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ABSTRACT

Recent advances in high-throughput sequencing technologies open a new era of ge-

nomics studies, called metagenomics. Rapidly, metagenomics has presented itself as the

standard approach for characterizing the compositional and functional capacity of micro-

bial communities by direct study of the genetic contents recovered from environmental

samples without prior culturing. Although these advancements enable researchers to se-

quence bacterial populations at a reasonable budget, analyzing these massive metagenomic

datasets presents significant challenges. This dissertation presents novel computational

tools, based on signal processing and machine learning theories, to enable the investigation

of biological systems. Two important research problems are addressed in this dissertation.

The first problem addressed herein concerns the identification of the potential meta-

genomic biomarkers, which play a critical role in understanding the biological process

under study and developing possible therapies. Due to the lack of knowledge of the true

biomarkers and a standard assessment methodology, evaluating the quality of the detected

markers is challenging. Therefore, we begin by developing an evaluation protocol that

mimics the knowledge of the true markers to provide a common ground to compare com-

peting algorithms. Next, a new framework for the biomarker discovery problem based on

a low rank-sparse (LRS) decomposition is proposed. The instability of a biomarker detec-

tion algorithm renders the identified markers questionable and hinders the translation of

these findings into clinical applications. To mitigate this problem, we propose the Regular-

ized Low Rank-Sparse Decomposition (RegLRSD) algorithm. RegLRSD adapts the LRS

model to incorporate the fact that irrelevant features are expected to present abundance

profiles that do not exhibit a significant variation between samples belonging to different
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phenotypes. Integrating this prior knowledge helps to guide the recovery process to more

accurate and consistent biological results.

The second research problem addressed in this dissertation concerns the development

of a computational framework to enable the translation of the identified markers into clin-

ical applications. Identifying potential biomarkers is the foremost step in the process of

understanding the relation between the microbial composition shift due to a certain dis-

ease. However, from a practical perspective, the microbial alteration needs to be quantified

in a single numerical value, which helps clinicians to measure the disease activity and its

response to therapy.
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1. INTRODUCTION

1.1 Metagenomics

Bacteria are microscopic single-celled organisms that were among the first forms of

life that appeared on Earth. Primarily, these microorganisms are named based on their

shapes. For examples, bacillus, coccus, and vibrio are Latin names that refer to rod, spiral,

and comma-shaped, respectively. Bacterial communities thrive in diverse environments

and have been observed in acidic hot springs, soil, radioactive waste [1], deepest portions

of ocean [2] and Earth’s crust, and inside other organisms. It has been estimated that the

total number of bacteria on Earth is approximately 5× 1030 [3].

The microbiota, a conglomeration of all the bacteria living on/in the human body,

play an essential role in defining the health and disease states of the host. In general,

these microbial inhabitants outnumber the human’s cells and comprise about 150 times

more genes than the human genome [4]. Some studies have reported that the microbes

outnumber the human’s cells by a ratio of 10:1 [5], while others limit this ratio to 1.3:1

[6]. These bacterial groups provide a wide range of metabolic functions that a human body

lacks [7].

In general, bacteria inhabitants are organized in communities that comprise a vast num-

ber of species with complex relationships including mutualism, competition, parasitism,

commensalism, amensalism and neutralism [8]. These interactions can be mediated by

natural competition for space and resources or via some symbiotic relationships. For ex-

ample, substances secreted by one species may be metabolized by another [9, 10]. Ad-

ditionally, members of bacterial communities can interact indirectly through the immune

system [11]. Identifying these interactions is crucial to understand the ecological com-

munities and the underlying regulation activities between microbes. For example, the
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depletion of a species may affect other species that depend on it for their survival. As

an additional example, the oppositional and symbiotic interactions between species con-

tribute to the development and resistance of pathogens [12].

Even though the bacteria have been recognized as playing a key role in defining the

health and disease states, their study has represented a challenge in the past due to several

reasons. First, the bacteria were mainly studied through cultivation. Many bacterial groups

were neither known earlier nor cultivated in a large number in a laboratory setting. For

example, the results in [13, 14] estimate that more than 90% of microbes are unknown and

uncultivable, while other studies reveal that this ratio may be up to 99% [15, 16]. Second,

in vitro measurements do not match real in vivo values because the laboratory conditions

do not match the environment of the host [8]. Recent advancements in sequencing tech-

nologies have overcome these limitations and provided researchers with the taxonomic

composition and functional capacity of microbial colonies [7, 17].

At present, the sequencing technologies enable the exploration of microbial commu-

nities, opening a new era of genomics studies, called metagenomics [18]. Metagenomics

is defined as the study of the genetic contents recovered directly from environmental sam-

ples without prior culturing. In analogy to the term genome which describes the entire

genetic material of a single organism, a metagenome represents the collective genetic ma-

terial of all the organisms present in an environmental sample. The term metagenomic was

first introduced in 1998 by Handelsman et al. [19] to describe the entire genomes of soil

microflora.

1.1.1 Metagenomic Techniques

Currently, there are two main kinds of metagenomic studies for analyzing microbial

communities: (i) targeted gene metagenomics, and (ii) whole genome metagenomics. In

whole genome metagenomics studies, the entire DNA material is subject to shotgun se-
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quencing [20]. On the other hand, in targeted gene metagenomics, only certain genes that

can serve as phylogenetic markers are sequenced. Specifically, small subunits of the ribo-

somal RNA (rRNA) (e,g., 16S rRNA for archaea and bacteria or 18S rRNA gene sequences

for eukaryotes [21]) are used as phylogenetic markers to determine the taxonomic compo-

sition of a sample. rRNA studies provide a cheap and fast way for community profiling.

However, metagenomic studies go beyond the compositional information to provide infor-

mation about the functional capacity of the microbial communities in the sample. Even

though the rRNA-based studies consider only specific genes, they are also considered to be

"metagenomic" because they analyze an environmental sample with heterogeneous DNA.

1.1.1.1 Targeted Gene Metagenomics

Genetic taxonomic profiling relies on the fact that each organism presents essential

genes, which are critical for its survival. The ribosomal RNA genes have been considered

as the gold standard for molecular taxonomic classification for decades [21, 22]. Among

the variety of rRNA genes, the 16S rRNA is the widely used gene for characterizing the

bacterial community composition. This is because of two main aspects of the 16S rRNA

gene. First, it is omnipresent among bacteria. Second, the 16S rRNA gene contains nine

hypervariable regions (V 1− V 9). These regions demonstrate significant diversity among

taxa, which in turns enables distinguishing species efficiently [23].

In 16S rRNA studies, the targeted genetic region from the extracted DNA from the

sample is amplified and afterward sequenced. This amplification process is achieved by

means of polymerase chain reaction (PCR). In its essence, PCR is based on the ability of

special enzymes called "DNA polymerase" to synthesize a DNA strand that matches the

template one. Since the DNA polymerase can add nucleotides only to an existing 3′-OH

group, short stretches of single-stranded DNA that are complementary to the target se-

quence, called primers, are needed. At the beginning of the reaction, the two strands of
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DNA are separated by applying high temperature to the original DNA molecules. Then,

primers anneal to the target genes, which enables the DNA polymerase to build the com-

plementary DNA strand, creating a double helix. Repeating this cycle generates a large

number of copies of the template DNA. As seen in the PCR process, the starting and the

end of the target region have to be known in advance in order to generate the correspond-

ing primers. In practice, those primers can be designed for either single species or whole

taxonomical groups.

The targeted gene metagenomics presents two main advantages for taxonomic clas-

sifications over the whole genome metagenomics. First, the amplification process of the

targeted-gene reduces the number of reads required for accurate taxonomic profiling. Sec-

ond, since only the essential genes are sequenced, the sequencing cost is much cheaper

than that of the metagenomic studies.

On the other hand, 16S rRNA metagenomics presents potential biases. The inconsis-

tency of primers covering different branches of the taxonomic tree is the main source for

bias in PCR experiments. In particular, the amplification phase using PCR requires that

the targeted genetic region be already known in order to design the appropriate primers.

The lack of knowledge of the required primers results in nonuniform coverage of taxa.

Chimeric reads is another source of bias. In chimeric reads, the DNA sequences is com-

posed of DNA from two or more organisms, which prevents the correct classification of

sequences. An additional major source of bias is the repetition of the essential genes in the

genome. For example, the rRNA genes can vary from 1 to 15 copies [24]. This bias can

be corrected if the copy number variation is known.

1.1.1.2 Whole Genome Metagenomics

In a whole metagenomic study, the extracted DNAs from the environmental sample

are subject to shotgun sequencing, in which the entire genomes present in the sample are
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fragmented into small pieces, and then are sequenced. Those small reads belong to coding

as well as noncoding regions of all microbial genomes present in the community. Hence,

information about the taxonomic composition and the functional capacity of the microbial

sample can be gained from those reads.

While this technique counteracts the bias associated with the PCR process, it presents

its own sources of biases such as the bias resulted from the assembly process. For example,

assembling reads from different species into one sequence renders the correct taxonomic

classification of this read impossible. Increasing the length of reads helps in reducing

possible assembly errors. Another possible source of bias is the variation in the length of

different genomes. Microbial genomes vary from 0.2 Mbp [25] to 10 Mbp [26]. Longer

genomes generate more reads which may skew the taxonomic profiles to microbes with

longer genomes. Plasmids, small circular double-stranded DNA molecules that are often

transferred between bacteria, may introduce errors if the reads generated from plasmids

are classified into species different from those to which the plasmids belong to. Similar to

the targeted-gene studies, copy number variations lead to biased results with preference to

genes with a higher number of copies.

1.1.2 Large-Scale Microbiome Projects

Metagenomics presents itself as a promising approach for investigating microbial com-

munities. Shortly after the invention of metagenomic techniques, various environmental

metagenomic studies started. For example, the presence of viruses in seawater was stud-

ied in [27]. In an attempt to discover the marine microbial communities, Craig Venter

announced the Global Ocean Sampling project in 2004. In this project, the Venter’s per-

sonal yacht was equipped with DNA sequencing lab to sequence samples from seawater

around the globe [28, 29]. As an additional example is studying the bacterial populations

inhabiting an acid mine drainage system [30]. In relation to human microbiome, the oral
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microbiota [31], the intestinal bacterial composition [32], the distal gut flora [7], and the

predominance of the gut microbiome [33] represent few examples of metagenomic studies.

Due to the rapid advancements in metagenomics and their wide applications in other

fields including (ex., medicine, food safety, and wastewater treatment), various large scale

well-organized projects that incorporate several disciplines were launched. In general,

these projects are of global nature in the sense that it connects researchers from around the

word. A leading project in this field is the Human Microbiome Project (HMP) [34], which

tries to characterize all possible microbial communities of the human body and find a

possible relation between alteration of the human microbiome and certain diseases. Meta-

genomics of the Human Intestinal Tract (Meta-HIT) [4] is another project that aims to find

possible associations between human microbiota and his/her health status. Specifically,

Meta-HIT focuses on two disorders: (i) inflammatory bowel diseases, and (ii) obesity.

The Earth Microbiome Project (EMP) is another promising project, which targets analyz-

ing the microbial compositional and functional diversity across the whole globe.

1.2 Metagenomic Biomarker Discovery

Recently, several metagenomic studies have revealed that the distortion of the norm-

biosis state of bacterial communities is a key player in the progression of many diseases

such as obesity [35, 36, 37], diabetes [38], inflammatory bowel disease (IBD) [39], and

cancer [40, 41]. These findings suggest using microbes as possible biomarkers for several

host’s health and disease states.

Biomarker detection presents itself as a major means of translating metagenomic data

into clinical practice [42]. Identifying potential biomarkers is essential in understanding

disease evolution and designing antibiotic and/or probiotic therapies. Microbial biomarker

discovery aims to identify the specific operational taxonomic units (OTUs), whose relative

abundances differ between different phenotypes. Mathematically, identifying biomarkers
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is cast as the problem of finding the most informative variables (or features) that discrim-

inate two or more groups of samples (i.e., healthy versus diseased, or different disease

stages).

1.2.1 Related Work

The methods proposed in the literature to address the biomarker discovery problem

from metagenomic data can be classified into two categories: statistical methods and

machine learning methods.

In general, the statistical methods tackle the problem by using a statistical hypothesis

test to calculate the statistical significance (i.e., p-value) of each feature. Then, the fea-

tures with p-values less than a predefined threshold are selected as potential biomarkers.

A major issue associated with the statistical-based methods is the multiple comparisons

problem, which is commonly solved by replacing the p-values with the corresponding

false discovery rates (FDRs). Metastats [43] and LEFSe [42] are the current standard

methods that belong to this category. Specifically, Metastats utilizes the permutation t-

test and the exact Fisher’s test for non-sparse and sparse features, respectively [43]. On

the other hand, to improve the robustness of biomarker discovery, LEFSe couples the sta-

tistical analysis with the effect size estimation [42]. In particular, LEFSe employs the

non-parametric Kruskal-Wallis and Wilcoxon-Mann-Whitney tests for class and subclass

comparisons, respectively.

From the machine learning perspective, the biomarker detection task is formulated as a

feature selection problem. The filtering methods are the most widely adopted approaches

for biomarker detection. In filtering methods, each OTU is assigned a score based on the

relevance between its abundance levels across the samples and the class labels of the sam-

ples. The OTUs with highest scores are selected as potential biomarkers. This scoring

process is carried out individually and independently of the other OTUs. Therefore, fil-

7



tering methods are computationally fast and easily interpretable. However, the individual

ranking ignores the inter-dependencies among different variables.

Contrary to the individual ranking, the feature transformation-based methods attempt

to generate more informative features where each new feature is a function of all the orig-

inal features. Considering all the initial features in the construction of new features ac-

counts for the interactions between OTUs. However, this transformation process results

in losing the interpretation. Transformation approaches are divided broadly into two cat-

egories based on whether the labels of the samples are considered in the transformation

process. These categories are the supervised and unsupervised methods. Partial least

squares (PLS) and linear discriminant analysis (LDA) are the two widely used supervised

methods. On the other hand, the principal component analysis (PCA) presents itself as the

most prominent unsupervised method. These methods have been extensively used for the

analysis of biological data.

The current machine learning-based state-of-the-art method that is designed specifi-

cally for metagenomic biomarker detection is MetaBoot [44]. Basically, MetaBoot com-

bines minimal redundancy maximal relevance (mRMR) feature selection method [45] with

bootstrapping in order to obtain a non-redundant subset of potential markers.

1.2.2 Challenges Associated with Metagenomic Biomarker Discovery

Identifying the most discriminating features in metagenomic datasets is a challenging

task for several reasons. First, the number of features representing potential biomarkers

is large, a challenge that is commonly referred to as ‘the curse of dimensionality’. The

challenges associated with analyzing the high dimensional metagenomic data set is com-

pounded by the small number of available samples. This high-dimension small-sample

challenge raises serious analytical challenges [46, 47]. Second, many microbial popula-

tions exhibit a high inter-subject variability. For example, [36] shows that the gut bacterial
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ecosystems of twins differ significantly. This inter-subject variability adds more confound-

ing factors that complicate the analysis and interpretation of the results. Third, the micro-

bial communities exhibit a high dynamics due to the complex relationships between its

members [8, 9, 10] and the direct interaction with the host [11]. Fourth, metagenomic data

are subject to their own artifacts including sequencing errors and chimeric reads [48, 49].

These challenges lead to a serious inconsistency problem that prevents many biomarker

detection algorithms from identifying the correct biomarkers involved in the biological

process under study. For example, the authors of [50] reported that out of the 70 genes

that were suggested as potential biomarkers for breast cancer by the two gene expression

studies [51, 52], only three genes were found to be common. As an additional striking

example, the authors in [53] reported that out of the 207 detected markers in relation to

breast cancer from 15 mass spectrometry studies, only 10 of them were in-common in

more than 2 studies. Therefore, developing a robust biomarker detection algorithm that

ensures the reproducibility of the results drawn from biological data is crucial to derive

solid biological conclusions and translate these findings into clinical applications.

In addition to the technical challenges associated with identifying potential markers,

the assessment of the detected markers presents its own concerns. In general, performance

evaluation is the foremost step once a new technique is developed. Usually, competing

techniques are evaluated using benchmark datasets to be fairly compared based on a com-

mon ground. Unfortunately, the field of metagenomic biomarker discovery lacks such

benchmark datasets to objectively assess the performance of marker selection algorithms.

Therefore, the evaluation criteria and comparisons need to be suitably designed in order to

mimic the knowledge of true markers.
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1.3 Dysbiosis Index

Indeed, identifying potential biomarkers is crucial to characterize the bacterial groups

that may explain the systematic imbalance in the bacterial populations between samples

belonging to different phenotypes. However, to translate these findings into clinical appli-

cations, it is required to integrate the detected markers into an easy-to-use computational

framework to measure the disease activity and to measure the response to therapy. In par-

ticular, the microbial changes need to be quantified in a single numerical value called the

Dysbiosis Index (DI).

In this dissertation, the focus was on developing such a numeric index specifically

for IBD. IBD is a complex immunological disorder of the gastrointestinal tract triggered

by an abnormal response of the immune system [54, 55, 56]. In particular, the host’s

immune system mistakenly treats the bacteria and food in the intestinal system as invading

substances. This result in an accumulation of white blood cells at the lining of the gut

producing inflammation. According to the Crohn’s and Colitis Foundation of America

(CCFA) annual report published in 2014, there are 1.6 million IBD patients in the United

States, with annual increasing rates approximately equal 70000 patients. Moreover, the

annual financial burden of IBD in the US was estimated to be $14.6− $31.6 billion.

1.3.1 Related Work

Several clinical indices were proposed to measure the disease activity in patients with

IBD. These methods differ in the mathematical formula and the predictor variables that

are used to generate the index value. Some of these indices include primarily clinical

parameters such as stool consistency and frequency, weight loss, the degree of abdominal

pain, vomiting. The Crohn disease activity index (CDAI) [57] represents an example

of this kind of indices. In addition to the clinical parameters, other indices incorporate

objective laboratory indicators of inflammatory activity for computing the scoring index.
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For example, the pediatric CD activity index (PCDAI) [58] includes laboratory variables

such as hematocrit, erythrocyte sedimentation rate, and serum albumin. As additional

examples, the two widely accepted indices for IBD or CE in canine are the canine IBD

activity index (CIBDAI) [59] and the canine CE clinical activity index (CCECAI) [60].

Due to the increasing number of metagenomic studies that have associated the imbal-

ance in the gut microbiota with the chronic enteropathies (CE), developing a new clinical

activity index for CE that incorporates the abundance levels of certain microbes can be

applied to predict the outcome of CE. The authors in [61] proposed the Microbial Dys-

biosis index (MD-index), which is defined as the logarithm of the ratio between the total

abundance in organisms increased in CD and the total abundance of organisms decreased

in CD. Mathematically,

MD-index = log

∑
i∈Iinc di∑
i∈Idec di

, (1.1)

where di represents the abundance level of the ith bacterial group. Variable Idec denotes the

set of microbes that exhibit decreased abundance levels in samples with IBD, whereas Iinc

represents the set of enriched microbes in IBD subjects. Based on the results in [61], Iinc

includes: Enterobacteriaceae, Pasteurellaceae, Fusobacteriaceae, Neisseriaceae, Veillonel-

laceae, and Gemellaceae. On the other hand, Idec includes: Bacteroidales, Clostridiales,

Erysipelotrichales, and Bibidbacteriaceae. Another diagnostic test using fecal samples ap-

plicable for both IBD and irritable bowel syndrome (IBS) was proposed in [62] and it is

referred to as the ‘GA-map test’. GA-map test requires DNA probes for 54 bacteria at

different taxonomic levels.

1.4 Main Contributions of this Research

The original mathematical and computational contributions of this dissertation are next

described.
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1.4.1 Chapter 2: Matrix Decomposition Framework for Identifying Potential Meta-

genomic Biomarkers

It can be seen that there is a lack of standardized methodology for performance eval-

uation and in many cases, performance evaluation is not even formally addressed in the

state-of-the-art metagenomic biomarker detection algorithms. This little attention renders

the current evaluation metrics insufficient to assess key performance aspects expected out

of a biomarker detection algorithm. For example, a biomarker selection algorithm is ex-

pected to provide consistent results irrespective of a small variation in the input dataset.

Otherwise, researchers will not be confident about the detected markers. This reproducibil-

ity performance is not addressed in the existing metagenomic biomarker detection algo-

rithms. This chapter presents an evaluation protocol which provides a fair and an accurate

assessment of the efficiency of a biomarker detection algorithm in terms of both (i) the re-

producibility of the detected biomarkers and (ii) the classification performance. In addition

to the evaluation protocol, Chapter 2 proposes a low rank-sparse (LRS) matrix decompo-

sition framework for the biomarker detection problem. This formulation allows to re-cast

the biomarker detection problem as the conventional robust principal component analysis

(RPCA) problem, which can be efficiently solved. The contributions of this chapter is

based on the work represented by the following papers:

• Alshawaqfeh M, Bashaireh A, Serpedin E, Suchodolski J. Consistent metagenomic

biomarker detection via robust PCA. Biology Direct. 2017 Jan 31;12(1):4.

• Alshawaqfeh M, Al Kawam A, Serpedin E. Sparse-Low Rank Matrix Decomposi-

tion Framework for Identifying Potential Biomarkers for Inflammatory Bowel Dis-

ease. Submitted to the European Signal Processing Conference (EUSIPCO 2017).

12



1.4.2 Chapter 3: Incorporating Prior Knowledge for Improving Metagenomic

Biomarker Discovery

In order to enhance the reproducibility performance of the LRS matrix decomposition-

based biomarker detection algorithm, a novel Regularized Low Rank-Sparse Decompo-

sition (RegLRSD) algorithm is proposed in Chapter 2. The essence of RegLRSD is to

incorporate the prior knowledge that the irrelevant microbes are expected to be uniformly

abundant among samples belonging to different phenotypes. The convex formulation of

the LRS model of the biomarker detection algorithm provides a natural way to integrate

prior knowledge. In particular, smoothness constraints can be imposed over the recovered

low-rank matrix that represents the profiles of the non-informative bacteria.

Incorporating the prior knowledge in the biomarker discovery process is a major means

to mitigate the instability of marker selection algorithms [63]. The reasoning behind this

is that the prior knowledge guides the algorithm to yield more accurate results. To solve

this matrix decomposition problem, an efficient solution based on the alternating direction

method of multipliers (ADMM) is developed. Comprehensive comparisons with the ex-

isting state-of-the-art algorithms are conducted over three realistic datasets. It is shown

that RegLRSD outperforms the competing algorithms both in terms of classification ac-

curacy and reproducibility performance. The contributions of this chapter is based on the

following work submitted for publication:

• Alshawaqfeh M, Bashaireh A, Serpedin E, Suchodolski J. Reliable Biomarker Dis-

covery from Metagenomic Data via RegLRSD Algorithm. Submitted to BMC

Bioinformatics.

1.4.3 Chapter 4: Dysbiosis Index

Clinical signs of patients with IBD are highly variable, prone to inter-individual as-

sessment, and require a significant amount of time to be gathered. These factors impede
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the accurate evaluation of indices that rely on the clinical parameters such as CCECAI

and CIBDAI indices. In addition to the considerable turn around time until receiving the

sequencing results, sequencing-based indices (ex., MD-index and GA-map) exhibit rel-

atively high costs. To overcome these limitations, a simple and reliable scoring system

for evaluating canine IBD activity was developed. In particular, a dysbiosis index us-

ing a quantitative polymerase chain reaction (qPCR) panel composed of only 8 bacterial

groups using fecal samples was built. The proposed index utilized the fact that identifying

the relative abundance levels of microbes in a sample based on the PCR technology is of

many orders of magnitude cheaper and faster compared to sequencing-based techniques.

The results demonstrate that the DI enables discriminating healthy samples from diseased

samples and tracking the response of diseased subjects to therapies with high accuracy.

Additionally, the DI accurately identifies the normal microbial state, which is crucial in

the fecal transportation process where it is required to identify that the donor presents

balanced microbial populations. The contributions of this chapter is based on the work

represented by the following papers:

• Alshawaqfeh M, Wajid B, Markel Guard M, Minamoto Y, Lidbury JA, Steiner JM,

Serpedin E, Suchodolski JS. A Dysbiosis Index to Assess Microbial Changes in

Fecal Samples of Dogs with Chronic Enteropathy. Proceedings 2016 Forum of the

American College of Veterinary Internal Medicine. Denver, June CO 2016.

• Alshawaqfeh M, McNeely I, Lidbury JA, Steiner JM, Serpedin E, Suchodolski JS.

Validation of a Dysbiosis Index to Assess Microbiota Changes in Fecal Samples

of Dogs. Proceedings 2016 Forum of the European College of Veterinary Internal

Medicine. Gotheburg, Sweden, September 2016.

• A Dysbiosis Index to Assess Microbial Changes in Fecal Samples of Dogs with

Chronic Enteropathy. Under preparation.
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2. MATRIX DECOMPOSITION FRAMEWORK FOR IDENTIFYING POTENTIAL

METAGENOMIC BIOMARKERS∗

2.1 Introduction

Reproducibility presents itself as a major concern for the discovery of predictive

biomarkers from a wide range of biological data. Surprisingly, the reproducibility per-

formance was not addressed by the existing state-of-the-art metagenomic biomarker dis-

covery algorithms. Unfortunately, the biomarker detection problem from metagenomic

data lacks a standard evaluation methodology that captures the key aspects of the true

markers and provides a solid ground to compare competing algorithms. Therefore, we

propose a protocol for evaluating a biomarker detection algorithm in terms of both (i) the

consistency of the detected biomarkers and (ii) the classification performance. The pro-

posed protocol was motivated by the model selection approach developed in [64] to find

the optimal feature selection-classifier combination for a given dataset.

Currently, there are two general frameworks to tackle the problem of identifying

potential markers from metagenomic data: (i) statistical framework, and (ii) machine

learning framework. Deviating from these two conventional frameworks, chapter pro-

poses to formulate the biomarker detection problem as a low rank-sparse (LRS) decom-

position problem. The essence of our proposed method is to model the differentially and

non-differentially abundant OTUs as a sparse and low-rank matrix, respectively. The rea-

soning behind this model lies in the fact that the majority of the microbes are irrelevant

to the biological process at hand. Therefore, these irrelevant OTUs are supposed to have

abundance levels that do not vary between two different phenotypes (i.e., healthy and dis-

∗Part of this section is reprinted with permission from "Alshawaqfeh M, Bashaireh A, Serpedin E, Suchodol-
ski J. Consistent metagenomic biomarker detection via robust PCA. Biology Direct. 2017 Jan 31;12(1):4." 
Copyright 2017 by the authors
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eased). Hence, it is natural to consider their abundance level matrix as a low-rank matrix

(denoted by L). On the other hand, the abundance levels of the few relevant OTUs exhibit

significant variations between the two phenotypes. This can be represented by a sparse

matrix (denoted by S).

The LRS decomposition framework translates the biomarker detection into the con-

ventional robust PCA problem. Hence, the RPCA is employed to decompose the OTUs

abundances matrix into the superposition of L and S. Then, the bacterial biomarkers are

identified based on the recovered matrix S.

2.2 Main Contributions

The main contributions in this chapter can be summarized as follows:

• Design an evaluation protocol which provides a fair and an accurate assessment of

the efficiency of a biomarker detection algorithm in terms of both (i) the consistency

of the detected biomarkers and (ii) the classification performance.

• Formulate the biomarker detection problem as a low rank-sparse (LRS) matrix de-

composition problem. The essence of the LRS model is to model the differentially

and non-differentially abundant OTUs as a sparse and low-rank matrix, respectively.

This LRS model provides several advantages. First, the multivariate nature of LRS

model accounts for the complex interactions between the members of the bacterial

community. This contrasts the univariate-based methods (i.e., statistical hypothesis

testing and filtering techniques) that ignore such sophisticated relationships between

bacteria. Second, the proposed matrix decomposition formulation is convex. This

provides several benefits such as: (i) global optimality, (ii) efficient solvers, and (iii)

flexibility to add convex constraints without affecting the convex structure of the

problem. Third, unlike feature transformation-based algorithms, the output of the

LRS decomposition is easily interpretable in the sense that it keeps the features in
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their original domain.

• Propose the robust principal component analysis (RPCA) to efficiently solve this

decomposition problem.

2.3 Material and Methods

2.3.1 Evaluation Protocol

A major bottleneck for the evaluation of biomarker discovery algorithms is the lack

of knowledge of the true biomarkers. This hampers the objective assessment of the per-

formance of the competing biomarker selection algorithms. To overcome this challenge,

evaluation criteria have to be suitably designed in order to mimic comparisons as if the

true markers were known. In particular, the evaluation metrics need to capture the fea-

tures of the true biomarkers. True biomarkers are characterized by two properties. The

first property is that the true markers enable distinguishing between different phenotypes.

Commonly, this feature is measured via the classification performance of a classifier model

built using only the selected biomarkers. The second feature is that the true signatures tend

to be robust against the variation in the training set. This feature can be assessed through

empirical estimation of the stability of the biomarker detection algorithm.

A common practice is to use only the classification performance as a measure of the ef-

fectiveness of a biomarker detection algorithm. In addition to ignoring the reproducibility

performance, relying solely on the classification performance may be misleading for sev-

eral reasons. First, the classification performance depends on factors other than the qual-

ity of the selected variables (i.e., biomarkers). In particular, the preprocessing steps and

employed classifier model employed significantly impact the classification performance.

Second, in the small sample size setups, the empirical estimation of classification accuracy

may not reflect the true performance of a classifier.

The proposed protocol is based on measuring the consistency and the classification
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performance over different variations of the original dataset. In particular, an empirical

estimation of the consistency has been designed based on the idea that a stable biomarker

detection algorithm should yield similar results under small variations of the dataset.

This complies with the expectations of biologists that modifying the original dataset by

adding or removing a few samples should not lead to a significant change in the identified

biomarkers by an algorithm. Consequently, the procedure for estimating the consistency

assumes the following steps. The first step is to repeatedly, for K times, subsample the

original dataset D ∈ <p×N+ into two subsets: Dtrain
k ∈ <p×drNe+ and Dtest

k ∈ <p×(N−drNe)+ ,

where k stands for the iteration number. The second step is to apply the biomarker detec-

tion algorithm on the {Dtrain
k }Kk=1 subsets to find K sets of potential markers. The third

step is to measure the pairwise similarity between the K(K−1)
2

pairs of the biomarker sets

using a similarity or stability index. Then, the overall consistency (Cavg) of the algorithm

is defined as the average of all pairwise similarities. Mathematically,

Cavg =
2
∑K

i=1

∑K
j=i+1 SI(Fi,Fj)

K(K − 1)
, (2.1)

where Fi denotes the output of the biomarker detection method over the i′th subsample.

SI(Fi,Fj) represents the similarity between two marker sets measured by the stability

(i.e., similarity) index SI .

Similarly, we use the same subsamples to evaluate the classification performance. Par-

ticularly, the data corresponding to the selected markers in each generated training and

testing subsets are extracted and are denoted by Dtrain
k (Fk) and Dtest

k (Fk), respectively.

The Dtrain
k (Fk) subset is utilized to train the classifier, while the Dtest

k (Fk) serves as an

independent set for testing the classifier. Repeating the evaluation for K times reduces the

risk of over-optimistic results for the conventional cross-validation on small-sample stud-

ies [65]. This consistency-classification evaluation protocol is summarized in Fig. 2.1.
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Figure 2.1: Consistency-classification evaluation protocol.

2.3.1.1 Consistency Performance

Several measures have been proposed to measure the similarity between two sets (i.e., 

the output of a biomarker detection algorithm over two subsamples). In this work, we
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adopt the Kuncheva index (KI) [66] as a measure of similarity. KI is defined as

KI(Fi,Fj) =
p.|Fi ∩ Fj| − T 2

T.(p− T )
=
|Fi ∩ Fj| − (T 2/p)

T − (T 2/p)
, (2.2)

where T = |Fi| = |Fj |. The Kuncheva index ranges from −1 to 1. The larger the value,

the more common biomarkers among the two sets Fi and Fj . Negative values indicate that 

the shared biomarkers are mostly due to chance. Negative values can be obtained due to

the correction term (T 2/p) that aims to compensate for possible bias due to the randomly 

selected biomarkers and are common among the two marker lists.

2.3.1.2 Classification Performance

The classification performance is measured in terms of sensitivity, specificity, and ac-

curacy. The accuracy represents the portion of the correctly classified instances in both 

classes (ex., healthy and diseased). In the case of imbalanced class distribution, accuracy 

becomes misleading since it is dominated by the majority class. This is particularly true 

when the prediction of the minority group is critical. Therefore, to complete the picture 

about the classification performance, class-specific measures such as sensitivity and speci-

ficity are also important. Sensitivity and specificity are defined as the portion of correctly 

predicted instances in the positive (i.e., diseased) and negative (i.e., healthy) classes, re-

spectively. Let T N and T P denote the number of correctly identified negative and positive 

samples, respectively. Also, let FN and F P represent the number of false-classified sam-

ples in the negative and positive classes, respectively. Then, the accuracy, sensitivity and
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specificity are defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
, (2.3)

Sensitivity =
TP

TP + FN
, (2.4)

Specificity =
TN

TN + FP
. (2.5)

2.3.2 Low Rank-Sparse Model of Metagenomic Data

Consider the matrix D ∈ <p×n of bacterial abundance data, each row of D repre-

sents the relative abundance of an OTU in all the n samples, and each column stands

for the abundance levels of all the p OTUs in one sample. In general, p � n. There-

fore, it is a classical high dimension-small sample size problem. As mentioned in the

Introduction section, the essence of our proposed method is to model the differentially

and non-differentially abundant OTUs via a sparse and low-rank matrix, respectively. In

particular, the majority of the bacterial groups are irrelevant to the biological process at

hand. Therefore, these irrelevant OTUs are supposed to have abundance levels that do not

vary between two different phenotypes (i.e., healthy and diseased). Hence, it is natural

to consider their abundance level matrix as a low-rank matrix (denoted by L). On the

other hand, the abundance levels of the few relevant OTUs exhibit significant variations

between the two phenotypes. This can be represented by a sparse matrix (denoted by S).

Mathematically,

D = L + S. (2.6)

2.3.3 Robust Principal Component Analysis

RPCA is a matrix recovery problem which aims to recover the low-rank matrix L and

the sparse matrix S from their superposition D. The authors in [67, 68] have shown that
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under broad assumptions, it is possible to exactly recover both components (i.e., low rank

and sparse matrices) by solving a convex optimization problem called Principal Com-

ponent Pursuit (PCP). PCP aims to minimize a weighted sum of the nuclear norm of the

low-rank matrix and of the l1 norm of the sparse matrix. Mathematically, PCP is expressed

as

minimize ‖L‖∗ + λ‖S‖1

subject to D = L + S,

(2.7)

where λ is a positive regularization parameter that controls the sparseness and smoothness

of S and L, respectively. ‖L‖∗ denotes the nuclear norm of the matrix L and it is equal to

the sum of the singular values of the matrix. ‖S‖1 represents the l1 norm of the matrix and

it is equal to the sum of the absolute values of all the matrix entries.

Various methods have been proposed for solving the PCP problem such as the iterative

thresholding approach [69] and the accelerated proximal gradient approach [70]. In this

study, we adopt the augmented Lagrange multiplier (ALM) algorithm to solve (2.7). In

general, ALM algorithms solve constrained optimization problems by converting them

into unconstrained problems with a new objective called the augmented Lagrangian. The

augmented Lagrangian for the PCP problem is given by

L(L,S,Y) = ‖L‖∗ + λ‖S‖1+

〈Y,D− L− S〉+
µ

2
‖D− L− S‖2F ,

(2.8)

where Y represents the Lagrange multiplier matrix, and µ stands for the single regulariza-

tion parameter associated with the ALM formulation. Thus, the ALM formulation of the
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PCP problem is given by

minimize L(L,S,Y) = ‖L‖∗ + λ‖S‖1+

〈Y,D− L− S〉+
µ

2
‖D− L− S‖2F .

(2.9)

A standard approach to solve (2.9) is of iterative-based nature. Each iteration k consists

of two steps. The first step is to solve the following sub-problem

(L∗k,S
∗
k) = arg min

L,S
L(L,S,Yk). (2.10)

The second step is to update the Lagrange multiplier matrix using the following equation

Yk+1 = Yk + µ (D− Lk − Sk) . (2.11)

Since a jointly optimal solution for the sub-problem (2.10) is not available, a practical and

efficient solution is to employ the alternating optimization algorithm. This alternating-

based method first minimizes L(L,S,Yk) with respect to L (S is fixed), then it mini-

mizes L(L,S,Yk) with respect to S (L is fixed). This strategy utilizes the fact that both

min L {L(L,S,Y)} and min S {L(L,S,Y)} have a closed form solution. In particular,

let Sτ : < → < be the shrinkage operator defined by

Sτ (x) = sgn(x)max(|x| − τ, 0), (2.12)

where τ ≥ 0 represents the threshold value. This shrinkage operator is extended to matri-

23



ces by applying it to their elements. Then,

S∗ = arg min
S
L(L,S,Y)

= Sλµ−1(D− L + µ−1Y).

(2.13)

To solve for L, let Dτ denote the singular value thresholding operator given by

Dτ (X) = USτ (Σ)VT , (2.14)

where X = UΣVT is the singular value decomposition (SVD) of X. Then,

L∗ = arg min
L
L(L,S,Y)

= Dµ−1(D− S + µ−1Y).

(2.15)

Though we have a closed-form solution for S∗k and L∗k, solving the sub-problem (2.10)

requires computing (2.13) and (2.15) repeatedly until converging to the optimal solution.

This repetition leads to a significant computation burden. According to [68], this burden

can be avoided by updating Sk and Lk only once. Even though this does not guarantee

the optimal solution of the sub-problem (2.10), it is sufficient to converge to the optimal

solution of the RPCA problem as proved in [68].

2.3.4 Extracting the Differentially Abundant Bacteria via RPCA

The proposed method for identifying metagenomic biomarkers is divided into two

steps. First, apply RPCA to decompose the original bacterial abundance level data into

a low-rank matrix representing the non-differential abundant bacteria and a sparse matrix

representing the differential abundant bacteria. Second, score each microbe (i.e., feature)

by constructing a scoring vector based on the extracted sparse matrix. The top m bacteria

are selected as biomarkers for the biological process under study.
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As mentioned in the Introduction section, it is reasonable to consider the observed

abundance matrix D as being the sum of a low-rank matrix L and a sparse matrix S.

Potential biomarkers are expected to exhibit abundance levels that vary between samples

belonging to different groups. Therefore, their abundance levels can be modeled as a

sparse perturbation matrix superimposed over the low-rank matrix representing the abun-

dance levels of the non-differentiable microbes (i.e., D = L + S). Consequently, the

microbial biomarkers can be detected according to the sparse matrix S. The bacteria ex-

hibiting more variation are stronger. The extracted sparse matrix S can be expressed as

S =



s11 s12 . . . s1n

s21 s22 . . . s2n
...

... . . . ...

sp1 sp2 . . . spn


= [s1, s2, . . . , sn]. (2.16)

Corresponding to the original abundance level data matrix D, each column contains the

differential abundance levels of all the microbes in one sample, and each row of S repre-

sents the differential variation of a microbe in all the n samples. The entries of S can be

either positive or negative reflecting whether the bacteria were activated or deactivated in

response to the biological process. Therefore, the absolute values of the entries in S are

needed for the identification of the differentially abundant bacteria (i.e., biomarkers). The

score of the i′th bacteria is calculated by summing row-wise the absolute values of the

i′th row in S. Mathematically, the scoring vector (v) is obtained by summing the absolute

values of the elements of S, and can be expressed as:

v =

[
N∑
j=1

|s1j|, . . . ,
N∑
j=1

|spj|
]T

. (2.17)

Large scores are associated with microbes exhibiting larger variation between the two
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states. Therefore, only the genes with the top m scores are selected as biomarkers.

2.3.5 Nearest Centroid Classifier (NCC)

The nearest centroid classifier is an instance of distance-based supervised learning

method. The classification process using NCC consists of two steps. The first step is to

train the classifier with labeled data (i.e., di) to compute the mean (i.e., centroid) of each

class. The mean of the k′th class (µCk) is given by:

µCk =
1

|NCk |
∑
di∈Ck

di (2.18)

The second step reduces to assigning a test sample (z) to the class whose centroid is closer.

Mathematically, this is equivalent to the following optimization problem:

Ĉ(z) = arg min
Ck

dis(µCk , z) (2.19)

where dis(µCk , z) is a distance measure between the test sample z and the centroid of the

samples belonging to the k′th class (µCk).

2.3.6 Data Description

Unless stated otherwise, the 16S rRNA gene sequencing reads were assigned to opera-

tional taxonomic units (OTUs) using the naive Bayesian classifier employed by the Ribo-

somal Database Project (RDP) [71]. Reads with confidence below 80% were assigned to

be uncertain. For all the datasets described below, the per-sample normalized read counts

were organized in a matrix called the taxonomic relative abundances matrix. This matrix

is the final input for the RPCA algorithm. As RPCA belongs to the unsupervised family

of machine learning algorithms, the labels of the data are not required.
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2.3.6.1 Canine Inflammatory Bowel Disease (IBD) Dataset

Naturally passed fecal samples were obtained from 89 healthy dogs and 79 dogs 

with chronic signs of gastrointestinal disease and confirmed i nflammatory ch anges on 

histopathology. All dogs participated in different clinical studies and leftover fecal sam-

ples were utilized for this study.

Dogs with clinical signs of chronic GI disease (i.e., vomiting, diarrhea, anorexia, 

weight loss, etc.) were diagnosed with idiopathic IBD based on the World Small Ani-

mal Veterinary Association (WSAVA) criteria: (i) chronic (i.e., ≥ 3 weeks) GI signs; (ii) 

histopathologic evidence of mucosal inflammation; (iii) inability to document other causes 

of GI inflammation; (iv) inadequate response to dietary, antibiotic, and anthelmintic thera-

pies, and (v) clinical response to anti-inflammatory or immunosuppressive a gents. Histo-

logical samples were obtained endoscopically. Clinical status of each dog was evaluated 

using a published clinical canine IBD activity index (CIBDAI). Within the IBD dogs, 47 

dogs had histological confirmed inflammation in the small intestine, 24 dogs had histolog-

ical changes in both small intestine and colon, and 7 dogs had only histological changes 

reported in the colon. Histological changes were predominantly of lymphoplasmacytic in-

filtrates, with a subset of dogs also showing eosinophilic and/or neutrophilic components. 

Data can be downloaded from this link: https://qiita.ucsd.edu/study/description/833.

2.3.6.2 Mouse Model of Ulcerative Colitis (UC) Dataset

This dataset represents the fecal microbiota of mice model with ulcerative colitis and 

control mice. In particular, the microbiota of 20 T-bet−/− x Rag2−/− (UC) and 10 Rag2−/− 

(control) mice was characterized using 16S data from fecal samples. The data is publicly 

available in the supplementary material of [42].
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2.4 Results and Discussions

This section presents the experimental evaluations on the two metagenomic studies

described in the Material and Methods section. The performance of our proposed scheme,

RPCA, is compared with the current state-of-the-art algorithms proposed for identifying

microbial biomarkers. In particular, RPCA is compared with two statistical-based algo-

rithms namely, MetaStats [43] and LEFSe [42], and two machine learning-based algo-

rithms. For the machine learning-based algorithms, an entropy-based and a binary classi-

fication (BC)-based [72] filtering approach are used.

It is worth to mention that there are several implementations of the RPCA algo-

rithm. In our experiments, we utilize the Matlab code for the exact ALM provided

by the authors of [70], which is available at ‘http://perception.csl.illinois.edu/matrix-

rank/sample_code.html’.

The five algorithms were evaluated in terms of their classification and consistency per-

formance according to the consistency-classification evaluation protocol shown in Fig.2.1.

In our experiments, 500 subsamples (i.e., K = 500) were generated by randomly subsam-

pling, without replacement, the original datasets. Due to the limited number of samples in

metagenomic studies, subsamples were generated with 80% of the samples in the original

dataset (i.e., r = 0.8). The reported results represent the average over the 500 experiments.

To reduce the dependency of the results on the classification criteria, two variants of

the nearest centroid classifiers were used. In the first approach, the l1 norm was used as a

measure of distance, while in the second approach, the l2 norm was used. In this paper, we

refer to the first classifier as NCC-1 and to the second one as NCC-2. The consistency of

the biomarker detection algorithms has been measured by the Kuncheva index. In order to

study the impact of the number of selected features on the consistency and classification

performance, the five biomarker detection algorithms were assessed at different sizes of
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Figure 2.2: Classification performance of the five algorithms over the canine IBD dataset
in terms of accuracy, sensitivity and specificity. The first row represents the results cor-
responding to the NCC-1 classifier (a: accuracy, b: sensitivity, c: specificity), while the
second row represents the NCC-2 classifier results (d: accuracy, e: sensitivity, f: speci-
ficity).

the biomarker sets.

2.4.1 Canine Inflammatory Bowel Disease (IBD) Dataset

The performance of the five algorithms in terms of their classification accuracy for

varying number of biomarkers from the canine IBD dataset is depicted in Fig. 2.2. The

first row in Fig. 2.2 presents the results for the NCC-1 classifier, while the second row
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Figure 2.3: The average consistency performance measured by KI of the
five biomarker discovery algorithms over the canine IBD dataset.

presents the results for the NCC-2 classifier. As the results displayed in Figs. 2.2a and

b illustrate, RPCA outperforms the LEFSe, entropy-based and BC-based algorithms in

terms of accuracy. In particular, the RPCA algorithm outperforms the LEFSe and entropy-

based algorithms by around 13% and the BC-based algorithm by approximately 20%. The

MetaStats algorithm provides comparable results to RPCA when NCC-1 is used. However,

the RPBC algorithm significantly outperforms the MetaStats performance in the NCC-2

case. Moreover, RPCA provides a robust result irrespective of the variation in the applied

classification method and the number of selected biomarkers. This contrasts the perfor-

mance of MetaStats.

Our next simulation sought to examine the consistency performance of the five meth-
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Figure 2.4: Histogram plots of all the 124750 pairwise KIs (i.e., K(K−1)
2

= 124750 com-
parisons; K = 500) generated by the five biomarker discovery algorithms over the canine
IBD dataset. (a) RPCA. (b) LEFSe. (c) MetaStats. (d) Entropy. (e) Binary Classification.

ods. Fig. 2.3 presents the KI stability values averaged over all the pairwise comparisons

(i.e., K(K−1)
2

= 124750 comparisons; K = 500). In addition to the superior consistency

performance, RPCA shows a robust performance irrespective of the number of selected

markers. Detailed consistency analysis when the size of the selected biomarkers equals

50 is depicted in Fig. 2.4 by presenting the histogram of the KI index computed over

all pairwise comparisons. As is turns out from Fig. 2.4a, the RPCA algorithm shows a

high consistent performance. This is revealed from the concentration of the histogram
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Figure 2.5: Top 20 identified biomarkers by RPCA in relation to the canine IBD dataset
and their RPCA scores. Blue: the selected bacteria exhibit an increase in their abundance
level in the control samples. Red: the selected bacteria exhibit an increase in their abun-
dance level in the IBD samples.

corresponding to RPCA at high consistency values. In particular, for almost 80% of the

times, RPCA provides a stability value that is larger than or equal to 90%. On the other

hand, LEFSe and MetaStats turn out to present inconsistent performance. For example,

LEFSe presents KI values less than or equal to 60% for almost half of the times. The

entropy-based and BC-based algorithms yield a very poor consistency performance.

The top 20 detected biomarkers by the RPCA algorithm are shown with their scores

in Fig. 2.5. According to [73], Erysipelotrichaceae is considered to be a major player
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in maintaining homeostasis in response to inflammation. This may explain the selec-

tion of two clades (i.e., eubacteriumbiforme and g_Catenibacterium) that belong to the

Erysipelotrichaceae family as possible biomarkers for IBD. In agreement with previous

studies, Collinsella [74] shows an increase in its abundance, whereas Turicibacter [75]

exhibits reduced concentration in IBD subjects. This may explain selecting species be-

longing to these clades as potential biomarkers for IBD.

Species belong to several genera, including Blautia (i.e., Blautiaproducta and two

unspecified species), Ruminococcus (i.e., Ruminococcusgnavus), and a number of taxa

within the family of Lachnospiraceae show decreased abundances in IBD patients [61].

On the other hand, Lactobacillus and Streptococcus exhibit an increase in their abundance

levels in patients with Crohn’s disease [61]. Fusobacterium has previously been suggested

as a biomarker for IBD [76]. In order to validate the detected markers by RPCA, an

independent validation experiment has been conducted. In particular, quantitative PCR

(qPCR) assays targeting thirteen bacterial groups were conducted over fecal DNA sam-

ples taken from 285 healthy dogs and 172 dogs with chronic enteropathy (CE) [77]. In this

experiment, the final PCR panel (i.e., Faecalibacterium, Turicibacter, E. coli, Streptococ-

cus, Blautia, and Fusobacterium) includes five OTUs (i.e., Faecalibacterium, Turicibacter,

Streptococcus, Blautia, and Fusobacterium) that are strongly suggested as potential signa-

tures for IBD by our RPCA-based algorithm.

The top 30 detected markers by the five algorithms is listed in Appendix A. As shown

in Appendix A, the RPCA is the only algorithm that has suggested Faecalibacterium and

Blautia as potential biomarkers for IBD. In particular, Blautia has been proposed as a

strong driver for IBD by RPCA and three species from Blautia genera (rank 5, 9, and

18) were selected in the top 30 markers. Moreover, the Streptococcus has been strongly

suggested as a strong potential marker for IBD by RPCA. Specifically, one species of

Streptococcus was ranked second by RPCA. This agrees with Metastats which suggested

33



Figure 2.6: Classification performance of the five algorithms over the mouse model of
UC dataset in terms of accuracy, sensitivity and specificity. The first row represents the
results corresponding to the NCC-1 classifier (a: accuracy, b: sensitivity, c: specificity),
while the second row represents the NCC-2 classifier results (d: accuracy, e: sensitivity, f:
specificity).

two species belonging to Streptococcus genera (rank 3 and 8), and BC which suggested

one Streptococcus species with rank 23 as IBD marker. On the other hand, LEFSe and

Entropy algorithms do not include Streptococcus in their suggested lists of IBD markers.

RPCA and LEFSe are the only algorithms that suggested Turicibacter as a signature for

IBD. Fusobacterium was strongly recommended as a possible marker for IBD by RPCA

and MetaStats (rank 12 and 5, respectively) while it is less favored by LEFSe (rank 25).
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Figure 2.7: The average consistency performance measured by KI of
the five biomarker discovery algorithms over the mouse model of UC
dataset.

This independent validation experiment demonstrates the efficiency of the RPCA-based

algorithm in identifying markers with high classification potential.

2.4.2 Mouse Model of Ulcerative Colitis (UC) Dataset

Fig. 2.6 presents the classification performance of the five algorithms for varying num-

ber of biomarkers from the ulcerative colitis mice model dataset. The first and second row

represents the classification performance corresponding to the NCC-1 and NCC-2 classi-

fier, respectively. The results in Figs. 2.6a and d demonstrate that the RPCA algorithm

outperforms all the four methods in terms of classification accuracy. Moreover, RPCA ex-

hibits a consistent performance regardless of the classification method and the number of
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Figure 2.8: Histogram plots of all the 124750 pairwise KIs (i.e., K(K−1)
2

= 124750 com-
parisons; K = 500) generated by the five biomarker discovery algorithms over the mouse
model of UC dataset. (a) RPCA. (b) LEFSe. (c) MetaStats. (d) Entropy. (e) Binary
Classification.

biomarkers included in the classifier models. On the other hand, the other four algorithms

exhibit a variation in their accuracy by around 10% when varying the number of selected

markers from 10 to 100.

The average KI values over all the pairwise comparisons and their histogram when

the number of selected biomarkers equals 30 are depicted in Figs. 2.7 and 2.8, respec-

tively. Fig. 2.7 points out that RPCA exhibits a very high consistency performance and
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outperforms all the other algorithms. In particular, when the number of markers is larger

than 30, RPCA provides an improvement by around 10-15% over the LEFSe, MetaStats

and entropy-based algorithms, and approximately 20% over the BC-based method. This

improvement increases when the number of markers is less than 30. For example, for a

marker set of size 10, this gain increases to 30% and 20% when RPCA is compared to

MetaStats and LEFSe, respectively.

The distributions of the all pairwise KI for the five algorithms are depicted in Fig. 2.8.

These histograms provide a finer view of the consistency performance of the algorithms.

Fig. 2.8a demonstrates that the RPCA algorithm provides a consistent performance as the

KI values exceed 95% for almost 80% of the times. The other algorithms show much less

consistent performance compared to RPCA. This behavior is clear from the facts that the

histograms of these methods are centered at lower values for KI and the wide spread of KI

values.

The top 10 identified biomarkers by the RPCA algorithm are listed in Fig. 2.9. RPCA

suggests the enrichment of Oscillibacter, Alistipes, Helicobacter and Escherichia/Shigella

as potential biomarkers for UC. This agrees with previous studies. For example, the au-

thors of [78] found that Alistipes presents a very low abundance level in almost all patients

diagnosed with UC. The previous study [39] reported that consistent reductions of acetate

producer clades such as Ruminococcaceae, to which Oscillibacter belongs, may nega-

tively impact the host ability to repair the epithelium and to regulate inflammation. For

Helicobacter, the authors of [79] reported significantly lower rates of Helicobacter pylori,

the most widely known species of Helicobacter genus, in UC patients. Also, the increased

level of the Escherichia/Shigella has been linked to the intestinal inflammation [80].

In agreement with the previous studies, RPCA associates the reduction in the concen-

tration of Lactobacillus, Bifidobacterium and Bacteroides to UC. Previous studies have

reported similar results. For example, decreased concentrations of Lactobacillus and Bifi-
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Figure 2.9: Top 10 identified biomarkers by RPCA in relation to the mouse model of
ulcerative colitis dataset and their RPCA scores. Blue: the selected bacteria exhibit an
increase in their abundance level in control samples. Red: the selected bacteria exhibit an
increase in their abundance level in UC samples.

dobacterium in colonic biopsy specimens and reduced fecal concentrations of lactobacilli

and bifidobacteria have been found in patients with active UC [81, 82]. According to

[83], the UC can be characterized by the decrease in the abundance levels of Bacteroides.

This analysis highlights the agreement of RPCA with the biological findings and suggests

additional taxa as possible biomarkers for UC.

The top 10 detected markers by the five algorithms is listed in Appendix B. As is

clear, 8 out of the 10 identified markers by RPCA and LEFSe are in common. Instead
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of Desulfovibrio and Butyricicoccus which are identified by LEFSe, RPCA suggested

Bacteroides and Lactobacillus as potential markers for UC. RPCA shows less agreement

with MetaStats in which only 3 signatures are in common between them. Specifically,

RPCA and MetaStats agrees on Bifidobacterium, Streptococcus, and Escherichia/Shigella

as possible markers for UC. On the other hand, RPCA does not share any of its detected

markers neither with the Entropy-based method nor with the BC algorithm.

2.5 Summary

This chapter addresses two essential challenges associated with detecting potential

markers from metagenomic data. The first challenge is the lack of knowledge of the true

biomarkers, which hampers the objective assessment of the performance of competing

biomarker selection algorithms. The second challenge is to design a marker selection al-

gorithm that provides reliable performance in terms of reproducibility and classification

accuracy. Toward this end, an evaluation protocol that mimics comparisons as if the true

markers were known was proposed. The essence of this evaluation protocol is to measure

the consistency and the classification performance over different variations of the orig-

inal dataset, as shown in Fig. 2.1. These variations are generated by means of random

subsampling without replacement. Moreover, we proposed a RPCA-based biomarker de-

tection algorithm for the problem of identifying possible bacterial markers. This matrix

decomposition framework enables the characterization of specific microbial taxa that are

differentially expressed between samples belonging to two different classes.

Comprehensive comparisons with state-of-the-art biomarker discovery algorithms be-

longing to the class of statistical methods and the class of machine learning approaches

were conducted. The obtained results were evaluated (i) statistically in terms of classifi-

cation accuracy and reproducibility performance and (ii) biologically by discussing their

biological relevance to the case under study and their agreement with previous studies.
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Experiments were conducted on two realistic datasets. The first dataset is in relation to

healthy dogs and dogs diagnosed with IBD. The second dataset is a mouse model of ul-

cerative colitis. Experiments show that the RPCA algorithm effectively detects microbial

biomarkers in both datasets. In particular, the detected biomarkers by the RPCA algorithm

exhibit high accuracy in discriminating the metagenomic samples belonging to different

phenotypes. More importantly, RPCA shows a high reproducibility performance when

compared with the other algorithms. These findings demonstrate that (i) the concept of

modeling the abundance level matrix as the sum of a low-rank matrix representing the

irrelevant bacteria and a sparse matrix containing the abundances of informative bacteria,

(ii) the use of RPCA to recover this sparse matrix, and (iii) the inherent multivariate na-

ture of RPCA that handles the complex microbial interactions, were successful in finding

potential metagenomic biomarkers with high reproducibility and discriminative power.
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3. INCORPORATING PRIOR KNOWLEDGE FOR IMPROVING METAGENOMIC

BIOMARKER DISCOVERY ∗

3.1 Introduction

Due to the increasing number of studies that links the distortion of the bacterial bal-

ance to certain host health and disease states, there has been much interest in identifying 

potential microbial markers from metagenomic data. The instability of a biomarker de-

tection algorithm renders the identified markers questionable and hinders the translation 

of these findings into c linical a pplication. In p ractice, the number of available samples 

varies from experiment to experiment. Therefore, a robust biomarker detection algorithm 

is needed to provide a set of potential markers irrespective of the number of available sam-

ples. The main reason for the instability of a biomarker detection algorithm is ignoring 

the stability in the design process of the algorithm [63]. To mitigate this problem, the 

authors suggest incorporating prior knowledge to guide the algorithm toward more accu-

rate results. For example, assigning higher weights for relevant features yields improved 

performance in terms of stability and classification [84].

This chapter proposes a novel Regularized Low Rank-Sparse Decomposition 

(RegLRSD) algorithm. RegLRSD extends the LRS model (2.6) by incorporating the prior 

knowledge in the biomarker identification p rocess. In p articular, the fact that the abun-

dance profiles of non-informative bacteria do not exhibit s ignificant variation is  utilized 

by adding a smoothness constraint on the recovered low-rank matrix. To solve this matrix 

decomposition problem, an efficient solution based on the alternating direction method of 

multipliers (ADMM) is proposed.
∗Part of this section is from "Reliable Biomarker Discovery from Metagenomic Data via RegLRSD
Algorithm." Submitted to BMC Bioinformatics.
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3.2 Material and Methods

3.2.1 Extracting the Sparse Matrix via RegLRSD

Based on the low rank-sparse decomposition model of the bacterial abundance profiles

(2.6), identifying potential biomarkers boils down to a matrix decomposition problem,

with the aim of extracting the sparse matrix. The authors in [69, 67] showed that under

broad assumptions, it is possible to exactly recover both components (i.e., low rank and

sparse matrices) by solving a convex optimization problem, called Principal Component

Pursuit (PCP).

In an attempt to improve the accuracy of estimating S and L, we extend the formulation

in (2.7) by adding a penalty term in order to enforce the smoothness of each row of L.

This penalty term incorporates the prior knowledge that the abundance profiles of non-

differentially abundant OTUs are smooth. In this study, the first order difference (FOD) is

adopted as a measure of smoothness, and it is defined as:

‖X‖FOD =
∑
j

‖Fxj‖1, (3.1)

where xj denotes the jth column of X, and F represents the first order difference operator

defined as:

F =



−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

...
...

...
... . . . ...

0 0 0 . . . −1 1


. (3.2)
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Thus, the RegLRSD algorithm aims to solve the following optimization problem:

(L∗,S∗) = arg min
L,S
{f(D,L,S) =

1

2
‖D− L− S‖2F

+ α‖L‖∗ + λ‖S‖1 + β

p∑
i=1

‖FlTi ‖1},
(3.3)

where lTi stands for the ith row of L. Variables α and β are regularization parameters. One

key advantage of this formulation is that that the optimization problem (3.3) is convex.

This convex formulation provides the following benefits: (i) it ensures a globally optimal

solution, (ii) it enables utilizing the well-established theory and tools for solving convex

problems, and (iii) it offers the flexibility of adding additional convex constraints to reflect

additional prior knowledge. However, direct application of generic convex solvers may

not be feasible due to the high dimension nature of our problem. For example, interior

point methods exhibit high-order complexity. Moreover, a jointly optimal solution for the

optimization problem (3.3) is not available. Therefore, we propose an efficient alternating-

based algorithm to solve (3.3). This alternating-based method first minimizes f(L,S)

with respect to S (L is fixed), then it minimizes f(L,S) with respect to L (S is fixed). In

particular, it adopts the following updating steps:

S(k) = arg min
S

f(L(k−1),S) (3.4)

L(k) = arg min
L

f(L,S(k)). (3.5)

This strategy utilizes the fact that the two sub-problems (3.4) and (3.5) admit efficient

solutions. In particular, the problem in (3.4) can be rewritten as follows:

S(k) = arg min
S

1

2
‖D− L(k−1) − S‖2F + λ‖S‖1. (3.6)
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Problem (3.6) admits the following closed form solution:

S(k) = Sλ(D− L(k−1)), (3.7)

where Sτ : < → < denotes the shrinkage operator defined by:

Sτ (x) = sgn(x)max(|x| − τ, 0), (3.8)

where τ ≥ 0 represents the threshold value. This shrinkage operator is extended to a

matrix by applying it to its elements. The problem in (3.5) can be rewritten as:

L(k) = arg min
L

1

2
‖D− S(k) − L‖2F + α‖L‖∗

+ β

p∑
i=1

‖FlTi ‖1.
(3.9)

The current formulation of the optimization problem in (3.9) is neither in a format that

admits a closed form solution as (3.4) nor in the format of a well-established problem

that admits an efficient solution. Moreover, relying on generic convex techniques to solve

(3.9) may not be efficient. The difficulty in this minimization problem arises from the

combination of the two non-smooth terms ‖L‖∗ and
∑p

i=1 ‖FlTi ‖1. Therefore, we pro-

pose to reformulate (3.9) by introducing an additional variable and constraint to separate

these two terms. Adding this auxiliary variable enables the decomposition of (3.9) into

two subproblems that can be solved efficiently. The first subproblem is the nuclear-norm

regularized least-squares problem which admits a closed form solution [85]. The second

problem can be recast as the total variation denoising problem [86], which presents an

efficient solution [87]. In particular, (3.9) is reformulated as:
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(L,Y) =arg min
L,Y

1

2
‖D− S(k) + L‖2F + α‖L‖∗

+ β

p∑
i=1

‖FyTi ‖1,

subject to Y = L,

(3.10)

where yTi stands for the ith row of the auxiliary variable Y. To solve (3.10), we employ

the alternating direction method of multipliers (ADMM) [87]. In general, the ADMM

algorithm converts the constrained optimization problem into unconstrained problems with

a new objective called the augmented Lagrangian. The augmented Lagrangian associated

with the optimization problem (3.10) is given by:

Lρ(L,Y,Z) =
1

2
‖D− S(k) + L‖2F + α‖L‖∗

+ β

p∑
i=1

‖FyTi ‖1 + 〈Z,L−Y〉

+
ρ

2
‖L−Y‖2F ,

(3.11)

where Z represents the Lagrange multiplier matrix. Thus, the ADMM formulation of

(3.10) is given by:

(L,Y,Z) = arg min
L,Y,Z

Lρ(L,Y,Z). (3.12)

The ADMM solution of (3.12) is of iterative-based nature. Each iteration r consists of the

following update steps:

L(r) = arg min
L

1

2
‖D− S(k) − L‖2F

+ α‖L‖∗ +
〈
Z(r−1),L−Y(r−1)〉

+
ρ

2
‖L−Y(r−1)‖2F ,

(3.13)
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Y(r) = arg min
Y

〈
Z(r−1),L(r) −Y

〉
+
ρ

2
‖L(r) −Y‖2F + β

p∑
i=1

‖FyTi ‖1,
(3.14)

Z(r) = Z(r−1) + ρ(L(r) −Y(r)) (3.15)

Remark-1: For any arbitrary vectors u,v ∈ <n, and scalars a, b ∈ <, the following

relation holds:

〈av + bu,u〉 = b
∥∥∥− a

2b
v − u

∥∥∥2
F
− a2

4b
‖v‖2F . (3.16)

The proof of (3.16) is provided in Appendix C.1. Based on Remark-1, the problem in

(3.13) can be recast as:

L(r) = arg min
L

α‖L‖∗+

1 + ρ

2

∥∥∥∥D− S(k) + ρY(r−1) − Z(r−1)

1 + ρ
− L

∥∥∥∥2
F

(3.17)

Detailed derivation of (3.17) is given in Appendix C.2. According to [85], problem (3.17)

admits the following closed form solution:

L(r) = D α
1+ρ

(
D− S(k) + ρY(r−1) − Z(r−1)

1 + ρ

)
, (3.18)

where Dτ is the singular value shrinkage operator defined by:

Dτ (X) = UDτ (Σ)VT , Dτ (Σ) = diag({σi − τ}+) (3.19)

where U, V, and σi represent the left singular vectors, the right singular vectors and the

singular values of the matrix X, respectively, and (x)+ stands for the positive part of x

(i.e., (x)+ = max(0, x)). In other words, Dτ (X) applies a soft-thresholding rule to the

singular values of X, effectively shrinking these towards zero. This is the reason why this
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transformation is referred to as the singular value shrinkage operator. Following the same

derivation lines of (3.17) (see Appendix C.2), problem (3.14) can be recast as:

Y(r) = arg min
Y

ρ

2

∥∥∥∥Z(r−1) + ρL(r)

ρ
−Y

∥∥∥∥2
F

+ β

p∑
i=1

‖FyTi ‖1.
(3.20)

The rows of Y can be updated separately according to the following optimization problem:

yTi
(r)

= arg min
y

ρ

2

∥∥∥∥∥zTi
(r−1)

+ ρlTi
(r)

ρ
− y

∥∥∥∥∥
2

F

+ β‖Fy‖1,
(3.21)

where zi and li are the ith rows of Z and L, respectively. Problem (3.21) is often called

the total variation denoising problem [86], and it admits an efficient solution via ADMM

as described in Section 6.4.1 in [87].

The proposed RegLRSD algorithm is summarized in Algorithm 1.

Algorithm 1: RegLRSD algorithm to solve the regularized low rank-sparse matrix
decomposition problem (3.3).

Input : D
while not convereged do

update Sk using equation (3.7);
while not convereged do

update Lr using equation (3.18);
update Yr by solving (3.21) using ADMM solver;
update Zr using equation (3.15);

end
Lk ← Lr;

end
Output: L, S
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3.2.2 Extracting the Differentially Abundant Bacteria via RegLRSD

The proposed method for biomarkers discovery consists of two phases. First, apply

RegLRSD to decompose the original bacterial abundance level data into a low-rank matrix

representing the non-differential abundant bacteria and a sparse matrix representing the

differential abundant bacteria. Second, construct a scoring vector based on the extracted

sparse matrix to rank each OTU (i.e., feature). Then, the m highest scores OTUs are

selected as potential bacterial biomarkers for the biological process under study.

The reasoning for employing the sparse matrix for extracting the potential biomarkers

is that the abundance levels of informative OTUs can be modeled as a sparse perturbation

matrix superimposed over the low-rank matrix representing the abundance levels of the

non-informative microbes (i.e., D = L + S). The stronger the variation in the abundance

levels of OTUs, the larger the magnitude of the corresponding elements in the sparse ma-

trix S. It is pertinent to mention that the strength of the variation of each OTU between two

phenotypes is determined by the absolute values of the non-zero elements in S rather than

their exact values. This is because the entries of S can be either positive or negative based

on the role (i.e., activation or deactivation) of the corresponding microbes in the biological

process. Therefore, the score of the ith OTU is obtained by summing the absolute values

of the ith row in S. Mathematically, the scoring vector v is given by:

v =

[
n∑
j=1

|s1j|, . . . ,
n∑
j=1

|spj|
]T

. (3.22)

3.2.3 Parameter Selection

RegLRSD algorithm has four regularization parameters, α, β, λ and ρ that control the

impact of the rank (i.e., ‖L‖∗), smoothness (i.e.,
∑p

i=1 ‖FlTi ‖1), sparseness (i.e., ‖S‖0),

and fitness (i.e., ‖L−Y‖2F ) penalties in (3.3) and (3.11). In order to select values for these
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parameters, we relied on similar models and utilized the recommended settings proposed 

in literature. For example, the PCP problem (2.7), which is a simplified version of the ob-

jective of RegLSRD algorithm, was addressed in [67]. In particular, PCP assumes the fol-

lowing objective ‖L‖∗ + λ‖S‖0. The authors in [67] proved that under mild assumptions, 

the two matrices L and S can be recovered with large probability when λ/α = 1/
√

max{n,p}. 

Therefore, in our experiments, we set α = 1 and λ = 1/
√

max{n,p}.

In what concerns the fitness penalty parameter ρ , which i s the s ingle parameter that 

is associated with the ADMM method, the ADMM technique is known for its robustness 

to poor selection of its parameter. Specifically, the convergence of ADMM is guaranteed, 

under broad assumptions, for all positive values of its parameter [88]. Here, we set ρ = 1. 

In addition, herein paper, β = 0.1α.

3.2.4 Data Description

The abundance levels of the OTUs were generated from filtered 16S rRNA gene se-

quencing using the naive Bayesian classifier employed by the Ribosomal Database Project 

(RDP) [71]. Reads with confidence below 80% were rebinned u ncertain. The per-sample 

normalized bacterial abundance profiles were organized in a matrix called the taxonomic 

relative abundances matrix. RegLRSD algorithm assumes this matrix as input. Due to the 

unsupervised nature of RegLRSD, the labels of the samples are not required.

3.2.4.1 Dogs with Idiopathic Inflammatory Bowel Disease (IBD) Dataset

This dataset compares the fecal microbiota between 10 healthy dogs and 12 dogs 

diagnosed with IBD. The extracted DNA from fecal samples was sequenced by 454-

pyrosequencing. OTUs were assigned based on at least 97% sequence similarity against 

the Greengenes reference database [89] using Quantitative Insights Into Microbial Ecology 

(QIIME) [90]. The sequencing data were deposited into the National Center for Biotech-

nology Information (NCBI)-Sequence Read Archive (SRA) under the accession number
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SRP040310.

3.2.4.2 Dogs with Exocrine Pancreatic Insufficiency (EPI) Dataset

Three-days pooled fecal samples were collected from 18 healthy dogs and 7 dogs with 

EPI. Extracted DNA was sequenced by Illumina sequencer, and the generated sequences 

were analyzed using QIIME to obtain the final OTU table with at least 97% sequence sim-

ilarity against the Greengenes reference database. The sequences are available in NCBI-

SRA database under the accession number SRP091334.

3.2.4.3 Mouse Model of Ulcerative Colitis (UC) Dataset

This dataset represents the fecal microbiota of mice model with ulcerative colitis and 

control mice. The description of the samples collection, processing, and DNA extraction 

is described in [91]. In particular, the microbiota of 20 T-bet−/− x Rag2−/− (UC) and 

10 Rag2−/− (control) mice was characterized using 16S data from fecal samples. The 

taxonomic relative abundance table is publicly available in the Supplementary Material of 

[42].

3.3 Results and Discussions

This section presents the comparison of the RegLRSD algorithm with the current 

state-of-the-art algorithms over the three metagenomic studies described in the Material 

and Methods Section. In particular, the proposed RegLRSD algorithm is compared with 

LEFSe [42] and MetaStats [43] from the statistical biomarker detection algorithms fam-

ily, and MetaBoot [44] and the entropy-based filtering method from the machine learning 

family. Additionally, RegLRSD is compared with the standard RPCA method in order to 

examine the impact of adding the smoothness constraint to the original PCP problem (2.7).
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3.3.1 Evaluation Criteria

The competing algorithms were evaluated using the Consistency-classification evalu-

ation protocol shown in Fig. 2.1. The essence of this evaluation is based on generating a

large number of different variations of the original dataset. Then, the evaluation metrics

(i.e., classification and reproducibility) are computed by averaging the results obtained

over all these variations. The details of the evaluation protocol were discussed in Section

2.3.1.

In this paper, the stability performance was visualized by presenting three types of

descriptive plots. The first plot shows the average Kuncheva Index (KI) over all pairwise

comparisons. The second plot provides more details about the distribution of all the KI

values by presenting their histogram. An ideal algorithm in terms of stability will have the

Dirac-delta distribution at KI equal to 1. This means that the algorithm generates the same

set of markers over all subsamples. Practically, the more concentrated the histogram is to

the right side of the plot, the more stable is the algorithm. The third plot aims to depict the

stability of the ranked microbial marker lists. This is achieved by ordering all the selected

markers based on their ranks. Then, a boxplot is generated for the ranks obtained in all the

K subsamples for each selected marker. A perfect algorithm in the sense of stability of

the ranked lists will have boxplots that are centered at the 45◦ line, which means that the

algorithm perfectly preserves the order of the detected markers in all subsamples.

3.3.2 Simulation Setup

The classification and consistency metrics were used to measure the efficiency of the

six biomarker detection algorithms in identifying potential markers. In our experiments,

a random subsampling without replacement is utilized to generate 500 subsamples (i.e.,

K = 500) variations of the original dataset. Each subsample contains 80% of the samples

in the original dataset (i.e., r = 0.8). The classification and consistency performance
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Figure 3.1: Average consistency performance measured by KI for the six
biomarker discovery algorithms over the dogs from the EPI dataset.

were evaluated at different numbers of selected markers to provide further insights on the

performance of the competing algorithms under varying sizes of the biomarker sets. The

reported results represent the average over the 500 experiments. In our experiments, two

variants of the nearest centroid classifiers were used. The first approach employed the l1

norm as a measure of distance, while in the second approach, the l2 norm was used. We

refer to the first classifier as NCC-1 and to the second one as NCC-2.

3.3.3 Dogs with Exocrine Pancreatic Insufficiency (EPI) Dataset

The reproducibility performance in terms of the average KI stability values over all the

pairwise comparisons (i.e., K(K − 1)/2 = 124750 comparisons; K = 500) of the six

algorithms for varying number of biomarkers from the EPI dataset is depicted in Fig. 3.1.

As is clear in Fig. 3.1, RegLRSD outperforms all the other algorithms. The improvement

gain of RegLRSD over the other algorithms in terms of reproducibility performance is

higher at lower numbers of selected markers. This indicates that RegLRSD is more certain
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Figure 3.2: Histogram plots of all the 124750 pairwise KIs (i.e., K(K−1)
2

=
124750 comparisons; K = 500) generated by the six biomarker discovery al-
gorithms over the dogs from the EPI dataset.

in identifying small subsets of potential markers.

Fig. 3.2 presents the histogram of the KI index computed over the 124750 pairwise

comparisons when the size of the selected biomarkers equals 20. The concentration of the

histogram of RegLRSD at high KI values reveals that the RegLRSD algorithm achieves

a high reproducibility performance. In particular, RegLRSD provides a stability value

that is larger than or equal to 90% for almost 90% of the times. On the other hand, the

other algorithms are less frequent to achieve the same stability performance. In particular,

RPCA, LEFSe, and MetaStats yield a stability performance that is larger than or equal to

90% for only 75%, 15%, and 30% of the times, respectively, and less than 5% of the times

for both MetaBoot and entropy-based algorithm. Moreover, the spread of the histograms
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Figure 3.3: Rank boxplots in the subsamples against rank in the original data set for the
six algorithms over the dogs from the EPI dataset. (a) RegLRSD. (b) RPCA. (c) LEFSe.
(d) MetaStats. (e) MetaBoot. (f) Entropy.

of LEFSe, MetaStats, MetaBoot and entropy algorithms over wide range of KI values

indicates a serious inconsistency problem that puts the outcomes of these algorithms under
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question.

The ranking stability of the selected microbial signatures over all the K = 500 varia-

tions of the original dataset is depicted in Fig. 3.3. In addition to the high reproducibility

performance, the RegLRSD algorithm corroborates its ability to preserve the order (i.e.,

rank) of the selected markers as revealed from the concentration of the boxplots of the

ranks around the 45◦ line. The spread of the rank boxplots of the other algorithms in-

dicates that the rank of the selected markers in these algorithms varies significantly with

respect to small variations in the dataset. For example, the rank of the marker that is ranked

sixth when applying the MetaBoot algorithm over the original dataset varies significantly

over 500 different subsamples as cleared from Fig. 3.3.e. Specifically, the median value

for all these ranks (i.e., ranks obtained in the 500 subsamples) equals 13 and the interquar-

tile range (IQR) equals 6 (from 9 to 15). Moreover, in some subsamples, this marker was

ranked first, while in other subsamples it was ranked twentieth. The classification per-

formance of the competing algorithms is depicted in Fig. 3.4. The first column in Fig. 3.4

presents the results for the NCC-1 classifier, while the second column presents the results

for the NCC-2 classifier. In general, all the algorithms provide a robust performance ir-

respective of the number of selected biomarkers. The identified markers by RegLRSD,

LEFSe, MetaStats, and MetaBoot show high ability to distinguish between healthy and

diseased samples related to EPI as revealed by the high accuracy, sensitivity and speci-

ficity of these algorithms compared to RPCA and entropy algorithms, especially when the

NCC-2 is used. The better performance of RegLRSD compared to RPCA demonstrates

that incorporating the prior knowledge improves the performance markedly.

Fig. 3.5 displays the top 20 identified markers by RegLRSD and their scores.

RegLRSD suggests that the EPI may be characterized by the decrease in Blautia, Bac-

teroides, Fusobacterium, Ruminococcus genera in dogs with EPI. On the other hand,

the genera, Lactobacillus, Streptococcus, Bifidobacterium exhibit a significant increase
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Figure 3.4: Classification performance of the six algorithms over the dogs from the EPI
dataset in terms of (a) accuracy, (b) sensitivity and (c) specificity. The first column repre-
sents the results corresponding to the NCC-1 classifier, while the second column represents
the NCC-2 classifier results.
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Figure 3.5: Top 20 identified biomarkers by RegLRSD in relation to the canine with EPI
dataset and their RegLRSD scores. Blue: the selected bacteria exhibit an increase in their
abundance level in the control samples. Red: the selected bacteria exhibit an increase in
their abundance level in the EPI samples.

in their abundance levels in dogs with EPI when compared to healthy dogs. Previous stud-

ies have also showed an increase in Lactobacillus and Streptococcus abundance levels in

dogs with EPI. In particular, two culture-based studies have reported an increased number

of Lactobacillus and Streptococcus in the duodenum [92], jejunum and colon of dogs with

EPI [93].
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Figure 3.6: The average consistency performance measured by KI for the six
biomarker discovery algorithms over the dogs from the IBD dataset.

3.3.4 Dogs with Idiopathic Inflammatory Bowel Disease (IBD) Dataset

The stability performance measured in terms of the average KI values for the six algo-

rithms over different numbers of biomarkers is depicted in Fig. 3.6. The results in Fig. 3.6

show that RegLRSD outperforms all the other algorithms in terms of reproducibility per-

formance. Moreover, adding the smoothing constraint in RegLRSD results in an improve-

ment in the stability performance by almost 2− 7% over the standard RPCA. Noticeably,

LEFSe and MetaBoot provide a poor reproducibility performance. For example, the aver-

age KI values range around 30%− 50% for MetaBoot and around 40%− 65% for LEFSe.

The histograms of the KI index computed over the 124750 pairwise comparisons when

the size of the selected biomarkers equals 20 is depicted in Fig. 3.7. The histogram of

RegLRSD illustrates the superior performance of RegLRSD as it achieves 100% stability

for more than 65% of the times. RPCA and MetaStats show an adequate consistency. On

the other hand, LEFSe, MetaBoot, and entropy tend to provide poor performance as their
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Figure 3.7: Histogram plots of all the 124750 pairwise KIs (i.e., K(K−1)
2

=
124750 comparisons; K = 500) generated by the six biomarker discovery al-
gorithms over the dogs from the IBD dataset.

corresponding histograms are centered at low KI values and spread over a wide range of

KI values.

The ranking stability of the selected microbial signatures over all the K = 500 sub-

samples is presented in Fig. 3.8. The rank of the selected markers by RegLRSD, RPCA,

and MetaBoot is more consistent against the variation in the dataset. This contrasts the

performance of the LEFSe, MetaStats, and entropy-based algorithms, in which the im-

portance (i.e., rank) of the selected features varies drastically due to adding/removing a

small number of samples from the original dataset. In terms of classification performance,

the RegLRSD algorithm outperforms the other algorithms especially when the NCC-2

classifier is used as revealed from Fig. 3.9. Noticeably, RegLRSD yields a significant im-
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Figure 3.8: Rank boxplots in the subsamples against rank in the original data set
for the six algorithms over the dogs from the IBD dataset. (a) RegLRSD. (b)
RPCA. (c) LEFSe. (d) MetaStats. (e) MetaBoot. (f) Entropy.

provement over the RPCA algorithm. This reflects the efficiency of incorporating the prior

knowledge information in generating more accurate results.
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Figure 3.9: Classification performance of the six algorithms over the dogs from the IBD
dataset in terms of (a) accuracy, (b) sensitivity and (c) specificity. The first column repre-
sents the results corresponding to the NCC-1 classifier, while the second column represents
the NCC-2 classifier results.
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Figure 3.10: Top 20 identified biomarkers by RegLRSD in relation to the dogs with IBD
dataset and their RegLRSD scores. Blue: the selected bacteria exhibit an increase in their
abundance level in the control samples. Red: the selected bacteria exhibit an increase in
their abundance level in the IBD samples.

RegLRSD suggested several bacterial groups as potential markers for IBD. The top

20 detected biomarkers by the RegLRSD algorithm and their scores are displayed in

Fig. 3.10. At higher phylogenetic levels, the majority of these bacterial groups belong

to Firmicutes, Bacteroidetes, and Proteobacteria. In particular, the Enterobacteriaceae is

the main driver for increasing the abundance level of Gammaproteobacteria in dogs with

IBD. The quantitative PCR (qPCR) assays suggest that this increase is mainly due to Es-

cherichia coli (i.e., E. coli) [94]. Several studies in human patients with IBD [95, 96]

reported that E. Coli exhibits virulent potential such as adhesive capacity, invasive capac-

ity, toxin production, and inflammatory cytokine stimulation. Similarly, the results in [97]
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Figure 3.11: The average consistency performance measured by KI of the six
biomarker discovery algorithms over the mouse model of UC dataset.

associated several adherent and invasive strains of E. Coli with granulomatous colitis in

boxer dogs. RegLRSD have suggested several genera belonging to Firmicutes to be as

potential markers for IBD. In particular, Blautia, Turicibacter, and Faecalibacterium were

decreased in IBD. Most of these bacterial groups belong to Clostridium clusters IV and

XIVa and are recognized as the major producer of several metabolites including short-

chain fatty acids (SCFA). Consequently, decreasing the abundance level of these bacterial

groups may impact the host health. These findings comply with previous studies in duo-

denal mucosal/luminal content and feces in dogs with IBD [98, 99, 75].

3.3.5 Mouse Model of Ulcerative Colitis (UC) Dataset

The average KI values over all the pairwise comparisons and their histograms when

the number of selected biomarkers equals 20 are depicted in Fig. 3.11 and Fig. 3.12, re-

spectively. Fig. 3.11 demonstrates that RegLRSD outperforms all the other algorithms

and exhibits a high reproducibility performance. In particular, the improvement gain is
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Figure 3.12: Histogram plots of all the 124750 pairwise KIs (i.e., K(K−1)
2

=
124750 comparisons; K = 500) generated by the six biomarker discovery algo-
rithms over the mouse model of the UC dataset.

about 5% over RPCA and entropy-based algorithm, 15% over MetaStats, 20 − 25% over

MetaBoot, and more than 30% over LEFSe.

The ranking stability of the selected microbial signatures over all the K = 500 sub-

samples is presented in Fig. 3.13. The results in Fig. 3.13 point a serious inconsistency

problem in the performance of LEFSe, MetaStats and entropy-based algorithm. The two

matrix decomposition-based algorithms (i.e., RegLRSD and RPCA) provide a comparable

performance in terms of retaining the rank of the selected markers over different subsam-

ples of the dataset.

The classification performance of the six algorithms for varying number of biomarkers

from the ulcerative colitis mice model dataset is presented in Fig. 3.14. The results in
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Figure 3.13: Rank boxplots in the subsamples against the rank in the original data set for
the six algorithms over the mouse model of the UC dataset. (a) RegLRSD. (b) RPCA. (c)
LEFSe. (d) MetaStats. (e) MetaBoot. (f) Entropy.

Fig. 3.14 point out that all the algorithms, except entropy-based algorithm, provide almost

the same classification accuracy (i.e., 80− 84%).
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Figure 3.14: Classification performance of the six algorithms over the mouse model of the
UC dataset in terms of (a) accuracy, (b) sensitivity and (c) specificity. The first column
represents the results corresponding to the NCC-1 classifier, while the second column
represents the NCC-2 classifier results.
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Figure 3.15: Top 15 identified biomarkers by RegLRSD in relation to the mouse model of
UC dataset and their RegLRSD scores. Blue: the selected bacteria exhibit an increase in
their abundance level in the control samples. Red: the selected bacteria exhibit an increase
in their abundance level in the UC samples.

The top 15 identified biomarkers by the RegLRSD algorithm are listed in Fig. 3.15.

The majority of these markers comply with the previous studies. For example, the au-

thors of [81, 82] reported reduced concentrations of Lactobacillus and Bifidobacterium in

colonic biopsy specimens and decreased fecal concentrations of lactobacilli and bifidobac-

teria in patients with active UC. The study [83] has suggested that the UC can be character-

ized by the decrease in the abundance levels of Bacteroides. The authors of [39] reported

that the decrease in the abundance levels of acetate producer clades such as Ruminococ-

caceae may reduce the host ability to repair the epithelium and to regulate inflammation.

This may explain the selection of Oscillibacter, which belongs to Ruminococcaceae, as a
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possible marker for UC. Subjects with UC showed a significant reduction in Helicobacter

pylori [79], the most widely known species of Helicobacter genus.

3.4 Summary

Recent advancements in metagenomic sequencing associated microbes with certain

health and disease states of the host. Identifying potential metagenomic markers is es-

sential for understanding biological systems and designing possible therapies for dis-

eases. However, biomarker identification for specific diseases has been hindered by ir-

reproducibility. This compromises practical utility in real biomedical and clinical studies

that aim to identify reliable biomarkers for diagnosis, prognosis or treatment of patients.

Therefore, developing robust and stable biomarker detection algorithms is crucial in order

to derive solid biological conclusions and translate these findings into clinical applications.

In this paper, we developed the RegLRSD algorithm for biomarker detection.

RegLRSD utilizes the convex formulation of the LRS model (2.6) to add further con-

straints in order to derive more accurate and consistent biological findings. Particularly,

RegLRSD constrains the low-rank matrix to be smooth in order to integrate the prior

knowledge that the abundance profiles of irrelevant bacteria do not exhibit a strong varia-

tion between different phenotypes in the biomarker detection process. Then we developed

an efficient solution for this decomposition problem based on the alternating direction

method of multipliers.

Comprehensive comparisons with state-of-the-art biomarker discovery algorithms

were conducted. In particular, RegLRSD was compared with two statistical-based algo-

rithms (i.e., LEFSe and MetaStats), two machine learning-based algorithms (MetaBoot

and entropy) and a reduced form of RegLRSD in which the smoothness constraint is

not considered (i.e., RPCA). The competing algorithms were tested against three real-

istic metagenomic datasets. The first and second datasets are in relation to healthy dogs
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and dogs diagnosed with EPI and IBD, respectively. The third dataset is a mouse model

of ulcerative colitis. These algorithms were evaluated in terms of classification accuracy

and reproducibility performance. The simulation results show that the detected markers by

RegLRSD enable discriminating metagenomic samples belonging to different phenotypes

with a quite high accuracy. Moreover, RegLRSD exhibits superior consistency perfor-

mance when compared to other algorithms. This renders the RegLRSD algorithm as a

robust and reliable tool to identify potential metagenomic markers that may characterize

the difference between samples belonging to different phenotypes.

Our simulation results demonstrate that the existing methods for metagenomic

biomarker discovery present poor reproducibility performance. In particular, the spread

of the histograms of LEFSe, MetaStats, MetaBoot and entropy algorithm over a wide

range of KI values indicates a serious inconsistency problem that puts the outcomes of

these algorithms under question. Additionally, the results reveal that the two matrix

decomposition-based algorithms (i.e., RegLRSD and RPCA) are successful in providing

high reproducibility and classification accuracy performance compared to the conventional

statistical and machine learning-based algorithms. This validates the concept of modeling

the bacterial abundance data matrix as the superposition of a low-rank matrix representing

the uninformative microbes and a sparse matrix containing the abundances of informa-

tive microbes. Moreover, the improvement in the performance of RegLRSD compared

to RPCA demonstrates (i) the validity of our assumption that the abundance profiles of

irrelevant bacteria are smooth, and (ii) incorporating prior knowledge in the design of a

biomarker detection algorithm may lead to more robust results.
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4. DYSBIOSIS INDEX

4.1 Introduction

Recent metagenomic studies have associated the imbalance in the gut microbiota to

the chronic inflammatory enteropathies (CE) in dogs [100, 101]. The common analysis

conducted in the majority of these metagenomic studies is restricted to measure the abun-

dance variation, evaluate the within sample diversity (α-diversity) and between sample di-

versity (β-diversity), and identify specific microbes or pathways that may act as potential

biomarkers for the biological process at hand. Several mathematical and statistical tools

have been employed in these studies such as standard hypothesis testing, supervised learn-

ing and unsupervised learning including clustering, principal component analysis (PCA)

and principal coordinate analysis (PCoA).

These studies reveal a regular dysbiosis of gut microbiota due to IBD. For example,

the authors in [61] assess the dysbiosis pattern due to CD in a large sample that con-

sists of 1321 subjects, and found an association between CD and increased abundance

of Enterobacteriaceae, Pasteurellacaea, Veillonellaceae, and Fusobacteriaceae, and de-

creased abundance in Erysipelotrichales, Bacteroidales, and Clostridiales. The results

in [102] show a significant reduction in Firmicutes, in particular, Clostridium leptum

in Crohn’s disease (CD) subjects compared to healthy ones. In [103], the results show

that IBD can be characterized by the degradation of Firmicutes and Bacteroidetes phyla.

The authors in [104] identify the reduction in Faecalibacterium prausnitzii and the Fir-

micutes/Bacteroidetes ratio as consistent changes in IBD patients, and suggest using Fae-

calibacterium prausnitzii as potential biomarkers for IBD. The uniform bile-acid (BA)

dysmetabolism discovered in IBD patients [105] suggests using BA as a biomarker for

IBD.
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These research studies are indeed useful to investigate the systematic imbalance in gut

microbiota due to IBD and its potential biomarkers. However, for clinical applications,

the ultimate goal is to develop a diagnostic test, which integrates the detected IBD activ-

ity indicators in an easy-to-use computational framework to measure the disease activity

and to measure the response to therapy. Very few studies aim to develop a diagnostic

test for IBD based on microbial markers. For example, the authors in [61] propose the

Microbial Dysbiosis index (MD-index), which is defined as the logarithm of the ratio

between the total abundance in organisms increased in CD and the total abundance of or-

ganisms decreased in CD. The bacteria increased in CD are Enterobacteriaceae, Pasteurel-

laceae, Fusobacteriaceae, Neisseriaceae, Veillonellaceae, and Gemellaceae. On the other

hand, the bacteria decreased in CD are Bacteroidales, Clostridiales, Erysipelotrichales,

and Bibidbacteriaceae. Another diagnostic test using fecal samples applicable for both

IBD and IBS was proposed in [62] and is called ‘GA-map test’. GA-map test requires

DNA probes for 54 bacteria at different taxonomic levels. Since MD-index and GA-map

tests are sequencing-based approaches, they suffer from two major drawbacks. The first

drawback is the relatively high cost associated with the sequencing process. The second

drawback is the considerable time required to receive the sequencing results. Therefore, a

more efficient diagnostic test is required.

To address the challenges mentioned above, we develop a PCR-based a dysbiosis index

using fecal samples to identify and track the imbalance in the gut bacterial community due

to chronic enteropathies. Identifying the relative abundance of CE microbial markers using

PCR technique is much cheaper and faster compared to its sequencing-based counterpart.
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4.2 Material and Methods

4.2.1 Data Description

Naturally passed fecal samples were analyzed from 95 healthy dogs and 106 dogs

with chronic signs of gastrointestinal disease and confirmed inflammatory changes on

histopathology. Fecal samples were collected at home by the owners, immediately frozen

and then shipped on ice to the laboratory. The protocol for sample collection was ap-

proved by the Texas A&M University Institutional Animal Care and Use Committee (AUP

#2012− 83). Dogs were classified as having CE due to their chronic signs of GI disease

(i.e., > 3 weeks duration) and histopathologic evidence of mucosal inflammation. Clini-

cal disease activity was scored using the canine IBD activity index (CIBDAI) with a mean

of 7.6. Histological changes were predominantly of lymphoplasmacytic infiltrates, with a

subset of dogs also showing eosinophilic and/or neutrophilic components.

None of the dogs received antibiotics for at least 3 weeks before sample collection.

Animal information (i.e., age, weight, gender, breed) was obtained from clinical records.

Also, if the owner provided the information, the exact diet (trade name and manufacturer)

fed at the time of sample collection was recorded in the clinical records, and the dietary

macronutrients (protein, fat, and carbohydrate content) were recorded from manufacturer’s

provided data on the labels.

4.2.2 Identification of the PCR Panel

DNA was extracted using the PowerFecal kit (MoBio, Carlsbad, CA). Various PCR

assays were initially used to measure the abundances of selected bacterial taxa which have

been previously shown to be altered in dogs with CE: total bacteria, Proteobacteria, Firmi-

cutes, Fusobacteria, Bacteroidetes, Ruminococcaceae, Bifidobacterium spp., Blautia spp.,

Faecalibacterium spp., Turicibacter spp., Lactobacillus spp., Clostridium perfringens, C.

hiranonis, and Escherichia coli. The qPCR cycling, oligonucleotide sequences of primers
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Table 4.1: Oligonucleotides primers/probes used in this study
qPCR

primers/probe Sequence (5’- 3’) Target
Annealing

(C◦)
Forward GAAGGCGGCCTACTGGGCAC

Faecalibacterium 60
Reverse GTGCAGGCGAGTTGCAGCCT

Forward KGGGCTCAACMCMGTATTGCGT
Fusobacteria 51

Reverse TCGCGTTAGCTTGGGCGCTG

Forward TCTGATGTGAAAGGCTGGGGCTTA
Blautia 56

Reverse GGCTTAGCCACCCGACACCTA

Forward CCTACGGGAGGCAGCAGT
Universal Bacteria 59

Reverse ATTACCGCGGCTGCTGG

Forward CAGACGGGGACAACGATTGGA
Turicibacter 63

Reverse TACGCATCGTCGCCTTGGTA

Forward GTTAATACCTTTGCTCATTGA
E. coli 55

Reverse ACCAGGGTATCTAATCCTGTT

Forward AGTAAGCTCCTGATACTGTCT
C. hiranonis 50

Reverse AGGGAAAGAGGAGATTAGTCC

Forward TTATTTGAAAGGGGCAATTGCT
Streptococcus 50

Reverse GTGAACTTTCCACTCTCACAC

and probe, and respective annealing temperatures for selected bacterial groups are shown

in Table 4.1. A commercial real-time PCR thermal cycler (CFX 96 TouchTM Real-Time

PCR Detection System; Biorad Laboratories, Hercules, CA) was used for all qPCR assays

and all samples were run in duplicate fashion.

The collected samples were divided into two groups. The first group was used as train-

ing set and consists of 36 fecal samples from healthy dogs and 55 subjects characterized

with CE. The second group of samples represented an independent validation set and was

composed of 59 healthy dogs and 51 dogs with CE. First, an exhaustive search wrapper

feature selection method was employed to identify a smaller subset with high classifica-

tion power between healthy and diseased subjects. The brute force search showed that a
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subset of only seven taxa (Faecalibacterium, Turicibacter, Streptococcus, E. coli, Blautia,

Fusobacterium, and C. hiranonis) attains a specificity and sensitivity performance close to

the original fourteen bacteria. Therefore, only these seven bacteria were used to construct

the dysbiosis index model.

4.2.3 Dysbiosis Index Development and Validation

To overcome the between samples variability, test and validation samples were normal-

ized by the universal abundance level. Additionally, to guarantee the compatibility with

different PCR measurement standards, the proposed index is built using the CT values

rather the log-range values which varies between measurement instruments.

The dysbiosis index model is built using the nearest prototype (centroid) classifier.

The nearest centroid classifier (NCC) first trains the model with labeled data in order to

determine the centroid of each healthy (µCH ) and diseased (µCD) class. Secondly, NCC

assigns the test sample to the class whose centroid is closest. Geometrically, the centroid

of each class can be considered as a point in a space with dimensions equal to the num-

ber of variables. The NCC classifier measures the distance between the test sample and

these centroids, and assign the sample class of closest centroid. Our model employs the

Euclidean distance as a measure of closeness.

The degree of dysbiosis is quantified as a single numerical value, called the Dysbiosis

Index (DI), that measures the closeness (in the l2 − norm) of the test sample to the mean

(prototype) of each class. More formally, DI is defined as the difference between the [Eu-

clidean distance between the test sample and the healthy class centroid] and the [Euclidean

distance between the test sample and the diseased class centroid]. Mathematically, the DI

of a test sample z is defined as:

DI(z, µCH , µCD) = ‖z− µCH‖2 − ‖z− µCD‖2, (4.1)

74



Table 4.2: Average, minimum, maximum, variance, and STD for the sensitivity and speci-
ficity values obtained by repeating 5-fold cross validation for 100 times over the training
set.

Sensitivity Specificity
Threshold Average Min Max Variance STD Average Min Max Variance STD

-2.00 0.87 0.5 1.00 0.01 0.11 0.89 0.57 1.00 0.01 0.11

-1.75 0.85 0.42 1.00 0.01 0.12 0.89 0.57 1.00 0.01 0.11

-1.50 0.83 0.42 1.00 0.01 0.12 0.89 0.57 1.00 0.01 0.11

-1.25 0.81 0.42 1.00 0.01 0.12 0.89 0.57 1.00 0.01 0.11

-1.00 0.80 0.42 1.00 0.01 0.12 0.89 0.57 1.00 0.01 0.11

-0.75 0.78 0.42 1.00 0.01 0.12 0.89 0.57 1.00 0.01 0.10

-0.50 0.77 0.42 1.00 0.01 0.12 0.90 0.57 1.00 0.01 0.10

-0.25 0.76 0.33 1.00 0.01 0.12 0.90 0.57 1.00 0.01 0.10

0.00 0.76 0.33 1.00 0.01 0.12 0.91 0.57 1.00 0.01 0.10

0.25 0.75 0.33 1.00 0.02 0.12 0.92 0.57 1.00 0.01 0.09

0.50 0.75 0.33 1.00 0.02 0.12 0.93 0.57 1.00 0.01 0.09

0.75 0.74 0.33 1.00 0.02 0.13 0.94 0.57 1.00 0.01 0.08

1.00 0.73 0.33 1.00 0.02 0.13 0.94 0.57 1.00 0.01 0.08

1.25 0.72 0.33 1.00 0.02 0.13 0.95 0.71 1.00 0.01 0.07

1.50 0.70 0.33 1.00 0.02 0.13 0.96 0.71 1.00 0.00 0.07

1.75 0.69 0.33 1.00 0.02 0.13 0.97 0.71 1.00 0.00 0.06

2.00 0.68 0.33 1.00 0.02 0.14 0.98 0.71 1.00 0.00 0.05

where µCD and µCH stand for the centroid of the diseased and healthy samples in the

training set, respectively. A value of zero means that the test sample lies at equal distance

from the center of both classes. The higher the DI, the more deviation of the sample from

normobiosis. For example, a sample with DI equal 8 is farther away from the normobiotic

reference than a sample with DI equal 2, thus the first sample is more dysbiotic than the

second sample.
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Table 4.3: Sensitivity and specificity performance of the DI when trained by the training
set and validated by the validation set.

Threshold Sensitivity CI (95%) Specificity CI (95%)
-2 0.86 0.78-0.92 0.83 0.74-0.90
-1 0.82 0.73-0.88 0.91 0.84-0.96
0 0.74 0.65-0.82 0.95 0.89-0.98
1 0.69 0.6-0.78 0.96 0.91-0.99
2 0.63 0.53-0.72 1 0.96-1.00

Figure 4.1: ROC curve for the DI over the independent validation set.

4.3 Results and Discussions

To evaluate the efficiency of our DI model, 5-fold stratified cross validation was con-

ducted over the training set. To mitigate the variance in the generalization error due to

small sample size, this cross-validation experiment was repeated 100 times and the av-

erage results were reported. Table 4.2 presents the basic statistics of the specificity and

sensitivity values for threshold values ranging from -2 to 2. As is clear in Table 4.2, at

a threshold of 0, DI achieves 76% sensitivity and 91% specificity. To assess the clinical
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Figure 4.2: Scatter plot of the DI for all dogs in the validation set.

diagnostic performance of the DI and its capacity to track the imbalance in the bacterial

population, the proposed DI was validated using an independent dataset. In particular, the

training set (i.e., 36 healthy samples and 55 diseased samples) were used to train the DI

model. Then, the model was tested against the validation set (i.e., 59 healthy samples and

51 diseased samples). The performance in terms of sensitivity and specificity for varying

threshold values is shown in Table 4.3. For a threshold value of 0, DI yields 74% sensi-

tivity and 95% specificity, whereas a threshold of -1 results in 82% sensitivity and 91%
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specificity. The performance of the DI over the independent validation set agrees with the

5-fold cross-validation experiments conducted over the training set as is clear from Table

4.2 and Table 4.3. This demonstrates the reliability and accuracy of the DI.

To capture the performance of DI over the entire range of sensitivity/specificity values,

the ROC curve is depicted in Figure 4.1. The final scatter plot of the DI for all dogs in the

validation set is shown in Figure 4.2. As is clear in Figure 4.2, the DI success in charac-

terizing health samples as the majority of healthy subjects has relatively large negative DI

values. Graphs for all qPCR assays and the final DI as comparison are illustrated in Figure

4.3.

4.4 Summary

Recent metagenomic studies have associated the imbalance in the gut microbiota to

the chronic enteropathies (CE) in dogs. These studies have focused on identifying the

bacterial groups that may explain the systematic alteration in the intestine bacterial system

due to CE. To translate these finding into clinical applications, it is required to develop a

clinical diagnostic test which enables tracking the disease severity and its response to ther-

apy. Toward this end, very few sequencing-based diagnostic tests have been proposed. In

addition to the turnaround time to receive sequencing results, sequencing-based approach

is costly. Therefore, this study aims to identify a PCR panel, which allows for rapid and

inexpensive assessment of dysbiosis in dogs with CE. Moreover, a mathematical model

is proposed to quantify these microbiota changes in a single numerical value called the

Dysbiosis Index (DI).

Fecal DNA from 95 healthy dogs and 106 dogs with CE was initially analyzed for

fourteen bacterial groups using quantitative PCR (qPCR) assays. These samples were

grouped into two sets. The first set is a training set and it consists of 36 healthy subjects

and 55 CE diseased samples. The second set is a validation set and it consists of 59
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healthy subjects and 51 diseases samples. The final PCR panel consists of seven bacterial

groups: Faecalibacterium, Turicibacter, E. coli, Streptococcus, Blautia, Fusobacterium,

and Hiranonis. The DI was built based on the nearest centroid classifier (NCC), and it

reports the degree of dysbiosis in a single numerical value that measures the closeness (in

the l2 − norm) of the test sample to the mean (prototype) of each class. A negative DI

indicates normobiosis, whereas a positive DI indicates dysbiosis. The larger the DI, the

stronger the deviation of the sample from normobiosis.

To test the DI, 100 times repetition of 5-fold cross validation experiments was con-

ducted on the training and the average results were reported. At 0 threshold, DI achieves

76% sensitivity and 91% specificity. To validate the DI, the model was trained with the

training set and tested against the validation set. For a threshold of 0, DI achieves 74%

sensitivity and 95% specificity.
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Figure 4.3: Results of the final seven qPCR assays and the final Dysbiosis Index
(DI). All assays were significantly different between healthy dogs and dogs with
CE (P < 0.001).
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5. CONCLUSIONS AND FUTURE WORK

This dissertation presents a series of computational tools for the analysis of meta-

genomic data in order to advance our understanding of microbial communities and their

relation to certain host health and disease states. These methods span two research direc-

tions: metagenomic biomarker discovery and development of dysbiosis index.

First, an evaluation protocol that accounts for the lack of knowledge of the true mark-

ers, which hinder the objective assessment of the biomarker detection algorithms, was pre-

sented. This protocol tries to mimic the the knowledge of true markers by considering the

key aspects of markers. Next, a new framework for tackling the metagenomic biomarker

detection problem was presented. This framework based on modeling the microbial abun-

dance level as the superposition of: (i) a low rank matrix that models the profiles of the

irrelevant features, and (ii) a sparse matrix that captures the abundance variation of the

relative features. We refer to this model as the low rank-sparse (LRS) model. Then, the

RPCA technique is employed to extract the sparse matrix that encodes the differential

abundance information, which in turns is used to score all features. The inconsistent per-

formance of a metagenomic biomarker selection algorithm hampers the practical utility of

the detected signatures in practical applications. In order to mitigate the problem of in-

consistency, the RegLRSD algorithm was developed. RegLRSD integrates the stationary

nature of irrelevant microbes profiles in an attempt to yield more accurate and biological

sound results.

Comprehensive comparisons with state-of-the-art biomarker discovery algorithms

were conducted. In particular, the two LRS-based algorithms proposed in this disserta-

tion (i.e., RPCA and RegLRSD) were compared with two statistical-based algorithms (i.e.,

LEFSe and MetaStats), and three machine learning-based algorithms (MetaBoot, entropy
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and single variable classification). The competing algorithms were tested against several

realistic metagenomic datasets, and were evaluated in terms of classification accuracy and

reproducibility performance.

The results presented in this work demonstrate that the two matrix decomposition-

based algorithms (i.e., RegLRSD and RPCA) yielded markers that enable distinguishing

samples belonging to different phenotypes with high classification accuracy. In addition

to the high classification power, RPCA and RegLRSD algorithms provide superior re-

producibility performance compared to the conventional statistical and machine learning-

based algorithms. This improved performance validates the concept of modeling the mi-

crobial abundance profiles as the superposition of a low-rank matrix representing the ir-

relevant microbes and a sparse matrix containing the abundances of relevant microbes.

Additionally, the results show that RegLRSD presents a noticeable improvement in the

performance over the RPCA algorithm. This validates (i) our assumption that the abun-

dance level profiles of non-informative microbes can be considered smooth, and (ii) inte-

grating prior knowledge in the design of a biomarker detection algorithm may enhance its

performance.

An additional striking finding that is pointed by the results of this work is that the

current state-of-the-art metagenomic biomarker discovery algorithms present a serious ir-

reproducibility problem. In particular, these algorithms exhibit average stability values

that range from low to moderate values. Additionally, their histograms of the KI values

spread over a wide range of values. This severe inconsistent performance of the exiting

state-of-the-art algorithms renders their findings questionable.

Another important extension treated in this dissertation was the development of a dys-

biosis index for CE in canine. This dysbiosis index aims to quantify the bacterial shift

in gut microbiota due to CE as a single numerical value. This dysbiosis index provides

clinicians with powerful utility to diagnose the severity of IBD and measure its response

82



to therapies. Our results indicate that the DI is a reliable measure of clinical signs of

inflammation in dogs with CE.

An interesting scenario that remains open for future investigation is to develop reliable

algorithms that enable robust detection of metagenomic biomarkers from timeseries data.

This is crucial to identify the bacterial groups that respond to treatment (i.e., exhibit a

significant variation over the course of treatment). Integrating other OMIC data can also

provide useful information that may improve the performance of the dysbiosis index.
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Table A.1: Top 30 identified biomarkers by RPCA in relation to the canine IBD dataset.
1: the selected bacteria exhibit an increase in their abundance level in the control samples.
0: the selected bacteria exhibit an increase in their abundance level in the IBD samples.

1 f__Clostridiaceae; g__Clostridium; s__
0 f__Streptococcaceae; g__Streptococcus; s__
0 f__Enterococcaceae; g__Enterococcus; s__Enterococcushaemoperoxidus
1 f__Erysipelotrichaceae; g__Catenibacterium; s__
1 f__Lachnospiraceae; g__Blautia; s__Blautiaproducta
0 f__Enterobacteriaceae; g__Serratia; s__Serratiamarcescens
0 f__Clostridiaceae; g__; s__
1 f__Lachnospiraceae; g__Ruminococcus; s__Ruminococcusgnavus
1 f__Lachnospiraceae; g__Blautia; s__
1 f__Erysipelotrichaceae; g__; s__Eubacteriumbiforme
0 f__Coriobacteriaceae; g__Collinsella; s__
1 f__Fusobacteriaceae; g__Fusobacterium; s__
0 f__Lactobacillaceae; g__Lactobacillus; s__
1 f__; g__; s__
1 f__Veillonellaceae; g__Megamonas; s__
1 f__Turicibacteraceae; g__Turicibacter; s__
1 f__Lachnospiraceae; g__; s__
1 f__Lachnospiraceae; g__Blautia; s__
0 f__; g__; s__
1 f__Lachnospiraceae; g__; s__
1 f__Erysipelotrichaceae; g__Allobaculum; s__Allobaculumstercoricanis
1 f__Ruminococcaceae; g__Faecalibacterium; s__Faecalibacteriumprausnitzii
1 f__Erysipelotrichaceae; g__Clostridium; s__
0 f__Clostridiaceae; g__Clostridium; s__
0 f__Lachnospiraceae; g__; s__
1 f__Prevotellaceae; g__Prevotella; s__
1 f__Clostridiaceae; g__Clostridium; s__
0 f__Clostridiaceae; g__; s__
1 f__Lachnospiraceae; g__; s__
1 f__Ruminococcaceae; g__; s__
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Table A.2: Top 30 identified biomarkers by LEFSe in relation to the canine IBD dataset.
1: the selected bacteria exhibit an increase in their abundance level in the control samples.
0: the selected bacteria exhibit an increase in their abundance level in the IBD samples.

0 f__Enterococcaceae; g__Enterococcus; s__Enterococcushaemoperoxidus
0 f__Coriobacteriaceae; g__Collinsella; s__
0 f__Coriobacteriaceae; g__Collinsella; s__
1 f__Erysipelotrichaceae; g__Catenibacterium; s__
1 f__Erysipelotrichaceae; g__Allobaculum; s__Allobaculumstercoricanis
1 f__Erysipelotrichaceae; g__Clostridium; s__Clostridiumcocleatum
0 f__Lactobacillaceae; g__Lactobacillus; s__Lactobacillusvaginalis
1 f__Turicibacteraceae; g__; s__
1 f__Turicibacteraceae; g__; s__
0 f__Erysipelotrichaceae; g__; s__
1 f__Erysipelotrichaceae; g__; s__
1 f__Bacteroidaceae; g__Bacteroides; s__Bacteroidescoprocola
1 f__Bacteroidaceae; g__Bacteroides; s__Bacteroidesplebeius
1 f__Clostridiaceae; g__Clostridium; s__Clostridiumhiranonis
1 f__Clostridiaceae; g__Clostridium; s__Clostridiumhiranonis
1 f__Clostridiaceae; g__Clostridium; s__Clostridiumhiranonis
0 f__Clostridiaceae; g__Clostridium; s__Clostridiumperfringens
0 f__Enterococcaceae; g__Enterococcus; s__Enterococcuscecorum
0 f__Lactobacillaceae; g__Lactobacillus; s__Lactobacillussalivarius
1 f__Fusobacteriaceae; g__J2-29; s__
1 f__Fusobacteriaceae; g__J2-29; s__
1 f__Lachnospiraceae; g__Ruminococcus; s__Ruminococcustorques
0 f__Lactobacillaceae; g__Lactobacillus; s__Lactobacillushelveticus
0 f__Bifidobacteriaceae; g__Bifidobacterium; s__Bifidobacteriumadolescentis
1 f__Erysipelotrichaceae; g__; s__Eubacteriumdolichum
0 f__Erysipelotrichaceae; g__; s__Clostridiuminnocuum
0 f__Enterobacteriaceae; g__Morganella; s__
0 f__Bifidobacteriaceae; g__Bifidobacterium; s__
0 f__Bifidobacteriaceae; g__Bifidobacterium; s__
1 f__Erysipelotrichaceae; g__Clostridium; s__Clostridiumspiroforme
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Table A.3: Top 30 identified biomarkers by MetaStats in relation to the canine IBD dataset.
1: the selected bacteria exhibit an increase in their abundance level in the control samples.
0: the selected bacteria exhibit an increase in their abundance level in the IBD samples.

0 f__Enterococcaceae; g__Melissococcus; s__Melissococcusplutonius
1 f__; g__; s__
0 f__Peptostreptococcaceae; g__Peptostreptococcus; s__Peptostreptococcusanaerobius
0 f__Erysipelotrichaceae; g__Erysipelothrix; s__Erysipelothrixrhusiopathiae
0 f__Fusobacteriaceae; g__Fusobacterium; s__
0 f__Eubacteriaceae; g__Eubacterium; s__Eubacteriumlimosum
0 f__Erysipelotrichaceae; g__Allobaculum; s__
0 f__Streptococcaceae; g__Streptococcus; s__Streptococcusminor
0 f__Bacteroidaceae; g__Bacteroides; s__Bacteroidesfragilis
0 f__Lactobacillaceae; g__Lactobacillus; s__Lactobacillussaerimneri
0 f__Erysipelotrichaceae; g__Allobaculum; s__
0 f__Bifidobacteriaceae; g__; s__
1 f__Lachnospiraceae; g__; s__
0 f__Enterobacteriaceae; g__Klebsiella; s__
0 f__Lactobacillaceae; g__Lactobacillus; s__
1 f__Lachnospiraceae; g__Epulopiscium; s__
1 f__Veillonellaceae; g__; s__
0 f__Moraxellaceae; g__Acinetobacter; s__Acinetobacterjohnsonii
1 f__Helicobacteraceae; g__; s__
0 f__Veillonellaceae; g__Veillonella; s__
0 f__Desulfovibrionaceae; g__Bilophila;s__Bilophilawadsworthia
1 f__Lachnospiraceae; g__Clostridium; s__
1 f__Lachnospiraceae; g__Coprococcus; s__
0 f__Enterococcaceae; g__Vagococcus; s__
1 f__Fusobacteriaceae; g__Fusobacterium; s__
0 f__Enterococcaceae; g__; s__
1 f__Prevotellaceae; g__Prevotella; s__
0 f__Lactobacillaceae; g__Lactobacillus; s__Lactobacillussatsumensis
1 f__Ruminococcaceae; g__; s__
1 f__; g__; s__
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Table A.4: Top 30 identified biomarkers by Entropy in relation to the canine IBD dataset.
1: the selected bacteria exhibit an increase in their abundance level in the control samples.
0: the selected bacteria exhibit an increase in their abundance level in the IBD samples.

1 f__Methanobacteriaceae; g__Methanobrevibacter; s__
1 f__Nitrososphaeraceae; g__CandidatusNitrososphaera; s__
0 f__Porphyromonadaceae; g__Porphyromonas; s__
1 f__Trebouxiophyceae; g__; s__
1 f__Bradyrhizobiaceae; g__; s__
1 f__Rhodobacteraceae; g__Paracoccus; s__
1 f__Alcaligenaceae; g__Sutterella; s__
1 f__Alcaligenaceae; g__Bordetella; s__
1 f__; g__Aquabacterium; s__
1 f__Oxalobacteraceae; g__; s__
1 f__Oxalobacteraceae; g__Herbaspirillum; s__
0 f__Pseudomonadaceae; g__Pseudomonas; s__
1 f__Enterobacteriaceae; g__; s__
0 f__Enterobacteriaceae; g__; s__
0 f__Enterobacteriaceae; g__; s__
1 f__Nannocystaceae; g__Nannocystis; s__Nannocystisexedens
1 f__Helicobacteraceae; g__Helicobacter; s__
1 f__Helicobacteraceae; g__Helicobacter; s__Helicobacterfelis
1 f__Coriobacteriaceae; g__Atopobium; s__
1 f__Geodermatophilaceae; g__Geodermatophilus; s__
1 f__Nakamurellaceae; g__; s__
1 f__Pseudonocardiaceae; g__Thermobispora; s__Thermobisporabispora
1 f__Cellulomonadaceae; g__Cellulomonas; s__
1 f__Cellulomonadaceae; g__Oerskovia; s__
1 f__Actinomycetaceae; g__Actinomyces; s__
1 f__Kineosporiaceae; g__; s__
1 f__Propionibacteriaceae; g__Propionibacterium; s__Propionibacteriumgranulosum
1 f__Nocardioidaceae; g__Nocardioides; s__
0 f__Corynebacteriaceae; g__Corynebacterium; s__
0 f__Corynebacteriaceae; g__Corynebacterium; s__
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Table A.5: Top 30 identified biomarkers by binary classification in relation to the canine
IBD dataset. 1: the selected bacteria exhibit an increase in their abundance level in the
control samples. 0: the selected bacteria exhibit an increase in their abundance level in the
IBD samples.

0 f__Porphyromonadaceae; g__Porphyromonas; s__
0 f__Pseudomonadaceae; g__Pseudomonas; s__
0 f__Pasteurellaceae; g__; s__Pasteurellaaerogenes
0 f__Pasteurellaceae; g__; s__
0 f__Enterobacteriaceae; g__; s__
0 f__Enterobacteriaceae; g__Sodalis; s__
0 f__Enterobacteriaceae; g__; s__
0 f__Enterobacteriaceae; g__; s__
0 f__Enterobacteriaceae; g__; s__
0 f__Actinomycetaceae; g__Actinomyces; s__Actinomycesdenticolens
0 f__Corynebacteriaceae; g__Corynebacterium; s__
0 f__Corynebacteriaceae; g__Corynebacterium; s__
0 f__Nocardiaceae; g__Rhodococcus; s__Rhodococcusgloberulus
0 f__Lachnospiraceae; g__Ruminococcus; s__
0 f__Clostridiaceae; g__Clostridium; s__Clostridiumirregulare
0 f__; g__; s__
0 f__Bacillaceae; g__Anaerobacillus; s__
0 f__Bacillaceae; g__Bacillus; s__
0 f__Lactobacillaceae; g__Lactobacillus; s__Lactobacilluscrispatus
0 f__Lactobacillaceae; g__Lactobacillus; s__
0 f__Lactobacillaceae; g__Lactobacillus; s__
0 f__Carnobacteriaceae; g__Trichococcus; s__
0 f__Streptococcaceae; g__Streptococcus; s__Streptococcuspluranimalium
0 f__Clostridiaceae; g__Clostridium; s__
0 f__Clostridiaceae; g__Clostridium; s__
0 f__Clostridiaceae; g__Clostridium; s__
0 f__Helicobacteraceae; g__Helicobacter; s__
0 f__Coxiellaceae; g__Rickettsiella; s__
0 f__ClostridialesFamilyXIII.IncertaeSedis; g__; s__
0 f__Thiotrichaceae; g__Thiothrix; s__
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Table B.1: Top 10 identified biomarkers by RPCA in relation to the mouse model of UC
dataset. 1: the selected bacteria exhibit an increase in their abundance level in the control
samples. 0: the selected bacteria exhibit an increase in their abundance level in the IBD
samples.

1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
1 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
1 o__Lactobacillales; f__Lactobacillales; g__Lactobacillales
1 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
0 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
1 o__Deferribacterales; f__Deferribacterales; g__Deferribacterales
0 o__Campylobacterales; f__Campylobacterales; g__Campylobacterales
0 o__Clostridiales; f__Clostridiales; g__Clostridiales
0 o__Enterobacteriales; f__Enterobacteriales; g__Enterobacteriales
0 o__Lactobacillales; f__Lactobacillales; g__Lactobacillales

Table B.2: Top 10 identified biomarkers by LEFSe in relation to the mouse model of UC
dataset. 1: the selected bacteria exhibit an increase in their abundance level in the control
samples. 0: the selected bacteria exhibit an increase in their abundance level in the IBD
samples.

1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
0 o__Campylobacterales; f__Campylobacterales; g__Campylobacterales
1 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
1 o__Deferribacterales; f__Deferribacterales; g__Deferribacterales
0 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
0 o__Clostridiales; f__Clostridiales; g__Clostridiales
0 o__Clostridiales; f__Clostridiales; g__Clostridiales
0 o__Lactobacillales; f__Lactobacillales; g__Lactobacillales
0 o__Desulfovibrionales; f__Desulfovibrionales; g__Desulfovibrionales
0 o__Enterobacteriales; f__Enterobacteriales; g__Enterobacteriales
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Table B.3: Top 10 identified biomarkers by MetaStats in relation to the mouse model of
UC dataset. 1: the selected bacteria exhibit an increase in their abundance level in the
control samples. 0: the selected bacteria exhibit an increase in their abundance level in the
IBD samples.

0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
0 o__Thiotrichales; f__Thiotrichales; g__Thiotrichales
1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
0 o__Lactobacillales; f__Lactobacillales; g__Lactobacillales
1 o__Clostridiales; f__Clostridiales; g__Clostridiales
0 o__Desulfovibrionales; f__Desulfovibrionales; g__Desulfovibrionales
0 o__Coriobacteriales; f__Coriobacteriales; g__Coriobacteriales
0 o__Clostridiales; f__Clostridiales; g__Clostridiales
0 o__Clostridiales; f__Clostridiales; g__Clostridiales

Table B.4: Top 10 identified biomarkers by Entropy in relation to the mouse model of UC
dataset. 1: the selected bacteria exhibit an increase in their abundance level in the control
samples. 0: the selected bacteria exhibit an increase in their abundance level in the IBD
samples.

0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
0 o__Coriobacteriales; f__Coriobacteriales; g__Coriobacteriales
0 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
0 o__Bacteroidales; f__Bacteroidales; g__Bacteroidales
0 o__Bacillales; f__Bacillales; g__Bacillales
0 o__Lactobacillales; f__Lactobacillales; g__Lactobacillales
0 o__Clostridiales; f__Clostridiales; g__Clostridiales
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Table B.5: Top 10 identified biomarkers by binary classification in relation to the mouse
model of UC dataset. 1: the selected bacteria exhibit an increase in their abundance level
in the control samples. 0: the selected bacteria exhibit an increase in their abundance level
in the IBD samples.

0 o__Thermoproteales; f__Thermoproteales; g__Thermoproteales
0 o__Methanopyrales; f__Methanopyrales; g__Methanopyrales
0 o__Acidimicrobiales; f__Acidimicrobiales; g__Acidimicrobiales
0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
0 o__Actinomycetales; f__Actinomycetales; g__Actinomycetales
1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
1 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
0 o__Bifidobacteriales; f__Bifidobacteriales; g__Bifidobacteriales
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APPENDIX C

DETAILED DERIVATION OF RegLRSD ALGORITHM

C.1 Derivation of Remark-1

Remark-1: For any arbitrary vectors u,v ∈ <n, and scalars a, b ∈ <, the following

relation holds:

〈av + bu,u〉 = b
∥∥∥− a

2b
v − u

∥∥∥2
F
− a2

4b
‖v‖2F . (C.1)

Proof:

〈av + bu,u〉 = b
〈a
b
v + u,u +

a

b
v − a

b
v
〉

(C.2)

= b
〈a
b
v + u,u +

a

b
v
〉
− b
〈a
b
v + u,

a

b
v
〉

(C.3)

= b
[〈a
b
v + u,u +

a

b
v
〉
−
〈a
b
v,
a

b
v
〉
−
〈
u,
a

b
v
〉]

(C.4)

= b

[
a2

b2
‖v‖22 +

2a

b
vTu + ‖u‖22 −

a2

b2
‖v‖22 −

a

b
vTu

]
(C.5)

= b

[
a2

4b2
‖v‖22 +

a

b
vTu + ‖u‖22

]
− a2

4b
‖v‖22 (C.6)

= b
∥∥∥ a

2b
v + u

∥∥∥2
2
− a2

4b
‖v‖22 (C.7)

C.2 Derivation of the Update Step of L

Updating L requires solving the following minimization problem:

L(r) = arg min
L

1

2
‖D− S(k) − L‖2F + α‖L‖∗ +

〈
Z(r−1),L−Y(r−1)〉+

ρ

2
‖L−Y(r−1)‖2F .

(C.8)
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The objective function, Lρ(L,Y(r−1),Z(r−1)), of the optimization problem (C.8) can be

rewritten using the inner product notation as follows:

L(r) = arg min
L

1

2

〈
D− S(k) − L,D− S(k) − L

〉
+ α‖L‖∗+〈

Z(r−1),L−Y(r−1)〉+
ρ

2

〈
L−Y(r−1),L−Y(r−1)〉 . (C.9)

The first term of Lρ(L,Y(r−1),Z(r−1)) can be re-expressed as:

〈
D− S(k) − L,D− S(k) − L

〉
=
〈
D− S(k) − L,D− S(k)

〉
−
〈
D− S(k) − L,L

〉
=
〈
D− S(k),D− S(k)

〉
−
〈
D− S(k),L

〉
−
〈
D− S(k) − L,L

〉
= C1 +

〈
L− 2(D− S(k)),L

〉
,

where C1 is a constant with respect to L. Similarly, the third and the fourth terms of

Lρ(L,Y(r−1),Z(r−1)) can be rewritten as:

〈
Z(r−1),L−Y(r−1)〉 =

〈
Z(r−1),L

〉
+ C2, (C.10)

and 〈
L−Y(r−1),L−Y(r−1)〉 =

〈
L− 2Y(r−1),L

〉
+ C3, (C.11)

, respectively. VariablesC2 =
〈
Z(r−1),−Y(r−1)〉 andC3 =

〈
Y(r−1),Y(r−1)〉 are constants

with respects to L. Therefore, the optimization problem (C.8) can be rewritten as:

L(r) = arg min
L

1

2

〈
L− 2(D− S(k)),L

〉
+
〈
Z(r−1),L

〉
+
ρ

2

〈
L− 2Y(r−1),L

〉
+

α‖L‖∗ + C1 + C2 + C3.

(C.12)
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Rearranging the terms in (C.12) and eliminate the terms that do not depend on L:

L(r) = arg min
L

〈
−D + S(k) − ρY + Z +

1 + ρ

2
,L

〉
+ α‖L‖∗. (C.13)

Direct application of remark-1 yields the update step given by equation (3.17).
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