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ABSTRACT 

 

When bridge spans exceed 45 m it is necessary to have modular construction methods to 

effectively join the segments in-span and form a continuous structure with substantially 

longer span lengths. In-span splicing of prestressed concrete girders to extend span 

length of bridges have been effectively used in several recent bridge construction 

projects. However, the extent and limitation of such a construction approach, as well as 

associated analysis and design challenges have not been systematically explored.  

Concepts of deflection balancing and load balancing were considered to provide 

a platform for design of slab-on-in-span spliced prestressed concrete girder bridges. 

Three methods of construction were investigated that benefit from in-span splices: 

shored, partially shored, and heavy-lift construction. Design procedures and construction 

sequences were compared and contrasted, and discussed in detail. A prototype bridge 

geometry was designed for all three methods of construction approaches, and the results 

compared and conclusions drawn. 

From the prototype design, an experimental test specimen was abstracted and an 

experimental testing investigation described. Three test setups were adapted to 

investigate the performance of each of the three splices, in three different load 

combinations. Results were presented for the full-scale laboratory tests on each splice 

regions under service load through to failure.  
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Based on the results of the experimental investigation, diagonal cracks in the 

splice regions of prestressed concrete girder bridges may adversely affect the flexural 

behavior of the splices and reduce their post-cracked ultimate strength and 

deformability. A generalized moment-curvature approach was developed along a 

diagonal crack plane to directly account for the effects of flexure-shear interaction. A 

formulation was provided to calculate the nominal capacity of such sections 

incorporating the interacting effects of flexure and shear.  

A Compatibility Strut-and-Tie Modeling (C-STM) was introduced as an effective 

alternative method of structural analysis for when members were subjected to high 

moment demands coupled with high shear intensity. The C-STM approach was 

advanced to model the behavior of slab-on-spliced prestressed concrete girder bridges 

where shear-flexure interaction may influence system performance particularly near 

regions that are spliced. The efficacy of the approach was demonstrated by modeling the 

experimental performance of the test specimen. 
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1 INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

As urban areas become increasingly congested, topographical and environmental issues 

demand the extension of bridge spans with minimal traffic interference and construction 

time. Modular construction methods need to be considered wherever possible so that 

individual bridge segments may be pre-fabricated and hauled to the construction site. 

Among different design options, precast prestressed concrete girder bridges have been 

widely used as an economical modular construction method. However, the girders have 

been mostly designed for simply supported spans. Therefore, the hauling limitation for 

length, height, and weight of individual segments impose an upper bound in the range of 

45 to 50 m depending on the nature of the roads between the precasting plant and bridge 

construction site. A height limitation of 3 m is common due to vertical curves on roadways, 

especially at railway crossings and a weight limitation generally of 900 kN, but not more 

than 1000 kN. Weight limitations are based on axial arrangements of the transporting 

equipment, as well as crane capacity limitations.  

Since the first use of prestressed concrete girder bridges in the 1950s, they have 

been widely used for short to medium span lengths nationwide. Many studies have been 

carried out over the past decades to propose methods that will lead to extending the span 

length of prestressed concrete girder bridges. Most of these methods suggest modifications 

on design methods, improving material properties, changing the shape and size of girder 

sections, and splicing the girders over the pier to provide continuity.   
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While each of the aforementioned methods have contributed in improving the 

design and performance of the bridges over time, the effect on increasing the span length 

has been only marginal due to the weight and length limitations. On the other hand, an in-

span splicing technique may be used to effectively double the span length of concrete 

girder bridges to about 90 m.  

For in-span splicing, individual girder segments are pretensioned and cast at a 

precasting plant and then transported to the construction site. Then by splicing them—

either before or after erection— longer segments can be achieved. Additional benefits of 

this method of construction include: reducing the girder lines, minimizing the structure 

depth, avoiding placement of piers in waterways, improving aesthetics, improving seismic 

resistance due to continuity, reduction of long term maintenance and increased durability. 

Together, these attributes lead to an economical and competitive solution as compared to 

other bridge alternatives, particularly bridges with steel superstructures.  

Although splicing girders may provide versatile design options with competitive 

project costs, spliced girder bridges have not become as popular as other types of bridges. 

According to NCHRP 517 Report (Castrodale and White 2004), over 250 bridges had used 

this technique to extend the span length nationwide, yet most of them are localized in 

certain states such as Colorado, New York, Massachusetts, Oregon, Washington and 

Florida.  

The lack of field data and experimental assessment on performance of in-span 

splices, has also made designers hesitant to adopt the in-span splicing technique to 

lengthen spans. Additionally, as the design of such bridges is tightly related to the 
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sequence of construction and construction loads, a lack of a standard design procedure and 

an optimum construction sequence through which the effect of construction loads on final 

prestressing layout is minimized, limits the applicability of this type of bridge with in-

span splices.  

1.2 NEW CONTRIBUTIONS AND SIGNIFICANCE 

The expected contributions of this research to the body of knowledge are as follows: 

1. Even though there are several projects using in-span splicing, lack of standardized 

design and construction procedures have limited spliced girder bridges. 

Minimalistic details are developed which can be considered the starting point for 

standardization. A deflection balancing concept rather than the load balancing 

approach is discussed and formulated herein.  

2. There is limited experimental information on the expected performance of in-span 

splices. A full size specimen abstracted from a designed prototype bridge is 

constructed and then tested to failure. The specimen includes three in-span splices 

that facilitate the performance assessment of the splice connections in different 

combinations of positive moment, negative moment and shear, for service limit 

states through ultimate strength.  

3. Due to narrow webs and the existence of PT ducts in the web, high inelastic shear 

deformation is possible. It is expected that the shear-flexure interaction will affect 

the capacity of the splice regions. An enhanced moment-curvature analysis is 

proposed to provide an integrated analysis tool that includes the effect of diagonal 

cracks and shear in the flexural behavior of such bridges.  
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4. Compatibility strut-and-tie modeling (CSTM) is further developed to model the 

behavior of spliced prestressed concrete girder bridges. Loads are applied through 

displacement control which allows the model to capture the post-peak behavior of 

the structure. CSTM is adopted to model a test specimen in both positive and 

negative bending and the results are validated by experimental data.  

1.3 WHAT THEN IS PARTICULARLY NEW IN THIS DISSERTATION? 

Limited previous work has been done to assess the performance of in-span splices; in 

particular there is a general lack of experimental data. Numerous design examples suggest 

the success of this method of construction; however lack of experimental information to 

validate the performance of splices beyond the service limit raises questions regarding 

failure modes and means to improve performance, if necessary.   

While no other thorough studies have assessed the performance of in-span splices, 

the proposed experimental study provides detailed information on splice behavior and the 

entire structure for different load combinations during construction, service and strength 

limit states. More robust splice detailing can be proposed through the study of performance 

of the splices beyond the service limits. Recommendations are made through observing 

the behavior modes so that unwanted brittle failure may be avoided.  

Shear-flexure interaction may affect the post-cracking performance of splice 

regions. While several studies have been conducted to predict the shear capacity of 

prestressed concrete sections, they are mostly focused on regions where shear is the 

predominant state of failure. On the other hand, to capture the effect of diagonal cracks 

with moment curvature analysis, finer mesh is required and beam elements are not able to 
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effectively model such behavior. This results in more computation time and cost. In this 

research an integrated moment-curvature analysis tool is proposed where the effects of 

shear-flexure interaction are considered in the post-cracked behavior of prestressed 

concrete sections.  

Compatibility strut-and-tie modeling (CSTM) is well developed in the past decade 

to capture the behavior of reinforced concrete. However, limited studies have expanded 

the approach for prestressed concrete members. In this study, CSTM is further developed 

to model the performance of slab-on-spliced prestressed concrete girder bridges and 

results are validated through experimental data for both positive and negative bending.  

1.4 ORGANIZATION OF THE DISSERTATION 

Following this introductory chapter, the organization of the dissertation follows: 

Chapter 2 provides a literature review that discusses the relevant existing literature 

categorized as history of design and construction of continuous prestressed concrete 

bridges, previous studies on performance of spliced concrete girders, and the shear-flexure 

interaction modeling of prestressed bulb tee concrete sections.  

Chapter 3 develops bridge designs based on different construction methods and 

construction sequences. It discusses associated issues for each type of construction and 

develops a standard procedure in accordance with the AASHTO LRFD Bridge Design 

Specifications (AASHTO 2014) for each type of construction. The concept of deflection 

balancing is introduced and considered for design cases. Then a prototype bridge is 

designed considering relevant AASHTO articles for each type of construction and the 

results for each case are compared. 
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Chapter 4 describes the experimental investigation of a full-scale specimen and 

presents observations of the performance of the specimen during the test, along with the 

experimental results generated from the data analysis of collected data.  

Chapter 5 introduces the effect of flexure-shear interaction on behavior of spliced 

prestressed concrete girder bridges. This chapter provides an analytical and numerical 

approach to incorporate the coupling effects of shear and flexure through a generalized 

moment-curvature analysis. The concept of compression shift is introduced in the chapter 

and recommendations for design of splices are proposed.   

Chapter 6 provides an advanced analysis approach using compatibility strut-and-

tie modeling (CSTM) to simulate the behavior of spliced prestressed concrete bridges. 

CSTM is adopted to model the behavior of a test specimen for both positive and negative 

bending and results are validated by experimental data.   

Chapter 7 presents the general findings and recommendations regarding design, 

construction issues, and splice detailing and proposes recommendations for improved 

constructability and performance of a spliced precast girder bridge structure. The outcome 

of the study is presented and compared to previous studies. The advantages and 

disadvantages of this design approach are discussed and recommendations for future 

studies are given.  

In addition to the abovementioned chapters, following the references, four 

appendices are presented. Appendix A provides a detailed design example of the prototype 

bridge using in-span splicing. Appendix B provides information regarding specimen 

design, abstraction and construction, along with the instrumentation plan. Appendix C 
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presents the derivation for deflection balancing. Appendix D provides the derivation for 

geometry proportion of C-STM modeling.  
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2 LITERATURE REVIEW 

2.1 INTRODUCTION AND SCOPE 

This section presents the literature review of the earlier work relevant to this study. First, 

an extensive review of state-of-practice on spliced concrete girder bridges is presented, 

followed by previous studies on performance of such bridges. The history of in-span 

spliced concrete bridges is illustrated along with various proposed methods of design and 

construction. Then, previous studies on analysis tools of such type of bridges are 

presented, categorized as either flexural or shear-flexure interaction behavior modes for 

prestressed concrete sections. Finally, research questions arising from this previous work 

are given and discussed.  

2.2 STATE-OF-PRACTICE ON SPLICED CONCRETE GIRDER BRIDGES 

2.2.1 Preliminary Remarks 

Splicing techniques for bridge girders have been used for several decades. Splices may be 

generally categorized as either on-pier splices or in-span splices. On-pier splices have been 

used in various projects to provide continuous spans and thereby increase span lengths, 

but have limitations in markedly expanding short span structures into long span bridges. 

To increase span lengths by a considerable degree, it is necessary to use some form of in-

span splices so that the span length can exceed the maximum precast unit length. This 

section discusses both on-pier and in-span spliced used in past practice and also developed 

through research.  
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2.2.2 On-Pier Splicing Techniques in Practice 

Ficenec et al. (1993) described two bridges adopting on-pier splicing for continuity in 

Nebraska. The pedestrian/bike overpass bridge was comprised of 5 spans of 27-27-38-27-

27 m and the main viaduct bridge consisted of six exterior spans of 26 m long, and 35 m 

long interior spans. For both bridges, Nebraska Type 4-A sections with 1.4 m or 1.3 m 

depth were selected. The proposed design of continuous prestressed concrete with on-pier 

splicing was selected as the winning bid, with an estimate cost lower than the steel plate 

girder option. Pretensioning strands were coupled and tensioned over the pier to provide 

continuity. Straight and harped pretensioning was used for individual segments. The 

design option was the most economical bid, yet the span length was limited to 38.1 m.  

NCHRP Report 519 (Miller et al., 2004) presents the results of research on 

different connections of simple span precast concrete girders for continuity. Through this 

study the authors surveyed numerous past projects and gathered information to investigate 

the type of negative and positive moment connection at the support, the age at which the 

continuity is established, construction sequence, and design techniques. The connection 

details included: (i) extended prestressing strands; (ii) extended strands with the girder 

ends embedded into diaphragm; (iii) extended strands with girder ends embedded into the 

diaphragm with horizontal bars placed through the web of the girder; (iv) extended mild 

steel bars; (v) extended bar with the girder ends embedded into the diaphragm; and (vi) 

extended bars with the girder ends embedded into the diaphragm with additional stirrups 

near the bottom of the girder. 
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All the specimens were detailed for 1.2 ܯ௖௥ (cracking moment of the composite 

section) and all achieved the design cracking moment. However, the details with 

embedded girders in the diaphragm and horizontal bars or additional stirrups showed 

higher ductility. They also concluded that even though the thermal loading did not reduce 

the flexural capacity of the connections, repeated thermal effects could create 

serviceability issues over time.   

2.2.3 In-span Splicing Techniques in Practice 

In-span splicing has been used for both single span and multi-span bridges. When the in-

span splicing technique is used for a multi-span bridge, there are mainly two different 

construction methods that can be adopted: shored and partially shored construction. For 

shored construction, shore towers or piers are provided at all connections to support the 

individual segments for self-weight and construction loads. For partially shored 

construction, the shore towers are removed from the main span to provide a versatile 

design option for cases where environmental, topological or transportation concerns do 

not allow having shore towers in main span.  

Post-tensioning is an essential part of design for in-span splices, as due to lack of 

pretensioning and individual post-tensioning, such sections may have a low flexural 

capacity. Splices can be post-tensioning either locally —often called a “stitched splice”, 

or continuously —known as continuity PT. In this section, a selection of previous projects 

for different types of post-tensioning and types of construction is presented. 

Caroland et al. (1992) presented the design of Shelby Creek Bridge with a total 

length of 305 m in eastern Kentucky. The winning bid proposed using spliced prestressed 
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concrete I-girders with a span configuration of 49-66-66-66-49 m, while the alternative 

bid with a steel delta frame was estimated to cost $2 million more than the concrete 

alternative. Seven girder lines, using 2590 mm deep prismatic sections spaced 3.8 m apart 

supported the 216 mm thick and 26 m wide deck slab. Each girder line was comprised of 

nine equal length segments of 33 m long. Individual segments were pretensioned for self-

weight. Drop-in segments were post-tensioned before erection on the construction site. 

For this partially shored bridge construction, the drop-in segments were held and 

supported by on-pier segments through Cazaly hangers, while the temporary bottom 

pretensioning of on-pier segments was being released. CIP closures and in-span splices 

were poured and locally stressed. Fig. 2.1 depicts the prestressing layout, locally post-

tensioned splices, and prestressing of the pier cap.  
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(a) Prestressing layout of girders, pier cap, and splices 

 
(b) Prestressing layout of the girders (c) Cazaly Hanger System 

Fig. 2.1 Prestressing layout of girder segments, splices and pier cap for Shelby 
Creek Bridge (Caroland et al. 1992). 

* 1 ft =0.3048 m, 1 in. = 25.4 mm 
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Jenssen and Spaans (1994) presented the design and construction of the Highland 

View Bridge in Florida. The span configuration of the bridge was 59-76-59 m and partially 

shored construction was adopted. Haunched sections were used for on-pier segments, 

where the depth of the section varied from 1930 mm at the ends to 2590 mm at the center, 

as shown in Fig. 2.2 Drop-in segments were supported by cantilevered on-pier segments, 

using a temporary strong back. The drop-in segments were 43.3 m long and the length of 

on-pier segments was 32.3 m. Five AASHTO Type VI girder lines spacing at 2.9 m carried 

the weight of the superstructure and live loads.  

Mumber et al. (2003) presented the design of the Ocean City-Longport Bridge in 

New Jersey. Due to maintenance issues, the steel bridge option was ruled out and 

preference was given to a prestressed concrete design option. Deep water and 

environmental issues restricted the use of shore towers; therefore, an unshored 

construction was adopted for the design of the 180 m long bridge with span configuration 

of 56-68-56 m. Modified AASHTO Type VI I-girders with 2290 mm depth was selected 

for the design. A tie-down system was considered that provided a temporary moment 

connection between the pier cap and pier girders that transferred the unbalanced moment 

to the pier. After erection of the end segments, the moments were balanced and the 

temporary tie town was removed. Fig. 2.3 presents the details of the temporary tie down.  

  



14 
 

(a) Side elevation of the bridge 

 
(b) Cross section of the haunched and standard section.   

Fig. 2.2 Side elevation and cross section of Highland View Bridge in Florida 
(Jenssen and Spaans, 1994). 

* 1 ft =0.3048 m, 1 in. = 25.4 mm
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Fig. 2.3 Detail of the temporary moment connection for Ocean City-Longport Bridge (Mumber et al., 2003). 
* 1 ft =0.3048 m, 1 in. = 25.4 mm 
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Fitzgerald and Stelmack (1996) presented the design of the Main Street Viaduct in 

Pueblo, Colorado. The 246 m long bridge crossed over twelve railroad tracks, the 

Arkansas River and its dike, and a city street. The bridge was comprised of eight girder 

lines spaced at 3.7 m, and five spans ranging from 27 m to 53 m long. Haunched sections 

were used with varying depth from 1830 mm to 2440 mm. A partially shored construction 

was adopted where shore towers were provided at the back spans. Strongbacks were 

provided on top of the girder to transfer the weight of the drop-in segment to on-pier 

segments. Fig. 2.4 presents photos of the bridge construction.  

Endicott (1996) and Nicholls and Prussack (1997) described the design of the Rock 

Cut Bridge crossing over the Kettle River in Washington State. For this single span bridge, 

three equally long segments of 19.2 m where spliced in the third points to compose the 58 

m long span bridge. Four girder lines were spaced at 1.9 m and 2260 mm deep decked 

sections were used to avoid casting the deck at the construction site. A launching truss was 

used to push the post-tensioned superstructure across the span and a crane placed the girder 

line in their specific locations.  

Nikzad et al. (2006) presented the design and construction of Old 99 Riverside 

Bridge in Washington. The bride consisted of eight girder lines and five spans ranging 

from 46 m to 55 m. In the proposed method of construction, pretensioned precast segments 

in shorter lengths were fabricated and transported near construction site. Then, segments 

of each span was spliced on the ground, and post-tensioned. Then, each span was erected 

on piers and after completion of all five spans, the concrete slab was poured. Eventually 

continuity post-tensioning was stressed along the entire length of the bridge to provide 
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additional capacity and to enhance the bending capacity of the over-pier splice. Fig. 2.5 

presents the details of the construction sequence for this bridge.  

The recent design and construction of the Sylvan Avenue Bridge across the Trinity 

River near Dallas represented a current state-of-the-practice example of spliced girder 

construction in the state of Texas. This bridge had 23 spans and utilizes pretensioned 

simply supported girders, as well as continuous and post-tensioned girder construction 

with in-span splices. There were three post-tensioned portions among the 23 spans that 

were each composed of three continuous spans as shown in Fig. 2.6. 

Most of the spans used a new Tx82 prestressed concrete section shape. However, 

in order to create the 76 m span river crossing, it was necessary to use haunched girders 

as shown in Fig. 2.6 (b), because shore towers could not be used for the main span. 

The haunch-modified girders were cast on soffits in order to create the centerline 

haunch. In contrast with TxDOT standard shapes where the girders customarily have a 

178 mm wide web, the Tx82 modified girder had 254 mm wide web, primarily to 

accommodate the PT ducts. Fig. 2.6 (c) and (d) show some steps of the construction 

process in the photographic record. Fig. 2.6 (a) shows placement of the central drop-in 

girder in Span 11. In order to provide girder stability during construction, it was necessary 

to provide a shore-tower beneath the splices within the back spans.  
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(a) Shoring towers provided in the back-span in partially shored construction 

 
(b) Haunched segments are used for on-pier segments 

Fig. 2.4 Construction of Main Street Viaduct in Pueblo, Colorado (Fitzgerald and 
Stelmack, 1996) 
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(a) Different Stages of PT: Stage 1 on simple span; Stage 2 as continuity PT 

  

(b) In-span splice (c) Erection of entire span 

Fig. 2.5 Post-tensioning and construction details of Old 99 Riverside Bridge 
(Nikzad et al., 2006).  

* 1 ft =0.3048 m, 1 in. = 25.4 mm 
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(a) Elevation for Spans 6 to 8 and 16 to 18. 

(b) Elevation for Spans 10 to 12. 

  
(c) In-span splices in the back span on shoring 

towers 
(d) Erection of drop-in segments  

Fig. 2.6 Geometry and construction details of Sylvan Avenue Bridge in Dallas, 
Texas (Webber 2014).  

* 1 ft =0.3048 m, 1 in. = 25.4 mm 
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2.3 STATE-OF-THE-ART ON SPLICED CONCRETE GIRDER BRIDGES 

2.3.1 Preliminary Remarks 

Numerous studies have been performed by previous researchers to assess the performance 

of splices in concrete girder bridges, as well as splice detailing, design procedures and 

recommendations. Most of the previous research is focused on the performance 

assessment of on-pier splices and extensive experimental data has been gathered. 

However, until recently, no comprehensive experimental study had been conducted on the 

performance of in-span splices, and most of the design recommendations were proposed 

by practitioners. In this section, previous numerical and experimental studies and 

recommendations on the performance and design of on-pier splices and in-span splices are 

presented.  

2.3.2 Studies on Performance of On-Pier Splices  

Kaar et al. (1960) investigated the performance of a connection detail for on-pier splices. 

In this non-prestressed detail, the deck reinforcement was made continuous over the pier 

to improve the performance of the splice for negative bending. A continuous diaphragm 

was considered over the pier to provide lateral stability and enhanced capacity over the 

pier. Reinforcement was primarily provided in the top of the section and the deck to resist 

the common negative bending over the pier.  

Mattock and Kaar (1960) extended the study by providing additional 

reinforcement to enhance the capacity of the on-pier splice for positive bending resulting 

from creep, shrinkage, and thermal loads. Two connection details with positive bending 

capacity were proposed and tested: fillet welding the projecting ends of the reinforcement 
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bars to a structural steel angle; and bending the projecting ends of the reinforcement to 

form right angle hooks. They conducted an experimental study on a half-scale specimen 

with two spans for both static and dynamic loading. The experimental results for negative 

bending supported the findings of Kaar et al. (1960). The experimental performance 

suggested that the proposed connection can withstand the cyclic design loads for an 

indefinite number of applications. Comparison of the performance of the two proposed 

details showed that the welded detail performed better for the service limit state as well as 

ultimate strength, given that welding is done with careful attention.  

Bishop (1962) proposed a bolted steel plate connection where steel plates were 

placed in the top and bottom flange spanning over the end of both adjacent girders, and 

then bolted from top to bottom to provide continuity for both positive and negative 

bending. For construction, to balance the moment of the self-weight, the abutment end of 

the girders was raised and the connection was bolted on the pier end. By lowering the 

abutment ends on the bearings, a bending moment was created that balanced the dead 

weight of the segments. While this innovative method provides partial load balancing for 

the dead loads, it is difficult to construct and due to limited space, the bottom plate welding 

became troublesome. It also changes the loading condition from a simply supported beam 

to a balanced cantilever beam, which required additional reinforcement in the on-pier 

splice to provide essential capacity.  

NCHRP Report 322 (Oesterle et al., 1989) presented the results of an experimental 

study on the effect of the creep and shrinkage on the continuous prestressed concrete 

bridges with on-pier splices. This comprehensive study provided a state-of-the-art report 
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of previous studies as well as DOT inputs, and experimentally considered the effects of 

the long-term and short-term behavior of on-pier splices. Experimental results suggested 

that pre-compression is required to avoid cracking in on-pier splices, due to the combined 

effect of long term creep and shrinkage as well as gradient temperature.  

Mirmiran et al. (2001b) carried out a study on the positive bending cracking of on-

pier spliced concrete girder bridges. The research considered the simple-span prestressed 

bridges that were made continuous over piers for continuity under live loads. The 

researchers recommended “a minimum amount of positive moment reinforcement 

equivalent to 1.2Mcr” should be used to limit the crack width in the diaphragm and to 

avoid significant loss of continuity, where Mcr is the cracking moment of the diaphragm 

section. Researchers suggested that both bent embedded bars and bent strands detail can 

successfully provide the required capacity. While bent strands were easier to construct due 

to their flexibility, they were found to fail by gradual pullout of the strands at each cycle 

of loading. On the other hand, the bent bars were difficult to construct and caused 

congestion in the connection region, however they improved the connection capacity. 

Researchers found that additional stirrups in the connection did not increase the 

connection capacity, but they improved the ductility of the section.  

Sun (2004) investigated a threaded rod system that was originally proposed at the 

University of Nebraska. Two continuity details were investigated: using high strength 

threaded bars crossing the connection, and using high strength bars in line and welding 

the transverse bars to longitudinal straps to form a steel box, as shown in Fig. 2.7 (a) and 

(b). The proposed connection detail would be placed prior to casting the deck, hence 
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locking in a permanent negative moment to prevent cracking in the bottom flange due to 

the effect of secondary temperature moments. It also intended to limit the deflection of the 

bridge, as the superstructure would act like a continuous beam for the weight of the deck.  

Newhouse et al. (2005) conducted research on continuity on-pier splices for 

precast concrete I-girder sections. Three continuity details were tested: the first two 

consisted of a full continuity diaphragm with a cast-in-place deck, and the third one had 

only the deck slab continuous over the pier. For the first test, the pretensioning strands 

were extended in the connection region and bent 90 degrees. The second continuity detail 

with full diaphragm included #6 180 degree bent bars extended in the connection region 

for a non-contact reinforcement splice. Results of the experimental program suggested that 

the continuity detail with the #6 bent bars was slightly stiffer with smaller cracks opened 

up at the interface of the wet splice under static and dynamic loads. They also concluded 

that the effect of thermal gradient and secondary thermal moment was more critical than 

the effect of creep and shrinkage. They proposed to design the girder segments as simply 

supported beams for dead load and live load, and as a continuous beam for ultimate 

strength. Fig. 2.7 (c) and (d) shows the tested splice details for Test 1 and 2, respectively.  

Dimmerling et al. (2005) presented the results of NCHRP Project 12-53 on 

different types of on-pier splice connections. The research focused on different proposed 

details for positive and negative bending to make simple-span concrete girder bridges 

continuous for live loads. Fig. 2.8 presents the details of six types of connections that were 

studied and tested experimentally. Three loading regimes were considered for each 

specimen: cyclic loading in service limits; loading to cracking moment; and a maximum 
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1,000,000 cycles of loading between ܯ௖௥ + ௖௥ܯ ௅௅ା andܯ  −  ௖௥ is theܯ ௅௅ି; whereܯ 

cracking moment of the section, and ܯ௅௅  and ܯ௅௅ି are the live load bending demand in 

positive and negative bending, respectively. 

2.3.3 Studies on Performance of In-Span Splices  

Abdel-Karim and Tadros (1992) provided a state-of-practice on previous use of in-span 

splices. They reviewed several previous designs and pointed out the issues regarding 

design and construction. They mentioned that the standard I-girder sections were modified 

to eliminate the end block regions and provide a special end diaphragm. The study 

proposed that the splicing technique provided a good option for acceptable curved 

alignment. The study also noted that use of haunched sections over the piers, would 

enhance the negative bending capacity of this regions, while providing a higher vertical 

clearance for the traffic under the bridge.  

Ronald (2001) presented the use of in-span splices coupled with post-tensioning 

in construction of bridges in Florida that reached span length of 97.5 m. Multi-stages post-

tensioning was used to provide continuity through the splices and the deck. He provided 

details of using two stages of PT: the first stage would be applied on girder segments to 

make a continuous beam for the weight of the deck; and the second stage were applied 

after casting the deck to provide residual compressive stress in the deck and avoid 

cracking. Ronald discussed that by using multiple stage PT, the spacing between girder 

lines would increase. Therefore, the cost of post-tensioning could be compensated by 

fewer girder lines, as well as removal of piers, due to longer spans.  



 

26 
 

 

  
(a) Plan view of steel box connection with 

threaded bars (Sun, 2004) 
(b) Side elevation of steel box connection 

with threaded bars (Sun, 2004) 
 

 

 

 
(c) Extended strands in connection with 90-degree 

bend (Newhouse et al., 2005) 
(d) #6 bend bars extended in connection 

(Newhouse et al., 2005) 

Fig. 2.7 Different proposed connection details for on-pier splicing.  

* 1 ft =0.3048 m, 1 in. = 25.4 mm 
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Fig. 2.8 Six different connection details for on-pier splicing 
(Dimmerling et al., 2005).  

* 1 ft =0.3048 m, 1 in. = 25.4 mm 
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Tadros and Sun (2003) developed a design to reach a span length of 91.4 m using 

in-span splicing and partially shored construction. They mentioned that critical demands 

occurred at pier segments; hence either a deeper section should be used along the length 

of the bridge, or haunched segments should be provided for over pier segments. Instead 

of having a single haunched segment, Tadros and Sun proposed using a haunch block (as 

shown in Fig. 2.9) to minimize the fabrication costs, as well as maintaining the weight of 

each segment within acceptable limits. Based on their study, for a three span continuous 

bridge, a span configuration of 0.8ܮ − ܮ −  was proposed as the most efficient ܮ0.8

configurations. They suggested that the optimal dimensions for the haunch block were 

 was the main span length and ℎ was the height of the ܮ long, and 0.9ℎ high; where ܮ0.5

prismatic section.  

Through the research investigation described in NCHRP Report 517 (Castrodale 

and White 2004), standard details and design examples for long-span continuous precast, 

prestressed concrete bridge girders were presented. From the results of the trial designs, 

changes and enhancements to the AASHTO code were also proposed. Castrodale and 

White (2004) also confirmed that precast, prestressed concrete bridge girders are rarely 

used for spans exceeding 48.8 m due to material limitations, hauling size and weight 

limitations, and lack of design aids for the design of long span prestressed concrete girders. 

Castrodale and White (2004) identified around 250 proven, spliced, precast, prestressed 

concrete girder bridges built around the nation but the experience and information on these 

job specific projects was not available widely for use on similar proposed bridge projects. 
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Fig. 2.9 Use of Haunch Block for over-pier segment (Tadros and Sun, 2003) 
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The NCHRP 517 report provided the needed documentation on all the known 

technologies for extending the span lengths of the prestressed concrete girders to 91.3 m. 

From the assessment of all these methodologies, this study concluded that the splicing of 

precast, prestressed concrete girders has the potential to significantly increase the span 

lengths without the need to change the section to more expensive segmental box girder 

alternatives. 

Castrodale and White (2004) identified the use of splicing with multiple means 

and locations within the span, and provided a list of similarities and differences between 

spliced girder construction and segmental bridge construction. NCHRP Report 517 

summarized both material-related options and design enhancements for extending the span 

lengths. The material-related options included:  

 High strength concrete.  

 Specified density concrete. 

 Increased strand size. 

 Increased strand strength. 

 Decks of composite materials. 

The alternatives for design enhancements included:  

 Modifying standard girder sections. 

 Creating new standard girder sections. 

 Modifying strand pattern or utilization.  

 Enhancing structural systems. 
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(a) Simply supported bridge with two in-span splices. 

(b) Two-span continuous bridge with one splice within each span.  

 
(c) Three-span continuous bridge with two splices within the central span and one splice in 

each of the side spans. 

Fig. 2.10 Design examples from NCHRP Report 517 (Castrodale and White 2004). 

 * 1 ft =0.3048 m, 1 in. = 25.4 mm 
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The multiple design examples presented in NCHRP Report 517 provide guidance 

for comparing the potential alternatives to extend span lengths. The three examples present 

how to design a single span spliced PCI BT-96 Girder, a two-span spliced U-Beam Girder, 

and a continuous three-span girder. The three examples have in-span splices. Fig. 2.10 

presents the three examples. 

Hueste et al. (2011) studied the construction feasibility of continuous prestressed 

concrete girder bridges through two focus group meetings consisting of: (1) precasters that 

are responsible for casting the girder units and transporting them to the construction site, 

and (2) general bridge contractors that are concerned with the erection, splicing, and PT 

of the girder components, as well as the construction of the remainder of the bridge 

including the deck and substructure. In addition, members of the TxDOT project 

monitoring committee attended the meetings. The main findings from the focus group 

meetings are provided below. More details of the focus group results, as well as conducted 

preliminary bridge designs are presented in the FHWA 0-6651-1 Report by Hueste et al. 

(2011). Findings from the precasters are: 

 In general, all the precasting plants are well equipped to handle fabricating a 

variety of over-pier, end, and drop-in segments. 

 Increasing the span length results in an increase in the weight of precast elements. 

Precautions should be taken so that the weight does not exceed 890 kN considering 

transportation limits. 

 The desirable limits for I-girder segments is length around 42.7 m, weight around 

890 kN, and depth around 3 m. For the U-girder shapes, the precasters  
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recommended limiting the segment length to 40 m considering weight limits for 

transportation. 

 The recommended maximum span length for a spliced girder bridge is around 80 

m, considering the stability issues of long-span drop-in segments and deep 

haunched over-pier segments. 

 Use of a constant standard girder section depth for over-pier segments is preferred 

over the haunched girders to avoid issues related to high initial cost of fabrication, 

stability issues during transportation, and lifting weight issues onsite. 

 There are no concerns with widening the webs to resolve the issue of maximum 

shear demand at the supports. The webs can be widened by increasing the space 

between the forms, which will result in widened top and bottom flanges of the 

girder section. It is a one-time cost to purchase a new soffit. Standardizing the 

precast elements will help reduce the overall cost. 

 Fabricating end segments with thickened ends is not an issue. The length of an end 

block is typically 3–4.5 m.  

 Of the four different types of splice connections discussed (ranging from fully 

reinforced/non-prestressed to fully prestressed with PT), the precasters preferred 

partially prestressed spliced connection details. 

 Some discussion was held about using longer precast panels over the supports with 

longitudinal prestressing. The precasters indicated that this should be no problem. 

Findings from the contractors are: 
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 The proposed bridge system provides another alternative to steel girder bridges, 

especially in coastal areas where corrosion of steel bridges is an issue. 

 Experienced contractors prefer to limit the span range for the continuous spliced 

girders to approximately ± 76 m to 82 m. 

 Unshored construction (no shore towers) is preferred because it saves significant 

time during construction and reduces the construction costs. Often the required 

footprint is not available to place shore towers.  

 Using fewer girders increases cost competitiveness of bridges. 

 The contractors suggested that keeping the girder weights as low as possible and 

adopting repetitive girder details aid in better pricing by the precasters. 

 Contractors prefer the constant web depth option for the haunched girders because 

it is easy to fabricate and has more stability. 

 Contractors noted that the option of two separate girder segments spliced over the 

pier provides flexibility of splicing the girder segments within the span on the 

ground before lifting them into place on site. This is a preferred option because no 

temporary shoring is required on site. However, issues related to the weight of the 

whole assembly and the size of the equipment in lifting and placing the spliced 

girder segments are anticipated. 

 The main issue noted during erection of the girders is the lateral stability of the 

girder segments due to wind. 

 The partially prestressed connection detail was the most preferred with respect to 

on-site construction due to its relative constructability. 
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 Contractors prefer having two design options for bid: one with a standard precast 

concrete girder shape and one with a steel plate girder.  

 The quality control process is more complex for the proposed bridge system.  

 Sequencing of the CIP concrete and PT operations are needed up front. 

 Contractors look at both schedule and economy to determine the best option. 

Additional findings from the designer/owner (TxDOT) are: 

 TxDOT engineers noted that this bridge type would compete well with shorter 

span segmental bridges. They also indicated that they are not using steel girder 

bridges along the coast, and the proposed bridge type would not compete with just 

steel girder bridges.  

 It would be useful to consider various design options using life-cycle cost analysis. 

TxDOT is just now starting to use life-cycle cost analysis. Traditionally, initial 

cost has been used to evaluate design options. 

 TxDOT engineers preferred solutions where the fascia girder did not possess a 

widened end at the drop-in splice location. This sentiment was to preserve the clean 

lines of the side elevation of the bridge deck. However, this presents a significant 

challenge, with the resulting narrow web solution it is not possible to terminate 

and anchor the PT; the PT must run continuously through the splice. One option is 

retain the same profile as the girder only for the outside face of the fascia girder. 

The inside face of the fascia girder, along with both faces of the interior girders, 

could be widened at the ends adjacent to the splices to accommodate the PT 

anchorage.  
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Alawneh (2013) suggested a spliced girder system as a replacement for 

traditionally curved bridges. In the proposed system, shorter straight segments were 

precast and spliced with an angle to simulate a horizontal curve with a 60 m radius. Two 

specimens were constructed: one with I-girder segments and one adopting tub girder 

segments. Two splices were used to reach a test span of 183 m. One of the splices matched 

the girder cross section, while the other splice was cast as a thickened section, adopting 

the thickness of the bottom flange for the thickness of the web. A single point load was 

applied at midspan. Flexural failure occurred in the midspan away from the splice zones. 

 Moore et al. (2014), in a recent companion study sponsored by TxDOT, compared 

the shear behavior of post-tensioned girders for steel ducts and plastic ducts. Through 11 

tests with different duct materials and diameters and different web widths, the effect of 

duct material and duct diameter-to-web width ratio was investigated. They concluded that 

all the specimens failed due to localized crushing of the web concrete at the level of the 

PT ducts and duct material had little effect on the shear resistance of the web. On the other 

hand, the duct diameter-to-web width ratio played a significant role in the shear resistance 

of the web. The shear stress at ultimate changed from 0.2 ݂′௖ for the lowest duct diameter-

to-web width ratio of 0.33 to 0.16 ݂′௖ for the ratio of 0.44.  

Williams et al. (2015), as a follow up on the previous study, presented their study 

through Report FHWA 0-6652-2. In this research, they provided the results of a survey 

with a focus on duct material, shear interface detail, longitudinal reinforcement detailing, 

and length of splice. The report includes the results of an experimental program on shear 

behavior of in-span splices. Use of plastic ducts and a 230 mm web provided a critical 



 

37 
 

shear section in the web that violated the allowable limits of 0.4 in the AASHTO LRFD 

Specifications for the duct diameter-to-web width ratio. For this case, the ratio was 0.44, 

which was 10 percent higher than the AASHTO limit.  

Williams et al. (2015) tested two specimens under the same loading setup. 

Concrete strength and prestressing levels were the same for both specimens. The major 

difference between the two specimens was the amount of longitudinal interface 

reinforcement at the splice connections. Specimen 1 included 14-#4 straight bars in the 

flanges passing through the splice region and 6-#3 straight bars passing through the web. 

In Specimen 2, 8-#6 straight bars passed through the bottom flange, 8-#5 bars were 

considered for the top flange, and the same 6-#3 bars were passed through the web. 

Specimen 2, with the higher amount of longitudinal reinforcement, showed about 5 

percent more loading capacity and 20 percent more deflection before failure.  

Based on the experimental data, Williams et al. (2015) proposed modifications to 

the AASHTO LRFD Specifications for the general shear design procedure. In the 

modifications, they included an additional strength reduction factor to account for the 

reduction in the shear resistance due to the presence of PT ducts. 

2.4 MOMENT-CURVATURE ANALYSIS OF PRESTRESSED CONCRETE 
BEAMS 

Burns (1964) presented the moment-curvature relationships for beam sections with both 

mild steel and prestressing strands. His proposed method was based on changing the strain 

in the top fiber, and changing the level of neutral axis to reach equilibrium. For post-

cracking moment, the compression force was determined by area integration of the stress-
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strain diagram. The results of the proposed method were verified by the experimental data 

from a study conducted at the University of Illinois.  

While the proposed method by Burns (1964) provided an elegant method of 

analysis for prestressed concrete sections, it did not consider the capacity of the concrete 

in tension. Also, as the proposed method did not use the fiber method of analysis, it was 

not easy to modify for irregular or more detailed cross sections. Also, the material property 

assignment was not quite feasible for a composite section with different material 

properties. He did not consider the initial curvature in the analysis and the resulting graphs 

started at the origin, rather than with a shift due to initial prestressing effects. Also, 

experimental results suggested that the proposed method does not accurately capture the 

post-cracking behavior of the sections for higher levels of prestressing. 

Shushkewich (1990) developed an analytical approach to formulate the moment-

curvature relationships for the common beam shapes under both axial and prestress loads. 

Analysis was conducted in two phases for both cracked and uncracked sections. Material 

properties and section properties were generalized for different practical shapes such as I- 

beams, T-beams, inverted T-beams, rectangular, box, and channel section. Stresses and 

strains were formulated based on the position of the neutral axis and the effect of axial 

load and prestress loads were considered in the sections. This paper proposed a valuable 

relationship for the flexural analysis of these specific types of cross sections. However, 

due to its point-wise formulation, it lacked a numerical approach to calculate the 

continuous graph of moment-curvature behavior. The approach also did not include the 

capacity of the concrete in tension. Long and complicated formulas were proposed to 
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determine the section properties of cracked concrete. However, by considering the initial 

curvature of the beam due to prestressing, the proposed method provided a rational 

relationship for prestressed and partially prestressed beams.  

Rodrigues-Gutierrez and Aristizabal-Ochoa (2001) presented an interactive 

moment-force-curvature analysis for reinforced and prestressed concrete beams under 

biaxial bending and axial loads. Their study was the completion of their previous work by 

considering tension stiffening, creep and shrinkage effects. They proposed a unique 

approach to calculate the compression and tension force in concrete. Unlike other common 

approach, where fiber elements parallel to the neutral axis are considered to calculate the 

force in concrete, the proposed approach considered trapezoidal elements perpendicular 

to neutral axis. Gauss’s integral method was used to calculate the effective concrete force 

in each of the trapezoids. After formulating the equilibrium in terms of numerical 

calculations, they developed a flowchart to carry out the analysis. The proposed model 

was verified with previously conducted experimental data.  

While the research proposed by Rodrigues-Gutierrez and Aristizabal-Ochoa 

(2001) presented an elegant method of flexural analysis, it did not count for multiple stages 

of prestressing. The presented diagrams in the paper did not count for the initial curvature 

of prestressing. The proposed trapezoidal element method was quite innovative, but 

encounters computation difficulties for more irregular cross-sections. The accurate 

modeling of material including the non-brittle tension failure of concrete makes the model 

more refined.  



 

40 
 

Oehlers et al. (2011) presented a study on the effect of partial interaction of 

concrete and reinforcement on flexural behavior of reinforced concrete beams. Oehlers et 

al. discussed that the conventional moment-curvature analysis relied on the full bond of 

concrete and reinforcement, which enabled the researchers to develop three-dimensional 

behavior of the beams based on two-dimensional moment-curvature analysis. The paper 

provided a systematic literature review on previous studies of related components of 

moment-curvature analysis, including empirical models for hinge length and moment of 

inertia, discrete crack rotation, deformation of RC beams, strain profiles, tension 

stiffening, hinges and energy absorption, and moment redistribution. In this research, they 

studied the bond-slip behavior for different types of rebar and provided graphs of strain 

profile for variation of bar diameter. While this insightful study provided valuable 

understandings of different parameters contributing to flexural behavior, its applicability 

was limited to reinforced concrete.  

Pirayeh Gar et al. (2012) presented a study where the effects of tension stiffening 

were included in the moment-curvature analysis of prestressed concrete beams. After 

presenting a closed-form solution for moment-curvature behavior of prestressed concrete 

members, they formulated the tension stiffening effect in prestressed concrete. A 

parametric study was carried out to investigate the effects of prestressing ratio on moment-

curvature behavior and neutral axis location. They conclude that for fully prestressed 

concrete the effect of tension stiffening on flexural behavior of the beams at the service 

limit states is negligible. However, they suggest that as the level of prestressing decreases 

the effect of tension stiffening becomes more pronounced.  
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2.5 SHEAR-FLEXURE INTERACTION: EFFECT OF DIAGONAL CRACKS 

Rosenblueth (1965) criticized the traditional moment-curvature analysis for not being able 

to capture the descending branches in the generalized force-deformation behavior of the 

concrete beams. He discussed that crushing of concrete in compression is not necessarily 

a material failure mechanism, but rather a structural instability which leads to lower 

flexural capacity. He proposed a moment-rotation approach to study the post-cracking 

behavior of beams in the hinge regions, by introducing the “contaminated” region” which 

is affected by yielding of material, as well as diagonal cracks. The proposed model did not 

consider the contribution of concrete in tension. Even though the paper mentions the effect 

of diagonal 45o cracks in formation of the hinge zone, it does not consider the effect of 

shear-flexure interaction in the flexural behavior of the beam.  

Russo et al. (1991) studied the effect of shear-flexure interaction by investigating 

the ratio of the flexural capacity of the reinforced concrete beams under both shear and 

flexure and beams under pure flexure (ܯ௨ ⁄௙௧ܯ ). The research proposed that the ratio of 

௨ܯ ⁄௙௧ܯ  depends mainly on the shear span (ܽ ݀⁄ ) and the longitudinal reinforcement ratio 

 By referring to a previous experimental study by Kani (1966), they developed a 3-D .(ߩ)

diagram relating the moment ratio to reinforcement ratio and the shear span. The concept 

of “valley of diagonal failure” was introduced that illustrated the situation where for a 

specific combination of shear span and reinforcement ratio, the moment ratio (ܯ௨ ⁄௙௧ܯ ) 

reduced from 1 to a lowest of 0.6. The effect of shear span was studied as the indicator of 

which shear transfer mechanism governs: the beam action or the arch action. Based on 

their plastic theory solution (lower bound solution), they proposed that for a shear span 
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between 1 to 7, the moment ratio could possibly be lower than 1, depending on the 

reinforcement ratio. The study proposed a valuable ratio to take into account the effects of 

shear-flexure interaction.  

Recupero et al. (2003 and 2005) presented a thorough study on shear-flexure 

interaction of reinforced and prestressed concrete beams. They divided the height of the 

section in three separate layers: top flange and top portion of the web that carries the 

compression, central section of the web that resists shear by having a diagonal 

compression stress field, and the bottom flange and lower part of the web that is in tension. 

Based on the proposed model, the equilibrium equations were set and formulated. The 

interaction diagrams were created for different transverse reinforcement ratios as a 

function of longitudinal reinforcement and the angle of prestressing tendons. The results 

of the proposed method were verified by experimental data and the model was used to 

design a prestressed concrete bridge. While the proposed method effectively modelled the 

interaction of shear and flexure, it did not account for the interaction of the shear carried 

by the concrete and transverse reinforcement. Also, the model did not consider the effect 

of diagonal cracks and the fact that at ultimate, the concrete does not carry shear between 

cracks.  

Cladera et al. (2015) extended their study on shear-flexure interaction of 

rectangular reinforced concrete sections to account for the effect of flanges for I-shaped 

and T-shaped beams. They noticed that as the flange width increases, the shear capacity 

of the section increases up to 25%. They deduced that in contrary to design code 

provisions, compression concrete does contribute to the shear strength of the beams. Based 
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on their study, in reinforced concrete beams subjected to both shear and flexure, the main 

zone of failure includes a vertical flexural crack in the tension zone, accompanied by 

primary and secondary diagonal cracks in the web area. According to their observation, 

cracking and damage concentrated around the critical shear crack, which is the diagonal 

crack that merges with the main flexural crack. As shown in Fig. 2.11, the shear capacity 

was divided in four components of compression chord, aggregate interlock, dowel effect 

of longitudinal reinforcement, and the transverse reinforcement contribution. Each 

component was empirically formulated, so that the aggregate interlock effect decreases as 

crack widths grow.  

While the proposed model by Cladera et al. (2015) was an original study on the 

cases where the shear-flexure interaction leads to a compression failure in the top flange, 

rather than a strut failure or other types of shear failure, it strongly depended on the 

experimental observations and empirical equations. The proposed model did not consider 

the tension capacity of the concrete, but it effectively considered the effect of widened 

cracks in reduction of aggregate interlock. The proposed model gives a good insight for 

analysis of the thin webbed concrete beams for reinforced concrete, but does not include 

the effects of prestressing axial loads.  
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(a) Shear components on the critical shear crack 

 
(a) Scheme of shear-flexure cracks and critical section 

 

Fig. 2.11 Shear-flexure interaction and modeling of shear transfer mechanism 
(Cladera et al., 2015). 
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2.6 STRUT AND TIE MODELING OF CONCRETE BEAMS 

2.6.1 Plastic Truss Modeling 

Ritter (1899) and Morsch (1901) developed a truss model to independently incorporate 

the effect of transverse reinforcement in shear resistance of reinforced concrete. They 

proposed that diagonal cracks in a reinforced concrete beam form in 45o angles, and 

assumed that no shear is transferred perpendicular to this crack. Based on this assumption, 

they proposed an equivalent truss for concrete beams, where concrete carried the 

compression in the compression chord and struts, while reinforcement provided capacity 

in the tension chords and vertical ties.  

Marti (1985) proposed that strut-and-tie modeling (STM) can be effective in 

capturing the behavior of D-regions. They defined D-regions (disturbed regions) in 

locations with a discontinuity in geometry and material or regions in proximity of applied 

concentrated loads. Schlaich et al. (1987) defined two general D-regions and B-regions 

(Bernoulli regions or Beam regions) and recommended a strut-and-tie modeling for design 

and analysis of D-regions where uncracked elastic properties of concrete were adopted for 

the truss model.  

Sritharan and Ingham (2003) developed a force transfer method (FTM) for analysis 

and behavior assessment of bridge joints subjected to seismic forces. While they used the 

same principles as STM, they specifically developed the model for seismic behavior of 

the joints and incorporated the effect of post-tensioning.  

Collins et al. (2008) conducted a research using a large database of many previous 

experiments on shear behavior of concrete beams in North America, Based on the results, 
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they proposed that the current ACI provisions could be unconservative for deep beams or 

higher reinforcement ratios. This research showed that use of STM without considering 

compatibility and other interdependent failure mechanisms (such as shear-flexure 

interaction, anchorage, and bond), could lead to unsafe designs.  

2.6.2 Compatibility Truss Modeling 

Paulay (1971a) studied the shear-flexure interaction, different shear resistance 

mechanisms, deformation characteristics, and elastic stiffness of thin web beams. He 

proposed a variable angle truss model incorporating the truss action, arch action, flexural 

rotation, and beam elongation. The proposed truss action was composed of concrete 

compression members and reinforcement as tension ties and tension chord. The arch 

action would transfer the shear in deep beams through a single concrete truss directing 

from the point of applied load to the support. In the proposed model, the flexural rotation 

pertained to the rotation of the member due to strains in reinforcement, and the beam 

elongation referred to the total elongation of the reinforcement. The proposed method took 

into account the compatibility of strains through considering the four abovementioned 

components.  

Kim and Mander (1999; 2000a; 2000b; 2005; 2007) through an extensive study 

proposed a comprehensive compatibility-based truss model to analyze the shear-flexure 

interaction of D-regions and derived as analytic solution for deformation of cracked elastic 

concrete elements. They proposed both constant and variable angle truss models, where 

the former was applicable for analysis of B-regions and the latter was proposed for 

analysis of D-regions. Cyclic Inelastic Strut-Tie (CIST) modeling was proposed as an 
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analytical tool for modeling the shear-flexure interaction of reinforced concrete using a 

general-purposed inelastic computer software.  

To et al. (2001) developed a nonlinear strut-and-tie computational tool to assess 

the behavior of rectangular reinforced concrete beam with transverse hoops subjected to 

monolithic loading. This research was further extended to model the behavior of circular 

columns (To et al 2002). The proposed model was verified through large-scale 

experimental data and a portal frame experiment. The proposed model was further 

developed to incorporate the effect of cyclic loading (To et al. 2003). 

Zhu et al. (2003) developed a compatibility-based STM to predict the width of 

diagonal cracks at re-entrant corners of structures, such as dapped ends of bridge girders 

and ledges of inverted T bent caps. The proposed model adopted a stiffness based approach 

and modeled the flexural and shear behavior of inverted T bent caps thorough two separate 

sub-trusses. The researchers illustrated how displacement compatibility could be used to 

combine the sub-trusses and capture the overall behavior of the structure.  

Scott et al. (2012a; 2012b) formulated a compatibility strut and tie model to 

provide nonlinear force-deformation behavior for reinforced concrete beams. Following 

the proposed model by Kim and Mander (1999; 2005; 2007) they considered a variable 

angle truss model. The researchers proposed modifications to the effective concrete 

modulus of elasticity compression chord to adjust for stress distribution in the compression 

chords as well as the actual beam depth compared to the truss model. The stress-strain 

constitutive model of concrete was modified accordingly to capture the inelastic 

deformation of the beam for the uncracked section, cracked elastic and cracked plastic 
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spectrum. They also developed an arch action model and proposed methods to proportion 

the concrete for truss action and arch action. The proposed method was then implemented 

for analysis of a reinforced concrete bent cap and the results were validated by 

experimental data.  

Karthik et al. (2016) proposed a displacement-based compatibility STM to capture 

the behavior of reinforced concrete structures subjected to monolithic and cyclic loading. 

They proposed methods to analyze the structure in displacement control and produce the 

ductile behavior of the structures. The proposed method was implemented in modeling of 

a bridge bent cap and the results were verified by the experimental data.  

Karthik (2015) investigated the structural performance of bridge elements 

subjected to ASR and DEF deterioration. He proposed a coupled Compatibility STM 

(CSTM) through which the truss action and arch actions were modeled separately and the 

overall behavior of the element was assessed through displacement compatibility. The 

proposed method was applied to several structural elements and the results were verified 

by experimental data.  

2.7 RESEARCH QUESTION ARISING 

Based on the literature review on design and construction of continuous prestressed 

concrete girder bridges, the following research questions arise: 

Question 1: Given that the standard slab-on-I-girder bridges are one of the most 

economical options in Texas and US, is it possible to adopt a splicing method 
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to effectively double the span length of existing prestressed concrete girder 

bridges and reach span lengths of up to 90 m? 

Precast concrete girder bridges have been widely designed for short to medium spans as 

an economical, aesthetic, reliable solution with potential for rapid construction. Previous 

designs and studies suggest that they have the potential to become a competent economical 

solution for bridges spanning from 45 to 90 m. There are 250 bridges that have adopted 

in-span splicing technique to achieve longer spans, but since the design and construction 

procedures are not widely available to engineers, this art has been localized in certain 

states. Also, construction issues and optimum construction sequences have not been fully 

covered in previous studies.  

Standardization of design on construction of this class of bridge can be the starting 

point of popularizing it. This research will review and implement a consistent load-

balancing approach for continuous bridge girder design. An outline of some construction 

sequences and issues will be given.  

Question 2: How do the splice and the structure perform under normal service loads? 

And what is the performance of the structure and more specifically the 

splices, if they were overloaded to failure?  

Extensive previous studies have assessed the performance of on-pier splices. But there 

remains a lack of experimental investigations on the service and ultimate performance of 

the in-span splices. In order to make this type of bridge construction more accepted, a 

comprehensive experimental investigation is required to demonstrate and evaluate the 

performance of splices for different load combinations. In this research, a full scale 21.6 
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m long super-assemblage specimen is tested to failure. The specimen is an abstraction 

from a prototype bridge design of a continuous three span bridge with overall span lengths 

of 58-73-58 m. Three splices were located in the specimen which facilitated the 

assessment of splice performance for different combinations of positive and negative 

moments and shear. 

Question 3: Given that in-span splices are generally located in the regions with minimal 

flexural demands, the shear demands at splice locations remain high. 

Therefore, how would the interaction of shear and flexure in splice regions 

be affected by the post-cracking performance of in-span splices? 

Due to lower flexural capacity compared to precast girder segments, splices are general 

placed in locations with minimal flexural demands. But such regions with reduced flexural 

demand such as the inflection points for dead load, are still required to carry substantial 

live load moments and high shear arising from both dead and live loads. Considering lower 

flexural capacity of splices, the flexure may remain potentially the critical state for the 

splice regions. On the other hand, narrow-webbed sections are prone to cracking if the 

structure is overloaded under high applied shear force, particularly near the strength limit 

state. The combination of these two conditions would rise another potential critical state 

where shear-flexure interaction can affect the post-cracking performance of splices.  

Question 4: Given that due to the narrow web of I-girder sections, and the existence of 

post-tensioning ducts within the web, high inelastic shear deformations are 
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possible: How well can existing flexural and shear methods of analysis 

predict the performance of a spliced girder bridge?  

Conventional methods of deflection analysis are usually based on Euler-Bernoulli flexural 

deflection and do not consider shear deformation of structures. While more accurate 

analyses may consider Timoshenko beam deflection theory, it too is unable to precisely 

predict the deflection of locally loaded (disturbed) zones.  

On the other hand, many researchers have proposed methods to study the shear 

capacity of the prestressed concrete members, where shear is the predominant state of 

failure. Considering low flexural capacity of the in-span spices, it is expected that an 

interaction of shear and flexure create a new critical state where the effect of diagonal 

cracks and vertical cracks merge and create a complex inclined critical section. While 

strut-and-tie modeling or finite element analysis can accurately model this behavior, they 

require advanced analytical capabilities that are time consuming to implement, especially 

in a design office setting.  

In this research, a generalized moment-curvature analysis is proposed to capture 

the flexural behavior of a composite section with multiple stages of prestressing and 

construction loads. Then, this method is modified through re-formulation of equilibrium 

to capture the effect of shear-flexure interaction as a single integrated analysis tool.  

Question 5: Considering that splice regions are prone to diagonal cracks, how would the 

design demands of this regions and the adjacent girder sections be affected?  

As the diagonal crack emerges in the web area, it can shift the compression side of the 

critical section to the adjacent girder section. This phenomenon that is called compression 
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shift will reduce the capacity and ductility of the splice and the adjacent sections. To 

compensate for this capacity reduction, the design demands of such regions must be 

increased. 
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3 COMPARATIVE DESIGNS FOR IN-SPAN SPLICED LONG 

SPAN PRESTRESSED CONCRETE GIRDER BRIDGES 

 CHAPTER REVIEW 

In-span splicing of prestressed concrete girders to extend the span length of bridges have 

been effectively used in several recent bridge construction projects. However, the extent 

and limitation of such a construction approach has not been systematically explored. 

While the most effective approach for long span girder construction use draped parabolic 

prestressing tendons, which in turn balance the dead loads, successive application of 

prestressing at different stages of modular construction can potentially lead to locked-in 

deflections if not properly dealt with by design. This chapter revisits bridge design that 

uses in-span splicing and construction approaches to provide a more in-depth 

understanding of design options and construction approaches for spliced prestressed 

concrete girder bridges. The concept of “deflection balancing” is introduced and the 

associated near optimum prestress design is formulated. Three methods of construction 

are investigated that benefit from in-span splices: shored, partially shored, and span-by-

span (heavy-lift) construction. Design procedures and optimal construction sequences are 

compared and contrasted, and discussed in detail. A prototype bridge geometry is designed 

for all three methods of construction, and the results compared and conclusions drawn.  

 INTRODUCTION 

As urban areas become increasingly congested, topological and environmental issues 

demand the extension of bridge spans with minimal traffic interference and construction 
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time. Therefore, modular construction methods need to be considered wherever possible 

so that individual bridge segments may be pre-fabricated and hauled to the construction 

site.  

Among different design options, precast prestressed concrete girder bridges have 

been widely used as an economical solution for modular construction. Historically, precast 

girder bridges have been mostly designed as simply supported spans. A height limitation 

of 3 m is common due to vertical curves on roadways, especially at railway crossings. The 

weight of individual units is generally limited to 900 kN, but may be increased under 

exceptional circumstances to about 1000 kN. Weight limitations are based on axle 

arrangements of the transporting equipment, crane capacity limitations, and the limitations 

of existing bridge capacity on the chosen transportation route. Therefore, the hauling 

limitation for length, height, and weight of individual segments impose an upper bound in 

the range of 45 to 50 m depending on the nature of the roads between the precasting plant 

and the bridge construction site. 

Since the first use of prestressed concrete girder bridges in the 1950s, they have 

been widely used for short to medium span lengths up to 50 m nationwide. During recent 

decades, several investigations have been conducted to propose methods to extend the 

span length capability of prestressed concrete girder bridges. Most of these methods 

suggest modifying the design approaches, improving material properties, changing the 

shape and size of girder sections, and splicing the girders over the pier to provide 

continuity (Bishop, 1962, Miller et al., 2004, Newhouse et al., 2005, Tadros, 2007, and 

Sun, 2004).   
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While each of the aforementioned methods have contributed to improvement of 

the design and performance of these bridges over time, the effect on increasing the span 

length has been marginal due to the weight and length limitations on the individual precast 

segments. On the other hand, an in-span splicing technique may be used to effectively 

double the span length of concrete girder bridges to about 90 m (Hueste, et al., 2011).  

To obtain optimum vehicle ride quality of post-tensioned continuous spliced girder 

bridges, individual girder segments must (ideally) be straight prior to splicing to avoid 

locked-in deflections, upon application of post-tensioning. Overall, for prestressed 

concrete girders, there should be co-equal dual aims: 

(1) to balance the loads so that under self-weight, there is a uniaxial state of stress in 

the continuous deck-girder system. This essentially negates the possibility of 

ongoing creep displacements; 

(2) to minimize deflections under self-weight so that the best possible ride quality can 

be provided.  

The concept of load balancing is not new; it was first championed by T.Y. Lin in 

his seminal text book (Lin, 1955) for both simply supported and continuous 

(indeterminate) structures. Generally, load balancing is best achieved by using draped 

post-tensioned (PT) prestress. However, it is often neither expedient nor economical to 

use PT for individual girders. Pretensioning is generally the economic solution for precast 

portions of a structure. If not properly managed by design, permanent deflection can be 

“locked in” during construction. For example, it is well known that constant eccentric 

pretensioned prestress can provide substantial upward camber to a beam. This needs to be 
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dealt with by providing a variable thickness haunch height beneath the topping slab to 

level the deck system. In this chapter, it is demonstrated how straight and harped 

pretensioned prestress systems may be designed to minimize the deflection under girder 

self-weight. This is particularly important for continuous bridges where in-span splices 

are adopted.  

By implementing in-span splices, the individual precast girder segments can be 

effectively spliced to each other and form a longer span. However, design, analysis, and 

performance of in-span spliced precast prestressed concrete girder bridges are dependent 

on the method and sequence of construction (Hueste et al., 2016). Historically, there has 

been two broadly different construction methods adopted to extend the span length of a 

concrete girder bridge by using in-span splices: (i) shored construction; and (ii) unshored 

(or partially shored) construction.  

For shored construction, temporary shore towers are provided to support each of 

the individual segments and to seat the formwork for the in-span splices. Lin et al. (1968), 

Abdol-Karim and Tadros (1995), and Fitzgerald and Stelmack (1996) have presented 

some practical examples of shored construction. Shored construction is associated with a 

simpler design and leading to more dependable construction practice. However, the 

versatility of shored construction is limited to those projects were the terrain and 

transportation constraints allow for placement of shore towers for all spans.  

To provide a more versatile option, where wide rivers and valleys exist, or 

congested traffic areas do not permit disturbance in the main long span region, partially 

shored construction is often used as it eliminates the shore towers within the main span. 
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While this method of construction can be more cost-effective by decreasing the number 

of shore towers, it may require the use of haunched sections over the pier. Such a structural 

modification can substantially increase the project cost. Jenssen and Spaans (1992), 

Roland (2001), and Caroland et al. (1992) have provided details of construction aspects 

for partially shored constructed bridges.  

As effective as the in-span splicing technique may be in providing a variety of 

construction methods, few examples of this class of extended span bridge exist. NCHRP 

517 Report (Castrodale and White, 2004) provided a list of all bridges that have adopted 

in-span splices in prestressed concrete girder bridges. A review of the location of such 

bridges reveals that application of this technique has been localized in certain states, such 

as Florida, Washington, and Colorado, as a lack of infrastructure, fabrication equipment, 

and standard design procedures restrain the applicability for this class of continuous long-

span girder bridge construction.  

This chapter first introduces the concept of deflection minimization for precast 

beam portions that may be components of a longer structure. It then goes on to illustrate 

some of the issues that may affect the design by presenting the results of three contrasting 

methods to construct continuous long span slab-on-spliced prestressed girder bridges that 

are designed for (i) shored construction; (ii) partially shored construction; and (iii) 

unshored span-by-span heavy-lift construction of spliced girders. The concept of in-span 

splicing is revisited and three possible construction methods are introduced. Then, the 

design procedure for each type of construction is illustrated along with design and analysis 

recommendations. An optimum construction sequence is proposed for each of the three 
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methods of construction to minimize the effect of construction loads on the final layout of 

prestressing. Finally, a prototype bridge is designed for the three methods of construction 

and the results of prestressed solutions are compared with one another.  

 DEFLECTION BALANCING THROUGH PRETENSIONING  

While for a simply supported beam, load balancing of self-weight with parabolically 

draped post-tensioned tendons can theoretically perfectly balance loads and negate self-

weight deflections. This dual objective is not achievable with either straight or harped 

pretensioned strands. Harped pretensioning may partially balance the dead load as well as 

deflection, but generally, a design using pretensioned prestress aims to ensure stresses are 

maintained within allowable limits; deflections are disregarded by design, but are dealt 

with during construction. Pretensioned girders generally results in an upward camber, 

which are later dealt with by using variable depth haunches to form the deck slab. For 

simply supported bridges, this is not really a critical issue, as over time creep may reduce 

the upward camber.  

For slab-on-spliced prestressed girder bridges, a mixture of both pretensioned and 

PT prestressing systems are used in any given design. Pretensioning is applied to 

individual girders to ensure sufficient strength exists for transportation and erection. Then, 

after casting the splices, PT is applied to provide continuity as well as strength through 

the cast-in-place splices. Given that for continuous bridges, PT is applied after casting the 

splices, if individual segments have excessive unbalanced deflections, they inevitably lead 

to “locked-in” deflection upon application of PT. Such locked-in deflections due to 
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construction may marginally reduce over time but will generally lead to ride quality 

problems.  

Furthermore, when the individual segments are spliced in the construction sites, 

means of continuity, such as post-tensioning ducts, shear transfer hangers, top and bottom 

reinforcement, etc. need to be aligned properly to avoid construction issues. If individual 

girders have unbalanced deflection—generally upward camber or non-square girder 

ends— alignment difficulties arise, both with deck slab and PT ducts.  

Therefore, when building a complex bridge system over multiple phases, load 

balancing alone is not sufficient as a design objective; a second and perhaps higher 

objective is needed: to balance deflections as well as practicable through all stages of 

construction.  

For pretensioning design of a prestressed post-tensioned concrete girder bridge, 

two main goals are considered with regard to deflection balancing: (i) zero slope at 

member ends and (ii) minimal deflections throughout the member. The former ensures 

feasible splicing and alignment at the ends of adjacent girders; the latter aims to minimize 

the locked-in deflections as well as better ride quality. While both can be equally 

important, with eccentric pretensioning only one goal can be fully achieved.  

Table 3.1 summarizes the applicability of deflection balancing for different design 

goals and type of pretensioning. A general relation between force and c.g.s eccentricity of 

the pretensioned prestress strands is defined as:  

଴݁ܨ = ଶܮݓ଴ߛ =  (3.1) ܮ଴ܹߛ

௖݁ܨ = ଶܮݓ௖ߛ =  (3.2) ܮ௖ܹߛ
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in which ܨ = effective prestressing force after losses; ݁଴ = c.g.s eccentricity at beam ends; 

݁௖ = eccentricity of c.g.s within the central span region of the beam; ߛ଴ = deflection 

balancing coefficient at the ends of the beam; ߛ௖ = deflection balancing coefficient at mid-

span of the beam; ݓ = weight per unit load to be balanced; and ܹ = ܮݓ = total span 

dead weight, where ܮ = span length.  

For harped pretensioning, it can be derived that ߙ = 0.3536 gives the optimal 

solution regarding minimizing the required force to balance the self-weight (see derivation 

in Appendix A.3). If three equal-length units are used (ߙ = 0.3333), results close to the 

optimum solution (ߙ = 0.3536) may be achieved. Thus, ߙ = 0.3333 is used as a basis 

for comparative analysis for contrasting prestress layouts.  

Fig. 3.1 presents the optimized solution for:  

(1) Eccentric prestress: This is the most common form of pretensioning as it has the 

least costly manufacturing infrastructure. 

(2) Harped prestressed: Harping has the effect of partially balancing loads and avoids 

debonding of eccentric strands. 

(3) Mixed solutions: using both eccentric and harped prestress.  

Fig. 3.1 shows the effect of different prestress solutions for deflection balancing 

of a simply supported beam. The three different approaches are shown in Fig. 3.1. (a), (b) 

and (c).  

The bending moment diagrams for the prestressed solutions are presented in Fig. 

3.1 (d).  These are compared with the parabolic black curve representing the dead load 

moment diagram such that the mid-span moment is ܯ஽ =  Thus, the results  .8/ܮܹ
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presented in Fig. 3.1 (d) are normalized to the maximum dead load moment (ܯ஽) and the 

horizontal axis is normalized to the length of the beam (ܮ) such that ܺ =  The .ܮݔ

deformation profiles for the contrasting prestressing approaches for the simply supported 

beam under dead load alone are presented in Fig. 3.1 (e). The vertical axis is normalized 

to the deflection of a fixed-fixed supported beam (ܹܮଷ/384ܫܧ) and the horizontal axis is 

normalized to the length of the beam (ܮ). 

 

Table 3.1. Deflection balancing coefficient for eccentric and harped pretensioning 

Pretensioning Type Main Goal ࢽ૙ ࢉࢽ 

Eccentric Square Ends 0.08333 (1/12) 0.08333 (1/12) 

Eccentric Deflection Minimizing 0.01010 (1/9.9) 0.1010 (1/9.9) 

Harped Moment Balancing 0 0.125 (1/8) 

Harped Deflection Minimizing 0 0.122 (1/8.18) 

Mixed 
Square Ends/ Zero Mid-

Span Deflection 
0.00833 (1/120) 0.1125 
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Fig. 3.1. Optimized pretensioning effects on load and deflection balancing using (a) 
eccentric prestress; (b) harped prestress (with concentric end condition; (c) mixed 
solution that uses end eccentricity (ࢋ૙) and mid-region harped eccentricity (ࢉࢋ) (total 
mid-span eccentricity = ࢋ૙ ൅  resulting bending moment diagrams under (d) ;(ࢉࢋ
dead load; and (e) deflection profiles under combined prestress and dead load. 
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3.3.1 Eccentric Prestress Solutions 

The dashed green lines in Fig. 3.1 (d) and (e) respectively represent the normalized 

bending moment and normalized deflection of a simply supported beam when the 

eccentric prestress solution is adopted to provide square ends by adjusting the eccentricity 

to create fixing moment of a continuous beam:  ݁ܨ௖ = ଴ߛ) 12/ܮܹ = 0.0833). This 

solution provides zero slope at the unit ends (leading to square ends that are ideal for 

joining segments) but at the same time a substantial deflection remains, as only 80% of 

the deflection under self-weight is negated. This solution is adopted herein as the 

“reference” for comparison between different prestressing solutions. 

The solid green lines in Fig. 3.1 (d) and (e) represent the eccentric solution when 

the deflections are minimized, as shown in Fig. 3.1 (b), and derived in Appendix A.3. For 

this solution, the eccentricity is set to ݁ܨ௖ = ଴ߛ) 9.9/ܮܹ = 0.1010) and the resulting 

deflection is 18% of the reference. This solution provides best possible result in regard 

with deflection balancing, when an eccentric-only prestress solution is used. 

3.3.2 Harped Prestress Solutions 

In Fig. 3.1 (d) and (e) the dashed red lines represent the harped-only solution where the 

harped prestress is merely designed for balancing the mid-span moment (݁ܨ௖ =

,8/ܮܹ ௖ߛ = 0.125). This solution results in an upward camber along the entire length of 

the beam with the maximum deflection equal to 11% of the reference case (eccentric 

solution with square ends).  

The solid red lines in Fig. 3.1 (d) and (e) represent the harped prestressing solution 

where the deflection is minimized. For this case, the central eccentricity is set to ݁ܨ௖ =
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,8.18/ܮܹ ௖ߛ = 0.122. It is evident that this solution can significantly reduce the 

maximum deflection maximum to 3% of the reference case. Note that this harped solution 

is a marked improvement where the maximum deflection is reduced some 83% of the best 

eccentric-only prestress. Due to small deflections, the ends are also quite close to square, 

leading to an effective method of deflection balancing, using a harped-only solution. 

3.3.3 Mixed Prestress Solutions 

For the design of modular precast bridge span segments, it may be difficult to use either 

pure eccentric or true harped solutions. Therefore, it may be inevitable that some form of 

mixed solution is necessary. Fig. 3.1 (c) shows the prestress layout of a harped solution 

with some end eccentricity. Given that for this solution, two variables may be adjusted (ߛ଴ 

and ߛ௖), many viable mixed solutions are possible.  

The blue lines in Fig. 3.1 (d) and (e) represent the optimal mixed prestress solution. 

The prestressing is optimized to provide square ends as well as zero mid-span deflection 

by setting ݁ܨ଴ = ଴ߛ)120/ܮܹ = 0.0083) and ݁ܨ௖ = ௖ߛ) 8/ܮ0.9ܹ = 0.1125) as derived 

in Appendix A.3. As shown in Fig. 3.1 (e), the maximum deflection of mixed solution is 

only 2% of the reference solution where eccentric prestress is designed for square segment 

ends. The layout of deflection essentially suggests an essentially pare deflection balancing 

using pretensioning alone. This solution may be adopted as the best pretensioned 

alternative of using the draped parabolic PT solution.  
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   METHODS OF CONSTRUCTION 

3.4.1 Scope 

Figure 3.2 presents three methods of construction: shored, partially shored and heavy-lift 

construction. These Methods are discussed for slab-on-spliced prestressed concrete girder 

bridges and the design and performance objective are compared and contrasted. While the 

first two methods have been successfully adopted by past practice to reach span lengths 

up to 90 m, the heavy-lift construction is not as popular for concrete girder bridges and in 

rare cases, the concept is used for single span bridges. A few examples of span-by-span 

construction are presented by Nicholls and Prussack (1997) and Nikzad et al. (2006), 

where two in-span splices were considered at third points of the bridge to construct a 

longer span.  

3.4.2  Shored Construction 

Fig. 3.2 (a) depicts a general form of shored construction for in-span spliced concrete 

girder bridges. In this method of construction, the shore towers are placed at the location 

of the in-span splices and individual girder segments are supported at their ends over the 

temporary towers. The existence of shore towers reduces the construction load demands, 

particularly for the on-pier segments. Therefore, prismatic sections generally suffice for 

this method of construction.  
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(a) Shored Construction 

 

(b) Partially Shored Construction 

 

(c) Span-by-span (heavy Lift) Construction 

Fig 3.2. Different methods of girder erection for continuous slab-on-I-girder prestressed concrete bridges requiring  

in-span splicing 
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In the shored method of construction, the individual girder segments are 

pretensioned at the precast plant. Stage I PT may be applied to the individual segments 

either at the precast plant or at the construction site. Following the placement of the girder 

on the shore towers, the splices are cast, then the Stage II PT is placed within the ducts 

and lightly tensioned for further construction safety/strength but not fully stressed.  

The Stage II PT is fully stressed after all the girder segments are erected and splices 

and the concrete deck cast. In this way, the maximum amount of prestress is able to be 

applied to the deck slab, thereby improving its longevity particularly in the negative 

moment regions over the supports. Fig. 3.3 presents the construction sequence and typical 

I-shaped cross-sections associated with shored construction. Fig. 3.3 (a) to (g) illustrates 

the proposed optimum construction sequence for this type of construction. Fig. 3.3 (h) and 

(i) depicts an example of the precast girder cross section and composite girder and deck 

section for shored construction using a modified Tx70 girder section. It is shown that 

sections are mainly prismatic, and the eccentricity of the draped Stage II PT varies along 

the length of the beam with the lowest point at mid-span and the highest point over the 

interior piers, as expected for load balancing.  
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(a) Erect all girder segments from one end to another 

 
(b) Cast splices 

 
(c) Cast deck slab 

 
(d) Stress continuity PT and remove shore towers 

 
(e) Cast barriers and open bridge to traffic 

 

 

  

(f) Modified Tx70 (g) Modified Tx70 Composite 

Fig 3.3. Shored construction sequence.  
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The load balancing approach is effectively applied for this method to ensure a load 

balanced superstructure, where the deflection is also successfully balanced. The main 

steps of such a design approach are summarized here. A detailed design example with 

associated AASHTO LRFD Bridge Design Specifications is provided in Appendix A. 

1- Design pretensioning and Stage I PT to balance the dead weight of the girders. 

Pretensioning may be designed for transportation, to make sure all sections are 

tension-free. Some of the strands may be debonded at the ends to avoid 

overstressing of these sections. 

a. Calculate the PT force to balance the self-weight of the girders: 

ܨ =  
௚ܹܮ௚

8݁௖
 

(3.3) 

where ௚ܹ is the self-weight of the precast concrete girders; ܮ௚ is the length 

of each precast segment; and ݁௖ is the central drape of the Stage I PT 

tendons. The maximum drape is restricted by the space needed for the 

Stage II PT tendons; two or three ducts with a center to center distance of 

150 mm for Stage II PT gives a proper estimate for the available drape for 

Stage I PT.  

2- Design the Stage II PT by assuming that the drape in the main span is equal to the 

overall height of the superstructure: 

ܨ =  
ଶܮௗା௦௜ݓ

ଶ

ܪ8
 

(3.4) 

where ܪ = ݁௖ଶ = height of the superstructure including girder, haunch, and the 

deck slab; ܮଶ =length of the main span; and ݓௗା௦௜= uniform load due to deck 
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weight plus the superimposed dead load. Having the same force for all spans, the 

maximum drape of the back-span may be calculated using:   

݁௖ଵ

݁௖ଶ
= ൬

ଵܮ

ଶܮ
൰

ଶ

 
(3.5) 

where ݁௖ଵ = tendon drape in back span (1); ݁௖ଶ = tendon drape in main span (2); 

ଵܮ = length of back span; and ܮଶ = length of main span. 

3- Check stresses for critical locations, namely, location of maximum positive 

moment of each span, at the splices, and over the piers. For higher span-to-depth 

ratios, compression may become critical in the bottom flange of the pier section, 

or at top flange of the mid-span. For such cases, supplemental compression 

reinforcement is recommended to increase the ductility.  

4-  Calculate the flexural demand for the strength limit state, and check the 

abovementioned sections to ensure they have sufficient nominal moment capacity. 

5- Check that the deflection of the superstructure due to live load is within the 

allowable limits. Most of the deflection due to dead load is balanced by post-

tensioning. If the deflection due to dead load is greater than allowed values, 

increase the force of Stage I PT or Stage II PT up to 15% and return to step 1b or 

2. 

6- Design shear based on the AASHTO LRFD Design Specifications. If the shear 

strength is not satisfied, use a deeper section, or widen the section. return to 1.  

7- Design the splice detail for flexural and shear demands. Check the shear transfer 

capacity of the interface between the CIP splice and the adjacent precast girders. 
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Provide sufficient mild steel (or local pretressing) in the top flange of the splices, 

as these sections are prone to cracking when the deck concrete is being cast.  

Based on the proposed design and the case studies by Parchure (2013), 

compression in the bottom flange of the girder is one of the critical states that needs to be 

addressed. In this case, the supplemental compression reinforcement can enhance the 

compression capacity of the bottom flange.  

Shored construction provides the most reliable and easy-to-construct design 

option, as sufficient supports are provided during the construction. In addition, using the 

standard girder sections keeps the fabrication of the segments at the lowest possible cost. 

However, the fabrication, transportation and material cost of the shore towers may offset 

such economies if the falsework is not readily available to the contractor. This method of 

construction is restricted to the projects where the condition of the construction site allows 

the use of shore towers for all spans.  

3.4.3 Partially Shored Construction 

Fig. 3.2 (b) presents the general form of partially shored construction. The main difference 

between this method and shored construction is the elimination of the shore towers within 

the main span regions. This method is suitable for those cases where topological, 

environmental or transportation concerns do not allow use of shore towers in the main 

span.  

In this method of construction, the end segments are first erected over the abutment 

and the shore towers in back-span to provide a counterweight for the drop-in segments in 

the main span region. Then, the on-pier segments are erected over the piers and the shore 
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towers in the back span and are connected to end segments with strongbacks, or tied down 

to foundation for stability upon erection of drop-in segments. Finally, the drop-in segments 

are placed and supported at the end of the cantilevered on-pier segments with strongbacks 

or Cazaly hangers (Caroland, et al., 1992). The detailed optimum sequence of construction 

and a typical cross section for the partially shored construction is presented in Fig. 3.4. 

Fig. 3.4 (a) to (g) depicts the sequence of construction. Fig. 3.4 (h) and (i) depict the typical 

cross section showing that generally haunched sections are used for pier segments. Similar 

to shred construction, the use of continuous beam design leads to a draped PT tendon 

profile where the eccentricity of the PT ducts is lowest at mid-span and highest the over 

interior piers.  

In partially shored construction, the pretensioning strands are designed to carry the 

self-weight of the segments. In addition to that, the pretensioning of the on-pier segment 

is designed to carry half of the weight of the drop-in segment. Stage I PT is applied as 

continuity PT after all the segments are erected and the splices are cast. Stage II PT is 

stressed after the deck is cast to balance the dead weight of the deck and superimposed 

dead loads.  
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(a) Erect piers, shore towers, and end girder segments 

 
(b) Erect pier girder segments, use strongbacks to stabilize the on-pier segments 

 
(c) Erect drop-in girder segment 

 
(d) Cast splices, stress stage I PT stage, remove shore towers 

 
(e) Cast deck slab 

 
(f) Stress stage II PT 

 
(g) Cast barriers and open bridge to traffic 

 

  

(h) Haunched Tx70  (i) Haunched  Tx70 Composite 

Fig 3.4. Sequence of construction with shore towers in back-span only.  
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The load balancing approach can be effectively used to create a constant state of 

compressive stress in the sections. However, care must be taken in the control of the 

deflections: given that only pretensioning is applied to individual girders, it must be 

designed to minimize deflections as discussed in previous section. The main steps of the 

design for partially shored construction are outlined as follows:  

1- Design pretensioning to maintain a tension-free state at all sections of the precast 

girders. Pretensioning may be designed for anticipated loads during transportation, 

to make sure all sections are tension-free. Pretensioning of the on-pier segment 

must be designed for the self-weight and half of the weight of the drop-in segment.  

2- Design Stage I PT for load balancing of the girders under girder self-weight. The 

PT force may be calculated based on a preliminary assumption of ݁ = height of 

the superstructure:  

ܨ =  
௚ܹܮଶ

ܪ8
 

(3.6) 

where ܪ =height of the superstructure from soffit of girder to top of the deck; 

ଶܮ =length of the main span; and ௚ܹ= weight of the prismatic girder segments. 

Having the same force for all spans, the maximum drape of the back-span may be 

calculated using Eq. (3.5).  

3- Design Stage II PT to balance the dead weight of the deck and superimposed dead 

loads. Eq. (3.4) and (3.5) can be used to design the force and drape of the Stage II 

PT.  
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4- Check stresses for critical locations, namely, at the maximum positive moment 

location of each span, at each splice, and over piers where negative moment is 

maximum.  

5-  Calculate flexural demand for the strength limit state, and check the 

abovementioned sections to confirm that there is sufficient nominal capacity.  

6- Check the deflections of the superstructure for dead loads. If deflection due to dead 

load is greater than allowed values per AASHTO specifications, increase the force 

Stage I PT or Stage II PT up to 15% and return to 2 or 3. 

7- Design shear based on AASHTO specifications. If ௖ܸ is not satisfied, consider 

using a deeper section, or widen the section to allow a thicker web and return to 

step 1.  

8- Design the splice detail for flexural and shear demands. Consider the maximum 

demands of the sections within a radius of ܪ from the splice, where ܪ is the height 

of the section.  

As the flexural demands are quite high for the on-pier segments, both top and 

bottom pretensioning is typically required to enhance the flexural capacity of this segment. 

However, since the bottom flange of the on-pier segment carries significant compressive 

stresses when the live load is applied, the bottom pretensioning may adversely affect the 

performance and capacity of such sections. Therefore, it is suggested to use unbonded 

threadbars in the bottom flange and release them before casting the splices and running 

the Stage I PT. After the bars are released, the duct may be filled with grout and the 

threadbars will serve as compression reinforcement in the bottom flange.  
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In partially shored construction, the flexural demand on the pier segment are quite 

high and for cases. This leads to adopting haunched on-pier segments. Therefore, the cost 

of the fabrication for this type of construction may be somewhat more than that of shored 

construction. However, removal of half of the shore tower provides a better option for 

certain construction sites and makes this type of construction generally more economical. 

That said, the design, fabrication, and construction for this method is more complicated 

and requires a greater level of expertise.  

3.4.4 Span-by-Span (Heavy Lift) Construction 

Fig. 3.2 (c) shows the general form of heavy lift construction. In this method of 

construction, all of the shore towers are eliminated. The individual segments for each span 

are spliced on the ground close to the construction site and the superstructure is erected 

span-by-span. On-pier splices are then used to provide continuity throughout the entire 

length of the superstructure.  

Because one of the concerns of practitioners is the possibility of deck replacement, 

one stage of PT is designed as external harped PT, which can be cut and replaced upon the 

requirement of the deck replacement. However, because additional individual segments 

are required in this approach, which eventually produce locked-in stresses and deflection, 

and as individual spans are simply supported for half of the construction process, 

deflections may become more critical in this method of construction. Therefore, a 

combined deflection balancing and load balancing approach is proposed for the 

prestressed design used in this construction method.  
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While heavy lift construction provides versatile options for the design and 

construction sequence, the proposed optimum sequence is illustrated in Fig. 3.5 (a) to (g). 

A major difference in the construction steps of this class of structure is casting and 

stitching of the on-pier segment. It is highly recommended to stitch the on-pier splices 

before casting the deck, as it effectively reduces the deflection of the superstructure. 

Associated design steps for the proposed construction sequence are outlined here to 

provide a satisfactory prestressing layout for both service and strength limit states: 

1- Design top and bottom pretensioning based on deflection balancing summarized 

in Table 3.1.  

2- Design the Stage I PT for the main span to balance deflection. Do not consider the 

deflection produced by the end moments, as that will be balanced later by the pier 

moments. Either external harped tendons or internal draped tendons may be used, 

although harped PT may provide more versatility for design. Design the required 

stiches for the on-pier splice to cancel the effect of end moments of the girders. 

Design the Stage II PT to balance the load of the attributed deck concrete + super 

imposed dead loads using Eq. (3.4) and (3.5). 

3- Check stressed for critical locations, namely, middle of each span, splices, and 

over piers. For higher span to depth ratios, compression may become critical at 

bottom flange of pier section, or at top flange of mid-span. For such cases, 

supplemental compression reinforcement is recommended to increase the ductility.  
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(a) Place segments in allocated spans on construction site 

 
(b) Stress Stage I PT for each span 

 
(c) Erect each span on piers 

 
(d) Cast on-pier splice and stress top flanges to balance the deformation 

 
(e) Cast deck slab 

 
(f) Stress Stage II PT 

 
(g) Cast barriers and open bridge to traffic 

 
 

(h) Modified Tx70 (i) Modified Tx70 Composite  

Fig 3.5. Sequence of construction without shore towers (heavy lift construction).  
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4- Design shear based on AASHTO recommendation. If ௖ܸ  is not satisfied, consider 

using a deeper section, or widen the section, therefore return to 1.  

5- For splice design, consider the maximum demand of the sections within the radius 

of the depth of the section to count for the effect of compression shift.  

The applied pier-moment to balance the deflection as well as the negative moments 

due to live load will create a substantial compressive stress in the bottom flange of the pier 

section. As shown in Fig. 3.5 (h) and (i), to avoid overstressing the bottom flange, a 

constant diaphragm is advised to run over the bent cap and provide higher compression 

capacity in the bottom flange of the on-pier splice.  

The heavy lift construction provides an economical solution as it eliminates the 

requirement of the shore towers. However, it requires proper site conditions to allow for 

making the prestressing lines adjacent to the construction site. Also, when using harped 

PT, anchorages and thickened ends are required more frequently which adds to the cost of 

fabrication.  

3.4.5 General Design and Construction Considerations 

In-span splicing provides versatile design and construction options for concrete girder 

bridges. Three methods of construction are presented in previous sections with specific 

design guidance related to each method. In addition, some general considerations must be 

taken into account for design of in-span spliced prestressed concrete girder bridges, as 

outlined here: 
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1- For design of pretensioning and Stage I PT, two approaches can be used. In the 

first approach the layout of strands are designed for zero moment at the end of 

individual segments by adjusting the elevation of the strands so that the center of 

gravity of concrete (ܿ. ݃. .ݏ ) of pretensioning plus Stage I PT at the end matches 

the center of gravity of steel (ܿ. ݃. ܿ. ) of the girder section. If draped post-

tensioning is used, this method provides practically zero deflection along the entire 

length of the segment as well as square ends.  

2- As pretensioning and Stage I PT are not present in the splice regions, the splices 

have substantially lower flexural capacity as compared to precast girder segments. 

Therefore, it is strongly recommended to locate the in-span splices at the points 

with low flexural demands, namely close to the contraflexure points of the dead 

loads.  

 DESIGN CASE STUDY FOR THREE TYPES OF CONSTRUCTION 

3.5.1 Prototype Bridge Geometry and Girder Cross Section 

Fig. 3.6 presents the geometry of the prototype bridge. The elevation view shown in Fig. 

3.6 (a) represents the prototype three-span continuous prestressed concrete bridge. In 

consultation with a TxDOT panel of engineers, precasters and contractors, the following 

parameters were selected for the prototype design:  

 A three-span configuration using 58.5-74-58.5 m. The ratio of end span to center 

span length is 0.8. 

 Based on transportation limitations, the length of the drop-in and end girder 

segments is 42.7 m, while that of on-pier segment is 30.5 m.  
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 Length of splice connections is 0.6 m. 

Fig. 3.6 (a) shows the bridge cross-section at mid-span. The bridge has a total 

width of 14 m and a total roadway width of 13.5 m. The bridge superstructure consists of 

six modified Tx70 girders spaced 2.4 m center-to-center, with a 0.9 m overhang on each 

side, designed to act compositely with a 203 mm thick CIP concrete deck. The asphalt 

wearing surface thickness is 51 mm. TxDOT standard T501 type rails are considered in 

the design. Three design lanes are assumed for the purpose of design in accordance with 

the AASHTO LRFD Specifications (AASHTO 2014) and TxDOT Bridge Design Manual.  

A modified Tx70 girder has been considered for the design. The web width of the 

standard Tx70 girder is increased to 254 mm to allow the placement of the PT ducts and 

comply with AASHTO revisions on minimum thickness to duct diameter ratio. The 

widened web width results in an increase in the width of the top flange to 1120 mm and 

of the bottom flange to 860 mm. However, for heavy lift construction, the width of the 

web is increased to 254 mm to enhance the shear capacity of the section, and the thickness 

of the top flange is increased by 50 mm to accommodate the top pretensioning and 

threadbars. The area of the 50 mm haunch is not considered in the calculation of the section 

properties and is only included in dead weight calculations.  
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(a) Elevation of half-bridge and the location of the abstracted specimen 

 

(b) Typical bridge deck cross section  

Fig 3.6. Geometry and side elevation of prototype bridge with span configuration of 

58.5-73.9-58.5 m (190-240-190 ft). 
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For shored and partially shored construction, two on-pier segments (30.5 m long), 

two end segments (42.7 m long), and one drop-in segment (42.7 m long) were used to 

comprise the 190 m bridge. However, unlike shored construction, the on-pier segments 

were designed as a 2.7 m maximum depth of haunched section.  

For heavy lift construction, the back spans included a 21.3 m and a 36.6 m long 

prismatic segments, while the main span was comprised of two 21.3 m long segments and 

a 30.5 m long prismatic segment. For the sake of comparison with shored and partially 

shored construction, the 21.3 m long segments are called on-pier segments, while the 36.6 

m long and 30.5 m long segments are called end segments and drop-in segments, 

respectively.  

Table 3.2 provides the composite and non-composite uncracked elastic section 

properties for the prismatic and haunched modified Tx70 girder cross-section. 

3.5.2 Design Assumptions and Parameters 

Table 3.3 summarizes the design parameters selected for the prototype bridge. Material 

parameters such as concrete strength are defined based on standard practices that are 

followed by TxDOT throughout the state of Texas. A relative humidity of 65 percent is 

assumed based on the average value in Texas as specified in AASHTO LRFD 

Specifications (AASHTO 2014) Article 5.4.2.3. Additional parameters that describe the 

prestressing steel and mild steel are based on the AASHTO LRFD Specifications 

(AASHTO 2014). Appendix A provides detailed design procedure along with associated 

provisions from AASHTO LRFD Bridge Design Specifications.  
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Table 3.2. Section properties for modified Tx70 girders for continuous design. 

Section 
Property 

254 mm web 
Composite 

254 mm web 
Haunched 
over Pier 

Composite 
Haunched 

Depth of N.A. 
from top of 
Girder, ytop 

(mm) 

958 599 1660 1333 

Depth of N.A. 
from bottom of 

Girder, ybot 

(mm) 

820 1179 1083 1410 

Area, A  
(m2) 

0.713 1.04 1.55 1.89 

Moment of 
Inertia, Ix 

(m4) 
0.286 0.536 1.003 1.920 

Section 
Modulus, 
Sxtop, m3 

0.299 0.895 0.604 1.440 

Section 
Modulus, 
Sxtop, m3 

0.349 0.455 0.926 1.362 
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Table 3.3 3. Design parameters. 

Parameter Selected Value 

Concrete Strength at Service for Deck Slab, f’c 28 MPa 

Precast Concrete Strength at Release, f’ci 45 MPa 

Precast Concrete Strength at Service, f’c 60 MPa 

Coefficient of Thermal Expansion of Concrete 6x10-5/º C 

 Relative Humidity 65% 

Mild Steel 

 

Yield Strength, fy 410 MPa 

Modulus of Elasticity, Es 200 GPa 

 

Prestressing Steel 

(Low Relaxation)  

Strand Diameter 15 mm 

Ultimate Tensile Strength, fpu 1860 MPa 

Yield Strength, fpy 0.9 fpu 

Stress Limit at Transfer, fpi fpi ≥ 0.75 fpu 

Stress Limit at Service, fpe fpe ≥ 0.8 fpy 

Modulus of Elasticity, Ep 196 GPa 

Coefficient of Friction, μ 0.25 

Wobble Coefficient 0.00065/m 
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The following assumptions are made for the prototype bridge design, based on 

FHWA 0-6651-1 report (Hueste et al. 2012):  

1. Stage I and Stage II PT tendons are stressed from both the ends to minimize friction 

losses and to provide symmetry of stresses in the girders. 

2. The PT tendons are encased in a 100 mm diameter metal duct. A maximum of 19-

15 mm diameter strands can be encased in a 100 mm diameter duct. All the PT 

tendons are located in a single vertical plane. 

3. For the design under consideration, the entire deck is cast in a single operation.  

4. A CIP reinforced concrete deck of 200 mm thickness is used. A 50 mm thick 

haunch is assumed between the girders and the deck to accommodate construction 

tolerances and variation in camber.  

5. A 50 mm thick asphalt wearing surface is assumed and its weight is applied as 

superimposed dead load.  

6. The weights of the deck forms, strongbacks, temporary diaphragms, and other 

temporary components are minor and neglected in the design. 

7. Permanent intermediate diaphragms are not considered in the design for shored 

and partially shored construction. Temporary intermediate diaphragms can be 

provided at critical locations, such as splice connections and piers for lateral 

stability of the girder, until the deck slab attains composite action.  

8. The composite section properties are based on the transformed effective width of 

the composite deck slab considering the specific modulus of elasticity for the 

girder and deck, respectively.  
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9. The sign convention for the design considers tension as positive and compression 

as negative. 

3.5.3 Pretensioning Design 

Table 3.4 presents the pretensioning design for the girder segments for each of the 

construction methods. For pretensioning the girder segments, 15 mm diameter Grade 270 

low relaxation strands with an ultimate tensile strength (fpu) of 1860 MPa are considered. 

The initial stress in the pretensioning strands at transfer (fpi) is taken as 0.75 fpu, which is 

1396 MPa. The force at transfer is calculated after taking the losses into account. Prestress 

losses of 20 percent are initially assumed in the pretensioned strands and then are further 

refined using AASHTO provisions.   

 

 

Table 3.4. Summary of pretensioning design (0.6 in. dia. strands). 

Construction 
Method 

Strand 
Location 

End 
Segment 

On-Pier 
Segment 

Drop-in 
Segment 

Shored  
Top flange - 26  - 

Bottom 
flange 

32  
4 32 mm dia. 
Dywidag bars 

24  

Partially Shored  
Top flange - 24 - 

Bottom 
flange 

24 20 24 

Heavy Lift 
Top flange 4 4 4 

Bottom 
flange 

26 16 18 
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As Table 3.4 indicates, while the amount of pretensioning is comparable for shored 

and partially shored construction, less pretensioning is applied in heavy lift construction 

as only minimum amount is required for self-weight and handling. As mentioned before 

in heavy lift construction section, higher post-tensioning is required to balance the 

deflection of the bridge. Therefore, it is important to provide minimum pretensioning for 

this type of construction to avoid over-stressing the sections when both stages of PT are 

applied.  

3.5.4 Stage I Post-Tensioning Design 

For post-tensioning of the girder, 15 mm diameter low relaxation strands with fpu of 1860 

MPa are considered. The jacking force is assumed to be 0.70 fpu, which is 1303 MPa. The 

force at transfer is calculated after taking the short-term losses into account. Prestress 

losses of 15 percent are assumed for the Stage I PT and then is refined using AASHTO 

provisions.  

Table 3.5 presents the Stage I PT design for the girder segments. For shored and 

partially shored construction, the Stage I PT is internally draped and it is designed to 

balance the self-weight of the girder. For shored construction, Stage I PT is applied on 

individual girders, while for partially shored construction, continuous PT runs through the 

entire length of the bridge.  

For heavy lift construction, the Stage I PT is designed to partially balance the 

deflection of each span. Both internal and external PT can be adopted for this stage of PT. 

In this design, higher amounts of PT are required for the first stage, the Stage I PT is 
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designed as external harped tendons. Harp points are located at the in-span splice locations 

and have thickened webs to provide sufficient capacity.  

As predicted, the amount Stage I PT is markedly higher than that of shored and partially 

shored construction. The main reason is that for this type of construction, each span acts 

as a simply supported beam, hence the deflection is significantly higher and the required 

prestressing to balance that is essentially more than what is needed in the other types of 

construction.  

3.5.5 Stage II Post-Tensioning Design 

Table 3.6 shows the details for Stage II PT. Stage II PT was designed to act continuously 

to balance the deck and superimposed dead load and to be carried out on construction site. 

Internal draped tendons are considered for shored and partially shored construction. For 

heavy lift construction, both internal draped or external harped tendons are acceptable. For 

this case, because the Stage I PT was designed with external tendons, the Stage II PT was 

designed using internal draped tendons.  

For Stage II PT, 15 mm dia. low relaxation strands with an fpu of 1860 MPa are 

considered. The jacking force in the PT tendons was assumed to be 0.70 fpu, which is 1303 

MPa. The force at transfer is calculated after considering the losses. Prestress losses of 15 

percent were assumed for the Stage II PT.  

For heavy lift construction, in addition to Stage II PT, Dywidag bars are used to 

stitch the on-pier splice. It is recommended to stitch the on-pier splices before casting the 

deck concrete to provide continuity throughout the superstructure and limit the deflections 
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due to casting the deck. Eq. (6) can be used to calculate the required stitching force to 

balance the deflection of the superstructure.  

 

 

Table 3.5. Stage I post-tensioning design. 

Construction 

Method 

End Segment 

(Back Span) 
On-pier Segment 

Drop-in Segment 

(Main Span) 

Shored  19 (1 internal duct) 38 (2 internal ducts) 19 (1 internal duct) 

Partially Shored  32 (2 internal ducts) 32 (2 internal ducts) 32 (2 internal ducts) 

Heavy Lift 56 (4 external ducts) - 60 (4 external ducts) 

 

 

 

Table 3.6. Stage II post-tensioning design (internal tendons). 

Construction 

Method 

Drop-in Segment 

(Back Span 
On-pier Segment 

End Segment 

(Main Span) 

Shored 57 (3 ducts) 57 (3 ducts) 57 (3 ducts) 

Partially Shored 30 (2 ducts) 30 (2 ducts) 30 (2 ducts) 

Heavy Lift 45 (3 ducts) 45 (3 ducts) 45 (3 ducts) 
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For the design case at hand, the required force for the on-pier stitching is 3530 kN, 

which requires 8-32 mm diameter Dywidag bars (Ggrade 150, 1034 MPa) in the top flange 

of the section. If only a thickened web is considered for over-pier splices, the maximum 

compressive stress of the section will be close to 11 MPa. Considering that the weight of 

the deck, Stage II PT, and the live loads significantly increases the negative bending 

demands of the pier segments, it is recommended to construct the on-pier splices as a 

constant diaphragm to avoid overstressing the bottom flange at the on-pier splices.  

3.5.6 Splice Details 

Splices are located at the dead load point of contraflexure (ߙ = 0.74 for back-span and 

ߙ = 0.21 for main span) in the prototype bridge to minimize the load demands at the 

splice. The length of the splice connection should be kept as small as practicable as there 

is no initial prestress in this region and a minimal amount of mild steel reinforcement is 

provided. However, the splice length should be large enough to accommodate splicing of 

the continuity PT tendon ducts and allow for proper vibration of the CIP concrete for the 

splice. The width of the splice connection is 610 mm based on recommendations in Hueste 

et al. (2016).  

Fig. 3.7 presents a partially prestressed splice connection detail with minimal 

reinforcement. Mild steel reinforcement is provided in addition to continuity PT through 

the splice connection. The mild steel reinforcement consists of 180° bent hooked bars 

anchored into the adjacent girder flanges and extending into the joint. The mild steel bent 

bars are designed for the maximum factored design loads. The combination of PT and 

mild steel is expected to provide better durability and performance. Vertical reinforcement 
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is provided to strengthen the splice connection for shear. The integrity of the splice 

connection largely depends on the shear transfer mechanism at the interface of the precast 

girder and closure pour. This shear transfer mechanism is mainly provided by the 

compressive force provided by the continuous PT, the lapped 180° bent hooked bars in 

the connection, and a single shear key. Based on AASHTO LRFD Bridge Design 

Specifications (AASHTO 2014), an intentionally roughened surface is assumed for the 

end of the adjacent girders to enhance the shear transfer capacity of the interfaces. 

3.5.7 Stress Check 

Given that construction sequence and associates stresses play an important role in design 

of in-span spliced prestressed concrete girder bridges, it is necessary that stresses be 

checked in the critical regions to ensure a safe and durable design.  Critical sections are 

shown in Fig. 3.6 (a) representing: maximum positive moment in back span (Section A-

A), in-span splice in back span (Section B-B), maximum negative moment over pier 

(Section C-C), in-span splice in main span (Section D-D), and maximum positive moment 

in main span (Section E-E).   
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(a) Side elevation 

 
(b) Cross section 

Fig 3.7. In-span splice detailing as tested in Chapter 4.  
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Table 3.7 summarizes the stress in the critical section at three main stage of 

construction as well as service limit state: (i) after pretensioning before long-term prestress 

losses; (ii) after casting the deck; (iii) after stressing post-tensioning and including long-

term prestress losses; and (iv) at service limit states. Allowable stresses are adopted from 

AASHTO LRFD Bridge Design Specifications. The values in bold represent the situations 

where the allowable stresses are exceeded. For case (a) and (b), the stress exceeds in top 

flange of in-span splices, upon casting the deck slab. Given that in-span splices are located 

over shore towers, it is expected that they relatively significant negative moment upon 

casting the deck slab, therefore, the top flanges of such splices are prone to cracking. Mild 

steel must be provided in top flange of in-span splices to control the cracking, until the 

continuity post-tensioning is applied and the section is pre-compressed. For case (c) in 

Table 3.7, bottom flange of precast segment is overstressed in the bottom flange over the 

pier. Given that precast segments are pre-compressed through both pretensioning and post-

tensioning, their reserved capacity in compression is limited. Additionally, relatively small 

area of bottom flange (compared to top flange plus deck slab) causes these regions to be 

potentially prone to high compressive stresses in regions with high negative moment 

demands, namely over piers. It is necessary that additional mild steel be provided in 

bottom flange of precast girders in high negative demand regions to enhance the capacity 

as well as ductility of these sections.  
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Table 3.7. Stress in critical sections during construction and service limit state. 

Loading 
Component Location 

Section Limit 

A-A 
(End 

Segment) 

B-B 
(Splice 

Exterior) 

C-C 
(Pier) 

D-D 
(Splice 

 exterior) 

E-E 
(Drop-in 
Segment) 

Compression 
(Service I) 

Tension 
(Service III) 

Step I 
(Before 
Loss) 

Girder 
Top -11.56 - 

-
16.78 

- -11.10 
-26.39 3.80 

Bot -15.43 - 
-

16.89 
- -11.72 

Step II 
(Before 
Loss) 

Girder 
Top -17.37 

7.72 
-

18.88 5.64 -15.13 
-26.39 3.80 

Bot -10.34 
-6.77 

-
15.05 

-4.94 -8.20 

Step III 
(After 
Loss) 

Girder 
Top -23.38 

-3.90 
-

17.69 
-4.54 -22.94 

-26.39 3.80 
Bot -19.31 

-9.58 
-

28.79 
-10.40 -14.75 

Deck 
Top -3.03 -8.33 -3.73 -7.08 -4.52 

-12.42 2.62 
Bot -3.66 -7.67 -4.19 -6.72 -4.79 

Step IV - 
Service  
(After 
Loss) 

Girder 
Top -30.30 

-8.27 
-

11.25 
-7.38 -30.23 

-35.16 3.80 
Bot -6.51 

-1.50 
-

40.70 
-3.32 -1.25 

Deck 
Top -9.07 -12.15 1.90 -9.55 -10.89 

-12.42 2.62 
Bot -8.23 -10.56 0.06 -8.59 -9.60 
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Fig. 3.8 presents an example of variation of stress block in the splice region in 

back-span. The first row in each case shows the effect of each stage of loading and the 

second row represent the accumulative stress block at the end of each stage of construction 

and live load. Appendix A presents the stress block of all critical section during 

construction and at the service limit state.  

Table 3.8 compares the state of stress in the critical sections (at in-span splice, at 

mid-span of main span for maximum positive moment, and at pier for maximum negative 

moment) after application of all dead loads and stressing all PT and prestress losses for 

each of the three methods of construction. For shored construction, only one stage of PT 

is stressed after casting the splices, while for partially shored construction and span-by-

span construction, both stages of PT are stressed after casting the in-span splices. 

Therefore, as the results in Table 3.8 reveal, the average compressive stress in the in-span 

splice regions is slightly lower than that for other two methods of construction.  

Table. 3.8. Stress in critical section after dead load and prestress losses 

Construction 
Type 

Location At Splice At Mid-Span At Pier 

Shored 
Construction 

Deck -8.33 -4.52 -3.73 

Top Flange -3.90 -22.94 -17.69 
Bottom Flange -9.58 -14.75 -28.79 

Partially 
Shored 

Construction 

Deck -3.63 -0.94 -3.91 

Top Flange -11.69 -16.10 -7.97 

Bottom Flange -8.94 -17.95 -9.82 

Span-by-
Span 

Construction 

Deck -2.27 -7.16 -1.53 

Top Flange -13.54 -20.15 -17.17 

Bottom Flange -25.51 -28.61 -22.46 
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Fig. 3.8. Stress blocks for in-span splice (Section B-B in Fig. 3.6) during 
construction and service limit state. 

Self-weight Pretension
+ PT I

Casting Deck PT II

Shore Tower
Removal
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+ Impact

DL + LL (After
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- 6.77 - 10.60
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- 6.90
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- 2.81

- 2.45

0.02

- 0.01

- 0.01

- 11.03
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- 9.33

- 11.01

- 5.45

- 9.34

8.09

- 4.37

- 3.82

8.09

4.37

3.82

- 2.92

- 9.82

-13.16

- 1.50

- 8.27

-12.16

Allowable Stresses

Girder in Compression: - 26.39
Girder in Tension:  3.80

Deck in Compression: - 12.42
Deck in Tension: 2.62

Allowable Stresses

Girder in Compression: - 26.39
Girder in Tension:  3.80

Deck in Compression: - 12.42
Deck in Tension: 2.62
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 DEFLECTION CHECKS 

Fig. 3.9 presents the deflection profile of half of the prototype bridge during construction 

and after application of all dead load and prestressing for each of the three methods of 

construction. The solid blue line represents the deflection profile after casting the deck, 

and the solid red line represent the deflection profile upon stressing second stage of PT 

and after all losses are taken place.  

For shored construction (Fig. 3.9 a), the Stage I PT is applied on individual girders 

and balances the deflection of individual segments. Also, since the deck is cast while 

girders are supported by shore towers, the deflection is significantly reduced. The Stage II 

PT is applied while shore towers are still in place and balances the dead weight of the 

deck. But, since the Stage II PT is applied on the composite section, the deflection due to 

weight of the girder is not completely balanced and some residual deflections remain.  

For partially shored construction (Fig. 3.9 b), the Stage I PT is applied after casting 

the in-span splices on a continuous structure. Therefore, the “locked-in” deflections due 

to self-weight of individual girders and pretensioning is not perfectly balanced. However, 

the locked-in deflections are greatly reduced by implementing the deflection balancing 

through eccentric prestressing (݁ܨ௖ = ଴ߛ ,9.9/ܮܹ = 0.1010). Since upon stressing the 

Stage I PT the shore towers are removed, deflection under the weight of the deck is 

significantly higher than that for shored construction. Given that the Stage II PT is 

designed to balance the dead load of the deck, it applied an equal amount of upward load, 

but given that the Stage II PT is applied on a composite section, it fails to completely 

balance the deflection.  
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(1) Shored construction  

 
(2) Partially shored construction 

(3) Span- by-span Construction 

Fig. 3.9. Deflection profile after casting the deck and stressing PT for each of 
the three methods of construction. 
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For span-by-span construction, both stages of PT are applied after casting the in-

span splices, therefore, some “locked-in” deflections remain in the individual segments. 

However, this deflection is minimized using a deflection balancing approach through 

eccentric prestressing by minimizing the deflections (݁ܨ௖ = ଴ߛ ,9.9/ܮܹ = 0.1010). 

Given that no shore towers are used in this method of construction, the structure undergoes 

large amounts of deflections upon casting the deck slab concrete. However, if harped post-

tensioning is used, the deflections may be significantly reduced upon stressing the tendons.  

A comparison between final deflection profiles of each method of construction 

reveals that shored construction may significantly balance the deflection due to existence 

of shoring towers during casting the deck slab concrete. For all three methods of 

construction, given that Stage II PT is applied on a composite section, the deflection due 

to weight of deck slab may not be fully balanced, if the Stage II PT is designed for load 

balancing. The best approach to mitigate the final deflection is slightly over balancing the 

self-weight of girders through the Stage I PT, so that some upward camber exists in the 

superstructure prior to casting the deck.   

 CONCLUSIONS AND REMARKS 

This chapter revisited the concept of the in-span splicing technique. Deflection balancing 

approach was introduced to minimize the deflection of the precast girder segments by 

pretensioning alone. Then, three different construction methods that adopt in-span splicing 

of precast concrete girder segments were discussed in detail to provide a general 

understanding of the versatility spliced precast girder bridge design. Design steps 

pertaining to each construction method were outlined. Based on the proposed design steps 
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a prototype bridge was designed for all three construction methods (shored, partially 

shored, and heavy lift) and the results of the prestressing design were compared for each 

of the construction methods. Based on the results and details of each construction method, 

the following remarks and conclusions are drawn:  

1. If post-tensioning is not applied to individual precast segments, unbalanced 

deflection may lead to misalignment at splice regions and “locked-in” deflections 

upon stressing the continuity PT.  

2. Deflection balancing technique by using pretension-only solutions can effectively 

reduce the locked-in deflection of individual precast segments. Deflection 

minimization may be done using eccentric-only prestress, harped-only prestress, 

and a mixed solution of both eccentric and harped prestress.  

3. Harped pretensioning is more effective than eccentric-only prestress solution in 

balancing the deflection of the precast segments. But, a mixed solution of eccentric 

prestress and harped prestress solution can effectively balance the deflection of the 

precast segments under self-weight.  

4. The in-span splicing technique can be effectively used to increase the span length 

of prestressed concrete girder bridges.  

5. In-span splicing allows versatile design options and construction methods, which 

can effectively create bridges with span lengths from 45 m to 90 m. Proposed 

construction methods include: shored construction, partially shored construction, 

and heavy lift construction.  
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6. The shored construction method provides a reliable and safe option for cases where 

shore towers are allowed in the main span of the bridge. Because of lower 

construction demands, all segments can be designed as prismatic sections which 

leads to minimal fabrication cost. However, the existence of shore towers in all 

spans makes this type of construction less cost-effective at the site.  

7. The partially shored construction method offers a versatile solution for situations 

where topological, environmental, and transportation concerns does not allow for 

having the shore towers in the main span. As the construction demands increase in 

this type of construction, generally haunched sections are required for the on-pier 

segments, which adds to the cost of fabrication. Nevertheless, the removal of half 

of the shore towers makes this type of construction very economical.  

8. The heavy lift construction method is proposed as an innovative method of 

construction for continuous precast concrete bridges, where all of the shore towers 

are effectively removed from the construction process and construction costs are 

reduced. However, applicability of this type of construction is restricted to the 

projects where a proper construction site allows for creating a PT stressing line on 

the ground to prestress each of the spans. Also, additional costs of prestressing, 

thickened portions, and constant diaphragm reduces the cost-effectiveness of this 

type of construction.  

9. Stressing the last stage of PT after casting the deck concrete can greatly enhance 

the capacity, long-term maintenance, and durability of the superstructure. It also 
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balances a portion of the deflections that is generated by the weight of the deck 

and the super imposed dead loads.  

10. Practitioners have expressed their concerns regarding stressing of the deck 

concrete, as it makes the deck replacement more difficult. Part of the concern 

pertains to overstressing the girder. In order to address this concern, one of the two 

stages of PT can be applied as external harped PT tendons. These tendons can be 

released and replaced upon requirement of the deck replacement.  

11. While the design procedure and stressing sequence of the prestress in each of the 

three construction methods varies, the total amount of prestressing for each method 

is quite comparable. Yet, heavy lift construction marginally requires higher levels 

of prestressing and construction demands.  

12. Different splice details have been proposed that can apply for each of the 

construction methods. However, it is recommended that supplemental 

compression mild steel be added to the bottom flange of sections within the 

negative bending regions to enhance the ductility and performance of the bridge at 

strength limit states.  

13. If the Stage II PT is applied after casting the deck slab concrete, the load balancing 

approach would not completely balance the deflection of the bridge under the 

weight of the deck. In this case, shored construction has proved to be most effective 

in controlling the maximum deflection.  
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4 INVESTIGATING THE EXPERIMENTAL PERFORMANCE OF

   IN-SPAN SPLICES 

4.1 CHAPTER SUMMARY 

When bridge spans exceed 45 m it is necessary to have modular construction methods to 

effectively join the segments in-span and form a continuous structure with substantially 

longer span lengths. An economical solution is experimentally investigated through which 

the existing Texas-shape precast prestressed bulb I-girder sections are adapted and field-

spliced.  By using not more than two in-span field-splice joints per span, the span length 

may be doubled to 90 m.  In this paper, in-span splicing solutions are investigated for 

shored construction. From a prototype design, an experimental test specimen is abstracted 

and an experimental testing investigation described. Results are presented for the full-

scale laboratory tests on two splice regions under service load through to failure.  The cast-

in-place splice is a minimalist partially-prestressed design where standard post-tensioned 

ducts pass through the connection and only minimal mild steel is added; the normal girder 

pretensioned tendons are absent within the splice as they terminate at the ends of each 

adjacent precast segment. The test results show that satisfactory performance is obtained 

meeting all service and strength requirements. However, if such splices are not located in 

zones of modest moment demand—such as when a splice is located at or near a pier 

support in a high negative moment zone—improved reinforcing details are recommended 

that provide additional section ductility to remove the propensity for a brittle compression 

failure mode. 
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4.2 BACKGROUND AND SCOPE 

The most common form of construction for bridges with spans ranging from 12 m to 45 

m is a simply supported system consisting of a reinforced concrete slab on pretensioned 

prestressed concrete girders.  The practical upper limit of the system is governed by a 45 

m length and 100 tonne pay load restriction for precast bulb I-girder units to permit road 

transportation from the casting plant to the construction site.  In Texas, the cost of such 

simply supported bridge system is very competitive against all alternatives. If longer spans 

are to be used, alternatives tend to be based on regional construction customs.  No matter 

what alternative form of construction is used, be it single-cell concrete box girders, multi-

cell steel box girders, or steel plate girders, the unit cost jumps markedly—generally more 

than doubling. Adopting wet-splice connections enables the general form of the 

prestressed concrete I-girder bridges to be extended from 45 m to 90 m using the same 

casting forms for the precast units.  In this way, the low unit cost of the system remains 

very competitive for longer spans.  

In-span splicing has been proposed as a promising method for extending the span 

length of concrete girder bridges. According the NCHRP 517 Report (Castrodale and 

White, 2004), designers have implemented in-span splices in more than 200 bridges in the 

US to reach spans up to 100 m. In-span splicing has been used for both single span 

(Endicott 1996) and multi-span bridges (Jenssen and Spaans 1994, Fitzgerald and 

Stelmack 1996, Nikzad et al. 2006, Caroland et al. 1992).   

Previous studies have assessed the performance of the in-span spliced bridges 

through analytical or numerical analysis (Abdel-Karim and Tadros 1992, Roland 2001, 
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Tadros and Sun 2003). However, until recently, a lack of experimental data and a standard 

design procedure have limited the application of this technique to certain states.  

Hueste et al. (2011, 2016) developed standard procedures for the design of in-span 

spliced concrete girder bridges and conducted a full-scale experimental study on the 

performance of splices. This chapter focuses on the results of the experimental study to 

shed light on the performance of the specimen and splices in terms of applied positive and 

negative moments, as well as shear intensity.  

The first section of this chapter describes the geometry of a prototype bridge, from 

which an experimental test specimen is abstracted. Next, visual experimental observations 

at key performance points arising from the applied loading of the specimen are presented 

along with force-deformation behavior as well as the strain and stress profiles. Finally, 

qualitative recommendations based on visual observations and data analysis results are 

given. 

4.3 PROTOTYPE BRIDGE DESIGN AND CONSTRUCTION 

Fig. 4.1 presents the prototype three-span continuous spliced precast, prestressed concrete 

bridge system that was used as the basis of this research.  The design followed the recently 

revised provisions for spliced precast girders in the AASHTO LRFD Bridge Design 

Specifications (2014).  As shown in Fig. 4.1 (a) and (b), the continuous three-span 

prototype consists of 58 m, 73 m, and 58 m (190-240-190 ft) spans; each composed of 

42.7 m (140 ft) units in the positive moment regions and 30.5 m (100 ft) long units in the 

negative moment regions that are continuous over the two piers.  Modified Tx70 prismatic 

girders [1780 mm (70 in.) deep] were used for each girder segment.  To accommodate 
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grouted post-tensioning ducts, it was necessary to increase the standard Tx70 178 mm (7 

in.) web to 254 mm (10 in.).  This wider web width also helps provide increased shear 

capacity that is essential for the longer spans. Also, the thickness of top flange was 

increased by 38 mm (section depth increased to 1818 mm) to accommodate the top 

pretensioning strands.  

The bridge was designed to support a standard 200 mm (8 in.) thick reinforced 

concrete deck.  In accordance with the AASHTO LRFD Bridge Design Specifications 

(2014) the bridge was designed for a total of three HL-93 design live load traffic lanes.  A 

T501 traffic barrier was also adopted as presented in the standard drawings of the TxDOT 

Bridge Design Manual (2010).  A non-structural wearing surface of 50 mm (2 in.) thick 

was assumed.  The spacing and overhang configuration considered for this Tx70 girder 

bridge results in optimum distribution of dead load and live load to the interior and exterior 

girders. Therefore, the same design requirements were adopted for all girders.  

Design parameters for the prototype bridge were based on standard practice used 

by TxDOT. The specified compressive strength of the self-consolidating concrete used for 

the precast prestressed concrete girders was f’c = 60 MPa (8.5 ksi) and at release f’ci = 45 

MPa (6.5 ksi).  For the cast-in-place (CIP) deck, TxDOT Class S conventional concrete 

with f’c = 30 MPa (4 ksi) was specified.  For the pretensioned and post-tensioned (PT) 

concrete, the prestressing steel consisted of 15 mm (0.6 in.) diameter low relaxation 

strands with an ultimate tensile strength of 1860 MPa (270 ksi).  
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(a) Bridge deck cross section 

 
(b) Elevation of half-bridge and the location of the abstracted specimen 

 
 

  
(c) Modified Tx70 (d) Topped girder 

Fig. 4.1 Prototype continuous three-span slab on prestressed concrete I-girder 
bridge. 
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(a) Comparison of specimen and prototype demands over half length of prototype bridge 

 
(b) Side elevation of the specimen with three splices (dimensions are in m) 

Fig. 4.2 Specimen geometry and demand comparison. 
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In order to adequately design a continuous spliced girder bridge of this type, it is 

essential to conceive how the bridge construction should proceed.  As discussed in Chapter 

3, while the construction sequence may vary from bridge to bridge based on bridge 

location and crossing type (river versus highway overpass) and contractor preferences, 

three broad options may be used: (i) unshored construction, which is generally necessary 

for water crossings; (ii) shored construction, which may be more amenable for overpasses; 

and (iii) heavy lift construction, which allows to span between two piers without shoring 

towers. The latter was used herein as this method permits a final stage of PT where 

compression can be applied to the deck concrete. This helps avoid cracking in the deck, 

specifically in negative moment regions, thereby extending the life of the deck and hence 

the bridge. 

The prototype continuous spliced prestressed concrete bridge was designed to 

satisfy allowable stresses during fabrication, construction, and during normal service 

conditions. This aim was to essentially eliminate the possibility of cracking through all 

stages of construction and service. Final ultimate limit state strength checks were made.  

Another key aim in the design was to balance dead load, as closely as practicable, during 

all stages of construction. This aim is twofold: (i) it ensures that the segments, when 

spliced, remain straight and properly aligned through the splice connections; and (ii) it 

ensures that following the casting of the deck and application of all PT, and when time-

dependent losses are essentially complete, the bridge has no net deflection and is under a 

state of constant uniaxial compressive prestress.  To achieve both sub-aims of this 

objective it is therefore necessary to apply the load-balancing PT in two stages: Stage I PT 
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is to balance only the girders in their spliced continuous form; and Stage II PT is to balance 

the additional applied dead load from the deck (plus superimposed dead load) that is 

placed once Stage I PT is complete.  In this way, some compressive stress is applied to the 

deck slab, which is necessary particularly in the negative moment regions over the pier 

supports. Table 4.1 summarizes the pre- and post-tensioning details giving the number of 

strands and the resulting number of PT tendons. 

4.4 EXPERIMENTAL STUDY: SPECIMEN ABSTRACTION 

Fig. 4.2 (a) presents the bending moment diagrams (the solid lines) for the critical cases 

under live load plus impact (LL+I).  The location of the splices are shown by the vertical 

dotted lines for which it is demonstrated that the maximum moment demands range from 

-4000 to 5000 kN-m. As it is not feasible to apply pretension prestress to the splice region, 

a minimalist partially prestressed concrete solution was designed whereby the continuity 

PT provided most (~90%) of the flexural strength, with some supplementary capacity 

being provided by several top and bottom mild steel U-bars that formed a non-contact 

splice within the splice region.  The splice was detailed to use 190 mm slump 60 MPa (8.5 

ksi) concrete. The standard web width of 254 mm was used through the splice. 

Fig. 4.2 (b) presents the full-scale experimental specimen that was designed to 

incorporate three splice regions to investigate the in-service and ultimate limit state 

performance under applied loads.  Due to length limitations of the test laboratory strong-

floor, the specimen was conceived to capture the essence of the moment field in the 

prototype as well as other possible adverse scenarios.  Fig. 4.2 (b) shows the side elevation 
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of the specimen and the three splices numbered 1 to 3 from the right. The three splices 

may be considered as follows: 

Splice 1:  This splice is under moderate moment and very high shear similar to about the 

10 m location shown in Fig. 4.1 (b). 

Splice 2:  This splice was the main subject of this research, and is based on the demands 

at the 42 m point of Fig. 4.1 (b).  When the specimen was loaded near Splice 2, 

the positive and negative moment demands were captured as shown by the 

dashed lines in Fig. 4.2 (a). 

Splice 3:  This splice was considered where a similar bridge to the prototype would be 

predominantly under negative moments at the 58.5 m position as shown in Fig. 

4.2 (b).    

 

 Table 4.1 Prestressing summary 

Description End Segment 
On-Pier 
Segment 

Drop-in 
Segment 

Pretensioning 
15 mm Strands 

32 26 24 

Stage I PT Strands 
(Tendons) 

19 
(1) 

38 
(2) 

19 
(1) 

Stage II PT Strands 
(Tendons) 

57 
(3) 

57 
(3) 

57 
(3) 

 

 

Fig. 4.3 presents reinforcing and PT details of the partially prestressed Splice 2. 

Mild steel reinforcement was provided in addition to continuity PT running through the 

connection. The mild steel reinforcement consisted of 180-degree bent hooked U-bars 
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anchored into the adjacent girder flanges and extended into the splice region. The mild 

steel bent bars were designed for the maximum factored design loads. While the 

combination of PT and mild steel would normally be expected to provide better durability 

and performance, the mild steel in this detail was minimized to identify any potential 

adverse performance effects. The integrity of the splice connection largely depends on the 

shear transfer mechanism at the interface of the precast girder and the splice. This shear 

transfer mechanism was mainly provided by the lapped 180-degree bent hooked U-bars in 

the connection and roughened edges of the precast girder at the interface.  Normal shear 

provisions were used to design the transverse hoops in the splice region. 

A high slump conventional concrete with Type III Portland cement, f’c = 60 MPa 

(8.5 ksi), and maximum aggregate size of 19 mm (0.75 in.) was adopted for the splice 

connections. Table 4.2 and 4.3 present the measured fresh and mechanical properties of 

the concrete for precast girder segments, splice connections, and deck slab. Detailed 

concrete mixture information and mechanical properties are reported by Hueste et al. 

(2016). 

4.5 EXPERIMENTAL PERFORMANCE 

4.5.1 Behavior in Splice 2 Region Under Positive Moment 

Fig. 4.4 presents the experimental setup and results at failure when the loads were applied 

near Splice 2. As depicted in Fig. 4.4 (a), two point loads were applied and each actuator 

was calibrated to increase the load at a rate of 4 kN/s. The main aim of this test setup was 

to investigate the behavior beyond the uncracked regime through to flexural failure in 
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positive bending. The photographs in Fig. 4.4 show the condition of the specimen at 

failure, which occurred when P=1780 kN (400 kips) per actuator.  

Prior to failure, cracks that were 0.05 mm wide first appeared in the bottom flange 

of Splice 2 at P=1000 kN (225 kips). These cracks propagated up from the flange into the 

web. When each actuator had reached P=1200 kN (270 kips), a crack width of 0.1 mm 

was measured at the bottom flange. At P=1245 kN (280 kips), small diagonal shear cracks 

appeared immediately below the shear key adjacent to the splice region. 

When the loads reached P=1485 kN (334 kips) per actuator, the cracks in the 

bottom flange grew wider to 11.2 mm. The main crack extended to the interface of Splice 

2 and the adjacent girder, which led to a shear-flexure interaction displacement of 6.4 mm. 

Due to a smaller flexural capacity that existed within the CIP splice compared to the 

adjacent precast girder, most of the cracks appeared within the splice region. One very 

large flexural crack appeared when the load exceeded P=1485 kN as shown in Fig. 4.4 

(b). Nearby this large crack, additional flexural cracks and several diagonal shear cracks 

propagated.  

4.5.2 Behavior in Splice 3 Region Under Negative Moment 

Fig. 4.5 presents the setup and results when the actuator loads were applied near Splice 3. 

To generate negative moments in the test specimen, the actuators were relocated to the 

overhang region of the specimen as depicted in Fig. 4.5 (a). Due to damage that occurred 

at Splice 2 during the previous test, a tie-down system was provided as shown in Fig. 4.5 

(a). To measure the transferred load to the tie down bars, a load cell was placed between 

the deck and the tie-down beam across the top of the specimen. 
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 Table 4.2 Summary of concrete fresh properties 

 
Description 

 
Slump 
 (mm) 

Unit 
Weight 

)3(kN/m 

Air 
Content 

(%) 

Concrete 
Temp. 
 (°C) 

Ambient 
Temp. 
 (°C) 

RH 
(%) 

Girder Segment 
660 (flow 

slump) 
22.8 8 35.5 41.9 24.4 

Splice Connection 254 23.7 - - 22.8 48 

Deck Slab 95 22.8 5.1 20 21.1 48 

 
 
 

 

Table 4.3 Mechanical properties of concrete material 

Description 
Age of Concrete 

on test day 
(days) 

Parameter 
At 28 Days 

(MPa) 
At Age of Testing 

(MPa) 

Girder 
Segments 

222 
݂′௖ 68 81 

௥݂ 7.5 8.1 
 ௖ 32,700 35,300ܧ

Splices 103 
݂′௖ 61 66 

௥݂ 7.7 7.7 
 ௖ 40,700 40,600ܧ

Deck 95 
݂′௖ 37 45 

௥݂ 4.7 3.4 
 ௖ 35,100 35,100ܧ
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(a) Splice side elevation 

 

 

 

 

(b) Splice cross section (c) Composite cross section 

Fig. 4.3 Splice detail for Modified Tx70 girder- flexural capacity is mainly provided 
by PT, while minimal mild steel is provided to enhance ductility and load path in 

top and bottom flanges. 
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(a) Setup for testing Splice 2 

 
(b) Differential displacement at Splice 2   (c) Buckling of deck reinforcement after failure  

 

 

 

 

 (d) Failure at Splice 2 (P= 1780 kN =400 k) (e) Crack pattern in vicinity of Splice 2  

Fig. 4.4 Visual observations for Splice 2 at ultimate conditions.   
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As before, actuator loads were increased at a rate of 4 kN/s per actuator and first 

paused at P=690 kN (155 kips) per actuator when the decompression moment was 

expected in the deck over the interior support. However, no cracks were observed over the 

interior support. On continued loading, it was observed that at P=1068 kN (240 kips) the 

specimen reached the cracking moment capacity. As shown in the photograph of Fig. 4.5 

(b), cracks emerged on the deck slab over the support region. The crack widths were 

measured in the range of 0.05 to 0.1 mm.  

At P=1557 kN (350 kips), cracks of width 0.1 mm occurred in the top flange above 

Splice 3. When loads increased to P=1600 kN (360 kips), diagonal shear cracks, 30 

degrees from the horizontal, emerged in the web of Splice 3. When reaching P=1780 kN 

(400 kips), the splitting cracks at the interface of Splice 3 and the adjacent precast girder 

grew to 0.55 mm. As depicted in the photograph of Fig. 4.5 (c), diagonal cracks propagated 

when the loads reached P=1935 kN (435 kips) and a sudden horizontal compression crack 

appeared in the bottom flange of the girder, between the interior supports and Splice 3. At 

this point, based on strain gage monitoring, the transverse bars yielded within the Splice 

3 region.  

At P=2000 kN (450 kips), the horizontal crack extended and led to a sudden 

compression failure, as shown in Fig. 4.5 (d). Loading was stopped and cracks were 

measured over the deck and in Splice 3. Over the deck, cracks of width 0.05 to 0.1 mm 

spread at approximately 150 mm spacing up to 2.3 m from the point of loading. Beyond 

that location, cracks were spaced at 300 mm for an additional 3.7 m. The final disposition 

of cracks in the vicinity of the Splice 3 is shown in Fig. 4.4 (e).  
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(a) Setup for testing Splice 3 

  
(b) Spread of cracks on deck (c) Diagonal cracks in web (P=1935 kN = 435 k)  

 

 

 
(d) Compression failure in bottom flange  

(P=2000 k=450 k N) (e) Crack pattern 

Fig. 4.5 Visual observation for Splice 3 at ultimate condition. 
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4.5.3 Behavior of Splice 1 Region Under High Shear 

Splice 1 was necessary to enable construction of the overall test specimen due to 

laboratory crane limitations. This afforded the opportunity to investigate the behavior of 

a similar splice region under a moderate moment demand but with quite high shear.  The 

general setup and test results are shown in Fig. 4.6. To avoid further damage to Splice 2 

and to ensure that loading could attain higher limits, a temporary support beneath the beam 

soffit adjacent to Splice 2 was provided as shown Fig. 4.6 (a), thereby creating an 

indeterminate system. Because the precise section properties of the damaged section were 

not available, the analysis of the indeterminate structure was not feasible. Therefore, to 

provide a better understanding of the system behavior the specimen was loaded in two 

stages:  

1) Loading up to P=890 kN (200 kips) per actuator without the temporary support 

(determinate structure) and then unloading to zero. 

2) Placing the temporary support and bearing pad with a small clearance of 16 mm 

and reloading.  

Before Stage 2 loading, the temporary support [the central blue support shown in 

Fig. 4.6 (a)] was placed at 8.5 m from the abutment support and a bearing pad placed over 

it. The distance between the bearing pad and the soffit of the girder was adjusted to 16 

mm. 
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(a) Setup for testing Splice 1 

  

(b) Flexural crack in Splice 1                  
(P= 2000 kN = 450 k) 

(c) Growth of flexural and shear cracks         
(d)  (P=2515 kN=565 k) 

 

 
 

 
(e) At maximum load (P=2670 kN=600 k) (f) Crack pattern 

Fig. 4.6 Visual observation for Splice 1 at maximum loading. 
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In this test, due to the short span of the girder, Splice 1 experienced a combination 

of high shear and relatively low moment. Loads were initially applied to the full span 

length of the specimen. At P=955 kN (215 kips) per actuator, the girder soffit met the 

bearing pad at the temporary support; at higher loads, the specimen became an 

indeterminate continuous beam.  

Prior to reaching the decompression load of P=1290 kN (290 kips), no new cracks 

were observed in Splice 1. At P=1780 kN (400 kips), diagonal cracks emerged in the web 

of Splice 1, aligned toward the loading point and the abutment support. The cracks 

extended and widened as the load increased to 1780 kN (corresponding to the ultimate 

design shear strength, ∅ ௡ܸ, in the splice for the prototype bridge).  

At P=1910 kN (430 kips), the lower layer of longitudinal reinforcement yielded 

and a sudden vertical crack appeared at the center of Splice 1 in the bottom flange. As the 

loading increased to P=2000 kN (450 kips), shear cracks emerged within the web of the 

girder adjacent to Splice 1 as shown Fig. 4.6 (b).  Cracks continued to grow and proliferate 

as shown in Fig. 4.6 (c) for P=2513 kN (565 kips) where crack widths were measured in 

the range of 0.05 to 0.1 mm.  

At P=2670 kN (600 kips), the actuators reached their maximum capacity and 

loading was held for specimen assessment. A significant vertical crack developed at the 

center of the splice as shown in Fig. 4.6 (d). This crack extended 508 mm up from the 

soffit and opened to 6.4 mm. The final distribution of cracks in the vicinity of the Splice 

1 is presented in Fig. 4.6 (e). Upon removal of the applied loads, the cracks narrowed than 

0.5 mm completely closed.  
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4.5.4 Force-Deformation Behavior and Analysis 

Fig. 4.7 presents the force-deformation behavior for each of the test setups. Fig. 4.7 (a) 

compares the displacement of Splice 2 and the mid-span location when the test specimen 

is loaded in positive bending. The deformation was essentially linear up to the initial 

cracking moments. Upon reaching the cracking moment, ܯ௖௥, a momentary drop in force 

occurred as the first flexural cracks developed. Following cracking, cracked-elastic 

behavior occurred as the loading increased to about 85 percent of the ultimate strength. At 

this level, nonlinear behavior of the strands and longitudinal reinforcement initiated a 

more marked drop-off in stiffness. Upon reaching the failure, the applied load was dropped 

rapidly, while additional displacement occurred in the test specimen. After the specimen 

was fully unloaded, a residual displacement of 36 mm was recorded at midspan.  

Fig. 4.7 (b) compares the displacement of Splice 3 and the tip of the overhang 

when the test specimen was loaded at the overhang to create negative moment. As 

expected, the specimen exhibited linear behavior up to the cracking moment capacity, 

when the loads reached P = 1780 kN (400 kips). With the initiation of the first flexural 

crack, a small drop in applied load occurred. As the loads increased, cracked-elastic 

behavior governed the deformation of the specimen. Premature compression failure for 

this test setup led to a sudden drop in applied load, before the specimen exhibited any post-

yield behavior. After fully unloading the specimen, a residual displacement of 10 mm was 

measured at the tip of the overhang.  

Fig. 4.7 (c) presents the force-deformation behavior for Splice 1. As mentioned in 

the previous section, before the loading commenced, a temporary support was placed 8.5 
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m from the east abutment and the space between the support and the soffit of the girder 

was adjusted to 16 mm. The apparent increase in stiffness when the loads approached P = 

1000 kN (225 kips) per actuator [total of 2000 kN in Fig. 4.7 (c)] was due to the specimen 

engaging with the temporary support. Later, as the loads increased to P = 1910 kN (430 

kips) per actuator [total of 3820 kN in Fig. 4.7 (c)], a vertical crack emerged in the bottom 

flange of Splice 1 and the longitudinal mild steel (U bars) yielded and the stiffness of the 

specimen reduced. After the loads were fully removed, a residual offset of 5 mm was 

recorded at the middle of Splice 1.  

The initial dashed lines shown in Fig. 4.7 (a) and (b) represents the behavior of the 

specimen when loading up to service limit states and then unloaded. While the service 

load behavior appears to be somewhat nonlinear, this is attributable to the nonlinear 

behavior of the rubber bearing pads that were unscragged prior to loading. Thus, minor 

hysteretic performance of the test specimen for service loads should not be interpreted as 

structural damage.  

A comparison between force-deformation graphs for positive and negative 

moments show that the proposed splice detail is somewhat more ductile under positive 

moment. In order to improve the ductility in regions with negative moment demands, it is 

recommended that more compression steel be added to the bottom flange, or the area of 

the bottom flange in new standard sections be increased. Both options reduce the depth of 

the concrete compression stress block and thereby provide better ductility in negative 

moment regions.  
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Fig. 4.7 Force-Displacement behavior at different splice locations. 
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4.5.5 Stress and Strain Profiles 

Figs. 4.8 and 4.9 present stress and strain profiles for Splice 2 and 3 during testing at 

certain key load steps. For both figures the upper row of graphs presents results at service, 

while the lower row of graphs shows the results at ultimate limit state. The first graph in 

the upper row presents the stress profile of the splices prior to testing. The analytical 

prediction includes the effect of time dependent creep, shrinkage, and relaxation losses 

that were based on the current AASHTO LRFD Bridge Design Specifications (2014). Due 

to the load balancing effect of the applied prestress, the state of total stress under dead 

load is observed to be essentially uniform compression, as intended by design.  

The center graph in the upper row in Figs. 4.8 and 4.9 plot the effect of loading up 

to the cracking moment. This result is added to the initial stresses (left-hand graph) to 

provide the total state of stress in the section shown in the upper right graph. The second 

row of Figs. 4.8 and 4.9 depict the stress and strain profile of Splice 2 and 3, respectively, 

just prior to the observed failure.  

As it is shown in the second row of Fig. 4.9, stresses in the bottom flange of Splice 

3 were well below compression capacity; therefore, failure did not occur in the splice 

region.  On the other hand, tensile strains were slightly beyond the corresponding modulus 

of rupture and cracks emerged in the top flange of Splice 3.  

Concrete strain gage readings may provide reliably crisp data after major cracks 

occur as the reading depends on the gage location between cracks. Moreover, if a crack 

passed nearby or through a gage’s location, it may have ceased to function properly. It is 

for this reason the experimental results from the various different gages display scatter. In 
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spite of this scatter, it is evident that reasonable agreement exists between the predictions 

of the plane section analysis and the observed strains indicated by gages. The prediction 

was based on moment-curvature analyses that used the plane sections hypothesis and 

nonlinear material stress-strain relations (Karthik and Mander, 2011).  

4.6 DISCUSSION  

As shown in Fig. 4.4 (d), there was an 18 mm differential displacement at the main crack 

in the middle of the Splice 2. Euler beam theory is not able to predict such an abrupt 

displacement difference, nor do shear deformations justify such a noticeable change in 

displacement. The differential displacement is attributed to the outcome of the rigid body 

kinematics of the diagonally cracked segments at the location of the hinge (Splice 2). As 

shown in Fig. 4.10, if the failure plane is adjusted to represent the diagonal shear cracks, 

the plastic rotation of the segments on either side of the hinge results in a differential 

displacement in the soffit of the girder. The elevation difference at the crack opening is 

related to the crack angle and rigid body rotation of the two beam segments. From the 

geometry depicted in Fig. 4.10, the differential displacement may be calculated using 

ݕ =
∆ݔ

ߣ)ܮ − (ଶߣ
 

(4.1) 

where ∆ = the deformation of the beam at the location of compression failure; ݔ = the 

shift in failure plane due to diagonal cracks; ܮ = the total span length; and λ = the ratio 

of the length of the left segment to the total span length. For Splice 2 test setup, ܮ =

15.5 ݉ and λ = 0.588. According to string potentiometer reading, the actuators had a 
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stroke of 98 mm at the time of failure, which is equal to the deformation of the deck slab 

at this location. 

Based on the location of the main crack in the bottom flange of the Splice 2, and 

the location of the compression failure, ݔ is estimated as 650 ݉݉ < ݔ < 700 ݉݉. Using 

Eq. (4.1), the resulting differential displacement is calculated to be between 16.9 to 18.2 

mm, which agrees well with the experimentally observed displacement of 18 mm, as 

shown in Fig. 4.4 (c). Therefore, this analysis demonstrates that it is the inclination of the 

cracked surface that primarily affects the differential displacement on either side of the 

crack.  

In addition to differential displacement, diagonal cracks affected the failure mode 

of the specimen. The compression failure occurred away from splice region under a 

slightly lower load than expected with less ductility. Considering the map of vertical and 

diagonal cracks in the web of the splice region, this phenomenon can be attributed to 

interaction of shear and flexure. The main flexural crack in the splice extended in the web 

and merged with a diagonal crack. The compression failure occurred in the top flange and 

deck area of the section where the diagonal crack was extended.  The combination of 

flexural crack and diagonal crack essentially created a new critical section and shifted the 

compression face of the critical section from splice to the adjacent girder as shown in Fig. 

4.10. Since pretensioning was effective in the top flange of the adjacent girder, the effect 

of initial compression stresses in the deck and top flange reduced the compressive capacity 

of the concrete, hence led to failure under lower applied load and lower ductility.  
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The effect of the shear stresses carried over the diagonal crack can potentially 

change the equilibrium condition of the new critical section for flexural analysis. While a 

complete load-deformation analysis may be quite cumbersome, it is straight forward for 

the ultimate strength condition. At strength limit state, it may be assumed that the width 

of main crack is sufficiently large so that shear is carried neither by means of aggregate 

interlock along the crack interface nor by tensile concrete stresses across the crack. 

Therefore, for this limit state, the horizontal equilibrium requires ܥ௦௛ = ௦ܶ௣; where ܥ௦௛ 

the compression forces in the shifted-shaped failure section, and ௦ܶ௣ the tension forces in 

the splice region.  

Based on the moment-curvature analysis, formulated in Chapter 5, results of the 

calculated capacity for the splice section and the critical section with shifted compression 

face is summarized in Table 4.4. According to Table 4.4, due to shear-flexure interaction, 

the nominal capacity of the section is reduced by 3% and the ductility is reduced by 26%. 

 

 

Table 4.4 Nominal capacity and curvature of splice section and critical section 

Section 
Nominal Capacity, ࢔ࡹ 

kN-m 
Nominal 

Curvature, ࣐࢔ 
rad/m 

Splice with no pretensioning 12,780 0.0162 

z-shaped Critical section including 
the top pretensioning 

12,390 0.0129 
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 Prestressing + Pre-test P=1090 kN Pre-testing + P= 1090 kN 

 
 

 
 Strain profile at failure (P= 1780 kN) Stress profile at failure (P=1780 kN) 

Fig. 4.8 Stress and strain distributions at Splice 2. 
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 Prestressing + Pre-test  P=1070 kN Pre-testing + P= 1070 kN 

 

 
 

 

 
 

  
 Strain profile at failure (P= 2000 kN) Stress profile at failure (P= 2000 kN) 

 

Fig. 4.9 Stress and strain distributions at Splice 3. 
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Fig. 4.10 Differential displacement originated from rigid body rotation of segments 
on either side of the plastic hinge with inclined critical section. 

  

Splice 2 
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(a) Side Elevation (b) Cross section 

 

 
(c) Girder plan view 

 
Fig. 4.11 Enhanced splice detail with coupled rods in top and bottom flange and 

channel boxes in web  

PLATE 
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Results of the experimental analysis revealed that the splice region had 

significantly lower strength compared to the precast pretensioned concrete girder 

segments. This lower capacity is attributed to the effect of pretensioning strands which are 

discontinued in the splice regions. Experimental observations showed that due to lack of 

a strong load path in the top and bottom flange, the provided minimal reinforcement in the 

bottom flange yielded shortly after vertical cracks emerged in these regions. Given that 

the proposed splice detail had only non-contact reinforcement in top and bottom flanges, 

as soon as cracks opened significantly, the effect of non-contact reinforcement vanished 

and only the post-tensioning ducts provided flexural capacity in the splice section.  

Fig. 4.11 presents an enhanced splice detail where threaded rods are embedded in 

top and bottom flanges of the precast girder segments and are extended within the splice 

regions. The threaded bars are then coupled in the splice region using a steel plate and 

tightened to provide additional load path. In order to make the proposed connection 

effective in both tension and compression, the threaded rods are fixed to the steel plate 

using nuts on both sides. On the other hand, in order to enhance the shear capacity of the 

splice, as well as provide a better alignment, to boxes are embedded in the web area of the 

precast segments and extended in the splice region (similar to Cazaly hangers).  

Angle of diagonal cracks were measured for each test. For each test, a wide range 

of crack angles were observed, ranging between 28 to 45 degrees. It was observed that 

generally cracks in the precast girder segments were steeper than in the splice regions. 

Pre-compression in the splice regions was less than precast segments as pretensioning was 
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discontinued in these regions. Therefore, under the same moment demand, the tensile 

strain at mid-height of section is more in splices which leads to less steep angles.  

According to Mohr circle, the cracking angle depends on the capacity of concrete 

before tensile cracking. Mohr circle may be used to define the initial crack angle of an 

uncracked section, assuming the web area in uncracked until the principal tensile strain 

reaches the tensile capacity of concrete:  

tan ߠ =  
߬

ଵߪ − ଶߪ
=

ଵߪ

߬
 (4.2) 

∴   ߬ = ଵඨ1ߪ  −
௫ߪ

ଵߪ
= ݂′௧ඨ1 +

௣݂௦

݂′௧
 

(4.3) 

in which ߠ = crack angle; ߬ = concrete cracking shear stress taken as ߬ = ଵߪ ;௖௥ݒ = 

principal tensile stress taken herein as ߪଵ = ݂′௧; ߪଶ = principal compression stress; and 

௣݂௦ = prestress applied to the section where ௣݂௦ = ௫ߪ− = ܣ/ܨ− = the effective uniform 

compression stress due to prestressing. Substituting (4.3) into (4.2) gives: 

tanଶߠ =
݂′௧

݂′௧ + ௣݂௦
 

(4.4) 

 Given that higher levels of prestressing exist in the precast girders due to the effect 

of pretensioning, it is understandable that the precast concrete according to Eq. (4.4) has 

steeper crack angle in the precast girder segments compared to the splice regions.  

Kim and Mander (2007) showed that for cracked rectangular columns, the crack 

angle may be found for pinned-fixed end conditions as: 
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tanସ ߠ = ൮
1.57 

௩ܣ௩ߩ
௚ܣ௧ߩ

+ ௩ߩ0.6݊

1 + ௩ߩ4݊
൲ 

(4.5) 

in which ߩ௩ =volumetric ratio of transverse steel where ߩ௩ = ௩ܣ ;௪ܾݏ/௦௛ܣ = ݆݀. ܾ௪ = 

shear area; ݏ =spacing of transverse steel; ܾ௪ = width of the web; and ߩ௧ =  ௚ܣ/௦௧ܣ

volumetric ratio of longitudinal steel, whereܣ௦௧ =total longitudinal column steel area; and 

௚ܣ = gross area .  

This solution is now adapted for prestressed concrete beams such that the 

longitudinal tensile steel volume is given by ߩ௟ = ௦ܣ ⁄௚ܣ , such that when compared to 

Kim and Mander’s column,  2ߩ௟ =  ௧. Therefore, rearranging Eq. (4.5) to give the crackߩ

angle for a prestressed concrete beam results in:  

tanସ ߠ =
ݏ/௦௛݆݀ܣ

௦ܣ
൬

0.7854 + ௦/(ܾ௪݀)ܣ0.6݊
1 + (ݏ௪ܾ)/௦௛ܣ4݊

൰ 
(4.6) 

where ܣ௦௛ = hoopset area,  ݊ = ௦ܣ ௖; andܧ/௦ܧ = area of the tensile longitudinal 

reinforcement.  

Table 4.5 presents the crack angle for positive and negative bending during Test 1 

and 2, respectively. The maximum, minimum and typical observed crack angles during 

the tests are compared with two theoretical cases: (i) initial shear cracking that is based on 

a Mohr’s circle analysis given by Eq. (4.4); and (ii) crack angle based on elastic 

compatibility truss model theory adapted from Kim and Mander (2007). It is evident that 

both models provide satisfactory agreement with typical observed crack angles.  
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Table 4.5 Comparison of crack angle between observed experimental data and 
Mohr’s circle and Kim and Mander model.  

Test # 
Experimental Observations Initial shear 

cracking 
prediction 

Truss cracking 
prediction Min. Max. Typ. 

Test 1 
(Positive Bending) 

27.5o 45o 37o 35.5o 37.1o 

Test 2 
(Negative Bending) 

32o 46o 35o 35.5o 36.1o 

Test 3 
(Positive Bending) 

31o 38o 36o 35.5o 37.1o 

 

 

4.7 CONCLUSIONS 

Different tests were carried out on the spliced girder test specimen to provide a 

comprehensive understanding of the behavior of splice connections for precast concrete I-

girder under different combinations of positive and negative moment and shear. Based on 

the results described herein, the following conclusions are drawn.  

1. While pretensioned strands provide a significant contribution to the overall 

flexural capacity of precast prestressed concrete sections, pretensioned prestress is 

not feasible within the cast-in-place splice region. Thus, the splice region is 

somewhat weaker than the precast girder sections where the pretensioned prestress 

is fully developed. Therefore splices, ideally, need to be located in those locations 

where the overall (positive plus negative) moment demands are lower.  

2. Because of the existence of the reinforced concrete deck, the splice sections are 

inherently ductile under large positive post-yield moments. To add further flexural 
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capacity and maintain the ductility capability, it is recommended that additional 

top and bottom reinforcement be added through the splice connection to provide a 

more integral load path within the splice. 

3. Splice and girder sections are inherently less ductile for negative moments. To 

provide appropriate ductility for negative bending, two options may be considered: 

either increasing the area of the bottom flange or embedding supplementary 

compression mild steel in the bottom flange.  

4. Small cracks tend to completely close after applied loads are removed due to the 

presence of post-tensioning. Therefore, post-tensioned concrete girder bridges can 

potentially provide improved durability.  

5. If diagonal cracks form an inclined critical failure plane due to shear-flexure 

interaction, an apparent differential displacement will emerge on either side of the 

main crack. This abrupt displacement is not to be attributed to a shear slip or 

interface slip. This differential displacement mainly originates from the rigid body 

kinematics of the failure mechanism. This aspect is a key finding in this research 

as it is essential to consider an inclined crack plane when calculating the ultimate 

load capacity.  

6. Diagonal cracks in the splice regions can potentially reduce the flexural 

performance of the splices. In these regions, the effect of diagonal cracks will shift 

the compression face of the splice to the adjacent precast girder segment, where 

the effect of pretensioning reduces the compression capacity of the top flange for 
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positive bending, hence reducing the nominal capacity as well as ductility of the 

section.  
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5 EFFECT OF FLEXURE-SHEAR INTERACTION ON 

PERFORMANCE OF IN-SPAN SPLICED CONCRETE 

GIRDERS  

5.1 CHAPTER OVERVIEW 

While flexure may commonly govern the design of simply supported prestressed concrete 

bridge, high flexure-shear interaction arises as a critical condition for continuous spans. 

Moreover, if prestressed concrete girders are in-span spliced, there may be a discontinuity 

in strength that affects the ultimate limit state behavior. Results of an experimental 

investigation suggest that diagonal cracks in the splice regions of prestressed concrete 

girder bridges may adversely affect the flexural behavior of the splices and reduce their 

post-cracked ultimate strength and deformability. A generalized moment-curvature 

approach is developed along a diagonal crack plane to directly account for the effects of 

flexure-shear interaction. The formulation is provided to calculate the nominal capacity of 

such sections incorporating the effect of existing shear forces in the critical section. 

Analyzing the behavior on a critical diagonal section is validated from companion full-

scale test results of a slab-on-pretensioned-girder system that was post-tensioned 

continuously through the splice connections to provide load balancing and continuity.   

5.2 INTRODUCTION 

The flexural design of continuous beams is based on several widely used well-known 

methods of structural analysis. However, as new structural typologies arise, detailing 

complexities require more detailed analysis. While the finite element method may be 
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employed to analyze such detail complexities, the approach is generally not amenable to 

routine design office production. Other classic analysis tools such as sectional analysis 

and fiber element methods for moment-curvature analysis offer a simpler approach of 

sufficient accuracy to provide the structural designer the required insight into the expected 

structural behavior and hence the adequacy of a design solution.  

Moment-curvature methods have been widely used as an adequate structural 

analysis approach to predict the flexural behavior of the section. While this method has 

been greatly enhanced and matured for analysis of general reinforced concrete sections, 

studies to mainstream the approach for prestressed concrete sections continued over the 

years (Burns, 1964; Thompson and Park, 1980; Naaman et al., 1986; Shushkewich, 1990; 

Pirayeh Gar et al., 2012; Cattaneo et al., 2012). Many researchers have provided detailed 

analysis methods to apply principles of moment-curvature analysis for general structural 

concrete sections, including the effect of mild steel, prestressing strands, axial forces, and 

different concrete materials. Various numerical approaches have been proposed to 

effectively calculate the contribution of concrete in compression, such as fiber elements 

(Oehlers et al., 2010) and trapezoidal integration (Rodriguez and Aristizabal, 2001).  

The customary moment-curvature method is based on taking a transverse section 

of a beam and assuming plane sections remain plane to conduct the analysis. While this 

approach remains valid under high moment and low shear, such as at the mid-span region 

of a simply supported beam, it is prone to break down under the presence of high shear 

and moment, particularly when large diagonal cracks are prevalent. Several researchers 

have investigated the coupled effect of shear on the flexural performance of the beams 
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(Rosenblueth and de Cossio, 1965, Sawyer, 1965, Recupero et al., 2005, Massone et al., 

2013, Cladera et al., 2015).  

For slab-on-prestressed concrete girder bridges, an added difficulty arises when in-

span splices exist. Under traffic loads, these splice regions will always have a measure of 

high moment and high shear. Splices may have lower flexural capacity due to the lack of 

pretensioning within the splice regions. This inherent weakness may leave the spliced-

girder system predisposed to early failure. Moreover, due to the presence of high flexure 

and high shear it is inevitable that at the ultimate limit state, diagonal cracks will certainly 

affect overall flexural performance.  

In this chapter, a fiber element based moment curvature analysis is adopted as the 

basic approach to determine the performance of in-span splices for a slab-on-prestressed 

concrete girder bridge. Using a conventional transverse section moment-curvature 

approach, modifications to the analysis method are made to account for the effect of 

diagonal cracks that encapsulate the shear effect along with the associated compression 

shift phenomenon on the flexural behavior. Then, the method is formulated to calculate 

the nominal strength capacity of the section, taking into account the existing shear forces 

in the critical diagonal section. The modified moment-curvature analysis approach and the 

results of nominal strength capacity are verified against the full-scale experimental test 

results of an in-span splice region of a reinforced concrete deck slab on prestressed 

concrete girder test specimen.   
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5.3 AN ANALYSIS OF FLEXURE-SHEAR INTERACTION  

5.3.1 Problem Identification 

Fig. 5.1 presents how a spliced prestressed concrete girder may be analyzed for diagonal 

cracking that passes through the splice region. Fig. 5.1 (a) presents an elevation of a 

cracked spliced prestressed concrete girder-on-slab bridge composed of two prestressed 

precast girders and a wet splice region in between. Precast girders are pretensioned for 

handling and transportation. A wet joint splice, some 600 mm in length, is cast between 

the precast girders units. The deck slab is cast over the splice and girders and then 

continuity prestress provided by post-tensioning over the entire length of the beam.  

As shown in Fig. 5.1 (b), the prestressing layout varies from the girder segments 

to the splice region, leading to different strength capacity between these sections. Section 

A-A shoes a transverse section with both pretensioning and post-tensioning (a section 

within the precast girder). Section C-C shows a transverse cross-section through the splice 

region where only the post-tensioning is in effect. A critical case can be imagined, where 

due to a combination of diagonal cracks and flexural cracks, a Z-plane is formed that 

creates a critical section. The tension side of such a Z-plane cross-section is within the 

splice region where no pretensioning exists, and the compression is located in the adjacent 

girder section where top pretensioning tendons become fully effective forming the B-C 

cross section. It is postulated that the large concrete compression forces due to existence 

of top pretensioning strands and lack of supplementary reinforcement and pretensioning 

in tension side may lead to a critical failure mechanism along the Z-plane (section B-C). 
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(a) Prestressing detail in different cross sections 

 
(b) Side Elevation of a beam with vertical and diagonal cracks 

 
(c) Comparison of bending moment demand and capacity along the length of the beam 

 

  

 

 

(d) Free-body diagram and strain profile of Z-plane 

Fig 5.1. Flexure shear interaction and effect of diagonal cracks 
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Fig. 5.1 (c) compares the bending moment demand and flexural capacity for each 

section along the length of the beam. The flexural capacity of the beam is represented by 

the solid maroon line from which it is evident that the capacity varies such that the precast 

girder sections maintain a high flexural strength due to existence of both pretensioning 

and post-tensioning and mild steel reinforcement, while the splice region has substantially 

lower flexural strength as only post-tensioning contributes in that region.   

In Fig. 5.1 (c), two lines represent the ultimate demand along the length of the 

beam due to applied loads. The solid line represents the bending moment demand 

calculated based on equilibrium and classical beam theory, which is generally used for 

design of sections for flexure. Given that diagonal cracks are inevitable in narrow-web 

members under high flexure and shear, there arises a compression shift along the Z-plane 

section. This shifted demand is shown in the green dotted line of Fig. 5.1 (c) and is referred 

to herein as the “C.jd” diagram. The C.jd diagram is analogous to the well-known T.jd 

diagram that is often used in reinforced concrete design (Park and Paulay, 1975).  

Fig. 5.1 (d) depicts the free-body diagram of the beam in Fig 5.1 (a) with a Z-plane 

cross section. The lower tension side of the section terminates within the comparatively 

weak splice region; the upper compression side terminates at the location where the upper 

level tendons fully develop their prestress effect. All parameters are defined in the 

following section.   

In the following, a moment curvature analysis is first presented along the Z-plane. 

This is then simplified for design purposes to determine the ultimate moment capacity, 

   .௡ܯ
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5.3.2 Moment-Curvature Analysis on a Diagonal Crack Plane 

Moment curvature analysis can be generalized for situations where the coupled effect of 

shear and flexure affects the overall behavior of a beam where due to high shear and 

bending demands lead to excessive flexure cracks as well as diagonal ones. As shown in 

Fig. 5.1 (d), the potentially critical Z-plane section may be assumed with the associated 

diagonal flexure-shear crack. In this section, the basic formulation of sectional moment-

curvature analysis is generalized to incorporate the existence of shear forces that traverse 

the critical Z-plane section.  

Adopting Bernoulli’s plane section hypothesis, the strain profile varies linearly 

across the section and may be expressed as: 

(ݕሺߝ = ଴ߝ +  (5.1) ݕ∅

where ߝሺݕ) = strain at distance measured (positive downward) from the reference axis, 

taken herein as the center of gravity (c.g.c.); ߝ଴ = strain at reference axis; and ∅ = 

curvature.  

For any given increment in curvature, the following coupled relation of axial force 

and bending moment exists: 

ቄ ∆ܲ
ܯ∆

ቅ =

ۏ
ێ
ێ
ێ
ۍ

߲ܲ
଴ߝ߲

߲ܲ
߲∅

ܯ߲
଴ߝ߲

ܯ߲
߲∅ ے

ۑ
ۑ
ۑ
ې

ቄ
଴ߝ

∅ ቅ (5.2) 

Based on the free body diagram provided in Fig. 5.1 (d), the equilibrium in the Z-plane 

section is derived as: 

ܯ = ܸ. ܽ  (5.3) 
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ܯ = ௖ݕ௖ܥ + ௖௦ݕ௦ܥ + ௣ܶଵݕ௣ଵ + ௦ܶݕ௦ + ௉்ܶݕ௉் + ௦ܸ(5.4) 2/ݔ 

ܲ = ௖ܥ + ௦ܥ − ௣ܶଵ − ௦ܶ − ௉்ܶ − ௖ܶsin ߠ − ܸcot (5.5) ߠ 

ܸ = ௖ܸ + ௦ܸ + ௉்ܸ + ௖ܶcos (5.6) ߠ 

in which, ܯ = moment taken at the c.g.c. and at distance “a” from the support; ܸ = shear 

force in the section; ܲ = net axial force in the section; ܥ௖ = the compression in concrete; 

௦ܥ = compression in mild steel; ௣ܶଵ = applied prestress force in the upper level of 

prestressing strands; ௦ܶ =  tension force at bottom flange of splice region provided by 

reinforcing steel (if present); ௖ܶ = .ݔ ߠ ௪/sinݐ = tensile force in web concrete; ݐ௪ = 

thickness of the web; ௉்ܶ = post-tensioned force; ௖ܸ = shear carried by concrete in 

compression zone; ௦ܸ =shear carried by transverse reinforcement that crosses the cracked 

Z-plane;  ௉்ܸ = ௉்ܶ .  shear carried by vertical component of prestress contributed by ߙ

harped prestressing strands or post-tensioning tendons; ߙ = drape angle of PT at section; 

and ܽ = lever arm of the shear force for the given section. It should be noted that the term 

ܸcot ߠ which appears in (5.5) and the term ௦ܸ2/ݔ that appears in (4.4) represent the 

coupling effect of shear with flexure in the equilibrium formulation.  

In order to solve the equilibrium equations, the strain relations are modified to 

account for compatibility on the diagonal Z-plane. From the geometry shown in Fig. 5.1 

(d):  

(ݕሺ∗ߝ = ଴ߝ + ∅ሺݕ +  (5.7) ߠ଴)cosecݕ

௦ߝ = ଴ߝ + ݕ]∅ + ℎ௖௥cosec(5.8) [ߠ 

௩ߝ = 1
2ൗ ∅ℎ௖௥cot(5.9) ߠ 
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in which ߝ∗ሺݕ) = longitudinal strain along the diagonal crack region; ߝ௦ = strain in fibers 

of bottom flange on tension side; ߝ௩ = strain in vertical transverse reinforcement crossing 

the diagonal crack; ℎ௖௥ = height of diagonal crack; and ߠ = angle of the principal diagonal 

crack. Many researchers have proposed methods to predict the angle of diagonal crack 

among which, the proposed formula by Kim and Mander (2007) provides quite accurate 

results for ߠ.   

For moment-curvature analysis, the section is defined with parallel fibers 

perpendicular to bending moment vector and the curvature is incrementally increased to 

assure a single valid value for strain. The value of ߝ଴ is sought so that horizontal 

equilibrium is achieved in the section. Using constitutive relations for the material for each 

component, the calculated strains in each fiber are translated into stress and by 

multiplication of stress and the area of each fiber, the force carried by each fiber can be 

calculated. The abovementioned compatibility relations would define all equilibrium 

components except for ௖ܸ which afterwards may be calculated using Eq. (5.6), given that 

ܸ can be calculated using Eq. (5.3). Therefore, for any set of ∅ and ܯ, all components of 

equilibrium can be uniquely determined.  

The steps in the following algorithm may be used to compute the moment-

curvature behavior of a concrete section under coupled effect of shear-flexure interaction. 

The main aim for each cycle of the analysis is for a specified curvature to find the strain 

at the reference axis, ߝ଴.   

1. Set ∅௜ =  ∅௜ିଵ + ∆∅ and assume ܸ =  ௜ܸ and ߝ଴ =  ଴௜ߝ 
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2. Using Eq. (5.1) and (5.7) to (5.9), calculate the strain in each fiber of the Z-plane 

section. Subsequently, find the stress and force of each fiber. 

3. Using equilibrium, calculate ܯ௜, ௜ܸ, and ௜ܲ ( ௜ܸ
∗ = ௜ܯ ܽൗ ). Check: 

a. ቊ
ห ௜ܲ − ௧ܲ௔௥௚௘௧ห < ݁ܿ݊ܽݎ݈݁݋ݐ

| ௜ܸ
∗ − ௜ܸ| < ݁ܿ݊ܽݎ݈݁݋ݐ

 

4. If tolerance is not met, update ߝ଴௜ and ܸ: 

a. ߝ଴௜
∗ = ଴௜ߝ − [൫ ௜ܲ − ௧ܲ௔௥௚௘௧൯ −

డ௉

డ∅
∆∅]

డఌబ

డ௉
 

where 
డఌబ

డ௉
=  

ఌ೚೔షభିఌ೚೔షమ

௉೔షభି௉೔షమ
 

b. ௜ܸ = ௜ܸ
∗ 

5. Calculate ௖ܸ௜ and check ௖ܸ௜ < ௖ܸ௨ =  ௩ܣඥ݂′௖ܭ

where ܣ௩ = shear area of the compressed concrete; and ݂′௖ = concrete 

compression strength in MPa. Wolf and Frosch (2007) propose that ܭ = 0.42 

provides acceptable results for wide range of initial concrete pre-compression.  

6. Set ∅௜ାଵ =  ∅௜ + ∆∅ 

5.3.3 Nominal Capacity on a Diagonal Failure Plane 

Equilibrium and compatibility equations were derived in the previous section to enhance 

the moment-curvature analysis for load cases where shear-flexure interaction creates a 

critical Z-plane section. However, for a routine engineering office practice, often the 

purpose is calculation of nominal capacity at the strength limit state. In this section, the 

proposed equilibrium and compatibility equations are adopted to calculate the nominal 
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strength capacity of Z-plane sections and the associated curvature as a general index of 

capacity and ductility of such sections for the strength limit states.  

For nominal moment or flexural strength capacity, the equilibrium and 

compatibility equations are solved where the specific strain at the extreme compression 

fiber is set to 0.003 (ߝ௖ = 0.003). In order to solve the problem for nominal capacity, the 

depth of neutral axis, c, is assumed: 

∅௡ =
௖ߝ

ܿ
=

−0.003
ܿ

=
଴ߝ

௖ݕ − ܿ
 

(5.10) 

Given the curvature and strain at extreme compression fiber, the strain for all 

components may be calculated using Eq. (5.1) and (5.7) to (5.9) where strain at neutral 

axis can be calculated as:  

଴ߝ = 0.003 ቀ
௖ݕ

ܿ
− 1ቁ (5.11) 

in which ݕ௖ = distance from extreme compression fiber to the c.g.c. For nominal bending 

capacity, the compression force in concrete may simply be calculated using Whitney’s 

equivalent stress block or Karthik-Mander ߙ and ߚ factors (Karthik and Mander, 2011). 

Strain and stress in steel components as well as shear forces in the section may be 

calculated using Eq. (5.1), (5.7) to (5.9), and constitutive material relations. By 

multiplication of the stresses and associated area of each component, the forces may be 

calculated. By checking the longitudinal equilibrium force, the depth of neutral axis is 

found by iterating until axial force equilibrium is achieved.  
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5.4 APPLICATION TO SLAB-ON-SPLICED PRESTRESSED GIRDER TEST 
SPECIMEN 

5.4.1 Test Specimen Description 

In this section, the developed principles are applied to predict the behavior of a slab-on-

spliced prestressed concrete girder bridge specimen that is post-tensioned for continuity. 

As shown in Fig. 5.2, the precast girders are pretensioned, and after casting the splice and 

the deck slab, the entire structure is post-tensioned for continuity.  For positive bending 

(Test Setup 1), the loads are applied at mid-span in the vicinity of Splice 2 (main splice). 

For negative bending (Test Setup 2), the loads are applied in the overhang portion of the 

specimen near Splice 3.  

Because pretensioning did not exist in the splice region, the flexural capacity of 

the splices was significantly lower than the adjacent girder. Therefore, for Test 1, the 

flexural cracks were initiated in the bottom flange of Splice 2 as the bending demand 

reached the cracking moment. As loads increased, diagonal cracks emerged in the web 

area and connected with the vertical crack, creating a Z-plane section, where the tension 

side is located in the splice region and compression side was shifted toward the adjacent 

girder with pretensioning fully in effect. When the applied loads reached 1870 kN, the 

specimen failed by crushing of the concrete in the top flange immediately below the 

applied load.  

During Test 2 for negative bending, flexural cracks appeared first in the deck and 

then extended into the top flange of Splice 3. Due to very high shear demand, diagonal 

cracks emerged in the web, directed from the applied loads to the interior support. 

Emergence of vertical flexural cracks and diagonal shear cracks created a critical Z-plane 
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section, which shifted the compression side of the section into the bottom flange of the 

adjacent girder. The specimen failed as the loads reached 2000 kN, leading to a premature 

compression failure with very low ductility.  

In the following sections, the developed principles of moment-curvature and 

nominal strength capacity are applied to predict the behavior of the test specimen.  The 

results are verified by experimental data. Using principles of shear-flexure interaction and 

the compression shift phenomenon, the failure mode is discussed.  

5.4.2 Moment-Curvature Behavior 

Fig. 5.3 (a) illustrates the test setup for positive bending. The red line depicts the main 

crack, which is composed of the vertical flexural crack in the bottom flange of the splice 

region and the diagonal crack that shifts the compression side of the critical Z-plane 

section into the adjacent girder segment. The red mark locates the compression failure in 

the top flange right below one of the applied loads, where pretensioning is fully effective.  
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(a) Specimen geometry and splice locations 

 
(a) Prestress and reinforcement layout 

Fig 5.2. Test Specimen Geometry and Prestress Layout
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Fig. 5.3 (b) compares the experimental and numerical results of the moment-

curvature for Splice 2 in positive bending. The dotted lines represent the calculated 

curvature and moment based on the experimental data gathered from the embedded 

concrete gages and the load cell readings. The solid lines represent the predicted behavior 

based on generalized moment-curvature analysis. Results of material property tests at the 

date of testing are used in the prediction model. It is evident that the analysis closely 

captures the linear behavior of the section. As cracks appear, the section stiffness reduces 

and the experimental results and numerical prediction follow the same trend. Numerical 

analysis also closely captures the ultimate strength capacity of the specimen.  

In order to understand the effect of shear-flexure interaction on the flexural 

behavior of a section, the analysis is performed on three sections: (i) the transverse cross-

section at Splice 2, (ii) the transverse cross-section at the pretensioned precast section, and 

(iii) the Z-plane section including the effects of shear-flexure interaction. Fig. 5.3 (c) 

compares the results of moment-curvature analysis for these three cases. It is evident that 

the capacity of the precast girder is significantly higher, as pretensioning strands provide 

high tensile capacity in the bottom flange. However, this higher capacity is limited by a 

reduction in ductility, as pretensioning provides higher initial compressive stresses in the 

concrete. The results also reveal that the capacity of the Z-plane section is quite close to 

the weaker section (splice region), however the ductility of the Z-plane section is less than 

the splice region. Therefore, it can be inferred that the compression shift phenomenon 

reduces the capacity of the adjacent girder sections to the capacity of the splice region.  
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Fig. 5.4 (a) shows the test setup for negative moment where two loads are applied 

in the overhang portion of the specimen. The red line is the result of emergence of a 

vertical flexural crack in the deck and top flange of Splice 3 and a diagonal shear crack 

shifting the compression side of the critical Z-plane section into bottom flange of the 

adjacent girder segment. Fig. 5.4 (b) compares the experimental and numerical results of 

moment-curvature analysis for Splice 3 in negative bending. During this test, the failure 

occurred half-way between Splice 2 and the interior support. Moment-curvature results of 

Splice 3 suggest that failure occurred out of the splice region. For the interior support, the 

prediction captures the actual behavior quite well, however, failure occurred before either 

Splice 3 or the interior support section reach their nominal capacity.  

Fig 5.4 (c) compares the moment-curvature behavior of Splice 3, girder segment 

over the interior support, and the Z-plane section. As expected, the girder segment has 

higher bending capacity due to the presence of pretensioning strands. Similar to positive 

bending, the higher capacity of the precast segment is compensated with lower ductility.  

Results of moment-curvature analysis for negative bending reveal that the effect 

of shear-flexure interaction reduces both capacity and ductility of the Z-plane section as 

compared to the splice region. Given that the compression side of the Z-plane lays in the 

girder segment, it may be inferred that the capacity of the adjacent girder is also reduced. 

The capacity reduction is incorporated in Fig. 5.4. (c), where the bending demand 

and capacity of the beam are compared. Such capacity reduction leads to premature 

compression failure occurring half-way between Splice 3 and the interior support, where 

the compression side of the Z-plane section lies. 
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5.4.3 Nominal Bending Capacity 

For design purposes, the nominal bending capacity of the Z-plane section in both positive 

and negative bending is calculated as described in Section 5.3.3. Table 5.1 and 5.2 present 

the strains and forces in each of the components for positive and negative bending, 

respectively. The strains are defined by setting the depth of neutral axis. Initial strains of 

concrete and prestressing strands are considered in the calculation for equilibrium.  

Table 5.3 and Table 5.4 presents the values of nominal bending capacity calculated 

using three different methods: (i) from experimental results, (ii) using nominal bending 

capacity, and (iii) inferred from moment-curvature analysis. It is evident from results that 

both nominal bending capacity and moment-curvature analysis capture the experimental 

value with 1.5% error. On the other hand, the results for depth of neutral axis is not very 

consistent between the nominal capacity calculation and moment-curvature analysis. The 

former tends to predict a deeper neutral axis, hence predicting lower ductility. The 

difference may be attributed to the assumptions and simplifications that exists in the 

calculation of this method.  
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(a) Test Setup and Failure Location 

(b) Comparison of experimental and numerical moment-curvature behavior 

(c) Effect of shear-flexure interaction (d) Typical cross section 
 

Fig. 5.3. Moment-curvature analysis of critical Z-plane section in positive bending 
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(a) Test Setup and Failure Location 

 
(b) Moment-curvature behavior of Splice 3 (c) Moment-curvature behavior at 

Interior support 

(d) Effect of Shear-flexure interaction (e) Typical cross-section 

Fig. 5.4. Moment-curvature analysis of critical Z-plane section in negative bending 
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Table 5.1. Strain and forces of Z-plane section components in positive bending 

Description 
Area 
(mm) 

Yc.g.c. 
(mm) 

Strain 
(mm/mm) 

Force 
(kN) 

Deck Concrete 474,000 -700 -0.003 -13,800 
Girder Top Flange 145,000 -520 -0.0005 -5900 

Deck Reinforcement 3,290 -700 -0.0021 -1360 
Splice Reinforcement 1,136 952 0.0136 480 

Top Pretensioning 3,613 -525 0.0055* 3800 
Post-tensioning 8,000 152 0.0088* 13,400 

ܸcot 3580 - - -  ߠ 
* Initial prestressing strains are included in the final strain profile of the prestressing strands.  

Table 5.2. Strain and forces of Z-plane section components in negative bending 

Description 
Area 
(mm) 

Yc.g.c. 
(mm) 

Strain 
(mm/mm) 

Force 
(kN) 

Girder Bottom Flange 474,000 -1087 -0.003 -7001 
Girder Web Concrete 244,500 -433 -0.0015 -12,925 
Deck Reinforcement 3,290 900 0.0014 915 
Splice Reinforcement 568 394 0.0008 89 
Bottom Pretensioning 4,774 -1118 0.00035 3252 

Post-tensioning 8,000 318 0.0063 9930 
 

Table 5.3. Comparison of nominal capacity in positive moment 

Description Mn (kN-m) Depth of N.A, c (mm) 
Experimental Result 12,504 - 

Nominal Capacity Calculation 12,766 330 
Inferred from Moment-

Curvature 
12,688 298 

 

Table 5.4. Comparison of nominal capacity in negative moment 

Description Mn (kN-m) Depth of N.A, c (mm) 
Experimental Result 15,252 - 

Nominal Capacity Calculation 15,728 914 
Inferred from Moment-

Curvature 
16,426 790 
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5.4.4 Beam Deflection Profile 

Fig. 5.5 presents the beam deflection profile of the specimen in positive (Fig. 5.5 a) and 

negative bending (Fig. 5.5 b) for the service limit state as well as ultimate flexural strength. 

Dots represent the string potentiometer readings while solid lines are the predicted results 

based on Euler Beam Theory. A total of 36 string potentiometer were placed at 600 mm 

spacing to accurately measure the deformation of the test specimen. To avoid the effect of 

side tilting in the recorded data, the string pots were attached to centerline of the soffit of 

the bottom flange. Possible sources for error are deviation from perpendicular projection 

after large deformation. To compensate for bearing pad settlements, LVDTs and string 

pots were placed on either side of the specimen at the location of the supports. Even after 

the specimen was fully unloaded, some residual deformations were recorded in the 

elastomeric bearing pads.  

For the prediction model, the deformation of the beam was effectively divided in 

three phases: uncracked (linear elastic behavior), cracked (non-linear elastic behavior) and 

plastic (non-linear plastic behavior). While the loads remained below cracking limits, the 

deformation of the beam simply followed the relationship for an elastic beam. As flexural 

cracks emerge in the splice region, the section modulus of that region is reduced. The 

reduction factor may be calculated from the moment curvature behavior of the sections 

(8% for this case). At this stage the beam behaves as a cracked elastic beam. Deformation 

of this stage can be effectively calculated by reducing the flexural rigidity of the sections 

in the cracked zone. Table 5.5 summarizes the deformation of specimen in both positive 

and negative bending in each regime of uncracked, cracked and plastic deformation.  
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(a) Longitudinal beam deflection profile for positive bending (Test 1) 

 
(b) Longitudinal beam deflection profile for negative bending (Test 2) 

 

(c) Differential displacement at either side of a Z-plane section  

Fig 5.5. Longitudinal deflection profile of test specimen in positive and negative 
bending. 

 

Table 5.5. Breakdown of maximum deformation of specimen in uncracked, 
cracked, and plastic phase 

Case 
Uncracked 

Deformation (mm) 
Cracked 

Deformation (mm) 
Plastic 

Deformation (mm) 
Positive Bending 8.1 9.0 56.1 
Negative Bending 10.5 38.1 - 
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Fig. 5.5 (c) illustrates for a simply supported beam that the differential 

displacement at both sides of the main crack is simply due to the kinematic rotation of the 

segments with inclined crack planes. The prediction results are adjusted for this 

phenomenon in Fig. 5.5 (a) and it is shown by dashed green line. This phenomenon is 

further discussed in Chapter 4. 

5.4.5 Discussion 

5.4.5.1 Flexural Strength and Ductility 

The results of moment curvature analysis suggest that the test specimen has substantially 

higher ductility in positive bending. This may be attributed to the compression capacity 

that the deck concrete provides in positive bending. This fact is also supported by the 

analysis of nominal bending capacity shown in Table 5.3 for positive bending and in Table 

5.4 for negative bending. As presented in Table 5.4, the neutral axis for negative moment 

remains quite close to the c.g.c. of concrete in the web of the girder to provide adequate 

concrete area in compression. It may be concluded that in the regions with high negative 

moment, the area of the bottom flange needs to be increased to provide sufficient 

compressive capacity as well as to increase ductility by reducing the neutral axis depth. 

Additional concrete area may be provided by providing thickened sections over the piers 

and casting integrated diaphragms over the piers.  

5.4.5.2 Shear-Flexure Interaction in Splice Design 

Comparison of moment-curvature behavior of the transverse section and the Z-plane 

section reveals that the shear-flexure interaction may adversely affect the flexural 

performance of the splice regions, where both high bending and shear demands exist. This 
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effect mainly reduces the ductility of the splice regions, and also substantially reduces the 

capacity of the adjacent pretensioned girder segments. This reduction in capacity needs to 

be addressed in the design of such spliced precast girder systems.  

Comparison of calculated bending capacity and the experimental data suggests that 

the effect of shear-flexure interaction can be comprehensively captured if the analysis of 

Z-plane section is accompanied by the effect of compression shift phenomenon. The 

compression shift effect can be included in the analysis in two ways: reduction of the 

capacity of the adjacent precast girder segments in the vicinity of the splice regions; or 

equivalently, increase of bending demands of the splice regions to match that of the 

adjacent girder sections.  

5.5 CONCLUSIONS AND REMARKS 

In this study, moment-curvature analysis and nominal bending capacity of a spliced 

prestressed concrete girder bridge were developed to incorporate the effects of shear-

flexure interaction. The results of proposed models were verified by experimental data 

from a full-scale in-span spliced prestressed concrete girder test specimen. Based on 

numerical models and experimental data, the following conclusions are presented: 

1. Moment-curvature analysis can be generalized to effectively model the flexural 

behavior of beams where the shear-flexure interaction may adversely affect the 

overall behavior of the beams.  

2. While detailed finite element analysis or strut-and-tie analysis can effectively 

capture the effect of shear-flexure interaction, both approaches require more robust 

and detailed modeling and significantly more calculation time. On the other hand, 
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shear-flexure interaction can be effectively modeled by modifying the moment-

curvature analysis and equilibrium equations. This method provides markedly 

lower calculation costs.  

3. Shear flexure interaction reduces the ductility of the splice regions and 

substantially reduces the capacity of the adjacent precast girder segments. To take 

these impacts into account, the bending demand of such regions may be increased 

to match that of the adjacent girder sections.  

4. Slab-on-I-girder bridges have significantly higher ductility in positive bending. In 

order to avoid brittle compression failure in negative moments, it is recommended 

that thickened sections be provided over the piers and integrated diaphragms be 

cast on the girder over the piers to enhance the load carrying capacity and ductility 

of such sections.  

5. One of the impacts of shear-flexure interaction through a diagonal crack is the 

compression shift phenomenon. The compression side of the critical section is 

shifted due to the presence of a diagonal crack that can potentially decrease the 

flexural capacity and ductility of the section. This reduction is more significant 

where a discontinuity in the beam shifts one side on the critical section to the area 

with lower or higher flexural capacity. In-span splices in continuous precast 

prestressed concrete girders is an example of where such an effect can occur. 
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6 COMPATIBILITY STRUT AND TIE MODELING (C-STM) OF 

SPLICED PRESTRESSED CONCRETE BRIDGE GIRDERS 

6.1 CHAPTER OVERVIEW 

Beam theory struggles to accurately predict the behavior of heavily diagonally cracked 

structural concrete elements particularly when high shear stress demands may adversely 

affect the overall flexural behavior of such elements. Compatibility Strut-and-Tie 

Modeling (C-STM) has been introduced as an effective alternative method of structural 

analysis for members subjected to high moment demands coupled with high shear 

intensity. In this chapter, the C-STM approach is advanced to model the behavior of slab-

on-spliced prestressed concrete girder bridges where shear-flexure interaction may 

influence system performance particularly near regions that are spliced. Based on previous 

work on reinforced concrete systems, the C-STM approach is adapted herein to model 

prestressed concrete systems. The efficacy of the approach is demonstrated by modeling 

the experimental performance of a reinforced concrete slab-on-prestressed concrete girder 

super-assemblage that included three spliced regions to consider behavior under high 

positive moment and moderate shear, high negative moment and high shear, and moderate 

positive moment and high shear.  

6.2 MOTIVATION FOR C-STM ANALYSIS 

When structural concrete members are subjected to a combination of high shear force and 

bending moment demands, both flexural and diagonal cracks may emerge in such regions. 

While beam theory may effectively model the performance of concrete members where 
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flexural demands are dominant and shear demands are not so significant, beam theory falls 

short in capturing the coupling effects of shear and flexure where the presence of diagonal 

cracks may adversely affect the overall performance of such members.  

Flexure-shear interaction is most noticeable in girder members where narrow webs 

amplify the shear intensity. Therefore, it is not surprising that such a problem may exist 

in prestressed concrete girder bridges. Moreover, the problem may be further complicated 

where a prestressed concrete girder system possesses in-span splices. The splice regions 

also introduce a discontinuity in strength capacity. It follows that an effective analysis 

method is needed to capture both facets of flexure-shear interaction and strength 

discontinuity within the modeled structural system.  

The concept of strut-and-tie modeling (STM) was introduced as a strength-based 

design method in the AASHTO LRFD Bridge Design Specifications in 1994 and in ACI 

318: Building Code Requirement for Structural Concrete in 2002 for concrete bridges and 

buildings, respectively. Current methods for STM analysis are based on force-equilibrium 

only and inevitably, only provide a lower bound limit load solution without providing 

clear insight as to the expected failure mechanism and location of failure. Throughout 

decades of research on advancing these models and the STM in particular, the approach 

has matured and is now well accepted as a conservative design method, particularly for 

structures with disturbed (D-) regions.  

Kim and Mander (1999) enhanced STM methods by also requiring strain 

compatibility as well as force equilibrium for the analysis of both B and D regions in 

reinforced concrete elements under combination of flexure and shear. Further 
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improvements were made by Kim and Mander (2000a; 2000b; 2005; 2007), Scott et al. 

(2012 a, b), and Karthik et al. (2016).  The most recent work of Karthik et al. (2016) 

includes the effect of concrete tensile capacity as well as tension stiffening, compression 

softening in concrete struts due to transverse principal tensile strains, and modifications 

for flexural equivalency. Thus, the Compatibility Strut-and-tie Model (C-STM) is now 

well developed and verified for reinforced concrete elements under monotonic and cyclic 

loading.  

While numerous studies have investigated the effectiveness of truss modeling for 

reinforced concrete members, few attempts have been made to incorporate those principles 

for the analysis of prestressed concrete structures. The literature lacks a validated 

investigation on modeling of precast prestressed concrete structures with cast-in-place 

joints and composite beam sections. In this chapter, the C-STM approach is advanced to 

model the behavior of a reinforced concrete slab-on-spliced prestressed concrete girder 

bridge that is post-tensioned for continuity. Unlike most of the previous studies, analysis 

is conducted in displacement control to capture the post-peak behavior followed by static 

unloading to infer the residual displacement of the structure.  

In this chapter, the analysis theory and computational procedures are developed 

and applied to predict the behavior of the structure in positive bending, negative bending, 

and high shear. The results of C-STM is then validated through experimental data of a 

full-scale super-assemblage test specimen. Computational modeling to capture nonlinear 

behavior is performed using the commercial SAP2000 software (CSI 2016). A three-

layered model is developed in 2-D where each of the three layers represent a sub-truss, 
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specifically: (a) concrete truss action that captures the applied prestress action; (b) 

concrete arch action that includes post-tensioning effects; and (c) steel truss action that 

inherently caters for pretensioning actions. Based on the numerical modeling schemes for 

discrete truss modeling proposed by Kim and Mander (1999), a variable angle truss model 

is considered to model the behavior of disturbed regions (D-regions), with constant truss 

modeling representing “beam” region (B-region) behavior.  

The efficacy of the approach is demonstrated by modeling the experimental 

performance of a reinforced concrete slab-on-prestressed concrete girder super-

assemblage that included three spliced regions to consider behavior under high positive 

bending and moderate shear, high negative bending and high shear, and moderate positive 

bending and high shear. 

6.3 THEORY 

This section presents the necessary theory to enable one to apply the C-STM technique to 

a spliced prestressed concrete girder bridge system. The necessary geometric 

considerations are discussed first as shown in Fig. 6.1. Then the axial stiffness, material 

strength, and prestressing considerations follow.  

6.3.1 Geometry 

Fig. 6.1 (a) presents the geometry of a general prestressed concrete girder bridge span with 

a cast-in-place deck slab. The system shown possesses an in-span splice within a high 

positive moment region. The structure is post-tensioned for overall continuity. Concrete, 

mild steel reinforcement, pretensioning strands and post-tensioning ducts are components 
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that interactively contribute to the load carrying capacity of the structure. As proposed in 

previous studies (Scott et al. 2012 a, b), loads are transferred through two main actions: 

truss action and arch actions. In truss action, concrete compression struts and chords are 

tied with transverse mild steel and tension steel to create a truss action and transfer the 

loads to supports. Arch action is mainly effective for deep members, were loads are 

directly transferred to supports through diagonal arch members. While spliced concrete 

girder bridges are usually composed of long spans, different load combinations may 

activate the arch actions in such structures. Therefore, in lieu of a more precise and 

conclusive analysis, the arch action is also considered in the analysis herein.  

Fig. 6.1 (b) and (c) present the sub-truss geometries for the general slab-on-spliced 

prestressed concrete girder bridge. In order to incorporate both truss action and arch 

action, two main sub-trusses are required. First is the truss effect which incorporates the 

effects of the concrete compression chord, diagonal concrete compression struts, 

longitudinal and transverse mild steel, and pretensioning strands (Fig. 6.1 [b]). Second is 

the arch action effect which also incorporates any effects of post-tensioning (PT) ducts 

(Fig. 6.1 [c]). Given the draped nature of PT ducts where the c.g.s. elevation may vary 

along the length of the span, it may not be feasible to lump PT actions at either the top or 

bottom chord as part of truss action. Therefore, it is necessary to represent the PT as part 

of the arch sub-truss. In order to provide strain compatibility, the associated nodes of each 

sub-truss are restrained to move equally.  
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(a) Spliced Prestressed Concrete Girder 

 
(b) Truss layout and dummy members 

 
(c) Arch action and post-tensioning effects 

 

 
 

 

(d) Geometry proportion and strut width calculation in 
disturbed regions 

 

(e) Mohr circle for crack angle calculation  
(values shown for N=2) 

Fig. 6.1. Spliced prestressed girder and truss model geometry development 
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Fig. 6.1 (d) depicts how one may model end regions (or other disturbed regions 

near applied loads). As proposed by Kim and Mander (1999), a variable angle truss model 

is adopted for the analysis of the specimen in the disturbed regions (D-regions) in the 

vicinity of applied loads and supports. The constant angle truss model is used to model 

the rest of the beam region (B-regions) away from the D-region.  

Karthik et al. (2016) recently demonstrated that softening of concrete struts due to 

transverse tension may markedly reduce the load carrying capacity of such strut members. 

Therefore, it is necessary to reduce the strut strength capacity in accordance with the 

transverse to strut strain ratio, ߝଵ/ߝଶ. Thus, to capture the strain transverse to the struts, a 

dummy diagonal tension tie member is used that possesses an axial rigidity of ܣܧ = 1. 

Therefore, the force in these dummy members is equal to the member strain ߝଵ.  

As shown in Fig. 6.1 (d), in order to make ensure that dummy members are 

perpendicular to compression struts, the following geometric relation must hold between 

the depth of the beam (݀) and the width of the panels (ݏଶ): 

ଶݏ = ݀/√ܰ (6.1) 

cot ߠ =  √ܰ (6.2) 

in which ܰ = number of panels; and ߠ is the angle of compression struts. For a single 

panel (ܰ = ߠ ,(1 = 45°; for a double panel (ܰ = ߠ ,(2 = 35.26°; for a triple panel (ܰ =

ߠ ,(3 = 30°; and for four panels (ܰ = ߠ ,(4 = 26.2°. Diagonal crack angle (ߠ) may be 

determined by using methods presented in Chapter 4. 
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6.3.2 Axial Rigidity 

As shown in Fig. 6.1 (b) and (c), truss action and arch action contribute simultaneously to 

transfer the loads. Scott et al. (2012 a, b) presented a method to apportion the width of the 

member (width of the web for I-shaped girders), between the truss action and arch action. 

The ratio is based on the proportionality of the shear force carried by truss and arch action: 

ߟ = ௔ܸ௥௖௛

௔ܸ௥௖௛ + ௧ܸ௥௨௦௦
=

௅ߩ

௅ߩ + ߠcotଶ்ߩ
 

(6.3) 

in which ߟ = arch width scaler, ߩ௅ = volumetric ratio of longitudinal steel; and ்ߩ = 

volumetric ratio of transverse steel.  

Fig. 6.1 (d) illustrates the method for calculating the breadth of struts for both the 

D-region and B-region: 

ܾ௦ି஻ =  ଶsinθ (6.4a)ݏ

ܾ௦ି஽ =
ଵ

ଶ
 ଵsinΨ  (6.4b)ݏ

where ܾ௦ି஻ = breadth of strut in B-region; ܾ௦ି஽ = breadth of strut in D-region; and ݏଶ, 

  .ଵ, and Ψ are defined in Fig. 6.1 (d)ݏ

The width of the arch members, according to Holden et al. (2003), varies as a 

parabola and may be replaced by a prismatic member whose breadth is: 

஺ܹ =
ଷ

଼
݆݀ට1 + ቀ

௝ௗ

௅
ቁ

ଶ
  

(6.5) 

where ܮ = length of arch member; and ݆݀ = internal lever arm of tensile force which may 

be taken as the depth of the truss.  

Separate overlaying sub-trusses may be considered to model the contribution of 

steel elements and concrete elements individually. For the specific problem at hand, the 
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concrete top chord consists of the transformed area of the deck and area of the prestressed 

girder top flange. The concrete bottom chord consists of the area of the bottom flange.  

The area of the narrow web of the prestressed concrete girder may be apportioned between 

arch and strut members using Eq. (6.3).  

It is essential to include the tensile capacity of the concrete for a prestressed 

concrete system. Therefore, tension concrete ties are included in the model as well. Scott 

et al. (2012 a, b) proposed the following method to calculate the effective area of concrete 

tension ties: 

௖ି௧௜௘ܣ = (4ܿ + 2݀௛) ௛ܰ(6.6) ݏ 

in which ܣ௖ି௧௜ = area of concrete tension tie, ܿ = concrete cover,  ݀௛ = diameter of 

stirrups, ௛ܰ = number of stirrups between two ties; and ݏ = spacing of stirrups.  

6.3.3 Material Modeling for C-STM  

Fig 6.2 presents the tri-linear representation of nonlinear material behavior. While the 

Mander concrete model (Mander et al., 1988) may be used, it is essential to apply a 

trilinear simplification for computation that use the likes of the SAP2000 software.  An 

equivalent tri-linear form of the Karthik et al. (2011) model should be more convenient 

for general use as it also appropriately deals with the tensile behavior in a trilinear fashion.  

As discussed above, the top chord of concrete sub-truss is composed of both deck 

concrete, the haunch concrete (if any), and the upper flange of the girder. A weighted 

average method based on area and strain at the center of gravity of each component may 

be used to define the equivalent area and material properties for the top chord: 
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௧௢௣஼௛௢௥ௗܣ = ௗ݊ܣ + ௧௙ܣ +  ௛  (6.7)ܣ

݂′௖ି௖௢௠௣ =
(݂ᇱ

௖ିௗ(ܣௗ + ݊(௛ܣ + ݂ᇱ
௖ି௚ܣ௧௙)

௧௢௣஼௛௢௥ௗܣ
 

(6.8) 

௘௙௙ߝ =
(ఌ೎(஺೏ା஺೓)௡ାఌ೒஺೟೑)

஺೟೚೛಴೓೚ೝ೏
  (6.9) 

where ܣௗ = the area of the deck; ܣ௧௙ = the area of top flange of the girder; ܣ௛ = the area 

of the haunch; ݊ = ௖ିௗ௘௖ܧ ௖ି௚௜௥ௗ௘௥; ݂′௖ି௖௢௠௣ܧ/ = the effective compressive strength of 

top chord before application of flexural equivalency scalar; ݂ᇱ
௖ିௗ = the measured 

compressive strength of the deck; ݂ᇱ
௖ି௚ = the measured compressive strength of the 

girder; ߝ௘௙௙ = the effective equivalent strain in the compression chord; ߝ௖ = strain in 

extreme compression fiber of the deck; and ߝ௚ = the strain in extreme compression fiber 

of the top flange of the girder.  

The compression capacity of the concrete diagonal struts require adjustment to 

account for the compression softening arising from transverse tension stresses in the 

concrete between the diagonal as given by the recent calibration of early data by Karthik 

et al. (2016) who define the softening coefficient as:  

ߞ = ଶ݂,௠௔௫

݂′௖
=

1
1 −  ଶߝ/ଵߝ0.25

 
(6.10) 

where ଶ݂,௠௔௫ = the softened concrete strength in struts; ߝଵ = the principal tension strain 

transverse to a particular compression strut; and  ߝଶ = the inferred compression strain in 

the diagonal strut.   
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(a) Mild steel (b) Prestressing strand 

  

(c) Girder concrete (d) Splice concrete 

  
(e) Deck concrete (f) Strut and Arch Concrete 

Fig. 6.2. Material properties for C-STM. 

 

-800

0

800

-0.05 0 0.05

St
re

ss
 (M

Pa
)

Strain

Es = 200 GPa

Esh /Es =3%

448
fy

-448

-1900

0

1900

-0.08 0.00 0.08

St
re

ss
 (M

Pa
)

Strain

Es = 197 GPa

Esh /Es =3%

σ0 = 1395 MPa
1448

fy=1448 MPA

-1448

Shifted Strain

-75

0

-0.0080

St
re

ss
 (M

Pa
)

Strain

f'c /2 

f'c =75 MPa

ft = 8 MPa

σ0 = 19 MPa

Ec = 35 GPa

-75

0

-0.0080

St
re

ss
 (M

Pa
)

Strain

f'c =65 MPa 

f'c /2 

ft = 7 MPa

σ0 = 7.5 MPa

Ec = 41 GPa

-65

-75

0

-0.0080

St
re

ss
 (M

Pa
)

Strain

f'c =38 MPa 

f'c /2 

ft = 6 MPa

σ0 = 7.5 MPa
Ec = 35 GPa

-38

-75

0

-0.0080

St
re

ss
 (M

Pa
)

Strain

ζf'c- Test 1 and 2

f'c

-33

εco = 0.002



176 
 

For reinforcing mild steel, the constitutive model proposed by Urmson and Mander 

(2012) is adopted and replaced by an equivalent bilinear curve representing the elastic and 

post-yield behavior of mild steel material.  

For prestressing tendons, the stress-strain model proposed by Menegotto and Pinto 

(1973) is first adopted and then linearized over the region of expected interest using a 

bilinear representation to capture the elastoplastic behavior of strands. 

Red marks on Fig. 6.2 graphs represent the pre-existing state of strain and stress in 

members prior to application of live load. Such pre-existing strain (ߝ଴) is the result of the 

applied prestress after losses. For each member, ߝ଴ depends on the prestressing and 

construction sequence, however for most practical cases it is expected that girders are 

generally both pretensioned and post-tensioned; while only PT is normally considered 

present within the splice region.  

The stress-strain relation of pretensioning strands and PT ducts must be shifted to 

incorporate the initial locked-in strains. For pretensioning strands, the locked-in strain is 

the strain in strand when the girder concrete is cast and after losses. For PT ducts, the 

locked-in strain is the strain in post-tensioning strands when PT ducts are grouted and after 

losses.  

6.3.4 Analysis Method and Procedure 

This study intends to provide a thorough insight of the behavior of slab-on-spliced 

prestressed concrete girder bridges. In order to capture the post-peak behavior of the 

structure, it is necessary that analysis is conducted in displacement control (ductile 

loading). Also, to fully capture the force-deformation behavior of the structure as well as 
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hysteresis properties of the bridge, unloading is statically applied to assess the residual 

displacement and thereby infer the damage to the system following overload.  

Given that behavior of prestressed concrete girder bridges are highly dependable 

on the sequence of construction, six steps for executing the modeling are needed:  

STEP 1. Application of pretensioning on individual precast girder segments; 

adjustment of strain in pretensioning strand. 

STEP 2. Assemblage of precast segments; casting splices and deck concrete. 

application of PT; adjustment of strain in PT strands. 

STEP 3. Application of dead load. 

STEP 4. Application of live load to determine ߝଵ and ߝଶ in struts and ties; 

adjustment of strength of struts using Eq. (5.10).  

STEP 5. Application of live load up to failure. 

STEP 6. Unloading the structure to zero live load.   

For STEP 1, pretensioning forces are applied at the point where strands are fully 

bonded to the concrete. For STEP 2, the PT forces are applied at the anchorage plate of 

PT ducts. The load balancing effect of PT is incorporated through application of vertical 

loads at the nodes of bottom chords. For STEP 3, the dead load is applied at nodes of the 

top chord, and distributed based on the tributary area of each panel.  

Given that cracking of concrete or yielding of steel is not expected in the 

construction stages (under dead load and prestressing effects), for STEP 1 through STEP 

3, loads are applied statically and analysis is run in a single stage linear mode. 



178 
 

For STEP 4, the stress-strain relation of strands is adjusted to take into account the 

locked-in initial strains. Live loads are applied and ߝଵ and ߝଶ in struts and ties are recorded. 

For STEP 5, the strength of the struts is adjusted based on the predicted ߝଵ and ߝଶ in STEP 

4, using Eq. (6.10).  

Application of live load may be done through force control or displacement 

control. With the former, the analysis generally converges faster and perfectly captures 

the behavior of the structure just prior to failure at which time the analysis may not 

correctly converge.  

A displacement control analysis is needed to continue beyond peak load and 

capture the post-peak behavior of the structure. This approach also enables the unloading 

analysis (STEP 6) to capture the residual displacement and existing stiffness of the 

structure.  

For STEP 6, the latest stress-strain state of each member after failure in STEP 5 is 

considered as the initial condition of the unloading portion. Given that the main objective 

for unloading analysis is determination of residual displacement and existing stiffness of 

the structure after overload, a static single-stage linear analysis should suffice.  

6.4 APPLICATION AND VALIDATION 

The C-STM approach is adapted to predict the behavior of a reinforced concrete slab-on-

spliced prestressed concrete girder test specimen. The test specimen is composed of four 

prestressed concrete girder segments and three cast-in-place splices with a cast-in-place 

reinforced concrete deck slab. The entire structure is then post-tensioned for overall 
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continuity. Each of the three splices were tested in different experimental setups to assess 

the performance of in-span splices for various load combinations.  

For each of these test setups, the C-STM analysis was carried out in three steps:  

STEP 1. Dead load and prestressing loads were applied to the structure and the 

state of stress and strain for each member was recorded. 

STEP 2. The initial state of stress and strain in each member was updated based 

on the results of STEP 1 and live loads were applied. Transverse and axial 

strains (ߝଵ and ߝଶ) for each strut were recorded.  

STEP 3. Based on the results of ߝଵ and ߝଶ from STEP 2 and using Eq. (15), the 

strength of struts was adjusted and live loads were applied again. A 

second analysis was done through application of live load. Transverse 

strain for critical struts were recorded through the dummy members. 

Using Eq. (6.10), the strength of the struts was adjusted and the analysis 

was run for the third time to capture the behavior of the specimen.  

Application of live load is modeled in two stages: loading and unloading. For the 

loading portion, load cases are defined as multi-stage nonlinear static loads applied 

initially in force control and then displacement control. For unloading, the initial condition 

of stress and strain of the members is set to the last state of the loading portion to capture 

the post-peak stiffness of the structure. Unloading of the structure is defined as a linear 

static load case.  

Figs. 6.3, 6.4, and 6.5 present the test setup, sub-trusses for C-STM analysis, and 

comparative results of experimental behavior and C-STM results for each of the testing 
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stages. In this section, results of each stage of testing is elaborated and the failure mode 

described. As shown in Fig. 6.3 through 6.5 (a), (b), and (c), three sub-trusses are defined 

for each test setup, as follows: 

1. A concrete sub-truss that incorporates the contribution of concrete in truss 

action including the top and bottom flanges, concrete tension ties, and concrete 

compression struts.  

2. An arch action and PT sub-truss, that models the contribution of arch action as 

well as the combined effect of the post-tensioning tendons.  

3. A steel and pretensioning strand sub-truss that represents the contribution of 

transverse mild steel reinforcement as well as top and bottom pretensioning 

strands and longitudinal deck reinforcement.  

6.4.1 Test Setup 1 - Experimental vs. Computational Results 

For Test 1, the loads were applied close to mid-span nearby the Splice 2 region to assess 

the performance of Splice 2 under high positive moment and moderate shear intensity. 

The diagonal crack angle was ߠ = 35.5°. Therefore, the two-panel configuration (ߠ =

35.26° was chosen that was closest to the crack angle. Based on the first live load analysis, 

at the time of failure, the transverse strain (ߝଵ) in the critical strut reached 0.013. Using 

Eq. (6.10), the strut softening coefficient was determined: ߞ = 0.44.  

Fig. 6.3 (d) presents two longitudinal displacement profiles for the super-

assemblage specimen during Test 1 at two specific loads: (i) 2ܲ = 2140 ݇ܰ representing 

the service limit state; and (ii) and 2ܲ = 3560 ݇ܰ at failure. Very good agreement exists 

between experimental observation and the computed C-STM results prior to cracking. 
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Even though the trend is captured quite well at maximum load, a small discrepancy exists 

close to the splice region, which is attributed to the differential displacement at either side 

of the main crack, observed to be 18 mm. As discussed in the previous chapter, such 

differential displacement is attributed to the kinematics of the cracked rigid bodies rotating 

about a common point in the deck slab. The differences are therefore attributed to a 

measurement feature rather than a computational modeling deficiency. Evidence of this is 

shown in Fig. 6.3 (e) where the force-deformation behavior of the specimen at mid-span 

and Splice 2 is presented. The computational C-STM has captured the initial stiffness, 

cracking, post-cracked behavior and maximum strength remarkably well. Moreover, due 

to the displacement controlled analysis, the sudden drop in post-peak resistance was able 

to be captured.  
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(a) Concrete sub-truss 

 
(b) Arch and PT sub-truss 

 
(c) Steel pretensioning strand sub-truss 

 
(d) Longitudinal displacement profile 

 
(e) Force-displacement (f) Longitudinal strain (g) Transverse strain (εv ) 

 

Fig 6.3. Positive moment analysis for Test 1 showing sub-truss configurations for 
the experimental specimen. 
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After the specimen achieved its maximum capacity of 2ܲ = 3545 ݇ܰ, the 

pressure in the actuator was released and the loads removed. This led to a reduction in 

deflection to 35 mm. The computational reduction in displacement led to a linear drop-off 

in loads. Initially the unloading test and computed results agree very well, however for 

loads below 2ܲ = 1200 ݇ܰ a discrepancy results. This difference is considered to be 

attributed to partial rather than full crack closure.  

Numbers shown on Fig. 6.3 (a), (b), (c), and (e) represent the main events that led 

to failure. According to C-STM results, when loads reached 2ܲ = 2080 ݇ܰ, concrete in 

bottom flange of Splice 2 cracked (Event 1). As loads reached 2ܲ = 2430 ݇ܰ, mild steel 

on bottom flange of Splice 2 yielded (Event 2). Stress in top chord between the applied 

loads reached 0.5݂′௖, when applied load was 2ܲ = 2740 ݇ܰ. At 2ܲ = 3535 ݇ܰ, PT 

yielded in the Splice 2 region (Event 3). At this point the stiffness almost plateaued and 

plastic hinge formed in the splice section. As loads increased, stress in the top flange 

rapidly increased and reached ݂′௖ and failure occurred (Event 4). At this time, the stress 

in critical struts reached 93% of the softened capacity.  

C-STM results matches the experimental observation as it also follows the same 

chain of events that led to failure. Also, excessive transverse strain in struts suggests an 

extended network of diagonal cracks in the web, which also matches the experimental 

observation.  

Fig. 6.3 (f) and (g) compare the strain in longitudinal and transverse reinforcement 

of Splice 2, respectively. As shown in Fig. 6.3 (f), reinforcement yielded in the bottom 

flange of splice (Event 2), as only minimal reinforcement is present in bottom flange of 
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Splice 2; no pretensioning strand passed through the splice region. As for the top flange, 

strains follow the strain in the compression concrete and does not yield. Results of Fig. 

6.3 (g) show the transverse strain measured on a hoop within Splice 2. For both cases, the 

reading is defined in the vicinity of the maximum loads. While for both cases, linear 

behavior is evident throughout the entire loading, the rate of change in strain increases 

when the mild steel in the bottom flange of Splice 2 yields (Event 2).  

6.4.2 Test Setup 2 - Experimental vs. Computational Results 

Fig. 6.4 presents the results for Test 2, where the loads were applied at the overhang 

portion of the test specimen to assess the performance of Splice 3 for high negative 

moment and high shear intensity. The diagonal crack angle was ߠ = 35.5°. Therefore, the 

two-panel configuration (ߠ = 35.26°) was chosen as it is closest to the crack angle. Based 

on the first live load analysis, at the time of failure, the transverse strain (ߝଵ) in critical 

strut reached 0.0122. Using Eq. (15), the strut softening coefficient was determined: ߞ =

0.46.  

Fig. 6.4 (d) presents two longitudinal displacement profiles for the super-

assemblage specimen during Test 2 at two specific loads: (i) 2ܲ = 2140 ݇ܰ representing 

the service limit state; and (ii) and 2ܲ = 4000 ݇ܰ at failure. Results of C-STM are in 

noticeably good agreement with the experimental observations for both service limit state 

(uncracked behavior) and at failure. In order to capture the actual displacement of the test 

specimen, the supports and the tie-down are modeled as flexible springs, rather than rigid 

supports.   
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(a) Concrete sub-truss 

 
(b) Arch and PT sub-truss 

 
(c) Steel and pretensioning strand sub-truss 

 
(d) Longitudinal displacement profile 

 
(e) force-displacement (f) longitudinal strain (g) transverse strain (εv ) 

 

Fig 6.4. Negative moment analysis for Test 2 showing sub-truss configurations for 
the experimental specimen. 
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Fig. 6.4 (e) presents the force-deformation behavior of Splice 3 and the end of 

overhang during Test 2. Solid lines represent the experimental data and dashed lines 

present the results of C-STM. After the specimen achieved its maximum “failure” 

displacement, the pressure in the actuator was released and the loads removed. This led to 

a reduction in deflection to 10 mm. The computational reduction in displacement led to a 

linear drop-off in loads. The unloading results for the end of the overhang agrees quite 

well with the experimental results, however, the residual displacement of Splice 3 is 

slightly underestimated by C-STM model.   

The black numbers shown on Fig. 6.4 (a), (b), (c), and (e) represent the main events 

that led to failure. According to C-STM results, when loads reached 2ܲ = 2472 ݇ܰ, 

cracks appeared on the deck over the interior support (Event 1). As loads reached 2ܲ =

2709 ݇ܰ, a range of cracks in the deck extended and emerged over the splice region 

(Event 2). The stress in bottom chord at both sides of interior support reached 0.5݂′௖ when 

the applied load was 2ܲ = 3508 ݇ܰ. At the same time stresses in two concrete struts 

reached 90% of softened capacity (0.9݂ߞ′௖). At 2ܲ = 3880 ݇ܰ, top pretensioning strands 

yielded over the interior support (Event 3). When applied loads reached 2ܲ = 3980 ݇ܰ 

and 2ܲ = 3990 ݇ܰ the struts reached their softened capacity followed shortly thereafter 

by the bottom flange becoming overstressed and “failed” in compression (Event 4). Based 

on the C-STM results, evidently after the top pretensioning yields, the stress in the bottom 

flange increases rapidly. Unlike for positive moment where the presence of the deck slab 

leads to lower neutral axis depth, in negative moment only the relatively small area of the 

bottom flange carries the applied compression stresses. At this point the load transfer 
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mechanism is a combination of shear transfer through struts and arch members, and 

flexural load transfer through the top and bottom flanges. As soon as struts reached their 

maximum capacity and ceased to carry additional load, the overstress in the bottom flange 

led to “failure” of the specimen in compression.  

The C-STM analysis shows the results are in very satisfactory agreement with the 

experimental observations. Moreover, the C-STM followed the same chain of events that 

led to failure. The excessive transverse strain in struts also suggests an extended network 

of diagonal cracks in the web, which is in agreement with the experimental observations.  

Fig. 6.4 (f) and (g) compare the strain in the longitudinal and transverse 

reinforcement of Splice 2, respectively. As shown in Fig. 6.4 (f), reinforcement in both 

top and the bottom flange of the splice never reach the yield strain, leading to a semi-

brittle failure due to the short span. Results of Fig. 6.4 (g) show the transverse strain 

measured on a hoop within the Splice 3. While for both cases, linear behavior is evident 

throughout the entire loading, the rate of change in strain increases when crack in the deck 

expands over the splice region (Event 2). 

6.4.3 Test Setup 3 -  Experimental vs. Computational Results 

Fig. 6.5 presents the C-STM model geometry and results for Test 3, where the actuators 

were moved to be nearby Splice 1. In order to avoid additional damage to Splice 2, a 

temporary pedestal was placed adjacent to Splice 2 to create a short span to apply high 

shear and moderate positive moment to Splice 1. Initially a 10 mm gap existed between 

the soffit of the girder and the temporary pedestal, which closed up with applied loading. 

The diagonal crack angle was ߠ = 35.5°. Therefore, the two-panel configuration (ߠ =
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35.26°) was chosen as it is closest to the crack angle. Based on the first live load analysis, 

at the time of failure, the transverse strain (ߝଵ) in the critical strut reached 0.0025. Using 

Eq. (15), the strut softening coefficient was determined as ߞ = 0.81.  

Fig. 6.5 (d) presents two longitudinal displacement profiles for the super-

assemblage specimen during Test 3 at two specific loads: (i) 2ܲ = 1980 ݇ܰ representing 

service limit state; and (ii) and 2ܲ = 5340 ݇ܰ at maximum actuator capacity. In order to 

capture the actual displacement of the test specimen, supports are modeled as flexible 

springs, representing the neoprene bearing pad, rather than rigid supports. Results of C-

STM are in very good agreement with the experimental observation for both the service 

limit state (uncracked behavior) and at maximum loading.  

During Test 3, the actuators reached their maximum capacity prior to specimen 

failure. Therefore, the C-STM is used to predict the failure mechanism of the specimen 

during Test 3 had there been sufficient actuator capacity available. The results of C-STM 

up to available data is used to validate the effectiveness of the model, and then loading of 

the C-STM model is continued until failure.  

Fig. 6.5 (e) presents the results of force-deformation behavior of Splice 1. The 

solid line represents the experimental data and the dashed line presents the C-STM results. 

Black numbers shown on Fig. 6.5 (a), (b), (c), and (e) represent the main events that led 

to failure. According to C-STM results, the gap between the soffit of the girder and the 

temporary pedestal closed when loads reached 2ܲ = 1747 ݇ܰ (Event 1). This is the 

reason that specimen shows an increase stiffness at higher loads. Following Event 1, due 

to the effective shorter span, the shear demands increased significantly. As the applied 
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loads increased, cracks appeared in the bottom flange of Splice 1 at 2ܲ = 3694 ݇ܰ (Event 

2). When loads reached 2ܲ = 4397 ݇ܰ,  the mild steel in the bottom flange of Splice 1 

yielded (Event 3). The computational C-STM results predicts that when loads would reach 

2ܲ = 5685 ݇ܰ, the stress in the strut shown in Fig. 6.5 (a) would reach its softened 

capacity and specimen would fail near the temporary pedestal seat (Event 4).  

Fig. 6.5 (f) and (g) compare the strain in longitudinal and transverse reinforcement 

of Splice 2, respectively. As shown in Fig. 6.5 (f), reinforcement in the bottom flange of 

the splice yields (Event 2), as only minimal reinforcement is present in bottom flange of 

Splice 1 as no pretensioning strand passed through the splice region. As for the top flange, 

strains follow the strain in compression concrete and does not yield. Results of Fig. 6.3 

(g) show the transverse strain measured on a hoop within Splice 2. Evidently, bars in splice 

region did not yield throughout the entire course of loading, which is also in agreement 

with the experimental data. 
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(a) Concrete sub-truss 

 
(b) Arch and PT sub-truss 

 
(c) Steel and pretensioning strand sub-truss 

 
(d) Longitudinal displacement profile 

 
(e) force-displacement (f) longitudinal strain (g) transverse strain (εv ) 

 

Fig 6.5. High shear analysis for Test 3 showing sub-truss configurations for the 
experimental specimen. 
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6.5 DISCUSSION 

For the C-STM analysis of the specimen, initially force control method was adopted to 

apply live loads. The model was then updated to apply loads in displacement control. 

While the results of force control and displacement control were identical up to failure, 

the former analysis stopped as soon as the loads reached the maximum capacity of the 

model. On the other hand, under displacement control, the displacement of specimen 

continued beyond maximum (peak) load until the target displacement was achieved. 

During this process, there was a drop in load carrying capacity. In another words, the 

displacement control approach enables important features such as post-peak behavior of 

the structure to be captured. Moreover, a displacement control analysis allows the 

unloading portion of analysis which is not feasible with the force control method.  

While displacement control is able to provide more complete information 

regarding the overall behavior of the structure, the analyst may be required to deal with 

convergence issues. However, as SAP2000 uses an event-to-event solution strategy, these 

difficulties can be worked through. 

Results of three C-STM analysis suggest that as flexural demand increases in a 

section, the transverse strain in the struts increases which may effectively reduce the load 

carrying capacity of the struts. This may be attributed to the increase in tensile strain of 

tension side of the section, which ultimately affects the transverse strain of the struts. This 

phenomenon is also in accordance with the of Modified Compression Field Theory 

(Vecchio and Collins, 1986), where shear capacity of the section is adversely affected by 

net tensile strain in a section.  
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6.6 CONCLUSIONS AND CLOSING REMARKS 

Compatibility Strut-and-Tie Model (C-STM) was adopted to simulate the behavior of an 

in-span spliced prestressed concrete girder bridge test specimen. Three test setups were 

considered for three splices to assess the behavior of each splice under different 

combination of shear and moment. A prediction model was developed for each test setup 

and the results of C-STM were compared to the experimental data. The following remarks 

are results of C-STM and comparison with experimental data.  

1. C-STM is a powerful method of analysis for various types of concrete structures,

especially for analysis and design of structural systems with different classes of

disturbed regions. This research has demonstrated that the C-STM can

satisfactorily predict the behavior of prestressed girder structures for different

combinations of shear and moment. Results of this investigation suggest that C-

STM can successfully capture the force-deformation behavior of structures for

both the elastic and inelastic regim under different load combinations.

2. Unlike classical force-based strut-and-tie (plastic truss) modeling and the modified

compression field theory, C-STM can effectively predict the global and local

behavior of structures in terms of both forces and deformations. Moreover, in

contrast with finite element methods, the C-STM is a minimalistic modeling

strategy that requires remarkably few members to model structural systems

possessing considerable inherent complexity.
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3. Application of loads in displacement control enhances the results of C-STM 

analysis by providing valuable information on post-peak behavior of the structure, 

as well as unloading stiffness and residual displacement upon load removal.  

4. C-STM predicted rather well the performance at the critical sections and 

effectively captured the failure modes and load transfer mechanisms. Based on the 

results, for Test 1 (splice 2), the performance of the specimen could be improved 

by providing a better load path in the bottom flange or by having PT ducts closer 

to bottom flange to create an alternative load path. For Test 2 (Splice 3), additional 

compression mild steel as well as transverse reinforcement would effectively 

increase the ductility of the region and avoid premature failure. For Test 3 (Splice 

1), the specimen withstood load as expected and given the short span, shear failure 

was inevitable, considering that the region was originally designed for flexure and 

low shear. Additional transverse steel would improve the performance.  
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7 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

7.1 SUMMARY 

This dissertation has provided a systematic investigation on the design, analysis and 

performance of in-span spliced prestressed concrete girder bridges by providing design 

procedures, conducting a full-scale experimental study, and through an analytical and 

computational modeling investigation using contrasting approaches.  

In Chapter 3, the concept of deflection balancing along with the load balancing 

approach was introduced to provide a platform for design of slab-on-in-span spliced 

prestressed concrete girder bridges. Three methods of construction were investigated that 

benefit from in-span splices: shored, partially shored, and heavy-lift (span-by-span) 

construction. Design procedures and optimal construction sequences were compared and 

contrasted, and discussed in detail. A prototype bridge geometry was designed for all three 

methods of construction and the results compared and conclusions drawn. 

Chapter 4 presented the experimental performance of a full-scale test specimen 

that was abstracted from a prototype three-span continuous slab-on-prestressed concrete 

girder bridge. A super-assemblage test specimen comprised of four precast pretensioned 

concrete girder segments that were joined together with three cast-in-place in-span splices 

followed by the casting of a reinforced concrete deck slab. Post-tensioning was applied to 

the entire super-assemblage structure to provide overall continuity. Three different loading 

setups were used to investigate the performance of each of the splices. The intention of 

the different test setups was to investigate splice performance under: (i) high positive 
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moment and moderate shear; (ii) high negative moment and high shear; and (iii) moderate 

positive moment and high shear. Results were presented and analyzed for the full-scale 

laboratory tests on each splice regions under service load through to failure.  

Based on the results of the experimental investigation it became evident that within 

the more lightly prestressed splice regions the diagonal cracking was instrumental in 

adversely affecting the overall performance and thereby reduce their post-cracked ultimate 

strength and the deformability of the spliced girder bridge as a system. Therefore, in 

Chapter 5 a generalized moment-curvature approach was developed along the critical 

diagonal crack plane to directly account for the effects of flexure-shear interaction. A 

formulation was also provided to calculate the “nominal capacity” of such sections 

incorporating the interacting effects of flexure and shear. Analyzing the behavior on a 

critical diagonal section was validated from companion full-scale test results.  

In Chapter 6 Compatibility Strut-and-Tie Modeling (C-STM) was introduced as 

an effective alternative method of structural analysis when members were subjected to 

high moment demands coupled with high shear intensity. The C-STM approach was 

advanced to model the behavior of slab-on-spliced prestressed concrete girder bridges 

where shear-flexure interaction influenced system performance particularly near disturbed 

regions as well as those regions that were spliced. The efficacy of the approach was 

demonstrated by modeling the experimental performance of the test specimen. 

7.2 KEY FINDINGS AND CONCLUSIONS 

The key conclusions drawn from the experimental testing and analytical modeling are 

presented in this section.   
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Based on the results of design case studies, in-span splicing is an effective 

technique for expanding the span length of slab-on-prestressed precast concrete girder 

bridges. By providing versatile options for design and construction, in-span splicing may 

effectively double the span length of simply supported prestressed concrete girder bridges 

from about 45 m to 90 m. While in current practice, post-tensioning strands are generally 

stressed prior to casting the deck concrete (due to deck replacement concerns), results of 

design and analysis suggest that application of part of the PT after casting the deck may 

enhance the durability of the deck slab.  

Results of the experimental study suggest that splices have significantly lower 

flexural capacity compared to precast prestressed concrete girder segments, which is 

mainly attributed to the contribution of pretensioning strands to the flexural capacity of 

precast segments. In general, slab-on-spliced precast concrete girder bridges have higher 

ductility in positive moment regions compared to negative moment regions, which is 

attributed to the contribution of the deck in positive bending. Additional compression steel 

and increased concrete area in the bottom flange would help such sections gain higher 

ductility. It is observed that small cracks completely close upon removal of the applied 

load, which may greatly enhance the durability of post-tensioned in-span spliced concrete 

girder bridges. The experimental observations also suggest that vertical flexural cracks 

and diagonal shear cracks emerge in the vicinity of splice regions which may give rise to 

the flexure-shear interaction and adversely affect the overall performance of such regions.  

The network of diagonal and vertical cracks in the splice regions may form critical 

Z-plane sections. Moment-curvature analysis may be generalized to capture the flexure-
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shear interaction within the splice regions by incorporating the existing shear forces on 

the Z-plane sections into the equilibrium equations of moment-curvature analysis. The 

results of such analysis reveal that the coupled effect of shear and flexure may reduce the 

overall performance of the sections by reducing the capacity and ductility. Z-plane 

sections also give rise to the “compression shift” phenomenon, which refers to the shift on 

the compression side of the Z-plane section. Due to this phenomenon, the demand on the 

splice section increases which needs to be taken into account for design of in-span splices.  

While moment-curvature analysis may provide a satisfactory result for sectional 

analysis of in-span splices, Compatibility Strut-and-Tie Modeling (C-STM) may 

effectively simulate the overall behavior of the structure. C-STM analysis results provide 

remarkably good agreement with the experimental data and can be a powerful approach 

for analysis of in-span spliced concrete girder bridges. On the other hand, beam theory 

may fail to accurately predict the behavior of such structures, as it neglects the effect of 

shear demands on flexural performance of the structure. Application of load through 

displacement control for C-STM analysis, would provide a thorough understanding of the 

uncracked, cracked, post-yield, and post peak behavior of the structure.   

7.3 ANSWERING THE ORIGINAL RESEARCH QUESTIONS 

Based on the literature review presented in Chapter 2, five research questions were 

presented that this research intended to answer. In this section, the questions are restated 

and answers are presented. 

Question 1: Given that the standard slab-on-I-girder bridges are one of the most 

economical options in Texas and the US, is it possible to adopt a splicing 
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method to effectively double the span length of existing prestressed concrete 

girder bridges and reach span lengths of up to 90 m? 

Given the limitation on length of individual precast concrete girder segments, the span of 

simply supported girder bridges is limited to 45 m. However, results of this research 

suggest that in-span splicing provides versatile practical design options thereby span 

lengths of such bridges may be expanded up to 90 m. Three methods of construction are 

identified in this study that adopt in-span splices: (i) shored construction; (ii) partially-

shored construction; and (iii) heavy lift (span-by-span) construction. Design procedures 

and construction sequences are presented to confirm the feasibility and applicability of 

this technique.  

Question 2: How do the splice and the structure perform under normal service loads? 

And what is the performance of the structure, and more specifically the 

splices, if they are overloaded to failure?  

Through an extensive experimental investigation as well as analytical and numerical 

modeling, the performance of the splice regions as well as the entire bridge system was 

studied for three different demand combinations: (i) high positive moment and moderate 

shear; (ii) high negative moment and high shear; and (iii) moderate positive moment and 

high shear. From the experimental performance as well as computational results, it was 

deduced that structural integrity was entirely satisfied during service limit states and no 

cracks were observed under service live loading. It was observed that at the ultimate limit 

state, the coupling effect of shear and flexure adversely affected the performance of the 

splice regions, reducing their capacity and ductility.  
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Question 3: Given that in-span splices are generally located in the regions with minimal 

flexural demands, the shear demands at splice locations remain high. 

Therefore, how would the interaction of shear and flexure in splice regions 

be affected by the post-cracking performance of in-span splices? 

The splice regions possess significantly lower flexural capacity, as the pretensioning 

strands are discontinued in these regions. Therefore, splices are generally positioned at 

locations with lower flexural demands, which subsequently carry relatively higher shear 

demands. On the other hand, while flexural demands are relatively lower than at the mid-

span (for positive moment) and at the pier (for negative moment), they remain relatively 

high for the splice sections, due to their significantly lower flexural capacity. Hence, 

generally splice regions experience both high shear and flexural demands. Experimental 

observations revealed that this coupled effect may emerge as a new critical state, where 

the flexure-shear interaction may adversely affect the performance of in-span splices 

particularly at ultimate conditions.  

During the experimental study, it was observed vertical flexural cracks in the splice 

regions were followed by diagonal shear cracks in the narrow web of the splice and 

adjacent precast girders. The combination of vertical and diagonal cracks created a Z-

plane section where the tension side resided in the splice region, and the compression side 

was shifted to the adjacent precast girder segment. An analytical and computational 

approach was developed in the form of moment-curvature analysis to incorporate the 

effect of existing shear forces on the Z-plane in the equilibrium formulation of original 

moment-curvature analysis. The result of the enhanced moment curvature analysis 
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revealed that the coupling effect of shear and flexure may reduce the capacity and ductility 

of the splice region.  

Furthermore, a Compatibility Strut-and-Tie (C-STM) approach was adapted and 

further developed to capture the overall performance of the structure. Computational 

models were made for three splices under three different load combinations, simulating 

the experimental testing investigation. Results were found to agreeable reasonably well 

with the experimental data and the performance of the test specimen was captured quite 

well for all three cases. It was deduced that for in-span spliced continuous prestressed 

concrete girder bridge systems, the C-STM approach may effectively capture the overall 

performance of the structure.  

Question 4: Given that due to the narrow web of I-girder sections, and the existence of 

post-tensioning ducts within the web, high inelastic shear deformations are 

possible; how well can existing methods of analysis predict the performance 

of a spliced girder bridge?  

Prediction models were developed prior to the testing phase of the experimental study 

based on Euler beam theory. Moment curvature analysis was developed to predict the 

performance of the splice regions as well as the precast girder segments. Experimental 

results revealed that while predicting models were able to capture the performance of the 

structure in the service limit state (uncracked behavior), they over-estimated the capacity 

and ductility of the splices. As discussed before, the lower capacity and ductility was 

mainly attributed to the coupling effects of shear and flexure. Given that beam theory does 

not consider the contribution of shear in the flexural behavior of the structure, it was 
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deduced that this method was not able to capture the flexure-shear interaction and, hence, 

failed to correctly predict the nominal capacity of the structure.  

Question 5: Considering that splice regions are prone to diagonal cracks, how would the 

design demands of this regions and the adjacent girder sections be affected?  

As discussed before, the coupling effect of shear and flexure may adversely impact the 

capacity and ductility of the splice region. The concept of “compression shift” was 

introduced to describe the critical state where failure occurred along the Z-plane sections. 

It was deduced that the reduction in capacity of the splice regions may be adjusted for 

design purposes using the compression shift concept. 

7.4 RECOMMENDATIONS FOR CURRENT PRACTICE AND FUTURE 
RESEARCH 

This research was conducted to provide technical answers and solutions to the research 

questions presented in Chapter 2. Based on the results of experimental investigations and 

computational modeling, the following recommendations are proposed for current 

practice as well as for future research.  

7.4.1 Current Practice 

1. While current practice is skeptical about stressing a portion of the post-tensioning 

strands after casting the deck concrete due to deck replacement issues, pre-

compression of the deck concrete may significantly increase the durability of the 

deck. Results of the experimental study show that even if minor cracks emerge in 

the deck, the effect of post-tensioning would close those cracks in a compressed 

state. Therefore, it is recommended that a portion of post-tensioning be applied 
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after the deck concrete is cast (Stage II PT) and provisions be made to temporarily 

de-tension Stage II PT if deck replacement is needed. 

2. While splices with minimal reinforcement may be designed to provide the required 

capacity at service load conditions and up to ultimate loading, lack of a sufficiently 

strong load path may adversely affect the performance of splices. It is 

recommended that splices be designed to provide stronger load paths in top and 

bottom flanges to withstand the flexural demands.  

3. Given that splices have lower capacity due to the lack of pretensioning, they are 

generally placed in locations with lower flexural demands, which corresponds to 

increased shear demands in such regions. The coupled effect of shear and flexure 

may give rise to a new critical state where diagonal cracks shift the compression 

side of the critical section. It is recommended that splice sections be designed for 

higher flexural demands.  

4. Given that flexure-shear interaction arises new critical state in the splice regions, 

and considering that beam theory neglects the effect of shear on flexural 

performance of the structures, it is recommended that more sophisticated methods, 

such as the C-STM approach be used for analysis of in-span spliced prestressed 

concrete girder bridges.  

5. Prestressed girders and splices have shown lower ductility in negative moment 

regions compared to positive moment regions. This is mainly attributed to the 

contribution of deck slab concrete in providing enhanced compression capacity 

which is absent in negative regions. In order to improve the compression capacity 
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of the continuous prestressed concrete girder bridges in negative moment regions, 

it is recommended that thickened sections be used over the piers with high negative 

moment demands.  

7.4.2 Future Research 

 To expand the current state-of-art and practice, the following research questions are 

proposed regarding in-span spliced concrete girder bridges: 

Question 1: Given that in-span splices generally possess lower flexural capacity due to 

lack of pretensioning strands, what methods may be used to provide a strong 

load path through the top and bottom flanges of such regions? 

Results of this study proposed that lack of a strong load path in the splice regions may 

create critical failure states where the overall performance of the structure is adversely 

affected as loads approach ultimate conditions. Over the past decades, researchers have 

proposed various splice details to enhance the performance of those regions, especially for 

on-pier splices. However, the effectiveness of such details is not clear for in-span splices, 

given that shear-flexure interaction may affect the performance of such regions. A 

comprehensive study is required to consider different enhanced splice details for in-span 

splices and experimentally and analytically investigate the effectiveness of each detail. 

Question 2: Results of this study suggest that the moment curvature analysis may be 

effectively enhanced to incorporate the effects of flexure-shear interaction as 

an integrated analysis method. How can this method be further developed to 

provide more accurate and reliable results? 
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Shear-flexure interaction can be a potential critical state for in-span spliced concrete girder 

bridges. Generalized moment-curvature analysis that incorporates the effects of flexure-

shear interaction may be adapted to provide a better understanding of such effects. 

However, the current theory does not provide a general approach on the initiation of 

diagonal cracks. Also, it assumes that no shear is transferred between the diagonal struts 

through aggregate interlock and only considers the shear contribution of concrete in the 

uncracked compression region. While the current theory with both shortcomings may still 

capture the lower bound solution and ultimate strength, it may be further improved to 

provide a thorough understanding of the overall performance of the cracked section. 

Question 3: Compression shift phenomenon is identified in this research as an effect of 

flexure-shear interaction, which may adversely reduce the capacity and 

ductility of the Splice regions. How can this phenomenon be incorporated in 

a routine design practice?  

Based on the experimental data and the results of the computational modeling, the capacity 

of the splices may be adversely affected by flexure-shear interaction. Through emergence 

of a critical state on a Z-plane section, the compression side of the critical section may be 

shifted to the adjacent girder segment, which is herein referred to as the “compression shift 

effect”. Results of moment-curvature analysis suggest that the compression shift 

phenomenon would decrease the capacity and ductility of the splice region. While this 

effect may be analyzed by the proposed methods in this study, a design approach is 

required to facilitate a routine office designed. The results of the moment-curvature 

analysis suggest that the splice region should be design for the higher demand between the 



205 
 

compression side and tension side of the Z-plane section, but the extension of the Z-plane 

is dependent on the diagonal crack angle and the height of the diagonal crack. Further 

investigation and parametric studies are required to ensure a safe and practical design 

approach to compensate for the compression shift phenomenon.  

Question 4: While current practice, as well as result of this study suggest that in-span 

splicing may effectively extend the span length of precast concrete girder 

bridges, it is mainly considered for bridges with straight girder lines. How 

can this technique be further developed to provide a feasible option for 

curved bridges? 

While I-shaped girders are the subject of this study, the in-span splicing technique may 

also be adopted for U-shaped beams as several examples of in-span spliced U-girder 

bridges exist in current practice. Given that torsion is one of the biggest challenges in 

curved structures, U-shaped sections (with a cast-in-place lid on top) provide an appealing 

solution to overcome the torsion demands. However, many engineers as well as DOTs 

have been skeptical about adapting such a technique to curved bridges. It would be very 

beneficial to conduct an experimental study along with a sophisticated 3-D analysis to 

support the current specifications to ensure a safe and economical design. 

 



206 
 

REFERENCES 

AASHTO (2012). AASHTO LRFD Bridge Design Specifications. 6th Edition, 

American Association of State Highway and Transportation Officials 

(AASHTO), Customary U.S. Units, Washington, D.C. 

Abdel-Karim, A. and Tadros, M.K.  (1992). Design and Construction of Spliced I-Girder 

Bridges. PCI Journal, 33, 114–122. 

Alawneh, M. (2013). Curved Precast Prestressed Concrete Girder Bridges. Ph.D. 

Dissertation, University of Nebraska, Lincoln, Nebraska, August 2013, 359 pp. 

Bishop, E.D. (1962). Continuity Connection for Precast Prestressed Concrete Bridges. 

ACI Journal, 585–599. 

Burns, N. H. (1964). Moment Curvature Relationships for Partially Prestressed Concrete 

Beams. PCI Journal, 9(1), 52-63. 

Caroland, W.B., Depp, D., Jenssen, H., and Spaans, L. (1992). Spliced Segmental 

Prestressed Concrete I-Beams for Shelby Creek Bridge. PCI Journal, 37(5), 22–

33. 

Castrodale, R.W. and. White, C.D (2004). Extending Span Ranges of Precast Prestressed 

Concrete Girders. Transportation Research Board, National Cooperative 

Highway Research Program, Report No. 517, 603 pp. 

Cattaneo, S., Giussani, F., and Mola, F. (2012). Flexural Behaviour of Reinforced, 

Prestressed and Composite Self-Consolidating Concrete Beams. Construction 

and Building Materials, 36, 826-837. 



207 
 

Cladera, A., Marí, A., Ribas, C., Bairán, J., and Oller, E. (2015). Predicting the Shear–

Flexural Strength of Slender Reinforced Concrete T and I Shaped Beams. 

Engineering Structures, 101, 386-398. 

Collins, M. P., Bentz, E. C., and Sherwood, E. G. (2008). Where Is Shear Reinforcement 

Required? Review of Research Results and Design Procedures. ACI Structural 

Journal, 105(5), 590-600. 

Dimmerling, A., Miller, R., Castrodale, R., Mirmiran, A., Hastak, M., and Baseheart, T. 

(2005). Connections Between Simply Supported Concrete Beams Made 

Continuous: Results of NCHRP Project 12-53. Transportation Research Record: 

Journal of the Transportation Research Board, (1928), 126-133. 

Endicott, W.A. (1996). Precast Super Bulb Tees Create Innovative Bridge. Ascent 

Winter, PCI publication, 30–32.  

Ficenec, J. A., Kneip, S. D., Tadros, M. K., and Fischer, L. G. (1993). Prestressed 

Spliced I-Girders: Tenth Street Viaduct Project, Lincoln, 

Nebraska. Precast/Prestressed Concrete Institute Journal, 38(5). 

Fitzgerald, J.B. and Stelmack, T.W. (1996). Spliced Bulb-Tee Girders Bring Strength 

and Grace to Pueblo’s Main Street Viaduct. PCI Journal, 41(6), 40–54. 

Holden, T., Restrepo, J., Mander, J. B. (2003). "Seismic Performance of Precast 

Reinforced And Prestressed Concrete Walls." Journal of Structural Engineering, 

129(3), 286-296. 



208 
 

Hueste, M.D., Mander, J.B., and Parkar, A.S. (2011). Continuous Prestressed Concrete 

Girder Bridges, Volume 1: Literature Review and Preliminary Designs. Texas 

Department of Transportation, Report No. 0-6651-1, 176 pp. 

Hueste, M.D., Mander, J.B., Baie, R., Parkar, A.S., Parchure, A., Prouty, M., and 

Sarremejane T. (2016). Continuous Prestressed Concrete Girder Bridges, Volume 

2: Analysis, Testing, and Recommendations. Texas Department of 

Transportation, Report No. 0-6651-2, 278 pp. 

Janssen, H.H. and Spaans, L. (1994). Record Span Spliced Bulb-Tee Girders Used in 

Highland View Bridge. PCI Journal, 39(1), 12–19.  

Kaar, P. H., Kriz, L. B., Hognestad, E. (1960). Precast-Prestressed Concrete Bridges: 1. 

Pilot Tests of Continuous Girders. Journal of PCA Research and Development 

Laboratories, 2(2), pp. 21–37.  

Karthik, M. M., and Mander, J. B. (2011). “Stress-Block Parameters for Unconfined and 

Confined Concrete Based on a Unified Stress-Strain Model.” ASCE Journal of 

Structural Engineering, 137(2), 270–273. 

Karthik, M. M., Mander, J. B., and Hurlebaus, S. (2016). Displacement-Based 

Compatibility Strut-and-Tie Method and Application to Monotonic and Cyclic 

Loading. Journal of Structural Engineering, 142(6), 04016010. 

Kim, J. H., and Mander, J. B. (1999). Truss Modeling of Reinforced Concrete Shear-

Flexure Behaviour. Technical Report MCEER - 99-0005, University at Buffalo, 

New York.  



209 
 

Kim, J. H., and Mander, J. B. (2000a). Cyclic Inelastic Strut-Tie Modeling of Shear-

Critical Reinforced Concrete Members. American Concrete Institute, SP 193, 

707-728.  

Kim, J. H., and Mander, J. B. (2000b). Seismic Detailing of Reinforced Concrete Beam-

Column Connections. Structural Engineering and Mechanics, 10(6), 589-601.  

Kim, J. H., and Mander, J. B. (2005). Theoretical shear strength of concrete columns due 

to transverse steel. Journal of Structural Engineering, 131(1), 197-199.  

Kim, J. H., and Mander, J. B. (2007). Influence of Transverse Reinforcement on Elastic 

Shear Stiffness Of Cracked Concrete Elements. Engineering Structures, 29(8), 

1798-1807. 

Lin, T. Y., Kulka, Yang and Associate (1968). Prestressed Concrete for Long-Span 

Bridges. Prestressed Concrete Institute. Chicago, IL. 

Mander, J. B., Priestley, M. J., and Park, R. (1988). Theoretical Stress-Strain Model for 

Confined Concrete. Journal of Structural Engineering, 114(8), 1804-1826. 

Marti, P. (1985, January). Basic Tools of Reinforced Concrete Beam Design. In Journal 

Proceedings, 82(1), pp. 46-56. 

Mattock, A.H. and Kaar, P.H. (1960). Precast-prestressed Concrete Bridges III: Further 

Tests of Continuous Girders. Journal of PCA Research and Development 

Laboratories, 2(3), pp. 51–78. 

Menegotto, M., Pinto, and P. E. (1973). Method Of Analysis For Cyclically Loaded RC 

Frames Including Changes In Geometry And Non-Elastic Behaviour Of 



210 
 

Elements Under Combined Normal Force And Bending. In IABSE Congress 

Reports of the Working Commission (Vol. 13). 

Miller, R.A., R.W. Castrodale, A. Mirmiran, and M. Hastak (2004). Connection of 

Simple Span Precast Concrete Girders for Continuity. National Cooperative 

Highway Research Program, Report No. 519, 203 pp.  

Mirmiran, A., Kulkarni, S., Miller, R., Hastak, M., Shahrooz, B., and Castrodale, R. 

(2001b). Positive Moment Cracking in the Diaphragms of Simple-Span 

Prestressed Girders Made Continuous. SP 204 Design and Construction Practices 

to Mitigate Cracking, E. Nawy, Ed., American Concrete Institute, Detroit, 117–

134 pp.  

Moore, A., Williams, C., Al-Tarafany, D., Felan, J., Massey, J., Nguyen, T., Schmidt, 

K., Wald, D., Bayrak, O., Jirsa, J., and Ghannoum, W. (2015). Shear Behavior of 

Spliced Post-Tensioned Girders. Center for Transportation Research, Report. no. 

0-6652-1. 

Mörsch, E. (1902) Der Eisenbetonbau: seine Theorie und Anwendung. Stuttgart : Verlag 

Konrad Wittwer 

Mumber, J., Foster, D. M., Lambert, E. D., and Saunders, C. A. (2003). Ocean City-

Longport Replacement Bridge Requires Precast Concrete Durability for Harsh 

Marine Conditions. PCI journal, 48(6), 32-45. 

Naaman, A. E., Harajli, M. H., and Wight, J. K. (1986). Analysis of Ductility in Partially 

Prestressed Concrete Flexural Members. PCI Journal, 31(3), 64-87. 



211 
 

Newhouse, C.D., Roberts-Wollmann, C.L., and Cousins, T.E. (2005). Development of 

an Optimized Continuity Diaphragm for New PCBT Girders. FHWA/VRTC 06-

CR3, Virginia Transportation Research Council, 77 pp. 

Nicholls, J. J., and Prussack, C. (1997). Innovative Design and Erection Methods Solve 

Construction of Rock Cut Bridge. PCI Journal, 42(4), 42-55. 

Nikzad, K.A., Trochalakis, T., Seguirant, S.J., and Khaleghi, B. (2006). Design and 

Construction of the Old 99 Bridge – An HPC Spliced Girder Structure. PCI 

Journal, 23(18), 98–109.  

Oehlers, D., Haskett, M., Ali, M., Lucas, W., and Muhamad, R. (2011). Our Obsession 

with Curvature in RC Beam Modelling. Advances in Structural 

Engineering, 14(3), 391-404. 

Oesterle, R. G., Glikin, J. D., Larson, S. C. (1989). Design of Precast-Prestressed Bridge 

Girders Made Continuous. National Cooperative Highway Research Program, 

Report No. 322, Transportation Research Board, Washington, D.C. 

Park, R., Paulay, T. (1975). Reinforced concrete structures. John Wiley & Sons, 

Hoboken, New Jersey. 

Park, R., Thompson, K. J. (1980). Ductility of Prestressed and Partially Pretressed 

Concrete Beam Sections. PCI Journal, 25(2), 46-80. 

Paulay, T. (1971a). Coupling Beams of Reinforced Concrete Shear Walls. Journal of the 

Structural Division, 97(3), 843-862. 



212 
 

Pirayeh Gar, S., Head, M., and Hurlebaus, S. (2011). Tension Stiffening in Prestressed 

Concrete Beams Using Moment-Curvature Relationship. Journal of Structural 

Engineering, 138(8), 1075-1078. 

Recupero, A., D’Aveni, A., and Ghersi, A. (2005). Bending Moment–Shear Force 

Interaction Domains for Prestressed Concrete Beams. Journal of Structural 

Engineering, 131(9), 1413-1421. 

Ritter, W. (1899). Die Bauweise Hennebique, Hennebiques Construction Method. 

Rodriguez-Gutierrez, J. A., and Aristizabal-Ochoa, J. D. (2001). M-P-φ Diagrams for 

Reinforced, Partially, and Fully Prestressed Concrete Sections under Biaxial 

Bending and Axial Load. Journal of Structural Engineering,127(7), 763-773. 

Ronald, H.D. (2001). Design and Construction Considerations for Continuous Post-

tensioned Bulb Tee Girder Bridges. PCI Journal, 46(3), 44–66. 

Rosenblueth, E., and de Cossio, R. D. (1965). Instability Considerations in Limit Design 

of Concrete Frames. ACI Special Publication, 12, 439-463. 

Russo, G., and Zingone, G. (1991). Flexure-Shear Interaction Model for Longitudinally 

Reinforced Beams. Structural Journal, 88(1), 60-68. 

Sawyer, H. A. (1965). Design of Concrete Frames for Two Failure Stages. ACI Special 

Publication, 12, 405-437. 

Schlaich, J., Schäfer, K., and Jennewein, M. (1987). Toward a consistent design of 

structural concrete. PCI journal, 32(3), 74-150. 



213 
 

Scott, R.M. (2010). Experimentally Validated Compatibility Strut and Tie Modeling of 

Reinforced Concrete Bridge Piers. Master of Science Thesis, Texas A&M 

University, 188 pp.  

Scott, R. M., Mander, J. B., and Bracci, J. M. (2012). Compatibility strut-and-tie 

modeling: Part I-Formulation. ACI Structural Journal, 109(5), 635. 

Scott, R. M., Mander, J. B., and Bracci, J. M. (2012). Compatibility Strut-and-Tie 

Modeling: Part II-Implementation. ACI Structural Journal, 109(5), 645. 

Shushkewich, K. W. (1990). Moment-Curvature Relationships for Partially Prestressed 

Concrete Beams. Journal of Structural Engineering, 116(10), 2815-2823. 

Sritharan, S., and Ingham, J. M. (2003). Application of strut-and-tie concepts to concrete 

bridge joints in seismic regions. PCI Journal, 48(4), 66-90. 

Sun, C. (2004). High Performance Concrete Bridge Stringer System. Ph.D. Dissertation, 

The University of Nebraska- Lincoln, 228 pp.  

Tadros, M.K. (2007). Design Aids for Threaded Rod Precast Prestressed Girder 

Continuity System. Nebraska Department of Roads Research Report, 103 pp.  

Tadros, M.K. and Sun, C. (2003). Implementation of the Superstructure/Substructure 

Joint Details. University of Nebraska, Omaha, Department of Civil Engineering, 

Nebraska Department of Roads Research Report, Project No. SPR-PL-1(038), 

514 pp. 

To, N. H. T., Ingham, J. M., and Sritharan, S. (2001). Monotonic Nonlinear Strut-And-

Tie Computer Models. Bulletin of the New Zealand Society for Earthquake 

Engineering, 34(3), 169-190.  



214 
 

To, N. H. T., Ingham, J. M., and Sritharan, S. (2002). Strut-And-Tie Computer 

Modelling of Reinforced Concrete Bridge Portal Frames. Bulletin of the New 

Zealand Society for Earthquake Engineering, 35(3), 165-189 

To, N. H. T., Ingham, J. M., and Sritharan, S. (2003). Strut-And-Tie Computer 

Modelling of Reinforced Concrete Bridge Joint Systems. Journal of Earthquake 

Engineering, 7(4), 581-590. 

TxDOT (2010). TxDOT Bridge Design Manual. Bridge Division, Texas Department of 

Transportation, Austin, Texas. 

Urmson, C. R., and Mander, J. B. (2011). Local Buckling Analysis of Longitudinal 

Reinforcing Bars. Journal of Structural Engineering, 138(1), 62-71 

Williams, C., Moore, A., Al-Tarafani, D., Massey, J., Bayrak, O., Jirsa, J., and 

Ghannoum, W. (2015). Behavior of the Splice Regions of Spliced I-Girder 

Bridges. Texas Department of Transportation, Report No. 0-6652-2, 226 pp. 

Wolf, T. S., Frosch, R. J. (2007). Shear Design of Prestressed Concrete: A Unified 

Approach. Journal of Structural Engineering, 133(11), 1512-1519. 

Zhu, R. R. H., Wanichakorn, W., Hsu, T. T. C., and Vogel, J. (2003). Crack Width 

Prediction Using Compatibility-Aided Strut-And-Tie Model. ACI Structural 

Journal, 100(4), 413-421. 



215 

APPENDIX A 

DESIGN EXAMPLE 

A.1 OVERVIEW 

An important design principle for post-tensioning is to balance the dead load as much as 

practical. Different stages of prestressing are necessary and should be applied in such a 

sequence to ensure that the girders perform properly through all fabrication and 

construction stages, including casting, hauling, erection, and deck construction, until the 

bridge is open to traffic. Therefore, different methods of construction and different 

construction stages may require different approaches for selecting the prestress profile and 

the stressing sequence.  

Two broad methods of construction are commonly used for continuous prestressed 

concrete girder bridges: shored and partially shored construction. Because the method of 

supporting girders in each case is different, construction loads may vary for each segment 

and location along the girder length. Therefore, the prestress design is not likely to be 

identical for both cases, even though the aim of load balancing may exist through the entire 

design procedure for both methods of construction.  

Appendix A outlines the basic design information that is common for both methods 

of construction. This is followed by a design example for shored construction. The design 

example includes prestress design, stress checks, ultimate flexural strength checks, 

deflection checks, and shear design. The AASHTO LRFD Bridge Design Specifications 

(AASHTO 2012) are referenced in the design examples. 
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A.2 DESIGN PARAMETERS 

Fig. A.1 (a) presents a side elevation of one-half of the bridge, which is symmetrical about 

its centerline. In consultation with a TxDOT panel of engineers, the following parameters 

were selected for the design examples:  

 A three-span configuration using 190-240-190 ft. 

 Based on transportation limitations, the length of the drop-in and end girder 

segments was 140 ft, while that of on-pier segment was 96 ft.  

 Length of splice connections is 2 ft. 

 Tx70 girder sections were modified such that a 9 in. web was used to accommodate 

PT ducts, instead of the standard 7 in. web. 

Fig. A.1 (b) shows the bridge cross-section at the midspan. The bridge has a total 

width of 46 ft and total roadway width of 44 ft. The bridge superstructure consists of six 

Tx70 girders spaced 8 ft center-to-center, with 3 ft overhangs on each side designed to act 

compositely with an 8 in. thick cast in place (CIP) concrete deck. The wearing surface 

thickness is 2 in. TxDOT standard T501 type rails are considered in the design. Three 

design lanes are considered for the purpose of design in accordance with the AASHTO 

LRFD Specifications (AASHTO 2012). 
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(a) Side Elevation of the Bridge 

 
(b) Cross-Section of the Bridge 

 

 

(c) Non-Composite Section (d) Composite Section 

Fig. A.1 Bridge Geometry and Cross-Section Properties 
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A standard Tx70 girder was adopted for the design and modified to comply with 

the requirements for continuity and post-tensioning effect. The web width of the standard 

Tx70 girder was increased to 9 in. so as to enable accommodation of the post-tensioning 

ducts. The width of top flange was increased to 44 in. and that of the bottom flange was 

increased to 34 in. Table A.1 gives the composite and non-composite section properties 

for the modified Tx70. Fig. A.1 (a) and (b) show the details of non-composite and 

composite section for the prismatic modified Tx70 girder, respectively. 

 

Table A.1. Section Properties for Prismatic Modified Tx70 Girder (9 in. Web). 

Girder Type 
Depth of N.A. 
from Top, yt 

(in.) 

Depth of N.A. 
from Bottom, yb 

(in.) 

Area,  
A 

(in.2) 

Moment of 
Inertia, Ix 

(in.4) 
Tx70 
Modified 

37.75 32.25 1106 687,111 

Tx70 Modified 
Composite 

31.75 48.25 1842 1,461,059 

 
 
 

A.3 MATERIAL PROPERTIES 

Table A.2 gives the design parameters selected for the application examples. The design 

parameters such as concrete strength are based on standard practices that are followed 

throughout Texas. A relative humidity of 65 percent is assumed based on the average value 

in Texas as specified in AASHTO LRFD Specifications (AASHTO 2012) Article 5.4.2.3. 

The other parameters, which include prestressing steel and mild steel, are based on the 

AASHTO LRFD Specifications (AASHTO 2012). 
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Table A.2. Design Parameters. 

Parameter Selected Value 
Concrete strength at service for deck slab, ƒ'c 4 ksi 
Precast Concrete strength at release, ƒ'ci 6.5 ksi 
Precast Concrete strength at service, ƒ'c 8.5 ksi 
Coefficient of thermal expansion of concrete 6x10-6/º F 
Relative humidity 65% 

Mild steel 
Yield strength, ƒy 60 ksi 
Modulus of elasticity, Ec 29,000 ksi 

 
Prestressing steel 

Strand diameter 0.6 in. 
Ultimate tensile strength, ƒpu 270 ksi – low relaxation 
Yield strength, ƒpy 0.9 ƒpu 
Stress limit at transfer, ƒpi ƒpi ≥ 0.75 ƒpu 
Stress limit at service, ƒpe ƒpe ≥ 0.8 ƒpy 
Modulus of elasticity, Ep 28,500 ksi 
Coefficient of friction, μ 0.25 
Wobble coefficient 0.0002/ ft 
Anchor set 0.375 in. 

 
 
 
 

Table A.3. Dead Loads for Modified Tx70 Girder. 

Load Type Value (kip/ft) Applied to 

Self-weight prismatic 1.152 Girder Section 

Self-weight haunch  
(for pier segment-hybrid 
case) 

1.152–2.488 Girder Section 

Deck weight 0.800 Girder Section 

Haunch weight  
(between girder and deck) 

0.079 Girder Section 

Barrier weight 0.109 Composite Section 

Wearing surface 0.187 Composite Section 
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A.4 DEAD LOADS 

Dead loads for design are addressed in the AASHTO LRFD Specifications (AASHTO 

2012) Article 3.5.1. Dead loads considered in the design include girder self-weight and 

weights of the haunch, slab, barrier, and wearing surface. For the haunch segment, self-

weight varies linearly with increasing depth from a prismatic section at the splice to the 

centerline of pier. The load due to the deck is distributed to the individual girders based 

on the center-to-center spacing between girders. The loads due to the wearing surface and 

barrier loads act on the composite section and are distributed equally to all the girders. 

Table A.3 gives the dead loads acting on each individual girder for the bridge considered. 

A.5 LIVE LOADS 

AASHTO LRFD Specifications (AASHTO 2012) Article 3.6 describes the HL-93 truck 

live load model. Three traffic lanes are considered for the design in accordance with the 

AASHTO LRFD Specifications (AASHTO 2012). The live load is to be taken as one of 

the following combinations, whichever yields maximum stresses at the section considered. 

 Design Truck and Design Lane Load 

The HL-93 design truck consists of one front axle weighing 8 kips and two rear axles 

weighing 32 kips each, spaced 14-30 ft apart. A dynamic load allowance factor of 33 

percent is considered for the design truck. The design lane load consists of 0.64 klf 

uniformly distributed in the longitudinal direction and is not subjected to a dynamic load 

allowance. Fig. A.2 shows the details for design truck and design lane load. 

The design tandem load consists of a pair of 25 kip axles spaced 4 ft apart and is 

subjected to a dynamic load allowance. The design lane load consists of 0.64 klf uniformly 
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distributed in the longitudinal direction and is not subjected to a dynamic load allowance. 

Fig. A.3Fig. A.3  shows the details for design tandem and design lane load. 

The live load moments and shear forces, including the dynamic load effects, are 

distributed to the individual girders using distribution factors (DFs). AASHTO LRFD 

Tables 4.6.2.2.2 and 4.6.2.2.3 specify the DFs for moment and shear for I-shaped girder 

sections. The use of these DFs is allowed for prestressed concrete girders having an I-

shaped cross-section with a composite slab, if the conditions outlined below are satisfied. 

For bridge configurations not satisfying the limits below, refined analysis is required to 

estimate the moment and shear DFs. Table A.4 gives the LRFD live load DFs for the case 

of a concrete deck on an I-girder. 

 

 
 



 

 

222 

 

Fig. A.2 Design Truck and Design Lane Load. 

 
 

 

Fig. A.3 Design Tandem and Design Lane Load. 
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(a) Design Truck and Design Lane Load 

 

 

 

 

 

(b) Design Tandem and Design Lane Load 

Fig. A.4 Critical Load Placement of HL-93 Vehicular Live Load over Continuous Span for Maximum Shear Demand 

 
 
 

 

Fig. A.5 Critical Load Placement of HL-93 Vehicular Live Load over Continuous Span for Maximum Deflection. 
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Table A.4. LRFD Live Load DFs for Concrete Deck on I-Girder. 

Category DF Formulas 
Range of 

Applicability 

Live Load 
Distribution per 
Lane for Moment in 
Interior Beam 

One Design Lane Loaded: 

0.06 + ൬
ܵ

14
൰

଴.ସ

൬
ܵ
ܮ

൰
଴.ଷ

ቆ
௚ܭ

௦ݐܮ12.0
ଷቇ

଴.ଵ

 

Two or More Design Lanes Loaded: 

0.075 + ൬
ܵ

9.5
൰

଴.଺

൬
ܵ
ܮ

൰
଴.ଶ

ቆ
௚ܭ

௦ݐܮ12.0
ଷቇ

଴.ଵ

 

3.5 ≤ ܵ ≤ 16.0 
4.5 ≤ ௦ݐ ≤ 12.0 
20 ≤ ܮ ≤ 240 

௕ܰ ≥ 4 
10000 ≤ ௚ܭ

≤ 7000000 

Live Load 
Distribution per 
Lane for Moment in 
Interior Beam 

One Design Lane Loaded: 
Lever Rule 

Two or More Design Lanes Loaded: 
݃ = ݁݃௜௡௧௘௥௜௢௥ 

݁ = 0.77 +
݀௘

9.1
 

−1.0 ≤ ݀௘ ≤ 5.5 
 

Live Load 
Distribution per 
Lane for Shear in 
Interior Beam 

One Design Lane Loaded: 

0.36 +
ܵ

25
 

Two or More Design Lanes Loaded: 

0.2 +
ܵ

12
− ൬

ܵ
35

൰
ଶ.଴

 

3.5 ≤ ܵ ≤ 16.0 
4.5 ≤ ௦ݐ ≤ 12.0 
20 ≤ ܮ ≤ 240 

௕ܰ ≥ 4 
 

Live Load 
Distribution per 
Lane for Shear in 
Interior Beam 

One Design Lane Loaded: 
Lever Rule 

Two or More Design Lanes Loaded: 
݃ = ݁݃௜௡௧௘௥௜௢௥ 

݁ = 0.6 +
݀௘

10
 

−1.0 ≤ ݀௘ ≤ 5.5 
 

 
Note: The abovementioned terms in Table A.4 are defined as follows: 

ܫ)݊  = ௚ܭ + ௚݁ܣ
ଶ). 

݊ = Modular ratio between the girder and slab concrete. 

 .Area of the girder cross-section, in2  = ܣ

݁௚
ଶ =  Distance between the centroid of the girder and the slab, in. 

ܵ =  Beam Spacing, ft. 
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 .Span Length, ft  = ܮ

௕ܰ =  Number of beams. 

݀ ௘  =  Distance from exterior web of exterior beam to the interior edge of curb or 

traffic barrier, in. 

 .௦ =  Thickness of slab, in ݐ

The following conditions must be met to use the DFs of Table A.4: 

1. Width of slab is constant. 

2. Number of girders ( ௕ܰ) is not less than four. 

3. Girders are parallel and of the same stiffness. 

4. The roadway part of the overhang, ݀௘ ≤ 3.0 ft. 

5. Curvature in plan is less than 4 degrees. 

6. Cross-section of the bridge girder is consistent with one of the cross-sections 

given in LRFD Table 4.6.2.2.1-1. 

7. 3.5 ≤ ܵ ≤ 16.0. 

8. 4.5 ≤ ௦ݐ ≤ 12.0. 

9. 20 ≤ ܮ ≤ 240. 

10. 10,000 ≤ ௚ܭ ≤ 7,000,000. 

According to AASHTO LRFD Specifications (AASHTO 2012) Article 3.6.1.3.1, 

the maximum shear and negative moment under vehicular live load is calculated as the 

larger of:  

1. 90 percent of the effect of (Two Design Trucks + Design Lane Load). 
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2. 100 percent of the effect of (Two Design Tandems + Design Lane Load). 

The two design trucks or tandems are spaced a minimum of 50 ft between the lead 

axle of one truck/tandem and the rear axle of the other truck/tandem on either side of the 

interior support to produce the maximum negative moment demand and shear demand. 

The two design trucks/tandems must be placed in adjacent spans to produce maximum 

force effects. Fig. A.4 shows the details for design truck tandem and design lane load, and 

design tandem and design lane load. 

A.6 ALLOWABLE STRESS LIMITS 

The design of spliced girder bridges involves various stages. It is necessary to ensure that 

the girder stresses are within the allowable stress limits during all stages of construction. 

Table A.5 and Table A.6 summarize the allowable stress limits as given in the AASHTO 

LRFD Specifications (AASHTO 2012). The allowable stress limits have been computed 

for the girder for a specified concrete compressive strength at service (f’c) of 8.5 ksi and a 

specified concrete compressive strength at transfer (f’ci) of 6.5 ksi based on practical limits 

used by TxDOT. For the deck, a specified concrete compressive strength (f’c) of 4 ksi is 

used. The reduction factor, ߶௪, for the compressive stress limit at the final loading stage 

is taken equal to 1.0 when the web or flange slenderness ratio, calculated according to the 

AASHTO LRFD Specifications (AASHTO 2012) Article 5.7.4.7.1, is less than or equal 

to 15. When either the web or flange slenderness ratio is greater than 15, the provisions of 

the AASHTO LRFD Specifications (AASHTO 2012) Article 5.7.4.7.2 are used to 

calculate the value for the reduction factor ߶௪ (see AASHTO LRFD Article 5.9.4.2). 
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Table A.5. Summary of Allowable Stress Limits in Girder.  

Stage of Loading Type of Stress 
Allowable Stress Limits 

f'c or f'ci 
(ksi) 

Limiting 
Value (ksi) 

Initial Loading Stage at 
Transfer 

Compressive −0.60 ݂ʹ௖௜ −3.90 

Tensile 0.24ඥ ݂ʹ௖௜ 0.612 

Intermediate Loading 
Stage at Service 

Compressive −0.45 ݂ʹ௖ −3.83 

Tensile 0.19ඥ ݂ʹ௖ 0.554 

Final Loading Stage at 
Service 

Compressive: Case I −0.60ߔ௪ ݂ʹ௖ −5.10 

Compressive: Case II −0.40 ݂ʹ௖ −3.40 

Tensile 0.19ඥ ݂ʹ௖ 0.550 
Note: Tension stresses are positive. 

 
 
 

Table A.6. Summary of Allowable Stress Limits in Deck. 

Stage of Loading Type of Stress 
Allowable Stress Limits 

 (ksi) ࢉʹࢌ 
Limiting 

Value 

Final Loading 
Stage 

Compressive −0.60 ݂ʹ௖ −5.10 

Tensile 0.19ඥ ݂ʹ௖ 0.554 
Note: Tension stresses are positive. 
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A.7 LIMIT STATES 

[AASHTO Art. 3.4.1, Table 3.4.1-1] 

 Service Limit State 

For prestressed concrete members, the service load design typically governs; therefore, 

the design satisfying the service load criteria usually meets the flexural strength limit state. 

Service load stresses are checked during various stages of construction based on the limits 

given in Table A.5 and Table A.6. Tension in prestressed concrete members is checked 

considering the Service III limit state while compression is checked using the Service I 

limit state as specified in the AASHTO LRFD Specifications (AASHTO 2012).  

Service I – checks compressive stresses in prestressed concrete components: 
 

 ܳ = ܥܦ)1.00 + (ܹܦ + ܮܮ)1.00 +  (A.1) (ܯܫ

where: 

ܳ   =  Total load effect. 

 .Self-weight of girder and attachment (slab and barrier) load effect  =  ܥܦ

 .Wearing surface load effect   = ܹܦ

 .Live load effect   =  ܮܮ

 .Dynamic load effect  =  ܯܫ

Service III – checks tensile stresses in prestressed concrete components: 
 

 ܳ = ܥܦ)1.00 + (ܹܦ + ܮܮ)0.80 + ܫ  (A.2) 
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 Flexure Strength Limit State 

The flexural strength limit state needs to be checked to ensure safety at ultimate load 

conditions. The flexural strength limit state design requires the reduced nominal moment 

capacity of the member to be greater than the factored ultimate design moment, expressed 

as follows: 

 

௡ܯ ߶  ≥  ௨ (A.3)ܯ

where: 

 .௨  =   Factored ultimate moment at a section, kip-ftܯ

 .௡ =   Nominal moment strength at a section, kip-ftܯ

߶  =   Resistance factor. 

   =   1.0 for flexure and tension of prestressed concrete members. 

The total ultimate design bending moment for the Strength I limit state, according 

to the AASHTO LRFD Specifications (AASHTO 2012) is as follows: 

 

௨ܯ  = (஽஼ܯ) 1.25 + (஽ௐܯ) 1.5 +  (A.4)  (௅௅ାூெܯ)1.75

where: 

஽஼ܯ     = Bending moment due to all dead loads except wearing surface, kip-ft. 

 .஽ௐ    = Bending moment due to wearing surface load, kip-ftܯ

 .௅௅ାூெ= Bending moment due to live load and impact, kip-ftܯ
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 Shear Limit State 

[AASHTO Art. 5.8] 
 

The AASHTO LRFD Specifications (AASHTO 2012) specify use of the Modified 

Compression Field Theory (MCFT) for transverse shear reinforcement. MCFT takes into 

account the combined effect of axial load, flexure, and prestressing when designing for 

shear. Shear in prestressed concrete members is checked through the Strength I limit state. 

The shear strength of concrete is based on parameters β and θ. The transverse 

reinforcement is based on demands of both transverse and interface shear. The interface 

shear design is based on shear friction theory where the total resistance is based on the 

cohesion and friction maintained by shear friction reinforcement crossing the interface 

shear plane. 

The AASHTO LRFD Specifications (AASHTO 2012) require that transverse 

reinforcement is provided at sections with the following condition: 

 

 ௨ܸ > 0.5߶( ௖ܸ + ௣ܸ) [AASHTO Eq. 5.8.2.4-1] 

 
where: 

௨ܸ =  Factored shear force at the section, kips. 

௨ܸ = (ܥܦ)1.25  + (ܹܦ)1.5 + ܮܮ)1.75 + ܫ  

 Shear force at the section due to dead loads except wearing surface  =  ܥܦ

load, kips. 

 .Shear force at the section due to wearing surface load, kips  =   ܹܦ

ܮܮ + ܫ  =  Shear force at the section due to live load including impact, kips. 
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௖ܸ =  Nominal shear strength provided by concrete, kips. 

௣ܸ =  Component of prestressing force in the direction of shear force, 

kips. 

߶ =  Strength reduction factor. 

 =  0.9 for shear in prestressed concrete members. 

The nominal shear resistance at a section is the lesser of the following two values:  

 

 ௡ܸ = ௖ܸ + ௦ܸ + ௣ܸ [AASHTO Eq. 5.8.3.3-1] 

and 

 ௡ܸ = 0.25 ௖݂
ᇱܾ௩݀௩ + ௣ܸ [AASHTO Eq. 5.8.3.3-2] 

 

Shear resistance provided by the concrete, ௖ܸ, is given as: 

 

 ௖ܸ = ඥߚ0.0316 ௖݂
ᇱܾ௩݀௩ [AASHTO Eq. 5.8.3.3-3] 

 

Shear resistance provided by the transverse steel reinforcement, ௦ܸ, is given as: 

 

 ௦ܸ =
஺ೡ௙೤ௗೡ(ୡ୭୲ ఏାୡ୭୲ ఈ) ୱ୧୬ ఈ 

௦
 [AASHTO Eq. 5.8.3.3-4] 

 

where: 

݀௩ = Effective shear depth, in. 
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ܾ௩ =   Girder web width, in. 

௖݂
ᇱ =   Girder concrete strength at service, ksi. 

௣ܸ =   Component of prestressing force in the direction of shear force, kips. 

 Factor indicating ability of diagonally cracked concrete to transfer   = ߚ

tension. 

 Angle of inclination of diagonal compressive stresses (slope of   = ߠ

compression field), radians. 

 in.2 ,ݏ ,௩ =   Area of shear reinforcement within a distanceܣ

 .Spacing of stirrups, in   = ݏ

௬݂ =   Yield strength of shear reinforcement, ksi. 

 Angle of inclination of diagonal transverse reinforcement to longitudinal   = ߙ

axis, taken as 90 degrees for vertical stirrups. 

A.8 DEFLECTION 

[AASHTO Art. 2.5.2.6.2] 

As a final check for service conditions, the girders are checked for allowable deflection 

under live load and impact as specified in the AASHTO LRFD Specifications (AASHTO 

2012) Section 2.5.2.6.2. The deflection limit state ensures that there are no undue 

vibrations in the bridge and also limits cracking in concrete members. In order to 

investigate maximum deflections for straight girder systems, all the design lanes are 

loaded and all the supporting components are assumed to deflect equally. The composite 

bending stiffness of an individual girder can be taken as the stiffness of the design cross-

section, divided by the number of girders. 
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The limits for maximum deflection as specified in AASHTO LRFD Specifications 

(AASHTO 2012) Article 2.5.2.6.2 for concrete construction are based on the span length 

L as follows: 

1. Vehicular load, general = L/800. 

2. Vehicular and/or pedestrian loads = L/1000. 

The live load is considered as specified in AASHTO LRFD Specifications 

(AASHTO 2012) Article 3.6.1.3.2, according to which, the deflection is calculated under 

the larger of the following: 

 Design Truck Load alone.  

 25 percent of Design Truck Load and full Design Lane Load. 

Fig. A.5 shows the critical load arrangement for vehicular live loads to produce 

maximum deflections in the continuous girders. Note that the axle loads shown are the full 

values, but should be reduced for the second load case provided above. 

A.9 PRESTRESS LOSSES 

[AASHTO Art. 5.9.5] 

Prestressing operations are accompanied with losses that result in reduction of the total 

prestressing force with time. The prestress losses are classified into instantaneous losses 

and long-term losses. The losses due to elastic shortening and initial steel relaxation are 

grouped into instantaneous losses. The losses due to creep, shrinkage, and steel relaxation 

after transfer are long-term losses. The losses due to creep and shrinkage are time 

dependent. Along with these losses, friction and anchor set losses also need to be 
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accounted for in post-tensioned members. Based on previous research, empirical formulas 

are provided for computation of prestress losses. An approximate method can be used for 

computation of prestress losses for preliminary design. The general equations for 

approximate estimation of prestress losses in prestressed concrete members are given 

below. 

 Approximate Estimation of Losses 

[AASHTO Art. 5.9.5.3] 

A.9.1.1 Elastic Shortening  

The AASHTO LRFD Specifications (AASHTO 2012) provide the following expression 

to calculate loss in prestress due to elastic shortening. 

For pretensioned members: 

 

 ∆ ௣݂ாௌ = 
ா೛

ா೎೔
 ௖݂௚௣ (A.5) 

For post-tensioned members: 

 

  ∆ ௣݂ாௌ = ቀ
ேିଵ

ଶே
ቁ 

ா೛

ா೎೔
 ௖݂௚௣  (A.6) 

where: 

∆ ௣݂ாௌ =  Prestress loss due to elastic shortening, ksi. 

 .௣ = Modulus of elasticity of prestressing reinforcement, ksiܧ

 .௖௜ =  Modulus of elasticity of girder concrete at release, ksiܧ

௖ݓ 33,000  = 
ଵ.ହඥ ௖݂௜

ᇱ . 
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 .௖ =  Unit weight of girder concrete, kcfݓ

௖݂௜
ᇱ  =  Girder concrete strength at transfer, ksi. 

௖݂௚௣ =  Sum of concrete stresses at the center-of-gravity of the prestressing 

steel due to the prestressing force at transfer and self-weight of the 

member at sections of maximum moment, ksi. 

ܰ =  Number of identical prestressing tendons. 

A.9.1.2 Steel Relaxation  

The AASHTO LRFD Specifications (AASHTO 2012) specify the following expressions 

to estimate the loss in prestress due to relaxation of steel. 

[AASHTO Eq. 5.9.5.4.2c-1] 

 

At transfer – low-relaxation strands initially stressed in excess of 0.5 ௣݂௨: 

  ∆ ௣݂ோଵ = 
୪୭୥ (ଶସ.଴௧)

ସ଴
൤

௙೛ೕ

௙೛೤
− 0.55൨ ௣݂௝  (A.7) 

where: 

∆ ௣݂ோ  =  Prestress loss due to steel relaxation at transfer, ksi. 

 .Time estimated in days from stressing to transfer   = ݐ

௣݂௝ =  Initial stress in tendon at the end of stressing, ksi. 

௣݂௬ =   Specified yield strength of prestressing steel, ksi. 

After transfer – low-relaxation strands: 
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 ∆ ௣݂ோଶ = 0.3ൣ20.0 − 0.4∆ ௣݂ாௌ − 0.2൫∆ ௣݂ௌோ + ∆ ௣݂஼ோ൯൧  (A.8) 

 

where: 

∆ ௣݂ோଶ =  Prestress loss due to steel relaxation after transfer, ksi. 

∆ ௣݂ாௌ  = Prestress loss due to elastic shortening, ksi. 

∆ ௣݂ௌோ  = Prestress loss due to concrete shrinkage, ksi. 

∆ ௣݂஼ோ  = Prestress loss due to concrete creep, ksi. 

A.9.1.3 Concrete Creep 

The AASHTO LRFD Specifications (AASHTO 2012) provide the following expression 

to estimate the loss in prestress due to creep of concrete: 

 ∆ ௣݂஼ோ = 12 ௖݂௚௣ − 7∆ ௖݂ௗ௣ ≥ 0  (A.9) 

where: 

∆ ௣݂஼ோ  = Prestress loss due to concrete creep, ksi. 

௖݂௚௣  = Sum of concrete stresses at the center-of-gravity of the prestressing 

steel due to prestressing force at transfer and self-weight of the 

member at sections of maximum moment, ksi. 

∆ ௖݂ௗ௣  = Change in concrete stresses at the center-of-gravity of the prestressing 

steel due to permanent loads except the dead load present at the time 

the prestress force is applied calculated at the same section as ௖݂௚௣, 

ksi. 
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A.9.1.4 Concrete Shrinkage 

The AASHTO LRFD Specifications (AASHTO 2012) provide the following expression 

to estimate the loss in prestress due to concrete shrinkage: 

 

  ∆ ௣݂ௌோ = 17 −  (A.10)  ܪ0.15

where: 

∆ ௣݂ௌோ  = Prestress loss due to concrete shrinkage, ksi. 

 Mean annual ambient relative humidity in percent, taken as 65 percent  =  ܪ

for this preliminary study. 

A.9.1.5 Losses due to Friction 

AASHTO LRFD Specifications (AASHTO 2012) Article 5.9.5.2.2 provides the following 

expression to estimate the loss in prestress due to friction between internal post-tensioning 

tendons and the duct: 

  ∆ ௣݂ி = ௣݂௝(1 − ݁ି(௄௫ାఓఈ)) (A.11) 

where:  

∆ ௣݂ி  = Prestress loss due to friction, ksi. 

௣݂௝ =  Stress in the post-tensioning tendons at jacking, ksi. 

 Length of a tendon from the jacking end to any point under  = ݔ

consideration, ft. 

 .Wobble friction coefficient, per ft of tendon  = ܭ

 .Coefficient of friction  = ߤ
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 Sum of the absolute values of angular change of the tendon path from = ߙ

the jacking end, or from the nearest jacking end if tensioning is done 

equally at both ends, to the point under investigation, radians. 

 Refined Estimate of Time Dependent Losses 

For complex prestressed concrete bridges, exact evaluation of prestress losses is desired. 

A more exact estimate of prestress losses can be made using the time step method. An 

approximate method can be used for computation of prestress losses for preliminary 

design. However, for final design, AASHTO LRFD Specifications (AASHTO 2012) 

Article 5.9.5.4.1 specifies a time step method for computation of prestress losses for 

spliced girder bridges. In refined estimate of time dependent losses, prestress losses are 

calculated at different stages of load application. The general equation for computing time 

dependent prestress losses is as follows: 

 

 ∆ ௣݂௅் = ൫∆ ௣݂ௌோ + ∆ ௣݂஼ோ + ∆ ௣݂ோ ൯
௜ௗ

+ (∆ ௣݂ௌ஽ + ∆ ௣݂஼஽ + ∆ ௣݂ோ − ∆ ௣݂ௌௌ)ௗ௙   

(A.12) 

where: 

∆ ௣݂ௌோ  = Prestress loss due to shrinkage of girder concrete between transfer and 

deck placement, ksi. 

∆ ௣݂஼ோ  = Prestress loss due to creep of girder concrete between transfer and 

deck placement, ksi. 
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∆ ௣݂ோ   = Prestress loss due to relaxation of prestressing strands between time 

of transfer and deck placement, ksi. 

∆ ௣݂ோଶ  = Prestress loss due to relaxation of prestressing strands in composite 

section between time of deck placement and final time, ksi. 

∆ ௣݂ௌ஽  = Prestress loss due to shrinkage of girder concrete between time of 

deck placement and final time, ksi. 

∆ ௣݂஼஽  = Prestress loss due to creep of girder concrete between time of deck 

placement and final time, ksi. 

∆ ௣݂ௌௌ  = Prestress gain due to shrinkage of deck in composite section, ksi. 

൫∆ ௣݂ௌோ + ∆ ௣݂஼ோ + ∆ ௣݂ோ ൯
௜ௗ

 = Sum of time dependent prestress 

losses between transfer and deck 

placement, ksi. 

(∆ ௣݂ௌ஽ + ∆ ௣݂஼஽ + ∆ ௣݂ோ − ∆ ௣݂ௌௌ)ௗ௙  = Sum of time dependent prestress 

losses after deck placement, ksi. 

However, the exact computation of prestress losses is cumbersome for spliced 

girder bridges because of multiple stages of prestressing and combined pretensioning and 

post-tensioning. According to AASHTO LRFD Specifications (AASHTO 2012) Article 

5.9.5.2.3, whenever combined pretensioning and post-tensioning is involved and when 

post-tensioning is not applied in identical increments, the effect of subsequent post-

tensioning on previously stressed members should be considered. Accordingly, multiple 

stages of prestressing will have an effect on creep and elastic shortening of members, 
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which needs to be included in the losses. A time step analysis that includes the effects of 

multiple stages of prestressing will provide a more accurate evaluation of prestress losses. 

The following expressions show the effect of multiple stages of prestressing on prestress 

losses. 

A.9.2.1 Losses in Pretensioning 

The following expression may be used to estimate the total prestress losses in the 

pretensioning strands due to pretensioning plus two stages of post-tensioning. 

 ∆ ௣்݂ = ∆ ௣݂ாௌ + ∆ ௣݂ோ + ∆ ௣݂஼ோ + ∆ ௣݂ௌோ + ൫∆ ௣݂ாௌ + ∆ ௣݂஼ோ൯
୔୘ଵ

+ ൫∆ ௣݂ாௌ + ∆ ௣݂஼ோ൯
୔୘ଶ

   

(A.13) 

where: 

∆ ௣்݂  = Total loss of prestress, ksi. 

∆ ௣݂ாௌ  = Loss due to elastic shortening, ksi. 

∆ ௣݂ோ  = Loss due to relaxation, ksi. 

∆ ௣݂஼ோ  = Loss due to creep, ksi. 

∆ ௣݂ௌோ  =  Loss due to shrinkage, ksi. 

(∆ ௣݂ாௌ + ∆ ௣݂஼ோ)௉்ଵ  =  Elastic shortening and creep loss due to Stage I PT, 

ksi. 

(∆ ௣݂ாௌ + ∆ ௣݂஼ோ)௉்ଶ  =  Elastic shortening and creep loss due to Stage II PT, 

ksi. 
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A.9.2.2 Losses in Stage I Post-tensioning 

The following expression may be used to estimate the total prestress losses in the Stage I 

post-tensioning strands when two stages of post-tensioning are used. 

 

 ∆ ௣்݂ = ∆ ௣݂ாௌ + ∆ ௣݂ோ + ∆ ௣݂ி + ∆ ௣݂஼ோ + ∆ ௣݂ௌோ + ൫∆ ௣݂ாௌ + ∆ ௣݂஼ோ൯
୔୘ଶ

 (A.14) 

 

where: 

∆ ௣݂ி  = Loss due to friction, ksi. 

The remaining variables are the same as defined above. 

 

A.9.2.3 Losses in Stage II Post-tensioning 

The following expression may be used to estimate the total prestress losses in the Stage II 

post-tensioning strands when it is the final stage of post-tensioning. 

 

 ∆ ௣்݂ = ∆ ௣݂ாௌ + ∆ ௣݂ோ + ∆ ௣݂ி + ∆ ௣݂஼ோ + ∆ ௣݂ௌோ (A.15) 

A software analysis may be performed to compute prestress losses for spliced 

girder bridges and various design programs are available for this purpose. An input of all 

the time-dependent material properties is required along with a description of geometric 

section properties, prestressing tendons, construction stages, and applied loads. Time 

intervals between various stages of construction are required. An exact estimation of 

prestress losses is not practical during the preliminary design stage. However, for detailed 
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design, a more precise evaluation of prestress losses using the time step method is 

recommended. 

A.10 DESIGN OF PROTOTYPE BRIDGE FOR SHORED CONSTRUCTION 

The following example gives the details for design of the three-span continuous precast 

prestressed concrete girder bridge described in Section A2 and A3 using shored 

construction. As noted above, a modified Tx70 girder section is used for this bridge. The 

design is based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2012). In 

shored construction, shoring towers are provided in both the end span and the center span 

at each splice location. The length of an individual girder segment is selected based on the 

length and weight limitations during handling at the precast plant and transportation. The 

girder spacing is based on typical practice followed by TxDOT. The design parameters 

such as material properties, strand diameter, and concrete strength are representative of 

typical values used in Texas. Details are provided in Section A1. 

A.11 DESIGN PHILOSOPHY 

The principle of post-tensioning (PT) is to balance the dead load. After construction is 

complete, the net load on the prestressed members will consist primarily of the transient 

live load. Because the self-weight of the segments is significant, the post-tensioning is 

applied in two stages. Stage I post-tensioning (PT1) will balance the self-weight of the 

segments for transportation, erection, and the first stages of construction. PT1 tendons are 

place in the individual segments. Stage II post-tensioning (PT2), on the other hand, is the 

continuity post-tensioning and is continuous along the entire length of the girder line to 

balance the deck weight and super-imposed dead loads. Pretensioning strands will also be 
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provided within the individual girder segments to counteract the moments that are 

produced because of the eccentricity of the Stage I PT at the ends of the segments. 

 
To reduce the cost of construction, the required force for post-tensioning should 

be minimized. The required PT force is proportional to the balanced load and inversely 

proportional to the drape of the tendons, such that: 

ܨ)  ∗ (ߜ =
ௐ∗௅మ

଼
   (A.16) 

where: 

 .Required post-tensioning force, kips  = ܨ

ܹ =  Balanced dead load, kips/ft. 

 .Span length, ft  = ܮ

 .Eccentricity of tendons, ft  = ߜ

Because the balanced load is the dead load of the structure and is fixed for a 

specific type of girder and bridge geometry, the drape should be maximized to minimize 

the prestressing force. The sequence of construction defines the loads that each girder and 

segment carry; therefore, the proposed stages for shored construction are described below. 

Then, the girder loads and required prestressing forces for balancing them are calculated. 
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A.12 HANDLING AND ERECTION – PRETENSIONING AND FIRST STAGE 
OF POST-TENSIONING DESIGN 

Pretensioning and Stage I post-tensioning are provided to balance the self-weight of the 

girders. One important issue during the hauling and erection is the location of the supports 

and lifting points. The lifting points and support locations should be determined according 

to the support locations for the segments during construction. For shored construction, the 

drop-in segments and end segments are supported at their ends, so end supports are used 

when they are transported from the precast plant to the construction site. The girder 

segments are pretensioned for self-weight during handling and transportation. Stage I post-

tensioning is applied to balance the self-weight of the girders. Fig. A.6 shows the support 

details during transportation of the drop-in and end segments. 

 
 

 

Fig. A.6 Transportation of Drop-in and End Segments. 
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On the other hand, the on-pier segment is supported at its midpoint, and will be 

seated on shore towers at its ends, so the post-tensioning profile will be selected to balance 

loads that produce negative moments. Hence, these segments are not designed to carry 

significant positive moments. To avoid any positive moments in the on-pier segments, 

they are transported by supporting it at the quarter span points from ends. The amount of 

prestress force required in the top flange of the on-pier segment is high because these 

segments cantilever over the piers and eventually support the ends of the drop-in and end 

segments. The on-pier girder segment is pretensioned for self-weight plus the girder 

reactions from the drop-in segment and end segment. Stage I post-tensioning is applied to 

balance the self-weight and the reaction from the drop-in and end segments. Also, until 

the stage when the pier segment supports the drop-in girder segment, the stresses in the 

bottom flange are high. This is offset by providing temporary Dywidag bars in the bottom 

flange. Fig. A.7 shows the details for support locations and prestressing during 

transportation of the on-pier girder segment.  

 

Fig. A.7 Transportation of On-Pier Segment. 

 

 
The span lengths and weights of the girder segments are taken into consideration 

during handling and transportation. In Texas, the maximum span length should be limited 
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to 160 ft, and the maximum weight limited to 200 kips based on input from precasters and 

contractors (Hueste et al. 2012). These values are primarily due to lifting limits at the 

precast plant and transportation limits to the construction site. Table A.7 gives the span 

lengths and weights for the girder segments. Sheet A-1 provides a sample calculation on 

design of pretensioning and Stage I post-tensioning for the drop-in segment.  

 

 

Table A.7. Segment Lengths and Girder Weights. 

Girder Segments Length  
(ft) 

Weight  
(kips) 

End Segment 140 161 

Drop-in-Girder Segment 140 161 

On-Pier Segment 96 111 

Recommended Limit 160 200 
 
 

 

Following the same procedure for design of pretensioning and Stage I PT strands, 

the end segments can be designed. The same procedure can also be used for the on-pier 

segments, but it should be kept in mind that the on-pier segments also carry half of the 

weight of the drop-in segments and end segments; therefore, their effect on the total 

negative moment should be considered in the design of on-pier segments. Table A.8 and 

Table A.9 summarize the pretensioning and Stage I PT requirements, respectively.  

 

 



 

247 

Table A.8. Pretensioning Design. 

Pretensioning 
Drop-in Segment End Segment On-Pier Segment 

Bottom Flange Bottom Flange Top Flange 

Tendons (0.6 in. dia.) 24 32 26 
Prestress at Transfer 
(kips) 

1054 1406 1142 

Effective Prestress 
(kips) 

843 1125 913 

 
 
 
 

Table A.9. Stage I Post-Tensioning Design. 

Post-Tensioning Drop-in Segment On-pier Segment End Segment 

Tendons (0.6 in. dia.) 19 (1 duct of 19) 38 (2 ducts of 19) 19 (1 duct of 19) 
Prestress at Transfer 
(kips) 

779 1558 779 

Effective Prestress 
(kips) 

662 1324 662 
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Sample Calculation: Pretensioning and PT1, for Drop-in Segment: 

 

Pretensioning: 

 Material: 0.6” dia, low relaxation strand, 

ƒpu= 270 ksi;  

Initial pretensioning at transfer (ƒpi) = 0.75ƒpu = 202.5 ksi 

Loss Estimate: 20 percent 

 

Post-tensioning: 

Material: 0.6” dia, low relaxation strand,  

ƒpu= 270 ksi 

Initial pretensioning at transfer (ƒpi) = 0.70ƒpu =189 ksi 

Loss Estimate: 15 percent 

 

Note: Center of prestressing steel (c.g.s.) is calculated, considering pretensioning 

 and PT1 together:  

 c.g.s.=
∑ Fiyi

∑ Fi
= 

Fpreypre
+FPT1y

PT1

Fpre+FPT1
 

 

Because the number of pretensioning strands is more flexible than for PT strands,  

first the number of ducts for PT1 is decided: 

 

For one duct of 19 strands for PT1, and solving the above equation for no  

eccentricity at the ends, and required eccentricity for balancing dead load, the  

number of strands for pretensioning and the profile of PT1 is defined:  

(Note that the area of 0.6” dia strands is 0.217 in2, yb=32.3 in., ytc=-37.7 in., 

minimum distance from girder face to centerline of pretensioning is assumed to be 6 

in.) 

a) At ends (x=0): 

 Fpreypre
+FPT1y

PT1
=0 

 n*0.8*202.5*0.217*(32.25-6)+19*0.85*189*0.217*(-37.75+6)=0 

 n=23 (For symmetry, use 24 strands) 
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b) At x=L/2 = 70 ft: 

 F=
W*L2

8*δ
  

 24*0.8*202.5*0.217+19*0.85*189*0.217=
1.15 k/ft*(140 ft)2

8*δ
  

 δ=1.87 ft=22.47 in. 

 

Note: Maximizing the drape will minimize the force, but it should be kept in mind that 

PT2 ducts will be running under the PT1 ducts. Assuming 3 ducts for PT2, and 

considering 6 in. clear cover from the soffit, 2 in. clear cover between ducts, the location 

of PT1 ducts will be as follows when the diameter of ducts is assumed to be 4 in.: 

y=32.25-6-3*4-3*2-
4

2
=6.25 in. 

Therefore the elevation of PT1 duct from top of the girder is:  

 ytop= 6.25+37.75 = 44 in.  

For the pretensioning strands, the centroid from top of the girder will be:  

ytop = 62 in.  

yavg=
24*62+19*44

24+19
=54 in. 

δ= 54-37.75=16 in < 22.5 in. N.G. 
Considering that 24 pretensioning strands can be placed in 2 rows, the centroid of the 

pretensioning strands can be taken down to 3.5 in. from soffit (2.5 in. to centroid of 

first row, and on a 2 in. spacing grid).  

Also, the PT duct may be taken to the top of the girder and be anchored on top of the 

girder (as shown in Fig. A.11) so that the c,g,s at the end is equal to 34 in. from top.  

yavg=
24*66.5+19*44

24+19
=56.6 in. 

δ= 56.6-34=22.6 in > 22.5 in.       O.K. 
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For the purpose of handling and transportation, temporary unbonded Dywidag 

threadbars are provided in the bottom flange of the pier segments. Once the pier segment 

is erected on site, it behaves as a cantilever, and the Dywidag bars are released. Dywidag 

threaded bars of 1.25 in. diameter and fpu equal to 150 ksi are considered for the design. 

A.13 CONSTRUCTION ON SITE 

After the girders are transported to the job site, the girders are lifted and placed on piers 

and temporary shoring towers. Then Stage II post-tensioning is carried out to balance the 

weight of the deck and to provide compression in the deck. Fig. A.8 shows the details of 

various stages of construction. The step-by-step construction procedure is as follows: 

1. Erect piers, abutments, and temporary supports. 

2. Place on-pier girder segments on the piers and secure the girders to the temporary 

shoring towers.  

3. Attach strongbacks to each end segment. Erect the end girder segments on the 

abutments and shoring towers. Connect the strongbacks to the on-pier girder 

segments. The shoring towers should be capable of transferring the reaction from 

the end girder segment to the foundation.  

4. Attach strongbacks to the ends of the drop-in girder segment. Erect the drop-in-

girder segment and connect the strongbacks to the on-pier girder segment. It is 

necessary that the end girder segments are installed prior to this step. This ensures 

that there is less rotation of the on-pier segment caused by the reaction of the drop-

in-girder segment. Tie-downs could also be used to prevent uplift at the end of the 

on-pier segment.  
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5. After all the segments have been placed, check the vertical alignment of the 

girders. Strongbacks help in maintaining the vertical alignment of the adjacent 

girders prior to threading the post-tensioning tendons through the ducts. Provide 

couplers between the ducts of adjacent girders at the splice locations. Then, thread 

the continuous Stage II PT tendons through the ducts in the webs of the girder 

segments. 

6. Cast the splices between the girder segments. Once the splices have cured and 

gained sufficient strength, remove the strongbacks.  

7. Construct the formwork for the deck and place the precast concrete deck panels 

and deck reinforcement. Pour the concrete for the deck. After the deck concrete 

has reached sufficient strength, stress the Stage II PT and then grout the tendons.  

8. Remove the temporary shoring towers. Cast the barriers and wearing surface and, 

after a suitable time interval, the bridge can be opened to traffic. 

Table A.10 provides the values for the Stage II post-tensioning design.  

 

 

Table A.10. Stage II Post-Tensioning Design. 

Post-Tensioning Drop-in Segment On-pier Segment End Segment 

Tendons (0.6 in dia.) 57 (3 ducts of 19) 57 (3 ducts of 19) 57 (3 ducts of 19) 

Force at Transfer 
(kips) 

2337 2337 2337 

Force Final (kips) 1987 1987 1987 
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The Stage II post-tensioning is designed to act continuously to balance the deck 

and superimposed dead load. Stage II PT will be carried out on site after the girders are 

erected on temporary supports and piers. Service stresses may control the amount of post-

tensioning provided. For the Stage II PT, 0.6 in. dia. low relaxation strands with fpu of 270 

ksi are considered. The jacking force in post-tensioning tendons is assumed to be 0.70 fpu, 

which is equal to 189 ksi. The force at transfer is calculated after taking the losses into 

account. Prestress losses of 15 percent are assumed in selection of the Stage II post-

tensioning. 

A.14 PRESTRESSING LAYOUT 

Fig. A.9 shows an overview of the longitudinal prestressing profiles for the shored case.  

Cross-sections are provided at several key locations illustrating the pretensioning and 

post-tensioning layout. Fig. A.11 (g) shows profile details of the post-tensioning layout 

for the three-span bridge. 
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A.15 MOMENTS DURING VARIOUS STAGES OF CONSTRUCTION 

The moments during the various stages of construction considered are computed at 

selected locations along the structure and are provided in Table A.11. The moments are 

computed at 0.4L from the abutment support of end span (Section A-A), at the end span 

splice (Section B-B), at the face of the pier (Section C-C), at the interior span splice 

(Section D-D), and at midspan of the interior span (Section E-E) as shown in the Fig. A.10. 

The moments due to girder self-weight, precast concrete panels (PCPs), and the wet CIP 

deck act on the non-composite girder section. The moments due to removal of shoring 

towers, superimposed dead load, and live load act on the composite girder section. The 

moments due to prestressing are computed before losses. Table A.11 provides a summary 

of the moments at each of these locations. Fig. A.11 and Fig. A.12 show the moments due 

to the permanent loads acting on the non-composite girder section and the composite 

girder section, respectively.  
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Fig. A.8 Stages of Construction. 
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(a) Prestressing Profiles 

(b) Prestressing Layout at Section A-A at Anchor End 

Fig. A.9 Prestressing Details for Shored Three-Span Girder. 
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(c) Prestressing Layout at Section B-B Near Midspan of End Span 

 
(d) Prestressing Layout at Section C-C at Splice Connection in End Span 

Fig. A.9 Continued. 
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(e) Prestressing Layout at Section D-D at Interior Pier 

 
(f) Prestressing Layout at Section E-E Near Midspan of Drop-In Segment 

Fig. A.9 Continued. 
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(g) Post-Tensioning Layout 

Fig. A.9 Continued. 
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Fig. A.10 Section Locations for Girder Moments. 

Table A.11. Girder Moments at Various Sections (kip-ft). 

Loading 

Section 
A-A 
(End 

Segment) 

B-B 
(Splice 

Exterior) 

C-C 
(Pier) 

D-D 
(Splice 

Interior) 

E-E 
(Drop-in 
segment) 

Girder Self-Weight 2822 - −1383 - 2822 
Pretensioning and Stage I 
PT 

−3281 - 5185 - −2896 

Reaction from Drop-in 
Segment 

- - −3871 - - 

Haunch and Deck 1293 −1719 −467 −1256 896 
Stage II Post- tensioning −4161 +195 5436 −327 −3344 
Shoring Support Removal 942 1763 −4593 1306 1306 
Superimposed Dead Load 725 11 −1391 15 739 
Live Load 5736 3660 −5391 2371 6109 
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(a) Self-weight and Girder Reaction 

(b) Pretensioning and Stage I Post-Tensioning 

(c) Wet Deck Weight 

(d) Girder Moments with Wet Deck 

Fig. A. 11 Moments Acting on Non-Composite Girder. 
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(a) Stage II Post-tensioning 

(b) Shoring Support Removal 

(c) Superimposed Dead Load 

(d) Total Composite Section Moments 

Fig. A.12 Moments Acting on Composite Girder. 
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A.16 SERVICE STRESS ANALYSIS 

Service stress analysis is carried out under the effect of dead loads, prestress, live loads, 

and temperature and thermal gradient. The stresses are checked at various stages of 

construction. The important construction stages for checking girder stresses are identified 

as follows: 

 Stage I: Support girder segments on piers and temporary supports.

 Stage II: Girders support weight of PCPs and wet CIP deck.

 Stage III: Apply Stage II post-tensioning, remove shoring towers, and cast

barriers.

 Stage IV: Open bridge to service.

For the various stages of construction, stress checks are provided at the following 

points: (1) 0.4L of the end span, (2) at the splice in the end span, (3) at the face of pier, 

and (4) at a splice in the center span, and (5) at the midspan of center span. Compression 

in prestressed concrete girders is evaluated using the AASHTO Service I limit state while 

tension in prestressed concrete girders is evaluated using the AASHTO Service III limit 

state.  

Fig. A.14 through Fig. A.18 present the stress blocks at Section A-A (0.40L of the 

end span), Section B-B (at the splice in the end span), Section C-C (at the face of the pier), 

Section D-D (at the splice in the center span), and Section E-E (at the midspan of the 

center span), as shown in Fig. A.13. Table A.12 provides a summary of the stresses at 

various sections. 
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Fig. A.13 Section Locations for Stress Checks. 

Fig. A.14 Stress Check at Section A-A (End Segment) for (a) Construction and (b) 
In-Service before and after Losses. 
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Fig. A.15 Stress Check at Section B-B (Splice in Exterior Span) for (a) Construction 
and (b) In-Service before and after Losses. 
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Fig. A.16 Stress Check at Section C-C (Over Pier) for (a) Construction and (b) In-
Service before and after Losses. 
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Fig. A.17 Stress Check at Section D-D (Splice in Interior Span) for (a) Construction 
and (b) In-Service before and after Losses. 
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Fig. A.18 Stress Check at Section E-E (Drop-in Segment) for (a) Construction and 
(b) In-Service before and after Losses. 
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Table A.12. Girder Stresses at Various Sections (ksi). 

Loading 
Component Location 

Section Limit 

A-A 
(End 

Segment) 

B-B 
(Splice 

Exterior) 

C-C 
(Pier) 

D-D 
(Splice 

 Exterior) 

E-E 
(Drop-in 
Segment) 

Compression 
(Service I) 

Tension 
(Service III) 

Step I 
(Before 
Loss) 

Girder 
Top −1.677 - −2.434 - −1.610 

−3.825 +0.550 
Bot −2.238 - −2.449 - −1.700 

Step II 
(Before 
Loss) 

Girder 
Top −2.519 +1.120 −2.738 +0.818 −2.194 

−3.825 +0.550 
Bot −1.500 −0.982 −2.183 −0.717 −1.189 

Step III 
(After 
Loss) 

Girder 
Top −3.391 −0.565 −2.566 −0.659 −3.327 

−3.825 +0.550 
Bot −2.800 −1.390 −4.176 −1.508 −2.139 

Deck 
Top −0.439 −1.208 −0.541 −1.027 −0.655 

−2.400 +0.380 
Bot −0.531 −1.112 −0.608 −0.975 −0.694 

Step IV - 
Service 
(After 
Loss) 

Girder 
Top −4.395 −1.199 −1.631 −1.070 −4.385 

−5.100 +0.550 
Bot −0.944 −0.217 −5.903 −0.481 −0.181 

Deck 
Top −1.316 −1.762 0.275 −1.385 −1.580 

−2.400 +0.380 
Bot −1.194 −1.531 0.009 −1.246 −1.393 

Bold font indicates stress values that exceed stress limits. 
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Both splice locations experience tensile stresses that exceed the allowable tensile 

stresses at service conditions when the deck is poured (Step II). This stress exceedance is 

addressed by providing two #6 U bent mild steel reinforcement in the top flange. In 

addition, any cracks that may form will close when the Stage II PT operation is carried 

out. 

The compressive stresses in the girder soffit at the interior support in the negative 

moment region were exceeded due to the large amount of PT tendons in the section. This 

stress exceedance may be addressed by increasing the specified concrete compressive 

strength to stay within the allowable compressive stress limit. Another option is to provide 

additional mild steel reinforcement in the compression zone. For this design, 16-#14 bars 

and four Dywidag bars were added in the bottom flange of the girder to improve the 

nominal capacity of the section as specified in the ultimate strength check. This additional 

mild steel reinforcement is also adequate to serve as compression reinforcement in the 

girder soffit at the interior support over the pier for the computed stress exceedance at 

service load conditions. 

The deck in the pier region experiences tensile stresses due to negative bending 

under service conditions. However, these tensile stresses are within the allowable tensile 

stress limits.  

A.17 DEFLECTION CHECK 

The girders are to be checked for allowable deflection under live load and impact as 

specified in AASHTO LRFD Specifications (AASHTO 2012) Article 2.5.2.6.2. 

Composite section properties are used in computing deflections that occur under service 
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loadings. According to AASHTO LRFD Specifications (AASHTO 2012) Article 

3.6.1.3.2, the deflection is calculated as the larger of: 

1. Design truck alone, or  

2. 25 percent of Design Truck Load and full Design Lane Load. 

The design truck load is multiplied with the dynamic amplification factor to 

compute deflections. The limit for maximum live load deflection is specified as L/800 

where L is the span length in inches (AASHTO 2012, Article 2.5.2.6.2). Table A.13 

provides the allowable and actual deflection values for the three-span bridge. The 

computed live load deflections are observed to be within the limits for both the exterior 

and interior spans. 

 

Table A.13. Live Load Deflection Check. 

Deflection Exterior Span Interior Span 

Allowable (in.) 2.85 3.60 

Actual (in.) 1.21 1.34 

 

A.18 FLEXURAL STRENGTH CHECK 

The flexural strength limit state must be checked to ensure safety at ultimate load 

conditions, and requires that the reduced nominal moment capacity of the member be 

greater than the factored ultimate design moment, expressed as follows:  

௨ܯ    ≤ ϕܯ௡   (A.17) 

where: 

 .௨  =   Factored ultimate moment at a section, kip-ftܯ
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 .௡ =   Nominal moment strength at a section, kip-ftܯ

߶  =   Resistance factor. 

   =   1.0 for flexure and tension of prestressed concrete members. 

The total factored moment at ultimate according to the AASHTO LRFD 

Specifications (AASHTO 2012) is given by:  

௨ܯ   = (஽஼ܯ) 1.25  + (஽ௐܯ) 1.5  +  (A.18)   (௅௅ାூெܯ) 1.75 

where: 

஽஼ܯ     = Bending moment due to all dead loads except wearing surface, kip-ft. 

 .஽ௐ    = Bending moment due to wearing surface load, kip-ftܯ

 .௅௅ାூெ= Bending moment due to live load and impact, kip-ftܯ

The moment capacity and demand is checked at the following points: (1) 0.4L of 

the end span, (2) at the face of pier, and (3) at the midspan of the center span. The moment 

capacity at ultimate depends on the number of strands, diameter of strands, stress in the 

stands, design strength of concrete, and the cross-section properties of the section. Table 

A.15 gives the moment demand and capacity for the three-span bridge. The capacity is 

greater than demand at each section considered.  

 

Table A.14. Moment Capacity and Demand at Ultimate. 

Capacity and Demand 
End  

Segment 
On-Pier 
Segment 

Drop-in 
Segment 

 ௨, kip-ft 14,940 20,680 15,330ܯ

ϕܯ௡, kip-ft 22,780 24,180 24,430 
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Table A.15. Moment Capacity and Demand at Ultimate. 

Capacity and Demand 
End  

Segment 
On-Pier 
Segment 

Drop-in 
Segment 

 ௨, kip-ft 14,940 20,680 15,330ܯ

ϕܯ௡, kip-ft 22,780 24,180 24,430 

 
 

 

The negative moment capacity provided by the pretensioning strands and post-

tensioning tendons at the interior supports is supplemented by adding mild steel 

reinforcement. For this design, 16-#14 bars and four 1.0 in. diameter Dywidag bars are 

added in the bottom flange of the girder to provide the additional capacity and meet the 

moment demand at the interior support over the pier. The mild steel reinforcement 

provided in the bottom flange acts as compression steel. 
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A.19 SHEAR STRENGTH CHECK  

MCFT is used for transverse shear design as specified in the AASHTO LRFD 

Specifications (AASHTO 2012). MCFT takes into consideration the combined effect of 

axial load, flexure, and prestressing when determining the shear strength provided by the 

concrete section. Fig. A.19 (a) shows the shear demand and shear design for the three-

span prototype bridge from the abutment to the centerline of the symmetric structure. Fig. 

A.20 shows the details of the shear reinforcement. The stirrup layout is as follows: 

 End girder segment:  

o #5 double-legged stirrups at a spacing of 4 in. are provided for a distance of 10 

ft from the abutment end of the end segment. 

o #5 double-legged stirrups at a spacing of 6 in. are provided from 10–20 ft from 

the abutment end of the end segment. 

o #5 double-legged stirrups at a spacing of 12 in. are provided in the remaining 

portion of the end segment.  

 Pier girder segment: 

o #5 double-legged stirrups at a spacing of 4 in. are provided for a distance of 29 

ft from the centerline of pier toward the center span and 24 ft from the 

centerline of pier toward the end span in the ends of the pier segment.  

o #5 double-legged stirrups at a spacing of 6 in. are provided in the remaining 

portions of the pier segment.  

 Drop-in girder segment for center span: 
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o #5 double-legged stirrups at a spacing of 6 in. are provided for a distance of 20 

ft from each end of the drop-in segment.  

o #5 double-legged stirrups at a spacing of 12 in. are provided in the remaining 

portion of the drop-in segment.  

The transverse bars were extended above the top flange to provide shear resistance 

for interface shear between the deck and the girder segments. The provided shear 

resistance at the interface plane was calculated based on Article 5.8.4.1-3 of the AASHTO 

LRFD Specifications (AASHTO 2012). The interface shear resistance is compared with 

the factored interface shear demand in Fig. A.19 (b).  

A.20 SPLICE DESIGN 

 Splice Details 

Splices are located at the dead load point of contraflexure in the prototype bridge to 

minimize the load demands at the splice. The width of the splice connection should be 

kept as small as possible because there is no pretensioning in this region and a minimal 

amount of mild steel reinforcement is provided. However, the splice width should be large 

enough to splice the continuity PT tendon ducts and allow for proper vibration of the cast-

in-place concrete for the splice. The width of the splice connection detail is 24 in. (2 ft) 

per TxDOT recommendations. Fig. A.21 shows the splice connection detail considered 

for the design.   
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(a) Transverse Shear Demand and Capacity 

 

 

 
(b) Interface Shear Demand and Capacity 

Fig. A.19 Transverse and Interface Shear Demand and Capacity. 
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Fig. A.20 Shear Reinforcement Details. 
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A partially prestressed splice connection detail is used at all splice locations. Mild 

steel reinforcement is provided in addition to continuity PT through the splice connection. 

The mild steel reinforcement consists of 180° bent hooked bars anchored into the adjacent 

girder flanges and extending into the joint. The mild steel bent bars are designed for the 

maximum factored design loads. The combination of PT and mild steel is expected to 

provide better durability and performance. Vertical reinforcement is provided to 

strengthen the splice connection for shear. The integrity of the splice connection largely 

depends on the shear transfer mechanism at the interface of the precast girder and closure 

pour. This shear transfer mechanism is mainly provided by the compressive force provided 

by the continuous PT, the lapped 180° bent hooked bars in the connection, and a single 

shear key. 

Prestressing and Reinforcement Details for the Splice 

Only the Stage II PT tendons are continuous through the splice connections. The 

pretensioned strands and the Stage I PT tendons terminate at the girder segment ends 

adjacent to the splice. Therefore, additional mild steel reinforcement was needed to 

achieve flexural strength at the splices. For the proposed splice connection detail, 

additional capacity is provided by mild steel 180° bent bars with details as presented in 

Table A.16 (see Fig. A.21). Table A.17 presents the prestressing design summary for the 

splices.  
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Fig. A.21 Partially Prestressed Splice Connection Detail. 
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Table A.16. Reinforcement Details for the Splices. 

Reinforcement Details Splices 

180° bent bars 
embedded in each girder 
segment at splice 

Top flange of each girder segment 1 - #6 

Bottom flange of each girder segment 2 - #6 

 
 
 

Table A.17. Prestressing Details for the Splices. 

Prestressing Details Splices 

 
Stage II Post-tensioning 
 

Tendons (0.6 in. dia.) 
(19 strands in each duct) 

57 (3 ducts) 

Force at Transfer  2337 kips 

 

 Flexural Strength Check 

The strength limit state of the splice connection is checked to ensure safety at ultimate 

load conditions based on the AASHTO LRFD Specifications (AASHTO 2012). The total 

ultimate bending moment for the interior splice, corresponding to the in-span splice in the 

end span of the prototype bridge, is ܯ௨ = 4874 kip-ft. Only the Stage II PT tendons run 

continuously through the splice connection, while the pretensioning strands and the Stage 

I PT tendons terminate at the girder segment ends adjacent to the splice. To enhance the 

flexural capacity and for crack control, 180° mild steel bent bars are provided in the splice 

with details as follows (see Fig. A.21): 

 Top flange steel: 1 - #6 180° bent bar embedded.  

 Bottom flange steel:  2 - #6 180° bent bars embedded.  
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For capacity calculation under the strength limit state, the stress distribution in the 

compression concrete is approximated with an equivalent stress distribution of intensity 

0.85 ௖݂
ᇱ over a zone bounded by the edges of the cross-section and a straight line located 

parallel to the neutral axis at a distance ܽ =  ଵ is the stress block factor. Theߚ ଵܿ, whereߚ

value of ߚଵ depends on the compressive strength of concrete and is given by the following 

expression (the permissible values for ߚଵ range from 0.65 to 0.85): 

 

ଵߚ  = 0.85 − 0.05( ௖݂
ᇱ − 4) ≥ 0.65  (A.19) 

 

where ௖݂
ᇱ = Specified concrete compressive strength at service, ksi. 

According to AASHTO LRFD Specifications (AASHTO 2012) Article 5.7.2.2, 

the actual values of ߚଵ are used for each portion of the cross-section. The stress block 

factor for the slab, ߚଵ௦, is calculated corresponding to ௖݂௦
ᇱ , and the stress block factor for 

the precast girder, ߚଵ௕, is calculated corresponding to ௖݂௕
ᇱ .  

ଵ௦ߚ = 0.85 − 0.05(4 − 4) ≥ 0.65 = 0.85 

ଵ௕ߚ = 0.85 − 0.05(8.5 − 4) ≥ 0.65 = 0.65 

 

The AASHTO LRFD Specifications (AASHTO 2012) specify the following 

expression to estimate the stress in prestressing steel with bonded tendons at ultimate 

conditions. This expression is applicable when the effective prestress after losses, ௣݂௘, is 

not less than 0.5 ௣݂௨, where ௣݂௨ is the ultimate tensile strength of the prestressing strands 

(AASHTO Eq. 5.7.3.1.1-1) : 
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 ௣݂௦ =  ௣݂௨ ൬1 − ݇
௖

ௗ೛
൰  (A.20) 

where: 

 ௣݂௦  = Average stress in prestressing steel, ksi. 

 ௣݂௨ = Specified tensile strength of prestressing steel, ksi. 

 ݇   =  2 ൬1.04 −
௙೛೤

௙೛ೠ
൰ = 0.28 for low-relaxation strands. (AASHTO Eq. 

5.7.3.1.1-2) 

 ܿ   = Distance between neutral axis and the compressive face, in. 

݀௣  = Distance from extreme compression fiber to the centroid of the 

prestressing tendons, in. 

The provisions of AASHTO LRFD Specifications (AASHTO 2012) Article 

5.7.3.1.1 are used for calculating the depth of neutral axis and the nominal moment 

resistance. The flexural behavior of the section at ultimate conditions is classified as 

rectangular or flanged, based on the depth of the neutral axis relative to the section 

geometry. Rectangular section behavior is first assumed to determine the depth of neutral 

axis, as illustrated in the following calculations. 
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The expressions for the forces acting in the girder section are as follows: 

  C =0.85f
cs
' β1sc beff   (A.21) 

  T =Apsfps
   (A.22) 

 

Figure A.1. Rectangular Section Behavior. 

 

  T =Apsf
pu

൬1-k
c

dp
൰   (A.23) 

(AASHTO Eq. 5.7.3.1.1-1)  

Applying equilibrium and solving for the neutral axis depth, gives the 

following. 

  T =C                                                             

(A.24) 

  c= 
Apsf

pu
+Asfy-As

'fy

0.85fcs
' β1sbeff+kAps

fpu
dp

    (A.25) 

(AASHTO Eq. 5.7.3.1.1-4) 

where: 

 c = Distance between neutral axis and the compressive face, in. 

 Aps = Area of prestressing steel = 12.369 in.2 

 
ܾ௘௙௙ 

ℎ௙ 

ܿ ௙ܾ 

ܽ 

0.85 ௖݂௦
ᇱ  

݀௣ 

௖݂௦
ᇱ  

 ܥ

ܶ = ௣௦ܣ ௣݂௦ 
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As = Area of non-prestressed tension reinforcement = 1.76 in.2 

As
' = Area of non-prestressed compression reinforcement = 6.448 in.2 

 

f
cs 
'  = Specified compressive strength of slab concrete at service = 4.0 ksi 

β1s = Stress factor for compression block (computed for f
cs 
' ) = 0.85 

 beff = Effective width of compression flange = 96.0 in. (AASHTO table 

4.6.2.1.3-1) 

 f
pu

 = Specified tensile strength of prestressing steel = 270.0 ksi 

 f
y

 = Specified yield strength of reinforcement = 60.0 ksi 

 k = 2 ቆ1.04-
fpy

fpu

ቇ = 0.28 for low-relaxation strands  (AASHTO Eq. 

5.7.3.1.1-2) 

 dp = Distance from extreme compression fiber to the centroid of the prestressing 

tendons, in. 

 hf = Depth of compression flange = 8.0 in. 

c = 

(12.369)(270.0)+(52.8+52.8)-(52.8+417.6)

0.85(4.0)(0.85)(96)+(0.28)(270.0) ቀ
4.123
26.53

+ 4.123
33.53

+ 4.123
40.53

ቁ
 =9.72 in. 

a = Depth of the equivalent rectangular stress block 

= β1sc=(0.85)൫9.72൯=8.3 in.  

 

Therefore, the assumption of rectangular section is not valid. When the neutral axis 

lies in the girder, the section is found to behave like a flanged section (see Fig. A.23), 

and the equations for determining the depth of the neutral axis and the design 

flexural strength of the section are outlined below. 
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f
ps

=(270.0) ൬1-(0.28)
12.41

dp
൰    (AASHTO Eq. 5.7.3.1..1-1) 

From the summation of moments about C1, the reduced nominal flexural moment 

strength at the section is obtained as follows. 

  ϕMn= ϕൣT൫dp-0.5hf൯-C2(0.5a)൧   (A.32) 

where: 

  T = Tensile force in the prestressing strands = 

(236.8+242.0+246.86)*0.217*19  

                = 2983.1 kips 

 C1 = Compressive force in the slab, kips 

 C2 = Compressive force in the girder flange within the stress block depth, kips 

 f
cs 
'  = Compressive strength of slab concrete at service = 4.0 ksi 

 f
cb 
'  = Compressive strength of girder concrete at service = 8.5 ksi 

 beff = Effective flange width = 96.0 in. 

 bf = Girder flange width = 44.0 in. 

 hf = Thickness of slab = 8.0 in. 

 tf = Thickness of girder flange = 3.5 in. 

 β1b = Stress factor of compression block (computed for f
cb 
' ) = 0.65  

 a =  β1bc = Depth of the equivalent rectangular stress block, in. 

 T൫dp-0.5hf൯ = [(967.44)(26.53-(0.5)(8.0))+(997.44)(33.53-(0.5)(8.0))+ 

(1017.79)(40.53-(0.5)(8.0))+(66.67)(73.00-(0.5)(8.0)) 

+(66.67)(64.5-(0.5)(8.0))-(66.67)(12.5-(0.5)(8.0)) 

-(417.60)(4.00-(0.5)(8.0))]/12 

 = 8038.49 kip-ft 

 C2(0.5a) = ൣ0.85(8.5)(44)൫(0.65)(12.41)-8.0൯൫(0.5)(8.1)൯൧/12  

 = 6.91 kip-ft 

 ϕMn = ϕൣ8038.49-6.91൧≈8030 kip-ft >Mu=7817 kip-ft OK 
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 Shear Design  

A.20.3.1 Transverse Shear Design 

MCFT is used for transverse shear design as specified in the AASHTO LRFD 

Specifications (AASHTO 2012). The total ultimate shear demand for the splice in the end 

span of the prototype bridge was ௨ܸ = 420 kips. Table A.18 presents shear design details 

for the end-span splice. 

 

Table A.18. Shear Design Details for Splices. 

Girder Segment Shear Reinforcement 
Nominal Capacity, 

Vn 
(kips) 

End-Span Splice 
4 - #5 Stirrups @ 6 in. 
spacing 

900 

Main Span Splice 
4 - #5 Stirrups @ 6 in. 
spacing  

900 

 Note: All shear reinforcement consists of double legged stirrups. 
 
Due to the significant amount of shear reinforcement, TxDOT engineers 

recommended checking the principal tensile stress in the web of the Tx70 girder at the 

splice locations. AASHTO LRFD Specifications (AASHTO 2012) Article 5.8.5 requires 

checking the principal tension stress to verify the adequacy of the webs of segmental 

concrete bridges for longitudinal shear and torsion. This article states that the principal 

tensile stress resulting from long-term residual axial stress and maximum shear at the 

neutral axis of the critical web shall not exceed the tensile stress limit provided by 

AASHTO LRFD Specifications (AASHTO 2012) Table 5.9.4.2.2-1 (0.11ඥ ௖݂
ᇱ) for the 

Service III limit state at all stages during the life of the structure, excluding those during 
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construction. When investigating principal stresses during construction, the tensile stress 

limits of Table 5.14.2.3.3-1 (0.11ඥ ௖݂
ᇱ) shall apply. 

The principal stress was checked at the splice location in the end span and main 

span, as shown in Table A.19. Shear and bending stresses in the concrete at the neutral 

axis of the web were calculated for the Service III limit state. The principal stress is 

calculated using classical beam theory and the principles of Mohr’s Circle. 

Table A.18 shows the principal tension stress at the end span and main span splice 

locations with and without considering the vertical force component of draped 

longitudinal tendons ௣ܸ. AASHTO LRFD Specifications (AASHTO 2012) Article 5.8.5 

specifies that ௣ܸ shall be considered as a reduction in the shear force due to the applied 

loads. Also, from the load-balancing approach, the total dead load of the girder and deck 

slab is balanced by the prestressing and PT tendon profiles. Therefore, the principal 

tension stress values considering ௣ܸ are below the AASHTO LRFD Specifications 

(AASHTO 2012) specified allowable limit.  

 

Table A.19. Principal Tension Stress Calculation. 

Location Principal Tension 
Stress at Service (Not 

Considering ࢖ࢂ ) 
(ksi) 

Principal Tension 
Stress at Service 

(Considering ࢖ࢂ ) 
(ksi) 

Principal 
Tensile Stress 

Limit 
(૙. ૚૚ඥࢉࢌ

ᇱ ) 
(ksi) 

End Span Splice 0.242 0.066 0.321 

Main Span Splice 0.249 0.068 0.321 
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A.20.3.2 Interface Shear Design for Girder-to-Splice Interface 

The provisions for interface shear design as specified in AASHTO LRFD Specifications 

(AASHTO 2012) Article 5.8.4 are followed for the design of the girder-to-splice interface. 

The required nominal interface shear strength at the interface plane is given as follows: 

  ௡ܸ௥௘௤ௗ =
௏ೠ

థ
  (A.33) 

where: 

௡ܸ௥௘௤ௗ = Required nominal shear strength at the interface plane, kips. 

௨ܸ     =  Factored shear force at the girder-to-splice interface, kips. 

߶     =  Resistance factor for shear in prestressed concrete members equal to 

0.9 for normal weight concrete members per AASHTO LRFD 

Specifications (AASHTO 2012) Article 5.5.4.2. 

The required nominal interface shear strength at the interface plane is ௡ܸ௥௘௤ௗ =

467 kips. The interface shear resistance at the girder-to-splice interface is calculated per 

the AASHTO LRFD Specifications (AASHTO 2012) Article 5.8.4 based on shear friction 

theory. The nominal shear resistance of the interface plane is based on the cohesion factor, 

ܿ, friction factor, ߤ, and the area of concrete engaged in interface shear transfer, ܣ௖௩. For 

the parametric design cases, the values of parameters specified in AASHTO LRFD Article 

5.8.4 are cohesion factor ܿ = 0.24 ksi, friction factor 1.0 = ߤ, fraction of concrete strength 

available to resist interface shear ܭଵ = 0.25, and limiting interface shear resistance ܭଶ = 

1.5 ksi. These values of parameters are selected based on the TxDOT Bridge Design 

Manual (2013). 
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The nominal shear resistance of the interface plane is provided by the mild steel 

180° bent  bars, area of concrete engaged in interface shear transfer, and permanent net 

compressive force normal to the interface plane. The expression for nominal shear 

resistance of the interface plane is given as follows: 

  ௡ܸ = ௖௩ܣܿ + ௩௙ܣൣߤ ௬݂ + ௖ܲ൧  (A.34) 

where: 

 ௡ܸ  = Nominal shear resistance of the interface plane, kips. 

 ܿ  = Cohesion factor = 0.24 ksi. 

 .Friction factor = 1.0 =  ߤ 

 ௖௩ = Area of concrete engaged in interface shear transfer, in.2ܣ 

 ௖௩, in.2ܣ ௩௙ = Area of shear reinforcement crossing the shear plane withinܣ 

 ௖ܲ = Permanent net compressive force normal to the shear plane = 1753 kips. 

 ௬݂ = Yield strength of shear reinforcement, ksi = 60 ksi. 

In this case of the girder-to-splice interface: 

௖௩ܣ  = ௚ܣ  −  ௗ௨௖௧ܣ

 ௚ =  Area of girder = 1106 in.2ܣ 

 ௗ௨௖௧= Area of PT ducts = 3 (12.57) = 37.71 in.2ܣ 

௖௩ܣ  =  1106 – (3)(12.57) =  1068.30 in.2 

The minimum interface shear reinforcement is determined as follows: 

௩௙ܣ   ≥  
଴.଴ହ ೎ೡ

௙೤
  (A.35) 

where: 
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௖௩ܣ   = Area of concrete engaged in interface shear transfer = 1068.30 in.2 

௩௙ܣ   = Area of shear reinforcement crossing the shear plane within ܣ௖௩, in.2 

 ௬݂  = Yield strength of shear reinforcement = 60.0 ksi. 

௩௙ܣ  ≥  
଴.଴ହ(ଵ଴଺଼.ଷ଴)

଺଴
= 0.89 in.2 

For the provided 3 - #6 mild steel 180° bent bars (double legged) at each girder-

to-splice interface, the area of interface shear reinforcement is given as follows: 

௩௙ܣ   = (3)(2)(0.44) = 2.651 in.2 > 0.89 in.2  (OK)  

The nominal shear resistance of the interface plane is calculated as follow: 

 ௡ܸ = (0.24)(1068.30) + (1.0)ሾ(2.651)(60) + 1753ሿ  = 2160 kips 

The nominal shear resistance, ௡ܸ used in the design shall not be greater than the 

lesser of the following two expressions: 

  ௡ܸ ≤ ଵܭ ௖݂
ᇱܣ௖௩  (A.36) 

  ௡ܸ ≤  ௖௩  (A.37)ܣଶܭ

where: 

 ௖݂
ᇱ  =  The 28-day compressive strength at service of the weaker concrete at the 

interface plane, ksi. 

 .ଵ  = Fraction of concrete strength available to resist interface shear = 0.25ܭ 

 .ଶ  = Limiting interface shear resistance = 1.5 ksiܭ 

 ௡ܸ ≤ (0.25)(8.5)(1068.30) ≈ 2270 kips 

 ௡ܸ ≤ (1.5)(1068.30) ≈ 1600 kips 
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Therefore, the nominal shear resistance at the girder/splice interface is taken as 

1600 kips, which is much larger than the required nominal interface shear strength of 467 

kips at the interface plane. 

The embedment length of the mild steel 180° bent bars into the girder flanges is 

determined based on the design recommendations for optimized continuity diaphragms 

(Koch and Roberts-Wollmann, 2008). Their design recommendation for embedment 

length is based on the angle of inclination of the diagonal compressive stress or crack 

angle, θ, computed using MCFT used for transverse shear design. Using MCFT, as 

specified in AASHTO LRFD Specifications (AASHTO 2012) Article 5.8.3, a variable 

angle truss analogy is adopted in which the angle of the diagonal compressive stress, θ, is 

considered to be variable and is determined in an iterative manner. MCFT takes into 

account different factors such as strain condition of the section and shear stress in the 

concrete to predict the shear strength of the section. At the splice location, the angle of the 

diagonal compressive stress is θ = 29°. Therefore, the required embedment length of the 

provided #6 mild steel 180° bent bars at each girder-to-splice interface is 5 ft-6 in (see Fig. 

A.2). 

AASHTO LRFD Specifications (AASHTO 2012) Article 5.8.4.1 requires that 

shear friction reinforcement shall be anchored to develop the specified yield strength on 

both sides of the shear plane by embedment, hooks, or welding. The splice connection 

detail is designed to develop the specified yield strength of the reinforcement on both sides 

of the shear plane. Therefore, the embedment length of the 180° bent bars is also checked 

to satisfy the development length requirements specified in AASHTO LRFD Specifications 
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(AASHTO 2012) Article 5.11. The required development length for the #6 mild steel 180° 

bent bars at each girder-to-splice interface is 10 in. The provided 180° hook extends into 

the splice equal for a distance of 1 ft-4 in. The recommended embedment length of the 

bent bars into the girder segments is 5 ft-6 in., as determined above based on Koch and 

Roberts-Wollmann (2008). This length is larger than the standard AASHTO straight bar 

development length of 2 ft-2 in. for top bars. Therefore, the detailing of the connection #6 

mild steel 180° bent bars on both sides of the shear plane provides full development of 

reinforcement. 
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APPENDIX B 

DESIGN AND CONSTRUCTION OF TEST SPECIMEN 

B.1 INTRODUCTION 

The results of the parametric design and analysis study suggest that in-span splicing can 

be used to extend the span lengths of precast prestressed concrete girder bridges. But 

limited experimental data are available to evaluate the performance of in-span splices. 

Appendix B provides details for an experimental program conducted to evaluate the 

performance of the in-span splice connections under varying levels of demand and 

different combinations of positive moment, negative moment, and shear. The prototype 

bridge and the abstraction of the specimen are described, followed by an overview of the 

specimen design, construction, post-tensioning process, and instrumentation plan.  

B.2 SPECIMEN ABSTRACTION 

B.2.1 Prototype Bridge 

Chapter 3 of dissertation describes the three-span prototype bridge. The bridge has a 190-

240-190 ft span configuration, with the end spans being 190 ft long and the middle span 

being 240 ft long. Fig. B.1 shows the abstraction of the specimen from the prototype 

bridge. The splice corresponding to the splice in the end span of the prototype bridge was 

tested. The locations of the PT tendons at the corresponding splice location in the specimen 

were kept similar to those in the prototype bridge. Though shored construction was used 

for the prototype design, the proposed connection detail is also a representative of a 

partially shored construction technique where a temporary tower and/or strong-backs are 
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provided at the in-span splice location and the on-pier girder segments need to be tied back 

for stability purposes. 

Fig. B.2 shows the cross-section of the bridge. The bridge has a total width of 46 

ft and a total roadway width of 44 ft. The bridge superstructure consists of six modified 

Tx70 girders spaced 8 ft center-to-center, with a 3 ft overhang on each side, designed to 

act compositely with an 8 in. thick CIP concrete deck. The deck includes 4 in. thick precast 

concrete stay-in-place precast concrete panels between girders that serve as formwork for 

the deck. The asphalt wearing surface thickness is 2 in. A T501 traffic barrier was 

considered as presented in the standard drawings of the TxDOT Bridge Design Manual 

(2013). Three design lanes were considered for the purpose of design in accordance with 

the AASHTO LRFD Specifications (AASHTO 2012). The specimen represents a typical 

interior girder as indicated in Fig. B.2. 
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Fig. B.1 Elevation of the Prototype Bridge Showing the Test Specimen. 

 

 

Fig. B.2 Cross-section of the Prototype Bridge Showing the Test Specimen. 
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Researchers conducted experimental testing to evaluate the performance of this 

specimen with a focus on the splice connection performance. The requirements for service 

limit state design, flexural strength limit state design, and shear strength limit state design 

were evaluated. 

B.2.2 Specimen Details 

The experimental program took place in the High Bay Structural and Materials Testing 

Laboratory (HBSMTL) at Texas A&M University. This facility has a 72-ft long strong 

floor and tie down locations are available on a 3-ft grid. Therefore, the length of the 

specimen was limited to 71 ft. Different options were considered by the research team to 

arrive at the final specimen presented in this Appendix. Specimen geometry and tests 

setups were designed to simulate the same demand on the main splice (middle splice, 

Splice 2). Fig. B.3 presents the comparison for demand moment and shear between the 

prototype bridge and the test specimen.  

Fig. B.4 and Fig. B.5 show the elevation and plan views of the test-setup, 

respectively, providing the location of tie downs, pedestals, and splices. An interior splice 

was provided corresponding to the in-span splice within the end span of the prototype 

bridge, shown in Fig. B.1. However, due to the weight capacity limit of the crane in the 

HBSMTL, two additional splices were provided, connecting the girder segments to the 

thickened end blocks. Overall, the three splices divided the specimen into four segments. 

Appendix B provides detailed drawings for each girder segment within the specimen. 

Table B.1 provides the weights of girder segments.  
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The research team tested all three splices in the specimen during five stages of 

testing. The first two test stages were non-destructive and were intended to evaluate the 

performance of the girder up to the service limit for positive and negative moment and 

shear. The next three tests focused on each splice and were intended to evaluate the post-

cracking behavior of the girder up to ultimate strength. The finalized test specimen 

facilitated testing splice connections within the span (approximately at the dead load point 

of contraflexure), near the interior pier (high moment and high shear region), and near the 

abutment (low moment and high shear region) of the continuous bridge.  

 

 

Table B.1. Weight of Girder Segments.  

Components Length 
Weight 
(kips) 

Total 
Weight * 

(kips) 
Thickened End 
Blocks 1 and 2 

End Block Portion 9'-0" 23.9 
28.4 

Tx70 Girder (Modified) Portion 2'-9" 4.5 
Segment 1 Tx70 Girder (Modified) 18'-0" 25.2 25.2 
Segment 2 Tx70 Girder (Modified) 25'-0" 34.3 34.3 
* Limiting lifting weight in the HBSMTL is 36 kips. 
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(a) Maximum Service Moment under Live Load with Impact from Prototype Bridge  

 

 
 (b) Maximum Service Shear under Live Load with Impact from Prototype Bridge 

Fig. B.3 Replication of Maximum Moment and Shear at Service in Test Specimen. 
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Fig. B.4 Plan View of the Test Specimen in the High Bay Laboratory.  
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Fig. B.5 Elevation View of Test Specimen. 
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The basic characteristics of the specimen are as follows: 

 A modified Tx70 girder cross-section was used for the specimen to match the 

prototype bridge at full-scale. Modifications of the original section based on 

precaster requirements and preferences included: (1) widening the modified web 

width from 9 in. to 10 in., which also resulted in widening the top and bottom 

flange by 1 in.; (2) use of 3-5/8 in. diameter PT ducts rather than 4 in. diameter; 

and (3) increasing the top flange thickness to 5 in. minimum to accommodate the 

top pretensioning strands. 

 An interior splice was provided corresponding to the in-span splice in the prototype 

bridge. Due to the weight capacity limit of the crane in the HBSMTL, two 

additional splices were provided connecting the girder segments to the thickened 

end blocks.  

 Thickened end blocks were provided at both ends of the specimen to accommodate 

the necessary PT anchorage systems. The girder segments and end blocks were 

fabricated at a precast plant and transported to the laboratory.  

 The concrete used for the prestressed concrete girder segments was specified as 

TxDOT Class H self-consolidating concrete with a required initial compressive 

strength at release f’ci of 6.5 ksi and a required compressive strength at service f’c 

of 8.5 ksi. 
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 The concrete used for the splice connections was selected after considering several 

alternative mixes and conducting trial batches. A conventional concrete mixture 

with 0.75 in. maximum size aggregate, river gravel coarse aggregate, a 9.5 in. 

slump, and a 28-day target f’c of 8.5 ksi was used.  

 A partially prestressed splice connection detail was used at all three splice 

locations. Mild steel reinforcement was provided in addition to continuity PT 

running through the connection. The mild steel reinforcement consisted of 180° 

bent hooked bars anchored into the adjacent girder flanges and extending into the 

joint. Additionally, two #6 transverse bars were placed inside each of the bent 

hooked bars to increase the effective bearing area.  

 A reinforced concrete CIP deck slab, 92 in. wide and 8 in. thick, was cast in the 

laboratory. TxDOT Class S conventional concrete with a specified 28-day f’c of 4 

ksi was used for the deck slab. Deck reinforcement details for the specimen were 

provided in accordance with TxDOT construction practices. Typical clear cover 

provided was 2 in. and 1.25 in. for the top and bottom reinforcement, respectively. 

 The continuity PT tendons were installed, stressed, and grouted in the laboratory 

by a post-tensioning contractor. 

B.2.3 Modified Tx70 Girder 

Fig. B.6 shows the details of the modified Tx70 girder cross-section used for the specimen. 

Table B.2 presents the non-composite section properties of the modified Tx70 section. 

The standard Tx70 girder is 70 in. deep with top flange 42 in. wide, bottom flange 32 in. 

wide, and web thickness of 7 in. The web for the modified Tx70 girder segments was 
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widened to 10 in. by spreading the standard girder side forms. An increased web width is 

required to accommodate the 19-strand PT ducts. The width of the top and bottom flanges 

was also increased by 3 in., making the top flange 45 in. wide and the bottom flange 35 

in. wide. The top flange thickness was also increased to 5 in. minimum to accommodate 

the top pretensioning strands.  

Table B.3 presents the design parameters used for the specimen. These parameters 

are the same as those used for the modified Tx70 girder prototype bridge design. The 

design parameters are selected based on the current TxDOT state-of-practice and values 

commonly available from Texas precasters. 

 

Table B.2. Section Properties for Modified Tx70 Girder with Widened Web.  

 

Girder Type 
Depth of N.A. 
from top, ytop 

(in.) 

Depth of 
N.A. from 

bottom, ybot 
(in.) 

Area, 
A (in.2) 

Moment of 
Inertia, Ix 

(in.4) 

Weight 
(plf) 

Modified 
Tx70  

36.96 34.54 1243.5 805,053 1295 

Composite 
Section 

24.99 46.51 1980.0 1,424,995 2062 
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Fig. B.6 Typical Section Geometry of Modified Tx70 Girder with Widened Web 
(Adapted from TxDOT 2010). 
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Table B.3. Design Parameters for Specimen.  

 

B.3 SPECIMEN DESIGN 

B.3.1 Design Philosophy and Modifications 

Appendix A presents the design of the prototype bridge, which serves as the basis of the 

specimen design. This subsection describes how the experimental test specimen was 

designed to capture certain key features of the prototype. Due to the different span lengths, 

the PT drape of the duct is not so pronounced in the test specimen. However, the duct 

curvatures remain essentially the same because the load that is balanced (per unit length) 

is the same between the prototype bridge and the physical test specimen. 

Parameter 
Description/Selected 
Values 

Specified Concrete Strength at Service for Deck (CIP), f’c 4 ksi 

Specified Concrete Strength at Service (Precast), f’c 8.5 ksi 

Specified Concrete Strength at Release (Precast), f’ci  6.5 ksi 

Coefficient of Thermal Expansion of Concrete 6x10-6/oF 

Mild Steel (ASTM A615 
Grade 604) 

Yield Strength, fy  60 ksi 
Modulus of Elasticity, Es 29,000 ksi 

Prestressing Steel 

Strand Diameter  0.6 in. 

Ultimate Tensile Strength, fpu  
270 ksi (Low 
Relaxation) 

Yield Strength, fpy 0.9 fpu 
Stress Limit at Transfer, fpi fpi ≥ 0.75 fpu 
Stress Limit at Service, fpe fpe ≥ 0.8 fpy 
Modulus of Elasticity, Ep 28,500 ksi 
Wobble Coefficient, K 0.0002/ft 

Coefficient of Friction, μ  
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The specimen was designed to simulate the performance of the prototype bridge; 

however, minor changes were made of necessity as follows: 

1. The prototype has four PT ducts, three for continuity and one to balance segment self-

weight. The test specimen had only three ducts for continuity and overall load 

balancing; the fourth duct was replaced by concentric pretensioning (additional strands 

top and bottom).  

2. The prototype bridge was designed for the modified Tx70 with a 9 in. web thickness. 

The web thickness was increased to 10 in. to match the precaster’s available formwork. 

As a result, the width of the top and bottom flange also increased by 1 in.  

3. To accommodate the pretensioning strands in the top flange, the thickness of the top 

flange was increased by 1.5 in. To maintain the total depth of the composite section, 

the thickness of the haunch between the slab and the girder was reduced from 2 in. to 

0.5 in., maintaining the overall depth of 80 in. for the composite section.  

4. The prototype bridge was designed for a deck slab width of 96 in. Due to lab 

constraints, the width of the specimen deck slab was slightly narrower (92 in.).  

5. The shear transfer at the splice connections of the prototype bridge was checked based 

on intentionally roughening the surface of the girder faces at the splice connections to 

a 0.25 in. amplitude. The specimen, however, did not have intentionally roughened 

surfaces, which reduced the shear transfer capacity of the specimen compared to the 

prototype bridge design.  

6. The thickened end blocks for the end segments in the prototype bridge were designed 

to be tapered off to the adjacent standard cross section. For the specimen, however, 
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the end regions were squared off for ease of construction and due to constraints in 

the precast plant.  

B.3.2 Girder Segment Design 

Top and bottom pretensioning strands were designed based on the amount of steel 

provided in prototype bridge for pretensioning and Stage I PT. Stresses were checked to 

ensure they satisfied the limits for transportation and construction loads. Stage II PT was 

designed considering the same amount of steel (number of strands) as for the prototype 

bridge, but the drape was designed to balance the dead weight of the girder segments, 

splices, and deck slab. Table B.4 presents the design summary for the specimen.  

 

Table B.4. Prestressing Summary for the Specimen.  

Design Parameters Description 

Pretensioning Strands (0.6 in. dia.) 26 strands 

Force at Transfer, F1i  1143 kips 

Stage I PT (Replaced by 
Pretensioning in the Specimen) 

Strands (0.6 in. dia.) 34 strands 

Force at Transfer, F2ai  1494 kips 

Stage II PT 
 

Tendons (0.6 in. dia.) 
(19 strands per duct) 

57 strands  
(3 ducts) 

Force at Transfer, F2bi  2337 kips 

 

 

Fig. B.7 and Fig. B.8 show the prototype bridge moments at different loading and 

design stages, for the non-composite and composite girder sections, respectively. The 

load-balancing design moments at each design stage and service stresses were checked. In 
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the load-balancing approach, the girder segments were designed such that the prestress 

moments in the girders were balanced at each stage throughout the loading history of the 

specimen construction. The different loading and design stages considered are as follows: 

 Girder Section. 

o Self-weight + Pretensioning. 

o Self-weight + Pretensioning + Non-composite Deck Weight. 

 Composite Girder and Deck Section. 

o Stage II PT + Superimposed Dead Load. 

o Stage II PT + Superimposed Dead Load + Removal of Shoring Towers. 

B.3.2.1 Flexure Considerations 

Flexural stress analysis was carried out for the specimen girder segments under the total 

dead loads and prestressing force as well as construction loads during different stages of 

specimen construction. Fig. B.9 shows the stresses in the specimen at various steps of 

construction. 

The specimen was also analyzed for actuator load beyond cracking up to ultimate 

conditions, or the maximum actuator load. Chapter 4 and 5 of the dissertation presents the 

results of the analysis, along with the experimental results.  

Deck reinforcement details for the specimen were provided in accordance with 

current TxDOT construction practice for continuous bridge decks. The typical clear cover 

provided was 2 in. and 1.25 in. for top and bottom reinforcement, respectively. The 

reinforcement details are as follows: 

 Transverse steel:  #5 bars at 6 in. spacing at top and bottom 
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 Longitudinal steel:   #4 bars at 9 in. spacing at top  

   #5 bars at 9 in. spacing at bottom 

(a) Moments during Transportation 

 

(b) Total Moments after Pretensioning 

 

(c) Moment Due to Wet Deck Weight 

 

(d) Total Moments after Adding Wet Deck Weight 

 

Fig. B.7 Test Specimen Design Moments Acting on Non-composite Girder. 
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(a) Moment due to Stage 2 PT  

 (b) Total Moments after Stage 2 PT 

(c) Moment due to Temporary Support Removal 

(d) Total Moments after Temporary Support Removal 

Fig. B.8 Test Specimen Design Moments Acting on Composite Girder. 
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(a) Stresses at Top of CIP Deck  

(b) Stresses at Top of Girder 

 
(c) Stresses at Bottom of Girder 

Fig. B.9 Service Stress Analysis for Specimen. 
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B.3.2.2 Shear Considerations 

Transverse Shear Design: MCFT was used for transverse shear design as specified in 

the AASHTO LRFD Specifications (2012). MCFT takes into consideration the combined 

effect of axial load, flexure, and prestressing when designing for shear. Table B.5 presents 

the shear reinforcement details for the specimen, which are the same as those provided for 

the prototype bridge presented in Appendix A.  

 

 

Table B.5. Shear Reinforcement Details for Specimen. 

Location Description 
Shear 

Reinforcement 
Dimension from 

Segment End 
Thickened End Block 1 #5@4 in. 0'-0" to 11'-6" 
Splice 1 near End 
Support 

#5@4 in. 0'-0" to 2'-0" 

Segment 1 
#5@4 in. 
#5@6 in. 

0'-0" to 2'-8" 
2'-8" to 17'-6" 

Interior Splice 2 #5@6 in. 0'-0" to 2'-0" 

Segment 2 
#5@6 in. 
#5@4 in. 

0'-0" to 8'-10" 
8'-10" to 24'-6" 

Splice 3 in Overhang #5@4 in. 0'-0" to 2'-0" 

Thickened End Block 2 #5@4 in. 0'-0" to 11'-6" 

 Note: All shear reinforcement consists of double legged stirrups. 

 

 
 

Principal Tensile Stresses: AASHTO LRFD Article 5.8.5 (2012) requires that the 

principal tension stress be checked to verify the adequacy of the webs of segmental 

concrete bridges for shear and torsion. This article states that the principal tensile stress 

resulting from long-term residual axial stress and the maximum shear at the neutral axis 
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of the critical web shall not exceed the tensile stress limit for the Service III limit state 

(0.11ඥ ௖݂
ᇱ) at all stages during the life of the structure, excluding those during construction. 

When investigating principal stresses during construction, the tensile stress limit in 

AASHTO LRFD Table B.14.2.3.3-1 (0.11ඥ ௖݂
ᇱ) is used. 

For the specimen, the principal stress was checked at the critical sections over the 

interior support and the three splice locations. Shear and bending stresses in the concrete 

at the neutral axis of the web were calculated for the Service III limit state. The principal 

tension stress was calculated using classical beam theory and the principles of Mohr’s 

Circle. 

Table B.6 shows the principal tension stress for service limit states at the selected 

locations with and without considering the effect of prestressing. The vertical component 

of the draped longitudinal tendons ௣ܸ will counteract the shear force in the section and 

reduces the shear demand carried by the concrete and transverse steel. For the case of load 

balancing, the effect of the vertical component of the PT cancels the dead load shear 

demand for the service limit state. AASHTO LRFD Article 5.8.5 (2012) specifies that ௣ܸ 

may be considered as a reduction in the shear force. The principle tension stress values 

considering ௣ܸ are below the AASHTO specified allowable limit. Note that the principal 

tension stress at service for Splice 3 is above the limit when ௣ܸ is not considered. 
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Table B.6. Principal Tension Stress Calculations for Specimen. 

Critical Location 

Principal Tension 
Stress at Service 
(not Considering 

 ( ࢖ࢂ
(ksi) 

Principal Tension 
Stress at Service 

(Considering ࢖ࢂ ) 
(ksi) 

Principal Tensile 
Stress limit 
(૙. ૚૚ඥࢉࢌ

ᇱ ) 
(ksi) 

Interior Support  0.224 0.039 0.321 

Splice 1 near End 
Support  

0.126 0.015 0.321 

Interior Splice 2 0.242 0.066 0.321 

Splice 3 in 
Overhang  

0.433 0.095 0.321 

 

 

B.3.3 Splice Connection Design 

Flexural Considerations: The interior splice (Splice 2) in the specimen represents the 

splice located in the end span of the prototype bridge. This splice location corresponds to 

the dead load point of contraflexure in the prototype bridge so as to minimize the load 

demands at the splice. The width of the splice connection should be kept as small as 

possible because there is no pretensioning in this region and a minimal amount of mild 

steel reinforcement is provided. However, the splice width should be large enough to 

splice the continuity PT tendon ducts and allow for proper vibration of concrete. The width 

of the splice connection detail was a maximum of 24 in. per TxDOT recommendations. 

Fig. B.10 shows the splice connection detail used for the test specimen.  
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(a) Elevation (b) Cross-Section 

Fig. B.10 Splice Detail Used for Test Specimen. 

 

Because it is not feasible to pretension the splice region, a minimalist partially 

prestressed concrete solution was designed where the continuity PT provides most 

(approximately 90 percent) of the flexural strength, with some supplementary capacity 

provided by several top and bottom mild steel U-bars that formed a non-contact splice 

within the splice region. The same connection detail was used at all three splice locations. 

The mild steel reinforcement consisted of #6 180° hooked bars anchored into the adjacent 

girder flanges and extending into the joint. This connection detail was considered 

appropriate for the prototype bridge because thickened ends of girders were not used at 

the splice connection.  

The factored moment capacity of the splice was calculated based on the number, 

diameter, location, and stress in the tendons, along with the design strength of concrete 
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and properties of the girder cross-section. Additional capacity was provided by the #6 mild 

steel 180° bent bars with details as follows (see J bars in Fig. B.10): 

 Top flange steel: 1 - #6 180° bent bar.  

 Bottom flange steel: 2 - #6 180° bent bars.  

The embedment length of these bent bars was 5 ft 6 in. following the design 

recommendations of Koch and Roberts-Wollmann (2008). Their design recommendations 

for embedment length are based on the angle of inclination of the diagonal compressive 

stress computed using MCFT. In addition, two #6 transverse bars were tied inside each of 

the bent bars to increase the bearing capacity of the non-contact splice. The design capacity 

of the splice connection was calculated at three locations. Table B.7 shows the ultimate 

moment capacity for the splice locations in the specimen. The mild steel contributes a 

minimal amount of flexural strength, ranging from approximately 4–8 percent of the total 

reduced nominal strength in bending. 
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Table B.7. Reduced Nominal Moment Capacity for Splice Connections. 

Description 
Splice 1 Near 
End Support 

Interior Splice 2 
Splice 3 in 
Overhang 

Continuity PT, ϕMn (kip-
ft) 

7460 7400 10,310 

Splice Reinforcement 
(180° bent bars), ϕMn 
(kip-ft) 

630 630 380 

Total Capacity, ϕMn 
(kip-ft)  

8090 8030 10,690 

 

 

Interface Shear Considerations: The integrity of the splice connection largely depends 

on the shear transfer mechanism at the interface of the precast girder and closure pour. 

This shear transfer mechanism was mainly provided by the shear key and the lapped 180° 

bent hooked bars in the connection. The interface shear resistance at the girder/splice 

interface was calculated as per AASHTO LRFD Article 5.8.4 based on shear friction 

theory. The nominal shear resistance of the interface plane is based on the cohesion factor, 

ܿ, friction factor, ߤ, and the area of concrete engaged in interface shear transfer, ܣ௖௩. For 

the specimen, the case of normal-weight concrete placed against a clean concrete surface, 

free of laitance, without the roughened surface was used. The values of parameters 

specified in AASHTO LRFD Article 5.8.4 are cohesion factor ܿ = 0.075 ksi, friction factor 

 ଵ = 0.2, andܭ fraction of concrete strength available to resist interface shear ,0.6 = ߤ

limiting interface shear resistance ܭଶ = 0.8 ksi. Due to the relatively high concrete strength 

and high level of prestressing, the K2 value is the critical parameter and limits the shear 
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transfer capacity to 800 kips while shear demand for strength limit state is 448 kips in the 

prototype bridge.  

B.4 SPECIMEN PREPARATION 

The PT ducts and anchorages introduced some new details in the girder fabrication. A 

precast plant having experience with a recent spliced girder project agreed to fabricate the 

segments. After fabricating the girder segments and transporting them to the HBSMTL, 

significant preparation was necessary prior to testing. A brief review of the construction 

process is presented below.  

B.4.1 Bearing Pad, Pedestal Design, and Pedestal Construction 

The specimen was supported on two concrete pedestals in the lab. The pedestals were tied 

down to the strong floor using threaded rods. The size of the pedestal was based on the 3 

ft spacing between the tie downs in the strong floor. The height of the pedestals was 

selected to facilitate installation of string potentiometers below the girder and to 

accommodate the girder deflection during testing. Fig. B.11 presents detailed dimensions 

and details of the pedestals.  

Laminated steel-reinforced elastomeric bearing pads were selected for the supports 

based on the reaction forces at the supports during testing. In addition, because these 

bearing pads are commonly used by TxDOT in practice, they are intended to simulate the 

condition at supports similar to the prototype bridge on site. Fig. B.12 presents the bearing 

pad dimensions.  
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(a) 4x8 ft Pedestal, Plan View 

 
(b) 4x8 ft Pedestal, Elevation View 

 

(c) 4x4 ft Pedestal, Plan View 

 

(d) 4x4 ft Pedestal, Elevation View 

Fig. B.11 Details of Concrete Pedestals. 

 

1'' Dia, All Threaded Rod

#5 @ 11 '' T&B

#6 S tirrup @4''

#5 @ 10 '' T&B

48''

84''

18''S trong F loor of Lab

1'' Dia, All Threaded Rod

#5 @ 10 '' T&B
#6 Stirrup @4''

#5 @ 10 '' T&B

48''

48''

5''
18''S trong F loor of Lab



 

319 
 

 

 

 
(e) 9x21 in. Bearing Pad, Elevation View (b) 9x21 in. Bearing Pad, Plan View 

 
(c) 9x32 in.2 Bearing Pad, Elevation View 

 
(d) 9x32 in. Bearing Pad, Plan View 

Fig. B.12 Bearing Pad Details. 
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B.4.2 Casting the Girder Specimen at the Precast Plant 

The four girder segments and end blocks for the specimen were fabricated at a precast 

plant. The gaged bars were prepared by the research group and placed in the girder 

according to the instrumentation plan. Gage wires were carefully tied to the closest vertical 

bars to protect them during the concrete placement. The wires were taken out of the 

formwork at the top of the segments. Fig. B.13 shows the placement and monitoring of 

the reinforcement. Casting of the specimen and concrete sample fabrication can be seen 

in Fig. B.14. A total of 156 cylinders, 13 MOR beams, and 12 shrinkage prism samples 

were taken from the different batches to monitor the mechanical properties of the concrete. 

The girder segments were released two days after the pour. They were then hauled 

to the HBSMTL after they reached the required concrete strength at service fci of 6.5 ksi 

(see Fig. B.15). Fig. B.16 shows the final alignment of the girder segments in the 

HBSMTL with temporary supports in place to support each end of the girder segments. 
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(a) Installing Reinforcement 

 
(b) Strain Gage 

 
(c) Protecting Gage Wires 

 
(d) Prestressing Strands 

 
(e) Checking Gages 

Fig. B.13 Installing Reinforcement at the Precast Plant. 
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(a) Installing Formwork (b) Casting Concrete Transported from Batch 
Plant 

(c) Molds for Hardened Property Samples (d) Preparing Samples 

Fig. B.14 Casting Girder Segments and Samples at the Precast Plant. 
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(a) Girder Segments with 

Lifting Points 
(b) Placing Girder Segments 

 
(c) Verifying Segment Spacing 

and Placement 

Fig. B.15 Transporting Girder Segments to the High Bay Laboratory. 

 
(a) Top View - Girder 

Alignment 

 

 
(b) Side View - Girder Alignment 

Fig. B.16 Final Girder Segment Placement and Alignment in the High Bay 
Laboratory. 
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B.4.3 Fabricating Wooden Connection Formwork 

Three pairs of wooden formwork for the splice connections were fabricated by the research 

group in the lab. The formwork was cut and screwed together to maintain the actual shape 

of the modified Tx70 cross section through the splices. Gage wires were sent through 

openings in the formwork with care to avoid gage losses. Fig. B.17 shows the splice 

reinforcement with gaging and the formwork attached on the back side. 

B.4.4 Building Falsework and Deck Formwork 

Wooden falsework was designed and constructed to provide support for the deck 

formwork and walkway, as presented in Fig. B.18. A railing was also provided alongside 

the walkway and at the end of the formwork for safety.  

B.4.5 Casting Splices in the Laboratory 

After the connection formwork was fabricated and properly lubricated, the high strength 

conventional concrete splices were cast in the laboratory. Different options were 

considered for mixture proportions for the concrete, and after 10 trial batches the final 

mixture proportions were selected. Table B.8 summarizes the mixture proportion 

summary for the splice concrete. A concrete ready mix truck was hired and loaded with 

the appropriate amounts of 0.75 in. maximum size river gravel (coarse aggregate) and 

manufactured sand (fine aggregate) from a local batch plant. The gradation of the 

aggregates met TxDOT specifications. The remaining water, admixtures, and Type III 

cement were added to the concrete mix truck at the HBSMTL, as shown in Fig. B.19. The 

splices were cast in the laboratory as depicted in Fig. B.20.  
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Table B.8. Splice Concrete Mixture Proportions. 
Material Type Quantity 

Cement (lb/yd3) III 700 
Water (lb/yd3) - 200 

w/c ratio - 0.29 

Aggregate 
(lb/yd3) 

Coarse 
(MNAS ¾ in.) 

River Gravel 1935 

Fine Mfd. Sand 1232 
HRWRA/Superplasticizer (oz/yd3) PS 1466 91 

 

B.4.6 Casting Reinforced Concrete Deck in the Laboratory 

After the splice gained sufficient strength, the mild steel and concrete for the deck was 

placed, as shown in Fig. B.21. A TxDOT Class S concrete with specified 28-day strength 

of 4 ksi was used for the deck concrete. A smooth finish was provided after casting. The 

deck concrete cured for one week and then the formwork was removed.  

B.4.7 Fresh Concrete Properties 

Fresh properties of concrete were measured after the concrete was cast. Measured 

parameters included slump, unit weight, temperature, and relative humidity. Table B.9 

summarizes the average fresh concrete properties for the girder segments, splice 

connections, and the deck concrete.  
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(a) Splice 1 (End) 

 
(b) Splice 2 (Middle) 

Fig. B.17 Splice Reinforcement and Formwork. 
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(a) South Side Formwork 

 
(b) North Side Formwork 

Fig. B.18 Falsework and Deck Formwork. 

(a) Measuring Cement into 
Hopper 

 
(b) Adding Cement to 

Truck 

 
(c) Adding Admixture and 

Water to Truck 

Fig. B.19 Adding Materials to Concrete Mixture for Connections. 
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Table B.9. Summary of Fresh Properties of Concrete. 

Component 

Slump 
or 

Slump 
Flow 
(in.) 

Unit 
Weight 

(kcf) 

Air 
Content 

(%) 

Concrete 
Temperature 

(°F) 

Ambient 
Temperature 

(°F) 

RH 
(%) 

Girder 
Segment 

24.8 0.145 8 96 107.4 24.4 

Splice 
Connection 

9.75 0.151 
not 

measured 
not  

measured 
70 (typical) 48 

Slab Deck 3.75 0.146 5.1 67.5 70 (typical) 40 
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(a) Casting Splices 

Fig. B.20 Placing Concrete for Splice Connections. 

 



 

330 
 

 
(b) Casting Splices Complete 

Fig. B.20 Placing Concrete for Splice Connections (Continued). 
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(a) Casting the Deck 

 

 
(b) Finishing the Deck 

 
(c) Curing the Deck and Removing the Deck Formwork 

Fig. B.21 Construction of the Deck Slab. 
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B.4.8 Installing Gages, Linear Variable Differential Transformers, String Pots, 
and Demountable Mechanical Points 

Surface gages were attached on the top surface of the deck and to the sides of the top and 

bottom flanges of the precast girder according to the instrumentation plan described in 

Section 5.5. String potentiometers were placed 2 ft apart below the specimen to capture 

the deformation profile of the specimen.  

A complete set of six linear variable differential transformers (LVDTs) was also 

mounted on the webs at each splice connection to map the deformed configuration of the 

splices and to measure the cracks. Demountable Mechanical (DEMEC) points made from 

thin aluminum sheets were installed on the webs of the splice regions. DEMEC readings 

were carried out at specific load levels during each test to fully map the deformation of 

the web and formation of cracks. Fig. B.22 shows the DEMEC and LVDT configurations 

for Splice 2. 
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(a) DEMEC Points 

 

(b) Splice LVDTs 

Fig. B.22 Splice DEMEC and LVDT Layouts. 

B.4.9 Post-Tensioning 

After the concrete deck and splice concrete gained their design strength of 4 ksi and 8.5 

ksi, respectively, the PT operation was carried out. A PT contractor cut and placed the 

strands, stressed the strands, and grouted the ducts. Strands were fed through the three 

ducts and were stressed from End Block 1, after being anchored at End Block 2.  

A hydraulic self-reacting jack was used to stress the strands. A simple conversion 

factor was used to translate the desired force per tendon into the required pressure. The 

desired force was also translated into strand elongation, which was double checked to 

ensure the target force per tendon was applied.  

Table B.10 provides a summary of the target values for the PT operation. The three 

PT tendons were stressed one at a time. The middle tendon was stressed first, and then the 

top and the bottom tendons were stressed, respectively. While calculating the target force, 

instantaneous and time-dependent losses were considered. The order of stressing each duct 
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affects the instantaneous elastic shortening for each tendon. While calculating the stress 

for the first duct, the elastic shortening due to tensioning the second and third tendons was 

considered. In addition, the instantaneous loss due to anchorage set was considered. For 

the specific setup that was used for the specimen, the anchorage set was assumed to be 3/8 

in.  

 

Table B.10. Post-tensioning Calculation. 

Tendon Location 
(Sequence) 

Target Applied 
Stress 
(ksi) 

Target Applied 
Force 
(kips) 

Elongation 
(in.) 

Middle (First) 206 850 6-1/8 
Top (Second) 203 836 6 
Bottom (Third) 200 822 6 

 

 

After the strands were stressed, the ducts were grouted. Two holes at the top of 

each end cap served to monitor the filling of the tendon. When grout flowed out of the top 

hole, the grouting was stopped, as the grout had fully filled the ducts.  

Grout was fed through each duct from End Block 2, using an air compressor to 

provide sufficient pressure throughout the length of the duct and to avoid formation of 

voids in the ducts. A pre-bagged NA Grout was used, which is a high flow, non-aggregate, 

and non-shrink grout. Every 400 lb of grout cement were mixed with 15.5 gallons of water, 

based on common practice. A mud flow test was carried out to measure the flowability of 

the grout. A large range of 11 to 30 seconds is acceptable based on the Post-tensioning 

Institute Specifications (2001). The grout mix was observed to be highly flowable and had 
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a flow time of 8.5 seconds, which was lower than the acceptable limit. However, according 

to EN 447 (European Committee for Standardization, 1996) any value lower than 25 

seconds is acceptable. 

Samples from each the three grout batches used for filling the PT ducts were taken 

for compressive strength testing. Standard 2 in. × 2 in. × 2 in. grout cube samples were 

made according to ASTM C109 (2013).  

B.5 INSTRUMENTATION  

Different types of instruments were used to record data to investigate and understand the 

behavior of the specimen under the test loads described in the experimental program. The 

instrumentation included strain gages, embedded concrete gages, LVDTs, string 

potentiometers, and DEMEC points. The instruments were used to capture the deflections 

along the specimen length and the strain profiles at critical sections of the specimen. In 

addition, reinforcement was monitored to determine if yielding occurred.  
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(b) Anchorage Plate and Anchor Wedges 

 

(a) Stressing Tendons (c) Measuring Pressure during Stressing  

  
(d) Mixing Grout Mix and Water (e) Grouting Ducts Using Air Pressure 

Fig. B.23 Tendon Post-tensioning and Grouting Process. 

B.5.1 Rebar Strain Gages 

Fig. B.24 shows the locations of the rebar strain gages in the specimen. The strain gages 

were attached to reinforcement bars in the splice region and in the thickened end blocks. 
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Table B.11 summarizes rebar strain gage details according to the type of reinforcement 

bar. Because the research study was primarily focused on monitoring and assessing the 

performance of the proposed splice connection detail, most of the strain gages were 

attached in this area. The splice connection detail includes 180° bent hooked bars, and it 

was important to capture the stress, strain, and elongation in these bars. Two strain gages 

were attached on one leg of the 180° bent hooked bars at the top and bottom of each splice. 

Also, one strain gage was attached on one leg of each transverse shear reinforcement bar 

to measure shear demands. Ten strain gages were attached in the thickened end block to 

investigate the effect of post-tensioning and bursting forces during post-tensioning in this 

area. 
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(a) Strain Gage Locations in the Splice Region (typical) 

 
(b) Strain Gage Locations in Thickened End Block 1 

 
(c) Strain Gage Locations in Thickened End Block 2 

Fig. B.24 Rebar Strain Gages in the Specimen. 
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Table B.11. Summary of Rebar Strain Gages. 

Description 
No. of Gages 
per Splice 

Total No. of 
Gages 

Installation Notes 

On 180° bent 
hooked bars in 
girder 

4 12 

Pre-installed on the 
reinforcement bars, which 
were placed at the precast 
plant before the girder 
segments were cast. 

On 180° bent 
hooked bars in 
splice 

6 18 
Installed in laboratory before 
casting splices. 

On transverse shear 
reinforcement bars 
in splice 

4 12 
Installed in laboratory before 
casting splices. 

Total 14 42  

 

 

 

A commonly used general purpose strain gage (CEA-06-250UW-350) with a gage 

length of 0.25 in. was used for measuring rebar strain in select locations. To make a half-

bridge or full-bridge configuration, strain gages are usually attached to the point of interest 

as a pair of two or in a set of four, respectively. The advantage of using a half-bridge or 

full-bridge configuration to measure strain is the ability to compensate for a secondary 

type of strain. For the specimen, the rebar at critical locations were primarily subject to 

axial strain. The temperature during the testing program in the laboratory was nearly 

constant, so no compensation for temperature induced strains was needed. In this case, the 

strain gages were attached to the rebar at the points of interest and a quarter-bridge 

configuration was used to read the strain.  
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B.5.2 Surface Strain Gages 

Surface strain gages (PL-60-11-3LT) were also used to capture the strain profile at 

important sections of the specimen during the loading and post-tensioning stages. Surface 

gages are similar to rebar gages, but because they are used on concrete, they are usually 

longer than those used for rebar (gage length = 2.36 in.). As shown in Fig. B.25, surface 

gages were attached on the top surface of the CIP concrete deck and on the side surfaces 

of the girder flanges. Three lines of strain gages were attached on top of the deck along 

the length of the specimen (see Fig. B.25 [a]). Two lines of strain gages measured the 

strain and deformation on the deck near the edges, and the central line of gages measured 

the strain on top of the deck along the centerline of the girder. Two surface strain gages 

were attached on the side surfaces of the top and bottom flanges of the girder at each 

critical location to capture the strain profile of those sections during post-tensioning and 

loading the specimen (see Fig. B.25 [b]). 



 

341 
 

  
(a) Surface Strain Gage on Deck 

(b) Surface Gages on Side of Girder Flanges 

Fig. B.25 Surface Gages on the Specimen. 

 

B.5.3 Embedded Concrete Gages 

Embedded concrete gages were used to capture the strain and stress in the concrete, 

especially in the anchorage zones and the splice connections. The concrete gages around 

the PT ducts captured the effect of post-tensioning on the girder and the splice connection. 

Unlike the rebar strain gages, the embedded concrete gages were placed by attaching to 

the adjacent reinforcement using wires and then were embedded when the concrete was 

cast. These gages measured the axial strain in concrete. There are two different types of 

embedded concrete gages: one that only measures compressive strain and the other that 

measures both compressive and tensile strain in concrete. Within the specimen, the 
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concrete was subjected to tensile stresses in some areas and cracked, therefore embedded 

concrete gages with the ability to measure both compression and tension were used.  

In order to measure the strain profile in the splice section, three embedded concrete 

gages were placed in the splice region. Fig. B.26 shows the typical locations for the 

embedded concrete gages within the splice region and end blocks. These gages were used 

to observe the effect of post-tensioning at the splices and the anchorage zone. They were 

also used in the splice sections to capture the strain profile at different loading stages 

during laboratory testing. 

B.5.4 Linear Variable Differential Transformers 

LVDTs are capable of measuring relative displacement between two specific points and 

are typically used to measure the average strain over a longer length. LVDTs were used 

to map the splice deformation at different loading stages during testing. Fig. B.27 (a) 

shows the location of mounted LVDTs on the specimen. Fig. B.27 (b) shows the 

configuration detail of the mounted LVDTs.  
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(a) Typical Strain Gage Locations in the Splice Region 

 
(b) Typical Strain Gage Locations in the Thickened End Block  

Fig. B.26 Embedded Concrete Gages in the Specimen. 
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(a) Locations of LVDTs 

 
(b) Configuration of LVDTs 

Fig. B.27 LVDTs Mounted on the Web of Specimen. 

 
 

B.5.5 String Potentiometers 

String potentiometers (string pots) are used to measure displacements and movements 

from a constant origin. String pots were placed under the girder at 2 ft increments to record 

the deformation profile of the girder during load testing. Fig. B.28 shows the layout of the 

string pots. The string pots were also used to capture the effect of post-tensioning, which 

introduced camber in the girder specimen.  
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Fig. B.28 String Potentiometers Mounted on the Specimen. 

 
 

B.5.6 Demountable Mechanical Points  

DEMEC points were also used to map the deformation on the surface of the specimen. 

DEMEC points have several advantages including economy, reliability, and ease of 

installation. One disadvantage is that it is time consuming to measure and record all the 

distances between the DEMEC points and to map the deformed surface. Also, because 

there is no continuous data logging using the DEMECs, the experiment needs to be 

stopped at specific instances of interest in order to measure and record the useful data. 

B.5.7 Summary of Instrumentation 

Table B.12 presents a summary of the number of gages used for the specimen.  
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Table B.12. Instrumentation Summary. 

Instrument 
Type 

Location in the 
Specimen Quantity  Measurement 

Rebar Strain 
Gages 

 Splices 42 
Strains in transverse 
reinforcement and 180° bent 
hooked bars in splices 

Rebar Strain 
Gages 

Thickened end blocks 10 
Effect of PT forces on rebar 
in thickened end block 

Concrete 
Strain Gages 
(Embedded) 

Splice, thickened end 
blocks 

20 
Concrete strains in 
thickened end blocks and 
splice regions 

Concrete 
Strain Gages 
(Surface) 

Top and bottom 
flanges of girder 
segments and on top 
surface of deck 

49 

Strain in extreme fiber, 
moment-curvature 
relationship, load-
displacement relationship 

LVDTs 
Splices, over interior 
support 

24 
Strains at splice regions and 
interior support 

DEMEC 
Points 

Splices, over interior 
support 

280 
Mapping the deformation in 
the splice region and at the 
interior support 

String Pots 

Movement of bottom 
girder face relative to 
strong floor along the 
length of the specimen  

37 

Deflection along the length 
of the specimen for 
moment-curvature 
relationship and load-
displacement relationship 

3-Wire Cable  
Strain gages and string 
pots 

10 (1000 
ft each) 

- 

4-Wire Cable  LVDTs 
2 (1000 ft 

each) 
- 

 

B.6 SUMMARY OF MATERIAL PROPERTIES 

B.6.1 Concrete 

Fresh and hardened properties of concrete for girder segments, splice connections, and 

slab deck was measured. More than 200 samples were taken from all batches of concrete 
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to provide a thorough understanding of the material properties of concrete. Samples were 

tested for day 1, 3, 14, 28, 56, and the day of testing. Appendix A of Report FHWA/0-

6651-2 provides details of the measured properties at each stage. Table B.13 presents the 

summary of the material properties for the age of 28 days and the day of testing. The 

values for the day of testing was used in numerical models.  

 

Table B.13. Concrete Properties for Numerical Analysis. 

Part 
Age of Concrete 

(days) 
Parameter 

At 28 Days 
(ksi) 

At Age of 
Testing 

(ksi) 

Girder Segments 222 
݂′௖ 9.860 11.730 

௥݂ 1.084 1.170 
 ௖ 4742 5126ܧ

Splices 103 
݂′௖ 8.790 9.500 

௥݂ 1.112 1.112 
 ௖ 5896 5895ܧ

Deck 95 
݂′௖ 5.360 6.555 

௥݂ 0.685 0.500 
 ௖ 5089 5089ܧ
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Stress-strain tests were carried out on #5 and #6 bars based on the ASTM A370-

A8 standard. Tests were conducted on five #5 and five #6 bars. The grip-to-grip distance 

of the device was 16 in. An extensometer consisting of three LVDTs was used to measure 

the elongation, and the average of the three readings is report. The gage length was set to 

8 in. as recommended in Article A9.3.1 of the ASTMA370. A MTS hydraulic jack with 

displacement control was used to load the specimen. Fig. B.30 shows the test setup and a 

typical failure of a reinforcing bar.  

 

  
(a) Test Setup (b) Failure within the Gage Area 

Fig. B.29 Mild Steel Stress-Strain Test. 
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Table B.14 and Table B.15 present the results of the stress-strain tests on the #5 

and #6 bars, respectively. Fig. B.31 depicts typical stress-strain curves for the #5 and #6 

mild steel bars based on experimental results and compares it with the Urmson-Mander 

(2012) model that was used in the numerical modeling. 

 

 
Table B.14. Mechanical Properties of #5 Bars. 

Test # 
Loading  

Rate, 
in./sec. 

Yield  
Stress (fy), 

ksi 

Young’s  
Modulus (E), 

ksi 

Ultimate  
Stress (fsu), 

ksi 
1 0.0167 65.1 29,868 101.6 

2 0.0084 63.5 27,578 105.8 

3 0.0020 60.5 28,900 99.1 

4 0.0050 61.7 27,753 101.3 

5 0.0050 62.3 27,273 102.0 

Average - 62.6 28,275 102.0 
 

 

 

Table B.15. Mechanical Properties of #6 Bars. 

Test # 
Loading  

Rate, 
in./sec. 

Yield  
Stress (fy), 

ksi 

Young’s  
Modulus (E), 

ksi 

Ultimate  
Stress (fsu), 

ksi 
1 0.0167 68.1 29,109 107.5 
2 0.0084 68.0 29,096 107.5 
3 0.0050 67.5 30,299 107.3 
4 0.0050 67.9 29,587 107.3 
5 0.0084 68.2 28,599 107.6 

Average - 67.9 29338 107.4 
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(a) #5 Rebar (b) #6 Rebar 

Fig. B.30 Stress-Strain Curve for Mild Steel. 

 

A.1 PRESTRESSING STRAND 

Tensile strength test was carried out on five 0.6 in. diameter prestressing strands. An MTS 

hydraulic jack was used to pull the specimens. The grip-to-grip distance was 16 in., as 

specified by ASTM A370-A8. An extensometer with three LVDTs having a gage length 

of 8 in. was used to measure the strain. Because the wires started untwisting after reaching 

their yield strength, the gage was removed after yielding occurred. Fig. B.31 presents the 

test setup and failure of the specimen. Table B.16 summarizes the loading rates for each 

test and mechanical properties of the strands. Stresses were determined using the nominal 

area.   
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(a) Test Setup (b) Untwisting after Yielding (c) Failure at Grip 

Fig. B.31 Prestressing Strand Tensile Test. 

 
 

Table B.16. Mechanical Properties of Prestressing Strands. 

Test # 
Loading 

Rate, 
in./sec 

Yield 
Stress (fy), 

ksi 

Young’s 
Modulus (E), 

ksi 

Ultimate 
Strength, 

ksi 
1 0.0167 213 27,936 272.6 
2 0.0167 211 28,635 271.9 
3 0.0084 207 28,581 271.8 
4 0.0084 203 28,538 273.3 
5 0.0050 201 28476 272.7 
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APPENDIX C 

 DERIVATION OF DEFLECTION BALANCING 

C.1     Deflection Theory 

 

 

Let ܲܽ = ݉௣
௪௅మ

଼
= ݉௣

ௐ௅

଼
  ∴ ܲ =

௠೛

௔

௪௅మ

଼
=

௠೛

௔

ௐ௅

଼
  (Note ܹ =  (ܮݓ

and ܯ଴ = ݉଴
௪௅మ

଼
  and ݕ௙ =

௪௅ర

ଷ଼ସாூ
=

ௐ௅య

ଷ଼ସாூ
  with ܻ =

௬

௬೑
 and ܺ =

௫

௅
 

Using free body diagram and moment equation: 

"ܻ ܫܧ − = (ݔ)ܯ  =  (ܹ/2 − ݔ(ܲ + ݔ〉ܲ − ܽ〉 − 0_ܯ −  2/(ଶݔݓ)

− 
ସܮݓ

௙ݕ348
 ܻ" =

ݔܮݓ
2

−
ଶݔݓ

2
− ݔ]ܲ − ݔ〉 − ܽ〉] −  ଴ܯ

− 
ଷܮܹ

௙ݕ348
 ܻ" =

ݔܹ
2

−
ଶݔݓ

2
− ݉଴

ܮܹ
8

−
௣ܯ

ܽ
ܮܹ

8
ݔ] − ݔ〉 − ܽ〉] 

Simplifying:  

ቆ
ܮ

௙ݕ48
ቇ ܻ" =

4
ଶܮ ଶݔ −

4
ܮ

ݔ + ݉଴ +
௣ܯ

ܽ
ݔ] − ݔ〉 − ܽ〉] 

Integrating to find slope ݕᇱ 

ଶܮ

௙ݕ48
ܻᇱ =

4
ଶܮ

ଷݔ

3
−

4
ܮ

ଶݔ

2
+ ݉଴ݔ +

݉௣

2ܽ
ଶݔ] − ݔ〉 − ܽ〉ଶ] +  ଵܥ

w

M0

M0

a b a

P P

L
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at ݔ = ܮ
2ൗ ; ܻᇱ = 0   

0 =
4
ଶܮ

ଷܮ

24
−

4
ܮ

ଶܮ

8
+ ݉଴

ܮ
2

+
݉௣

2ܽ
ቈ
ଶܮ

4
− 〈

ܮ
2

− ܽ〉ଶ቉ +  ଵܥ

ଵܥ− = ܮ ൬
1
6

−
3
6

൰ + ݉଴
ܮ
2

+
݉௣

2ܽ
ଶܮ ൤

1
4

− 〈
1
2

−
ܽ
ܮ

〉ଶ൨ 

ଵܥ =
ܮ
3

− ݉଴
ܮ
2

+
݉௣ܮ

8
௔

௅ൗ
ቈ1 − ൬1 −

2ܽ
ܮ

൰
ଶ

቉ 

ଵܥ =
ܮ
3

− ݉଴
ܮ
2

−
݉௣ܮ

2
ቀ1 −

ܽ
ܮ

ቁ 

ܻᇱ =
4
ଶܮ

ଷݔ

3
−

4
ܮ

ଶݔ

2
+

ܮ
3

− ݉଴ ൜
ܮ
2

− ൠݔ −݉௣ ൜
ܮ − ܽ

2
−

1
2ܽ

ଶݔ] − ݔ〉 − ܽ〉ଶ]ൠ 

Integrating 

ଶܮ

௙ݕ48
 ܻ = 4

ଶݔ

12
−

4
ܮ

ଷݔ

6
+

ݔܮ
3

− ݉଴ ቊ
ݔܮ
2

−
ଶݔ

2
ቋ −݉௣ ቊ൬

ܮ − ܽ
2

൰
௫

−
1

6ܽ
ଷݔ] − ݔ〉 − ܽ〉ଷ]ቋ 

 

Multiplying by 
ସ଼

௅మ  

ܻ =
ܻ
௙ݕ

= 16 ቀ
ݔ
ܮ

ቁ
ସ

− 32 ቀ
ݔ
ܮ

ቁ
ଷ

− 24݉଴ ൜ቀ
ݔ
ܮ

ቁ − ቀ
ݔ
ܮ

ቁ
ଶ

ൠ

+ 16 ቀ
ݔ
ܮ

ቁ  −݉௣ ቊ24 ቀ1 −
ܽ
ܮ

ቁ ቀ
ݔ
ܮ

ቁ  −
8

ܽ
ൗܮ

൤ቀ
ݔ
ܮ

ቁ
ଷ

− 〈
ݔ
ܮ

−
ܽ
ܮ

〉ଷ൨ቋ 

And setting ܺ =
௫

௅
ߙ  ݐ݁ݏ ݀݊ܽ  =

௔

௅
 

ܻ = [16ܺସ − 32ܺଷ + 16ܺ] − ݉଴ 24ሼܺ − ܺଶሽ−݉௣ ቄ24(1 − ܺ(ߙ −
଼

ఈ
[ܺଷ − ݔ〉 − ܽ〉ଷ]ቅ  (C.1) 

Differentiating 
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ܻᇱ = 64ܺଷ − 96ܺଶ + 16 − ݉଴ 24ሼ1 − 2ܺሽ − ݉௣ 24 ቄ(1 − (ߙ −
ଵ

ఈ
[ܺଶ − ݔ〉 − ܽ〉ଶ]ቅ  (C.2) 

 

Specific Case for ߙ =
ଵ

ଷ
 

ܻ = [16ܺଶ − 32ܺଷ + [ݔ16 − ݉଴ 24ሼܺ − ܺଶሽ − ݉௣  ቄ16ܺ − 24 ቂܺଷ − 〈ܺ −
ଵ

ଷ
〉ଷቃቅ      (C.3)

  

ܻᇱ = 64ܺଷ − 96ܺଶ + 16 − ݉଴ 24ሼ1 − 2ܺሽ − ݉௣  ቄ16 − 96 ቂܺଶ − 〈ܺ −
ଵ

ଷ
〉ଶቃቅ   (C.4) 

C.2     SPECIFIC SOLUTIONS 

C.2.1  Eccentric only solution ൫࢖࢓ = ૙൯ 

Boundary condition with ݕᇱ = 0 @ܺ = 0. From Eq. (C.2): 

ܻᇱ = 0 = 16 − 24݉଴ →  ݉଴ =
2
3

 

∴ ிܯ         = ଴݁ܨ =
2
3

ܮܹ
8

=
ܮܹ
12

=  ܮܹ 0.0833

which is the well-known solution for a fixed-fixed beam.  

C.2.2  Zero central deflection with eccentric only solutions ൫ܘܕ = ૙൯ 

From Eq. (C.1)     ܺ =
ଵ

ଶ
 

ܻ = 0 = ቈ16.
1
2

ସ

− 32.
1
2

ଷ

+ 16.
1
2

቉ − ݉଴24 ቊ
1
2

−
1
2

ଶ

ቋ = 5 − 6݉଴ 

݉଴ =
5
6

 

∴ ଴݁ܨ         =
5
6

×
ܮܹ

8
= ܮܹ 0.1042 =

ܮܹ
9.6

 



355 
 

C.2.3  Harped only solution (ܗܕ = ૙), હ = ૚/૜ 

For zero slope at support: ܺ = 0,  ܻᇱ = 0. From Eq. (C.4): 

ܻᇱ = 16 − ݉௣ሼ16 − 96[0]ሽ = 16 − 16݉௣ 

݉௣ = 1 

∴ ଴݁ܨ         =
ܮܹ

8
 

Associated central deflection with ݉௣ = 1 and ܺ = 1/2: 

ܻ = ቈ16.
1
2

ସ

− 32.
1
2

ଷ

+ 16.
1
2

቉ − ൝16.
1
2

− 24[
1
2

ଷ

−
1
6

ଵ
ଷൗ

ൡ =  −
1
9

 (݀ݎܽݓ݌ݑ)

C.2.4  Harp Only: Zero central deflection ൫ܘܕ =? ൯, હ = ૚/૜  

From Eq. (C.3): 

ܻ = [5] − ݉௣1൛5 1
9ൗ ൟ = 0 

݉௣ = 45
46ൗ = 0.9783 

∴ ௖݁ܨ         =
45
46

×
ܮܹ

8
= ܮܹ 0.1223 =

ܮܹ
8.177

 

C.2.5  Mixed Solution 

With both harping and end eccentricity, what are the values of ݉௣ and ݉଴ so that the 

precast beam has zero slope at each end and zero mid-span deflection for the specific case 

where ߙ = 1/3.  

From Eq. (C.4) for ܻ′ = 0 and ܺ = 0:  

ܻᇱ = 0 = 16 − 24݉଴ − 16݉௣      (C.5)
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From Eq. (C.3) for ܻ = 0 and ܺ = 1/2: 

ܻ = 0 = 5 − 6݉଴ − 5 1
9ൗ  ݉௣      (C.6)

  

Solving Eq. (C.5) and (C.6) simultaneously: 

݉௣ = 9
10ൗ = 0.9 

݉଴ = 1
15ൗ = 0.0667 

∴ ௖݁)ܨ         − ݁଴) =
9

10
×

ܮܹ
8

=  ܮܹ 0.1125

∴ (଴݁)ܨ         =
1

15
×

ܮܹ
8

=
ܮܹ
120

=  ܮܹ 0.00833

Total moment at center:  

∴ ௖݁ܨ         = (0.1125 + ܮܹ(0.00833 =  ܮܹ 0.12083

C.2.6  Optimal Location of Harping (હܜܘܗ) 

To Obtain zero central deflection (with ݉଴ = 0), and full moment balancing ݉௣ = 1, 

solve for ߙ when ܻ = 0 and ܺ = 1/2:  

ܻᇱ = 0 = 5 −  ቄ12(1 − (ߙ  −  8 ൗߙ [1
8ൗ − ൫1

2ൗ − ൯ߙ
ଷ

]ቅ 

Solving for ߙ numerically:  

ߙ = 0.353553 
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APPENDIX  D 

C-STM GEOMETRY PROPORTION DERIVATION 

Fig. D.1 presents the geometric proportion of truss panels, so that the transverse dummy 

members are perpendicular to compression concrete struts. The geometric proportion may 

be derived as:  

⊥ ܥܣ ⊥ ܦܣ & ܦܤ  ܧܤ

∴ ܦܣܥ∠ = ܦܤܧ∠    =  ߠ 

 

tan ߠ =
ܦܧ
ܦܤ

=
ܦܥ
ܥܣ

 

∴
݀

ܰ. ݏ
=

ݏ
݀

 

∴ ݏ =
݀

√ܰ 
 

cot ߠ =
ܰ. ݏ

݀
=

ܰ. ݏ

 ܰ√ݏ
= √ܰ 

 

 

Results of such proportionality is presented in Table D.1 for the cases of  ܰ = 1, 2, 3,  and 

4. The last row of Table D.1 presents the cases and where, due to geometric restrains or a 

different calculated crack angle, geometric proportion does not follow Eq. (6.1) of Chapter 

6. Karthik et al. (2016) proposed that the following equation based on Mohr’s circle may 

be used to calculate the value of 
ఌభ

ఌమ
 for any given value of ߠ: 

ฬ
ଵߝ

ଶߝ
ฬ = ቌtanଶߠ +

ቚ
ଵߝ
ଶ௜ߝ

ቚ

cosଶߠ
ቍ 
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Fig. D.1 Geometric proportion of panels. 

Table D.1. Truss geometry for 1 thru 4 panel configurations. 

Panel 
Configuration 

Truss Geometry 

ܰ = 1 

ߠ = 45° 

cot ߠ = 1.0  

ܰ = 2 

ߠ = 35.5° 

cot ߠ = 1.402  

ܰ = 3 

ߠ = 30° 

cot ߠ = 1.732  

ܰ = 1 

ߠ = 26.5° 

cot ߠ = 2  

 ݎ݁݃݁ݐ݊݅ ݐ݋݊ ܰ

 ߠ

 

ቚ
ఌభ

ఌమ
ቚ = ൭tanଶߠ +

ฬ ഄభ
ഄమ೔

ฬ

ୡ୭ୱమఏ
൱   

 

 

݀ 

 ݏ

 ߠ

 ߠ

 ݏܰ

 ߠ

 ߠ

 ߠ

 ߠ

 ଶ௜ߝ ߠ
 ଵߝ
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