
IMPROVED QUASI-STATIC METHODS FOR TIME-DEPENDENT NEUTRON

DIFFUSION AND IMPLEMENTATION IN RATTLESNAKE

A Thesis

by

ZACHARY MERRITT PRINCE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jean C. Ragusa
Committee Members, Jim E. Morel

Bojan Popov
Head of Department, Yassin Hassan

May 2017

Major Subject: Nuclear Engineering

Copyright 2017 Zachary Merritt Prince

ABSTRACT

Transient reactor simulations are a chronically formidable challenge due to the com-

putational rigor of evaluating the neutron transport equation, as well as its coupling with

other physical phenomena. The goal of this thesis research is to mitigate the computational

expense of these simulations by investigating and developing the improved quasi-static

method (IQS). IQS is a rigorous space/time multiscale approach whereby the neutron flux

is represented by a time-dependent amplitude and a time-space-energy dependent shape.

The objective of the IQS factorization is to evaluate amplitude and shape on different

time scales in order to reduce computational burden associated with solving the multi-

dimensional flux equations, while maintaining solution accuracy. IQS factorization leads

to a nonlinear system of equations that requires iteration of shape and amplitude. Further-

more, reactor simulations often require coupling to additional multiphysics components

for temperature feedback. These additional physics may evolve on different time scales,

and the applicability of IQS in multiphysic simulations needs to be evaluated from this

perspective as well.

The objectives of this research are to establish IQS performance with various iter-

ation techniques, validate time step convergence of IQS, and apply IQS to multiphysics

simulation. IQS iteration techniques involve fixed-point (Picard) iteration with various

convergence criteria and Newton iteration, namely preconditioned Jacobian-free Newton

Krylov (PJFNK) method. Nonlinear convergence of each of these techniques is investi-

gated. Validation of IQS with analysis of time step convergence is vital for implemen-

tation of time adaptive methods and error prediction. The time derivative of the shape

function is discretized through fourth order using implicit-Euler, Crank-Nicolson, back-

ward difference formulae (BDF), and singly-diagonally-implicit Runge-Kutta (SDIRK)

ii

methods. IQS application to multiphysics simulations involves its implementation into the

Rattlesnake/MOOSE framework. These simulations allow insight into the performance of

IQS for full transient reactor simulations.

The results of the iteration convergence analysis show that the most rigorous and

comprehensive iteration technique is fixed-point iteration with consistency in the IQS

uniqueness specification as the convergence criteria. This iteration technique revealed

the need for analytical treatment of the precursor equation for proper convergence. For

time step convergence analysis, IQS was applied to a one-dimensional prototype example,

as well as the TWIGL and LRA benchmark. The prototype results show that IQS has

proper error convergence through fourth order discretization schemes. The TWIGL and

LRA benchmark results show that IQS has proper convergence for implicit Euler, second-

order BDF, and Crank-Nicolson schemes, validating IQS for more complex problems. For

multiphysics simulation, IQS was applied to the LRA benchmark and a full core TREAT

model. The results show that integration of temperature into the quasi-static process made

considerable improvement to IQS performance. These results and conclusions helped gain

insight into the behavior of IQS and furthered its development in complete transient reactor

models.

iii

DEDICATION

To my mother, my father, my grandmother, and my grandfather.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professors Jean Ragusa

and Jim Morel of the Department of Nuclear Engineering and Professor Bojan Popov of

the Department of Mathematics.

All other work conducted for the thesis was completed by the student independently

with the direction of his adviser Dr. Jean Ragusa.

Funding Sources

Graduate study was supported by the Endowed Doctoral Fellowship from Texas

A&M University, Idaho National Laboratory, and Integrated University Program Fellow-

ship from the Department of Energy.

v

NOMENCLATURE

IQS Improved Quasi-Static Method

INL Idaho National Laboratory

MOOSE Multiphysics Object-Oriented Simulation Environment

DOE Department of Energy

NEAMS Nuclear Energy Advanced Modeling and Simulation

PRKE Point Reactor Kinetics Equation

FEM Finite Element Method

P-C Predictor-Corrector

TREAT Transient Reactor Testing Facility

BDF Backward Difference Formula

SDIRK Singly-Diagonally-Implicit Rung-Kutta Method

PDE Partial Differential Equation

ODE Ordinary Differential Equation

GMRES Generalized Minimal Residual Method

PJFNK Preconditioned Jacobian-Free Newton-Krylov Method

DT2 Step Doubling Time Adaptation Method

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

CONTRIBUTORS AND FUNDING SOURCES v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xii

1. INTRODUCTION . 1

1.1 Background on Transient Reactor Testing 1
1.2 Time-Dependent Neutron Transport . 2

1.2.1 Point Reactor Kinetics . 3
1.2.2 Improved Quasi-Static Method 4

1.3 Time-Dependent Reactor Dynamics . 4
1.4 Objective . 5

2. IMPROVED QUASI-STATIC METHOD . 7

2.1 Theory . 7
2.1.1 Operator Notation and Extension of IQS to Multigroup Transport

Equations . 10
2.2 Iterative Solution Techniques . 11

2.2.1 Shape Convergence . 14
2.2.2 Property Convergence . 14
2.2.3 Solution Scaling . 15
2.2.4 Preconditioned Jacobian-Free Newton-Krylov 15

2.3 Predictor-Corrector IQS (IQS P-C) . 16
2.4 Temperature Feedback . 18

2.4.1 Temperature Evaluation . 18
2.4.2 Intermediate Time Scale . 19

vii

2.4.3 Dynamical Time Scale Analysis 19
2.4.4 Programming Logic . 21

2.5 Time Discretization Schemes . 21
2.5.1 Theta Method Time Discretization 21
2.5.2 Backward Difference Formulae 23
2.5.3 Singly-Diagonally-Implicit Runge-Kutta Method 23
2.5.4 Time Adaptation . 25

2.6 Delayed Neutron Precursor Updates . 26
2.6.1 Precursor Evaluation Using Theta Method Time Discretization . . 27
2.6.2 Analytical Precursor Integration 27

2.7 Rattlesnake Implementation . 29
2.7.1 Executioner . 29
2.7.2 Action System . 29
2.7.3 PRKE Coefficients . 30
2.7.4 Other Action Systems . 31
2.7.5 Predictor-Corrector Modification 32
2.7.6 Input . 33
2.7.7 Linear Solution Techniques . 35

3. KINETICS EXAMPLES . 37

3.1 One Dimensional Prototype Problem . 37
3.1.1 IQS Iteration Convergence . 38
3.1.2 Time Step Convergence . 40
3.1.3 One-Dimensional Mini-Core Problem 43

3.2 TWIGL Benchmark . 47
3.2.1 TWIGL Convergence Analysis 47
3.2.2 TWIGL with Step Doubling Time Adaptation 51

4. DYNAMICS EXAMPLES . 53

4.1 LRA Benchmark . 53
4.1.1 LRA Multiphysics Time Scale Results 57
4.1.2 LRA with Time Adaptation . 62

4.2 TREAT Transient-15 Problem . 64
4.2.1 Transient-15 Temperature Feedback 67
4.2.2 Transient-15 Multiphysics Time Scale Results 68
4.2.3 Transient-15 with Time Adaptation 70

5. CONCLUSIONS . 72

5.1 Iteration Convergence Analysis . 72
5.2 Time Step Convergence Analysis . 73
5.3 IQS Application to Multiphysics . 73

viii

5.4 Recommendations for Further Research 74

APPENDIX A. DERIVATIONS . 80

A.1 Derivation of IQS with CFEM Diffusion 80
A.2 Proof of Flux-Shape Solution Inequality 83

APPENDIX B. OTHER TESTING . 87

B.1 SDIRK Convergence Problems . 87

ix

LIST OF FIGURES

FIGURE Page

2.1 IQS method visualization [1] . 10

2.2 Visualization of IQS fixed-point iteration process 13

2.3 Time scales and process of IQS with temperature feedback 20

2.4 Visualization of fixed-point iteration and temperature update process for IQS 22

2.5 Visualization of step doubling process on time-line 26

2.6 Visualization of step doubling process with coding logic 26

3.1 1-D slab region identification [1] . 37

3.2 Baseline flux and power distribution . 39

3.3 IQS flux and power distribution . 39

3.4 Number of iterations for various convergence criteria, tolerance= 10−11,
max iterations= 20 . 41

3.5 Final iteration error for K convergence criteria 41

3.6 Final iteration error for K convergence criteria with analytical precursor
elimination . 42

3.7 Error convergence plots of implicit discretization, IQS, and IQS P-C with
various time discretization schemes . 44

3.8 Error convergence plots of implicit discretization, IQS, and IQS P-C from
Rattlesnake implementation . 45

3.9 Error convergence plots of implicit discretization, IQS, and IQS P-C vs.
number of GMRES iterations . 45

3.10 Mini-core baseline flux and power distribution 46

3.11 Shape profile at various times for one-dimensional mini-core 46

x

3.12 Time step convergence for one-dimensional mini-core with implicit Euler
discretization . 47

3.13 TWIGL benchmark problem description [2] 48

3.14 Power level comparison of TWIGL Benchmark 49

3.15 TWIGL Benchmark flux/shape comparison at t = 0.2 [1] 50

3.16 Error convergence comparison of TWIGL Benchmark 50

3.17 Power level comparison of TWIGL Benchmark with time adaptation . . . 52

4.1 LRA benchmark geometry with region assignment [3] 55

4.2 LRA baseline temperature and power profile [4] 58

4.3 LRA baseline spacial power profile at t = 1.44s [4] 59

4.4 LRA error convergence plots [4] . 59

4.5 Error plot with various temperature updates per macro step [4] 60

4.6 Dynamical time scale for LRA benchmark [4] 63

4.7 LRA power profile with time adaptation of implicit discretization and IQS
P-C . 63

4.8 Transient-15 159-element small core configuration [5] 65

4.9 Top quarter view of Transient-15 mesh [5] 66

4.10 Top single block view of Transient-15 mesh [5] 66

4.11 Transient-15 core power profile at peak power [4] 67

4.12 Transient-15 total power and average temperature profile during transient [4] 68

4.13 Dynamical time scale for the Transient-15 example [4] 70

4.14 Transient-15 step doubling adaptation results with implicit discretization
and IQS P-C . 71

B.1 SDIRK33 vs. BDF convergence with v = 1e5 88

B.2 SDIRK33 convergence with different velocities 89

xi

LIST OF TABLES

TABLE Page

2.2 α values for relevant BDF methods . 24

3.1 1-D slab material properties and problem parameters [1] 38

3.2 1-D slab absorption cross-section at times of interest [1] 38

3.3 TWIGL benchmark material properties and slope perturbation [2] 48

3.4 TWIGL step doubling results . 51

4.1 LRA benchmark initial two-group constants [3] 56

4.2 LRA benchmark delayed neutron data 56

4.3 LRA benchmark scalar values . 56

4.4 LRA baseline verification . 57

4.5 Implicit discretization run time results 61

4.6 IQS run time results with ∆t = 0.004 61

4.7 IQS PC run time results with ∆t = 0.004 62

4.8 LRA step doubling adaptation results with implicit discretization and IQS
P-C . 64

4.9 Transient-15 error and runtime results 69

A.1 Numerical results for inequality proof where the compared value is (1, φ) 86

xii

1. INTRODUCTION

1.1 Background on Transient Reactor Testing

The primary purpose of transient reactor testing is the safety and performance analy-

sis of fuel and other reactor components. Since the March 2011 events at the Fukushima

Daiichi Nuclear Power Plant in Japan, there has been significant governmental demand for

the development of accident tolerant fuels in light water reactors (LWR) [6]. Currently,

two facilities are capable of testing fuels under these extreme conditions: the Annular Core

Research Reactor (ACRR) at Sandia National Laboratory (SNL) and the Transient Reactor

Testing Facility (TREAT) at Idaho National Laboratory (INL) [7]. TREAT had been put

in stand-by status in 1994, but in 2014 a Final Environmental Assessment by the Depart-

ment of Energy (DOE) approved the restart of the facility in order to resume nuclear fuel

testing[8].

TREAT is an graphite-moderated, air-cooled, thermal reactor which began operation

in 1959. The reactor was designed to subject fuels and experimental apparatus to extreme

power pulses, for fast reactor type components [9]. The primary purpose for the restart

of the facility is to use these pulses to simulate accident scenarios and test the integrity of

accident tolerant LWR fuels. TREAT is expected to resume experimentation and testing

by 2020. In addition to the substantial upgrades of TREAT’s electronic and mechanical

systems during the restart, advance computer models of the reactor are in development.

These models have a mutualistic relationship with TREAT: validating fuel models with

experimentation and using reactor models to streamline experimental procedures. De-

velopment of these models has renewed a significant interest in implementing transient

reactor simulation methods in modern computational tools.

Transient reactor simulation methods have been developed for several decades. The

1

revitalization of TREAT and other transient reactor testing efforts have brought special at-

tention to the methods’ implementation in modern computational tools. The DOE, through

its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program, has especially

sought the development of transient multiphysics capability in INL’s MOOSE (Multi-

physics Object-Oriented Simulation Environment). This research intends to investigate

and develop the improved quasi-static method (IQS) with these modern tools. IQS is a

transient neutronics method intended to improve computational efficiency. Improving this

efficiency is vital for reactor simulations that would otherwise be overbearing to evaluate.

In order to apply IQS to full transient reactor models, implementation of multiphysics is

required. The following two sections provide an overview of time-dependent neutronics

and multiphysics solution methods.

1.2 Time-Dependent Neutron Transport

Transient modeling of nuclear reactors has been a chronically formidable task due to

its computationally expensive nature. The difficulty in transient reactor modeling is due

to:

1. the high-dimensionality of the phase-space for the governing equations that describe

the flux of neutrons (6-D+time for multigroup neutron transport and 4-D+time for

multigroup neutron diffusion), and

2. the fact that the time discretization has to be implicit, which leads to a stiff system

of equations.

The transport equation has seven independent variables: space (~r), energy (E), direction

(~Ω), and time (t) [10]. Nuclear reactor simulations often utilize the neutron diffusion

approximation, which carefully eliminates the dependence on direction. For the purpose

of this research, neutron diffusion is discussed exclusively.

2

For computational purposes, the neutron diffusion equation is discretized in space,

energy, and time. There are several viable discretization schemes for each of these vari-

ables. In this research effort, FEM is used for space discretization and multigroup for

energy discretization [11, 10]. Since the purpose of this research involves temporal de-

pendence, discussion of tempoeral discretization is kept general at this stage. Most reactor

computation frameworks discretize the time variable of flux directly using a multitude

of schemes (Euler, Crank-Nicholson, Runge-Kutta, etc.). However, the solutions of flux

can be particullary stiff due to the speed of neutrons, especially in a pulsing reactor [12].

Therefore, computationally expensive implicit schemes are necessary with many points

of discretization (time steps). The following subsections describe two alternate techniques

for transient simulation: point reactor kinetics and the improved quasi-static method (IQS).

These methods are meant to reduce computational expense of evaluating time-dependent

neutron population distributions while maintaining accuracy.

1.2.1 Point Reactor Kinetics

A common solution process for neutron kinetics is the evaluation of the point reactor

kinetics equations (PRKE) [13]. The derivation of this equation involves factorizing flux

into a space-dependent shape and time-dependent amplitude. This factorization immedi-

ately creates a large assumption that the spatial variance of the flux is time-independent.

The amplitude has the same temporal stiffness as flux; however, the PRKE takes very little

computational effort to evaluate because the many variables from the spatial discretization

only need to be evaluated for the initital (steady state) distribution. For all time steps in the

transient, the spatial shape is assumed fixed and only the PRKE, a small system of ODEs,

needs to be evaluated for the time-dependent amplitude.

3

1.2.2 Improved Quasi-Static Method

IQS is a spatial kinetics method that involves factorizing the flux solution into space-

and time-dependent components [14, 15, 16, 17, 18]. These components are the flux’s

amplitude and its shape. Amplitude is only time-dependent, while the shape is both space-

and time-dependent (as opposed to the PRKE approach where the shape was constant in

time). However, the impetus of the method is the assumption that the shape is only weakly

dependent on time. Therefore, the variable for the multi-dimensional diffusion evaluation

is expected to be less stiff than the flux itself, without making the assumption that spatial

variance is time-independent. As a result, the shape may not require an update at the same

frequency as the amplitude function, but only on larger macro-time steps.

Due to the factorization of the flux into a shape and an amplitude, the latter two

variables are coupled. Ott in [14] first investigated the coupling of shape and amplitude in

a quasi-static nature, but did not include the time derivative in the shape equation. Later, in

[19], Ott incorporated the time derivative of shape in the equation, yielding better results;

this also led to the technique’s name: the Improved Quasi-Static method. The resulting

system of equations is nonlinear [15]. Nonlinear problems require an iterative process to

evaluate, either fixed-point (Picard) or Newton iteration. Sissaoui et al. [18], Koclas et

al. [20], Devooght et al. [16], and Monier [17] all use fixed-point iterative techniques for

their IQS simulations, the main difference among them is their criteria for convergence.

Devooght et al. in [16] also utilizes a Newton iteration technique.

1.3 Time-Dependent Reactor Dynamics

Transient reactor analysis involves coupling neutronics with other physics such as

thermal hydraulics, fuel mechanics, etc. to enable temperature feedback in the neutronics

simulations. This coupling is known as multiphysics simulation. Multiphysics simulation

is often a daunting task because it requires communication of coupled variables that are

4

being evaluated with a myriad of techniques. The coupling is also usually nonlinear re-

quiring Picard or Newton iteration techniques. Programs, such as MOOSE, provide the

capability of evaluating, communicating, and iterating different physics.

MOOSE is a multiphysics framework being developed at INL that presents the ar-

chitecture for physics-based applications [21]. In order to robustly implement IQS in

the MOOSE framework for multiphysics simulation, each coupled physics application

requires consideration. Rattlesnake is a large application in MOOSE that involves deter-

ministic radiation transport physics. Currently, Rattlesnake is able to solve steady-state,

transient, and k-eigenvalue neutron transport and diffusion problems using finite element

methods (FEM) [22]. BISON is the application for evaluating fuel temperature and struc-

tural properties [23]. RELAP-7 is the main safety analysis application, but focuses on

variables involved with hydrodynamic analysis [24]. MAMMOTH is the over-arching ap-

plication that couples all these physics by recomputing cross-sections for Rattlesnake and

source terms for BISON and RELAP-7 [5].

IQS is a manipulation of neutronics variables, so it is solely developed within the

Rattlesnake application. However, proper treatment of multiphysics with IQS is vital for

computational optimization. The quasi-static nature of IQS can be extended to multi-

physics simulation by determining the proper time scales for each physics. Considering

TREAT, shape is the slowest varying variable and amplitude is fastest, while fuel temper-

ature is in between. Varying time step sizes for each variable can considerably improve

computational efficiency, which is the nature and purpose of IQS application.

1.4 Objective

The goal of this research is to continue the investigation and development of the

improved quasi-static method for minimizing computation expense for transient reactor

simulations, while maintaining accuracy. This goal is pursued with three objectives:

5

1. Establish IQS performance for various iteration techniques

2. Validate time step convergence for IQS with high order time discretization schemes

3. Apply IQS to multiphysics simulations

Iteration convergence analysis involves investigating iteration techniques for nonlin-

ear problems and convergence criteria. For this objective, IQS is implemented into an

easily modifiable, prototype-like code in MATLAB. High order time discretizing schemes

were also implemented in the prototyping code to investigate time step convergence. The

prototype also guides the development of IQS in the large FEM framework of Rattlesnake/-

MOOSE, where more complex examples and benchmarks can be tested. Time step con-

vergence is also analyzed for these examples. Development in Rattlesnake also spawns the

opportunity to test IQS with multiphysics, namely temperature feedback and time adapta-

tion. Applying IQS to multiphysics simulations allows insight to the performance of IQS

for full transient reactor simulations, particularly for TREAT modeling.

6

2. IMPROVED QUASI-STATIC METHOD

2.1 Theory

To derive the IQS equations, the time dependent neutron diffusion equation with de-

layed neutron precursors are presented by Equations (2.1a) and (2.1b).

1

vg
∂φg

∂t
=
χgp
keff

(1− β)
G∑

g′=1

νg
′
Σg′

f φ
g′ +

G∑
g′ 6=g

Σg′→g
s φg

′

+
I∑
i=1

χgd,iλiCi − (−∇·Dg∇+ Σg
r)φ

g , 1 ≤ g ≤ G (2.1a)

dCi
dt

=
βi
keff

G∑
g=1

νgΣg
fφ

g − λiCi , 1 ≤ i ≤ I (2.1b)

where,

φg = Scalar flux in energy group g

Ci = Concentration of delayed neutron precursor i

Σg
f = Fission cross section in energy group g

keff = k-eigenvalue of initial flux evaluation

Σg
r = Removal cross section in energy group g

Σg′→g
s = Scattering cross section from energy group g′ to g

vg = Neutron velocity in energy group g

χgp = Fission spectrum of prompt neutrons

χgd,i = Fission spectrum of delayed neutrons from precursor i

νg = Total number of neutrons per fission

Dg = Diffusion coefficient in energy group g

7

λi = Decay constant of precursor i

βi = Delayed neutron fraction from precursor i

β = Total delayed neutron fraction (β =
∑I

i=1 βi)

Most reactor computation frameworks, including Rattlesnake, discretize the time

variable directly with these equations using a multitude of schemes (Implicit Euler, Crank-

Nicholson, implicit Runge-Kutta, etc.). In this paper, the method of discretizing Equations

(2.1a) and (2.1b) is generally referred to as “implicit discretization”. This research intends

to improve upon this method by instead implementing the improved quasi-static method

(IQS) for neutron kinetics and implement it within a multiphysics setting.

IQS involves factorizing the flux from Equation (2.1a) into time-dependent amplitude

(p) and space- and time- dependent shape (ϕ). The resulting equation is the shape-diffusion

equation with precursors represented by Equations (2.2a) and (2.2b).

1

vg
∂ϕg

∂t
=
χgp
keff

(1− β)
G∑

g′=1

νg
′
Σg′

f ϕ
g′ +

G∑
g′ 6=g

Σg′→g
s ϕg

′

−

(
−∇·Dg∇+ Σg

r +
1

vg
1

p

dp

dt

)
ϕg +

1

p

I∑
i=1

χgd,iλiCi, 1 ≤ g ≤ G

(2.2a)

dCi
dt

=
βi
keff

p

G∑
g=1

νgΣg
fϕ

g − λiCi , 1 ≤ i ≤ I (2.2b)

We note that the time-dependent shape equation is similar to the time-dependent flux

equation, with the following modifications:

1. The shape equation contains an additional term equivalent to a removal cross section,

8

1
vg

1
p
dp
dt

.

2. The delayed neutron source term is divided by p.

3. The system of equations is now nonlinear due to the factorization.

4. An equation is needed to obtain the amplitude p.

To derive the amplitude equation, the shape/precursors equations are weighted by

a space-dependent function and integrated over the phase-space. The weight function is

typically the adjoint flux φ∗g at the initial time, which can be proven to minimize truncation

error [10]. The final expressions are given below:

dp

dt
=

[
ρ− β̄

Λ

]
p+

I∑
i=1

λ̄iξi (2.3a)

dξi
dt

=
β̄i
Λ
− λ̄iξi 1 ≤ i ≤ I (2.3b)

This equation is also known as the point reactor kinetics equation (PRKE); where the re-

activity, effective delayed-neutron fraction, and delayed-neutron precursor decay constant

are defined as follows:

ρ− β̄
Λ

=

∑G
g=1

(
φ∗g,

χg
p

keff

∑G
g′=1 ν

g′
p Σg′

f ϕ
g′ +

∑G
g′ 6=g Σg′→g

s ϕg
′
+ (∇·Dg∇− Σg

r)ϕ
g
)

∑G
g=1

(
φ∗g, 1

vg
ϕg
)

(2.4a)
β̄

Λ
=

I∑
i=1

β̄i
Λ

=
I∑
i=1

1

keff

∑G
g=1(φ∗g, χgd,iβi

∑G
g′=1 ν

g′Σg′

f ϕ
g′)∑G

g=1

(
φ∗g, 1

vg
ϕg
) (2.4b)

λ̄i =

∑G
g=1(φ∗g, χgd,iλiCi)∑G
g=1(φ∗g, χgd,iCi)

(2.4c)

The following inner product definition has been used: (φ∗g, f) :=
∫
D
φ∗g(~r)f(~r)d3r.

Additionally, in order to impose uniqueness on the factorization and to derive the

9

PRKE, the following normalization condition is imposed:
∑G

g=1

(
φ∗g, 1

vg
ϕg
)

= constant

[15].

Solving for the shape in Equation (2.2a) can become expensive, especially in two

or three dimensions, and even more so when using the transport equations in lieu of the

diffusion equations. Using IQS, one expects the time dependence of the shape to be weaker

than that of the flux itself, thus allowing for larger time step sizes in updating the shape.

The PRKE equations form a small ODE system and can be solved using a much smaller

time step size. In transients where the shape varies much less than the flux, IQS can thus

be very computationally effective. The two-time scale solution process, a micro scale for

the PRKE and a macro scale for the shape, is illustrated in Figure 2.1.

Figure 2.1: IQS method visualization [1]

2.1.1 Operator Notation and Extension of IQS to Multigroup Transport Equations

For simplicity, the previous section only described the IQS implementation using the

neutron diffusion equation. However, deriving the IQS form for other neutron balance

equations (e.g., transport, simplified transport, etc.) is very similar. To this end, we re-

write the neutron conservation equations in operator form, shown in Equation (2.5).

1

vg
∂Ψg

∂t
=
∑
g′

(
Hg′→g + P g′→g

p

)
Ψg′ − LgΨg + Sgd (2.5)

10

where Ψg is the multigroup neutron flux (angular flux in the case of transport), Hg′→g is

the scattering operator, P g′→g
p is the prompt neutron production operator, Lg is the loss

operator, and Sgd is the delayed neutron source operator. Using Equation (2.1a), the reader

may easily obtain the functional form for these operators in the case of a diffusion ap-

proximation. Next, the factorization Ψg(~r, ~Ω, t) = p(t)ψg(~r, ~Ω, t) is introduced, where the

shape is denoted by ψg, leading to the following shape equations, Equation (2.6):

1

vg
∂ψg

∂t
=
∑
g′

(
Hg′→g + P g′→g

p

)
ψg
′ −
(
Lg +

1

vg
1

p

dp

dt

)
ψg +

1

p
Sgd (2.6)

Finally, the PRKE parameters are defined by Equations (2.7) and (2.8), where (Ψ∗g, f g) =∫
4π

∫
D

Ψ∗g(~r, ~Ω)f g(~r, ~Ω)d3rd2Ω.

ρ− β̄
Λ

=

∑G
g=1

(
Ψ∗g,

∑
g′(H

g′→gg + P g′→g
p − Lg′δg′g)ψg

′
)

∑G
g=1

(
Ψ∗g, 1

vg
ψg
) (2.7)

β̄

Λ
=

I∑
i=1

β̄i
Λ

=
I∑
i=1

∑G
g=1(Ψ∗g,

∑
g′ P

g′→g
d,i ψg

′
)∑G

g=1

(
Ψ∗g, 1

vg
ψg
) (2.8)

where P g′→g
d,i is the delayed-neutron operator for precursor group i.

This section is simply meant to show the theoretical expandability of IQS to transport

problems and its derivation in operator notation. As stated previously, this research only

applies and tests IQS with diffusion problems.

2.2 Iterative Solution Techniques

As we noted in Section 2.1, shape-PRKE equations are a nonlinear system and thus

may be solved in a iterative manner. Each macro time step can be iterated so the best shape

is used to compute power at the micro time steps. Sissaoui et al. from [18], Koclas et al.

from [20], Devooght et al. from [16], and Monier from [17] all use iterative techniques for

11

their quasi-static simulations. They all undergo a similar process:

Step 1: Compute the PRKE parameters at the end of the macro step using the last computed

shape

Step 2: Linearly interpolate the computed PRKE parameters over the macro step

Step 3: Solve the PRKE on micro steps over the entire macro step

Step 4: Solve the shape equation on the macro step using the computed values of p and

dp/dt.

Step 5: Check if the shape solution has converged:

– No: Repeat the same macro time step

– Yes: Move on to the next macro time step

This process can be visualized by Figure 2.2.

The major difference between the methods of these authors is the convergence cri-

teria used. Sissaoui and Koclas [18, 20] use fixed point iteration where the criteria is the

simply the normalized difference between the last two computed shapes. Monier in [17]

also does fixed point iterations with the same criteria, except the solution is scaled by∑G
g=1(φ∗g , 1

vg
ϕg(tn))∑G

g=1(φ∗g , 1
vg
ϕg(tn+1))

after each iteration. Devooght in [16] does a Newton-SOR iteration

where the residual of the shape function evaluation is the convergence criteria and next

iteration’s solution is computed using Newton-Raphson method.

These techniques are by no means an exhaustive list of the possible iteration tech-

niques for IQS. Dulla et al. in [15] does an in depth analysis of the fixed point iteration

technique most similar to Sissaoui and Koclas, involving convergence rates and solution

results. However, no comprehensive analysis of iteration techniques exists, comparing

12

Solve shape equations
over macro time step

Compute PRKE parameters
over macro time step

Solve PRKE using micro
steps

Update p and dp
dt

Solve other physics
components

Check for
convergence

IQS Solve:

Multi-physics:

no

yes

Figure 2.2: Visualization of IQS fixed-point iteration process

13

both Newton and fixed-point convergence rates. The following sections describes each

iteration technique investigated by this research.

2.2.1 Shape Convergence

The most obvious convergence criteria is to observe the change in the shape from one

iteration to the next. Monier in [17] observes theL∞ norm of the shape for the convergence

criteria, described in Equation (2.9). However, any norm can be used for the criteria, so a

L2 norm is another possible criteria, described by Equation (2.10).

max
∣∣∣ϕ(k+1)

n − ϕ(k)
n

∣∣∣
max

∣∣∣ϕ(k+1)
n

∣∣∣ < εϕ (2.9)

∥∥∥ϕ(k+1)
n − ϕ(k)

n

∥∥∥
L2∥∥∥ϕ(k+1)

n

∥∥∥
L2

< εϕ (2.10)

where n is the time step, k is the iteration number, and εϕ is the numerical criteria pro-

vided by a user. Through testing, iterations do not always converge; in this circumstance,

the maximum number of iterations is reached.

2.2.2 Property Convergence

Monier in [17] describes other properties, other than shape, to observe for conver-

gence, shown in Equations (2.11) - (2.13). These criteria can be added constraints to

Equation (2.9) or be in supplement to.

(ρ
Λ

)(k+1)

−
(ρ

Λ

)(k)

< ερ (2.11)

pk+1
n − pkn < εp (2.12)

K
(k+1)
n −K0

K0

< εK (2.13)

14

where K is the IQS uniqueness expression:

K(k+1)
n =

G∑
g=1

(
φ∗g,

1

vg
ϕg,(k+1)
n

)
(2.14)

ερ is the reactivity convergence criteria, εp is the amplitude convergence criteria, and

εK is the constraint convergence criteria.

2.2.3 Solution Scaling

In order to preserve the uniqueness criteria, it is beneficial to scale the shape such

that the Kn is constant, shown in Equation (2.15). This scaling can also be done after each

iteration, to insure that the uniqueness criteria is satisfied whenever the shape is evaluated.

ϕgn = ϕg,(last)
n

K0

K
(last)
n

(2.15)

2.2.4 Preconditioned Jacobian-Free Newton-Krylov

By far, the most common nonlinear system iteration method in MOOSE is Precondi-

tioned Jacobian-Free Newton-Krylov with Generalized Minimal RESidual method (GM-

RES) as the linear system solver. This section only describes the methods’ application to

IQS; a very detailed description of PJFNK is transcribed by Knoll in [25]. Essentially,

the IQS system of equations can be described by Equation (2.16). Where A is a matrix

operator, ϕ is the solution vector, and F is the forcing vector.

A(ϕ(p))ϕ = F (ϕ, p, t) (2.16)

Applying the residual based Newton-method yields:

Jδϕ = −R(ϕ, p) (2.17)

15

where J is the Jacobian matrix defined as Jij = ∂Ri/∂ϕj , δϕ is the error in the iterating

solution, and R is the residual vector defined as Aϕ − F (most methods simply define

the residual instead of evaluating this expression). For IQS, a residual evaluation entails a

PRKE parameter evaluation and the PRKE evaluation over the entire macro-step. Apply-

ing a preconditioner P yields:

(JP−1)(Pδϕ) = −R(ϕ, p) (2.18)

This resulting system can be split into two systems, represented by Equations (2.19) and

(2.20).

(JP−1)w = −R(ϕ, p) (2.19)

δϕ = P−1w (2.20)

Solving Equation (2.19) requires the evaluation of Jacobian operator, which is done each

GMRES iteration in two steps:

1. Approximately solve the preconditioner system for y: Py = w

2. Perform matrix-free Jacobian operation: Jy ≈ [R(ϕ+ εy, p′)−R(ϕ, p)]/ε

This Jacobian operation is a finite difference approach. ε is a perturbation scalar and p′ is

the amplitude computed with PRKE parameters calculated from the perturbed shape. For

IQS, the PRKE and its parameters must be evaluated for the perturbed and original system,

although the unperturbed residual is stored from the beginning of the PJFNK iteration.

2.3 Predictor-Corrector IQS (IQS P-C)

The Predictor-Corrector (P-C) version of IQS factorizes the flux and derives the

PRKE the same way as the standard version, but the solution of the coupled system of

equations is different. In the IQS P-C version, the flux equations (not the shape equations)

16

are solved (represented by Equations (2.1a) and (2.1b)) in order to obtain a predicted flux

solution. This predicted flux is then converted to a shape by rescaling it as follows:

ϕgn+1 = φgn+1︸︷︷︸
predicted

K0

Kn+1

(2.21)

where the scaling factors are given by

Kn+1 =
G∑
g=1

(
φ∗g,

1

vg
φgn+1

)
(2.22)

K0 =
G∑
g=1

(
φ∗g,

1

vg
ϕgn+1

)
=

G∑
g=1

(
φ∗g,

1

vg
φg0

)
(2.23)

The PRKE parameters are then computed with this shape using Equations (2.4a)-

(2.4c) and interpolated over the macro step, then the PRKE ODE system is solved on the

micro time scale. With the newly computed amplitude, the shape is rescaled into a flux

and the final corrected flux is given by:

φgn+1︸︷︷︸
corrected

= pn+1 × ϕgn+1 . (2.24)

The advantage to the predictor-corrector method is there is no iteration necessary for

this method and, in turn, is much simpler and faster than the standard IQS. Ikeda et al. in

[26] and Goluoglu et al. in [27] both use IQS P-C for complex, three-dimensional prob-

lems. Their results prove IQS P-C to be impressively effective, despite the de-coupling of

the system. Dulla et al. in [15] also describes an in depth comparison of IQS P-C with

traditional IQS.

17

2.4 Temperature Feedback

IQS is first and foremost a nuclear reactor simulation method. In nuclear reactors,

multiple physics affect the profile of the neutron flux. One of the simplest examples of

mulitphysics reactor simulations is adiabatic heat up with Doppler feedback. The principle

of Doppler feedback is that fission in a fuel causes the material to increase temperature

and induces a change in the neutronics properties. The material heat up is described by

Equation (2.25); where ρ is the material density, cp is the specific heat, T is temperature,

and κf is the energy released per fission [3]. The change in temperature of the material

mainly affects the thermal macroscopic absorption cross section described by Equation

(2.26) [3].

ρcp
∂T (~r, t)

∂t
= κf

G∑
g=1

Σg
fφ

g(~r, t) (2.25)

Σthermal
a (~r, t) = Σthermal

a (~r, 0)
[
1 + γ

(√
T −

√
T0

)]
(2.26)

2.4.1 Temperature Evaluation

Temperature evaluation (Equation (2.25)) is quite similar to the evaluation of the

delayed neutron precursors from Section 2.6. A typical implicit solver would simply use

the interpolated flux at end of the temperature time step for the right hand side of the

equation, a theta-method discretization. However, IQS has much more information about

the profile of the flux along the time step because of the micro-step amplitude evaluation.

Therefore, it is possible to solve for temperature using a semi-analytical approach, shown

by Equation (2.27).

T n+1 = T n +
κf
ρcp

G∑
g=1

(
a2(Σg

fϕ
g)n+1 + a1(Σg

fϕ
g)n
)

(2.27)

18

where n corresponds to the beginning of the temperature step. a1 and a2 are integration

coefficients defined by Equation (2.28) and Equation (2.29). Any interpolation of the

amplitude along the micro steps is possible for the integration, this application uses piece-

wise linear.

a1 =

∫ tn+1

tn

(
tn+1 − t′

∆t

)
p(t′)dt′ (2.28)

a2 =

∫ tn+1

tn

(
t′ − tn

∆t

)
p(t′)dt′ (2.29)

2.4.2 Intermediate Time Scale

For IQS, this temperature feedback affects both the shape equation and the reactivity

of the PRKE; thus, it is an additional nonlinear component to the already coupled shape-

amplitude equations. In foresight to the application of this component, temperature is

much more time dependent than the shape, but less so than the amplitude. Therefore, the

evaluation of temperature will have its own time scale. A possible solution process for a

problem with temperature feedback will have time three time scales portrayed in Figure

2.3. The first time scale is the shape solve, the second is the temperature evaluation as well

as the computation of PRKE parameters, and the third is the PRKE scale. It is important

to note that the number of time steps in each scale is arbitrary and meant only for visual

purposes.

2.4.3 Dynamical Time Scale Analysis

The temporal variance of flux, shape, temperature, and amplitude can be quantified by

defining a dynamical time scale (τ) for each physics. A small value τ means the variable

is quickly varying in time and consequently needs relatively small time steps for accuracy,

vice-versa for large τ . The general definition of τ is defined by Equation (2.30), where θ

19

tn tn+1

ϕ :

tn tn+1

T, ρ:

tn tn+1

p :

Step 2 Step 4 Step 6

Step 1 Step 3 Step 5

Step 7

ϕ

ρ p ρ p ρ

T

p,
d
p
d
t

Figure 2.3: Time scales and process of IQS with temperature feedback

is the physic component of interest.

τ =
1∣∣1
θ
dθ
dt

∣∣ (2.30)

Since each variable in discretized in time, a finite difference approximation will be made

for the dθ
dt

term and the average between the two corresponding time steps will be made

for the 1
θ

term. Additionally, τ is spatially dependent for flux and temperature, but only

the time dependent behavior of this quantity is of interest. Therefore, the L2 norm of each

term will be used to compute the approximate time scale (τ̃), formally defined by Equation

(2.31). θ represents a summation over groups for flux and shape.

τ̃n+1 =
‖θn+1 + θn‖L2

2

∆t

‖θn+1 − θn‖L2

(2.31)

According to the a priori hypothesis from previous sections, τ is large for shape, somewhat

smaller for temperature, and much smaller for amplitude and flux.

20

2.4.4 Programming Logic

The couplings between temperature, amplitude, and shape are all nonlinear, so itera-

tion processes are needed for each time scale. The amplitude and temperature need to be

iterated on the middle time scale until convergence on each temperature step. Then another

iterative process needs to occur in the shape time scale on all three variables. Figure 2.4

shows the programming diagram implement to execute this process. The time increment

of ∆tT corresponds to the time step that the temperature is evaluated.

2.5 Time Discretization Schemes

A vital part of the verification and validation for IQS is analyzing error convergence.

Since any time discretization scheme can be applied to the shape equation of IQS, it is

important to investigate IQS’s performance to a variety of these schemes. There is lack

of literature that applies IQS to schemes other than implicit Euler; higher order schemes

are never rigorously tested. This research intends to apply a variety of schemes, includ-

ing implicit Euler, Crank-Nicholson, backward difference formula (BDF), and diagonally

implicit Runge-Kutta (DIRK), to test stability and error convergence. For brevity in the

following sections, the shape-diffusion equation is represented by a general operator nota-

tion, described by Equation (2.32).

IV
∂ϕ

∂t
= Aϕ+ b (2.32)

where IV is the inverse velocity operator, A contains all the operations on ϕ from the

left-hand-side of Equation (2.2a), and b is the source from the precursors.

2.5.1 Theta Method Time Discretization

A fairly simple way to evaluate the shape equation is to employ the θ-scheme (0 ≤

θ ≤ 1, explicit when θ = 0, implicit when θ = 1, and Crank-Nicholson when θ = 1/2)

21

Save Old Solution

Save Current Solution

Interpolate Solution

Solve Temperature

Update PRKE Params

Solve PRKE

Check for
convergence (p, T)

If t = tn+1

Shape Solve

Check for
convergence (ϕ,Kn+1)

t = tn+1

t = tn + ∆tT

no yes

no
t

=
t

+
∆
tT

yes

no

yes

tn = tn+1

Figure 2.4: Visualization of fixed-point iteration and temperature update process for IQS

22

[28]. Generally, if there is a function u whose governing equation is du
dt

= f(u, t), then the

θ-discretization is:

un+1 − un

∆t
= (1− θ)f(un, t) + θf(un+1, t) . (2.33)

where n is the previous time step and n+ 1 is the time step being evaluated. Applying this

to Equation (2.32) yields:

ϕn+1 = (IV −∆tAn+1)−1 [∆t(1− θ)(Anϕn + bn) + ∆tθbn+1 + IV ϕn] (2.34)

2.5.2 Backward Difference Formulae

An extension of implicit discretization is the backward difference formulae (BDF)

[29]. BDF’s can increase the order of error convergence by interpolating solutions from

previous time steps. The general formula for BDF is described by Equation (2.35).

ϕn+1 = (IV −∆tAn+1)−1

[
IV

k∑
j=1

αkjϕn−(k−j) + ∆tαkk+1bn+1

]
(2.35)

where k is the order of the error convergence and αkj (vector of length k+1) are coefficients

chosen such that the temporal truncation error is minimized. Table 2.2 shows the values of

α for every order implemented in this thesis. The benefit of using BDF is that any order of

convergence can be applied and are practically stable up through fourth order, so the IQS

approximation can easily be validated for high order discretization.

2.5.3 Singly-Diagonally-Implicit Runge-Kutta Method

Singly-Diagonally-Implicit Runge-Kutta Method (SDIRK) is a powerful discretiza-

tion method that involves solving the linear system in stages to reach a high order solution

[30]. Generally, the method can be depicted by using a system where dy/dt = f(t, y) and

23

Order (k) αk1 αk2 αk3 αk4 αk5
1 1 1
2 -1/3 4/3 2/3
3 2/11 -9/11 18/11 6/11
4 -3/25 16/25 -36/25 48/25 12/25

Table 2.2: α values for relevant BDF methods

Equation (2.36).

yn+1 = yn + ∆t
s∑
i=1

biki (2.36)

where,

ki = f(tn + ci∆t, yn + ∆t
i∑

j=1

aijkj) (2.37)

The coefficients aij , bi, and ci can be represented by a Butcher tableau:

c1 a11

’c2 a21 a22

...
...

... . . .

cs as1 as2 . . . ass

b1 b2 . . . bs

An example used extensively in this research is SDIRK33, which is a third-order method

with three stages.

λ λ

1
2
(1 + λ) 1

2
(1− λ) λ

1 1
4
(−1 + 16λ− 6λ2) 1

4
(5− 20λ+ 6λ2) λ

1
4
(−1 + 16λ− 6λ2) 1

4
(5− 20λ+ 6λ2) λ

where λ ≈ 0.4358665215 satisfies 1− 9λ+ 18λ2 − 6λ3 = 0.

24

2.5.4 Time Adaptation

IQS aims at reducing the time discretization error in the flux solution by splitting the

flux into an amplitude (highly resolved at a micro time scale) and a shape (whose time-

dependence is weaker than that of the flux itself). Thus, by construction, the IQS approach

may employ larger time-step sizes for comparable temporal error. Further enhancements

can be gained by using time adaptation (or time step control) in order to increase or reduce

the macro time step size for the shape evaluation, depending on error estimates. A step-

doubling technique is chosen as the time adaptation technique [31]. The step doubling

technique involves estimating the local error for a certain time step by taking the difference

between a solution with one full step (ϕg∆t) and a solution with two half steps (ϕg∆t/2).

Note: ϕ is changed to φ for implicit discretization and IQS P-C.

The relative error is computed as follows:

en =

∥∥∥∑G
g=1 ϕ

g
∆t/2 −

∑G
g=1 ϕ

g
∆t

∥∥∥
L2

max
(∥∥∥∑G

g=1 ϕ
g
∆t/2

∥∥∥
L2
,
∥∥∥∑G

g=1 ϕ
g
∆t

∥∥∥
L2

) (2.38)

If the error is smaller than the user-specified tolerance, etol, the time step is accepted. In

addition, a new time step size is estimated as follows:

∆tnew = S∆t

(
etol
en

) 1
1+q

(2.39)

where q is the convergence order of the time integration scheme being used and S ' 0.8

is a safety factor. If the error is larger than the user-specified tolerance, the time step is

rejected. A new time step size is estimated using Equation (2.38) as well. This process can

be visualized by Figures 2.5 and 2.6. Where a step involves a full convergence of shape,

amplitude, and any multiphysics on the respective time step.

25

To investigate IQS’s performance with step-doubling time adaptation, the adaptation

will be applied to implicit discretization method, traditional IQS, and IQS P-C. Each of

these methods will be applied to several diffusion problems; the number of time steps

taken and the resulting error will be used to compare the methods.

tn tn+1/2 tn+1

Step 1

Step 2 Step 3 φg∆t

φg∆t/2

Figure 2.5: Visualization of step doubling process on time-line

Step 1

Step 2 Step 3 Compute
en

Compute
∆tnew

en < etol

Restore
Solutions

no

yes

Figure 2.6: Visualization of step doubling process with coding logic

2.6 Delayed Neutron Precursor Updates

This section presents the time-integration method used to solve coupled flux/shape

and precursor equations, represented by Equations (2.1a)/(2.2a) and (2.1b)/(2.2b). First,

26

we note that we could keep this system of two time-dependent equations and solve it as a

coupled system. However, this is unnecessary and a memory expensive endeavor because

the precursor equation is only an ODE and not a PDE. Instead, one may discretize in time

the shape equation, which typically requires the knowledge of the precursor concentrations

at the end of the time step. This precursor value is taken from the solution, numerical or

analytical, of the precursors ODE.

2.6.1 Precursor Evaluation Using Theta Method Time Discretization

A common precursor evaluation technique is using the theta method, described in

Section 2.5.1. Applying this to Equation (2.2b):

Cn+1
i − Cn

i

∆t
= (1− θ)βiSnf pn − (1− θ)λiCn

i + θβiS
n+1
f pn+1 − θλiCn+1

i (2.40)

where Sf is the fission source equivalent for shape (Snf =
∑G

g=1(νΣg
fϕ

g)n). Rearranging

to solve for the precursor at the end of the time step yields

Cn+1
i =

1− (1− θ)∆tλi
1 + θ∆tλi

Cn
i +

(1− θ)∆tβi
1 + θ∆tλi

Snf p
n +

θ∆tβi
1 + θ∆tλi

Sn+1
f pn+1 (2.41)

Reporting this value of Cn+1
i , one can solve for the shape ϕn+1,g as a function of ϕn,g

and Cn
i (and pn, pn+1, dp/dt|n and dp/dt|n+1). Once ϕn+1,g has been determined, Cn+1

i

is updated. Applying this technique to implicit discretization is done by changing the

definition the fission source (Snf =
∑G

g=1(νΣg
fφ

g)n) and eliminating all p terms.

2.6.2 Analytical Precursor Integration

Another technique to evaluating the precursor equation is to use a exponential op-

erator and integrate the time derivative analytically. Applying this operation to Equation

27

(2.2b) yields:

Cn+1
i = Cn

i e
−λi(tn+1−tn) +

∫ tn+1

tn

βi(t
′)Sf (t

′)p(t′)e−λi(tn+1−t′)dt′ (2.42)

Again, this can be applied to implicit discretization by altering the definition of the fission

source and eliminating p. Because Sf is not known continuously over the time step, the

integration can be done using any schemet (Riemann, trapezoid, Simpson’s, etc.). How-

ever, there is a very accurate representation of p(t) over the macro step from the PRKE

solve. In order to utilize this information, another possibility is to interpolate Sf linearly

over the macro step. Such that:

Sf (t) =
tn+1 − t
tn+1 − tn

Snf +
t− tn

tn+1 − tn
Sn+1
f tn ≤ t ≤ tn+1 (2.43)

Applying this to Equation (2.42) yields:

Cn+1
i = Cn

i e
−λi∆t +

(
â2,iS

n+1
f + â1,iS

n
f

)
βi (2.44)

With integration coefficients defined as:

â1,i =

∫ tn+1

tn

tn+1 − t′

∆t
p(t′)e−λi(tn+1−t′)dt′ (2.45)

â2,i =

∫ tn+1

tn

t′ − tn
∆t

p(t′)e−λi(tn+1−t′)dt′ (2.46)

The amplitude (p) is included in the integration coefficient because it has been highly

accurately calculated in the micro step scheme, so a piecewise interpolation (linear, cubic,

etc.) between those points can be done to maximize accuracy.

28

2.7 Rattlesnake Implementation

Rattlesnake is a MOOSE-based application developed INL specific to solving radia-

tion transport problems with multiphysics capabilities. MOOSE is a finite-element based,

multiphysics framework that gives the general architecture for the development of physics

application like Rattlesnake. At the heart of Rattlesnake is the action system, which pro-

vides a means to consolidate the MOOSE input syntax (which can be quite larger for

multigroup transport simulations), so that a user does not have to define every kernel,

variable, etc., used in the problem. Rather, the user inputs an equation description (e.g.,

Diffusion, Sn, Pn, etc.) and a solution method (e.g., SAAF, LS, CFEM, DFEM, etc.), and

the action system will incorporate all the necessary physics involved (kernels, boundary

conditions, postprocessor, etc.).

2.7.1 Executioner

An IQS excecutioner was created to implement the IQS method. The IQS executioner

derives from the Transient executioner in MOOSE. The IQS executioner contains a loop

over micro time steps that computes the PRKE solution and then passes p and dp
dt

for

the Transient executioner to evaluate the shape equation at each macro step. The PRKE

solve is performed with a user specified option of backward-Euler, Crank-Nicholson, or

SDIRK33. The IQS executioner also supplements Transient Picard iteration process by

adding its own error criteria:

ErrorIQS =

∣∣∣∣∣
∑G

g=1

(
φ∗g, 1

vg
ϕg,n

)∑G
g=1

(
φ∗g, 1

vg
ϕg,0

) − 1

∣∣∣∣∣ (2.47)

2.7.2 Action System

The IQS implementation mostly requires the specific IQS executioner, described

above. However, IQS additional changes are in the Rattlesnake action system in order

29

to support the IQS execution. First, changes needed to be made in order to evaluate the

shape equation. The shape equation, after some manipulation, is very similar to the time-

dependent governing laws that Rattlesnake already solves. Using multigroup diffusion as

an example again, we show the various kernels employed and highlight the new or modi-

fied kernels.

∂

∂t

(
ϕg

vg

)
=
χgp
keff

G∑
g′=1

(1− β)νg
′
Σg′

f ϕ
g′

︸ ︷︷ ︸
FluxKernel

+
G∑

g′ 6=g

Σg′→g
s ϕg

′

︸ ︷︷ ︸
FluxKernel

− (−∇·Dg∇)ϕg︸ ︷︷ ︸
FluxKernel

− Σg
rϕ

g︸ ︷︷ ︸
FluxKernel

− 1

vg

FromExecutioner︷︸︸︷
1

p

dp

dt
ϕg︸ ︷︷ ︸

IQSKernel

+
1

p

I∑
i=1

χgd,iλiCi︸ ︷︷ ︸
ModifiedF luxKernel

(2.48)

To enable Rattlesnake to solve this equation, an IQS removal kernel was created to

evaluate
∑G

g=1
1
vg

1
p
dp
dt
ϕg and added when the IQS executioner is called. Also, the precursor

kernel was modified to include the 1
p

term. Finally, the precursor auxkernel that evaluates

Equation (2.2b) using the analytical integration method described in Section 2.6.

2.7.3 PRKE Coefficients

In order to evaluate the PRKE coefficients, defined by Equations (2.4a)-(2.4c), four

postprocessors were created. The parameter calculations were separated by β̄i
Λ

numerator,

λ̄i numerator/denominator, ρ−β̄
Λ
/ β̄

Λ
denominator, and ρ−β̄

Λ
numerator. The first three are

relatively simple, only relying on material properties and solution quantities, then comput-

ing the elemental integral. The ρ−β̄
Λ

numerator requires the use of the MOOSE save_in

feature. This feature saves the residual from a calculated kernel or boundary contribution

in the shape evaluation to an auxiliary variable. The postprocessor then computes the inner

product of this variable and the initial adjoint solution. After each of these postprocessors

30

are evaluated, a user object pulls together all the values and performs the numerator/de-

nominator divisions. The resulting values are then passed to the executioner for the PRKE

solve.

2.7.4 Other Action Systems

For simplicity, IQS implementation has only been described for CFEM diffusion.

However, Rattlesnake has other action systems capable of transient simulation, where IQS

can be implemented and be effective. One of these action systems is DFEM diffusion,

where the only major difference from CFEM is the diffusion term in Equations (2.1a) and

(2.2a). However, in the derivation for IQS, this term is unaffected between shape and flux

evaluation. So saving the residual for this diffusion kernel in the save_in variable is the

only alteration to this action for IQS to function.

Additional action systems involve transport, but it is evident from Section 2.1.1 that

IQS implementation in these is straightforward as well. The main differences between a

diffusion implementation and a transport implementation are outlined below:

1. The form of the operators in the shape equations is different, but Rattlesnake has

already implemented all the kernels necessary to represent these operators. So no

change is necessary to these kernels is necessary for IQS. Additionally, the 1
vg

1
p
dp
dt

is

the same, so both action systems can use the same kernel.

2. The PRKE parameters also change because of the operators. For the (ρ − β̄) pa-

rameter, the same post-processor can be used with the save_in functionality in

MOOSE. The post-processor for β̄i must be re-written for transport, but takes a very

similar form as diffusion.

It is possible to implement IQS to any action system capable of transient simulation,

which include:

31

• CFEM-Diffusion

• DFEM-Diffusion

• SAAF-CFEM-SN

• SAAF-CFEM-PN

• LS-CFEM-SN

• DFEM-SN

However, for TREAT models and examples simulated in this research, CFEM-Diffusion is

a sufficient approximation. Therefore, IQS was only implemented and tested in this action

system.

2.7.5 Predictor-Corrector Modification

In order to preserve the already implemented standard version of IQS, an option in

the IQS executioner was created to specify which method is desired. Because the diffu-

sion solve is flux instead of shape, when predictor-corrector option is specified, the IQS

removal kernel (1
vg

1
p
dp
dt

) and the modified precursor kernel are bypassed, while all the post-

processors are still executed. However, it is difficult to rescale the flux to shape before

the PRKE parameter postprocessor are executed. So the parameters are computed using

the full flux, but amplitude is space independent and comes out of the integrals. As seen

in parameter definitions, when shape is replaced with flux, the amplitude comes out of

the integral and cancels out. So the conversion of the predicted flux in Equation (2.21) to

shape is unnecessary if the corrected flux is solved with Equation (2.49). After obtaining

the corrected flux, the precursors are re-evaluated using a EXEC_LINEAR statement.

φgn+1︸︷︷︸
corrected

= φgn+1︸︷︷︸
predicted

K0

Kn+1

pn+1 (2.49)

32

2.7.6 Input

The input file for IQS is very similar to the current transient diffusion input file. The

IQS input has a different executioner type and parameters. The executioner type is simply

IQS and input parameters include the number of micro time steps per macro step, the IQS

error tolerance, and the initial power. The Rattlesnake transient action system currently

requires a multi-app and transfer to compute and pass the initial φ and keff, which is present

in the transient input deck. However, IQS also requires an initial evaluation of the adjoint

flux, for the weighting function. So another input file and multi-app transfer was made for

the adjoint calculation.

Below is the syntax for the executioner block for an IQS input file. The predic-

tor_corrector logical determines whether to do IQS P-C or regular IQS. The IQS_-

error_tol is the tolerance for the IQS error represented by Equation (2.47) and will

at most picard_max_its iterations until convergence. The prke_scheme defines

the time discretization used for the PRKE solution. Where RK is SDIRK33, CN is Crank-

Nicholson, and IE is implicit-Euler.
[Executioner]
type = IQS
predictor_corrector = true/false
picard_max_its = 5
...
n_micro = 10000
IQS_error_tol = 1e-7
prke_scheme = ’RK’

[]

Since IQS needs to use the adjoint solution for the PRKE parameter evaluation, aux-

iliary variables need to be created for each group in the input file. Below is an example of

their definition:
[AuxVariables]
[./adjoint_flux_g0]

family = LAGRANGE
order = FIRST

[../]

33

[./adjoint_flux_g1]
family = LAGRANGE
order = FIRST

[../]
...

[]

Below is the syntax for the multi-app block to perform forward and adjoint steady-

state evaluations:

[MultiApps]
[./initial_solve]

type = FullSolveMultiApp
execute_on = initial
input_files = initial.i

[../]
[./adjoint_solve]

type = FullSolveMultiApp
execute_on = initial
input_files = adjoint.i

[../]
[]

Below is the syntax for the Transfer block to copy the initial and adjoint solutions

from the multi-apps.

[Transfers]
[./copy_solution]

type = TransportSystemVariableTransfer
direction = from_multiapp
multi_app = initial_solve
execute_on = initial
from_transport_system = diff
to_transport_system = diff

[../]
[./copy_adjoint]

type = MultiAppVariableTransfer
execute_on = initial
direction = from_multiapp
multi_app = adjoint_solve
from_variables = ’sflux_g0 sflux_g1 ...’
to_variables = ’adjoint_flux_g0 adjoint_flux_g1 ...’

[../]
[./copy_eigenvalue]

type = EigenvalueTransfer
execute_on = initial
direction = from_multiapp
multi_app = initial_solve

[../]
[]

34

2.7.7 Linear Solution Techniques

MOOSE contains a suite of solution techniques to solve the linear system generated

by the Rattlesnake action system. For most neutronics and reactor applications, direct

inversion (e.g., LU solve) of the system is overbearingly expensive, both computation-

ally and by memory usage. Therefore, the most common technique (default in MOOSE)

is GMRES linear iteration. For nonlinear systems, MOOSE employs Picard or PJFNK

nonlinear iterations, PJFNK is the default technique in MOOSE and will be the basis of

the following discussion. This technique is briefly described in Section 2.2.4. PJFNK

entails approximately solving the Jacobian action on the solution with a finite difference

approach using GMRES iteration. Each GMRES iteration requires a residual evaluation,

which becomes globally expensive with many iterations. Employing a preconditioner on

the solution can decrease the number of iterations and save execution time. The purpose of

the preconditioner is to resemble the Jacobian (reduce number of iterations), while being

easily invertable (preconditioner overhead). MOOSE has four useful assembly methods

for building an effective preconditioner:

1. Block Diagonal Preconditioning (default)

2. Single Matrix Preconditioner (SMP)

3. Finite Difference Preconditioner (FDP)

4. Physics Based Preconditioner (PBP)

When developing a kernel in MOOSE, a function is implement that evaluates the

Jacobian for each variable it depends on. In a multi-variable system, like multigroup dif-

fusion, the Jacobian contains "blocks" for each variable and the coupling between them.

Diagonal blocks contain the variable contribution to itself, i.e., diffusion and removal. The

35

off-diagonal blocks contain variable-to-variable contributions, i.e. scattering and fission.

The default method assembles only the diagonal blocks; this preconditioner is relatively

easy to invert, but is not optimal for reducing linear iterations. SMP assembles the diagonal

blocks and any off-diagonal blocks specified by the user. Assembling more off-diagonal

blocks reduces linear iterations (inputting all blocks requires only one GMRES iteration

for a linear system), but increases the expense of inverting the preconditioner. Therefore,

SMP requires extensive analysis for optimization. FDP simply does a finite difference ap-

proximation for the Jacobian based on residual evaluations. This method only requires one

GMRES iteration for a linear system, but is impractically expensive. PBP is an advanced

adaptation to SMP. This method assembles the preconditioner similarly to SMP, but each

block is inverted as a independent system and iteratively communicates with the rest of

the blocks. PBP can be effective for a lower block diagonal system, i.e., including only

downscattering blocks, because no communication iterations are required. Selecting an

effective preconditioner and assembly method is essential for maximizing computational

efficiency of large reactor simulations.

36

3. KINETICS EXAMPLES

Neutron kinetics is the study of the time-dependent nature of neutrons in a reactor.

More specifically, there is no coupling of neutron behavior with other physics, like thermal

hydraulic feedback. This section describes kinetics examples that IQS is tested with and

analysis of its performance. The examples range in complexity and application. The first

is a one-dimensional problem, designed for the prototype code in MATLAB. The next

one is from the Argonne National Lab (ANL) Benchmark Problem Book (BPB), and is a

common problem for testing codes and developing methods [3].

3.1 One Dimensional Prototype Problem

This example is very simple and computes quickly; it entails a one dimensional,

homogeneous 400 cm slab with a heterogenous perturbation in absorption cross section.

Figure 3.1 shows how the regions of the slab are divided and Table 3.1 shows the initial

material properties. Regions 2, 3, and 4 have slope perturbations at different points in time,

Table 3.2 shows the values of the absorption cross-section in each region at the times of

interest. The values of Σa between these times of interest are linear interpolations between

the given values.

1 1 1 1 2 3 1 1 1 1 1 1 1 1 4 4 1 1 1 1

Figure 3.1: 1-D slab region identification [1]

37

Table 3.1: 1-D slab material properties and problem parameters [1]

D(cm) Σa(cm
−1) νΣf (cm

−1) v(cm/s) β λ(s−1)
1.0 1.1 1.1 1,000 0.006 0.1

Table 3.2: 1-D slab absorption cross-section at times of interest [1]

Region Material Property 0.0 s 0.1 s 0.6 s 1.0 s 1.7 s
2 Σa(cm

−1) 1.1 1.1 1.095 1.095 1.095
3 Σa(cm

−1) 1.1 1.1 1.09 1.09 1.1
4 Σa(cm

−1) 1.1 1.1 1.105 1.105 1.105

Figure 3.2 shows the resulting baseline flux and relative power profile of the one-

dimensional problem. The baseline was computed using MATLAB’s ode15s function

which is a embedded Runge-Kutta time adaptive method for stiff problems, the error tol-

erance was set very tightly (10−12). The flux distribution shows that the core is relatively

large, thus different regions are weakly coupled. This baseline computation is used to com-

pute the error of the other time discretization methods. Figure 3.3a shows the shape profile

at various times during the transient. It is apparent that the shape is very time-dependent,

so it is expected that IQS has marginal accuracy gain for a given time step size.

3.1.1 IQS Iteration Convergence

IQS, as previously stated, is a system of nonlinear equations between shape and am-

plitude. These equations needed to be iterated to numerically converge to an accurate

solution. Section 2.2 describes various iteration techniques for fixed-point and Newton

schemes. Figure 3.4 shows the number of fixed-point iterations required for a 10−11 toler-

ance over the transient. The criteria listed in the legend are described as:

1. L∞ → Equation (2.9)

38

(a) Flux profile at various times (b) Power profile over transient

Figure 3.2: Baseline flux and power distribution

(a) Shape profile at various times (b) Power and reactivity profile over transient

Figure 3.3: IQS flux and power distribution

39

2. L2 → Equation (2.10)

3. Reactivity→ Equation (2.11)

4. Amplitude→ Equation (2.12)

5. K criteria→ Equation (2.13)

6. All properties→ Equations (2.11)-(2.13)

This plot shows that 1-4 have approximately the same convergence behavior, but the K

criteria converges to a certain error. Figure 3.5 shows the resulting error the K criteria con-

verges to for different points of rescaling the shape. The rescaling is described by Equation

(2.15). Rescaling shape more frequently helps the error. However, rescaling every iteration

is somewhat artificial because it does not consider changes spatially. Regardless, an error

of 10−5 is quite large and it is expected that the magnitude is due to the explicit treatment

of precursors (Equation (2.41)). Switching to an analytical elimination (Equation (2.44))

does not converge as well, but the error is much smaller, seen in Figure 3.6.

3.1.2 Time Step Convergence

Time step convergence analysis involves evaluating a problem with various refine-

ments in step size and comparing the resulting errors with the time step size. Plotting error

versus ∆t on a log-scale should produce a relatively strait line with a slope equal to the

order of the time discretization method. In order to evaluate the performance and error

convergence of IQS, the slab was simulated with varying time discretization methods and

time step sizes. Figure 3.7 shows these convergence plots of five different discretization

methods for implicit discretization, IQS, and IQS P-C. These plots were generated from

the results using the MATLAB prototype program. The plots show that IQS and IQS P-C

are convergent through fourth order BDF. Third order SDIRK did not show third order

40

Figure 3.4: Number of iterations for various convergence criteria, tolerance= 10−11, max
iterations= 20

Figure 3.5: Final iteration error for K convergence criteria

41

Figure 3.6: Final iteration error for K convergence criteria with analytical precursor elim-
ination

convergence, but, through extensive testing, SDIRK shows non-convergent behavior for

too stiff of problems.

There are higher discretization order that can be tested, but most practical applica-

tion do not go beyond second order. This paper shows an analysis of the first publicized

application of IQS with higher than second order discretization, which exposed unfore-

seen properties of IQS. When using higher order techniques, the interpolation of PRKE

parameters and shape for precursor integration become important to consider. Every other

application that was investigated linearly interpolates parameters for the PRKE evaluation.

Similarly, the shape used for the integration of the ODE for the precursors needs to have

higher order interpolation to preserve high order error convergence. This interpolation was

done using Lagragian and Hermite methods, both leading to successful convergence.

The 1D slab problem was also applied to the Rattlesnake implementation of IQS.

Figure 3.8 shows the error convergence for implicit Euler and BDF2 discretization of the

42

three methods. The results differ slightly from the prototype, especially in the fact that

IQS P-C performs better than IQS. Since Rattlesnake uses a PJFNK solver for the FEM

model, the number of time steps isn’t strictly proportional to the execution time. Figure

3.9 shows the error of the three methods as compared to the number of linear GMRES

iterations, which is a better mark for comparison in computation time. This figure shows

that IQS performs worse than implicit discretization for most time-step sizes, but IQS P-

C performs significantly better. This is due to the fact that IQS needs to iterate between

amplitude and shape to resolve its nonlinearity.

3.1.3 One-Dimensional Mini-Core Problem

This problem is exactly the same as the previous one-dimensional problem, except

the the core was reduced to 80 cm in length. The purpose of testing this problem is to

determine if a more tightly coupled core will yield better performance for IQS. Figure

3.10 shows the resulting baseline flux and relative power profile of the one-dimensional

mini-core problem. This plot shows that the perturbed regions affect the domain more

evidently. Figure 3.11 shows the shape profile at various times during the transient. This

plot shows that the shape is much less time-dependent than the previous large core. Figure

3.12 shows that IQS performs significantly better with this example than the large core.

43

(a) Implicit Euler (b) BDF2

(c) BDF3 (d) BDF4

(e) SDIRK33

Figure 3.7: Error convergence plots of implicit discretization, IQS, and IQS P-C with
various time discretization schemes

44

Figure 3.8: Error convergence plots of implicit discretization, IQS, and IQS P-C from
Rattlesnake implementation

Figure 3.9: Error convergence plots of implicit discretization, IQS, and IQS P-C vs. num-
ber of GMRES iterations

45

(a) Flux profile at various times (b) Power profile over transient

Figure 3.10: Mini-core baseline flux and power distribution

Figure 3.11: Shape profile at various times for one-dimensional mini-core

46

Figure 3.12: Time step convergence for one-dimensional mini-core with implicit Euler
discretization

3.2 TWIGL Benchmark

This benchmark problem originates from the Argonne National Lab Benchmark Prob-

lem Book [3]. It is a 2D, 2-group reactor core model with no reflector region shown in

Figure 3.13 [12]. This example is meant to be of progressive complexity from the previous

example. The transient of this reactor is very geometrically symmetrical with very little

temporal shape change. Therefore, IQS is expected to perform significantly better than the

implicit discretization method. Table 3.3 shows the material properties of each fuel region

and the ramp perturbation of Material 1.

3.2.1 TWIGL Convergence Analysis

Figs. 3.14 and 3.15 show the IQS solution as compared with the implicit discretiza-

tion solution. It is important to note the IQS shape plot is scaled differently than the

47

Figure 3.13: TWIGL benchmark problem description [2]

Table 3.3: TWIGL benchmark material properties and slope perturbation [2]

Σs(cm
−1)

Material Group D(cm) Σa(cm
−1) νΣf (cm

−1) χ g → 1 g → 2
1 1 1.4 0.010 0.007 1.0 0.0 0.01

2 0.4 0.150 0.200 0.0 0.0 0.00
2 1 1.4 0.010 0.007 1.0 0.0 0.01

2 0.4 0.150 0.200 0.0 0.0 0.00
3 1 1.3 0.008 0.003 1.0 0.0 0.01

2 0.5 0.050 0.060 0.0 0.0 0.00
ν v1(cm/s) v2(cm/s) β λ(1/s)
2.43 1.0E7 2.0E5 0.0075 0.08

Material 1 ramp perturbation:
Σa,2(t) = Σa,2(0)× (1− 0.11667t) t ≤ 0.2s

Σa,2(t) = Σa,2(0)× (0.97666t) t > 0.2s

48

implicit discretization flux plot (Figure 3.15) because the amplitude term is not included,

but the gradients of colors is comparable. These plots show that IQS is consistent in more

complex, higher dimensional problems in Rattlesnake. These plots also serve to illustrate

that IQS has a much more accurate solution, even at a significantly larger time step than

the implicit discretization. In order to demonstrate asymptotic convergence of IQS, im-

plicit Euler (IE) and second order BDF (BDF2) were applied to the TWIGL simulation.

Figure 3.16 plots the error convergence of IQS and the implicit discretization methods.

The curves show the impressive convergence of IQS for the highly transient TWIGL ex-

ample. The slope indicated in the legend are the linear slope of curves on the log plot,

these slopes should be similar to the order of the method (1 for IE and 2 for BDF2). IQS

shows a increased order because the PRKE is performing much of accuracy convergence

and it is computed using SDIRK33, a third order method.

(a) Power profile for entire transient (b) Power at cusp of profile

Figure 3.14: Power level comparison of TWIGL Benchmark

49

(a) Implicit Discretization flux (b) IQS Shape

Figure 3.15: TWIGL Benchmark flux/shape comparison at t = 0.2 [1]

Figure 3.16: Error convergence comparison of TWIGL Benchmark

50

3.2.2 TWIGL with Step Doubling Time Adaptation

Table 3.4 and Figure 3.17 show the results for TWIGL with time adaptation. The

results show that both IQS methods perform exceptionally well compared to implicit dis-

cretization. It also shows that traditional IQS performed better with large etol, while IQS

P-C was better with smaller etol.

Table 3.4: TWIGL step doubling results

Implicit Discretization IQS IQS P-C
Test etol Error Steps Solves Error Steps Solves Error Steps Solves
1 0.05 0.00012677 9 29 0.03380433 4 20 0.00323100 4 9
2 0.01 3.5555e-05 11 35 0.00166991 5 40 0.00263068 5 12
3 0.005 4.0364e-05 11 31 0.00886584 5 40 0.00160486 6 21
4 0.001 0.00294822 33 122 0.02976305 5 36 1.7527e-05 10 35
5 0.0005 0.00099778 39 131 0.00143781 6 55 1.4185e-05 16 74
6 0.0001 0.00019510 78 236 0.00016175 8 65 6.2903e-06 19 78
7 5.0e-05 0.00018372 112 342 6.0328e-05 12 163 1.5247e-06 24 92
8 1.0e-05 8.0564e-05 263 794 7.7103e-05 379 5729 9.8321e-07 48 210

51

Figure 3.17: Power level comparison of TWIGL Benchmark with time adaptation

52

4. DYNAMICS EXAMPLES

Reactor dynamics is the study of the time-dependent behavior of reactors as an en-

tire system. This study includes the physical nature of neutrons and their feedback with

power generation. This feedback includes coupling with other physical properties such

as temperature, fluids, material dynamics, etc. This section describes two dynamics ex-

amples, including the LRA benchmark and a TREAT experiment. These examples are

of increased complexity from the kinetics examples of Chapter 3. This Chapter also an-

alyzes IQS’s performance with these, which is vital for verification of IQS in real-world

problems.

4.1 LRA Benchmark

The LRA benchmark is a two-dimensional, two-group neutron diffusion problem

with adiabatic heat-up and Doppler feedback in thermal reactor [3]. It is a super prompt-

critical transient. To have better understanding on the cross sections given later, we present

the equations here:

− 1

v1

∂φ1

∂t
= −∇·D1∇φ1 + (Σa,1 + Σs,1→2)φ1 − ν(1− β)Sf −

2∑
i=1

λiCi, (4.1a)

− 1

v2

∂φ2

∂t
= −∇·D2∇φ2 + Σa,2φ2 − Σs,1→2φ1, (4.1b)

Sf =
2∑
g=1

Σf,gφg, (4.1c)

∂Ci
∂t

= νβif − λiCi, i = 1, 2, (4.1d)

∂T

∂t
= αf, (4.1e)

Σa,1 = Σa,1(~r, t = 0)
[
1 + γ

(√
T −

√
T0

)]
, (4.1f)

53

P = κSf , (4.1g)

where φ1, φ2 are the fast and thermal fluxes; v1, v2 are the averaged neutron velocities;

Σa,1,Σa,2 are the absorption cross sections; Σs,1→2 is the fast-to-thermal scattering cross

section; Σf,1,Σf,2 are the fission cross sections; ν is the averaged number of neutrons

emitted per fission; β1, β2 are the delayed neutron precursor fractions and β = β1 + β2;

C1, C2 are the delayed neutron precursor concentrations; λ1, λ2 are the decay constants of

the delayed neutron precursors; Sf is the fission reaction rate; P is the power density; T is

the temperature; κ is the averaged power released per fission; α is the combination of κ and

the specific heat capacity; γ is the Doppler feedback coefficient; T0(~r) = T (~r, t = 0). The

two-group diffusion equation are solved with zero flux boundary conditions on external

surfaces, reflecting conditions at symmetry boundaries and steady state initial conditions

which are obtained by solving

−∇·D1∇φ1 + (Σa,1 + Σs,1→2)φ1 =
1

k

2∑
g=1

νΣf,gφg, (4.2)

−∇·D2∇φ2 + Σa,2φ2 =Σs,1→2φ1. (4.3)

The eigenvalue k is used to modify the fission cross section for the transient simulations

with 1
k
Σf,g, g = 1, 2. The initial flux distribution shall be normalized such that the aver-

aged power density

P̄ ≡
∫
Vcore

P (~r, t = 0)d~r∫
Vcore

d~r
, (4.4)

where Vcore is the core region with fuels, is equal to 10−6W · cm−3. The initial precursor

concentrations are in equilibrium with the initial critical flux distribution.

The geometry is illustrated in Figure 4.1.

54

Figure 4.1: LRA benchmark geometry with region assignment [3]

Initial two-group constants are presented in Table 4.1. ν is equal to 2.43. Axial

bulking B2 = 10−4 is applied for both energy groups. Delayed neutron data are presented

in Table 4.2. All fuel materials have the same delayed neutron data. Some scalar data are

listed in Table 4.3.

The transient is initiated by changing the thermal absorption cross section as the

following:

Σa,2(t) = Σa,2(t = 0)

 1− 0.0606184t, t ≤ 2

0.8787631, t > 2
(4.5)

where t is time in seconds.

55

Table 4.1: LRA benchmark initial two-group constants [3]

Group Dg Σa,g νΣf,g Σs,1→2 χg vg
Region Material g (cm) (cm−1) (cm−1) (cm−1) (cm · s−1)

1 Fuel 1 with rod 1 1.255 0.008252 0.004602 1 3.0× 107

2 0.211 0.1003 0.1091 0.02533 0 3.0× 105

2 Fuel 1 without rod 1 1.268 0.007181 0.004609 1 3.0× 107

2 0.1902 0.07047 0.08675 0.02767 0 3.0× 105

3 Fuel 2 with rod 1 1.259 0.008002 0.004663 1 3.0× 107

2 0.2091 0.08344 0.1021 0.02617 0 3.0× 105

4 Fuel 2 without rod 1 1.259 0.008002 0.004663 1 3.0× 107

2 0.2091 0.073324 0.1021 0.02617 0 3.0× 105

5 Reflector 1 1.257 0.0006034 - - 3.0× 107

2 0.1592 0.01911 - 0.04754 - 3.0× 105

Table 4.2: LRA benchmark delayed neutron data

Group i βi λi (s−1) χd,i,1 χd,i,2
1 0.0054 0.0654 1 0
2 0.001087 1.35 1 0

Table 4.3: LRA benchmark scalar values

Meaning Notation value
Axial buckling for both energy groups B2

g 10−4 (cm−2)
Mean number of neutrons per fission ν 2.43
Conversion factor α 3.83× 10−11 (K · cm3)
Feedback constant γ 3.034× 10−3 (K1/2)
Energy released per fission κ 3.204× 10−11 (J/fission)
Initial and reference temperature T0 300 (K)
Active core volume Vcore 17550 (cm2)

56

4.1.1 LRA Multiphysics Time Scale Results

Figure 4.2 shows the baseline power and temperature transient profile for the LRA

benchmark. Figure 4.3 shows the spacial power distribution at the peak power. The base-

line results are compared to the results achieved by Sutton and Aviles in [32] and presented

in Table 4.4. The relative difference in the magnitude of the peak power (t ≈ 1.44s)

from the baseline was used for error comparison. Figure 4.4a is an error convergence

plot comparing the three techniques where temperature is evaluated only on the macro

step (1 temperature update). Figure 4.4b is an error convergence plot comparing the three

techniques where temperature is evaluated 5 times within a macro step (5 temperature up-

dates). Finally, Figure 4.5 shows the effect of various temperature updates. The dashed

lines correspond to implicit discretization at different flux step sizes, while the IQS macro

step size is kept constant.

Table 4.4: LRA baseline verification

Calculation Baseline Sutton (Spandex 1936)
No. of Spatial Nodes 3872 1936
Eigenvalue 0.99637 0.99637
No. of Time Steps 6000 23,890
Time to Peak Power (s) 1.441 1.441
Peak Power (W/cm3) 5456 5461

The convergence plots show that updating temperature and the PRKE parameters

within a macro step has a significant effect on the performance of IQS. With only one

update, IQS was only slightly better than implicit discretization, implicit discretization

required about 150% more time steps than IQS for the same error. While 5 temperature

updates showed a much more significant IQS performance, implicit discretization required

57

Figure 4.2: LRA baseline temperature and power profile [4]

about 400% more time steps than IQS for the same error. Figure 4.5 shows that error has

a convergent behavior for the number of temperature updates. This convergence makes

sense because temperature can only be so accurate before the error in shape is dominat-

ing. Table 4.5 shows the run time results for the implicit discretization calculations. The

number of GMRES linear iterations is included because it is proportional measure of the

computational effort. Tables 4.6 and 4.7 present the IQS run-times with various numbers

of temperature updates. These run-times are based on total alive time of the execution

where the diffusion evaluation is distributed over 24 processors. These run-times show

a marginal performance for IQS and impressive performance for IQS P-C. Some of the

execution times were able to decrease from implicit discretization with the same number

of macro steps because IQS is better equipped to resolve the nonlinearity between temper-

ature and amplitude. Furthermore, there does seem to be an ideal number of temperature

58

Figure 4.3: LRA baseline spacial power profile at t = 1.44s [4]

(a) Only one temperature update per macro step (b) Five temperature updates per macro step

Figure 4.4: LRA error convergence plots [4]

59

Figure 4.5: Error plot with various temperature updates per macro step [4]

60

updates to optimize execution time: IQS only needs one and IQS P-C seems to be ideal at 4

updates. This discrepancy in the number of updates shows that a adaptive type implemen-

tation of the updates would be ideal, and could enforce a constant error over the transient.

It is also important to compare the error of implicit discretization with IQS at one update

and IQS P-C at 4 updates. IQS shows an error comparable to implicit discretization at

∆t = 0.002, signifying an actual increase in runtime by -34.1%. IQS P-C shows an error

less than implicit discretization at ∆t = 0.002, signifying an actual increase in runtime by

<-34.9%.

Table 4.5: Implicit discretization run time results

Run ∆t Error Runtime (hr) Linear Iter.
1 4.0e-3 1.407e-2 4.11 7.13e4
2 2.0e-3 3.174e-3 6.01 9.49e4
3 1.0e-3 7.690e-4 10.38 1.45e5
4 5.0e-4 1.892e-4 21.91 2.08e5
5 2.5e-4 4.590e-5 25.23 3.16e5

Table 4.6: IQS run time results with ∆t = 0.004

Temperature Runtime % Increase
Run Updates Error (hr) in Runtime∗

1 1 2.612e-3 3.96 -3.18%
2 2 9.893e-4 6.02 47.1%
3 4 5.796e-4 7.87 92.3%
4 8 4.772e-4 12.61 207.9%
5 16 4.516e-4 22.14 440.7%

∗ difference in runtime from ∆t = 0.004 implicit discretization

61

Table 4.7: IQS PC run time results with ∆t = 0.004

Temperature Runtime % Increase
Run Updates Error (hr) in Runtime∗

1 1 3.488e-3 2.91 -28.9%
2 2 1.349e-3 3.73 -9.00%
3 4 9.161e-4 3.97 -3.04%
4 8 8.052e-4 5.39 31.7%
5 16 7.905e-4 8.19 100%

∗ difference in runtime from ∆t = 0.004 implicit discretization

The performance of the quasi-statics can also be explained by the computation of the

dynamical time scale described by Section 2.4.3. Figure 4.6 shows the time scale profile

over the transient, computed using Equation (2.31). This plot shows that in a implicit

discretization simulation, the flux dominates the time dependent behavior, while temper-

ature lags in its variance for the majority of the transient. In an IQS simulation, the time

scale behavior of amplitude almost exactly matches the flux, while shape is more varying

than temperature throughout most of the transient. The large τ for temperature during the

beginning of the transient shows that adaptation of the number of updates is important;

computational expense on temperature evaluations is being wasted during this time.

4.1.2 LRA with Time Adaptation

Figure 4.7 shows the power profile of the LRA with time adaptation of implicit dis-

cretization and IQS P-C, and Table 4.8 compiles the results. These time adaptation results

show the significant decrease in macro time steps required for IQS P-C. These profiles

were obtaining with only one temperature update per macro step; so based on previous

results, the IQS P-C performance would improve even more with more updates.

62

Figure 4.6: Dynamical time scale for LRA benchmark [4]

(a) Full power profile
(b) Peak power profile at peak

Figure 4.7: LRA power profile with time adaptation of implicit discretization and IQS P-C

63

Table 4.8: LRA step doubling adaptation results with implicit discretization and IQS P-C

Implicit Dis. IQS P-C
Event Power (W/cm3) Error Steps Power (W/cm3) Error Steps
Max Power 5567.3 0.019454 423 5568.3 0.019274 47
End (3 s) 109.66 2.3650e-4 603 109.65 3.0622e-4 97

4.2 TREAT Transient-15 Problem

Transient 15 is a test case based on the TREAT core. The preliminary purpose of

this model was to match an early test of TREAT; due to lack of experimental data and

procedures, model validation was impossible [5]. Therefore, ultimate purpose of this sim-

ulation in Rattlesnake is to test the model’s fidelity with the thermal feedback of TREAT,

but it is not meant to exactly match any previous experiments. Nevertheless, the goal of

the following simulations is to test IQS and its time scale based treatment of temperature

with a more complex model. The model involves a 159-element "small core" configura-

tion of TREAT, shown in Figure 4.8 [33]. Figure 4.9 shows the meshing techniques of the

model [5]. Figure 4.10 shows the single block mesh for each meshing technique, the red

area of Figure 4.10a represents the air gap. To ease computation, the fully homogenized

version (without air gaps) was used for the following simulations. Transient 15 involves

an 11-energy group diffusion approximation and is discretized into 355, 712 hexahedral

continuous finite elements totaling 4, 109, 523 degrees of freedom. The three-second tran-

sient involves a linear ramp decrease in the absorption cross section throughout the control

rod region. Figure 4.11 shows a visualization of the flux profile within the core, hidden is

the massive amount of graphite surrounding the core.

64

Figure 4.8: Transient-15 159-element small core configuration [5]

65

(a) Explicit meshing of air channels (b) Fully homogenized fuel elements

Figure 4.9: Top quarter view of Transient-15 mesh [5]

(a) Explicit meshing of air channels (b) Fully homogenized fuel elements

Figure 4.10: Top single block view of Transient-15 mesh [5]

66

Figure 4.11: Transient-15 core power profile at peak power [4]

4.2.1 Transient-15 Temperature Feedback

The Transient-15 model uses a adiabatic temperature feedback mechanism, similar

to the one explored by the LRA. Equation (4.6) describes the heat up of the fuel. It is

very similar, except the specific heat is now dependent on temperature, which is described

by Equation (4.7). The temperature evaluation is identical to the one described in LRA

section, except a Newton iteration process is employed to resolve the nonlinearity from the

specific heat term. The feedback to the cross-sections are applied using linear interpolation

of tabular data provided by INL.

ρcp(T)
∂T (~r, t)

∂t
= κf

G∑
g=1

Σg
fφ

g(~r, t) (4.6)

cp = −5.8219× 10−10T 3 − 4.3694× 10−7T 2

+ 2.8369× 10−3T − 1.009× 10−2 (J/g/K) (4.7)

67

4.2.2 Transient-15 Multiphysics Time Scale Results

In order to test the temperature feedback treatment, six different scenarios were run:

a baseline with a very small time step, implicit discretization, IQS with one and 5 temper-

ature updates per macro step, and IQS P-C with one and 5 updates. Figure 4.12 shows the

baseline power and temperature profile for the Transient-15 example. Table 4.9 shows the

error and runtime results.

Figure 4.12: Transient-15 total power and average temperature profile during transient [4]

The results from Table 4.9 show similar performance of IQS with the temperature

updates as the LRA. Again, the number of linear GMRES iterations is shown as a mea-

68

Table 4.9: Transient-15 error and runtime results

No. Max Time at Max Max Average % Increase Max Power Linear
Method of Steps Power (W) Power (s) Temperature (K) Runtime∗ Error Iterations
Baseline 3000 3.5039e+08 1.901 371 — — —
Implicit Dis. 300 3.5011e+08 1.90 371 — 7.875e-4 41020
IQS 300 3.5036e+08 1.90 371 -11.9% 8.385e-5 23949
IQS (5 updates) 300 3.5040e+08 1.90 371 49.7% 3.687e-5 24035
IQS P-C 300 3.5065e+08 1.90 371 -2.1% 7.527e-4 39020
IQS P-C (5 updates) 300 3.5043e+08 1.90 371 26.5% 1.227e-4 37866
∗ difference in runtime from implicit discretization

sure of computational expense. However, these iterations do not consider the temperature

updates, so the iterations of the simulations with multiple updates should be taken with

a grain of salt. IQS with 1 temperature update shows a performance that reduces the er-

ror to approximately a tenth of the implicit discretization error, and reduces the execution

time by about 12%. This shows that IQS was able to resolve the nonlinearity between

flux and temperature with significantly fewer diffusion evaluations. Having IQS with 5

updates significantly increased the execution time for the same time step, but the error was

reduced. Comparing this error to a similar implicit discretization error at a smaller time

step could show that the runtime was reduced. IQS P-C performed not nearly as well as

it did with the LRA benchmark, but still proved to be effective. Having 5 updates for IQS

P-C increased the runtime marginally, but decreased the error significantly. The transient

profile of the variables’ dynamical time scales is shown in Figure 4.13. This plot exhibits

a similar response to that of the LRA. The response of temperature shows that the updates

are a computational frugal treatment of the feedback and adaptation of the number of up-

dates is vital for optimization.

69

Figure 4.13: Dynamical time scale for the Transient-15 example [4]

4.2.3 Transient-15 with Time Adaptation

Figure 4.14 shows the power profile of the LRA with time adaptation of implicit dis-

cretization and IQS P-C. These plots show that IQS P-C requires marginally fewer macro

time steps than implicit discretization, but is qualitatively much closer to the baseline pro-

file. Like the LRA step doubling results, IQS P-C only performs one temperature update

per macro step. Adding more updates would most likely improve the error, but increase

the computation time significantly.

70

(a) Full power profile

(b) Peak power profile

Figure 4.14: Transient-15 step doubling adaptation results with implicit discretization and
IQS P-C

71

5. CONCLUSIONS

The goal of this thesis research was to continue the investigation and development of

the improved quasi-static method for the optimization of transient reactor simulations. In

pursuit of this goal, three objectives were formulated: establish IQS behavior for various it-

eration techniques, validate time step convergence for IQS, and apply IQS to multiphysics

simulations. The following three sections describe the purpose of each objective, as well

as conclusions on their results.

5.1 Iteration Convergence Analysis

IQS is a nonlinear system of equations; therefore, either fixed-point or Newton it-

eration were needed to evaluate shape and amplitude. Through literary review, most IQS

applications used fixed-point iteration with various convergence criteria. Previous applica-

tion of the Newton method is not discussed in detail, nor is any analysis of its convergence

presented. Investigating these iteration techniques is important for understanding the be-

havior of IQS, as well as determining the most appropriate technique for optimal perfor-

mance. The iteration techniques were applied to a one-dimensional prototype problem for

testing. For fixed-point iteration, five different criteria were tested:

1. L∞ norm of the change in shape between iterations

2. L2 norm of the change in shape between iterations

3. Difference in reactivity between iterations

4. Difference in amplitude between iterations

5. IQS uniqueness consistency criteria

72

The results showed that criteria 1-4 had relatively equivalent convergence behavior.

However, iteration with the criteria 5 could not converge without a highly-accurate analyt-

ical treatment of the precursor equation. This criteria proved to be the most rigorous and

thorough convergence criteria and is recommended for any application of IQS.

5.2 Time Step Convergence Analysis

Validating IQS by demonstrating proper error convergence is essential for predicting

model error and using time adaptation techniques. Implicit Euler and BDF discretiza-

tion schemes were applied to the one-dimensional prototype problem. IQS showed proper

error convergence up through fourth order BDF schemes. Implicit Euler and second or-

der BDF schemes were applied to the TWIGL benchmark, where IQS showed normal

error convergence. Step doubling adaptation was also applied to TWIGL, where IQS

performed impressively, reducing the number of diffusion evaluations considerably. The

Crank-Nicholson scheme was applied to the LRA benchmark with IQS. IQS again showed

expected second order convergence and was able to reduce the number of diffusion eval-

uations with time adaptation by more than a factor of 6. The results of the TWIGL and

LRA benchmarks proved that IQS is capable of proper convergence and time adaptation

behavior for more complex problems.

5.3 IQS Application to Multiphysics

Full transient reactor simulation requires the implementation of multiphysics solution

methods. In order to test IQS with these types of simulations, it was implemented into the

MOOSE/Rattlesnake framework and executed using MAMMOTH. The LRA benchmark

and a full core TREAT model were evaluated as test cases for multiphysics treatment.

These examples involve a adiabatic heat up of the fuel with Doppler broadening feed-

back of cross-sections. The evaluation of temperature was integrated in the quasi-static

process by introducing an intermediate time scale for temperature and PRKE parameter

73

evaluation. The results of the LRA benchmark showed that quasi-static approach to tem-

perature greatly improved the accuracy for a given time step size. However, the increase

in computation time due to the extra temperature evaluations was significant. Therefore,

for this benchmark, IQS with one update and IQS P-C with four updates is optimal. The

results of the TREAT example showed similar behavior, except the updates only produced

a marginal increase in accuracy. These examples’ results and the dynamical time scale

analysis show that performing a variant number of updates during the transient could fur-

ther improve the performance of this quasi-static process. In conclusion, IQS and the

quasi-static treatment of temperature can drastically improve the computational efficiency

for burdensome full transient reactor simulations.

5.4 Recommendations for Further Research

This research intended to investigate IQS performance for transient reactor simulation

and develop means for maximizing computational efficiency for these simulations. Further

improvement and testing of IQS can be done in the following areas:

1. This thesis only applied IQS to fuel temperature feedback models. It is recom-

mended that IQS be applied and tested with other feedback mechanisms such as

thermal hydraulic and structural feedback, especially within the quasi-static process.

2. Application of IQS to neutron transport was hinted at in Section 2.1.1, but diffusion

is typically sufficient for reactor simulation. It is recommended that IQS be applied

to neutron transport with multiphysics and tested to see if similar performance is

observed.

3. The large systems of full reactor models require a linear iteration process, such as

GMRES, to evaluate efficiently. These processes usually implement a precondi-

tioner to minimize the number of linear iterations and improve computation time.

74

Investigating of an optimal preconditioner would further improve IQS performance

in terms of computational efficiency.

75

REFERENCES

[1] Z. M. Prince, J. C. Ragusa, and Y. Wang, “Implementation of the improved quasi-

static method in Rattlesnake/MOOSE for time-dependent radiation transport mod-

elling,” in Physics of Reactors 2016 (PHYSOR 2016): Unifying Theory and Experi-

ments in the 21st Century, 2016.

[2] Y. Ban, T. Endo, and A. Yamamoto, “A unified approach for numerical calculation

of space-dependent kinetic equation,” Journal of Nuclear Science and Technology,

vol. 49, pp. 496–515, 2012.

[3] Argonne Code Center, “Benchmark problem book, ANL-7416, Suppl. 2,” tech. rep.,

Argonne National Laboratory, 1977.

[4] Z. M. Prince and J. C. Ragusa, “Multiphysics core dynamics simulation using the

improved quasi-static method,” in Proc. International Conference on Mathematics

and Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea,

2017.

[5] J. Ortensi, M. D. DeHart, F. N. Gleicher, Y. Wang, A. L. Alberti, and T. S. Palmer,

“Full core TREAT kinetics demonstration using Rattlesnake/BISON coupling within

MAMMOTH,” Tech. Rep. INL/EXT-15-36268, Idaho National Laboratory, Idaho

Falls, Idaho, Sep 2015.

[6] “Development of light water reactor fuels with enhanced accident tolerance,” tech.

rep., United States Department of Energy, Washington, DC 20585, 04 2015.

[7] E. J. Parma, M. E. Vernon, et al., “Global nuclear energy partnership fuels transient

testing at the Sandia National Laboratories nuclear facilities: Planning and facility

76

infrastructure options,” tech. rep., Sandia National Labs., Albuquerque, NM (US);

Sandia National Labs., Livermore, CA (US), 2007.

[8] “Environmental assessment for the resumption of transient testing of nuclear fuels

and materials,” tech. rep., Department of Energy, Idaho Opoerations Office, Idaho

Falls, ID 83415, 02 2014.

[9] E. Fruend et al., “Design summary report on the Transient Reactor Test Facility

(TREAT), ANL-6034,” tech. rep., Agonne National Laboratory, Argonne, IL, 09

1960.

[10] J. J. Duderstadt and L. J. Hamilton, Nuclear reactor analysis. Wiley, 1976.

[11] O. Zeinkiewicz, R. Taylor, and J. Zhu, The finite element method: its basis and

fundamentals. Selsevier Butterworth-Heinemann, 2005.

[12] L. Hageman and J. Yasinsky, “Comparison of alternating direction time differencing

method with other implicit method for the solution of the neutron group diffusion

equations,” Nucl. Sci. Eng., vol. 38, pp. 8 – 32, 1969.

[13] J. Planchard, “On the point-reactor kinetics approximation,” Progress in Nuclear

Energy, vol. 26, pp. 207–216, 1991.

[14] K. Ott, “Quasi-static treatment of spatial phenomena in reactor dynamics,” Nuclear

Science and Engineering, vol. 26, p. 563, 1966.

[15] S. Dulla, E. H. Mund, and P. Ravetto, “The quasi-static method revisited,” Progress

in Nuclear Energy, vol. 50, no. 8, pp. 908 – 920, 2008.

[16] J. Devooght, B. Arien, E. H. Mund, and A. Siebertz, “Fast reactor transient analysis

using the generalized quasi-static approximation,” Nuclear Science and Engineering,

vol. 88, pp. 191–199, 1984.

77

[17] A. Monier, Application of the Collocation Technique to the Spatial Discretization of

the Generalized Quasistatic Method for Nuclear Reactors. PhD thesis, Université de

Montréal, 1991.

[18] M. Sissnoui, J. Koclas, and A. Hébert, “Solution of the improved and generalized

quasistatic methods by Kaps and Rentrop integration scheme with stepsize control,”

Annals of Nuclear Energy, vol. 22, pp. 763–774, 1995.

[19] K. Ott and D. Meneley, “Accuracy of the quasistatic treatment of spatial reactor ki-

netics,” Nuclear Science and Engineering, vol. 36, pp. 381–419, 1969.

[20] J. Koclas, M. Sissnoui, and A. Hébert, “Solution of the improved and generalized

quasistatic methods using an analytic calculation or a semi-implicit scheme to com-

pute the precursor equations,” Annals of Nuclear Energy, vol. 23, pp. 901–907, 1996.

[21] D. Gaston, C. Newman, G. Hansen, , and D. Lebrun-Grandie, “MOOSE: A parallel

computational framework for coupled systems of nonlinear equations,” Nucl. Engrg.

Design, vol. 239, pp. 1768 – 1778, 2009.

[22] Y. Wang, “Nonlinear diffusion acceleration for multigroup transport equation dis-

cretized with SN and continuous FEM with Rattlesnake,” in Proc. International Con-

ference on Mathematics and Computational Methods Applied to Nuclear Science &

Engineering, Idaho, 2013.

[23] R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston, C. Permann, D. An-

drs, and R. Martineau, “Multidimensional multiphysics simulation of nuclear fuel

behavior,” Journal of Nuclear Materials, vol. 423, no. 1-3, pp. 149 – 163, 2012.

[24] H. Zhang, H. Zhao, F. N. Gleicher, M. D. DeHart, L. Zou, D. Andrs, and R. C.

Martineau, RELAP-7 Development Updates. Sep 2015.

78

[25] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov methods: a survey of

approaches and applications,” Journal of Computational Physics, vol. 193, pp. 357–

397, 2004.

[26] H. Ikeda and T. Takeda, “Development and verification of an efficient spatial neutron

kinetics method for reactivity-initiated event analyses,” Journal of Nuclear Science

and Technology, vol. 38, pp. 496–515, 2001.

[27] S. Goluoglu and H. L. Dodds, “A time-dependent, three-dimensional neutron trans-

port methodology,” Nuclear Science and Engineering, vol. 139, pp. 248–261, 2001.

[28] J. H. Ferziger, Numerical Methods for Engineering Application. John Wiley and

Sons, Inc., New York, NY, 1998.

[29] B. Gear, “Backward differentiation formulas,” vol. 2, no. 8, p. 3162, 2007. revision

91024.

[30] J. M. Franco, I. Gómez, and L. Rández, “SDIRK methods for stiff ODEs with os-

cillating solutions,” Journal fo Computational and Applied Mathematics, vol. 81,

pp. 197–209, 1997.

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, 1992.

[32] T. M. Sutton and B. N. Aviles, “Diffusion theory methods for spatial kinetics calcu-

lations,” Progress in Nuclear Energy, vol. 30, pp. 119–182, 1996.

[33] J. F. Kirn, J. Boland, H. Lawroski, and R. Cook, “Reactor physics measurements

in TREAT,” Tech. Rep. ANL-6173, Agonne National Laboratory, Argonne, IL, Oct

1960.

79

APPENDIX A

DERIVATIONS

A.1 Derivation of IQS with CFEM Diffusion

Multigroup diffusion equation with delayed neutron precrusors:

∂

∂t

(
φg

vg

)
=χgp

G∑
g′=1

(1− β)
νg
′
Σg′

f

keff
φg
′ − (−∇·Dg∇+ Σg

r)φ
g

+
G∑

g′ 6=g

Σg′→g
s φg

′
+

I∑
i=1

χgd,iλiCi , 1 ≤ g ≤ G (A.1)

dCi
dt

= βi

G∑
g=1

νg
′
Σg′

f

keff
φg − λiCi , 1 ≤ i ≤ I (A.2)

With reflecting and vacuum boundary conditions:


∇φg = 0, ~r ∈ ∂D2

D∇φg − 1
2
φg = 0, ~r ∈ ∂D3

(A.3)

with ∂D = ∂D2 ∪ ∂D3

Multiplying Equation A.1 by the adjoint solution φ∗g and Equation A.2 by C∗ =∑G
g=1 φ

∗gχgd,i for test functions and integrating in space:

d

dt

(
φ∗g,

1

vg
φg
)
D

=

(
φ∗gχgp(1− β),

G∑
g′=1

νg
′
Σg′

f

keff
φg
′

)
D

+ (∇φ∗g, Dg∇φg)D

80

− 1

2
〈φ∗g, φg〉∂D3

− (φ∗g,Σg
rφ

g)D +
G∑

g′ 6=g

(
φ∗g,Σg′→g

s φg
′
)
D

+
I∑
i=1

(
φ∗gχgd,i, λiCi

)
D

(A.4)

d

dt
(C∗, Ci)D =

(
C∗βi,

G∑
g′=1

νg
′
Σg′

f

keff
ϕg
′

)
D

− (C∗, λiCi)D (A.5)

Summing over groups on both sides of Equation A.4:

d

dt

(
G∑
g=1

(
φ∗g,

1

vg
φg
)
D

)
=

(
G∑
g=1

φ∗gχgp(1− β),
G∑

g′=1

νg
′
Σg′

f

keff
φg
′

)
D

+
G∑
g=1

(∇φ∗g, Dg∇φg)D −
1

2

G∑
g=1

〈φ∗g, φg〉∂D3
−

G∑
g=1

(φ∗g,Σg
rφ

g)D

+
G∑
g=1

G∑
g′ 6=g

(
φ∗g,Σg′→g

s φg
′
)
D

+
I∑
i=1

(
G∑
g=1

φ∗gχgd,i, λiCi

)
D

(A.6)

Defining bilinear functions:

T (φ∗, φ) =
G∑
g=1

(
φ∗g,

1

vg
φg
)
D

(A.7)

Ci(C
∗, Ci) = (C∗, Ci)D (A.8)

F (φ∗, φ) =

(
G∑
g=1

φ∗g

(
χgp(1− β) +

I∑
i=1

χgd,iβi

)
,
G∑

g′=1

νg
′
Σg′

f

keff
φg
′

)
D

(A.9)

L(φ∗, φ) =
G∑
g=1

(
− (∇φ∗g, Dg∇φg)D +

1

2
〈φ∗g, φg〉∂D3

+ (φ∗g,Σg
rφ

g)D

)
(A.10)

S(φ∗, φ) =
G∑
g=1

G∑
g′ 6=g

(
φ∗g,Σg′→g

s φg
′
)
D

(A.11)

Fd,i(φ
∗, φ) =

(
βi

G∑
g=1

φ∗gχgd,i,
G∑

g′=1

νg
′
Σg′

f

keff
φg
′

)
D

(A.12)

81

Sd,i(φ
∗, φ) =

(
G∑
g=1

φ∗gχgd,i, λiCi

)
D

(A.13)

Pi(C
∗, φ) =

(
C∗βi,

G∑
g′=1

νg
′
Σg′

f

keff
φg
′

)
D

(A.14)

Di(C
∗, Ci) = (C∗, λiCi)D (A.15)

Rewriting the flux and precursor equations:

d

dt
T (φ∗, φ) = F (φ∗, φ)−

I∑
i=1

Fd,i(φ
∗, φ)−L(φ∗, φ) +S(φ∗, φ) +

I∑
i=1

Sd,i(φ
∗, φ) (A.16)

d

dt
Ci(C

∗, Ci) = Pi(C
∗, φ)−Di(C

∗, Ci) (A.17)

Doing IQS factorization:

d

dt
T (φ∗, ϕ) = F (φ∗, ϕ)−

I∑
i=1

Fd,i(φ
∗, ϕ)− L(φ∗, ϕ)− 1

p

dp

dt
T (φ∗, ϕ)

+ S(φ∗, ϕ) +
1

p

I∑
i=1

Sd,i(φ
∗, φ) (A.18)

∂

∂t
Ci(C

∗, Ci) = Pi(C
∗, ϕ)p−Di(C

∗, Ci) (A.19)

Defining PRKE parameters:

ρ =
F (φ∗, ϕ)− L(φ∗, ϕ) + S(φ∗, ϕ)

F (φ∗, ϕ)
(A.20)

β̄ =
I∑
i=1

β̄i =
I∑
i=1

Fd,i(φ
∗, ϕ)

F (φ∗, ϕ)
=

I∑
i=1

Pi(C
∗, ϕ)

F (φ∗, ϕ)
(A.21)

Λ =
T (φ∗, ϕ)

F (φ∗, ϕ)
(A.22)

82

λ̄i =
Sd,i(φ

∗, ϕ)

Ci(C∗, Ci)
=
Di(C

∗, Ci)

Ci(C∗, Ci)
(A.23)

ξi =
Ci(C

∗, Ci)

T (φ∗, ϕ)
(A.24)

Writing implementing parameters:

dp

dt
=

[
ρ− β̄

Λ

]
p+

I∑
i=1

λ̄iξi + p
1

T (φ∗, ϕ)

∂

∂t
T (φ∗, ϕ) (A.25)

dξi
dt

=
β̄i
Λ
p− λ̄iξi 1 ≤ i ≤ I (A.26)

Assuming ∂
∂t
T (φ∗, ϕ) = 0:

dp

dt
=

[
ρ− β̄

Λ

]
p+

I∑
i=1

λ̄iξi (A.27)

dξi
dt

=
β̄i
Λ
p− λ̄iξi 1 ≤ i ≤ I (A.28)

A.2 Proof of Flux-Shape Solution Inequality

There has been a reoccurring question that if shape and amplitude have same time

step and integration scheme, the solution should be equal to the full flux solution. This

section is meant to prove that this notion is not true. For simplicity, the integration scheme

chosen was backward-Euler. Writing the shape equation in time discretized form:

T n+1(φ∗, ϕ)− T n(φ∗, ϕ)

∆t
= F n+1(φ∗, ϕ)−

I∑
i=1

F n+1
d,i (φ∗, ϕ)− Ln+1(φ∗, ϕ)−

− 1

pn+1

pn+1 − pn

∆t
T n+1(φ∗, ϕ) + Sn+1(φ∗, ϕ) +

1

pn+1

I∑
i=1

Sn+1
d,i (φ∗, Ci) (A.29)

83

where n is the index for the previous time step and n+ 1 is the next one. Multiplying

both sides by pn+1:

pn+1T
n+1(φ∗, ϕ)− T n(φ∗, ϕ)

∆t
= F n+1(φ∗, ϕ)pn+1 −

I∑
i=1

F n+1
d,i (φ∗, ϕ)pn+1

− Ln+1(φ∗, ϕ)pn+1 − pn+1 − pn

∆t
T n+1(φ∗, ϕ) + Sn+1(φ∗, ϕ)pn+1 +

I∑
i=1

Sn+1
d,i (φ∗, Ci)

(A.30)

Notice that for any bilinear form with ϕ, when multiplied by pn+1 is the same form,

but with φ instead. So:

pn+1T
n+1(φ∗, ϕ)− T n(φ∗, ϕ)

∆t
+
pn+1 − pn

∆t
T n+1(φ∗, ϕ) = F n+1(φ∗, φ)

−
I∑
i=1

F n+1
d,i (φ∗, φ)− Ln+1(φ∗, φ) + Sn+1(φ∗, φ) +

I∑
i=1

Sn+1
d,i (φ∗, Ci) (A.31)

Now the full flux equation is discretized the same way:

T n+1(φ∗, φ)− T n(φ∗, φ)

∆t
=F n+1(φ∗, φ)−

I∑
i=1

F n+1
d,i (φ∗, φ)

− Ln+1(φ∗, φ) + Sn+1(φ∗, φ) +
I∑
i=1

Sn+1
d,i (φ∗, Ci) (A.32)

Notice that Equations A.31 and A.32 have the same right hand side. So the left hand

side of each equation can be equated, while converting the left hand side of Equation A.32

to amplitude and flux:

pn+1T n+1(φ∗, ϕ)− pnT n(φ∗, ϕ)

∆t
= pn+1T

n+1(φ∗, ϕ)− T n(φ∗, ϕ)

∆t

84

+
pn+1 − pn

∆t
T n+1(φ∗, ϕ) (A.33)

From Equation A.27:

pn+1 − pn

∆t
=

[
ρn+1 − β̄n+1

Λn+1

]
pn+1 +

I∑
i=1

λ̄n+1
i ξn+1

i (A.34)

Substituting the PRKE parameter definitions:

pn+1 − pn

∆t
T n+1(φ∗, ϕ) =F n+1(φ∗, φ)−

I∑
i=1

F n+1
d,i (φ∗, φ)

− Ln+1(φ∗, φ) + Sn+1(φ∗, φ) +
I∑
i=1

Sn+1
d,i (φ∗, Ci) (A.35)

Notice how the right hand side of Equation A.35 is equal to the right hand side of

Equation A.32 so:

pn+1 − pn

∆t
T n+1(φ∗, ϕ) =

pn+1T n+1(φ∗, ϕ)− pnT n(φ∗, ϕ)

∆t
(A.36)

Substituting this into the last term on the right hand side of Equation A.33:

pn+1T n+1(φ∗, ϕ)− pnT n(φ∗, ϕ)

∆t
= pn+1T

n+1(φ∗, ϕ)− T n(φ∗, ϕ)

∆t

+
pn+1T n+1(φ∗, ϕ)− pnT n(φ∗, ϕ)

∆t
(A.37)

Which can be written as:

T n+1(φ∗, ϕ)− T n(φ∗, ϕ)

∆t
= 0 (A.38)

85

Table A.1: Numerical results for inequality proof where the compared value is (1, φ)

Time(s) Full Flux Solve IQS Solve Relative Difference
0.0 0.90903993 0.90903993 0
0.1 0.91253395 0.90903993 0.00383
0.2 0.92068212 0.91341921 0.00789
0.3 0.93564944 0.92419479 0.01224
0.4 0.96072564 0.94502984 0.01634
0.5 1.00132530 0.98193047 0.01937
0.6 1.06731452 1.04589052 0.02007
0.7 1.13375988 1.11085442 0.0202
0.8 1.19865931 1.17468271 0.02
0.9 1.26133943 1.23659429 0.01962
1.0 1.32173672 1.29643586 0.01914
1.1 1.33970601 1.31604696 0.01766
1.2 1.32132462 1.30051903 0.01575
1.3 1.27831729 1.26067046 0.0138
1.4 1.22290272 1.20822518 0.012
1.5 1.16481963 1.15274011 0.01037
1.6 1.11035980 1.10047097 0.00891
1.7 1.06269788 1.05460529 0.00762
1.8 1.03149816 1.02465437 0.00663
1.9 1.01107465 1.00511526 0.00589
2.0 0.99776339 0.99243083 0.00534

However, this equation is not necessarily true. The assumption is made that dT
dt

= 0

when deriving Equation A.27, but in practice this doesn’t always hold up. Therefore,

putting the shape and amplitude equations on the same discretization, does not necessarily

mean the IQS solution will produce the same solution as the full flux equation.

To show this result numerically, the discretized scheme was applied to the one-group,

one-dimensional example and five Picard iterations were done each time step for IQS. The

compiled results are shown in Table A.1 by comparing the difference in the volumetric

integral of the flux. The results show that there is an average 1% difference between the

full flux solution and IQS.

86

APPENDIX B

OTHER TESTING

B.1 SDIRK Convergence Problems

In order to figure what is causing convergence problems for SDIRK, a manufactured

solution was created in the one-dimensional prototype code, described by Equation (B.1).

A second order finite element basis function was used, so the spatial profile was known

exactly with only one degree of freedom. The ODE describing this degree of freedom

is shown by Equation (B.2). The coefficients represented in this equation are defined by

Equation (B.3).

φ(x, t) = x(1− x)(1 + t)4 0 ≤ x ≤ 1 (B.1)

1

v

∂φ

∂t
= αφ+

β

v
4(1 + t)3 + γ(1 + t)4 (B.2)

α = −D
∫ 1

0

(4(1− 2x))2dx+ (νΣf − Σa)

∫ 1

0

(4x(1− x))2dx = −5.28 (B.3a)

β =
1

4

∫ 1

0

(4x(1− x))2dx = 0.1333 (B.3b)

γ = (Σa − νΣf)β + 2D

∫ 1

0

4x(1− x)dx = 1.32 (B.3c)

The ODE was then evaluated using SDIRK and BDF schemes with varying velocities.

Figure B.1 compares SDIRK and BDF convergence with a relatively large v. This plot

87

shows the SDIRK is unable to establish a proper error convergence for such a stiff problem.

Figure B.2 compares SDIRK convergence lines with different velocities. This plot shows

that only at relatively small values of v, is SDIRK able to show proper convergence.

Figure B.1: SDIRK33 vs. BDF convergence with v = 1e5

88

Figure B.2: SDIRK33 convergence with different velocities

89

