connectivity. Our full sys-

tem evaluations show that FLOV reduces the total and static energy consumption by 18%

and 22% respectively, on average across several benchmarks, compared to state-of-the-art

NoC power-gating mechanism while keeping the performance degradation minimal.

Secondly, we plan to design better performance-per-watt NoCs for bandwidth intensive

workloads by investigating STT-MRAM based NoC router designs. Buffers in NoC

routers consume significant dynamic power [24], and this consumption increases rapidly

as data flow rates increase. Furthermore, the area occupied by an NoC router is dominated

by the buffers [25]. Consequently, designing an innovative buffer structure plays a crucial

role in architecting high performance and low power on-chip interconnects.

3

Input buffers, in NoC routers, are commonly implemented with SRAM because it guar-

antees fast access speed for read and write operations. However, non-negligible area cost

and leakage power consumption of SRAM gives lots of pressure on scalable NoC design.

Spin-Transfer Torque Magnetic RAM (STT-MRAM) [26, 27] is a promising next genera-

tion memory technology that can replace conventional RAMs due to its near-zero leakage

power and high density. Adopting STT-MRAM in NoC has significant merits since an

on-chip router can provide larger input buffers under the same area budget compared with

conventional SRAM routers. Thus, STT-MRAM input buffers contribute to improving

throughput, which results in enhanced system performance with less power consumption,

improving the performance per watt return. STT-MRAM is CMOS-compatible, and pro-

vides virtually infinite write endurance [28] compared with other memory technologies

such as Phase Change Memory (PCM), Flash, and Memristor. This makes STT-MRAM

a more viable solution as an on-chip memory that should tolerate frequent write accesses.

Besides, STT-MRAM is immune to the radiation induced soft errors, thus providing robust

cell storages, and can scale beyond 10 nm technology [29]. However, the weaknesses of

STT-MRAM, long latency and high power consumption in write operations and thermal

fluctuation-induced random bit flips, should be properly addressed because fast accesses

to on-chip memories that guarantee data integrity must be assured for high performance

and reliable NoCs.

In this work, we propose the first NoC router design that uses only STT-MRAM in

buffers, while preserving data integrity. By eliminating SRAM, it offers much larger buffer

space with less power consumption. To hide the multicycle write latencies of STT-MRAM,

we propose a novel pipelined input buffer design, a multibank STT-MRAM buffer, which

is a virtual channel (VC) with multiple banks where every incoming flit is delivered to

each bank alternately via a simple latch inside a router. Through this, we can avoid perfor-

mance degradation while consuming less area and power. To ensure data integrity under

4

the limited retention time and random bit flips of STT-MRAM, we propose cost-efficient

dynamic buffer refresh schemes, the processes in which cells’ values are kept valid by

triggering refreshes in a timely manner. Our evaluations show 20.7% throughput improve-

ment and 17% total power saving compared to a conventional SRAM based router with

the proposed STT-MRAM router scheme.

Thirdly, we observe that hardware data approximation techniques can be a potential

solution to tackle the memory bandwidth issue in NoCs. This is abetted by the fact that

Approximate Computing [30, 31, 32, 33] has emerged as an attractive alternate compute

paradigm by trading off computation accuracy for benefits in both performance and energy

efficiency. Approximate techniques rely on the ability of applications and systems to toler-

ate imprecision/loss of quality in the computation results. Various applications in machine

learning, image/video processing and pattern recognition have already employed approx-

imation to achieve better performance [34, 35, 36, 37, 38]. Hence we propose to leverage

the inaccuracy allowed in applications to reduce the effective communication load in the

NoC by transmitting approximate versions of data.

Previous research has proposed several approximation techniques for emerging data-

intensive applications. Software approximation mechanisms [39, 40, 41] have attempted to

reduce the computation overhead by approximately executing particular sections of appli-

cation code. Hardware mechanisms, that either advocate approximate computation or stor-

age, propose to tradeoff accuracy for high performance and energy efficiency. These hard-

ware techniques can be broadly categorized into compute-based or memory-based approx-

imation. Compute-based approximation techniques use inexact compute units [33, 42, 43]

or neural network models [35, 44, 45, 46] for code acceleration. Memory-based tech-

niques [47, 32, 48] exploit data similarity across memory hierarchies to achieve larger

capacity and energy efficiency. Most of these techniques operate by requiring the pro-

grammer to annotate portions of an application that can be approximated and then the

5

compiler can exploit the underlying hardware approximation techniques available. A

significant portion of research on hardware approximation techniques has focused on ei-

ther the computation units for accelerated inaccurate execution, or the storage hierarchy

(cache/DRAM-based) for low overhead (area/power) memory. However, there has been

no prior research on approximate communication techniques for the interconnection fabric

of multicore systems.

In this work we propose APPROX-NoC, a data approximation framework for NoCs to

alleviate the impact of heavy data communication stress by leveraging the error tolerance

of applications. APPROX-NoC proposes to reduce the transmission of approximately

similar data in the NoC by delivering approximated versions of precise data to improve

the data locality for higher compression rate. The proposed framework operates by first

utilizing an approximation engine, with a lightweight error control logic, to approximate

the given data block to the nearest compressible reference data pattern. Then the encoder

module of an underlying NoC compression technique [49, 50] is used to compress the

data block. We propose a data-type aware value approximatiion technique (VAXX), with

a light weight error margin compute logic, which can be used in the manner of plug and

play module for any underlying NoC data compression mechanisms. VAXX approximates

the value of a given data block to the closest compressible data pattern based on the data

type,with fast quantitative error margin calculation. The error threshold to control the

extent of data approximation allowed can be determined by the compiler or annotated

by the programmer and can be dynamically adjusted at run time. Our evaluation results

show that the best APPROX-NoC mechanism reduces the average packet latency up to

21.4% over state-of-the-art NoC data compression mechanism. In addition, our evaluation

results with synthetic workloads show that the best APPROX-NoC mechanism improves

throughput up to 60% compared to state-of-the-art compression mechanisms.

6

2. DISTRIBUTED POWER GATING MECHANISM

2.1 Introduction

The failure of Dennard Scaling [2], supply voltage not scaling down with the transis-

tor size, means that all the components on the chip cannot be run simultaneously with-

out breaking the power and thermal constraints. Thus future CMP designs will have to

work under stricter power envelops. Recent studies [3, 4, 5] have shown that NoCs con-

sume a significant portion, ranging from 10% to 36%, of the total on-chip power budget.

Hence power-efficient NoC designs are of the highest priority for power-constrained future

CMPs. We observe that static power is becoming a significant portion of the total NoC

power consumption as technology shrinks and hence it is critical to control static power

consumption to satisfy the power envelops of future multicore systems.

We propose Fly-Over (FLOV), a light-weight distributed power-gating mechanism that

eliminates the need for centralized control to power-gate routers. FLOV tries to power-gate

routers as soon as the attached cores are powered down by the OS, in a distributed man-

ner. Since such a distributed power-gating mechanism may create interconnect partitions

without communication paths, FLOV links in power-gated routers are provided to enable

incoming packets to travel straight through for network connectivity.

Specifically, FLOV comprises FLOV router architecture, handshake protocols, and its

partition-based dynamic routing algorithm. We design FLOV router architecture by mod-

ifying the baseline router architecture to provide FLOV links over power-gated routers.

Based on this FLOV architecture, we first present a handshake protocol working under

restricted conditions, called restricted FLOV (rFLOV), where no consecutive routers in

a row/column can be power-gated at the same time. Then another handshake protocol,

called generalized FLOV (gFLOV), is presented, where two or more consecutive routers in

7

a row/column can be power-gated simultaneously. Clearly, rFLOV is simpler than gFLOV,

but gFLOV can provide more power saving capability. Note that a power-gated router does

not have routing functionality and incoming packets can only travel in the same direction.

Thus, without prior knowledge about such power-gated routers in a packet’s path, local-

ized routing decisions cannot ensure the packet’s delivery to the destination. Therefore, we

propose a dynamic routing algorithm that ensures network routing functionality without

the need for any global NoC information or needing to wakeup intermediate power-gated

routers. The routing algorithm dynamically decides the output direction based on the des-

tination and the power states of its neighboring routers.

We evaluate the FLOV scheme using BookSim [51], a cycle-accurate interconnect

simulator, for detailed NoC evaluation and using gem5 [52] for full system evaluation, and

compare against RP [21]. Our full system evaluations show that FLOV reduces the total

and static energy consumption by 18% and 22% respectively, on average across several

benchmarks, compared to state-of-the-art NoC power-gating mechanism while keeping

the performance degradation minimal.

The rest of this chapter is organized as follows. The related work is briefly summarized

in section 2.2. The baseline NoC router and FLOV router architectures are described

in section 2.3, followed by two handshake protocols in section 2.4. In section 2.5, the

dynamic routing algorithm is explained. Evaluation of the proposed design is presented in

section 2.6 and, finally, we draw conclusions and mention future work in section 2.7.

2.2 Related Work

Recently significant research [17, 53] has been performed in applying power-gating

techniques in NoCs for power savings. Kim et al. [54], Soteriou et al. [55], Matsutani et

al. [20], Kim et al. [56] and Parikh et al. [16] propose fine grained power-gating of compo-

nents inside the NoC router. But such approaches require significant additional power gat-

8

ing circuitry. Kim et al. [54] proposed a dynamic link shutdown (DLS) technique together

with dynamic voltage scaling to save link energy. Soteriou et al. [55] proposed a power-

aware network that reduces static power consumption by monitoring the link utilization

and power-gating the underutilized links. Matsutani et al. [20] applied the power-gating

technique to individually control the power supply of different components in an ultra

fine-grained way. Kim et al. [56] proposed a buffer organization to adaptively adjust active

buffer size with a power gating technique. Parikh et al. [16] came up with power-aware

routing and topology reconfiguration to minimize detours while selected components in

routers are power-gated. This feedback-based mechanism is slow, and reconfiguration

takes place only on per epoch basis. Power-gating components inside a router in a fine-

grained way fashion requires additional circuitry. These approaches work well to reduce

the static power consumption, however, they only power-gate certain components of a

router.

In [57], lookahead routing is utilized to wake up sleeping routers two hops in advance

to hide the wakeup latency. However, as clock frequency increases, wake up latency can-

not be totally hidden. Chen et al. [22] introduced a performance-aware, non-blocking

In [22], Chen et al. introduced a performance-aware, non-blocking power-gating scheme

that wakes up powered-off routers along the path of a packet in advance, thereby prevent-

ing the packet from suffering router wakeup latency. Catnap [58] proposed a mechanism

where a light-weight subnetwork can be power-gated based on the priority and predicted

traffic load. This work is orthogonal with FLOV, since FLOV can be applied on top of the

powered-on subnetworks to achieve even more power savings.

Chen et al. [14] proposed a node-router decoupling (NoRD) approach to leverage the

independence of power-gating a core and its attached router. They provide a decoupling

bypass route that connects the ejection and injection channels to form a bypass link to

the router. The decoupling bypass links ensure network connectivity even for the extreme

9

cases of all routers being turned off by using an escape ring network. However, a bypass

ring is not scalable to large network sizes. Another issue with NoRD is that a bypass can

be constructed in a (k × k) mesh, if and only if k is even.

Samih et al. [21] proposed Router Parking (RP) to power-gate as many routers as

possible when their attached cores are sleeping while maintaining network connectivity.

RP dynamically parks (or power-gates) routers to maintain a balanced trade-off between

power saving and performance. However, this scheme requires centralized control using a

Fabric Manager (FM) and typically takes a long time to reconfigure the network that may

suspend new injections into the network during this phase. On the other hand, FLOV is a

distributed power-gating mechanism that avoids the need for centralized control and keeps

the network functionalities while routers are being power-gated.

Zhan et al. [59] propose a mechanism that can activate powered down cores for perfor-

mance gains while considering thermal aware floor planning and to this order they also ex-

plore topological/routing support. Some studies have proposed bypass style mechanisms

for different purposes in NoCs [60, 61, 62, 63, 64]. Kumar et al. [60] proposed express vir-

tual channels that virtually bypass intermediate routers for packet transmission to achieve

high performance. In [61], dual functional physical channel buffers were proposed to by-

pass a router and keep packets in the links along the path. Long-range link [62, 63] and

skip-link [64] were proposed to bypass routers for faster packet delivery. Unlike these

studies, FLOV stands from a power saving perspective with performance-aware consid-

erations. FLOV links in a router act as a simple connector between the upstream and

downstream routers, thus making them logical neighbors for credit-based flow control. A

flit entering a FLOV link already has a buffer slot allocated in the downstream router and

does not take risk of creating protocol deadlocks.

10

2.3 FLOV Router Architecture

This section explains the baseline NoC router architecture, and proposes the FLOV

router architecture.

2.3.1 Baseline NoC Router Architecture

The baseline microarchitecture is based on a state-of-the-art 3-stage virtual-channel

router [65]. Figure 2.1 shows the main building blocks of the baseline router: input buffers,

routing computation logic, VC allocator, switch allocator, and crossbar. The processing

inside a router is pipelined into 3 stages: Routing Computation (RC), VC Allocation and

speculative Switch Allocation (VASA), and finally Switch Traversal (ST). The output port

to which a packet should traverse is computed in the RC stage based on the destination

information in the head flit. In the VASA stage, an available VC in the next downstream

router is assigned to this packet based on the credit information. At the same time, spec-

ulative arbitration between the inputs and outputs of the crossbar is processed in parallel.

The flits with an assigned VC and the successfully granted switch will traverse the cross-

bar in the ST stage. Finally, Link Traversal (LT) is external to the router pipeline and is

also assumed to take one clock cycle. Wormhole switching along with credit-based flow

control is used in this study.

2.3.2 FLOV Router Architecture

As shown in Figure 2.2, the FLOV router architecture has multiplexers and demul-

tiplexers added to input/output links, in addition to a latch in each direction. When a

FLOV router is powered-on, it functions like a baseline 3-stage virtual-channel router [65],

and the muxes/demuxes are set to 0 as well as the latches are power-gated. When the

router is power-gated, all the components of the baseline router are power-gated and the

muxes/demuxes are set to 1 to activate the FLOV links. For the routers placed on the

11

Route

Computation

VC

Allocator

Switch

Allocator

Input 0

Input 4

Output 0

Output 4

.

.

.

.

.

.

Crossbar switch

VC 0

VC 1

VC n

Input buffers

VC 0

VC 1

VC n

Input buffers

VC 0

VC 1

VC n

Input buffers

VC 0

VC 1

VC n

Input buffers

Figure 2.1: Baseline NoC Router Architecture.

edges of the 2D mesh, the FLOV links are activated only in the dimension (X or Y) where

there are neighbors in both directions. The Routers on the four corners of the 2D mesh

do not have any FLOV links, since they can be isolated once they are power-gated. The

HandShake Control logic (HSC) block is introduced, connecting to all the neighboring

routers, which implements the handshake protocol between adjacent routers required be-

fore power-gating a router. Two sets of Power State Registers (PSRs) hold the power

states of the immediate neighboring routers and the nearest powered-on routers (logical

neighbors) in each direction, respectively. PSRs for logical neighbors are only used in the

complex gFLOV power-gating mechanism described in Section 2.4.2. The Credit Control

Logic (CCL) is modified to interact with HSC so as to always hold the buffer availability

(credit) information of the nearest powered-on downstream router.

12

Figure 2.2: FLOV Router Architecture.

2.4 Restricted FLOV and Generalized FLOV Handshake Protocols

Using the FLOV router architecture in Section 2.3, two handshake protocols for FLOV

routers are proposed: restricted FLOV (rFLOV) and generalized FLOV (gFLOV). rFLOV

has a simpler protocol but its power saving is limited, while more complex gFLOV shows

better power saving.

2.4.1 Restricted FLOV

In this scheme, when a core is powered down, its attached router waits for packets

coming from the core or going to the core for a certain number of cycles. The state tran-

sition diagram in Figure 2.3 depicts the power states a router can be in. If there are no

packets detected, the router sends a signal to its neighbors using out-of-band control lines

to indicate that it is in the Draining state. During this state, its neighbors cannot initiate

13

any new packet transmission to this router, while they are allowed to finish current packet

deliveries.

In rFLOV, no two consecutive routers in a row/column are allowed to be powered

down. Therefore, if a router in the Draining state receives the same signal from its neigh-

boring router, only one of them with a smaller router id is allowed to proceed, while the

other is back to normal (Active state). Hence, even though the attached core is powered-

down, a router is not allowed to drain if one of its neighbors is in draining or sleeping.

A router in Draining checks its input buffers for any residing flits and continues to

forward them to downstream routers normally. After emptying all its input buffers and

receving drain_done signals from all its neighbors, the router power-gates itself by shutting

down the baseline router portion (Sleep state). Meanwhile, all the muxes/demuxes are

switched to 1, and the router sends a signal to all neighbors so that new packet transmission

can be initiated and the neighbors can update their immediate neighbor PSRs.

Once the FLOV router is power-gated, a flit coming into the router is stored in the

FLOV output latch without any routing/arbitration. In the next cycle, it is delivered to

a designated VC in the downstream router since the VC was already calculated in the

upstream router. From the downstream router, the packet delivery becomes normal. When

an FLOV router is in the Sleep state, the credit counts of its downstream router are copied

to the upstream router so that the upstream router can get the correct credit information of

the downstream router.

A powered-down FLOV router wakes up when its core becomes active or its neighbor

has a packet destined for its core (Wakeup state). When a currently sleeping FLOV router

wakes up due to aforementioned conditions, it first signals its neighbors to stop new packet

transmission. After finishing current packet deliveries and emptying its output latches, the

FLOV router powers on the baseline router portion and switches the muxes/demuxes to 0.

During Wakeup, the FLOV router still relays credit counts of its downstream router to its

14

upstream router. However, once becoming Active, the router receives credit information

from its downstream router, and its upstream router sets the corresponding credit to fully

available.

Sleep

� send sleep signal

� keep relaying credits

Wakeup

� send wakeup signal

� start draining packets

Active

� Send active signal

� normal operations

Draining

� send drain signal

� start draining packets

Figure 2.3: Router Power State Transition Diagram.

The state transition diagram in Figure 2.3 depicts the power states a router can be

in. Each state is represented in a circle, where the operations performed by the router in

that state are also shown. The conditions that trigger state transitions are depicted on the

transition arrows. As explained above, the router goes into Draining from Active when

it wants to be power-gated. The router immediately sends a drain signal to its neighbors

and starts to drain packets in its input buffers. Routers that want to drain at the same time

but fail to win arbitration with their neighbors come back into Active. Routers may be

forced to go back to Active when the time spent in the Draining state exceeds a certain

15

predetermined threshold (drain_threshold), which is set empirically. This is done to avoid

protocol-level deadlocks when the router is trying to drain packets that depend on packets

from the neighbor router making progress towards the current router. So when the drain

time threshold is reached, the router goes back to Active and the packets can make forward

progress.

Once all the router’s neighbors finish any intermittent transmissions destined to it and

the packet draining is finished, the router can go into Sleep. In the Sleep state the router

sends a sleep signal to all its neighbors after turning off the baseline router operation and

starting the FLOV operation. The router starts relaying credits between its powered-on

neighbors.

The router goes to Wakeup from Sleep when its core is powered on. Then it sends

wakeup signals to its neighbors and starts draining packets residing in its output latches.

Once draining is done, the router goes into Active. After entering the Active state, the

router sends an active signal and resumes normal router operations.

Figure 2.4 shows a working example of the rFLOV protocol. For simplicity, draining

of the packets and credit control are shown only for one direction, but a router has to

perform these actions for all its neighbors before state transitions.

• In Figure 2.4 (a), all three FLOV routers are Active. Router A holds the body (B1)

and tail (T1) flits of packet 1 as well as the head flit (H2) of packet 2. Router B holds

the head flit(H1) of packet 1 and Router C is empty. The PSR entries of the routers

show the power states of the immediate neighbors in the East (Routers A and B)

or West (Router C). The current credit status of VC1 of the downstream routers is

also shown. The shaded portion indicates the power-gated components that are the

output latches here.

• In Figure 2.4 (b), both Routers B and C send Drain signals to their neighbors to

16

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.4: An Example of rFLOV in Timeline from (a) to (f).

17

indicate their willingness to go into the Draining state. Since Router B has the lower

router id, it wins the arbitration and Router C has to go back into the Active state.

The PSR entries in Routers A and C are updated to Drain due to Router B. Router A

transfers flit B1 to Router B and B transfers flit H1 to Router C. The corresponding

credit counters are updated as shown.

• In Figure 2.4 (c), Router A sends the drain_done signal to Router B indicating that it

finished transmitting packet 1 to B. Similarly, Router C sends the drain_done signal

to B. But since Router B has not finished draining its buffers yet, it has to wait before

going into the Sleep state.

• Figure 2.4 (d) depicts the situation after Router B finishes draining packet 1 to

Router C and goes into the Sleep state. The shaded VC buffer indicates that the

baseline router has been power-gated and the FLOV links (output latches) have been

activated. Router B sends the Sleep signal to its neigbhors so that they can update

their corresponding PSR entries and also the credit counters are zeroed as shown in

Router A. Note that even though Router A had a flit (H2) to send Router B, it has to

wait until B finishes its power state transition.

• Figure 2.4 (e) shows the credit control and maintenance between Routers A and C

while Router B is power-gated. After Router B goes into the Sleep state, Router A

zeroes its credit counter entry and the credit information is copied from Router B to

A (Credit #4). This is because Router C is now logically the downstream router of

Router A, so A has to keep track of the buffer availability (credits) in C. Credit #5

carries the newly available credit in Router C to Router B.

• In Figure 2.4 (f), we can see how the Credit #5 is relayed by the power-gated Router

B to Router A, which then updates its credit counters. This is how Router A can

18

keep track of the credit status of Router C via the relaying scheme in Router B.

The wakeup procedure is similar with the draining procedure, since a waking up router

sends wakeup signals to its neighbors and starts to drain packets from its output latches.

The router also waits for all its neighbors to finish any intermittent transmissions destined

to it and sends drain_done signals. The router then receives the credit information from

the downstream router and sends a signal to notify the upstream router to make its cor-

responding credit counter to fully available. Once this happens, the router switches the

muxes/demuxes and resumes baseline operations.

2.4.2 Generalized FLOV

Power saving is limited in rFLOV since, when a router goes to sleep, none of its neigh-

bors are allowed to sleep regardless of the power states of their attached cores. In this

section, we propose generalized FLOV (gFLOV) where two or more consecutive routers

in a row/column can be power-gated simultaneously.

The main challenge of gFLOV in comparison with rFLOV is the added complexity of

handshaking between routers so as to keep consistent PSRs and maintain the credit infor-

mation of downstream routers. This is because, unlike in rFLOV, consecutive routers can

be power-gated, the handshake signaling between two active routers (logical neighbors)

may need to cross several power-gated routers. In rFLOV, there is no need for handshake

relaying because the handshaking occurs always between two immediate (physical) neigh-

bors, whereas when a router wants to drain/wake up in gFLOV, it has to handshake with the

nearest powered-on router in each direction (if there is one), which is its logical neighbor.

The power-gated routers in the middle should forward the handshake signals, in addition

to updating their corresponding logical and physical neighbor routers’ power states in the

PSRs.

The credit control is similar with rFLOV, where the power-gated router is responsible

19

for copying its credit counters to its upstream router. Since there might be multiple con-

secutive power-gated routers in the middle, the credit information is relayed across these

sleeping routers until it reaches a powered-on upstream router. Like rFLOV, a router that

wakes up will receive credit information from its downstream router and the upstream

router sets its credits to full availability.

The handshake protocol of gFLOV requires some protocol level restrictions and addi-

tional functionalities, when compared with rFLOV, which are described as follows.

• In gFLOV, after a router finishes power-gating (goes into the Sleep state), it should

send its corresponding logical downstream neighbor’s power state in each direction

to its upstream router, in addition to its current power state. This is because the

logical downstream router of the power-gating router will now become the logical

downstream router for its upstream router. This way the logical PSRs of all the

routers are kept up-to-date.

• In gFLOV, no two logical neighbor routers in the same row/column are allowed to

stay in Draining-Draining or Draining-Wakeup state combinations at the same time

in order to avoid protocol deadlock. Since Wakeup is more crucial for performance,

Draining has lower priority if one of the handshaking routers is trying to wake up

and the other trying to drain. However, for simplicity of handshaking, if a power-

gated router has a downstream router in the Draining state, it cannot wake up until

the draining router changes its state. Similar with rFLOV, if the handshaking routers

are trying to drain at the same time, only the one with a smaller router id can proceed.

• Two routers in the same row/column can wake up at the same time in gFLOV. Unlike

the Draining-Draining combination, two waking up routers have no dependence on

each other. Any of the handshaking Wakeup routers should relay the drain_done

handshake signal to the other Wakeup router.

20

2.5 Dynamic Routing Algorithm

In this section the overall FLOV NoC architecture is introduced and the dynamic rout-

ing algorithm is proposed.

2.5.1 FLOV NoC Architecture

Figure 2.5: FLOV NoC Architecture.

Figure 2.5 shows a (4×4) 2D mesh network with the proposed FLOV routers. The

pattern-shaded routers (3, 7, 11, and 15) are connected to memory controller (MC) nodes

that should be never power-gated 1, where we use the baseline routers. All the other

routers are FLOV routers that are connected to processing cores and can be power-gated if

the cores are powered down. Maintaining connectivity in the network without any global

information, which is critical to FLOV, is ensured by a combination of keeping all the

routers in the last column powered-on and the proposed routing algorithm below. One VC

of each powered-on router is reserved for deadlock recovery, called an escape VC.

1MC nodes can be located in other places. Depending on this MC placement, the routing algorithm may
be slightly different.

21

2.5.2 Dynamic Routing Algorithm

The FLOV NoC baseline architecture is a two dimensional mesh topology with one

column or row of routers (on the edge) which are always powered on. This is to facilitate

connectivity across the topology using our routing algorithm which is explained below.

One VC of each powered-on router is reserved for deadlock recovery, called an escape

VC. The proposed routing algorithm consists of routing for packets in the regular VCs

and routing for packets in the escape sub-network. A packet in a regular VC can be sent

to an escape VC when required by the deadlock recovery mechanism. Note that routing

computation is performed in powered-on routers, while power-gated routers only forward

packets without changing the direction.

(a) (b)

Figure 2.6: Destination Partitioning in a 2D Mesh Network (a), Turns Allowed/Not Al-
lowed in the Escape Sub-Network (b).

We propose a partitioned-based dynamic routing algorithm based on YX routing for

packets in regular VCs. Each router divides the network into partitions as shown in Fig-

ure 2.6 (a). The routing decision is made based on two variables, the partition which

22

the destination falls into and the power states of neighboring routers. For packets with

destinations in partitions 1, 3, 5, and 7, the router will send them directly to North(Y+),

West(X-), South(Y-), and East(X+) downstream routers, respectively. This is because even

in case of power-gated downstream routers, FLOV links will ensure the connectivity to the

destinations.

For packets with destinations in partitions 0, 2, 4, and 6, the route will include a turn

towards the destination. In the proposed dynamic routing algorithm, if the neighboring

router in the Y direction is powered-on, the packet will be sent to this router using YX

routing. If this neighboring router is power-gated, the router will check the state of the

neighboring router in the X direction, and if this router is powered-on, the source router

will send the packet to it.

In case both the routers in the X and Y directions are power-gated, a viable route to the

destination cannot be guaranteed since the current router is not aware of the power states

of the farther downstream routers. Then the packet will be forwarded to the neighbor,

in the East direction, toward MC node routers using the FLOV link of the neighboring

power-gated router. The packet is not sent to the router in the Y direction because, in the

worst case, if all the downstream routers in the Y direction are powered off, the packet

will not be able to make a turn and hence cannot be routed to the destination. In contrast,

once the packets are directed to the East direction, we can guarantee that the packet will

be able to make a turn toward the destination in the always powered-on MC node router of

the corresponding row. Noted that a router cannot send a packet back to the direction from

which it arrived so as to avoid livelock situations, where a packet keeps bouncing between

two neighbors.

The proposed adaptive routing algorithm is not necessarily deadlock-free. We use Du-

ato’s algorithm and a timeout mechanism to ensure deadlock recovery in our scheme [66].

If a packet has been waiting in a buffer for a long time, it will exceed a certain threshold

23

(a) Example 1 (b) Example 2 (c) Example 3

Figure 2.7: Routing Algorithm Examples: X indicates a power-gated router.

and be directed to the escape VC in the downstream routers to reach the destination using

the deadlock-free escape sub-network.

The routing algorithm in the escape sub-network is also based on the partitioning from

Figure 2.6 (a). Packets with destinations in partitions 1, 3, 5, and 7, will be sent directly to

North, West, South, and East, respectively. Packets whose destinations are in partitions 0,

2, 4, and 6, should be sent to East where the MC routers are located for the same reason

mentioned above. Figure 2.6 (b) shows the turns that are allowed and not allowed in our

escape routing algorithm which ensure deadlock freedom.

The proposed dynamic routing algorithm is explained in details using examples in

Figure 2.7.

• In Figure 2.7 (a), the destination is in partition 7 of the source router’s partitions, so

even though the next router is power-gated, the packet is forwarded to the East using

the FLOV link.

• In Figure 2.7 (b), the destination is in partition 6, so the routing algorithm first checks

for Router 9’s state. Since Router 9 is power-gated, the packet is sent to Router 6

that is powered-on, which will then in turn route the packet to the destination.

24

• In Figure 2.7 (c), the destination is in partition 2, so Router 5’s state is checked.

Since it is powered-on, the packet is forwarded to Router 5. Router 5 then executes

the same logic and since Routers 1 and 4 are both power-gated, the packet has to

be sent to Router 6 so that it can at least make a turn at the MC router. Router 6

computes that the destination is in partition 2 and checks Routers 2 and 5. Since

Router 2 is power-gated and it cannot send the packet back to Router 5, the packet is

forwarded to Router 7. Router 7 then routes the packet to Router 3 where it makes

another turn toward the destination. If the packet wait time in any router exceeds the

threshold, it is routed to the escape VC. Once the packet enters the escape VC, it has

to remain in the escape sub-network until it reaches the destination.

2.5.3 Overhead Analysis

In this section we discuss the area and power overhead incurred by the proposed

scheme. The modifications proposed to the router microarchitecture include 4 multiplexers

and 4 demultiplexers in addition to the four output latches. The mux and demux selection

signals are only toggled when the router powers on or off, so the logic needed for the

select signals is minimal. Every router has two sets of PSRs, where each entry incurs a

2 bit overhead (for power state). Hence the total overhead for the PSRs accounts to 16

bits (2 sets of 4-entry registers). The credit control logic is modified to be connected to

the HSC so that the credit counters can be reset or zeroed based on signals from the HSC.

The additional overhead incurred due to this is mainly the connecting wires and minor

modifications to the CCL logic for decoding the two HSC signals. The HSC requires 6-

bit wires to connect the adjacent neighbor routers (4 bits for current and logical neighbor

router power state change notifications, 1 bit for draining notification and 1 bit for physical

neighbor assertion). This accounts to approximately 0.1% of baseline router area accord-

ing to our modeling using DSENT [15]. The HSC also includes the power state transition

25

FSM implementation (4 states), which incurs minimal area overhead. The overall area

overhead for the above components for a single router in 32nm technology is quantized

at 2.8 × 10−3 mm2 which is 3% of the baseline router area. The power consumption of

the HSC is also minimal due to the handshaking occurring only after long intervals of

time (reconfiguration times) as shown in Section 2.6. The power consumption overhead

for the handshaking and the credit relaying is accounted for in the DSENT model [15]

and is included in the power consumption evaluation results in the next section. None of

the modifications incur significant critical path delay and do not impact the frequency of

operation of the NoC. This is because the data path of a packet is only impacted by the de-

muxes and muxes, and they incur negligible delay, therefore not violating the clock cycle

time. The modifications to the routing and CCL are minor and will not violate the critical

router pipeline stage delay.

2.6 Experimental Evaluation

In this section we evaluate the FLOV mechanism by comparing static, dynamic and

total power consumptions in addition to NoC latency with Router Parking [21] 2.

2.6.1 Experimental Methodology

We use Booksim [51] for synthetic workload experiments, and integrate it with gem5 [52]

for full system simulation. DSENT [15] is used to estimate static and dynamic power con-

sumptions of the interconnect components with a switching activity of 50% in 32nm tech-

nology. A 2GHz clock frequency is assumed for the routers and links. Table 2.1 summa-

rizes the simulation configuration parameters. We use both synthetic and real workloads to

evaluate the performance and power-savings of rFLOV and gFLOV against the Baseline

interconnects with no router power-gating (Baseline) and Router Parking (RP). We use

Uniform Random and Tornado traffic for synthetic workloads and nine benchmarks from

2We do not compare with NoRD due to different assumptions on power-gating criteria.

26

PARSEC benchmark suite [6] for our evaluation.

Table 2.1: Simulation Testbed Parameters

Network Topology 8×8 Mesh
Input Buffer Depth 6 flits

Router 3-stage (3 cycles) router
Virtual Channel 3 regular VCs and 1 escape VC per vent, 3 vnets

Packet Size 4 flits/packet for synthetic workload
Memory Hierarchy 32KB L1 I/D $, 8MB L2 $

MESI, 4 MCs at 4 corners
Technology 32nm

Clock Frequency 2GHz
Link 1mm, 1 cycle, 16B width

Power-Gating Parameters Power-Gating overhead = 17.7pJ
wakeup latency = 10 cycles

Baseline Routing YX Routing

2.6.2 Synthetic Workload Evaluation

For synthetic workloads, we use first 10,000 cycles to warm up the simulation and run

for 100,000 cycles in total. Figure 2.8 summarizes the simulation results using Uniform

Random traffic. Similarly, Figure 2.9 shows the results for Tornado traffic. In the figures

the top row is for the injection rate of 0.02 flits/cycle/router and the bottom row is for the

injection rate of 0.08 flits/cycle/router. Each column shows average latency, dynamic, and

total power consumptions for a given injection rate, respectively. Figures 2.10(a) and (b)

break down average packet latencies of the different mechanisms into accumulated router

latency (number of hops × router pipeline latency), link latency (total link traversals),

serialization latency (number of flits per packet) contention latency, and FLOV latency

(number of FLOV links traversed). The static power consumption analysis for Uniform

27

!"

#$

#"

%$

%"

"$

&$!$ #$ %$ "$ '$ ($)$

*
+
,
-
.
/
01
+
/
.
2
,
3
04
5
3
,
6.
7
8

9:+,/;<20<=0*<>.:?@+/.A05<:.704B8

C+7.6;2. D* :91EF G91EF

H!

!

!"!#

!"!$

!"%&

!"%'

!"&

!"&#

%! &! (! #!)! '! *! $!

+
,
-
.
/
01
23
4
5
6
7
28
9
:

;7.1<04-24=234567>?.<6@2A476B28C:

D.B6E0-6 F3 7;GHI J;GHI

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

#! $! %! &! '! (!)! *!

+
,
-
.
/0
1
,
2
3
4
05
6
7

84.9-:,;0,<01,234=>.-3?0@,43A05B7

C.A3/:;3 D1 48EFG H8EFG

!"!#

$%

&!

&%

'!

'%

%!

(! $! &! '! %!)! *! #!

+
,
-
.
/
0
12
,
0
/
3
-
4
15
6
4
-
7/
8
9

:;,-0<=31=>1+=?/;@A,0/B16=;/815C9

D,8/7<3/ E+ ;:2FG H:2FG

!

!"#

!"$

!"%

!"&

!"'

!"(

#! $! %! &! '! (!)! *!

+
,
-
.
/
01
23
4
5
6
7
28
9
:

;7.1<04-24=234567>?.<6@2A476B28C:

D.B6E0-6 F3 7;GHI J;GHI

!

!"#

!"$

!"%

!"&

'

'"#

'! #! (! $!)! %! *! &!

+
,
-
.
/0
1
,
2
3
4
05
6
7

84.9-:,;0,<01,234=>.-3?0@,43A05B7

C.A3/:;3 D1 48EFG H8EFG

(a) Average Latency (b) Dynamic Power Consumption (c) Total Power Consumption

Figure 2.8: Average Latency, Dynamic and Total Power Comparison for Injection Rates
of 0.02 (top row) and 0.08 (bottom row) flits/node/cycle with Uniform Random Traffic.

!"!#

$%

$&

$'

#$

#(

#%

$! #! (!)! %! *! &! +!

,
-
.
/
0
1
23
-
1
0
4
.
5
26
7
5
.
80
9
:

;<-.1=>42>?2,>@0<AB-10C27><0926D:

E-908=40 F, <;3GH I;3GH

!

!"!#

!"!$

!"%&

!"%'

!"&

%! &! (! #!)! '! *! $!

+
,
-
.
/
01
23
4
5
6
7
28
9
:

;7.1<04-24=234567>?.<6@2A476B28C:

D.B6E0-6 F3 7;GHI J;GHI

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

#! $! %! &! '! (!)! *!

+
,
-
.
/0
1
,
2
3
4
05
6
7

84.9-:,;0,<01,234=>.-3?0@,43A05B7

C.A3/:;3 D1 48EFG H8EFG

!"

!#

!$

%!

%&

%"

!' %' &' (' "')' #' *'

+
,
-
.
/
0
12
,
0
/
3
-
4
15
6
4
-
7/
8
9

:;,-0<=31=>1+=?/;@A,0/B16=;/815C9

D,8/7<3/ E+ ;:2FG H:2FG

'I'*

!

!"!#

!"$

!"$#

!"%

!"%#

!"&

!"&#

$! %! &! '! #! (!)! *!

+
,
-
.
/
01
23
4
5
6
7
28
9
:

;7.1<04-24=234567>?.<6@2A476B28C:

D.B6E0-6 F3 7;GHI J;GHI

!

!"#

!"$

!"%

!"&

'

'! #! (! $!)! %! *! &!

+
,
-
.
/0
1
,
2
3
4
05
6
7

84.9-:,;0,<01,234=>.-3?0@,43A05B7

C.A3/:;3 D1 48EFG H8EFG

(a) Average Latency (b) Dynamic Power Consumption (c) Total Power Consumption

Figure 2.9: Average Latency, Dynamic and Total Power Comparison for Injection Rates
of 0.02 (top row) and 0.08 (bottom row) flits/node/cycle with Tornado Traffic.

28

Random and Tornado traffic is shown in Figure 2.11.

(a) Uniform Random Traffic Pattern (0.08 filts/cycle/node)

(b) Tornado Traffic Pattern (0.08 filts/cycle/node)

(c) Application execution time

!

!"#

!"$

!"%

!"&

'

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

()
*+
,-.
+ /0

12
34

5

6,)78*79:,+*6:;<=>)78 7)..+), ;+;?@ A+>>+= A,?-;).-B)=+ C-@* D#%$ E5F

G:
>B

),-
H+
;IJ

.+
>1
<

(+.79B)>8*

K=)=-7IJ.+>1< L<.)B-7IJ.+>1<

(d) Full system energy consumption

Figure 2.10: Packet Latency Breakdown (a,b), and Full system evaluations (c,d).

29

2.6.2.1 Performance

Figure 2.8 (a) and Figure 2.9 (a) show average latency comparison of rFLOV and

gFLOV with RP and Baseline. Both rFLOV and gFLOV perform better than RP across

different traffic and injection rates. This is because, in RP, a packet will always need to

route through powered-on routers and links connecting them, which may be non-minimal,

thereby increasing the path length. In the FLOV mechanism, we take advantage of all

the links, thus trying to route a packet through a minimal path using FLOV links. Even

when minimal routing is not possible due to the proposed routing algorithm in Section 2.5,

the average packet latency can be reduced since the FLOV links do not incur the 3-cycle

baseline router per-hop latency, since the flit is only temporarily held in the FLOV latch for

one cycle. This can be observed clearly in Figure 2.10(a) and (b), where the accumulated

router latency for RP is larger than that of the FLOV mechanism, due to non-minimal

detours. In Figure 2.10 (a), under Uniform Random traffic, the FLOV latency increases as

more cores are power-gated for the FLOV mechanism, which shows the increased FLOV

link utilization. For Tornado traffic in Figure 2.10 (b), the communication occurs between

two power-on nodes in the same row/column, and the routers in the rightmost column are

always active. Therefore, less number of FLOV links are used, which leads to reduced

FLOV latency.

As the number of power-gated cores increases, rFLOV power-gates as many routers

as possible under the aforementioned restrictions, and gFLOV power-gates all the routers

attached to the power-gated cores, whereas RP makes a dynamic decision based on main-

taining network connectivity. When the fraction of power-gated cores is low, rFLOV and

gFLOV perform significantly better than RP in terms of average latency due to less detour

and fast FLOV links. Also average latencies of rFLOV and gFLOV are similar due to

the numbers of power-gated routers being similar at lower fractions of power-gated cores.

30

However, when the fraction of power-gated cores is high, rFLOV can only power-gate at

most half the routers, while gFLOV can do more.

Figure 2.8 (a), at the fraction of 70% power-gated cores, shows a case where gFLOV

slightly outperforms rFLOV. This is counterintuitive since lesser number of power-gated

routers in rFLOV should generally incur more minimal routing paths and higher network

performance. This is due to the reduced per hop latency of FLOV links showing more

impact on average latency than minimal routing capability. Figure 2.10 (a) shows that the

accumulated router latency for rFLOV is significantly larger compared to gFLOV at 70%,

since gFLOV utilizes the FLOV links more. Figure 2.8 (a) shows that the performance of

RP becomes closer to the FLOV mechanism as the fraction of power-gated cores becomes

larger since the traffic injected into the network becomes very low due to lesser number

of active cores. This can be also observed in Figure 2.10(a) and (b), where the contention

latency and accumulated router latency for RP decrease as the fraction of power-gated

cores goes from 60% to 80%.

Another observation is that as the injection rate increases from 0.02 to 0.08, the perfor-

mance impact on RP is higher than on rFLOV and gFLOV. This is because certain routers,

connecting different network partitions to ensure network connectivity, become network

hotspots in RP. Such routers become congested especially at high injection rates, thus

creating communication bottlenecks. The proposed dynamic routing algorithm in FLOV

avoids such network hotspots.

In Figure 2.9 (a), rFLOV and gFLOV outperform Baseline with Tornado traffic. This is

because in Tornado, a significant portion of the traffic injected from each router is destined

to a router in the same row/column. Thus rFLOV and gFLOV can use FLOV links with

minimal paths and avoid the 3-cycle router latency.

One interesting observation is that, under Uniform Random traffic with an injection

rate of 0.08 flits/cycle/router in Figure 2.8 (a), RP shows similar latency as both rFLOV

31

and gFLOV when 30% of cores are power-gated. This is due to the fact that RP dynam-

ically turns on additional routers attached to power-gated cores to negate the impact of

higher traffic in the network. This can also be observed from Figure 2.8 (c), where total

power consumption is increased when the fraction of power-gated cores goes from 20%

to 30%. From these results, it is clear that RP trades off static power savings for latency

benefits. This is also shown in Figure 2.10 (a), where the router latency of RP significantly

decreases as the fraction of power-gated cores goes from 20% to 30% due to RP powering

on additional routers to reduce the non-minimal detour paths.

In Figure 2.10(a) and (b), both rFLOV and gFLOV have relatively higher contention

latency at high fractions of power-gated cores. One reason is that packets have higher

probability of being routed to the MC column for guaranteed paths to the destinations,

which may create congestion in the MC column. Also, when packets are routed through

consecutive FLOV links in a row/column, packet transmission may be delayed due to the

round-trip latency of credit information. However, the higher utilization of FLOV links

compensates for the contention latency, which can be explained by the router and FLOV

latencies. Note that RP also tends to have higher contention latency compared to the FLOV

mechanism because of the high probability of hot spot creation.

2.6.2.2 Power Consumption

Figures 2.8 (b), 2.8 (c), 2.9 (b), and 2.9 (c) show dynamic and total power consump-

tions of the FLOV mechanism compared with RP and Baseline for multiple injection rates.

In Figures 2.8 (b) and 2.9 (b), for multiple injection rates the dynamic power consump-

tions of rFLOV and gFLOV are lower than RP, since in RP every hop in the rerouted

packet traversal requires the total router pipeline execution, whereas in FLOV the inter-

mediate power-gated routers use FLOV links that consume significantly lower power. RP

also consumes more dynamic power than Baseline due to its non-minimal path rerouting of

32

!

!"#

!"$

!"%

!"&

!"'

!"(

#! $! %! &! '! (!)! *!

+
,-
,.
/0
1
2
3
4
50
67

8

95-/,.2:02;012345<=-,4>0?254@06A8

B-@4C.:4 D1 59EFG H9EFG

Figure 2.11: Static Power Comparison of FLOV with RP and Baseline.

packets as the number of power-gated cores increases. At higher fractions of power-gated

cores, the FLOV mechanism consumes less dynamic power than Baseline due to avoiding

the router pipeline execution. Figures 2.8 (c) and 2.9 (c) show total power consumptions

of rFLOV and gFLOV compared with RP. It is clear that gFLOV unanimously has lower

power consumption, since the dynamic and static power consumptions in gFLOV are lower

than RP. Note that total power consumption of rFLOV is higher than RP at higher fractions

of power-gated cores, mainly due to static power consumption explained below.

Figure 2.11 shows static power consumption comparison, which is injection rate and

workload independent for rFLOV and gFLOV, since all routers attached to power-gated

cores are power-gated in gFLOV, while rFLOV power-gates a limited number of routers to

preserve the restriction. RP dynamically decides whether to conservatively or aggressively

power-gate routers, using power saving versus latency tradeoff prediction based on the

interconnect workload. To reduce redundancy of using the same results of the FLOV

mechanism for multiple injection rates and workloads, we compare against the aggressive

RP power-gating scheme that power-gates as many routers as possible, which will make

the RP power results also workload independent. This allows a fair comparison with RP

33

and lets us depict the static power evaluation in Figure 2.11.

In Figure 2.11 the static power consumption of gFLOV is lower than RP and the dispar-

ity increases as the number of power-gated cores increases. This is mainly due to the fact

that gFLOV power-gates more routers than RP. rFLOV consumes more static power com-

pared to RP, especially as the fraction of power-gated cores increases, since the number of

routers that can be power-gated starts to saturate.

2.6.2.3 Real Workload Evaluation

To evaluate the behavior of the power-gating mechanisms under real workloads and

show the impact on the full system environment, we run PARSEC 2.1 in gem5 [52] inte-

grated with Booksim. The system parameters are described in Table 2.1. Figures 2.10 (c)

and (d) show the execution time and the energy consumption, with the power-gating mech-

anisms compared to Baseline and RP. They show that FLOV achieves 43% reduction in

static energy consumption on average compared to Baseline with only a 1% degradation

in performance. This is due to the best-effort shortest-path routing and the low-latency

FLOV link compensate for the detouring and round-trip credit loop latency. Interestingly,

FLOV and RP have better performance than Baseline in vips and dedup, respectively. It

is the effect of a good match of the traffic pattern and routing algorithm. Compared to

RP, FLOV reduces static energy by 22% as a net effect from the distributed power-gating

control and the dynamic routing algorithm.

2.6.3 Reconfiguration Overhead Analysis

In this section we analyze the impact of the network reconfiguration on packet latency

in RP by comparing with gFLOV. Figure 2.12 shows average packet latency of gFLOV and

RP across the timeline of execution using Uniform Random traffic with an injection rate

of 0.02 flits/cycle/node when 10% of the cores are power-gated. In RP, whenever the con-

figuration of power-gated cores changes (at 50,000 and 60,000 cycles), the network has to

34

!

"!

#!!

#"!

$!!

$"!

%!!

&
'
!
!
!

&
(
!
!
!

&
)
!
!
!

&
*
!
!
!

"
!
!
!
!

"
#
!
!
!

"
$
!
!
!

"
%
!
!
!

"
&
!
!
!

"
"
!
!
!

"
'
!
!
!

"
(
!
!
!

"
)
!
!
!

"
*
!
!
!

'
!
!
!
!

'
#
!
!
!

'
$
!
!
!

'
%
!
!
!

'
&
!
!
!

'
"
!
!
!

+
,
-.
/
01
2,
0/
3
-4
15
-4
-6
/
78

9:;/6:3/15-4-6/78

<+ =>2?@

Figure 2.12: Reconfiguration Overhead of RP and Comparison with gFLOV.

be reconfigured by the FM and then the corresponding routing tables have to be distributed

to the routers that will be active in the next epoch (Phase I of reconfiguration protocol in

RP). While this reconfiguration is performed, the network has to stall and no new injec-

tions are allowed except reconfiguration packets, which incurs additional queuing delays

in packet latency. Our evaluations show that the reconfiguration time in RP Phase I is more

than 700 cycles. The performance overhead due to this is shown in Figure 2.12, where we

can clearly observe that the newly injected packets during this time experience significant

queuing delays in RP. In gFLOV, there is no such network reconfiguration overhead since

the routers are power-gated in a distributed manner. So new packet transmissions can be

initiated while some routers either power-gate or wake up independently.

2.7 Conclusions

In this work, we proposed Fly-Over (FLOV), a light-weight distributed router power-

gating mechanism for NoCs. After constructing the FLOV router enabling FLOV links

by modifying the baseline router microarchitecture, we presented two different handshake

protocols for FLOV routers, called rFLOV and gFLOV, and explained the dynamic routing

algorithm in details. FLOV power-gates routers attached to powered-down cores without

35

global network information, but still ensures network connectivity.

Performance evaluations using synthetic and real workloads show that FLOV not only

achieves better NoC power savings due to power-gating more routers but avoids aggre-

gated traffic rerouting in the network unlike Router Parking. Also, average latency is

reduced compared with Router Parking. We show that FLOV reduces the total and static

energy consumption by 18% and 22% respectively, on average across several benchmarks,

compared to state-of-the-art NoC power-gating mechanism while keeping the performance

degradation within 1%.

We plan to extend our mechanism to aggressively power-gate routers, to achieve more

power savings in domains such as CMPs with shared last level caches (LLC) and General-

Purpose Graphics Processing Units (GPGPUs). The FLOV router can be enhanced to

include injection/ejection capabilities so as to facilitate network traffic based fine-grained

power-gating like NoRD [14]. We also plan to combine FLOV with lookahead routing [67]

so that more aggressive 1- or 2-stage routers can be used for our study.

36

3. POWER-EFFICIENT AND RELIABLE ON-CHIP INTERCONNECTS USING

STT-MRAM ROUTERS

3.1 Introduction

NoCs should be carefully designed due to the inherent constraints of the restricted

power and area budgets in a chip. NoCs consume up to 28% of the chip power, and

among the different components comprising on-chip interconnects, buffers are the largest

leakage power consumers in NoC routers, consuming about 68% of the total router leakage

power [68]. Buffers also consume significant dynamic power [24], and this consumption

increases rapidly as data flow rates increase. Therefore, designing an innovative buffer

structure plays a crucial role in architecting high performance and low power on-chip

interconnects.

Spin-Transfer Torque Magnetic RAM (STT-MRAM) [26, 27] is a promising next gen-

eration memory technology that can replace conventional RAMs due to its near-zero leak-

age power and high density. However, the weaknesses of STT-MRAM, long latency and

high power consumption in write operations and thermal fluctuation-induced random bit

flips, should be properly addressed because fast accesses to on-chip memories that guar-

antee data integrity must be assured for high performance and reliable NoCs.

For addressing the write speed and energy limitations of STT-MRAM, several studies

have been performed in designing caches and NoC routers. An adaptive block place-

ment and migration policy for hybrid STT-RAM and SRAM last level caches has been

proposed in [69]. A region-based hybrid cache [70] with small fast SRAM and large

slow MRAM mitigates performance degradation and energy overheads. For NoC routers,

an SRAM/STT-MRAM hybrid buffer [71] shows substantial throughput improvements

across various workloads. However, the inevitable use of SRAM to hide the multicycle

37

writes of STT-MRAM sacrifices area, and wastes significant dynamic power in migrating

data between the disparate memories. The leakage power overhead due to SRAM also

increases as network scale grows and technology scales down.

Thermal stability is another key issue of STT-MRAM, determining how much sta-

bility STT-MRAM can provide against thermal fluctuation, thus directly impacting data

integrity [72]. Even under a high thermal stability, we cannot totally avoid the occurrence

of bit flips because of the stochastic nature of STT-MRAM [73]. Therefore to ensure data

integrity we need to provide proper measures for detecting and correcting such transient

errors in STT-MRAM. Prior approaches have evaluated the impacts of thermal fluctuation

on STT-MRAM reliability, and proposed schemes ensuring data integrity for caches and

off-chip storages [72, 74]. Their schemes, however, cannot be directly applicable to NoCs

since they are designed for memories having longer data residence time and larger capac-

ities compared to those of latency-sensitive, area- and power-limited buffers in NoCs.

In this work, we propose the first NoC router design that uses only STT-MRAM in

buffers, while preserving data integrity. By eliminating SRAM, it offers much larger

buffer space with less power consumptions. To hide the multicycle write latencies of

STT-MRAM, we propose a novel pipelined input buffer design, a multibank STT-MRAM

buffer, which is a virtual channel (VC) with multiple banks where every incoming flit is

delivered to each bank alternately via a simple latch inside a router. Through this, we can

avoid performance degradation while consuming less area and power.

We use the write latency reduction technique [27], which sacrifices the data retention

time of an Magnetic Tunnel Junction (MTJ), a bit storage of STT-MRAM. This can be

possible due to the short intra-router latency1 of a flit in on-chip routers. In our simulation,

the average intra-router latency in PARSEC benchmarks in an (8x8) mesh network is less

1An intra-router latency is the time interval between the arrival of a flit at an input buffer and the departure
from a router through a crossbar.

38

5
5

9
7

8
8

2
8

4
7

3
3

1
5

3
9

3
5

8
7

0
4

9

6
7

3
9

7

3
8

4
8

0

1
3

9
9

5

1
0

1
8

7

8
4

4
7

5
0

3
2

3
0

7
2

2
4

6
2

1
9

8
5

1
9

4
6

3
9

2
1

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

<
 1

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

>
 3

2
0

N
u

m
b

e
r o

f F
lits R

a
ti

o
 o

f
F

li
ts

 (
%

)

Intra-Router Latency (Cycles)

Ratio of Flits (%) Number of Flits
(98.5)

Figure 3.1: Per-Application Intra-Router Latency Distribution (canneal in PARSEC
Benchmarks)

than 3 cycles2. However, for applications that exhibit bursty communication and heavy

loads, we observe that flits are staying in STT-MRAM buffers longer than a given retention

time, increasing the possibilities of flit losses due to the expired retention period.

This is because some flits have fairly high intra-router latencies while most of the flits

are clustered around low intra-router latencies less than 10 cycles as shown in Figure 3.1.

These lost flits incur noticeable performance losses especially when the flits are parts of

control packets carrying critical cache coherence information. On average, 78.7% of traffic

is such single-flit control packets in PARSEC benchmarks [75]. Therefore, to ensure data

integrity under the limited retention time and random bit flips of STT-MRAM, we propose

cost-efficient dynamic buffer refresh schemes, the processes in which cells’ values are kept

valid by triggering refreshes in a timely manner. Note that the refreshes are performed in

tandem with Error Correcting Codes (ECC) that are extensively used in memories and

storage devices to tolerate both transient and static errors [76]. ECCs detect and correct

data corruption, thus mitigating the impacts of random bit flips on NoCs.

The main contributions of this paper are as follows:

2See Section 3.5 for detailed system configuration.

39

• We present a detailed analysis on design tradeoffs of an MTJ especially in terms of

write performance, write power, and retention time, which are suitable for performance-

and power-efficient NoCs.

• We propose a novel multibank input buffer design, which is implemented entirely

with STT-MRAM and delivers optimal power saving and performance improve-

ment.

• We suggest a cost-efficient buffer refresh scheme combined with ECC: a global

counter refresh scheme, which periodically checks and restores data integrity in

buffers, maintaining the validity of flits.

• We achieve 20.7% throughput improvement and 17% total power saving compared

to a conventional SRAM based router with the proposed STT-MRAM router scheme.

The remainder of this chapter is organized as follows. The STT-MRAM character-

istics and the corresponding design tradeoffs are described in Section 3.2, followed by

motivation in Section 3.3, and STT-MRAM router architecture in Section 3.4. Section 3.5

presents performance and power analysis with experimental results, and related work in

Section 3.7. Finally, Section 3.8 summarizes our work and makes conclusions.

3.2 Background and Design Challenges

In this section, we review key features of STT-MRAM and analyze design tradeoffs of

an MTJ cell in terms of switching time (the time taken for completing a write operation

in an MTJ cell, namely write latency), switching current (the power required to change an

MTJ cell value, namely write power), and data retention time. We also elaborate design

challenges that need to be addressed for ensuring high performance and data integrity in

STT-MRAM based NoCs.

40

Free Layer

Tunnel Barrier (MgO)

Fixed Layer

Bit Line

Source Line

MTJ

NMOS

Transistor

W
o

rd
 L

in
e

Tunnel Barrier (MgO)

Tunnel Barrier (MgO)

(a) Parallel (0)

(b) Anti-Parallel (1)

Figure 3.2: STT-MRAM Cell Structure

3.2.1 STT-MRAM

STT-MRAM is a next generation memory technology that exploits magnetoresistance

for storing data. In STT-MRAM, each data bit is stored in an MTJ, a fundamental building

block. An MTJ consists of three layers: two ferromagnetic layers and a Magnesium Oxide

(MgO) tunnel barrier layer in the middle as shown in Figure 3.2. Depending on the current

that propagates through the fixed layer, the spin polarity of the free layer changes to either

parallel (zero) or anti-parallel (one) to that of the fixed layer. A single MTJ module is

coupled with an NMOS transistor to form a basic memory cell of STT-MRAM, called a

1T-1MTJ.

3.2.2 Fine-tuning STT-MRAM for High Performance NoCs

3.2.2.1 Retention Time

The nonvolatility of an MTJ is quantitatively measured by the data retention time,

which is the maximum time duration for which stored data can remain in an MTJ [77, 26].

41

The data retention time, Tret, of an MTJ is defined as follows [78].

Tret = 1ns · e∆ (3.1)

∆ is the thermal stability factor of an MTJ, and it is proportional to the saturation magne-

tization (Ms), the in-plane anisotropy field (Hk), and the volume of the free layer (V) in

an MTJ as follows [79]. T denotes the working temperature.

∆ ∝ MsHkV

T
(3.2)

We decrease the thermal stability factor by reducing the MTJ area while adjusting Ms

and the thickness of the free layer, as mentioned in [80], leading to reduced retention-time

STT-MRAM [26].

3.2.2.2 Switching Current and Switching Time

In a precessional switching mode [81] where an MTJ switching time (Ts) is short (< 3

ns), the required current density, Jc(Ts), is determined as follows.

Jc(Ts) ∝ Jc0 +
C

Ts ,
(3.3)

where Jc0 is a switching threshold current density that also depends on Ms and Hk like

the thermal stability factor (∆). C is a constant affected by the initial angle between the

magnetization vector of the free layer and the easy axis [27]. Reducing the retention time

causes the thermal stability factor to decrease, which reduces Ms and Hk, and eventually

decreases Jc0. Therefore, with smaller Jc0, we can achieve a shorter switching time with

the reduced current density, Jc(Ts).

Figure 3.3 depicts the inverse relationship between the switching current (Jc(Ts)) and

42

Figure 3.3: The Relationship between Switching Current and Switching Time for Different
MTJ Retention Times

the switching time (Ts) under four different MTJ retention times ranging from 10 years to

10 µs. The retention time curves in Figure 3.3 are plotted based on previous studies [77,

26, 27], where the retention time is reduced up to tens ofms level, and for our STT-MRAM

buffer design, we further reduce the retention time to 10 µs (proven to be feasible in [82])

based on MTJ device equations [77] and simulation with the PTM model [83] under 32

nm technology. As we further reduce the retention time, the required MTJ switching time

and switching current get decreased accordingly, leading to better write performance and

less write power overhead. When fixing the switching time at 1.0 ns, for instance, we can

reduce the write current by 45.2% by relaxing the retention time from 10 ms to 10 µs.

Based on this analysis, we integrate the buffer-level SRAM and STT-MRAM models in

NVsim [84] and simulation results are shown in Table 3.2.

3.2.2.3 Cell Area

As an area model of STT-MRAM, we refer to ITRS projections [85] as well as the

model used in [28], where a 1T-1MTJ size is 30 F 2. When we assume that an SRAM cell

size is approximately 146 F 2 under 32 nm technology, one SRAM cell can be substituted

by at least four STT-MRAM cells under the same area budget. An STT-MRAM cell area

43

Figure 3.4: BCH ECC Decoder Block Diagram

is mostly determined by the NMOS transistor size since the MTJ cell is much smaller than

the transistor.

3.2.2.4 Impact of Process Technology

Applying different process technologies can affect the overall STT-MRAM power-

performance cost. As process technologies scale down, the future STT-MRAM is pre-

dicted to achieve a significantly smaller cell size, faster read/write with lower power con-

sumption while maintaining the non-volatility property [29, 86]. For advanced technolo-

gies such as 22 nm, NVsim circuit-level simulation shows that the cell area is decreased

by 48.4%, the read/write dynamic power by 13%, and the leakage power by 41.4% com-

pared to those of 32 nm. The write delay can also be decreased further due to the smaller

cell size and less current required for bit-flips. These trends indicate that STT-MRAM will

become a more viable option for cost-efficient NoC routers.

3.2.3 STT-MRAM Design Challenges

3.2.3.1 Retention Failure and Error Protection

As we relax the nonvolatility of STT-MRAM and as STT-MRAM scales, the thermal

stability factor (∆) scales down linearly, thus increasing the probability of retention failure

(random bit flips during the given retention time) accordingly. As technology scales, the

retention failure is also expected to be dominant in STT-MRAM [73]. The retention fail-

ure rate (PretFail) shown in Equation 3.4 [72] is exponentially dependent on the thermal

44

stability factor (∆) and is also increasing proportional to the data residence time (tr) (the

duration for which a flit stays inside a buffer).

PretFail = 1− e
−tr
τ0

e−∆

(3.4)

where τ0 is the attempt period representing how frequently reversal attempts occur, and the

longer tr is, the more likely errors are. Note that although the retention failure rate can be

reduced by increasing ∆, the increased ∆ inevitably increases both MTJ cell area [72] and

performance/power overheads in STT-MRAM write operations. Such a stochastic reten-

tion failure in STT-MRAM can flip bits with no warning, if no proper detection/correction

measures are employed. Thus, to ensure data integrity in buffers, we propose a dynamic

buffer refresh scheme through which flits are periodically refreshed in tandem with ECC

detecting and correcting errors occurred during the retention time (Section 3.4.3 details

the proposed error protection scheme). For data protection, the binary Bose-Chaudhuri-

Hocquenghem (BCH), a class of ECCs constructed with finite fields, is suited for NoCs

because of its fast bit-parallel decoder and multi-bit error correcting capability [76]. We

also consider the overheads accompanied with BCH, negatively affecting NoC power and

performance; that is, the corresponding latency, power and area overheads of BCH in-

crease as we employ higher error correcting capabilities. Figure 3.4 shows BCH ECC

decoder block diagram, where the first phase (syndrome computation) detects the error

occurrence and the subsequent two phases (key equation solver and error locator and cor-

rector) locate and correct errors detected.

3.2.3.2 Determining Proper Retention and Switching Times

Based on Figure 3.3, for power- and performance-efficient NoC routers, it is important

to identify what the ideal/feasible retention time should be. This is because significant

retention time reduction will make the STT-MRAM buffer highly volatile and increase

45

the probability of retention failure, leading to performance degradation due to flits cor-

rupted; while on the other hand, increasing the retention time will negatively affect write

performance and energy. Considering these tradeoffs, to locate the sweetspot of the reten-

tion time for the STT-MRAM buffer, we measure the average intra-router latency of CMP

applications because it is the main factor affecting flits’ lifetime. Once flits stay in the

STT-MRAM buffer longer than a given retention time, they get invalidated. We conduct

experiments with PARSEC benchmarks, where all results are measured under the same

area budget, 6 SRAM slots per VC, for input buffers. The average intra-router latency

across PARSEC benchmarks is less than 3 cycles, and thus based on such a short residence

time, it is reasonable to further reduce the retention time to microseconds, rather than

milliseconds which is widely used in designing caches with STT-MRAM [77, 26, 27],

thus leading to the least write and power overheads among four different retention times

in Figure 3.3.

Note that the random bit flip probability causing retention failure should also to be

considered for proper estimation of flits’ lifetime, which is detailed in Section 3.4.3.

In an ideal case, STT-MRAM write latency should be equal to that of SRAM, thus

writing to STT-MRAM must be done in a single cycle, which corresponds to less than

0.5 ns in 2 GHz clock frequency. Such fast write times of less than 0.5 ns have proved

possible [82, 86], but as shown in Figure 3.3, it requires rather strong currents3, and is

far from the optimal efficiency [87]. Even with the shortest retention time, therefore, we

conclude that it is inevitable to have more than 1-cycle latency for a write operation in the

STT-MRAM buffer.

Our proposed scheme exploits these observations to accelerate STT-MRAM write

3MTJ switching time(ns) is determined by the amount of supplied switching current(uA) which is not a
discrete single value, but a continuous stream. Therefore, to get STT-MRAM writes done in a single cycle,
the supplied current (uA) could be exponentially increased to keep the switching time (ns) stay within the
range between 0.0 and 0.5. Thus, 1-cycle latency is not affordable for STT-MRAM buffers.

46

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM4 STT16 (baseline) STT16 (no-lat)

Figure 3.5: Performance Comparison between SRAM and STT-MRAM based Routers
under the Same Area Budget

speeds with less power consumption. In Section 3.4.2, we propose router architectures

that effectively hide the multicycle write latencies of STT-MRAM.

In summary, for power-performance co-optimized STT-MRAM buffer design, as de-

tailed in Section 3.2.2, we reduce the retention time to 10 µs, and through this, 2-cycle

write latency, corresponding to 1 ns in 2 GHz clock frequency, is achieved with 71.35

µA of switching current (See the point where 10 µs retention and 1.0 ns switching time

intersect in Figure 3.3) with 30 F 2 of STT-MRAM cell size.

3.3 Motivation

In this section, we present key motivations that drive us to STT-MRAM based NoC

routers for power and performance co-optimization.

3.3.1 STT-MRAM for NoC Routers

Figure 3.5 compares the performance of an NoC router equipped with SRAM, STT-

MRAM, and ideal STT-MRAM buffers having no write delays. Under the same area bud-

get, STT-MRAM provides 4 times more buffer space as described in Section 3.2.2. Due to

the long write delay of STT-MRAM, STT16 (baseline), the SRAM based router shows far

47

Routing Computation
(RC)

VC Allocator (VA)

Switch Arbiter (SA)

VC Identifier

Input Port (North)

Crossbar Switch

Processing Element

Input Port (West)

Input Port (East)

Input Port (South)

Injection Port

Output
Link

Figure 3.6: Baseline Router Architecture

better performance, but once we completely hide the write delay of STT-MRAM, STT16

(no-lat), the overall throughput is increased by 20% compared with that of SRAM with no

zero-load penalty. Also, STT-MRAM has near-zero leakage power, thus consuming much

less total power compared with SRAM as described in Section 3.5.2. SRAM appears to be

much more power hungry than STT-MRAM, and consequently gives STT-MRAM perfor-

mance leeway in a power constrained NoCs. This motivates us to adopt STT-MRAM for

NoC routers for better performance with less power consumption.

3.4 STT-MRAM Router Architecture

In this section, we describe a baseline router architecture with its buffer structure and

present an STT-MRAM based router in detail. The key design goal of the proposed scheme

is to enable flits to be written into buffers with no additional time delay.

3.4.1 Baseline Router Architecture

The baseline NoC router architecture is depicted in Figure 3.6, which is similar to

that used by Kumar et al. [88] employing several features for latency reduction, including

48

speculation [89] and lookahead routing. Each arriving flit goes through 2 pipeline stages

in the router: routing computation (RC), VC allocation (VA), and switch arbitration (SA)

during the first cycle, and switch traversal (ST) during the second cycle. Each router

has multiple VCs per input port and uses flit-based wormhole switching. Credit-based VC

flow control is adopted to provide the back-pressure from downstream to upstream routers.

The necessity for ultra-low latency leads to a parallel FIFO buffer shown in Figure 3.9(a),

where the parallel structure eliminates unnecessary intermediate processes making a flit

traverse all buffer entries until it leaves the buffer. The read and write pointers in the

parallel FIFO regulate the operations of the input and output MUXes, and the two pointers

are controlled by a VC control logic.

3.4.2 STT-MRAM Router Design

For conventional SRAM buffers, incoming flits are written to their designated buffers

with no delay due to the short SRAM write latency. On the contrary, when we replace

SRAM with STT-MRAM, only a single flit can be written to a buffer every n cycles,

which causes subsequent incoming flits to be delayed. To guarantee seamless traversal of

flits across the network, we propose a multibank STT-MRAM buffer that hides the long

write latency inherent in STT-MRAM.

3.4.2.1 Multibank STT-MRAM Buffer

The multibank buffer scheme can be used to hide n-cycle write latency of STT-MRAM.

For example, to hide 2-cycle write delay of STT-MRAM buffer, we divide each VC into

two banks where every incoming flit is seamlessly pipelined to each bank alternately via

a simple latch inside a router. Note that prior studies [68, 90] explore the latch-based

NoC pipeline design, where latches along the link are utilized as temporary buffers that

can hold and release data when necessary. The simple latch in this paper is controlled

by a control block (as in the Channel buffer [90]) interfaced with the NoC clock, having

49

the dual function of switching between storing and transmitting data. Let us refer to the

two banks as Odd and Even banks, respectively, and incoming flits from upstream routers

as Odd and Even flits as shown in Figure 3.7(a). Every odd numbered flit is sent to the

Odd bank of a downstream router, and similarly, an even numbered flit to the Even bank

through a Multibank Buffer Arbiter (MBA) that has one input port and two splitted output

ports. The goal of this multibank buffer scheme is to enable the incoming consecutive

flits to be written to different banks simultaneously to effectively hide the multicycle write

latencies of STT-MRAM. To achieve this goal, two MUXes and one simple latch are used

for the MBA as shown in Figure 3.7(b). Each MUX has two inputs: one input is connected

to the communication link from the upstream router, and another to the simple latch inside

the router. The simple latch is located at the front of the input buffer and functions as a

temporary buffer. It holds an incoming flit for a cycle and dispatches the latched flit to its

original target bank at the very next cycle. Iclk and Mclk are control signals originating

from the control block in the input buffer, which represent the hold/release signals for

the latch and the select signal for the MUXes, respectively. Note that the area overhead

for this logic is negligible as compared to the buffer, and already added to the logic area

controlling refresh/read/write pointers. An incoming Odd flit, for instance, is directly

written to the Odd bank during the first cycle, and then during the next cycle, the latched

flit is sent to the same Odd bank, thus completing its 2-cycle write process4. Similarly, a

subsequent incoming Even flit follows the same process, but uses the other bank. Through

this, without the need of any additional SRAM buffer as in the Hybrid buffer [71], we can

seamlessly pipeline incoming consecutive flits to the input buffers of a downstream router.

Note that, in case of very light loads, an incoming flit might experience write delays

in the STT-MRAM buffer, increasing zero-load latency, which results in degraded NoC

4Since it takes multicycles to write a single flit to a target buffer, there could be a potential glitch due to
a momentary transient pulse (noise), or clock skew between communicating elements. These issues can be
addressed by sizing the MUX, overlapping clock or duplicating input signal [91].

50

Multibank

Buffer Arbiter

Incoming Flits from

Upstream Router
F

li
t

6

F
li

t
3

F
li

t
1

F
li

t
4

F
li

t
2

Input Buffer of

Downstream Router

Multibank

STT-MRAM Buffer

F
li

t
5

F
li

t
3

F
li

t
6

F
li

t
2

F
li

t
4

F
li

t
5 F

li
t

1

Flit Stream

(a) Multibank Buffer Arbiter that Hides 2-Cycle Write Latency

Incoming Flits from

Upstream Router Input Buffer of

Downstream Router

IN0

IN1

IN0

IN1

✆F
li

t
K

F
li

t
3

F
li

t
1

F
li

t
4

F
li

t
2

MUX0

MUX1

IN0 : Input from Latch

IN1 : Input from Link

Latch

IN0 : Input from Link

IN1 : Input from Latch

MUX0

MUX1

✆ F
li

t
3

✆ F
li

t
2

F
li

t
4

F
li

t
1

F
li

t
K

-1
F

li
t

K

MCLk

ICLK

(b) Multibank Buffer Arbiter Internal Structure

Figure 3.7: Multibank STT-MRAM Buffer

performance. To avoid this, we incorporate the buffer bypassing logic [24] widely used

in NoCs for power-performance efficiency. Accordingly, when a flit arrives at an empty

buffer, the flit heads straight to switch arbitration and gets sent directly to the crossbar

switch, thus circumventing STT-MRAM input buffers. The latch inside a router serves as

a bypass latch for the consecutive pipelining between the flit arrival and crossbar traversal.

Therefore, the zero-load latency of the STT-MRAM router becomes comparable to that of

the SRAM router.

In general, to hide n-cycle write latency, the STT-MRAM buffer scheme requires n

MUXes for n splitted banks with n − 1 latches inside a router as shown in Figure 3.10.

51

Incoming Flits from

Upstream Router Input Buffer of

Downstream Router

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

IN0

IN1

(a) Cycle 0

MUX Input (IN1) is set

(b) Cycle 1

MUX Input (IN0) is set

(c) Cycle 2

MUX Input (IN1) is set

✆

F
li

t
K

F
li

t
3

F
li

t
4

F
li

t
2

✆

F
li

t
K

F
li

t
3

F
li

t
4

✆

F
li

t
K

F
li

t
4

F
li

t
1

F
li

t
2

F
li

t
3

F
li

t
2

MUX0

MUX1

MUX0

MUX1

MUX0

MUX1

F
li

t
1

F
li

t
2

F
li

t
3

IN1 : Input from Link

IN1 : Input from Latch

MUX1

MUX0

F
li

t
1

IN0 : Input from Latch

MUX0

IN0 : Input from Link

MUX1

IN1 : Input from Link

MUX0

IN1 : Input from Latch

MUX1

Flit1 is latched

and written to

Odd bank

Flit2 is latched

and written to

Even bank

Latched Flit1 is

written to

Odd bank

Flit3 is latched

and written to

Odd bank

Latched Flit2 is

written to

Even bankMCLK

ICLK

MCLK

ICLK

MCLK

ICLK

F
li

t
1

F
li

t
1

F
li

t
2

F
li

t
1

F
li

t
1

F
li

t
2

Incoming Flits from

Upstream Router Incoming Flits from

Upstream Router

Input Buffer of

Downstream Router

Input Buffer of

Downstream Router

Figure 3.8: Dual-Bank STT-MRAM Buffer Example (Sequence of Operations: 1© ∼ 5©)

The increase of n can negatively affect the performance and area overheads of the STT-

MRAM buffer. Note that n is the ratio of the STT-MRAM write latency to the clock

cycle time of the NoC clock. As technology advances, we expect the write latency to be

reduced as described in Section 3.2.2, while at the same time the NoC clock frequency

increases. Therefore we do not expect n to increase drastically in the near future, hence

keeping the proposed scheme feasible. In our analysis, when n stays within 5, we observe

negligible performance degradation (less than 1%) with increased extra logic area. The

detailed analysis of the impact of large n is discussed in Section 3.6.3. Figure 3.8 shows

an example data flow for flits from an upstream router during 3 consecutive clock cycles.

Initially, the control of both MUXes, denoted as MUX0 and MUX1, is assumed to be set

to 0, and all VCs are empty. It is also assumed that the interconnect clock period is long

enough to satisfy the setup and hold constraints of a simple CMOS MUX.

• Cycle 0: The input signal of both MUXes is set to 1 (IN1). This is the first write

cycle for an incoming flit, Flit1. Flit1 is sent to the Odd bank input buffer of the

downstream router through IN1 of MUX0, and at the same time, Flit1 is stored in

the simple latch(1©).

52

• Cycle 1: The input signal of both MUXes has changed to 0 (IN0). The output of

MUX0 is Flit1 which was previously latched, and Flit1 is dispatched from the

latch to its original target bank (Odd bank), and thus completing its second write

cycle(2©). Also, this is the first write cycle for a subsequent incoming flit, Flit2, to

the Even bank input buffer. While Flit2 is transferred to the Even bank through IN0

of MUX1, it is simultaneously stored in the simple latch(3©).

• Cycle 2: The input signal of both MUXes is switched back to 1 (IN1). Like the

previous logic, this is the second write cycle of Flit2 from the latch to the Even

bank(4©), and the first write cycle for the incoming flit, Flit3(5©).

Note that, at low loads, flits arrive at the input buffer intermittently. In this case, the

arriving flit bypasses the input buffer, or unless the buffer is empty, the STT-MRAM buffer

directs the flit to either Odd or Even bank based on a one-bit flag indicating the next bank.

This ensures that incoming flits are placed in a VC without leaving unused buffer slots

in banks. This also ensures sequential reads by maintaining the FIFO properties of input

buffers.

3.4.2.2 Read/Write and Refresh Logic

Unlike the conventional SRAM input buffer that requires a read and a write pointer for

read and write operations per VC (Figure 3.9(a)), the proposed multibank STT-MRAM

buffer, assuming 2-cycle write latency, requires dual write pointers, Wr_ptr (Odd) and

Wr_ptr (Even), and a single read pointer, Rd_ptr, per VC as shown in Figure 3.9(b). The

corresponding VC control logic generates proper read and write pointer values for han-

dling flits in a timely manner. To be specific, initially, as shown in Figure 3.11(a), one of

the write pointers, Wr_ptr (Odd), points to the tail of the Odd bank, and Wr_ptr (Even)

points to the tail of the Even bank, and the read pointer, Rd_ptr, points to the head of the

buffer. For a write operation (Figure 3.11(b)), the incoming flit is written to the location

53

Write
Pointer

Read
Pointer

SRAM

Control Logic
(Write/Read Pointers)

Flit 3

Flit 2

✆

Flit K-1

Flit K

Flit 4

VC
Identifier

SA
Control

Flit 1

Read
PointerControl Logic

(Dual Writes/Single
Read Pointers)

Flit 3

Flit 1

Flit K-1

...

Refresh Logic
(Refresh Pointer)

Flit 4

Flit 2

Flit K

...

VC
Identifier

SA
Control

Write
Pointers

(a) (b)

STT-MRAM

MclkIclk

Multibank
Buffer Arbiter

Figure 3.9: A Baseline SRAM Input Buffer (a) and A Dual-Bank STT-MRAM Input
Buffer (b)

Read
Pointer

Control Logic
(Multiple(n) Writes

/Single Read Pointers)

Flit n+2

Flit 2

Flit k-n+2

...

Refresh Logic

Flit 2n

Flit n

Flit k

...

VC
Identifier

SA
Control

STT-MRAM

Write
Pointers

. . .

. . .

...

...

Flit n+1

Flit 1

Flit k-n+1

...

MclkIclk

Multibank
Buffer Arbiter

...
...

...
. . .

Figure 3.10: A General Multibank STT-MRAM Buffer (k: Total Number of Flits Buffered,
To Hide n-cycle Write Latencies, n-1 Latches and n Banks Are Needed.)

54

Figure 3.11: Circular Queue for Dual-Bank STT-MRAM Buffer (Assuming all errors are
correctable / Sequence: (a) ∼(d))

pointed by the tail pointer in one of the banks. For a read operation (Figure 3.11(c)), the flit

pointed by Rd_ptr is read out and dispatched to the crossbar. Note that STT-MRAM read

latency is comparable to that of SRAM and thus no delay occurs for the read operation.

The refresh pointer, Refresh_ptr, shown in Figure 3.11(d), moves according to the refresh

logic which is described in Section 3.4.3.

3.4.2.3 Handling Uncorrectable Errors in Refresh Operations

In the read/write and refresh logics above, for simplicity, we assume all transient errors

are correctable via ECC, thus read/write and refresh pointers keep proceeding without be-

ing interrupted by any uncorrectable errors. Actually, however, we need to consider such

uncorrectable errors in the logics, because otherwise read operations might end up reading

already-corrupted flits due to the uncorrected errors in flits. Such an issue could arise when

read operations follow right after refreshes as in Figure 3.11(d). Once parts of control or

data packets get corrupted beyond given ECC capability and thus uncorrectable, nodes

55

need to nullify such packets and make room for newly incoming packets while retransmit-

ting the corrupted packets for recovery. For single-flit control packets, it is relatively easy

to handle the recovery because they always stay inside a single router. However, for data

packets consisting of a single head/tail and multiple body flits, such recovery processes

need to be handled carefully because data packets can span multiple nodes as network gets

congested. In any case, we need to have each node aware of the data corruption so that

the corrupted packets are to be properly handled inside each router. To implement refresh

logics considering aforementioned cases, we add a valid-bit indicating the validity of each

flit stored in a VC in a router. Specifically, when a flit is written into a buffer, the valid-bit

is initially set to one (1), but once the flit becomes uncorrectable afterwards, the refresh

pointer immediately set the valid-bit to zero (0), thus read pointer skips reading the cor-

rupted flit. When there are parts of a corrupted packet, such as a head/body flit, already

buffered in a neighboring router, a single-flit control packet, called dummy tail, is dis-

patched to the router, releasing VC reservation made by the corrupted packet, thus making

the VC available for subsequent packets. Note that the negative impact of uncorrectable

packets can be mitigated by adopting a proper refresh policy minimizing the number of

uncorrectable packets, which is described in Section 3.4.3.1.

3.4.3 Nonvolatility-Relaxed STT-MRAM Buffer

In this section, we propose cost-efficient dynamic buffer refresh schemes in conjunc-

tion with ECC for error check and correction, which jointly ensures the validity of flits in

buffers.

3.4.3.1 Refresh with ECC Scheme

A conventional DRAM-style refresh, which is triggered based on the retention time, is

not enough for securing the reliability of STT-MRAM due to the retention failure detailed

in Section 3.2.2. Thus, it is required to take counter measures integrated with proper

56

architectural techniques such as ECC to ensure reliability in NoCs. Therefore we trigger

refresh in tandem with ECC through which each flit stored in a buffer is read periodically

and checked for errors. Once ECC detects correctable errors, the errors are corrected and

the refresh operation writes the restored flit back into the buffer 5. If the errors exceed a

given ECC correction capability and thus uncorrectable, a nack signal is transmitted back

to the source along the reverse direction to indicate the need for a retransmission. Note

that we assume each source node has a network interface (NI) with an ECC encoder that

appends parity bits to each generated flit. Thus we avoid redundant ECC encoding for

incoming flits at each router. The parity bits are carried along with the flit and utilized at

each hop to detect and correct erroneous bits through the ECC decoder (Figure 3.4) inside

a router.

Refresh Periodicity and ECC Capability: Regarding such an ECC supported refresh

operation, there are two key factors impacting power, performance, and area in NoCs:

Refresh periodicity and ECC capability. First, refresh periodicity is important because

excessive refreshes contribute to significant power consumption. Thus, it is necessary

to set proper refresh periodicity to achieve a low power NoC while seamlessly checking

and restoring data in buffers. Second, ECC capability also affects performance and area

overheads in NoCs; that is, strong ECC takes a relatively longer time for multi-bit error

detection and correction, and requires extra storages holding parity bits compared to those

of simple ECC such as single-error correction and double-error detection (SECDED). The

area of ECC decoder grows exponentially with the ECC error-correcting capability [76].

Basically, SECDED is sufficient to mask any single bit error, thus fitting in the 8-bit parity

field6 for a 128-bit flit [89], however, a strong ECC requires more parity bits, possibly

increasing the total number of flits per packet due to the reduced space left for the payload

5For STT-MRAM, we assume it takes two cycles for a write operation. Such a write delay can be hidden
by either ERB or IRB scheme detailed in Section 3.4.3.2.

6An SECDED can protect an n bit memory using log2(n) + 1 parity bits.

57

holding the actual data of a packet, thus contributing to degrade NoC performance.

Hitting the Sweetspot: To determine the sweetspot in both refresh periodicity and

ECC capability that help achieve power- and performance-efficient NoCs, we consider

both the average residence time of a flit in a buffer and the corresponding error probability

for a flit across varying residence time. This is because the error probability due to MTJ

free layer reversal (bit-flip) is linearly dependent on the average residence time (tr) of

the bit-cells as shown in Equation 3.4 in Section 3.2.2. First, in PARSEC benchmarks,

most of the flits tend to stay short inside buffers; for example, 99.4 % flits stay within

40 ns (Figure 3.1). Second, for quantifying the error probability, we capture the average

number of bits flipped for a 128-bit flit across PARSEC benchmarks using the probabilities

derived from Equation 3.4 under varying residence time. And the result graph is shown

in Figure 3.12, where flits are more likely to exhibit low error probability under a short

residence time; for example, under a 40 ns residence time the probability of having more

than 2-bit failure is less than 1 %. This empirical result is practically in line with the error

probability (Equation 3.4) in that the shorter residence time leads to the less probability of

a bit failure.

Based on our observations above, when the ECC supported refresh is triggered within

the range of 40 ns, we can maintain the bit failure probability low and thus single-bit error

correction via SECDED is sufficient to cover most of the bit failures without hurting the

performance and power in NoCs, which is detailed in Section 3.5.

3.4.3.2 Dynamic Buffer Refresh Schemes

To mask errors in STT-MRAM, it is necessary to periodically sweep the memory by

reading each location and correcting any single-bit error. Detecting and correcting errors

soon after they occur reduces the possibility of the accumulation of errors in a flit. Thus,

we employ a refresh scheme through which refresh operations are adaptively triggered

58

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6

E
rr

o
r

P
ro

b
a

b
il

it
y

of Bits Flipped (out of 128-bit flit)

10 20 40 80 160residence time (ns):

Figure 3.12: Probability of the Number of Bits Flipped (Note that the sum of error proba-
bilities under a specific residence time is 100 %)

for flits which almost reach the end of a given refresh period. Basically, these refresh

schemes require an n flit-deep refresh buffer per each physical channel (PC) to make up

for n-cycle write latency. During a refresh operation, the target flit is read out from the

input buffer into the refresh buffer, checked for correctness using ECC, and then written

back to its original FIFO buffer. If a read request comes before refresh finishes, the flit is

directly returned from the refresh buffer, thus the refresh buffer is also used as a read buffer

compensating for n-cycle write latency of STT-MRAM, and the refreshes are seamlessly

pipelined to allow for consecutive refreshes.

Global Counter (GC) Refresh Scheme: This scheme selectively triggers the refresh

based on the estimated age of an individual flit per VC. To monitor the age of each flit,

we add a refresh pointer, Refresh-ptr, shown in Figure 3.11, which is controlled by a VC

refresh logic shown in Figure 3.9(b). Initially, the refresh scheduler makes the refresh

pointer point to the flit queued in the head of a VC and moves it toward the tail of a VC

one flit at a time whenever the pointed flit gets refreshed as shown in Figure 3.11(d). To

decide the refresh timepoint, we adopt a per-router GC, which serves as a reference point

for the refresh logic to determine if it needs to trigger refreshes. In this scheme, refresh

59

0 20 40 60 80

00 01 10 11

1
st

 period 2
nd

 period 3
rd

 period 4
th

period

GC value :

Cycles :

 Tref : Refresh Time (cycle)

 T : Refresh Check Interval (cycle)

2-bit GC (n=2)

Figure 3.13: An Example of a 2-bit Global Counter (GC) Refresh Logic (Assuming refresh
time is 80 cycles (40 ns in 2 GHz))

time is divided into N periods, and each period is T cycles long. The per-router GC is

used for the countdown to T cycles, and GC value indicates a specific period. At the end

of every T cycles, the GC value is increased by 1, and loops over after the given refresh

time. Figure 3.13 shows an example of 2-bit GC refresh scheme, where the GC value is

updated at the end of every T cycles (T = 20), and when a flit arrives at a buffer, the value

of the current GC (00, 01, 10, 11) is copied to the flit’s Arrival Timestamp (AT). At the end

of T cycles, the AT value of each flit is compared with GC value to see if the flit needs to be

refreshed. When GC value is 01, for example, all flits having AT equal to 10 get refreshed

one by one per cycle. This is equivalent to refreshing flits that stay at the buffer for around

60 to 80 cycles. Note that AT value is assigned only when a flit arrives at a buffer, and

unchanged until the flit gets dispatched. Also, as the interval of a period gets decreased

(by assigning more bits to the GC), less refresh operations are performed since a refresh

is triggered based on a more fine-grained clock counter, thus saving more dynamic power.

A larger bit counter allows more time for a flit to stay in the buffer before applying any

refresh. Our experimental results show that the GC suffices to detect the expiration time

of the given refresh period without significantly affecting performance, which is described

in Section 3.5.2.

Refresh Coverage: As a means of keeping the integrity of data, prior study [73] also

suggests to periodically sweep the memory for error correction, but they refresh only data

60

turned out to be corrupted while letting a majority of un-refreshed data keep on aging

in place. This is because their target is a large scale memory (e.g. off-chip memory)

or on-chip caches that can tolerate cache misses due to invalid data. However, such a

selective refresh does not completely prevent the accumulation of errors because of the

increasing probability of multi-bit error occurrence as detailed in Section 3.4.3.1 based

on Figure 3.12. Thus, to maintain low error probability in NoCs, we propose to trigger

refresh even for currently valid flits in a buffer, resetting the lifetime of flits, thus avoiding

performance and power overheads originated from uncorrectable burst multi-bit errors that

trigger multiple retransmissions for data recovery. Note that flits mostly stay short inside

buffers, leaving buffers prior to refresh operations, thus refresh overheads are relatively

low compared to those of caches having longer data residence time. The detailed power

and performance impacts of refreshes are described in Section 3.5.

3.5 Evaluation

3.5.1 System Configuration

Table 3.1: CMP System Configuration

System Parameters Details
Clock frequency 5 GHz / 2 GHz (Core / NoC)
of processors 64, In-order, Alpha ISA

L1 I and D caches Direct-mapped 32KB (L1I)
4-way 32KB (L1D), 3 cycles

L2 cache 8-way 16MB, 8 cycles
64 banks SNUCA, 256 KB/bank

Cache block size 64B
Coherence protocol MESI

Memory latency 150 cycles
Flit size 16B

Packet size 1 Flit (Control), 5 Flits (Data)

61

10 ms 10

Read Energy (pJ /flit) 5.25 3.8 2.7

Write Energy (pJ /flit) 5.25 40.0 13.7

Leakage Power (mW) 0.028 0.005 0.003

STT-MRAM
SRAMParameters

Table 3.2: SRAM and STT-MRAM Parameters with Different Retention Times (The Hy-
brid Buffer scheme utilizes 10 ms.)

A cycle-accurate NoC simulator is used to conduct the detailed evaluation of the pro-

posed schemes. It implements the pipelined router architecture with VCs, a VC allocator

(VA), a switch arbiter (SA) and a crossbar. The network is equipped with 2-stage specula-

tive routers with lookahead routing. The router has a set of v VCs per input port. Each VC

contains a k-flit buffer with 16B flit size. In our evaluation, we assume that v is 4, while k

may vary with different buffer configurations. A dimension order routing, XY, is used with

wormhole switching flow control in an (8x8) 2D-mesh. A variety of synthetic workloads

are used to measure the effectiveness of the STT-MRAM buffer schemes: uniform random

(UR), bit complement (BC) and nearest neighbor (NN). To evaluate the proposed schemes

under realistic environments, we also run PARSEC parallel benchmarks via Netrace [92]

incorporated into our NoC simulator. Table 3.1 specifies the detailed CMP configuration.

To estimate the power, area, and timing of SRAM/STT-MRAM routers operating with

1 V supply voltage in 2 GHz clock frequency, we modified an open source NoC router RTL

model [93] and synthesized in Synopsys Design Compiler with a TSMC 45 nm technology

library. SRAM/STT-MRAM parameter values in Table 3.2 are obtained through the STT-

MRAM analyses described in Section 3.2.2 and based on relevant literatures [28, 71]. Note

that the unit of the leakage power is mW per 1-flit buffer. Throughout this paper, the sizes

of the SRAM and STT-MRAM buffers, defined by the number of flits per VC, are denoted

by SRAM# and STT#, respectively. As stated in Section 3.2, STT-MRAM basically

provides 4 times more buffer capacity compared with SRAM under the same area budget

62

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid STT Ideal-STT

(a) UR

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2 0.25

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid STT Ideal-STT

(b) BC

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid STT Ideal-STT

(c) NN

Figure 3.14: Performance Comparison with Different Synthetic Workloads

63

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid STT Ideal-STT

(a) CMesh

0

50

100

150

200

250

300

350

400

450

500

0.1 0.2 0.3 0.4 0.5 0.6

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid STT Ideal-STT

(b) 2D-Torus

0

50

100

150

200

250

300

350

400

450

500

0.1 0.15 0.2 0.25

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid STT Ideal-STT

(c) Flattened Butterfly

Figure 3.15: Performance Comparison with Different Topologies

64

(SRAM4 is equal to STT16). For the STT-MRAM buffer schemes, however, due to the

extra area overheads incurred by additional circuitry for the MBA shown in Figure 3.7

and the ECC modules, 2.95% of buffer spaces get sacrificed under 2-cycle write latency.

Thus, STT-MRAM can provide approximately 3.5 times more buffer capacities than the

conventional SRAM buffer (SRAM4 is equal to STT14). The detailed area analysis is

given in Section 3.6.3.

3.5.2 Performance and Power Analysis

Figure 3.14 shows performance results of four different buffer configurations: the

SRAM buffer, the Hybrid buffer, the proposed STT-MRAM buffer, and an ideal STT-

MRAM buffer having no write delays with significantly large buffer spaces under UR,

BC, and NN traffic patterns. Note that the Ideal-STT is presented to show the theoretical

upper bound of network throughput in NoCs, and for the SRAM and Hybrid buffers, we

do not consider soft errors inherent in SRAM, thus performance and power graphs plotted

here represent theoretically optimistic values for the SRAM and Hybrid designs. All re-

sults except the Ideal-STT are measured under the same area budget, SRAM4 per VC, for

input buffers. The Hybrid buffer can accommodate 7 flits per VC, consisting of SRAM3

and STT4, which is an optimal hybrid design suggested in [71], while the STT-MRAM

buffer accommodates 14 flits per VC. In all cases, on average, the STT-MRAM buffer

shows better throughput by 19.3% for UR, 23.2% for BC, and 19.8% for NN compared

with the SRAM buffer, and 5.0% compared with the Hybrid buffer across different traf-

fic patterns. These results indicate that the potential performance degradation caused by

the multicycle write latencies of STT-MRAM can be offset by the increased buffer size

and the proposed multibank buffer scheme, thus resulting in significant performance im-

provement. Note that the throughput of the Ideal-STT is almost comparable with the STT-

MRAM across different traffics. This is mainly because of Head-of-Line (HoL) blocking

65

0.6

0.8

1

1.2

1.4

1.6

1.8

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
o

rm
a

li
ze

d
 P

o
w

e
r

C
o

n
su

m
p

ti
o

n

Injection Rate (flits/node/cycle)

SRAM Hybrid Low-ECC Opt-ECC

(1.89) (2.01) (1.80)

STT-MRAM

(a) Dynamic Buffer Power Consumption

0.6

0.7

0.8

0.9

1

1.1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
o

rm
a

li
ze

d
 P

o
w

e
r

C
o

n
su

m
p

ti
o

n

Injection Rate (flits/node/cycle)

SRAM Hybrid Low-ECC Opt-ECC
(1.15) (1.23)

STT-MRAM

(b) Total Router Power Consumption

Figure 3.16: Normalized Power Consumption - SRAM/Hybrid/STT-MRAM with Differ-
ent Refresh Rates (Low-ECC: Low Refresh Rate (80ns) / Opt-ECC: Optimal Refresh Rate
(40ns), See Section 3.4.3.1 for details.)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.8

0.84

0.88

0.92

0.96

1

1.04

1.08

1.12

1.16

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

blackscholesbodytrack canneal dedup vips x264

P
o

w
e

r E
fficie

n
cy

N
o

rm
a

li
ze

d
 S

p
e

e
d

u
p

Normalized Speedup Power Efficiency (1/watt)

Figure 3.17: PARSEC Benchmark Results

caused by packet contention (Section 3.5.3 details this HoL effect on network throughput).

We also evaluate the STT-MRAM buffer under various topologies: Concentrated Mesh

(CMesh), 2D-Torus, and Flattened Butterfly. Figure 3.15 shows that the STT-MRAM

buffer helps increase throughput in CMesh, 2D-Torus, and Flattened Butterfly by 25.2%,

19.4%, and 9.5% compared with the SRAM buffer, and 5.2%, 8.9%, and 4.9% compared

with the Hybrid buffer, respectively.

66

Power is one of the critical issues in designing NoC. We also measure the power con-

sumption of the proposed multibank STT-MRAM buffer scheme against the SRAM and

Hybrid buffers.

Figure 3.16(a) compares the dynamic power consumption of the SRAM, Hybrid, and

STT-MRAM buffers with different packet injection rates under UR traffic. All results are

normalized to that of the SRAM buffer. The first and second bars indicate the SRAM and

Hybrid buffers and, in particular, the STT-MRAM buffer is evaluated based on different

refresh rates (low / optimal refresh rate with ECC) to quantitatively measure their effec-

tiveness in reducing overall power overheads, and find out the most power-efficient com-

bination. Note that the refresh power overheads affect the dynamic power consumption

in NoCs, and are increasing proportionally to the number of packet retransmissions and

ECC refresh operations performed. Thus, to achieve a power-efficient NoC, it is necessary

to employ a buffer refresh scheme that triggers less refreshes and packet retransmissions.

In Figure 3.16(a), the baseline SRAM consumes the least normalized dynamic power be-

cause the Hybrid and STT-MRAM buffers require higher write energy compared to that of

the SRAM (see Table 3.2). The Hybrid buffer consumes 1.7 times and 1.4 times more dy-

namic power, on average, compared with the SRAM and STT-MRAM buffers each. This

is mostly due to the frequent migrations from SRAM to STT-MRAM inside the Hybrid

buffer, and a higher write energy associated with a high retention STT-MRAM, 10 ms, in

the Hybrid buffer, compared to that of the multibank STT-MRAM buffer. For the STT-

MRAM buffer, Opt-ECC based refresh scheme consumes less dynamic power by 12.9%

compared to Low-ECC. This is because Opt-ECC incurs less packet losses, thus consum-

ing much less power in checking and correcting bits in STT-MRAM than its counterpart.

And in a low network load, most of flits stay in the buffer only a short period of time, trig-

gering less error correction logics in ECC, thus incurring less refresh power overheads. As

injection rate increases, however, flits stay longer in buffers due to network congestion, in-

67

creasing the possibility of flit losses as described in Section 3.4.3.1, thus consuming more

energy for error correction via ECC.

Figure 3.16(b) compares the total power consumption of routers with different buffer

schemes. The total router power includes dynamic and leakage power of all routers across

the network. On average, there is 17% improvement in total router power going from

baseline SRAM to STT-MRAM buffer design. With our proposed buffer refresh schemes,

although there is an increase in the dynamic power, we consistently observe efficiency in

total router power consumption of the proposed STT-MRAM buffer. This is attributed to

the fact that the fraction of dynamic power to the total power is not significant compared

to the very high leakage power [77, 70]. In this context, due to the power hungry nature of

SRAM, the SRAM and Hybrid buffers consume significantly more power than the STT-

MRAM buffer. The Hybrid scheme consumes 9.8% and 32.5% more total router power,

on average, especially at high injection rates (> 0.3), compared to the SRAM and STT-

MRAM schemes. This is because of the migration power overheads, high STT-MRAM

write energy, and high SRAM leakage power in the Hybrid buffer.

Figure 3.17 shows speedups and router power efficiency (the inverse of the total power

consumption) relative to the SRAM baseline with PARSEC benchmarks. We assume

SRAM4 per VC as an area budget, the same as a cache block size. The average network

load in PARSEC benchmarks is low, but because they exhibit bursty communication and

have congestion periods (the time period when the average ratio of buffer occupancy in in-

jection ports is above a threshold, which is set to 75% in our study), our scheme contributes

to improve NoC performance. In Figure 3.17, the relative performance improvement of the

proposed scheme over the SRAM baseline is not comparable to those shown in Figure 3.14

(vips gets 11.0% improvement while blackscholes gets 9.3% and dedup gets 6.7%), and

the STT-MRAM and Hybrid buffers show similar performance. However, when we ana-

lyze the performance during the congestion periods, the STT-MRAM buffer outperforms

68

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

SRAM STT SRAM STT SRAM STT SRAM STT

PKT_4 PKT_8 PKT_12 PKT_16

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Packet Length (Flits/Packet)

(a) Different Packet Lengths

0.95

1.00

1.05

1.10

1.15

1.20

1.25

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

S
R

A
M

H
y

b
ri

d

S
T

T

SRAM3 SRAM4 SRAM5 SRAM6 SRAM7

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Area Budget (SRAM per VC)

(b) Different Area Budgets

0.95

1.00

1.05

1.10

1.15

1.20

1.25

SRAM STT SRAM STT SRAM STT

VC_4 VC_6 VC_8

N
o

rm
a

li
ze

d
 T

h
ro

u
g

h
p

u
t

Number of VCs (per PC)

(c) Different Number of VCs

Figure 3.18: Sensitivity Analysis

69

the SRAM and Hybrid buffers by 15.0% and 9.1%, on average, respectively. Also, among

the three different schemes, the STT-MRAM router is the most power-efficient, consuming

18.7% and 44.9% less power compared with the SRAM and Hybrid routers, respectively.

Blackscholes consumes the least total power in the STT-MRAM router by 20.7% and

46.4% compared with the SRAM and Hybrid routers.

3.5.3 Sensitivity Analysis

We perform sensitivity analysis by varying packet lengths, area budgets, and number of

VCs as shown in Figure 3.18 to examine their effects on NoC throughput. Figure 3.18(a)

shows the normalized throughput improvement with different packet lengths: 4, 8, 12, and

16 flits per packet. All results are normalized to that of baseline SRAM buffer with 4 buffer

slots per VC. It clearly shows that the STT-MRAM buffer works better as packet length

increases. The longest packet consisting of 16 flits (PKT_16), shows the biggest perfor-

mance improvement up to 30% in the STT-MRAM buffer over baseline SRAM. This is

because when the buffer capacity is not big enough to accommodate a whole packet, the

packets in transit tend to spread across multiple nodes, thus impeding subsequent packets

from proceeding to their destination, which results in significant performance degrada-

tion. NoC throughput is also mutually affected by two important factors: buffer depth and

number of VCs per PC. Figure 3.18(b) shows the impact of buffer depth on throughput

improvement with five different area budgets: SRAM3, SRAM4, SRAM5, SRAM6,

and SRAM7. The more we increase default area budget, the deeper buffer depth we can

provide, thus improving network throughput. Across the given budgets, the STT-MRAM

buffer shows the highest throughput improvement. Under the smallest budget (SRAM3),

the STT-MRAM buffer enhances throughput by 22.7% and 10.7% over the SRAM and Hy-

brid buffers, respectively. However, deepening the buffer depth does not always yield tan-

gible throughput improvement as shown in the largest budget (SRAM7). This is mainly

70

0

0.5

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8 9

N
o

rm
a

li
ze

d

S
T

T
-M

R
A

M
 D

e
n

si
ty

STT-MRAM Write Latency

SRAM STT-MRAM

Figure 3.19: Normalized STT-MRAM Density under the Same Per-Router Area Budget

because HoL blocking occurs when many packets contend for router resources (limited

number of VCs), but the increased buffer depth does not alleviate this problem. As shown

in Figure 3.18(c), increasing the number of VCs per PC is an effective way of improv-

ing network throughput further because it allows more packets to share the same PC, thus

reducing HoL blocking.

3.6 Discussion

In this section, we evaluate our STT-MRAM buffer scheme under different write laten-

cies of STT-MRAM. We also compare the scheme with other on-chip network techniques,

such as Bufferless Routing (BLESS) [94], and Whole Packet Forwarding (WPF) [75].

3.6.1 Impact of Write Delays of STT-MRAM

For our scheme, STT-MRAM write latency is an important factor affecting the overall

NoC area and performance. Till now, in our experiments, we assume STT-MRAM has

2-cycle write delay with a density of 3.5 times SRAM, but as we increase the write latency

further, the extra logics, such as MUXes and latches, hiding the multicycle writes need to

be added. Due to such additional spaces taken up by the extra logics in the STT-MRAM

buffer, STT-MRAM is given relatively less area in the given buffer space. Specifically,

71

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

BLESS SRAM WPF STT

Figure 3.20: Comparisons with BLESS and WPF (UR)

when n (write delay) equals 2, initial single router area, its buffer area (per input port),

and extra logic area (per buffer) are 106,709 µm2, 14,762 µm2 (A), and 689 µm2 (B),

respectively, where the effective buffer area is 14,073 µm2 (A-B).

As we increase n, while keeping per router area budget intact, extra logic area increases

by approximately 7.5% per additional write latency, thus leading to decreased effective

buffer space per input port (Figure 3.19). Across the different write latencies of STT-

MRAM (3, 4, and 5), we observe negligible performance degradation (less than 1%) under

UR traffic. This is because STT-MRAM still provides enough buffer space to sustain

the network bandwidth. However, the performance becomes equal to or less than that of

SRAM baseline when the STT-MRAM buffer has similar capacities with the SRAM buffer

due to the reduced density. In our configuration, this occurs when the STT-MRAM write

latency is 9 or more cycles.

3.6.2 Comparison with Other NoC Techniques

There have been a few studies to improve performance with limited buffer resources

in NoC design [94, 75]. We compare the power and performance benefits of our scheme

with them. BLESS [94] reduces buffer power and area overheads by eliminating router

buffers, and handles network contention by deflecting contending flits to any free output

72

0

50

100

150

200

250

300

350

400

450

500

0.2 0.25 0.3 0.35 0.4

La
te

n
cy

 (
C

yc
le

s)

Injection Rate (flits/node/cycle)

SRAM Hybrid End (ECC-4)

End (ECC-16) End (ECC-32) Per-Hop (ECC-1)

Figure 3.21: Comparisons between Different ECC Schemes (End-to-End vs. Per-Hop)

port. In our evaluation, the performance overheads of BLESS outweigh its gains due to

the increased allocator complexities that avoid livelocks, and the extra packet overheads,

where flits in a packet contains routing information to be independently routed to the

destination. BLESS saves significant router area by eliminating buffer spaces, but the

frequent deflections of BLESS at high loads consume significant dynamic power, and

leads to early network saturation as shown in Figure 3.20. On the other hand, the STT-

MRAM router provides higher throughput by 54.1% than that of BLESS, and is more

power-efficient at flit injection rates greater than 22% compared to BLESS. WPF [75]

proposes a bandwidth-efficient, fully adaptive routing scheme in VC-limited NoCs where

short packets dominate. WPF makes packets traverse all minimal paths, thus enhancing

routing flexibility, and provides deadlock avoidance techniques which allow non-empty

VCs to be re-allocated, achieving high VC utilization. Under the same area budget, as

shown in Figure 3.20, under UR traffic, the STT-MRAM router shows better performance

by 8.5% than that of WPF due to the high density buffer properties of STT-MRAM.

73

3.6.3 Impact of End-to-End and Per-Hop Error Protection

Selecting the location at which error protection schemes should be implemented is

another critical issue because it can affect overall NoC throughput and average packet la-

tency due to transient errors in STT-MRAM. Till now, throughout this paper, we focus on

per-hop error protection (as detailed in Section 3.4.3), where each node checks flits of an

incoming packet and requests retransmission once flits are turned out to be uncorrectable.

Alternatively, end-to-end data protection is also a viable alternative, where error protection

is performed at the destination node and requests retransmission once a packet is in uncor-

rectable error. However, for end-to-end, as a packet travels long distances, the probability

of the packet being received in error (beyond given ECC correction capability) increases

accordingly, thus possibly resulting in degraded NoC throughput and average packet la-

tency. Figure 3.21 empirically compares NoC performance under different ECC schemes

(end-to-end and per-hop) with various ECC capabilities (ECC-1 to ECC-32), where ECC-

n refers to ECC correction capability. Even under the highest ECC correction capability

(ECC-32), end-to-end scheme shows less throughput compared to that of per-hop with

simplest ECC (ECC-1). This is mainly because of the increased number of packets re-

transmitted in end-to-end scheme as shown in Figure 3.22. For end-to-end, employing

strong ECC helps to reduce the number of retransmissions, however, strong ECC requires

more parity bits, increasing the total number of flits per packet due to decreased payload

space left, thus leading to degraded NoC performance. This clearly shows the benefits of

our scheme (detailed in Section 3.4.3) over the counterpart (end-to-end).

3.7 Related Work

Guo et al. [28] detailed STT-MRAM based architectural techniques to offer power-

efficient and scalable microprocessors. Goswami et al. [95] proposed STT-MRAM based

GPGPU architectures and hybrid shared memory for power-performance optimizations.

74

UR = 0.4, end_cycle = 50000

Number of RetransmissioNormalized

No-ECC 264998

ECC_2 235421

End-to-End ECC-4 192102 1

ECC_8 94754 0.493248

ECC-16 56152 0.292303

ECC-32 6722 0.034992

Per-Hop ECC-1 3446 // equivalent 0.017938

End-to-End ECC-4 1

ECC_8 0.493248

ECC-16 0.292303

ECC-32 0.034992

Per-Hop ECC-1 0.017938

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ECC-4 ECC_8 ECC-16 ECC-32 ECC-1

End-to-End Per-Hop

N
o

rm
a

li
ze

d
 #

 o
f

P
a

ck
e

ts
 R

e
tr

a
n

sm
it

te
d

Figure 3.22: Normalized Number of Packets Retransmitted under Different ECC Schemes

In [77, 26, 27], the data retention time of STT-MRAM has been carefully adjusted to

achieve better write performance and reduced write energy for caches in CMPs. However,

the cache based schemes cannot be directly applicable to NoCs since they are designed

for memories having longer data residence time and larger capacity compared to FIFO

buffers.

PCM is another emerging memory that has high density, but its low endurance leads

to wide adoption in off-chip memories rather than on-chip caches [96]. As an emerging

on-chip memory, embedded DRAM (eDRAM) [97] is also gaining popularity due to its

low power and high density advantages. However, eDRAM has higher leakage and refresh

energy overheads compared with STT-MRAM. Chang et al. [97] tackled the refresh power

overheads in eDRAM based on dynamic dead-line prediction for energy-efficient LLCs,

but their refresh scheme cannot be directly applicable to NoC designs since refresh opera-

tions are bypassed for data that are unlikely to be reused, and the predictor works under a

cache level with longer data residence times than FIFO buffers. In addition, eDRAM has

scalability issues in sub-45 nm process technology [77] making it unsuitable for our NoC

buffer design.As emerging memory technologies, PCM and eDRAM each has high den-

sity and low power features, but PCM has low endurance, thus leading to wide adoption

75

in off-chip memories [96]. Also eDRAM has higher leakage and refresh power overheads

compared to STT-MRAM [97]. Chang et al. [97] tackled such refresh power overheads

using dynamic dead-line prediction, but the refresh scheme is not appropriate for NoC

buffer designs since refresh operations bypass data that are unlikely to be reused, and the

predictor works under a cache level. Kodi et al. [31] explored the use of repeaters along

the inter-router links as potential buffer storages, and Michelogiannakis et al. [34] pre-

sented Elastic Buffers, an efficient flow-control scheme using storages already present in

pipelined channels.

There are also prior studies exploring power-efficient architectural supports for NoCs.

Power-gating is a circuit-level technique mitigating the static power consumption of NoCs

by cutting off power temporarily. However, due to frequent state transitions and unavoid-

able wakeup time delays, as described in [98], power-gating rather consumes more power

at high load, and has higher average packet latency at both low and high load compared

to a non-power-gated NoC, and such overheads increase as network scale grows. Buffer-

less NoC eliminates buffers, thus the peak network throughput is reduced, and as stated

in [99], it has higher packet latency overall, resulting in degraded performance. Also,

although network power is often significantly reduced at low-to-medium load, bufferless

NoC consumes more power as the network becomes congested compared to a buffered

NoC mostly due to increased link power from frequent deflections. However, in this work

we provide high bandwidth NoC with low power consumption even at high network load

using the proposed STT-MRAM router. Similarly, Smullen et al. [26] and Sun et al. [27]

reduced write latency and dynamic energy of STT-MRAM by decreasing the retention

time for caches in CMPs. Mishra et al. [100] integrated STT-MRAM caches in a 3D CMP

and hid long write latency by delaying cache accesses to busy STT-MRAM banks.

76

3.8 Conclusions and Future Work

In this work, we propose a novel pipelined input buffer design with STT-MRAM for

NoC routers. To overcome the weakness of STT-MRAM, the long latency and high power

consumption in write operations, we design a multibank STT-MRAM buffer which is a vir-

tual channel with multiple banks. Through this, we avoid performance degradation while

consuming less area and power. Also, we address the issue of random data corruption in

STT-MRAM by proposing cost-efficient buffer refresh schemes combined with Error Cor-

recting Codes (ECC). Our simulation results show significant performance improvement

with less total router power consumption.

The multibank STT-MRAM buffer scheme can be used in multiple domains such as

instruction queue, reorder buffer, and prefetch buffer. Since instructions are generally used

up quickly, large instruction queues allow for better instruction level parallelism [101]. In

this context, we will explore using our scheme as a worthy prospective in terms of power

consumption and queue length. There are several studies dealing with the efficiency of

reorder buffers [102, 103], and exploring the lifetimes of variables in programs [104],

which show that a large portion of the variables whose values are held in the reorder buffers

are short lived. This leads to a mixture of variables with irregular lifetimes. We plan to

examine a hybrid SRAM/STT-MRAM buffer scheme which accounts for the variation in

retention times required. We will explore utilizing STT-MRAM buffers as an attractive

alternative to prefetch buffers [105] for saving power and providing larger buffer space

since prefetched data do not need to be cached for a long time. We also plan on tackling

the challenges of having data retention times tuned to the timeliness of prefetching so as

to make our design feasible.

77

4. NOC DATA APPROXIMATION FRAMEWORK

4.1 Introduction

Approximate Computing [30, 31, 32, 33] has emerged as an attractive alternate com-

pute paradigm by trading off computation accuracy for benefits in both performance and

energy efficiency. Approximate techniques rely on the ability of applications and systems

to tolerate imprecision/loss of quality in the computation results. Many emerging appli-

cations in machine learning, image/video processing and pattern recognition have already

employed approximation to achieve better performance [34, 35, 36, 37, 38]. Networks-on-

Chip (NoCs) have emerged as the most competent method to connect an ever increasing

number of varied on-chip components including conventional cores, accelerators, caches

and memory controllers. Communication-centric applications such as image/video pro-

cessing and emerging memory intensive applications in the big data era place a significant

amount of stress on the NoC for high memory throughput, triggering many designs that try

to solve the memory bandwidth issue [8, 9, 10, 11]. Hence designing a high-performance

NoC, which can efficiently provide high throughput, has become critical to overall sys-

tem performance. Therefore, the need to explore hardware approximation techniques that

can leverage the modern approximate computing paradigm for high throughput NoCs is

imminent.

Approximation with error control is important for guaranteed output quality [34]. Pre-

vious research has either adopted training during compilation [35, 46] or error control at

runtime [34, 32] to reduce the output noise. In NoCs, since the approximation lies on

the critical path of data response, it is critical to facilitate low overhead control in the

inaccuracy incurred.

In this work we propose APPROX-NoC, a data approximation framework for NoCs to

78

alleviate the impact of heavy data communication stress by leveraging the error tolerance

of applications. APPROX-NoC proposes to reduce the transmission of approximately

similar data in the NoC by delivering approximated versions of precise data to improve

the data locality for higher compression rate. The proposed framework operates by first

utilizing an approximation engine, with a lightweight error control logic, to approximate

the given data block to the nearest compressible reference data pattern. Then the encoder

module of an underlying NoC compression technique [49, 50] is used to compress the

data block. We propose a data-type aware value approximatiion technique (VAXX), with

a light weight error margin compute logic, which can be used in the manner of plug and

play module for any underlying NoC data compression mechanisms. VAXX approximates

the value of a given data block to the closest compressible data pattern based on the data

type,with fast quantitative error margin calculation. The error threshold to control the

extent of data approximation allowed can be determined by the compiler or annotated by

the programmer and can be dynamically adjusted at run time.

Tightly-coupling the approximation technique with the underlying compression is more

economical in terms of area and power efficiency. To this order, we present two low

overhead microarchitecture implementations of value approximation for both dynamic

dictionary-based compression (DI-COMP), namely DI-VAXX, and static frequent pat-

tern compression (FP-COMP), namely FP-VAXX. The proposed framework operates by

compressing the data blocks being injected into the NoC using pattern matching, and de-

compressing them at the destinations. But unlike traditional NoC data compression tech-

niques [49, 50], the pattern matching is not required to be exact and is controlled by an

error threshold, i.e., a data value can be compressed as long as it differs from a reference

pattern (frequent pattern/dictionary) within a specific error threshold.

The major contributions of the work are as follows:

79

• We exploit approximate data similarity in communication, which translates to high

data compressibility to reduce traffic load in NoCs thereby improving performance.

• We design an approximation engine with a data-type aware value approximate tech-

nique (VAXX) and lightweight error control logic to cater to a wide range of appli-

cations.

• Low overhead microarchitectural implementations to materialize the value approxi-

mation technique for static and dynamic compression mechanisms are presented.

• Our evaluation results show that APPROX-NoC provides promising opportunities

in big data application domain. With an data intensive graph processing benchmark,

we achieve latency reduction of 36.7% compared to state-of-the-art compression

mechanisms.

The rest of the chapter is organized as follows. Section 4.2 details the related work. In

section 4.3 we motivate our work by presenting the motivation and challenges of approx-

imation in NoCs. In section 4.4 we present the architectural overview of APPROX-NoC

and the VAXX technique. Section 4.5 explains the microarchitectural implementation and

functional principles of the VAXX techniques for dictionary-based and frequent pattern

based compression mechanisms. Section 4.6 presents our experimental setup and evalua-

tions. We conclude our work in Section 4.7.

4.2 Related Work

In this section we discuss the related work in hardware approximation techniques and

NoC data compression.

4.2.1 Approximation

Significant research has been done regarding approximated computation and data stor-

age in hardware for applications that allow inaccurate outputs. Sampson et al. [30, 47, 106]

80

proposed code annotations and compiler framework for the programmers to define the

data/computations in the application that can be approximated. They also propose hard-

ware mechanisms like voltage scaling, reducing DRAM refresh rate and SRAM supply

voltage, width reduction in floating point computations for energy savings. Esmaeilzadeh

et al. [33] propose dual voltage operation where precise computations use high voltage

mode and approximate operations use the low voltage mode. Previous research has also

proposed energy efficient accelerators based on neural networks and analog circuits [35,

44, 107, 46]. Liu et al. [48] propose to reduce the refresh rate of DRAM memories which

store data, that can be inaccurate, using application level input. Miguel et al. [32] propose,

Doppelganger, a cache mechanism which eliminates the storage of cache blocks with data

that is similar (need not be exact match). They keep the tags for all the cache blocks, but if

two cache blocks are similar then only one is stored and both the tags point to this block.

Our mechanism proposes to eliminate the transmission of similar cache blocks by encod-

ing data to a similar data pattern, that is being tracked, at the source node (memory/cache)

and hence can work in synergy with approximate storage mechanisms like Doppelganger

cache.

4.2.2 NoC data compression

Previous research has explored data compression in NoCs. Das et al. [50] explored

compression in caches and the NI of the routers while proposing techniques to amortize

the decompression latency with communication latency. They observe that across wide

range of workloads data compression leads to significant network power savings and per-

formance benefits. Zhou et al. [108] proposed a data compression mechanism in packet-

based NoC architectures by tracking frequently repeated values in the on-chip data traffic.

Zhan et al. [109] introduced a base-delta compression technique in NoCs to exploit the

small intra-variance in data communication. Jin et al. [49] proposed a data compression

81

mechanism that learns frequent data patterns using a table-based mechanism and adap-

tively turns the compression on/off based on the efficacy of compression on the network

performance. APPROX-NoC proposes to compress the data traffic by facilitating approx-

imate matching with an online error control mechanism.

4.3 Motivation and challenges

In this section we first detail our motivation leading to the use of data approximation

in NoCs and then present the challenges of implementing the proposed techniques.

4.3.1 Motivation

4.3.1.1 Data movement is becoming the critical component in multicore systems

The rapid explosion of computational units in comparison with memory bandwidth,

and increasing data-movement-to-compute ratio of emerging data-intensive big data work-

loads has resulted in heavy NoC communication loads. In such scenarios, state-of-the-art

NoC designs can rapidly become the communication bottleneck and struggle to deliver the

traffic in an energy-efficient manner. Multiple potential solutions like near data process-

ing [8], moving processing to memory plane to reduce the amount of data movement, are

being proposed. But even these mechanisms still require significant data movement be-

tween processsing and memory planes or within the memory plane, between the different

memory slices. Therefore mechanisms that can reduce the communication traffic load in

state-of-the-art NoCs become critical to cater to emerging data-intensive applications.

4.3.1.2 Frequently repeated patterns appear in applications

Previous research [49, 50, 108] has proposed using data compression techniques in

NoCs to facilitate low latencies even at saturation level of injection loads. It can be triv-

ially deduced that if enough data repetition is present in applications, then data compres-

sion mechanisms will be an appropriate antidote to the communication bottleneck issue

82

explained above.

4.3.1.3 Data accuracy is not required

Additionally, applications that allow for approximate outputs do not require exact data

to be transmitted across the network for accurate computations. Previous research [30,

33] has proposed an EnerJ framework which can be used by programmers to annotate

sections of the data in applications that can be stored approximately. Doppelganger [32]

proposes an approximate cache architecture that leverages the similarity between different

cache blocks to eliminate redundant data storage. These mechanisms prove that in addition

to repetition of specific data patterns, sufficient amount of value similarities, with small

variance, between data patterns exists in many applications. But the techniques mentioned

above still incur the cost of bringing the data accurately to the cache before determining

whether storage is required or not. Therefore, the data movement in the NoC can be

further reduced by eliminating transmission of approximately similar cache blocks across

the network by using network data approximation techniques.

4.3.1.4 Defining approximate data similarity is necessary

Data similarity is defined according to a predefined error threshold. For example, when

0% error is allowed then the two patterns must be an exact match to be considered similar,

however with an error of e% allowed two patterns are considered similar if the difference

between them is less than e%. The value difference is defined as the variance in the value

between the two patterns. For example, the 8 bit patterns 10101011 and 10100000 have a

value difference of 11.

83

4.3.2 Challenges

4.3.2.1 Value approximation and compression are not cheap

Value approximation and data compression mechanisms are on the critical path of the

data packet injection. The underlying compression techniques have considerable area and

latency overheads. Dynamic compression requires storage for pattern tracking and data

lookup while static compression incurs significant encoding and decoding logic. The ap-

proximation operation adds further latency overhead on to the compression mechanism’s

latency. Value range and error computation using complex multiplication is expensive and

hence can eat up the benefits from flit reduction achieved through approximation and com-

pression. Thus, low latency approximation and error compute logic design are required.

Furthermore, the approximate cost should keep small while supporting both integer and

floating-point data types. Although the approximation engine can be treated as a plugin

module, it is economical to have tightly-coupled approximation and compression imple-

mentation alternatives for lower overheads in terms of area, latency and energy.

4.3.2.2 Quality control is important

Approximable applications still require some Quality of Service (QoS) guarantees in

terms of the outputs produced or data being supplied. As mentioned in Rumba [34], it is

also critical to differentiate overall quality control versus controlling errors in individual

elements. Hence the proposed mechanism should be capable of controlling the data er-

ror rate individually in each cache block similar to Doppelganger [32] and also across the

whole program execution. We assume that the programmer can determine the QoS needed

and the compiler can translate this into error threshold allowed in different simultaneously

available hardware techniques, i.e. if multiple hardware approximation techniques are

concurrently available in the system the compiler/firmware can determine the error thresh-

old each technique can incur. It should be noted that, this way, our mechanism can work in

84

synergy with CPU/cache/storage approximation mechanisms to determine the error budget

allowed in each scheme, respectively.

4.4 Approx-NoC Framework Architectural Overview

In this section, we first describe the baseline multicore system architecture and then

detail the APPROX-NoC framework. The baseline system includes a collection of het-

erogeneous tiles connected via an NoC. Each tile may consist of core/accelerator units,

FPGA/ASICs, private caches, a slice of the last level cache and/or an on-chip memory con-

troller (MC) unit. The tiles are connected to routers of the NoC, in either a one-to-one or

many-to-one (concentrated) fashion depending on the NoC design. Each router connects to

the different components of a tile via Network Interface (NI) ports. The packetization/de-

packetization of injected communication and the flit fragmentation/assembly for flow con-

trol are performed in the NI. The NoC traffic consists of control packets for message pass-

ing/shared memory and data request/reply packets. The size of the packet varies depending

on whether it is an address/control packet or a data packet.

NI

Core

Decompr

Compr VAXX

Approx?

Ejection Q

Inction Q

Eject

Inject

To Processor
or MC

From Processor
or MC

Router

Tile

NI NI…

Router

Tile

NI NI…

…

……

Figure 4.1: APPROX-NoC Architectural Overview.

85

4.4.1 APPROX-NoC Framework

Figure 4.1 shows the high level architectural depiction of the APPROX-NoC frame-

work. Traditionally, when data to be transmitted enters the NI from the tile, it is packetized

and fragmented into flits in preparation for transmission. The packet is then injected into

the router via the NI port in a flit-by-flit fashion. When the packet reaches its destination,

the flits are assembled to restore the packet. The APPROX-NoC framework consists of a

value approximate module, namely VAXX, and an encoder/decoder pair for data compres-

sion in the NI. The encoder, of the underlying compression technique, tries to compress

each word in the cache block to be transmitted and sends a small encoded index with meta

data instead of the whole pattern, thereby reducing the size of the packet being injected into

the network. Before compression, the VAXX module facilitates value approximation for

the underlying compression scheme as detailed below, thereby improving the compression

rate.

Cache Block

Approximable?

Y

Approximate
Logic

Int or float?

Mantissa
extraction

N

float

int

Compressor

A
p

p
ro

xi
m

at
e

V
al

u
e

C
o

m
p

u
te

 L
o

gi
c

(A
V

C
L)

Figure 4.2: APPROX-NoC Operation Flowchart.

86

Figure 4.2 shows the flowchart describing the functioning of APPROX-NoC. For a

cache block waiting to be injected into the network, metadata containing the approximable

flag and data type are initially checked. If the cache block is not approximable, it bypasses

the approximation (VAXX) engine and starts compression. In case of an approximable

cache block, the data type is checked and the block is sent to the approximation logic if

it is an integer. For floating-point data variables, we approximate only the mantissa fields

and the approximation logic for integer values is reused to minimize the area and power

overheads. The error range compute unit is also included in the approximation logic and

the VAXX technique guarantees that the approximated data differs from the precise word

within the preset error threshold. The approximated data blocks are then sent to encoder

for compression operation.

e1 e2
e2 e1

A B C D E F

A B E D E B

A D

4B4B 4B4B 4B4B

Compr

Decompr

NR

Cache block

Cache block

e0 uncompressed

e1 B

e1 E

Uncompressed
Precise Encoding/Decoding

Approximate Encoding

VAXX

A B E D E B

e0+ e0+

src

Network

destination

Figure 4.3: Compression and Decompression of a 6-Word Cache Block.

Figure 4.3 shows an APPROX-NoC working example by depicting the encoding of a

cache block (24B with 6 x 4B words) at the source and its decoding at the destination.

The encoder in this example has two recorded reference patterns B and E, which can be

encoded, and the patterns C and F are determined to be approximately similar to E and B,

87

respectively, using the VAXX technique. When the cache block is ready to be injected into

the network, the encoder compresses the approximated block to an intermediate network

representation (NR) by replacing the candidate data patterns with encoded code. The cache

block, now in the NR form, is then packetized, fragmented into flits and injected into the

attached router. Note that the patterns C and F are compressed approximately only if

the compiler annotates the data to be safely approximable. When the packet reaches its

destination, the decoder at the destination detects the reference pattern encoded code to

decode the NR into the cache block which is an approximated version of the original

cache block, with words C and F replaced by similar words E and B, respectively.

4.4.2 Approximate Value Compute Logic Design

We propose the VAXX value approximate technique to compute an approximate value

for a given data block within a predetermined error threshold. In this work we focus on

integer and floating-point value approximation. We approximate the cache block, to be

transmitted, only when all the words in the block are approximable and this information

is assumed to be carried with the access request for this block. The core of VAXX is im-

plemented in the Approximate Value Compute Logic (AVCL), which consists of floating-

point mantissa extraction, error range compute and approximate logic.

For a given value, the VAXX technique needs to compute the variance by which the ap-

proximate value can deviate from the provided precise value. For example, for a data pat-

tern 1001(value = 9) and an error threshold of 20% the range of values 8(1000), 9(1001),

10(1010), 11(1011) can be potential matches, i.e., the data value patterns 8, 9, 10 or 11

can be approximately matched to the pattern 9(1001). We observe that in this example the

2 least significant bits are don’t cares for the approximate matching, i.e., we can match

the pattern “10xx” (approximate pattern) to any reference pattern to make the similarity

decision. This computation can be performed using multiplication/division operations but

88

32

31 0

integer

31 24 23 22 0

0 ……..….0 1 mantissa

Approximate
Logic

31 23 22 0

Float Exponent
Detection

int/float?

int/float?

int/float?

approx?

0 1

1 0

0 1

32

23

32 32

23
9 (31..23)9

32

32

8

32

31 30 23 22 0

s exponent mantissa

31 24 23 22 0

0 ……..….0 1 mantissa

Approximate
Logic

31 23 22 0

Float Exponent
Detection

int/float?

int/float?

int/float?

approx?

0 1

1 0

0 1

32

23 (22..0)

32 32

23 (22..0)9
9 (31..23)

32

32

8

Figure 4.4: Approximate Value Compute Logic.

such a design is too expensive and also unscalable.

To calculate the error range, we first compute the number of bits to represent the largest

error a value can tolerate given the predetermined threshold. We simplify the logic by

precomputing the number of shift bits, 100/e where e is the error threshold (%), which

are used to shift right the value to compute the error range (error_range = given_value ×

(e/100) => given_value/(100/e)). For example, for an error threshold of 25%, the number

of shift bits is 4. Hence, when the data pattern value is 128, the error_range can be easily

determined to be 32.

Floating-point value approximation is more complicated than integer due to the rep-

resentation. A floating-point value is represented as: (−1)sign × (1 + .mantissa) ×

2(exponent−bias). We propose to approximate only the mantissa field of floating-point values.

The mantissa part is extracted and transformed to scale to the size of an integer value, by

padding the most significant bits with zeros. To transform and scale the value of a floating-

89

point value, we extract the 23-bit mantissa part and concatenate it with a higher bit 1 to

form the significant, where the exponent part is scaled out. This way both the integer and

transformed floating-point variables can use the same approximate logic to maintain low

overhead. Figure 4.4 shows the AVCL design in detail, where the datapaths taken by the

integer and floating-point variables are represented separately for ease of understanding.

The float exponent detection logic determines whether to bypass the approximation unit,

for floating-point variables, whenever the exponent is 0 or all 1’s, which represent spe-

cial objects such as zero, denormalized numbers, infinity and NaN. For variables that are

annotated to be non-approximable, the AVCL logic is bypassed.

The proposed APPROX-NoC framework can use the VAXX technique on top of any

data compression mechanisms. But, trivially adding VAXX modules on top of NoC data

compression can be expensive and unscalable due to the computation as well as latency

overhead. Therefore it is critical to design microarchitectures that optimize the function-

ality of VAXX + compression as a whole in terms of area/latency/power. To this extent, in

the next section, we showcase two microarchitectural implementation casestudies of the

APPROX-NoC framework with two state-of-the-art NoC data compression mechanisms.

4.5 Implementation of APPROX-NoC

In this section, we first present the VAXX implementation for an underlying FP-COMP

mechanism, namely FP-VAXX. Next we describe the implementation for a DI-COMP

mechanism, namely DI-VAXX. Then we discuss about the latency overhead due to the

approximation mechanisms.

4.5.1 Frequent-Pattern Mechanisms

First, we briefly describe the Frequent-Pattern Compression (FP-COMP) technique

and then propose low cost microarchitectural implementation for FP-VAXX. Previous re-

search [110] has proposed an FP-COMP mechanism for data compression and [50] has

90

Index Pattern encoded Data	Size
000 Zero	run 3 bits
001 4-bit	sign-extended 4	bits
010 One	byte	sign-extended 8	bits
011 Halfword	sign-extended 16	bits
100 Halfword padded	with	a	zero	halfword 16 bits
101 Two halfwords,	each	a	byte	sign	extended 16	bits
111 UncompressedWord 32	bits

Figure 4.5: Frequent Pattern Compression.

extended it for NoCs with low overhead decompression which we adopt in this work. The

mechanism compresses a static set of frequent patterns as shown in Figure 4.5, whereas

DI-COMP mechanism detects recurring patterns during run time. The FP-COMP mech-

anism detects a match on one of the pattern types and sends adjunct data along with the

encoded index. Therefore FP-COMP incurs additional decompression complexity due to

variable length compression.

4.5.1.1 FP-VAXX Implementation

Figure 4.6 depicts the microarchitectural overview of the VAXX implementation for

FP-COMP. For each data word, we first compute the approximate pattern, using the AVCL.

Once the don’t care bits of the word are determined, the rest of the data word (shaded

portion in the figure) is matched with the corresponding portion of the frequent patterns

in the Pattern Matching Table (PMT) to find a match and compress on a frequent pattern

hit. We propose to utilize a content addressable memory based (CAM) based structure to

implement the PMT structure for fast matching. By doing this only the bits, which can

be approximated according to the value error threshold, are candidates for approximation

and the rest of the pattern must be a complete match to a frequent pattern for compression.

For data that is not annotated to be approximable, the AVCL is bypassed to enable exact

91

EI Frequent	Pattern	(4B)
Byte	3 Byte	2 Byte	1 Byte	0

000 0 0 0 0

001
0 0 0 0 0 0 0 0xxx
1 1 1 1 1 1 1 1xxx

010
0 0 0 X0

1 1 1 X1

011
0 0 X0 X
1 1 X1 X

100 X X 0 0

101
0 X0 0 X0

1 X1 1 X1

Given	pattern

X0:	0xxxxxxx				X1:	1xxxxxxx			CA:	Compress	Arbitration			EI:	Encoded	Index
X:	xxxxxxxx 0:	all	0’s			1:	all	1’s

Approximate	pattern
compute	logic

Error	
threshold

Approximate
pattern

x	x		x	..	x

Figure 4.6: FP-VAXX Microarchitecture.

matching for given data words.

4.5.2 Dictionary-Based Mechanisms

Dictionary-based Compression (DI-COMP) keeps track of recurring data patterns dy-

namically and maintain an encoded-index consistency between senders and receivers so

as to compress any occurrences of those data patterns in future communication between

these senders and receivers. The most critical feature of a dictionary based compression

scheme is the consistency in the encoded-index association between senders(encoders) and

receivers(decoders). There should never be a case where a sender transmits an encoded-

index which cannot be decoded (decompressed) by the receiver. We propose to utilize

a distributed mechanism, similar to the one proposed in [49], and additional meta-data

in the table entries, that work in tandem to ensure table consistency. Figures 4.7(a) and

(b) shows the microarchitectural depiction of the encoder and decoder pattern matching

92

Data	
pattern

Frequency	
counter

Vector	of	indices

0 1 2 4 5 6 7 8

0000 -- 11 00

0101 -- 00

1011 -- 00

1111 -- 01 11

(a) Encoder PMT at Node 3.

Data	
pattern

Frequency	
counter Index

Vector	of	valid	bits

0 1 2 3 4 5 7 8
0000 -- 00 0 0 1 1 0 0 0 1
1111 -- 01 0 0 0 1 1 0 0 0
1100 -- 10 0 0 0 0 0 0 1 0
1110 -- 11 1 0 0 0 0 0 0 0

(b) Decoder PMT at Node 6.

Figure 4.7: The Encoder PMT at Node 3 and the Decoder PMT at Node 6.

tables(PMTs) with size of 4 entries respectively, in a 3x3 NoC. In the encoder pattern

matching table(PMT) each entry contains a data pattern, frequency counter and a vector

of encoded indices, each corresponding to one destination router (decoder), i.e. in a N

node NoC each entry will have a vector of (N-1) encoded indices. For a data pattern in the

encoder PMT, the vector of indices indicates whether this data pattern can be compressed

for a particular destination in the network. In addition, the encoder PMT can have differ-

ent encoded index values for different destinations, for the same data pattern, since each

decoder performs detection in an independent fashion. The decoder PMT entries consist

of the data pattern, frequency counter, encoded index and a vector of (N-1) valid bits, one

for each of the N-1 encoders. The decoders detect recurrent data patterns and place them

in decoder PMTs while sending an update notification to the encoder, with the new en-

coded index. The vector of valid bits indicates all the encoders that also have this data

pattern in their PMTs and is used when replacements happen to invalidate the pattern at all

93

encoders. While the mechanism explained above ensures the encoder and decoder PMT

consistency, we discuss the PMT organization and auxiliary logic needed to provide low

overhead matching operation for VAX and BAX in the following sections.

The operation of the table management mechanism is as follows:

• The receivers(decoders) detect recurrent data patterns and place them in their de-

coder PMTs, if it’s not already present in the table.

• Then, the receiver sends an update notification to the sender of the corresponding

new data pattern along with the encoded index and also sets the valid bit for the

corresponding sender in the vector of valid bits in the decoder PMT. The encoder

then updates its PMT with the data pattern, if its not already present in the table,

and places the encoded index in the corresponding receiver’s slot in the vector of

encoded indices.

• From this point, the encoder can start compressing that particular data pattern. When-

ever the data pattern appears in the communication traffic the encoder checks that

there is a valid index set in the vector of indices(table entry) for the destination(for

this data packet). This way the pattern is only compressed to an index if the receiver

already has the pattern in its decoder PMT.

• The encoder might receive update notifications from multiple receivers for the same

data pattern. If the data pattern is already present in the table when an update notifi-

cation is received, the encoder just updates the receiver’s slot in the vector of indices

with the received index.

• Similarly, if a decoder detects a data pattern already present in the decoder PMT it

checks to make sure that valid bit of the corresponding sender is set. If not set, then

94

the decoder updates the valid bit and sends an update notification to the sender so

that it can start compressing this particular data pattern.

• Replacement: Replacements in encoder or decoder PMTs lead to consistency issues

since all the other nodes need to be notified of such changes.

• If a replacement needs to happen in an encoder PMT as a result of a new update, the

frequency counter is used to select the least frequently accessed table entry as the

candidate.

• If a decoder needs to replace a table entry, the valid bit vector of the candidate table

entry is read and invalidate notifications are sent to all the senders(encoders) with a

set valid bit. The encoders will then nullify the index for this decoder in the PMT

entry’s vector of indices, i.e, the encoder can still keep the data pattern if indices are

set for other receivers. The decoder then replaces the candidate entry with the new

pattern after it receives acknowledgements from all the valid encoders.

When a data pattern arrives at the decoder it checks its PMT and the TB in parallel.

In case of a PMT hit, no operation is needed on the TB. In case of a PMT miss, the TB

access result is checked. In case of TB miss, the new data pattern is placed in the TB and

in case of a TB hit, the frequency counter is increased. If the frequency counter of a TB

entry crosses a preset threshold, the data pattern is moved to the PMT. This mechanism

reduces the number of decoder PMT replacements needed by ensuring that only frequently

accessed patterns are placed in the PMT.

4.5.2.1 DI-VAXX Implementation

In order to optimize the microarchitectural cost of implementing VAXX matching with

the DI-COMP mechanism we modify the operational flow of the approximation as de-

scribed in Section 4.4. Instead of passing a given data block through the AVCL before

95

Approximate
pattern

Frequency	
counter

Vector	of	indices
0 8

idx op idx op
010X --
10XX --
000X --

If	only	
compression?

If	original
pattern	match?

Approximate	Pattern
Compute	Logic	(APCL)

Update notification

Error	thresholdApproximate
pattern

idx :	Index	
op	:	original	pattern

Given	pattern
Destination

Encoded	index

Is	valid	index
present?

Figure 4.8: DI-VAXX Microarchitecture.

reaching the compression logic we integrate tightly the AVCL with the DI-COMP scheme.

We propose to compute the approximate pattern for every reference pattern, at the time of

the pattern being recorded, in the DI-COMP scheme and save the approximate versions of

the reference patterns. This way any given pattern can be compared to a set of approxi-

mate patterns for fast matching and hence the AVCL is removed from the critical path of

the packetization.

We propose to use a Ternary Content Addressable Memory (TCAM) structure to op-

timize the time required to perform value-based approximation. TCAMs function similar

to a CAM, and in addition to 0 or 1, a third state of “x” (don’t care) is allowed, i.e., in a

TCAM we can actually store 10xx for a pattern (1001) and the table entry will result in a

match for the patterns 1000, 1001, 1010 and 1011. The decoders utilize a regular CAM

structure to recover the original pattern (1001) based on the index. The microarchitec-

ture of the TCAM-based encoder PMT microarchitecture is shown in Figure 4.8 and the

96

operation is explained below:

• The receivers (decoders) detect frequent data patterns and send an update to the

encoders to reflect in the PMT.

• When the encoder receives an update, instead of just storing the original pattern it

computes the approximate pattern with don’t care bits (e.g. 1001 –> 10xx) based on

the error threshold, using the Approximate Pattern Compute Logic (APCL). Then

the encoder records the approximate pattern in the TCAM and stores the index for

the corresponding receiver. If a matching TCAM entry was already present the

encoder just updates the index.

• When a data pattern arrives at the encoder, the TCAM is accessed and in case of a

hit the encoded index is used for compression. This way the latency overhead on the

critical path of compression is reduced.

For data packets that are not annotated for approximation this TCAM-based mecha-

nism cannot provide compression since a TCAM match does not guarantee that the re-

covered pattern at the receiver is the same pattern the sender intended to transmit (e.g.

8 can match in TCAM and be recovered as 9). To facilitate exact matching along with

approximate matching, we propose to add storage capability in the encoders for the orig-

inal patterns in addition to the TCAM entry (approximate pattern). Figure 4.8 shows the

encoder PMTs with the original pattern storage. Each TCAM entry can have multiple

original patterns because different receivers (decoders) could have detected different pat-

terns in the range of values. We propose to store multiple original patterns for each entry

and this way when a data pattern which cannot be approximated arrives at the encoder,

first the TCAM entry is matched and then an exact match on the corresponding original

pattern (based on receiver) is checked before compressing it. The storage overhead can be

97

optimized by storing only the bits of the original pattern that were made don’t cares in the

approximate pattern.

4.5.3 Latency Overhead

We assume a three cycle compression latency (two cycles matching + one cycle en-

coding) and two cycle decompression latency overhead for each cache block as mentioned

in [50]. To ensure that the DI-VAXX and FP-VAXX matching can happen within the

provisioned compression latency, based on the latency overhead evaluations we propose

parallel hardware matching units. In case of DI-VAXX and FP-VAXX we have 8 parallel

TCAM matching units since two matches per cycle in each unit is possible based on the

model from [111] and in addition FP-VAXX requires 8 APCL units.

In addition, we propose to use two latency hiding optimizations to reduce the compres-

sion overhead. First, we propose to perform the virtual channel arbitration of the packet,

using the header flit which is not compressed, in parallel with the compression. We amor-

tize the compression overhead with the NI queueing time, i.e, if there are previous packets

waiting in the queue, the compression overhead would not add to the critical path network

latency of the packet.

4.6 Evaluation

In this section we first explain our experimental setup and then present the evaluation

of the APPROX-NoC framework.

4.6.1 Methodology

4.6.1.1 Experimental Setup

We evaluate our APPROX-NoC framework using a cycle accurate, in house NoC sim-

ulator and a full system simulator, gem5 [52]. We implement the DI-VAXX and FP-VAXX

mechanisms in addition to the DI-COMP and FP-COMP mechanisms [49, 50] in both the

98

Table 4.1: APPROX-NoC Simulation Configuration.

32 Out-of-Order Cores at 2GHz
System parameters 32KB L1I$and 64KB L1D$, 2-way

2MB L2$ and 16 directories
Cache Coherence: MOESI_hammer

4×4 2D concentrated-mesh
2GHz three stage router

NoC parameters 4 Virtual channels(4-flit buffer)
64-bit flit size

wormhole switching, XY routing
Error threshold 5%, 10%(default), 20%
Approximable 25%, 50%

data packet ratio 75%(default)
Dictionary-based 8 entry PMT

mechanisms

simulators. For detailed network impact evaluations we use the NoC simulator where we

set the default error threshold as 10% and the percentage of approximable data packets

is set to 75%. We later perform sensitivity studies to show the impact of varying these

parameters. To evaluate the impact of our APPROX-NoC mechanism on the overall ap-

plication output error, we utilize the Pin [112] tool for instrumentation. We hand-annotate

the benchmarks mentioned below, in similar fashion to Doppelganger [32], to identify the

data regions which can be approximated. The VAXX mechanism uses the knowledge of

the data type (floating point or integer) of variables in each benchmark to determine the ap-

proximation operation. An important consideration while hand-annotating approximable

data regions of benchmarks is the data type of the variables being determined to be approx-

imable. We assume that the data type of the cache block being compressed is known to the

99

APPROX-NoC framework and we conservatively only compress cache blocks in which

all the words have the same data type. This is because knowledge of the data type of each

word would require significant metadata overhead. We use gem5 to evaluate the impact

of our approximation mechanism on the overall system. The APPROX-NoC configuration

and the NoC parameters used for our evaluation are listed in Table 4.1.

4.6.1.2 Workloads

We utilize benchmarks from the PARSEC [113], with simlarge, which have been previ-

ously utilized for evaluating approximation mechanisms [11]. In addition, we explore the

approximation opportunities in big data analytics by modifying SSCA2 [114], a data inten-

sive graph benchmark, to evaluate betweenness centrality (BC) in real-world graphs [115].

BC is a popular graph analysis technique to identify important entities in large-scale net-

works. We approximate the floating-point pair-wise dependencies that is used for central-

ity calculation. Such applications in big data analytics can leverage approximation in data

segments (e.g. weights in graphs) within a tolerable error margin since most algorithms

approximate the result by only evaluating on a subset of the data with sampling. We run

the benchmarks using gem5 [52] to evaluate the impact of our mechanisms on the system

performance and to collect the communication traces for the region of interest, which are

then fed into our NoC simulation environment and simulated for 100 million cycles for de-

tailed NoC evaluations. To evaluate the throughput impact we utilize synthetic workloads.

We collect the data injected at each node, from the gem5 benchmark traces and utilize the

data traces to create data packets in the synthetic workloads. This way, the synthetic work-

loads can be used to vary the traffic pattern/injection rate but the data being communicated

can be kept constant and correlated with data locality in the benchmarks.

100

4.6.2 Performance Analysis

In this section we present the NoC level performance evaluation of the APPROX-NoC

framework using benchmarks from different application suites and synthetic workloads.

We first, analyze the performance impact of APPROX-NoC on the average packet la-

tency, compression ratio, then use synthetic workloads to evaluate the impact on network

throughput.

101

0.95
0.96
0.97
0.98
0.99
1

0

10

20

30

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

B
a

se
li

n
e

D
I-

C
O

M
P

D
I-

V
A

X
X

F
P

-C
O

M
P

F
P

-V
A

X
X

blackscholes bodytrack canneal fluidanimate streamcluster swaptions x264 ssca2 AVG

D
a

ta
 A

p
p

ro
x

 Q
u

a
lityLa

te
n

cy
 (

cy
cl

e
s)

Queue_lat Net_lat Decode_lat Data_approx_quality
37 48

Figure 4.9: Average Packet Latency Breakdown and Overall Approximation Quality.

102

0

0.25

0.5

0.75

1

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

D
I-

C
O

M
P

D
I-

V
A

X
X

FP
-C

O
M

P
FP

-V
A

X
X

blackscholes bodytrack canneal fluidanimate streamcluster swaptions x264 ssca2 GMEAN

E
n

co
d

e
d

 W
o

rd
 F

ra
ct

io
n

Compression Approximation

(a) Fraction of encoded words

0
0.5

1
1.5

2
2.5

3

Co
m

p
re

ss
io

n
 R

at
io

DI-COMP DI-VAXX FP-COMP FP-VAXX

(b) Compression ratio

Figure 4.10: Fraction of Encoded words Breakdown to Exact Compression and Approxi-
mation (a) and Compression Ratio Improvement of VAXX (b).

4.6.2.1 Impact on Performance

Average Packet Latency. The average packet latency comparison, in a 4x4 2D con-

centrated mesh NoC, for the two implementation of APPROX-NoC is shown in Figure 4.9.

Across the benchmarks DI-VAXX reduces the average packet latency by 11% with re-

spect to DI-COMP and 40.7% compared to Baseline. FP-VAXX achieves up to 21.4%

and 46.5% latency reduction compared to FP-COMP and Baseline, respectively. This is

mainly due to the fact that approximation allows for more reduction in the number of

injected flits leading to performance benefits, especially when the network is congested

during the bursty phases. The large packet latency reduction in SSCA2 graph benchmark

is owing to the data intensive nature of the application. With a large data set, the limited

cache size cannot hold the whole working set of the benchmark, and hence its irregular

data accesses incur large volume of data movement. We expect that data intensive appli-

103

cations, in big data era, that have a high ratio of data movement to computation traffic will

benefit from APPROX-NoC.

Note that the queuing latency decreases significantly by introducing approximation

since the single-flit control packets face lesser blocking delays caused by the long data

packets. The decoding latency portion of the average packet latency is negligible be-

cause it is amortized over the large number of control packets, and also compensated by

the reduced queueing latency. In addition, it is interesting that the VAXX techniques

have larger impact on packet latency with the FP-VAXX mechanism compared to the DI-

VAXX. This is because the DI-VAXX mechanism needs to learn the data locality at the

beginning of each new communication phase by tracking and updating its locality tables,

thereby loosing approximation opportunities. In contrast, the FP-VAXX can use the static

patterns across the whole program execution. For some benchmarks (bodytrack, canneal,

fluidanimate), VAXX only achieves moderate improvement. This is because packets in

these benchmarks have low queueing and network latency and the flit reduction translating

to lower serialization latency is offset by the approximation/compression/decompression

overheads. In addition, the percentage of data packets injected is very minimal compared

to control packets, and hence the reduction in data flits does not show a significant impact

on overall packet latency. The low queuing latency also supports the argument of low data

to control packet ratio.

0

0.25

0.5

0.75

1

D
at

a
Fl

it
s

In
je

ct
e

d

(n
o

rm
al

iz
e

d
)

Baseline DI-COMP DI-BAXX DI-VAXX FP-COMP

0

0.25

0.5

0.75

1

D
at

a
Fl

it
s

In
je

ct
e

d

(n
o

rm
al

iz
e

d
)

Baseline DI-COMP DI-VAXX FP-COMP FP-VAXX

Figure 4.11: Reduction in Number of Injected Flits.

104

Approximation Effectiveness. The reduction in traffic load is shown by plotting the

number of data flits injected under each APPROX-NoC mechanism in Figure 4.11. The

DI-VAXX mechanism reduces the number of data flits injected by 3% and 38% com-

pared to the DI-COMP and Baseline, respectively. Similarly, FP-VAXX reduces data flit

volumes by 19% and 45% with respect to FP-COMP and Baseline, respectively. The mod-

erate traffic reduction in streamcluster and swaptions benchmarks when juxtaposed with

the large latency improvement seems to be counter intuitive. This can be explained by two

reasons. Firstly, the value approximation enables injection acceleration for critical data,

thereby translating to reduced queuing latency for the many short packets that are blocked.

Therefore even though the reduction in injected flits is small the effective resulting latency

reduction can be amplified. In addition, in dynamic compression, approximation may

change the learnings of the DI-COMP mechanism, which might affect the compression

chance of data that is required to be precise. Hence the overall flit reduction might be

smaller due to changes in the operation of the DI-COMP learning. But overall we observe

that the network traffic reduction translates to average packet latency improvement.

This is further supported by Figure 4.10 (a), which shows the breakdown of the fraction

of encoded words to exact compression and approximated compression. We observe that

the VAXX technique increases the encoded word fraction by up to 18% for DI-VAXX

compared to DI-COMP and up to 37% for FP-VAXX over FP-COMP. Figure 4.10 (b)

depicts the effectiveness of value approximation in improving the compression ratio. DI-

VAXX and FP-VAXX enhance the compression ratio by up to 21% and 41% compared

to the corresponding compression schemes, respectively. On average, the two VAXX

implementation increase compression ratio by 10% and 30%. Figures 4.10 and 4.11 show

that the reduction in number of injected flits does not scale proportionally to increase in

compression rate due to approximation. This is because of internal fragmentation in the

8B flits where a large portion of the tail flit can be empty, since the NR might not be a

105

multiple of 8B.

Data Value Quality. Figure 4.9 also depicts the data value quality for each benchmark,

i.e., even though the error threshold is checked for approximating each word, the incurred

error differs from word to word, so we compute the actual overall data error incurred

across the benchmark execution and show the overall data value quality achieved. Across

the benchmarks, though we allow for 10% error rate the effective data value quality is

higher than 97%, which is due to a portion of the words being compressed without error

and most of them matching with close proximity. Note that this is the quality of the

integer and floating-point data values, and we analyze how this variance translate to overall

application output error later.

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ac

ke
t

La
te

n
cy

 (
cy

cl
e

s)

Injection Rate (flits/cycle/node)

Baseline
DI-COMP
DI-VAXX
FP-COMP
FP-VAXX

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ac

ke
t

La
te

n
cy

 (
cy

cl
e

s)

Injection Rate (flits/cycle/node)

Baseline
DI-COMP
DI-VAXX
FP-COMP
FP-VAXX

(a) blackscholes (UR) (b) blackscholes (TR)

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ac

ke
t

La
te

n
cy

 (
cy

cl
e

s)

Injection Rate (flits/cycle/node)

Baseline
DI-COMP
DI-VAXX
FP-COMP
FP-VAXX

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
ac

ke
t

La
te

n
cy

 (
cy

cl
e

s)

Injection Rate (flits/cycle/node)

Baseline
DI-COMP
DI-VAXX
FP-COMP
FP-VAXX

(c) streamcluster (UR) (d) streamcluster (TR)

Figure 4.12: Throughput Analysis with Different Benchmark Data Traces Under Uniform
Random (UR) and Transpose (TR) Traffic Patterns.

106

4.6.2.2 Throughput Analysis

We use synthetic workloads to analyze the impact of APPROX-NoC on the network

throughput. Figure 4.12 plots the throughput of the APPROX-NoC mechanisms compared

against the Baseline, DI-COMP and FP-COMP compression schemes. We plot for data

traces from blackscholes and streamcluster benchmarks, and for the Uniform Random

(UR), Transpose (TR) traffic patterns. The simulations are run for 1 million cycles and

we assume a 25:75 data to control packet ratio to emphasize the significance of APPROX-

NoC when large amount of data is communicated. When compared to the compression

schemes, VAXX improves the throughput by up to 40% for UR and 69% for TR traffic

patterns. This gain is achieved by reducing the effective injection load, due to approximat-

ing data. The huge increase in throughput compared to the latency benefits observed from

benchmarks can be attributed to the larger ratio of data packets being injected. Another

interesting observation is that the DI-VAXX perform better than the FP-VAXX. This is

because of higher data value and temporal locality in the synthetic workloads at higher in-

jection rates with larger data packet ratio. From our observations, the dynamic dictionary-

based scheme tends to work well for applications with high data locality and intensive data

movement due to its learning capability, while the static frequent pattern scheme tends to

work well for applications with many frequent patterns and short communication phases

without learning.

4.6.3 Sensitivity Studies

In this section we show the sensitivity of APPROX-NoC mechanisms to the error

threshold and the percentage of approximable data packets.

107

0
5
10
15
20
25

DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based

blackscholes bodytrack canneal fluidanimate streamcluster swaptions x264 ssca2

Pa
ck
et
	L
at
en

cy
	(c
yc
le
s)

Compression 5%_error_threshold 10%_error_threshold 20%_error_threshold

Figure 4.13: Error Threshold Sensitivity Analysis.

0
5
10
15
20
25

DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based DI-based FP-based

blackscholes bodytrack canneal fluidanimate streamcluster swaptions x264 ssca2

Pa
ck
et
	L
at
en

cy
	(c
yc
le
s)

Compression 25%_approx_ratio 50%_approx_ratio 75%_approx_ratio

Figure 4.14: Approximable Packets Ratio Sensitivity Analysis.

4.6.3.1 Error Threshold

Figure 4.13 shows the average packet latency across the APPROX-NoC mechanisms

for all the benchmarks by varying the error threshold. As the error threshold is increased

from 5% to 10% (default) to 20% the impact of the APPROX-NoC mechanisms on packet

latency amplifies due to the increased chance of approximate matching. One interesting

observation is that FP-VAXX mechanism does not seem to have a significant impact on

the packet latency even though a higher error threshold is allowed. The reason for that is

our approximation technique can translate the approximate value into higher compression

ratio even with small error threshold. It is well matched with the static frequent pattern

compression. Despite the moderate latency improvement, we also observe that FP-VAXX

incurs more overall error compared to DI-VAXX. This is because in the FP-VAXX mech-

anism, we always try to match with the highest priority frequent pattern in the PMT even

108

though an exact match is available at lower priority. Hence some of the exact matches,

when error threshold was lower, might be converted into approximate matches as the error

threshold is increased. So these scenarios can lead to additional error incurred without

latency benefits.

4.6.3.2 Approximable Packets Ratio

Figure 4.14 shows the average packet latency for the APPROX-NoC mechanisms

across benchmarks as the percentage of packets approximable is varied. The packet la-

tency benefits improve as the percentage of approximable packets increases due to the

enhanced chances of approximate matching. This can be observed significantly in SSCA2,

swaptions, streamcluster with both DI-VAXX and FP-VAXX, while the other benchmarks

do not show compelling latency reduction as the percent of approximable packets is in-

creased. The is due to the low queuing latencies in the NoC and small data-to-control

packet ratio for these benchmarks leading to minimized impact of data flit reduction on

the overall network latency.

4.6.4 Full System Impact Analysis

In this section we use Pin [112] and gem5 [52] based evaluations to analyze the impact

of APPROX-NoC on the overall system. We present the overall application output errors

and the overall runtime impact due to approximation on different benchmarks.

4.6.4.1 Overall Application Output Error

We analyze the impact of our mechanism on the overall application output quality in

addition to the data quality using the Pin [112] instrumentation framework. We implement

our approximate functionalities on top of a coherent cache simulator tool. We model a

system with 16 cores and each core has a 64 KB two-way L1 private data cache of cache

line size of 64 Bytes. We emulate packet response whenever a miss happens, that requires

109

0

0.2

0.4

0.6

0.8

1

1.2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

blackscholes bodytrack canneal fluidanimatestreamcluster swaptions x264 ssca2

N
or
m
al
iz
ed
	P
er
fo
rm

an
ce

Ap
pl
ic
at
io
n	
Er
ro
rs

Benchmarks	with	data	error	budget	(%)

error_rate performance

Figure 4.15: Application Output Accuracy and Normalized Performance.

a data response from another node.

To evaluate the applications’ output quality, we extend application-specific accuracy

metrics based on prior approximate computing research [39, 11, 32, 106]. In addition,

we exploit value approximation opportunities in big data domain by studying a graph

processing benchmark SSCA2. SSCA2 calculates the betweenness centrality scores of the

nodes in a small world network to identify the key entities. So we evaluate the pair-

wise betweenness centrality difference between the approximate output and its precise

counterpart for error calculation.

Applications’ output accuracy for all benchmarks are shown in Figure 4.15. With the

predetermined 10% data noise margin, all the benchmarks are well controlled within the

error bound except for streamcluster. This because by approximating the coordinates, the

cost between points and centers might deviate from the precise one and lead to mismatch

of centers between the approximate version and precise version. As mentioned in previ-

ous work, through approximate space exploration or training during compilation we can

improve the accuracy while maintain the performance benefit [39, 106].

In Figures 4.16, we show the application output of bodytrack’s approximated and pre-

cise pair. The two figures are very similar and the difference is hardly captured through

110

(a) Precise Output.

(b) Approximate Output.

Figure 4.16: Approximate versus Precise Output of Bodytrack.

human vision. In this experiment, we allow for 10% error threshold in the data and observe

that the overall output vectors differ by 2.4%.

Figure 4.15 also shows the output accuracy with different error thresholds. Even with

20% error budget, the applications’ output errors are close to 5% except for streamcluster

and swaptions. With the bounded data error control, APPROX-NoC can achieve high

111

throughput and low latency by exploiting approximate communications while maintaining

acceptable output quality.

4.6.4.2 Overall Application Performance

Next we analyze the impact of APPROX-NoC on the overall system performance. We

configure a 64-core CMP connected by an 8x8 mesh network, and run the benchmarks

for 100 million instructions with medium input size. Figure 4.15 also shows the normal-

ized performance for different benchmarks with the proposed approximation mechanism

as the error threshold allowed is varied, normalized to 0% error threshold allowed. We

observe that the performance is improved by upto 10% and 14% in swaptions and SSCA2,

respectively, while we see moderate improvements on the rest of the benchmarks. This is

because swaptions and SSCA2 have higher degree of sharing in the approximable region

of interest in the application code compared to the other benchmarks. Higher degree of

sharing leads to a significant amount of similar approximable data being transferred across

the NoC during the execution of these benchmarks, thereby improving the efficacy of our

mechanism in impacting the overall performance.

0.6

0.7

0.8

0.9

1

D
yn

am
ic

 P
o

w
e

r
(n

o
rm

al
iz

e
d

)

Baseline DI-COMP DI-VAXX FP-COMP FP-VAXX

Figure 4.17: Dynamic Power Consumption Normalized to Baseline.

112

4.6.5 Power Consumption and Area Overhead

In this section, we evaluate the effect of APPROX-NoC on the network power con-

sumption and area overhead, while taking into consideration the overhead of approximate

matching and compression/decompression. The static power consumption does not vary

across benchmarks and the static power overhead of all the APPROX-NoC mechanisms

is minimal compared to the large baseline static power consumption. Hence to show the

variation in power consumption between APPROX-NoC mechanisms and benchmarks, we

depict dynamic power consumption in Figure 4.17. The best performing FP-VAXX mech-

anism reduces the dynamic power consumption on average by 5.4% compared to baseline

and 1.3% compared to FP-COMP. Note that this can be primarily attributed to the reduc-

tion in the number of injected flits which compensates for the power overhead of VAXX

techniques.

Based on the hardware requirements we evaluate the area overhead of the APPROX-

NoC encoders using CACTI [116] and verilog based area analysis with 45nm technology.

The DI-VAXX incurs 0.0037 mm2 for each NI (router). Similarly, FP-VAXX require an

overhead of 0.0029 mm2. The decoder design does not change between the schemes and

the overhead is as mentioned in [50].

4.7 Conclusions

In this work we propose APPROX-NoC, a hardware data approximation framework

for high throughput NoCs in the memory intensive big data era. We present a value based

approximate matching technique to use in a plug and play fashion with any underlying

data compression mechanism. We also detail low cost microarchitectural implementations

of the VAXX techbique with state-of-the-art dictionary-based and frequent pattern-based

NoC data compression mechanisms. Our evaluation results show that the best APPROX-

NoC mechanism reduces the average packet latency up to 21.4% over state-of-the-art NoC

113

data compression mechanism. In addition, our evaluation results with synthetic workloads

show that the best APPROX-NoC mechanism improves throughput up to 60% compared

to state-of-the-art compression mechanisms. We observe that the FP-based mechanisms

achieve higher approximation rate and hence performance benefits across the benchmarks,

but the DI-based mechanisms outperform the FP mechanisms when there is significant

data repetition. On average the application output quality is always above 99% across

the benchmarks even though a 10% error threshold is allowed since a large portion of the

words are within close proximity.

As future work, we intend to leverage this high approximation quality by using window

based instead of word based error threshold, i.e., use cumulative error threshold over a set

of data words defined by a window, so as to achieve more approximate matches. This can

be applicable especially in cases of video/image applications where the error rate over a

frame is more appropriate than a conservative per word error threshold.

114

5. CONCLUSIONS

In this research we propose NoC design solutions for power-savings in future CMPs

tailored to traditional applications and higher effective throughput gains in multicore sys-

tems tailored to bandwidth intensive applications. First, we propose Fly-over, a light-

weight distributed mechanism for power-gating routers attached to switched off cores to

reduce NoC power consumption in low load CMP environment. After constructing the

FLOV router enabling FLOV links by modifying the baseline router microarchitecture, we

presented two different handshake protocols for FLOV routers, called rFLOV and gFLOV,

and explained the dynamic routing algorithm in details. Performance evaluations using

synthetic and real workloads show that FLOV not only achieves better NoC power savings

due to power-gating more routers but avoids aggregated traffic rerouting in the network

unlike previously proposed NoC power-gating mechanisms. We show that FLOV reduces

the total and static energy consumption by 18% and 22% respectively, on average across

several benchmarks, compared to state-of-the-art NoC power-gating mechanism, while

keeping the performance degradation within 1%.

Secondly, we plan on utilizing a promising next generation memory technology, Spin-

Transfer Torque Magnetic RAM(STT-MRAM), to achieve enhanced NoC performance

to satisfy the high throughput demands in emerging bandwidth intensive applications,

while reducing the power consumption simultaneously. In this work, we propose a novel

pipelined input buffer design with STT-MRAM for NoC routers. To overcome the weak-

ness of STT-MRAM, the long latency and high power consumption in write operations,

we design a multibank STT-MRAM buffer which is a virtual channel with multiple banks.

Through this, we avoid performance degradation while consuming less area and power.

Also, we address the issue of random data corruption in STT-MRAM by proposing cost-

115

efficient buffer refresh schemes combined with Error Correcting Codes (ECC). Our sim-

ulation results show significant performance improvement with less total router power

consumption.

Thirdly, we present a hardware data approximation framework for NoCs, APPROX-

NoC, with an online data error control mechanism, which can leverage the approximate

computing paradigm in the emerging data intensive big data applications to attain higher

performance per watt. We present a value based approximate matching technique to use

in a plug and play fashion with any underlying data compression mechanism. We also

detail low cost microarchitectural implementations of the VAXX techbique with state-of-

the-art dictionary-based and frequent pattern-based NoC data compression mechanisms.

Our evaluation results show that the best APPROX-NoC mechanism reduces the average

packet latency up to 21.4% over state-of-the-art NoC data compression mechanism. In

addition, our evaluation results with synthetic workloads show that the best APPROX-

NoC mechanism improves throughput up to 60% compared to state-of-the-art compression

mechanisms. We observe that the FP-based mechanisms achieve higher approximation

rate and hence performance benefits across the benchmarks, but the DI-based mechanisms

outperform the FP mechanisms when there is significant data repetition. On average the

application output quality is always above 99% across the benchmarks even though a 10%

error threshold is allowed since a large portion of the words are within close proximity.

116

REFERENCES

[1] G. Moore, “Cramming More Components onto Integrated Circuits,” Electronics,

vol. 38, no. 8, p. 56, 1965.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “De-

sign of Ion-Implanted MOSFET’s with Very Small Physical Dimensions,” IEEE

Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[3] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-

man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,

V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The Raw Microproces-

sor: A Computational Fabric for Software Circuits and General-Purpose Programs,”

IEEE Micro, vol. 22, no. 2, pp. 25–35, 2002.

[4] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,

M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,

V. K. De, and R. Van Der Wijngaart, “A 48-Core IA-32 Processor in 45nm CMOS

Using On-Die Message-Passing and DVFS for Performance and Power Scaling,”

IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 173–183, 2011.

[5] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz Mesh Inter-

connect for a Teraflops Processor,” IEEE Micro, vol. 27, no. 5, pp. 51–61, 2007.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications,” in International Conference on Paral-

lel Architectures and Compilation Techniques (PACT), pp. 72–81, ACM, 2008.

[7] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH Com-

puter Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

117

[8] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled instructions: a low-overhead,

locality-aware processing-in-memory architecture.,” in Proceedings of the 42th An-

nual International Symposium on Computer Architecture (ISCA-43), pp. 336–348,

2015.

[9] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-memory

Accelerator for Parallel Graph Processing,” in Proceedings of the 42nd Annual In-

ternational Symposium on Computer Architecture (ISCA-43), pp. 105–117, 2015.

[10] S. Kumar, N. Vedula, A. Shriraman, and V. Srinivasan, “DASX: Hardware Acceler-

ator for Software Data Structures,” in Proceedings of the 29th ACM on International

Conference on Supercomputing (ICS 2015), pp. 361–372, 2015.

[11] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,” in Proceed-

ings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-47), pp. 127–139, 2014.

[12] X. Chen and L.-S. Peh, “Leakage Power Modeling and Optimization in Intercon-

nection Networks,” in International Symposium on Low Power Electronics and De-

sign (ISLPED), pp. 90–95, ACM, 2003.

[13] A. Banerjee, R. Mullins, and S. Moore, “A Power and Energy Exploration of

Network-on-Chip Architectures,” in International Symposium on Networks-on-

Chip (NoCS), pp. 163–172, IEEE Computer Society, 2007.

[14] L. Chen and T. M. Pinkston, “NoRD: Node-Router Decoupling for Effective Power-

Gating of On-Chip Routers,” in International Symposium on Microarchitecture (MI-

CRO), pp. 270–281, IEEE Computer Society, 2012.

[15] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and

V. Stojanovic, “DSENT – A Tool Connecting Emerging Photonics with Electronics

118

for Opto-Electronic Networks-on-Chip Modeling,” in International Symposium on

Networks on Chip (NoCS), pp. 201–210, IEEE, 2012.

[16] R. Parikh, R. Das, and V. Bertacco, “Power-Aware NoCs through Routing and

Topology Reconfiguration,” in Design Automation Conference (DAC), pp. 1–6,

IEEE, 2014.

[17] M. Annavaram, “A Case for Guarded Power Gating for Multi-Core Processors,”

in International Symposium on High Performance Computer Architecture (HPCA),

pp. 291–300, IEEE, 2011.

[18] J. Lee and N. S. Kim, “Optimizing Throughput of Power- and Thermal-Constrained

Multicore Processors Using DVFS and Per-Core Power-Gating,” in Design Automa-

tion Conference (DAC), pp. 47–50, IEEE, 2009.

[19] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis, “Power

Management of Datacenter Workloads Using Per-Core Power Gating,” Computer

Architecture Letters, vol. 8, no. 2, pp. 48–51, 2009.

[20] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura, and H. Amano,

“Ultra Fine-Grained Run-Time Power Gating of On-Chip Routers for CMPs,” in

International Symposium on Networks-on-Chip (NOCS), pp. 61–68, IEEE, 2010.

[21] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and Y. Solihin, “Energy-

Efficient Interconnect via Router Parking,” in International Symposium on High

Performance Computer Architecture (HPCA), pp. 508–519, IEEE, 2013.

[22] L. Chen, D. Zhu, M. Pedram, and T. M. Pinkston, “Power Punch: Towards Non-

Blocking Power-Gating of NoC Routers,” in International Symposium on High Per-

formance Computer Architecture (HPCA), pp. 1–12, IEEE, 2015.

119

[23] A. Vega, A. Buyuktosunoglu, and P. Bose, “SMT-Centric Power-Aware Thread

Placement in Chip Multiprocessors,” in Inernational Conference on Parallel Archi-

tectures and Compilation Techniques (PACT), pp. 167–176, IEEE, 2013.

[24] H. Wang, L.-S. Peh, and S. Malik, “Power-driven Design of Router Microarchitec-

tures in On-chip Networks,” in Proceedings of MICRO, 2003.

[25] J. Hu and R. Marculescu, “Application-specific Buffer Space Allocation for

Networks-on-Chip Router Design,” in Proceedings of ICCAD, 2004.

[26] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing

Non-Volatility for Fast and Energy-Efficient STT-RAM Caches,” in Proceedings of

HPCA, 2011.

[27] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu, “Multi Re-

tention Level STT-RAM Cache Designs with a Dynamic Refresh Scheme,” in Pro-

ceedings of MICRO, 2011.

[28] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding the Power Wall

with Low-Leakage, STT-MRAM Based Computing,” in Proceedings of ISCA, 2010.

[29] A. Driskill-Smith, D. Apalkov, V. Nikitin, X. Tang, S. Watts, D. Lottis, K. Moon,

A. Khvalkovskiy, R. Kawakami, X. Luo, A. Ong, E. Chen, and M. Krounbi, “Latest

Advances and Roadmap for In-Plane and Perpendicular STT-RAM,” in Proceedings

of IMW, 2011.

[30] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,

“EnerJ: Approximate Data Types for Safe and General Low-Power Computation,”

in Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI 2011), pp. 164–174, 2011.

120

[31] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan,

“Quality Programmable Vector Processors for Approximate Computing,” in Pro-

ceedings of the 46th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO-46), pp. 1–12, 2013.

[32] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelganger: A Cache

for Approximate Computing,” in Proceedings of the 48th International Symposium

on Microarchitecture (MICRO-48), pp. 50–61, 2015.

[33] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture Support for

Disciplined Approximate Programming,” SIGPLAN Not., vol. 47, no. 4, pp. 301–

312, 2012.

[34] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An Online Quality

Management System for Approximate Computing,” in Proceedings of the 42nd An-

nual International Symposium on Computer Architecture (ISCA-42), pp. 554–566,

2015.

[35] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration

for General-Purpose Approximate Programs,” in Proceedings of the 45th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-45), pp. 449–

460, 2012.

[36] A. Guzhva, S. Dolenko, and I. Persiantsev, “Multifold Acceleration of Neural Net-

work Computations Using GPU,” in Proceedings of the 19th International Confer-

ence on Artificial Neural Networks: Part I (ICANN 2009), pp. 373–380, 2009.

[37] M. Creel and M. Zubair, “High Performance Implementation of an Econometrics

and Financial Application on GPUs,” in Proceedings of International Conference

on High Performance Computing, Networking, Storage and Analysis (SCC 2012),

pp. 1147–1153, 2012.

121

[38] O. A. Aguilar and J. C. Huegel, “Inverse Kinematics Solution for Robotic Manip-

ulators Using a CUDA-Based Parallel Genetic Algorithm,” in Proceedings of the

10th Mexican International Conference on Advances in Artificial Intelligence - Vol-

ume Part I (MICAI 2011), pp. 490–503, 2011.

[39] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard, “Managing

Performance vs. Accuracy Trade-offs with Loop Perforation,” in Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Conference on Founda-

tions of Software Engineering (ESEC/FSE 2011), pp. 124–134, 2011.

[40] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE: Self-

tuning Approximation for Graphics Engines,” in Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-46), pp. 13–

24, 2013.

[41] M. Samadi, D. A. Jamshidi, J. Lee, and S. A. Mahlke, “Paraprox: Pattern-Based

Approximation for Data Parallel Applications,” in Proceedings of the 19th Interna-

tional Conference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS-XIX), pp. 35–50, 2014.

[42] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy Memoization for Floating-Point Mul-

timedia Applications,” IEEE Trans. Comput., vol. 54, no. 7, pp. 922–927, 2005.

[43] C. Álvarez, J. Corbal, and M. Valero, “Dynamic Tolerance Region Computing for

Multimedia,” IEEE Trans. Computers, vol. 61, pp. 650–665, 2012.

[44] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, and M. Os-

kin, “SNNAP: Approximate Computing on Programmable SoCs via Neural Accel-

eration,” in Proceeedings of the 21st IEEE International Symposium on High Per-

formance Computer Architecture (HPCA-21), pp. 603–614, 2015.

122

[45] Z. Du, A. Lingamneni, Y. Chen, K. V. Palem, O. Temam, and C. Wu, “Leveraging

the Error Resilience of Neural Networks for Designing Highly Energy Efficient

Accelerators,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 34,

pp. 1223–1235, 2015.

[46] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Esmaeilzadeh,

“Neural Acceleration for GPU Throughput Processors,” in Proceedings of the 48th

International Symposium on Microarchitecture (MICRO-48), pp. 482–493, 2015.

[47] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate Storage in Solid-

State Memories,” in Proceedings of the 46th Annual IEEE/ACM International Sym-

posium on Microarchitecture (MICRO-46), pp. 25–36, 2013.

[48] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving DRAM

Refresh-power Through Critical Data Partitioning,” in Proceedings of the 16th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-XVI), pp. 213–224, 2011.

[49] Y. Jin, K. H. Yum, and E. J. Kim, “Adaptive Data Compression for High-

performance Low-power On-chip Networks,” in Proceedings of the 41st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO-41), pp. 354–

363, 2008.

[50] R. Das, A. K. Mishra, C. Nicopoulos, D. Park, V. Narayanan, R. R. Iyer, M. S.

Yousif, and C. R. Das, “Performance and Power Optimization Through Data

Compression in Network-on-Chip Architectures,” in Proceedings of the 14th In-

ternational Conference on High-Performance Computer Architecture (HPCA-14),

pp. 215–225, 2008.

[51] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E. Shaw,

J.-H. Kim, and W. J. Dally, “A Detailed and Flexible Cycle-Accurate Network-on-

123

Chip Simulator,” in International Symposium on Performance Analysis of Systems

and Software (ISPASS), pp. 86–96, IEEE, 2013.

[52] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.

News, vol. 39, pp. 1–7, 2011.

[53] R. Kumar, A. Martínez, and A. González, “Dynamic Selective Devectorization for

Efficient Power Gating of SIMD Units in a HW/SW Co-Designed Environment,” in

International Symposium on Computer Architecture and High Performance Com-

puting (SBAC-PAD), pp. 81–88, IEEE, 2013.

[54] E. J. Kim, K. H. Yum, G. M. Link, N. Vijaykrishnan, M. Kandemir, M. J. Ir-

win, M. Yousif, and C. R. Das, “Energy Optimization Techniques in Cluster In-

terconnects,” in International Symposium on Low Power Electronics and Design

(ISLPED), pp. 459–464, ACM, 2003.

[55] V. Soteriou and L.-S. Peh, “Design-Space Exploration of Power-Aware On/Off

Interconnection Networks,” in International Conference on Computer Design

(ICCD), pp. 510–517, IEEE, 2004.

[56] G. Kim, J. Kim, and S. Yoo, “Flexibuffer: Reducing Leakage Power in On-Chip

Network Routers,” in Design Automation Conference (DAC), pp. 936–941, IEEE,

2011.

[57] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano, “Run-Time Power Gating

of On-Chip Routers Using Look-Ahead Routing,” in Asia and South Pacific De-

sign Automation Conference (ASP-DAC), pp. 55–60, IEEE Computer Society Press,

2008.

124

[58] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski, “Catnap: Energy

Proportional Multiple Network-on-Chip,” in ACM SIGARCH Computer Architec-

ture News, vol. 41, pp. 320–331, ACM, 2013.

[59] J. Zhan, Y. Xie, and G. Sun, “NoC-Sprinting: Interconnect for Fine-Grained Sprint-

ing in the Dark Silicon Era,” in Proceedings of the 51st Annual Design Automation

Conference (DAC), pp. 1–6, ACM, 2014.

[60] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express Virtual Channels: Towards

the Ideal Interconnection Fabric,” in ACM SIGARCH Computer Architecture News,

vol. 35, pp. 150–161, ACM, 2007.

[61] A. Kodi, A. Louri, and J. Wang, “Design of Energy-Efficient Channel Buffers with

Router Bypassing for Network-on-Chips (NoCs),” in International Symposium on

Quality Electronic Design (ISQED), pp. 826–832, IEEE, 2009.

[62] U. Y. Ogras and R. Marculescu, “Application-Specific Network-on-Chip Architec-

ture Customization via Long-Range Link Insertion,” in International Conference

on Computer-Aided Design (ICCAD), pp. 246–253, IEEE, 2005.

[63] U. Y. Ogras and R. Marculescu, “"It’s a Small World After All": NoC Performance

Optimization via Long-Range Link Insertion,” IEEE Transaction on Very Large

Scale Integration Systems, vol. 14, no. 7, pp. 693–706, 2006.

[64] S. J. Hollis, C. Jackson, P. Bogdan, and R. Marculescu, “Exploiting Emergence in

On-Chip Interconnects,” IEEE Transactions on Computers, vol. 63, no. 3, pp. 570–

582, 2014.

[65] L.-S. Peh and W. J. Dally, “A Delay Model and Speculative Architecture for

Pipelined Routers,” in International Symposium on High-Performance Computer

Architecture (HPCA), pp. 255–266, IEEE, 2001.

125

[66] J. Duato, “A New Theory of Deadlock-Free Adaptive Routing in Wormhole Net-

works,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 12,

pp. 1320–1331, 1993.

[67] W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[68] D. DiTomaso, A. Kodi, and A. Louri, “QORE: A Fault Tolerant Network-on-Chip

Architecture with Power-Efficient Quad-Function Channel Buffers,” in Proceedings

of HPCA, 2014.

[69] Z. Wang, D. A. Jimenez, C. Xu, G. Sun, and Y. Xie, “Adaptive Placement and

Migration Policy for an STT-RAM-Based Hybrid Cache,” in Proceedings of HPCA,

2014.

[70] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid Cache Ar-

chitecture with Disparate Memory Technologies,” in Proceedings of ISCA, 2009.

[71] H. Jang, B. S. An, N. Kulkarni, K. H. Yum, and E. J. Kim, “A Hybrid Buffer Design

with STT-MRAM for On-Chip Interconnects,” in Proceedings of NOCS, 2012.

[72] B. Del Bel, J. Kim, C. Kim, and S. Sapatnekar, “Improving STT-MRAM Density

Through Multibit Error Correction,” in Proceedings of DATE, 2014.

[73] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and J. Tschanz, “STTRAM

Scaling and Retention Failure,” Intel Technology Journal, vol. 17, 2013.

[74] Y. C. Chengen Yang, Yunus Emre and C. Chakrabarti, “Improving Reliability of

Non-Volatile Memory Technologies Through Circuit Level Techniques and Error

Control Coding,” EURASIP Journal on ASP, vol. 2012, 2012.

126

[75] S. Ma, N. E. Jerger, and Z. Wang, “Whole Packet Forwarding: Efficient Design

of Fully Adaptive Routing Algorithms for Networks-on-chip,” in Proceedings of

HPCA, 2012.

[76] D. Strukov, “The Area and Latency Tradeoffs of Binary Bit-Parallel BCH Decoders

for Prospective Nanoelectronic Memories,” in Proceedings of ACSSC, 2006.

[77] A. Jog, A. K. Mishra, C. Xu, Y. Xie, N. Vijaykrishnan, R. Iyer, and C. R. Das,

“Cache Revive: Architecting Volatile STT-RAM Caches for Enhanced Perfor-

mance in CMPs,” in Proceedings of DAC, 2012.

[78] N. D. Rizzo, M. DeHerrera, J. Janesky, B. Engel, J. Slaughter, and S. Tehrani,

“Thermally Activated Magnetization Reversal in Submicron Magnetic Tunnel Junc-

tions for Magnetoresistive Random Access Memory,” Applied Physics Letters,

vol. 80, p. 2335, 2002.

[79] Z. Diao, Z. Li, S. Wang, and Y. Ding, “Spin-Transfer Torque Switching in Magnetic

Tunnel Junctions and Spin-Transfer Torque Random Access Memory,” Journal of

Physics:Condensed Matter, vol. 19, p. 165209, 2007.

[80] A. Nigam, C. Smullen, V. Mohan, E. Chen, S. Gurumurthi, and M. Stan, “Deliv-

ering on the Promise of Universal Memory for Spin-Transfer Torque RAM (STT-

RAM),” in Proceedings of ISLPED, 2011.

[81] A. Raychowdhury, D. Somasekhar, and T. Karnik, “Design Space and Scalability

Exploration of 1T-1STT MTJ Memory Arrays in the Presence of Variability and

Disturbances,” in Proceedings of IEDM, 2009.

[82] D.Bedau, H.Liu, J.-J.Bouzaglou, A.D.Kent, J.Z.Sun, J.A.Katine, E.E.Fullerton, and

S.Mangin, “Ultrafast Spin-Transfer Switching in Spin Valve Nanopillars with Per-

pendicular Anisotropy,” Applied Physics Letters, vol. 96, p. 022514, 2010.

127

[83] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New Paradigm of Pre-

dictive MOSFET and Interconnect Modeling for Early Circuit Simulation,” in Pro-

ceedings of IEEE Custom Integrated Circuits Conference, 2000.

[84] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-Level Performance,

Energy, and Area Model for Emerging Nonvolatile Memory,” in IEEE Transactions

on CAD, 2012.

[85] ITRS, “International Technology Roadmap for Semiconductors: 2009 Executive

Summary.” http://www.itrs.net/Links/2009ITRS/Home2009.htm.

[86] K. Swaminathany, R. Mukundrajany, N. Soundararajan, and V. Narayanan, “To-

wards Resilient Micro-Architectures: Datapath Reliability Enhancement using

STT-MRAM,” in Proceedings of ISVLSI, 2011.

[87] T.Dunn and A.Kamenev, “Optimization of the Current Pulse for Spin-Torque

Switches,” Applied Physics Letters, vol. 98, p. 143109, 2011.

[88] A. Kumar, L.-S. Peh, and N. Jha, “Token Flow Control,” in Proceedings of MICRO,

2008.

[89] W.J.Dally and B.Towles, Principles and Practices of Interconnection Networks.

Morgan Kaufmann, 2003.

[90] D. DiTomaso, R. Morris, A. Kodi, A. Sarathy, and A. Louri, “Extending the Energy

Efficiency and Performance With Channel Buffers, Crossbars, and Topology Anal-

ysis for Network-on-Chips,” IEEE Transactions on VLSI, vol. 21, pp. 2141–2154,

2013.

[91] D. Harris, Skew-Tolerant Circuit Design. Morgan Kaufmann, 2000.

[92] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: Dependency-Driven Trace-Based

Network-on-Chip Simulation,” in Proceedings of NoCArc, 2010.

128

[93] D. U. Becker, “Efficient Microarchitecture for Network-on-Chip Routers,” in Ph.D.

Dissertation, Stanford University, 2012.

[94] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing in On-chip Networks,”

in Proceedings of ISCA, 2009.

[95] N. Goswami, B. Cao, and T. Li, “Power-performance Co-optimization of Through-

put Core Architecture using Resistive Memory,” in Proceedings of HPCA, 2013.

[96] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main

Memory System Using Phase-Change Memory Technology,” in Proceedings of

ISCA, 2009.

[97] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technology Comparison for

Large Last-Level Caches: Low-Leakage SRAM, Low Write-Energy STT-RAM,

and Refresh-Optimized eDRAM,” in Proceedings of HPCA, 2013.

[98] L. Chen and T. M. Pinkston, “NoRD: Node-Router Decoupling for Effective Power-

gating of On-Chip Routers,” in Proceedings of MICRO, 2012.

[99] C. Fallin, C. Craik, and O. Mutlu, “CHIPPER: A Low-complexity Bufferless De-

flection Router,” in Proceedings of HPCA, 2011.

[100] A. K. Mishra, X. Dong, G. Sun, Y. Xie, N. Vijaykrishnan, and C. R. Das, “Ar-

chitecting On-Chip Interconnects for Stacked 3D STT-RAM Caches in CMPs,” in

Proceedings of ISCA, 2011.

[101] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt, “A Scalable Instruction Queue

Design Using Dependence Chains,” in Proceedings of ISCA, 2002.

[102] G. Kucuk, D. Ponomarev, and K. Ghose, “Low- Complexity Reorder Buffer Archi-

tecture,” in Proceedings of ICS, 2002.

129

[103] G. Kucuk, D. Ponomarev, O. Ergin, and K. Ghose, “Reducing Reorder Buffer Com-

plexity Through Selective Operand Caching,” in Proceedings of ISLPED, 2003.

[104] L. A. Lozano C. and G. R. Gao, “Exploiting Short-Lived Variables in Superscalar

Processors,” in Proceedings of MICRO, 1995.

[105] T.-F. Chen and J.-L. Baer, “Effective Hardware-Based Data Prefetching for High-

Performance Processors,” IEEE Transactions on Computers, vol. 44, pp. 609–623,

1995.

[106] A. Sampson, A. Baixo, B. Ransford, T. Moreau, J. Yip, L. Ceze, and M. Oskin,

“Accept: A Programmer-Guided Compiler Framework for Practical Approximate

Computing,” University of Washington Technical Report UW-CSE-15-01, vol. 1,

2015.

[107] R. St. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh, A. Has-

sibi, L. Ceze, and D. Burger, “General-purpose Code Acceleration with Limited-

precision Analog Computation,” in Proceeding of the 41st Annual International

Symposium on Computer Architecuture (ISCA-41), pp. 505–516, 2014.

[108] P. Zhou, B. Zhao, Y. Du, Y. Xu, Y. Zhang, J. Yang, and L. Zhao, “Frequent Value

Compression in Packet-based NoC Architectures,” in Proceedings of the 2009 Asia

and South Pacific Design Automation Conference (ASP-DAC 2009), pp. 13–18,

2009.

[109] J. Zhan, M. Poremba, Y. Xu, and Y. Xie, “Leveraging Delta Compression for End-

to-End Memory Access in NoC Based Multicores,” in 2014 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 586–591, Jan 2014.

[110] A. R. Alameldeen and D. A. Wood, “Frequent Pattern Compression: A

Significance-Based Compression Scheme for L2 Caches,” Dept. Comp. Scie., Univ.

130

Wisconsin-Madison, Tech. Rep, vol. 1500, 2004.

[111] B. Agrawal and T. Sherwood, “Ternary CAM Power and Delay Model: Extensions

and Uses,” IEEE Trans. Very Large Scale Integr. Syst., pp. 554–564, 2008.

[112] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with

Dynamic Instrumentation,” in Proceedings of the 26th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI 2005).

[113] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-

sity, January 2011.

[114] D. A. Bader and K. Madduri, “Design and Implementation of the HPCS Graph

Analysis Benchmark on Symmetric Multiprocessors,” in Proceedings of the 12th

International Conference on High Performance Computing (HiPC 2005), pp. 465–

476, 2005.

[115] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network Dataset Col-

lection.” http://snap.stanford.edu/data, June 2014.

[116] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA Orga-

nizations and Wiring Alternatives for Large Caches with CACTI 6.0,” in Proceed-

ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-40), pp. 3–14, 2007.

131

