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ABSTRACT 

Regenerative endodontics is one of the most exciting new developments in 

endodontics. Pulp regeneration can be achieved basically by using a triad of a reliable 

cell source capable of differentiating, a suitable scaffold, and signaling molecules that 

direct the cells for proliferation and cellular differentiation. Injectable scaffolds are 

favorable for regeneration of pulp-dentin complex as the surgery is minimally invasive, 

easy to place in small and irregular pulp canals, have a homogenous distribution, helps 

cell adhere, proliferate and differentiate into new functional tissue and reduces the risk 

of infection. We aim to develop a biomimetic injectable biomaterial that would facilitate 

pulp regeneration and have the potential for clinical application. We hypothesized that 

demineralized dentin matrix, which mainly consist of collagen and non- collagenous 

proteins, will provide a favorable microenvironment for pulp-dentin regeneration. 

Characteristics of demineralized dentin matrix hydrogel along with the in vitro 

experiments have been studied, which makes the assumptions clear that it mimics the 

extracellular matrix of the dentino-pulpal tissue and helps in maintaining the cellular 

viability along with cell proliferation and differentiation. In conclusion, we can say that 

the demineralized dentin matrix provides a suitable environment for the dental pulp stem 

cells to grow and differentiate in different lineages. More studies should be conducted 

for further characterization of the demineralized dentin matrix for translational use.
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DDM Demineralized dentin matrix 
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MCalcium Molarity of calcium 
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NaOH Sodium hydroxide  
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NIH National Institute of Health 

OCT Optimal cutting temperature compound 

PBS Phosphate-buffered saline 
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SEM Scanning electron microscopy 
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TGF-β1 Transforming growth factor beta-1 

VCalcium Volume of calcium 
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1. INTRODUCTION 

 

 

Regenerative medicine can be defined as ‘A field of medicine concerned with 

developing and using strategies aimed at repair or replacement of damaged, diseased, or 

metabolically deficient organs, tissues, and cells via tissue engineering; cell 

transplantation; and artificial organs and bioartificial organs and tissues’ (National 

Library of Medicine, 2004). The definition for the regenerative medicine has been 

redefined accordingly by various authors focusing on the interdisciplinary approach of 

the field which helps in the repair and replacement or even regeneration of the cells, 

tissues and organs. The various disciplines currently included are stem cell biology, 

genetics, tissue engineering, developmental biology, cellular and molecular biology, 

science of tissue and organ transplantation, and material science. These disciplines help 

in repair, replacement and regeneration for restoring the impaired function may it be 

cells, tissues or organs (Daar and Greenwood 2007). 

Regeneration of tissues and organs is limited in humans unlike some animals, still 

bone and liver can be regenerated to some extent. Tissue engineering is one technique 

which helps regenerate the lost tissues or organs. NIH defines “tissue engineering 

evolved from the field of biomaterials development and refers to the practice of 

combining scaffolds, cells, and biologically active molecules into functional tissues. 

Basically, it is a triad of scaffolds, cells and bioactive molecules. The scaffold provides 

an appropriate environment for the cells to attach and to proliferate for the 
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regeneration of the tissues or organs. The bioactive molecules help the cells differentiate 

into specific lineages according to the specific tissues. An ideal scaffold should be 

biocompatible, biodegradable (Mikos, McIntire et al. 1998), ease of manufacturing and 

sufficient mechanical properties to sustain surgical procedures and mechanical loading 

along with providing space for cellular proliferation and differentiation (O'Brien 2011). 

 

 

Figure 1 Tissue engineering triad. 

 

1.1 Regenerative endodontics 

The dental pulp is a non-mineralized soft connective tissue situated in the central part 

of the tooth. It consists of various cells like odontoblast in a fibrous matrix along with 

vascular, lymphatic and nervous elements. The dental pulp is a highly- specialized tissue 

which maintains the vitality of the tooth. But it has a limited capacity to repair and 

regenerate pulpal tissues and dentin. Dental carries, trauma to the tooth, attrition, severe 

abrasion and micro-leakage in large filling, etc can cause microbial invasion and 

infection of the vital pulpal tissues. Treatment options like direct and indirect pulp  
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capping procedures take help of the innate reparative capacity of the pulp whereas root 

canal treatment is advised in severely decayed or infected tooth (where pulp necrosis 

occurs). The pulp capping procedures uses calcium hydroxide or similar agents that help 

in building a dentinal bridge that helps in the innate mechanism of dental repair (Nyborg 

1955, Stanley and Lundy 1972, Cox, Bergenholtz et al. 1982, Heys, Fitzgerald et al. 

1990, Oguntebi, Heaven et al. 1995). 

Root canal treatment is a procedure in which the necrotic tissue is removed and the 

cleaned and shaped canals are filled in with gutta percha or similar inert material. 

Although root canal treatment is the most common treatment used, it has complications 

like tooth fracture, re-infection, tooth discoloration and failure of treatment. 

Regenerative endodontics treatment seeks to reestablish the pulp-dentin complex and 

restore the neurovascular system in a tooth. Thus, the tooth regains its inherent immune 

and sensory functions, both of which are instrumental to the defense and viability of the 

tooth. 

Regenerative endodontics is one of the most exciting new developments in 

endodontics. Pulp regeneration can be achieved basically by using a triad of a reliable 

cell source capable of differentiating, a suitable scaffold, and signaling molecules that 

direct the cells for proliferation and cellular differentiation into pulpal tissues. 

 

1.2 Need for injectable scaffolds 

Injectable scaffolds are favorable for regenerative techniques because of their 

minimal invasive nature and hence less patient discomfort. When selecting a scaffold, it 
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is necessary to know the shape and size of the defect, in cases where the shape of the 

defect is irregular the scaffold might not be able to place properly. 

Injectability gives a benefit when the defect size is smaller and irregular. Dental pulp 

canal is a small space and can be irregular, or curved. And so, an injectable scaffold for 

example a hydrogel may be beneficial as it is less invasive and can be easily placed in 

small and irregular canals (Wintermantel, Mayer et al. 1996, Hou, De Bank et al. 2004). 

Sometimes, seeding of the cells might be challenging and might not be equally 

distributed, but an injectable material will help in a homogenous distribution of the cells 

and let it adhere, proliferate and differentiate into a new functional tissue. Injectable 

tissue also reduces the risk of infections (Hou, De Bank et al. 2004). 

 

 

1.3 Demineralized dentin matrix 

Extracellular matrix (ECM) of the native tissues provides a suitable environment for 

the tissue regeneration and remodeling. Collagen I is the basic component of the 

demineralized dentin matrix will act as natural polymeric scaffolding material which has 

the capability to support proliferation of various cell types like chondrocytes, fibroblast, 

bone marrow stem cells, osteoblast and many more (Mizuno and Glowacki 1996, 

Mizuno, Ushida et al. 1998, Makhluf, Mueller et al. 2000, Navarro, Mizuno et al. 2001). 

The protein analysis of the dentin matrix also identifies various protein components 

(Park, Cho et al. 2009, Chun, Lee et al. 2011, JÃƒgr, Eckhardt et al. 2012). Some of 

these proteins are known to regulate the reparative cycle of the dentin (Lee, Colombo et 

al. 2015). For example, TGF-β1 is known to induce dentinogenesis (Cassidy, Fahey et 
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al. 1997, Sloan, Perry et al.2000). Also, bone morphogenetic proteins help in 

upregulating the dentin synthesis and secretion (Rutherford and Gu 2000, Nakashima 

2005, Casagrande, Demarco et al. 2010). Other factors such as fibroblast growth factors 

(FGFs), vascular endothelial growth factor (VEGF), insulin like growth factor (ILGF) 

helps the mesenchymal stem cells to differentiate in osteogenic or odontogenic lineages, 

also initiating angiogenesis (Finkelman, Mohan et al. 1990, Cassidy, Fahey et al. 1997, 

Roberts Clark and Smith 2000, Sloan, Perry et al. 2000, Casagrande, Demarco et al. 

2010, Lee, Colombo et al. 2015). The phosphorylated proteins such as the SIBLING 

family (DSP, DPP, OPN, BSP, DMP-1) are proteins which help in the early reparative 

process and signals the cells for cellular proliferation, survival, differentiation and also, 

mineral deposition in the dentin (Smith, Scheven et al. 2012). There are proteins and 

factors that also control the cell signaling and regulate the inflammatory process which is 

very important for the repair and regeneration (Lee, Colombo et al. 2015). 

Unlike hard tissues, dental pulp is made up of diverse cell population and so the 

scaffold should be such selected that it reflects these specific matrix conditions and cell 

lineages along with the biological, functional and mechanical requirements. The 

bioactive molecules in the dentin tissue, if able to restore even small amounts of some of 

these molecules in the scaffold will help increase the bioactivity of the material and also, 

help better cellular differentiation. Previous studies have shown that extracellular matrix 

is a favorable environment for regeneration of tissues like cartilage (Wu, Ding et al. 

2015), bone (Sawkins, Bowen et al. 2013), skeletal muscle (Valentin, Turner et al. 

2010), cardiac tissues (Singelyn and Christman 2010), spinal cord (Tukmachev, 
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Forostyak et al. 2016) etc. Demineralized and /or decellularized dentin matrix has been 

used for the regeneration of bone as it retains certain number of bioactive molecules and 

shows osteo-conductive potential (Reis-Filho, Silva et al. 2012, Bakhshalian, 

Hooshmand et al. 2013, Li, Yang et al. 2013). It has also been favorable for cartilage 

regeneration (Yagihashi, Miyazawa et al. 2009).  

So, it is likely that demineralized dentin matrix will be a good scaffold for the 

regeneration of the pulpal tissues as dentin and pulp are closely related tissues and might 

induce differentiation of the stem cells into the various cells of the pulp. The ECM 

matrix will also provide a physical support for the cell proliferation and differentiation. 

It is also possible for the demineralized matrix to retain the various proteins which will 

help in the regenerative process. However, to date, no injectable demineralized dentin 

matrix has been developed. 

 

1.4 Aims and objectives 

In our study, we aim to develop and characterize the demineralized dentin matrix 

hydrogel and we also wish to see the cell survival, proliferation and the ability to 

differentiate and stay on the gel system in vitro. We suggest the use of dental pulp stem 

cells along with the gel and demineralized dentin matrix extract will be a good 

environment for the development of the dental pulp and have the potential for clinical 

application. 

Specific Aim 1- Development and Characterization of Demineralized dentin matrix 

hydrogel. 
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Specific Aim 2- In vitro characterization of demineralized dentin matrix treated 

solution and in vitro studies on the surface and inside the hydrogel. 

 

1.5 Problems anticipated 

Previous studies (the solubilization of bone and dentin collagen by pepsin effect of 

cross linkages and non-collagen components) have shown that the dentin matrix collagen 

is almost completely insoluble and only small amount can be extracted by neutral salts 

or dilute acidic solutions (Carmichael, Dodd et al. 1977, Van Strijp, Klont et al. 1992). 

The inter-molecular linkages of the dentin collagen make it insoluble and enhances the 

strength of the fibrils. Pepsin have been used in various studies to solubilize the collagen 

from skin and bone (Carmichael, Dodd et al. 1977). Pepsin is only 5.6% soluble with 

pepsin in slight acidic medium, increasing the temperature increases the solubility but 

increases the degradation of the collagen (Van Strijp, Klont et al. 1992). Hence no 

soluble form of the dentin collagen had been possible. We here aim to use the bioactive 

molecules present in the dentin matrix along with collagen I to form a hydrogel which 

will help for the mechanical strength in the narrow and irregular spacing of the root 

canal.
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2. MATERIALS AND METHODS 

 

 

2.1 Development of demineralized dentin matrix hydrogel 

To test the hypothesis, we need to develop and treat the demineralized dentin matrix 

hydrogel so that it is biocompatible and along with it facilitate cell proliferation and 

differentiation. Freshly extracted bovine anterior incisors were collected and stored in -

80°C for further use. The bovine incisors were de-frozen and the attached periodontal 

ligament and the dental pulp was cleaned using a round bur and root canal instruments 

with continues irrigation using DI water. After the teeth were completely cleaned and 

root canal was properly filed, the tooth enamel and the cementum was removed using a 

sharp diamond disc. The remained dentin was used for further experiments. For 

demineralization, the remainder dentin was cut in small pieces of around 2-3 mm in size, 

snap frozen with liquid nitrogen and ground with the help of a grinder. The ground 

particles were sieved and only size 32-500 µm was used. Demineralization was 

performed using 0.5N HCl at room temperature until completely demineralized. A series 

of wash using DI water was done to remove the residual amount of acid. The 

demineralized dentin matrix particles were freeze-dried and stored in -80°C for

further use. 

Preparation of DDM extract- The freeze-dried DDM particles were washed in PBS 

twice and then in α-MEM culture medium for 2 times. 10mg/ml of the dried DDM 

particles were incubated in the α-MEM medium for 72 hours at 37°C and 5% CO2 (Liu, 
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Xu et al. 2016). The DDM extract for further diluted to 1mg/ml and 0.1mg/ml for further 

experiments. 

Demineralized dentin matrix hydrogel- The extracted demineralized dentin matrix 

extract was used to prepare demineralized dentin matrix hydrogel. Collagen I pre-gel 

solution was used to prepare the hydrogel. The pre-gel solution is determined to an 

appropriated concentration along with the DDM extract, so that the final concentration 

of the pre-gel has either 0.1mg/ml, 1mg/ml and 10mg/ml of the DDM extract. The pre-

gel solution is diluted by 1/10th by 0.1M of NaOH (Sodium hydroxide) and 1/9th of 10X 

PBS at 4°C. Gelation was induced by increasing the temperature from 4°C to 37°C till a 

stable gel is formed (Freytes, Martin et al. 2008, Wolf, Daly et al. 2012, Sawkins, 

Bowen et al. 2013, Wu, Ding et al. 2015, Tukmachev, Forostyak et al. 2016). 

 

2.2 Calcium EDTA titration 

Titration by a standard solution of ethylenediaminetetraacetic acid (EDTA) is one of 

the classic methods for determining the calcium content of the solution. Here we take the 

residual solution of the demineralization acidic solution and calculate the calcium that 

has been leached out of the dentin matrix particles. A metallochromic indicator 

(Eriochrome Black T EBT) is used to determine the endpoint of the EDTA titration. 

When combined with the metal ions, the indicator forms a complex ion and 

the color of the solution changes from blue to red. EDTA is a stronger agent than the 

EBT which complexes the metal ions displacing it from the EBT and hence the solution  
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color changes again to pure blue. 

We need a standardized solution freshly prepared of 0.01 M disodium EDTA with 

MgCl2 and a standard Ca2+ solution for determining the exact molarity of the EDTA. 

Also, 12M concentrated HCl, 8.5M NH3-NH4Cl Buffer and Eriochrome Black T 

indicator is needed. 

25ml of the standard calcium solution (approx. 0.01022 M of Ca2+) is taken in a 

beaker and the pH is adjusted ~7 by sodium hydroxide. 10 ml of the buffer solution 

added followed by 2-3 drops of EBT indicator. Titration of the calcium solution is done 

by the standard EDTA solution until the color changes from wine red, through purple, to 

pure blue. The experiment is performed in triplicates. The average molarity was 

determined by considering the formula. 

McalciumVcalcium = MEDTAVEDTA. 

The same standard EDTA solution is used for the further experiment of determining 

the calcium content of the residual acidic solution of demineralization. 5ml of the acidic 

solution is diluted in 250ml of DI water. 50 ml of the aliquoted solution is taken and 

neutralized to pH 7 using sodium hydroxide, 10 ml of the buffer solution is added along 

with 2-3 drops of EBT indicator. Titration is performed with the same EDTA solution 

until the color changed to pure blue (same as the reference color). The same experiment 

is performed in triplicates. The volume EDTA used for titration multiplied by EDTA 

molarity is equal to molarity of EDTA in mmoles which is equal to molarity of Ca2+ in 

mmoles. The calculation for the determination of the calcium concentration can be 

defined as
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Volume of EDTA(ml)*Molarity EDTA = EDTA(mmoles) =Ca2+(mmoles) 

Ca2+ (mmoles)*40.078gram/mole = Ca2+concentration in milligrams, aliquote 

(Ca2+ concentration of aliquote) (250 ml/50ml) = Ca2+ concentration of solution 

 

2.3 Histology 

The freeze-dried dentin matrix particles were used for histological examination. The 

DDM particles were soaked in sucrose solution (buffer) and then embedded in OCT for 

cryo-section and the sections were taken of 10µm each. The sections were stained with 

H & E to look for the structure of the matrix. Images were taken under a simple 

microscope. 

 

2.4 Scanning electron microscopy 

 

Freeze dried dentin matrix was also sputter coated with gold to look under scanning 

electron microscopy and EDS analysis was also performed specifically to look for 

calcium content. For EDS freeze-dried mineralized dentin was taken as a control. The 

hydrogel formed along with the demineralized dentin matrix was also freeze-dried and 

sputter coated with gold to look for the structure of the hydrogel complex under the 

scanning electron microscopy.
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2.5 FTIR 

ATR-FTIR is an analytical technique to determine or identify the material by using 

the total internal reflective property of a material. We used FTIR to confirm the dentin 

matrix particles used are completely demineralized and resembles collagen I. It was 

compared with the freeze-dried mineralized bovine dentin particles. 

 

 

2.6 Cell proliferation 

Dental pulp stem cells were cultured till confluent and used for cell proliferation 

studies at P5 (passage 5). The cells were cultured in α MEM with 10% fetal bovine 

serum and 1% penicillin/ streptomycin. DPSCs were seeded in a 96 wells-plate, 5 X 103 

cells per well at 37°C overnight. DDM treated culture medium was used in the 

concentration of 0.1mg/ml, 1mg/ml and 10mg/ml and no DDM was taken as a negative 

control. Each group was performed in triplicates. Cell viability was assessed by MTT 

assay at day 1,4 and 7, the MTT is bio-reduced by the cells to the formazan and 

incubated for 4 hours at 37°C and then soluble in DMSO (Liu, Xu et al. 2016). The 

absorbance is then observed at 570nm and 630nm. The final absorbance is the difference 

between the two observances. Similar studies were also performed on the hydrogel 

surface to see the viability of the cells on the gel system (Sawkins, Bowen et al. 2013, 

Wu, Ding et al. 2015)
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2.7 Cell differentiation 

 

Dental pulp stem cells were cultured until passage 4 (P4) of its confluency and tested 

for differentiation capability of the cells with DDM treated medium. DPSCs were seeded 

in a 6 well-plate, 2 X 105 cells per well and then incubated at 37°C with either untreated 

medium or DDM treated medium of the concentration of 1 mg/ml for 7, 14 and 21 days. 

Differentiation activity was defined by scrapping off the cells and transferred into the 

assay buffer followed by performing the ALP activity test by the ALP kit. After adding 

the pNPP, the sample supernatant is incubated at 37°C for 1 hour and read under 405nm 

for absorbance (Li, Yang et al. 2013, Liu, Xu et al 2016). 

 

Differentiation can also be determined by the Alizarin red staining where the similar 

number of DPSCs i.e. 2 X 105 cells per well is seeded along with treated or untreated 

medium. After 14 and 21 days, the cells are fixed with 4 % paraformaldehyde and 

stained with alizarin red. The deep red color indicated mineralized tissue. Thus, 

indicating osteoblastic differentiation of the cells (Liu, Xu et al. 2016).
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2.8 Turbidimetric gelation kinetics 

 

Turbidimetric gelation kinetics were performed on the hydrogel by injecting the pre-

gel solution and its absorbance was read at 490nm at 37°C every 3 mins for 1 hour with 

the help of an ELISA plate reader. The normal absorbance was calculated by the formula 

(A-A0)/(Am-A0) 
 

where A is the actual reading at a time point, A0 is the initial absorbance and Am is the 

maximum absorbance. A linear curve is graphed and the time at 50% absorbance is 

defined as the half gelation time (t1/2) and the initial linear portion on the curve is the lag 

time for the gel to start gelation (Freytes, Martin et al. 2008, Sawkins, Bowen et al. 

2013, Wu, Ding et al. 2015). 

 

 

2.9 Cell viability inside the hydrogel 

The cell survival rates of the DPSCs inside the gel is determined by live/dead 

staining (Wu, Ding et al. 2015). The dental pulp stem cells along with the pre-gel 

solution are cultured together and live dead staining is done for day 1, 4 and 8. The 

culture medium is changed every other day. 4µM of EthD-1 working solution is used 

along with 2µM of calcein for the Live/dead assay. The gel is incubated along with the 

working solution for almost 1 hour and then viewed under fluorescence microscopy for 

the labelled cells.
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3. RESULTS 

 

 

3.1 Demineralization 

 

3.1.1 Calcium EDTA titration 

According to the methods described the dentin matrix was demineralized and tested 

for further studies. Our aim here is to effectively demineralize the dentin in shortest 

possible time and able to achieve some amount of bioactivity which will further help the 

dental pulp stem cells to grow and have some cell lineages. The calcium titration studies 

show that the demineralization procedure using HCl is fast and effective. The graph in 

Fig 2 shows that the calcium content in the matrix is leached out almost to half in the 

first couple of hours and keeps on decreasing rapidly with almost negligible amounts of 

calcium in the matrix particles in the first 10-12 hours. Thus, standardizing the 

demineralization time to 10-12 hours with 0.5 M HCl. 
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Figure 2 Calcium EDTA titration. This figure shows the decrease in the calcium 

concentration leached out of the dentin matrix. Negligible amounts after 10-12 hours of 

demineralization at room temperature with 0.5 N HCl.
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3.1.2 Structural analysis of demineralized dentin matrix particles 

 

The structural analysis of the dentin is explained by H & E staining of the dentin 

particle sections and viewed under a light microscope. The histological sections with H 

& E staining is shown in fig.3.a along with scanning electron microscopy images in 

fig.3.b of the demineralized dentin matrix particles showing the natural tubular structure 

of the dentin. Initial preparation of the dentin and demineralization results in the lack of 

the mineral deposition and the absence of the odontoblast (cellular structures) in the 

dentinal structure. In our study, we aim to mimic the matrix structure which is porous for 

the cells to proliferate and have a favorable environment for the regeneration to occur. 

 

 

Figure 3 a. H & E staining. The sections shows normal tubular structure of dentin with 

absence of odontoblastic structures. 
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Figure 3 b. SEM imaging. The image shows the demineralized dentin matrix particles 

under scanning electron microscopy. The image shows the grounded particles in which 

the tubular structure of the dentin is defined and absence of any mineralized tissues. 

 

 

3.1.3 Scanning electron microscopy with EDS analysis 

The EDS analysis also compares the mineralized and demineralized matrix particles. 

In fig. 4 we can see the SEM image of the mineralized tissue and the tubular structure of 

dentin in the demineralized dentin particles. The calcium content of the mineralized and 

demineralized dentin is graphed and mapped using the EDS analysis which clearly 

shows the absence of any calcium content in the demineralized dentin matrix particles. 
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Figure 4 a. EDS analysis. The figures represents EDS analysis of mineralized and 

demineralized dentin matrix with Ca content. The SEM image shows the difference 

between the mineralized and demineralized dentin matrix where the demineralized 

dentin shows well organized dentinal tubules. The graph confirms the loss of calcium 

ions in the process of demineralization. 
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Figure 4 b. Element Mapping in EDS analysis. The picture represents EDS analysis of 

mineralized and demineralized dentin matrix with calcium content. This image shows 

the element mapping for calcium. The yellow color in the mineralized dentin shows the 

presence of calcium atoms, whereas no color in demineralized dentin shows complete 

demineralization. 

 

 

3.1.4 ATR-FTIR analysis 

ATR-FTIR is also one method to determine the sample. In our experiment, we use 

the freeze dried mineralized and demineralized dentin particles to see the structural 

component. The demineralized dentin matrix resembles to the collagen I with similar 

peaks determining that collagen I (Feng, Zhao et al. 2013) being the majority of our 

sample as expected 
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Figure 5 FTIR. This represents FTIR for bovine mineralized and demineralized dentin 

matrix where the demineralized dentin matrix shows similarity to the pepsin soluble 

collagen type I with similar peaks.
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3.2 In vitro studies of demineralized dentin matrix treated solution 

Biocompatibility, cytotoxicity of the material, cell viability, proliferation and 

differentiation capabilities are to be tested for the DDM extract as well as the hydrogel 

complex. To check for the cellular proliferation and vitality in the presence of the DDM 

extract can be characterized by cell proliferative assay such as MTT assay. The MTT is 

reduced by the cells into a formazan product that is purple in color which is then 

dissolved in a common solvent such as DMSO. The absorbance is measured at 2 

wavelengths and the difference between them is the final absorbance. Fig. 6 shows the 

cell proliferation of the DDM extracts with the concentration of 0.1mg/ml, 1mg/ml and 

10mg/ml. The control group is cells with medium which is not treated with DDM. The 

results suggest that the cell proliferation is similar or slightly increased with the presence 

of the extract from demineralized dentin suggestive of biocompatibility and ability to 

enhance the cellular proliferation. 

We also wanted to test whether the DDM helps differentiate the stem cells. To test 

the differentiation capabilities of the material, ALP activity assay and Alizarin red 

staining was performed at 14 and 21 days (2 and 3 weeks). In Fig.7. the ALP assay 

shows significant activity by 14 days as compared to the control group (without DDM 

treatment) even when no differentiation medium was used. By the end of 21 days the 

differentiation activity was still maintained in the presence of DDM. Fig. 8 also shows 

the similar results with alizarin red staining, as the group with the demineralized dentin 

did show a deep red color suggestive of an increased activity and mineral deposition.



23  

Figure 6 MTT assay. The graph shows the cell proliferation of dental pulp stem cells 

along with 0.1mg/ml, 1mg/ml and 10mg/ml of demineralized dentin matrix treated 

medium. All groups along with the no DDM treated medium shows the gradual 

proliferation of the cells from 1 day to 7 days of time.



24  

 

 
Figure 7 ALP assay. The above graph is the Alkaline phosphatase activity (ALP) 

showing the differentiation capability of the DPSCs in the presence of the DDM 

concentrate is significantly greater that the negative control ( cells only) at 14 days while 

maintaining the differentiation of the cells over 21 days.
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Figure 8 Alizarin red staining. The picture shows the Alizarin red staining which 

represents the osteoblastic differentiation of the cells with the presence of the DDM 

treated medium. In this figure the deep red color represents the mineralization content.
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3.3 Hydrogel formation, morphology and characterization 

Collagen I and demineralized dentin extract were used for making a hydrogel. The 

collagen I and demineralized dentin pre-gel solution was neutralized using sodium 

hydroxide at 4°C and gelation was induced by increasing the temperature to 37°C. The 

pre-gel solution was incubated at 37°C for approximately 1 hour. Fig. 9. shows the 

hydrogel formation. The first image represents the pre-gel solution (check flowability) 

and the latter is after the incubation at 37°C for 1 hour. 

To characterize the properties and also to look for the biocompatibility of the 

hydrogel structure studies were performed. Firstly to mimic the extracellular 

environment for regeneration, a material which is porous in nature is highly indicative. 

The SEM image of the hydrogel in fig. 10 shows the collagen fibrils intertwined with 

each other to form the gel structure along with a high amount of porosity of almost 98-

99%. The gelation kinetics were measured with the help of turbidimetric analysis under 

an ELISA plate reader shown in fig. 11. The resultant formula for the absorbance leads 

us to say that the setting time for the gel was approximately 29 minutes whereas a stable 

gel was obtained after 45 minutes at 37
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Figure 9 Gel formation. Neutralized pre-gel solution containing DDM extract and 

collagen I when incubated at 37°C for 1 hour forms a stable hydrogel. The above figure 

shows the flowability of the pre-gel solution  at 4°C and formation of a hydrogel at 37°C
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Figure 10 a. SEM image for hydrogel. Image shows SEM image with the final 

concentration of the gel being 3mg/ml along with the DDM extract. The SEM shows the 

intertwining of the collagen fibrils to the form the hydrogel structure. 
 

 

 

 

 

 

Figure 10 b. Porosity of hydrogel. Also the porosity of the 3mg/ml and 6 mg/ml is very 

similar being 99% and 98% approximately, respectively.
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Figure 11 Turbidemetric gelation kinetics graph. The graph above shows the 

turbidimetric kinetics of the hydrogel. The initial linearity in the curve is the lag time 

needed for the gel to start gelation at 37°C. The time at 50% absorbance is the half 

gelation time and the linearity after reaching the peak shows the setting time for the 

gelation to occur which is 1750 seconds that is approximately 29 mins and a stable gel is 

formed at 2700 seconds that is 45 mins.
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3.4 In vitro studies for demineralized dentin matrix hydrogel 

To confirm that the demineralized dentin matrix is a favourable environment for the 

dental pulp stem cells to survive, it is necessary to perform in vitro studies on the 

hydrogel system. Ideally the hydrogel should be such that when cells are cultured on the 

surface of the gel, they should attach and proliferate. The cells should be viable for a 

specific period of time which allows them to proliferate, differentiate and form a new 

tissue. The viability of the cells inside the hydrogel was determined by the Live/dead 

staining in Fig. 12. 

Collagen I was the positive control. Resultant images under the fluorescence 

microscopy did not show difference in the two gels. Initial 1 day gel showed unattached 

DPSCs while day 4 and 8 images had proliferative and more attached cells inside the gel 

system. There were few dead cells in the overall comparison of both groups showing that 

the demineralized dentin matrix gel supports the stem cells similar to the collagen I gels 

making it biocompatible for further use. Also MTT assay for cellular proliferation in 

fig.13. show the similar conclusive result of similar proliferative rate of the dental pulp 

stem cells on the surface of the hydrogel.
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Figure 12 Live/Dead staining inside hydrogel. The image shows DPSCs inside the 

Collagen I hydrogel and DDM hydrogel has similar structure and viability representing 

that DDM hydrogel is a favorable environment for the stem cells. The images shows the 

initial unattached DPSCs on the surface of the hydrogel while as time passes the cells are 

more attached and elongated on the surface of the hydrogel. 
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Figure 13 MTT assay on hydrogel. The graph shows the cellular proliferation on the 

surface of the hydrogel system with the concentration of 0.1mg/ml, 1mg/ml and 10mg/ml. 

Collagen I which is considered as a control for the three groups. The MTT assay shows 

gradual proliferation of the cells on the gel surface again suggestive of biocompatibility 

of the DDM hydrogel material with the DPSCs.
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4. SUMMARY AND CONCLUSION 

 

 

4.1 Summary 

To summarize the above data, despite the problems anticipated in the solubility of 

the dentin to extract collagen and other bioactive factors facilitating the regeneration of 

dentinal and pulpal tissues, the collagen I derived by other means can be used along with 

the DDM extract to develop a hydrogel system mimicking the extracellular matrix of the 

pulp and dentin. The injectability of the material will help in ease of the technique 

operating for the placement of the scaffold along with the cells. 

Also, with minimum discomfort and chances of infection. The DDM extract proves 

itself capable of helping proliferation and inducing differentiation which tells us that it 

will help the dental pulp stem cells to differentiate in different lineages for regeneration 

of natural like tissues. The characterization and morphology of the hydrogel also 

confirms that it will support the viability of the cells and has enough porosity for the 

newly formed tissue. Thus, summarizing that demineralized dentin matrix is easy to 

manufacture, is biocompatible and facilitated proliferation, has a capability for 

differentiation and hence regeneration of a tissue.



34  

4.2 Conclusion 

In conclusion, we can say that demineralized dentin matrix provides a favorable 

environment for the dental pulp stem cells to proliferate and differentiate in vitro. The 

problems that have or might occur in this material can be divided in to mainly two 

categories, related to the generation of the material and other would be the host response 

or regeneration of full length root canal. 

Extracting proper concentration of collagen and bioactive molecules from the 

extracted teeth is a challenging task and requires meticulous preparation of the tooth 

dentin. Also, temperature controlled gelation should be induced for proper applications. 

These problems can be solved by using a protocol that helps extraction of the required 

material with minimum harm to it. Proper sterilization techniques and used of 

antimicrobial agents will help improve the host response. As expected the demineralized 

and decellularized material is biocompatible, help cellular proliferation and mimic the 

ECM like environment of the pulp. We also expect some of the bioactive molecules 

present in the dentin be incorporated with the collagen in the matrix to have cellular 

differentiation. Lastly, we expect pulp regeneration not only at the apical end but 

throughout the root canal space with the different cellular structures.



35  

4.3 Future directions 

To further evaluate, we plan to do studies that will show the regenerative capabilities 

of the demineralized dentin matrix hydrogel for pulp regeneration in vivo. For this, in 

vivo studies showing ectopic pulp regeneration in tooth roots that are subcutaneously 

placed in immuno-deficient mice and harvested after 3 weeks for further histological and 

immunohistochemistry procedures. We expect that demineralized dentin matrix as a 

naturally derived scaffold be biocompatible and favorable for the dental pulp stem cells 

to grow and differentiate in vivo. Our ultimate goal being our material to be used in 

clinical applications, it is necessary that a series of experiments in vitro and in vivo to be 

performed to better understand the material and its capabilities to be effective in a 

clinical background. 



36  

REFERENCES 

 

 

Bakhshalian, N., Hooshmand, S., Campbell, S. C., Kim, J. S., Brummel-Smith, K., et al. 

(2013). "Biocompatibility and microstructural analysis of osteopromotive property of 

allogenic demineralized dentin matrix." The International Journal of Oral & 

Maxillofacial Implants 28(6): 1655-1662. 
 

Carmichael, D. J., Dodd, C. M., Veis, A. (1977). "The solubilization of bone and dentin 

collagens by pepsin. Effect of cross-linkages and non-collagen components." Biochimica 

et Biophysica Acta 491(1): 177-192. 
 

Casagrande, L., Demarco, F. F., Zhang, Z., Araujo, F. B., Shi, S., Nör, J. E. (2010). 

"Dentin-derived BMP-2 and odontoblast differentiation." Journal of Dental Research 

89(6): 603-608. 
 

Cassidy, N., Fahey, M., Prime, S. S., Smith, A. J. (1997). "Comparative analysis of 

transforming growth factor-beta isoforms 1-3 in human and rabbit dentine matrices." 

Archives of Oral Biology 42(3): 219- 223. 

 

Chun, S., Lee, H. J., Choi, Y. A., Kim, K. M., Baek, S. H., et al. (2011). "Analysis of the 

soluble human tooth proteome and its ability to induce dentin/tooth regeneration." Tissue 

Engineering Part A 17(1-2): 181-191. 
 

Cox, C. F., Bergenholtz, G., Fitzgerald, M., Heys, D. R., Heys, R. J., et al. (1982). 

"Capping of the dental pulp mechanically exposed to the oral microflora -- a 5 week 

observation of wound healing in the monkey." Journal of Oral Pathology 11(4): 327-

339. 
 

Daar, A. S. and H. L. Greenwood (2007). "A proposed definition of regenerative 

medicine." J Tissue Eng Regen Med 1(3): 179-184. 
 

Feng, W., Zhao, T., Zhou, Y., Li, F., Zou, Y., et al. (2013). "Optimization of enzyme-

assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser 

sturio Linnaeus) skin." Pharmacognosy Magazine 9(Suppl 1): S32-S37. 
 

Finkelman, R. D., Mohan, S., Jennings, J. C., Taylor, A. K., Jepson, S., et al. (1990). 

"Quantitation of growth factors IGF-I, SGF/IGF-II, and TGF-beta in human dentin." 

Journal of Bone and Mineral Research 5(7): 717-723. 
 

Freytes, D. O., Martin, J., Velankar, S. S., Lee, A. S., Badylak, S. F. (2008). "Preparation 

and rheological characterization of a gel form of the porcine urinary bladder matrix." 

Biomaterials 29(11): 1630-1637. 



37  

Heys, D. R., Fitzgerald, M., Heys, R. J., Chiego, D. R. Jr. (1990). "Healing of primate 

dental pulps capped with Teflon." Oral Surgery, Oral Medicine, Oral Pathology 69(2): 

227-237. 
 

Hou, Q., De Bank, P. A., Shakesheff, K. M. (2004). "Injectable scaffolds for tissue 

regeneration." Journal of Materials Chemistry 14(13): 1915. 
 

Jãgr, M., Eckhardt, A., Pataridis, S., Mikšík, I. (2012). "Comprehensive proteomic 

analysis of human dentin." European Journal of Oral Sciences 120(4): 259-268. 
 

Lee, C. P., Colombo, J. S., Ayre, W. N., Sloan, A. J., Waddington, R. J. (2015). 

"Elucidating the cellular actions of demineralised dentine matrix extract on a clonal 

dental pulp stem cell population in orchestrating dental tissue repair." J Tissue Eng 6: 

2041731415586318. 

 

Li, J., Yang, J., Zhong, X., He, F., Wu, X., et al. (2013). "Demineralized dentin matrix 

composite collagen material for bone tissue regeneration." Journal of Biomaterials 

Science. Polymer Edition 24(13): 1519- 1528. 

 

Liu, G., Xu, X., Gao, Z., Liu, Z., Xu, J., et al. (2016). "Demineralized Dentin Matrix 

Induces Odontoblastic Differentiation of Dental Pulp Stem Cells." Cells Tissues Organs 

201(1): 65-76. 

 

Makhluf, H. A., Mueller, S. M., Mizuno, S., Glowacki, J., (2000). "Age-Related Decline 

in Osteoprotegerin Expression by Human Bone Marrow Cells Cultured in Three-

Dimensional Collagen Sponges." Biochemical and Biophysical Research 

Communications 268(3): 669-672. 
 

Mikos, A. G., McIntire, L. V., Anderson, J. M., Babensee, J. E., (1998). "Host response 

to tissue engineered devices." Advanced Drug Delivery Reviews 33(1-2): 111-139. 

 

Mizuno, S. and J. Glowacki (1996). "Three-dimensional composite of demineralized 

bone powder and collagen for in vitro analysis of chondroinduction of human dermal 

fibroblasts." Biomaterials 17(18): 1819-1825. 
 

Mizuno, S., Ushida, T., Tateishi, T., Glowacki, J. (1998). "Effects of physical 

stimulation on chondrogenesis in vitro." Materials Science and Engineering: C 6(4): 

301-306. 
 

Nakashima, M. (2005). "Bone morphogenetic proteins in dentin regeneration for 

potential use in endodontic therapy." Cytokine & Growth Factor Reviews 16(3): 369-

376. 
 



38  

Navarro, F. A., Mizuno, S., Huertas, J. C., Glowacki, J., Orgill, D. P. (2001). "Perfusion 

of medium improves growth of human oral neomucosal tissue constructs." Wound 

Repair and Regeneration 9(6): 507-512. 
 

Nyborg, H. (1955). "Healing processes in the pulp on capping; a morphologic study; 

experiments on surgical lesions of the pulp in dog and man." Acta Odontologica 

Scandinavica 13(suppl. 16): 1-130. 
 

O'Brien, F. J. (2011). "Biomaterials & scaffolds for tissue engineering." Materials Today 

14(3): 88-95. 

 

Oguntebi, B. R., Heaven, T., Clark, A. E., Pink, F. E., (1995). "Quantitative assessment 

of dentin bridge formation following pulp-capping in miniature swine." Journal of 

Endodontics 21(2): 79-82. 
 

Park, E. S., Cho, H. S., Kwon, T. G., Jang, S. N., Lee, S. H., et al. (2009). "Proteomics 

analysis of human dentin reveals distinct protein expression profiles." Journal of 

Proteome Research 8(3): 1338-1346. 

 

Reis-Filho, C. R., Silva, E. R., Martins, A. B., Pessoa, F. F., Gomes, P. V., et al. (2012). 

"Demineralised human dentine matrix stimulates the expression of VEGF and 

accelerates the bone repair in tooth sockets of rats." Archives of Oral Biology 57(5): 469-

476. 
 

Roberts Clark, D. J. and A. J. Smith (2000). "Angiogenic growth factors in human 

dentine matrix." Archives of Oral Biology 45(11): 1013-1016. 
 

Rutherford, R. B. and K. Gu (2000). "Treatment of inflamed ferret dental pulps with 

recombinant bone morphogenetic protein-7." European Journal of Oral Sciences 108(3): 

202-206. 

 

Sawkins, M. J., Bowen, W., Dhadda, P., Markides, H., Sidney, L. E., et al. (2013). 

"Hydrogels derived from demineralized and decellularized bone extracellular matrix." 

Acta Biomaterialia 9(8): 7865-7873. 
 

Singelyn, J. and K. Christman (2010). "Injectable materials for the treatment of 

myocardial infarction and heart failure: the promise of decellularized matrices." Journal 

of Cardiovascular Translational Research 3(5): 478-486. 
 

Sloan, A. J., Perry, H., Matthews, J. B., Smith A. J. (2000). "Transforming growth 

factor-beta isoform expression in mature human healthy and carious molar teeth." The 

Histochemical Journal 32(4): 247- 252. 

 

Smith, A. J., Scheven, B. A., Takahashi, Y., Ferracane, J. L., Shelton, R. M, et al. 

(2012). "Dentine as a bioactive extracellular matrix." Archives of Oral Biology 57(2): 

109-121. 



39  

Stanley, H. R. and T. Lundy (1972). "Dycal therapy for pulp exposures." Oral Surgery, 

Oral Medicine, Oral Pathology 34(5): 818-827. 

 

Tukmachev, D., Forostyak, S., Koci, Z., Zaviskova, K., Vackova, I., et al. (2016). 

"Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair." 

Tissue Engineering Part A 22(3-4): 306-317. 
 

Valentin, J., Turner, N. J., Gilbert, T. W., Badylak, S. F. (2010). "Functional skeletal 

muscle formation with a biologic scaffold." Biomaterials 31(29): 7475-7484. 
 

Van Strijp, A. J., Klont, B., Ten Cate, J. M. (1992). "Solubilization of dentin matrix 

collagen in situ." Journal of Dental Research 71(8): 1498-1502. 
 

Wintermantel, E., Mayer, J., Blum, J., Eckert, K. L., Lüscher, P, et al. (1996). "Tissue 

engineering scaffolds using superstructures." Biomaterials 17(2): 83-91. 
 

Wolf, M., Daly, K. A., Brennan-Pierce, E. P., Johnson, S. A., Carruthers, C. A., et al. 

(2012). "A hydrogel derived from decellularized dermal extracellular matrix." 

Biomaterials 33(29): 7028-7038. 

 

Wu, J., Ding, Q., Dutta, A., Wang, Y., Huang, Y. H., et al. (2015). "An injectable 

extracellular matrix derived hydrogel for meniscus repair and regeneration." Acta 

Biomater 16: 49-59. 

 

Yagihashi, K., Miyazawa, K., Togari, K., Goto, S. (2009). "Demineralized dentin matrix 

acts as a scaffold for repair of articular cartilage defects." Calcified Tissue International 

84(3): 210-220. 

 

 

 




