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ABSTRACT

Array beamforming is a widely-used technique for producing a flexible, retar-

getable, and tunable beam using fixed-position transmitting or receiving elements.

It is well-understood, and widely used. Distributed and collaborative versions of

the problem — where elements do not have fixed locations known ahead of time,

elements may move, or elements may need to cooperate without central control —

offer the benefits of beamforming in a much wider set of scenarios. The greater com-

plexity introduced by the required coordination and estimation have limited its use

in deployed systems.

One of the common assumptions of existing distributed beamforming techniques

is that each element can use a phase shifter to alter its intrinsic transmit phase

to an optimal value (measured, for closed loop strategies; calculated, for open-loop

strategies) that minimizes inter-element interference in the main beam. In this thesis,

I present a simple alternative method for minimizing interference: elements should

deactivate their transmitter if their intrinsic phase is too distant from their optimal

phase.

Omitting the phase shifter permits cheaper elements, but requires overprovision-

ing the number of elements in the beamforming system. In systems that have many

elements a priori (a multirobot swarm, for example), this deactivation strategy can

add beamforming capability at a lower cost.

I analyze the general behavior of a beamforming system built using this principle,

discuss the tradeoff between allowable phase error and power in the main beam, and

prove a lower bound on fraction of active elements in a transmitter swarm. In

addition, I present simulation and benchtop results that illustrate the feasibility of
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element deactivation as a beamforming technique.
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1. INTRODUCTION

The array beamforming problem is the process of forming a strong beam in a

given direction using a collection of antennas that do not necessarily have any pref-

erential direction. By controlling the amplitude and phase of each antenna, their

individual radiation patterns can be made to constructively interfere in a chosen

direction, forming a main beam. At the same time, their radiation patterns interfere

destructively in other directions, ensuring that most of the emitted power travels

along the main beam.

The benefits of array beamforming are broadly applicable. For example:

• A team of autonomous rovers needs to communicate with an overhead satellite

without removing rovers from their current tasks. Dynamic beamforming would

allow them to assemble a high-gain beam capable of communicating with the

satellite using only the low-gain antennas used for inter-rover communication.

• A wireless sensor network needs to report to a remote base station, beyond

the range of any individual module. Dynamic beamforming would allow the

sensor modules to pool their transmit power, even though they may be widely

separated.

Despite the promised benefits, random and dynamic beamforming techniques are not

widely used in deployed systems — most strategies require intensive communication

between elements, as well as fairly sophisticated hardware.

Basic approaches to the beamforming problem assume control over element po-

sitions, transmit amplitudes, and transmit phases [16]. Random arrays [10] sacrifice

control over element positions, while maintaining the main beam, and dynamic ar-
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rays support actively steering and retargeting the beam. The underlying math of all

these variants is largely the same; only the implementation technique changes.

To produce a coherent beam, the transmitting elements must all be in phase as a

wave front travels along the beam axis (See Chapter 2 for an explanation). Existing

approaches (classical steering) accomplish this goal by giving each element a phase

shifter to correct the difference between the element’s intrinsic phase and the phase

required by its position in the array.

I propose deactivation steering as a simple alternative: if the correction that

an element’s phase shifter would have applied is greater than a threshold, then the

element deactivates its transmitter. Deactivation steering removes the requirement

for phase shifters at the cost of reduced beam power for a given number of elements.

Removing the per-element phase shifter will lower the cost and complexity of the

resulting system. Hopefully, this will remove one of the barriers that stands in the

way of wider deployment of systems based on dynamic beamforming techniques.

The remainder of this thesis:

• Formalizes the dynamic beamforming problem, classical steering, and deacti-

vation steering (Chapter 2);

• Covers specific existing approaches to dynamic beamforming (Chapter 3);

• Discusses the expected performance of a beam under deactivation steering,

compares it to that of classical steering, and proves a lower bound on the

number of active elements (Chapter 4);

• Presents the results of benchtop experiments that show the basic feasibility

and realistic shortcomings of the deactivation strategy (Chapter 5).
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2. FORMALIZATION OF DEACTIVATION STEERING

In order for beamforming to occur, wavefronts from each element must arrive at

the same point on the main beam axis close together in time. Figure 2.1 illustrates

this process for a classical periodic array. The standard tool for ensuring this occurs

for any given array is a quantity called the array factor [16]:

AF(q̂) =
∑
i

sie
−j(kq̂·~pi+φi), (2.1)

where

• q̂ is the query direction (a unit vector);

• si is the steering coefficient of element i, a complex number embodying the

input amplitude and phase of element i;

• k is the wave number, 2π
λ
;

• ~pi is the position vector of element i;

0

1

2

3

4

Figure 2.1: Constructive interference in a classical antenna array. As you move
further away from the array along the beam axis, the wavefronts from each element
arrive closer and closer together.
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• φ0i is the intrinsic phase offset of element i.

The array factor characterizes the radiation pattern of an array in a way that is

independent of the radiation patterns of the individual elements, making it useful

for comparing different types of arrays.

The set of coefficients si, the steering vector, describes the input signal (amplitude

and phase) of element i. If the element positions are not controllable, then the

steering vector is the only controllable term in the array factor.

The complex angles involved in the array factor can be visualized in phase space,

as angular positions on the unit circle. In the case where the array is unsteered (all

si are real), the phase space position of element i is:

φi = (kq̂ · ~pi) + φ0i mod 2π. (2.2)

The quantity (kq̂ · ~pi) can be called the distance phase offset, since it measures

the distance (relative to the origin) of element i along the query axis, modulo the

wavelength. Note that the phase space position of element i is dependent on the

query vector q̂.

Figure 2.2 illustrates the correspondence between ~pi and φi. Elements that are

diametrically opposed on the phase-space diagram interfere destructively, while those

close together interfere constructively.

The typical way to form a beam from a given set of element positions, here called

classical steering, sets the steering vector to be:

sc,i = Aej(kb̂·~pi+φ0i) (2.3)

where b̂ is the beam direction (a unit vector), and A is a fixed amplitude, identical for
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(b) Phase space

Figure 2.2: (a) Beamforming with eight randomly-placed transmitters. Assuming
that all elements have a common clock and no intrinsic phase offset (φ0i = 0), (b)
shows the corresponding phase-space positions.

all elements [10, 6]. As with the array factor, the steering vector is usually described

in spherical coordinates, without consideration of an element’s intrinsic phase offset.

The complex magnitude of sc,i is fixed, indicating that all elements transmit with

the same amplitude. The complex phase of sc,i counteracts each element’s distance

and intrinsic phase offsets, effectively forcing all elements to φi = 0 in phase space.

Because of this, the elements then interfere constructively along the main beam.

The fact that sc,i has an arbitrary complex angle implies that any physical im-

plementation of classical steering requires a phase shifter for each antenna element.

To work around this requirement, I propose deactivation steering :

sd,i =


1, if kb̂ · ~pi + φ0i ∈ [φmax, φmax + w)

0, otherwise

(2.4)

The half-open interval [φmax, φmax+w), called the maximal interval, is the section of

phase space (of width w) that contains the most elements (Figure 2.3). In general,

there is more than one maximal interval of width w for any given set of element
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Figure 2.3: An example maximal interval (w = 10% · 2π) as Figure 2.2. The interval
covers the maximum number of transmitters possible.

positions.

The maximal interval width w is the maximum phase error the system is willing

to tolerate. It is a freely-chosen design parameter. Figure 2.4 shows the result of

applying deactivation steering to a set of elements.

The primary advantage of deactivation steering is that all coefficients sd,i are

purely real, indicating that no phase shifters are required. In effect, deactivation

steering achieves coherence by turning off all elements that are poorly placed for

contributing to a given beam.

Deactivation steering is founded on several assumptions:

1. There are many more transmitters available than are needed to form a suffi-

ciently powerful beam.

2. Mutual coupling between receivers, multipath fading, and shadowing are all

assumed not to occur.

3. Each transmitter has access to an estimate of its phase space position. This

can be derived from a real position estimate and Equation 2.2, but there are

also strategies that allow a direct estimate of phase space position.
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Figure 2.4: The result of activating the transmitters from Figure 2.3. Observe that
the wavefronts become more coincident the further along the beam axis they travel.

4. All transmitters have access to a common local oscillator (clock) signal.

Assumption 1 is unique to deactivation steering, while assumptions 2, 3, and 4 are

shared, to a large degree, among all beamforming strategies in the literature.
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3. EXISTING WORK

The random array problem has been studied since the early 1960s, when ever-

more-complicated periodic array spacing strategies were being pursued in an attempt

to optimize array performance. Y. T. Lo showed [10] that positioning elements ran-

domly across the array aperture requires far fewer transmitting elements to maintain

the same level of average array performance. Since then, random arrays have been

the subject of incredibly deep research.

Methods for automatically synchronizing a phased array are nearly as old as

phased arrays themselves. In the general case, these adaptive methods work by

exposing the array to the signal from a transmitter in the far field. The phase

of the signal can be measured at each array antenna, and the reciprocity theorem

guarantees that transmitting a signal from each antenna with the same measured

phase will direct a beam back at the target. Applebaum [1] and Widrow [18] are

examples of early work on adaptive arrays in the context of rejecting a jamming

source from a phased array receiver.

Steinberg’s Valley Forge Radio Camera [17, 15] used a standard adaptive method

with a far-field point source to synchronize a large microwave random array. Once

synchronized, the array’s beam could be swept to image a target using standard

phased array techniques. Later, Attia and Steinberg [2] worked to remove the need

for a synchronizing source by using noncoherent reflections from the environment

instead. These works all use a centralized beamforming architecture — all trans-

mit/receive elements are tied into a single controller.

Barriac et al. [3] discuss the problem of distributed beamforming — removing the

central controller. They note that the primary stumbling block is the distribution of
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a common local oscillator signal (a signal whose phase fronts arrive at each element

at the same time). They outline a master-slave architecture where each slave has an

estimate of the path-delay between it and the master. Given some restrictions on

the arrangement of the master and slaves, this is sufficient to simulate a common

local oscillator at each slave. From there, the authors describe a reciprocity-based

beamforming system quite similar to Steinberg’s.

Separately, the same group propose an elegant gradient-ascent method [12] (one-

bit feedback) that completely does away with the need for a common local oscillator.

Only a common frequency source is required. It is an iterative process that requires

an active receiver in the far field:

1. Each transmitter starts out with a random phase offset.

2. A random subset of transmitters change their phase.

3. The receiver indicates whether received power increased or decreased.

4. If received power decreased, the change from step 2 is reversed.

5. If received power has reached the required level, terminate.

6. Otherwise, return to step 2.

The end result of the process is a strong beam focused on the receiver. However, none

of the individual transmitters have enough information for the beam to be steered

in another direction.

One bit feedback methods have also been investigated for energy harvesting [11,

9]. In this framework, energy receivers send yes-or-no feedback to beamforming power

transmitters, allowing effective power transmission without localization in noisy and

cluttered environments.
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Yong [19] and Jenn et al. [7] describe work with a proof-of-concept system for

ship-borne phased array radar. In their design, all transmit and receive elements are

wirelessly connected to a central controller. The rough position of each element is

known, but compensation for small changes in path length between the controller

and transmitters is required. The central controller measures the path delay to each

transmitter in a round-robin fashion, and provides them with phase and magnitude

compensation. Both Yong and Jenn note that the data transmission requirements

of this architecture are immense.

Muralidharan and Mostofi [13] present an optimization framework to maximize

received power at a base station from a set of mobile robots in a 2D workspace.

They show that with certain assumptions, the problem can be approximated as an

instance of the Multiple-Choice Knapsack Problem. Simulations of the optimization

approach show good results. However, one of the assumptions they make is that

the power contributed by multiple elements in purely additive — that no destructive

interference can occur.

Ochiai et al. [14], followed by Buchanan and Huff [5, 6], present thorough analysis

of the expected patterns of uniformly distributed random arrays of various shapes. In

addition, Ochiai et al. present a clear overview of the dynamic beamforming problem,

and the distinction between closed-loop and open-loop approaches to derivation of

each element’s phase information.

Recent work by Jensen [8] at Texas A&M University focused on solving the

beamforming problem in a separate way. Jensen’s MEDUSA system consists of 32

independently-positionable and orientable antennas with attached phase shifters. An

RGBD camera focuses on the array, detecting LED-based fiducials. Computer vision

software is used to estimate the position of each element, and each element’s phase

is adjusted in near-real time as its position changes.
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4. ANALYSIS OF DEACTIVATION STEERING

It is not immediately clear from the definition of deactivation steering that it

will form a coherent beam. In addition, the reliance on achieving coherence by

deactivation raises concern that any beam that is produced will be too weak to be

useful.

In this chapter, I:

• Provide an algorithm for choosing a maximal interval ([φmax, φmax + w));

• Explore the expected array factor of a deactivation array, and show how it

varies with respect to the tolerable phase error w;

• Compare the expected array factor of a deactivation array to that of a classical

random array;

• Prove a lower bound on the number of elements that a maximal interval of

width w will contain.

4.1 Finding a Maximal Interval

If the positions and intrinsic phase offsets of all elements are known, a simple

algorithm (Figure 4.1) can be used to compute a maximal interval.

choose maximal interval sweeps a candidate interval over the entire phase

space, counting the number of elements that fall within it. The sweep is discretized

using the observation that the number of captured elements only changes when the

candidate interval ends on an element. After completion of the sweep, the candidate

interval containing the most elements is returned.

11



# Returns a maximal phase interval [φmax, φmax + w)
#

# Inputs:

# * b̂: A unit vector in the desired main beam direction

# * k: The wave number (2π
λ
)

# * p: An array of the element position vectors

# * φ0: An array of the element intrinsic phases

# * w: The tolerable phase error (in radians)

def choose_maximal_interval(b̂, k, p, φ0, w):
φ = [kb̂ · ~pi + φ0i for ~pi,φ0i in zip(p, φ0)]

max_count = −∞
max_interval = None

for φi in φ:
cur_count = 0

for φj in φ:
if φj ∈ [φi, φi + w):

cur_count += 1

if cur_count > max_count:

max_count = cur_count

max_interval = [φi, φi + w)
return max_interval

Figure 4.1: An algorithm to choose a maximal interval.
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All numeric evaluation of the array factor under the deactivation steering policy

(Sections 4.2 and 4.3) uses maximal intervals selected using choose maximal interval.

4.2 Expected Array Factor of Deactivation Steering

A random array, whether using classical steering or deactivation steering, uses

elements whose positions are drawn from some underlying probability distribution.

Since the array factor will change with each sampling of the distribution, it is more

useful to characterize the steering strategy by its expected array factor:

E [AF(q̂)] =
∑
i

E
[
sie

−j(kq̂·~pi+φi)
]

(4.1)

Analytic solutions for the expected array factor are quite complex, even for simple

element distributions [5, 6]. Instead, I evaluate the expected array factor by collecting

statistics over 1000 numeric trials.

Figure 4.2 plots the distribution of the array factor of a random array under

deactivation steering. The particulars:

• The array consists of 64 elements;

• Element positions are drawn from a spherical uniform distribution with radius

10m;

• The working wavelength of the problem is 1m;

• The percentile statistics are calculated across 1000 trials — 1000 drawings of

64 elements from the underlying distribution;

• The elements are assumed to have intrinsic phase offsets φ0 = 0;

• The main beam vector b̂ points along the +x axis (0◦, on the plots);

13



0◦

90◦

180◦

270◦

-15dB
-10dB

-5dB

25th %ile

50th %ile

75th %ile

(a) w = 5% · 2π

0◦

90◦

180◦

270◦

-15dB
-10dB

-5dB

25th %ile

50th %ile

75th %ile

(b) w = 10% · 2π

0◦

90◦

180◦

270◦

-15dB
-10dB

-5dB

25th %ile

50th %ile

75th %ile

(c) w = 25% · 2π

0◦

90◦

180◦

270◦

-15dB
-10dB

-5dB

25th %ile

50th %ile

75th %ile

(d) w = 50% · 2π

0◦

90◦

180◦

270◦

-15dB
-10dB

-5dB

25th %ile

50th %ile

75th %ile

(e) w = 75% · 2π

0◦

90◦

180◦

270◦

-15dB
-10dB

-5dB

25th %ile

50th %ile

75th %ile

(f) w = 100% · 2π

Figure 4.2: Array pattern under deactivation steering, z = 0 plane.
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• The array factor is taken in the z = 0 plane;

• All power gains are taken relative to the main beam array factor of the same

array under classical steering.

One prominent feature of deactivation steering is that the main beam sends power

in both directions (0◦ and 180◦, on the plots). This can be understood by analogy to

a wavelength-spaced endfire array — deactivation steering groups its active elements

into wavelength-spaced bands. Unlike a wavelength-spaced endfire array, the ex-

pected pattern of a deactivation-steered random array does not have to be precisely

symmetric, since the distribution of active elements in phase space can be skewed.

As w is increased from 0 to 2π, the expected pattern changes shape. At w =

5% · 2π, the pattern as a whole is very weak (indeed, the pattern should decline to

nothing at w = 0, since no elements will be active). At the other extreme, there

is no main beam in the w = 2π case. All elements are transmitting, so there is no

directional preference.

When present, the main beam is well-distinguished from the sidelobes — even

the 25th percentile of main beam gain is well above the 75th percentile of sidelobe

gain. It should be noted that, although not plotted, the 0th percentile tends towards

−∞ and the 100th percentile tends towards the main beam power.

Figure 4.3 plots the dependence of main beam power on w in greater detail. The

interquartile range is approximately 1 dB for most values of w, indicating that the

expected main beam power density is reliable at any given w.

As w increases from 0 to 2π, the main beam gain quickly rises from −∞, stays flat

at approximately −5 dB from 25% · 2π to 75% · 2π, and declines back to the sidelobe

level at 2π. Median power density is maximized at approximately w = 41% · 2π,

taking a gain value of approximately −4.4 dB.
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Figure 4.3: Array factor under deactivation steering versus w, sampled along the
main beam (q̂ = b̂ = x̂). Gain computed relative to the main beam power of a
classically-steered array.
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Figure 4.4: Array pattern under classical steering, z = 0 plane.

4.3 Comparison of Deactivation Steering and Classical Steering

The previous section’s analysis shows that deactivation steering produces a clear

main beam that is expected to be significantly stronger than the average sidelobe

level. Now, I will compare the performance of deactivation steering and classical

steering.

First, Figure 4.4 shows the array factor of a random array using classical steering.

(The underlying parameters are the same as those used in the previous section —

only the steering strategy has been changed.) The main beam is unidirectional,

unlike the bidirectional main beam of deactivation steering, and the median sidelobe

level is approximately 10 dB below the main beam.

Since deactivation steering is parameterized on w, I will choose w to maximize

main beam power when comparing strategies. (Recall that main beam power under

deactivation steering is maximized at approximately w = 41%2π.)

Figure 4.5 shows the expected array pattern for this choice, and Figure 4.6 plots
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Figure 4.5: Array pattern under deactivation steering, w = 41% · 2π, z = 0 plane.

the median gain of both steering strategies near the main beam axis. On the main

beam axis (0◦, in Figure 4.6) there is a 4.38 dB difference between the steering strate-

gies. In terms of direct power, this means that the deactivation-steered beam is

roughly 36% as powerful as a classically-steered beam. Further analysis of the simu-

lation reveals that half of this difference comes from the number of active elements.

Deactivation steering leaves a median of 32 elements active, while classical steering

always uses all 64 elements. The remainder of the difference comes from interference

between elements on opposite sides of the active interval.

4.4 Element Availability Under Deactivation Steering

Given that deactivation steering deactivates all elements that lie outside a small

section of phase space, concern over the reliability of the beam is warranted. Will

there always be enough active elements to form an appreciable beam? How many

active elements can be expected for a maximal interval width w?

First, there is a hard lower bound on the number of elements contained in a
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Figure 4.6: Array factor under deactivation (w = 41% · 2π) and classical steering
within 20◦ of the main beam axis, z = 0 plane.
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maximal phase interval of width w:

Lemma 1 (Extended Pigeonhole Principle). (Statement and proof adapted from [4],

edited for clarity). If m items are to be divided among n bins, with the number of

items in each bin denoted as mi, then:

∃i : mi ≥
⌊
m− 1

n

⌋
+ 1 (4.2)

Proof. By contradiction. Assume the principle does not hold:

∀i : mi <

⌊
m− 1

n

⌋
+ 1 (4.3)

≤ m− 1

n
. (4.4)

This implies a contradiction:

m =
n∑

i=1

mi (4.5)

≤
n∑

i=1

m− 1

n
(4.6)

≤ n
m− 1

n
(4.7)

≤ m− 1. (4.8)

Theorem 1. Given m elements distributed in phase space, it is always possible to

choose a phase interval of width w that contains at least

⌊
m− 1⌈

2π
w

⌉ ⌋
+ 1 (4.9)
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elements.

Proof. Divide phase space into
⌈
2π
w

⌉
phase bins, equally-sized and non-overlapping.

Each of these bins has width

wb ≡
1⌈
2π
w

⌉ ≤ w. (4.10)

Every element falls into one of these bins. Denote the number of elements in bin i

as mi. By Lemma 4.4, it is clear that:

∃i : mi ≥

⌊
m− 1⌈

2π
w

⌉ ⌋
+ 1. (4.11)

Any interval of width w that completely covers this maximal bin necessarily contains

at least the requisite number of elements. (See Figure 4.7).

To get an intuitive sense of this lower bound, consider that most of the compli-

cation in its expression comes from properly handling integer boundaries. Approxi-

mately speaking, as m becomes large and w becomes small, it states that a maximal

interval is guaranteed to contain at least wm
2π

elements.

The existence of this lower bound is independent of the element positions for any

given array. This is a powerful guarantee — even if an adversary is moving elements

to actively work against me, I will always be able to find a maximal interval containing

an appreciable number of elements. I even still have free choice of w, allowing me to

tune the beam power to my needs.

With this hard lower bound established, how many active elements can we expect

in a non-adversarial case? Figure 4.8 plots both the guaranteed lower bound and

the count of active elements (computed from the same element position distribution
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Figure 4.7: Pigeonhole principle in phase space. The black, outset phase bin is the
bin that should covered with the active phase interval.

described in Section 4.2). From the plot, it is clear that deactivation consistently

does better than the guaranteed bound, selecting approximately wn
2π

elements.
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5. BENCHTOP EXPERIMENTAL RESULTS

The previous chapter’s analysis shows that deactivation steering is expected to

form a well-defined beam, though less powerfully than classical steering.

To support that analysis, I ran a set of small-scale trials of deactivation steering.

The trials were run at 2.5GHz (λ ≈ 12 cm), on a set of 27 monopole antennas.

I ran two trials, each time choosing the element positions at random. The actual

distribution of elements was not a simple uniform distribution: the optics table has

a 60 · 48 grid of available positions on a 1 inch pitch, and each element has a small

ground plane that prevents placing them too close together. The element positions

for each trial were thus produced using a rejection approach: loop over all elements,

repeatedly sampling a random position on the grid until a non-conflicting position

is found. Figure 5.1 shows the resulting element positions for both trials.

For each trial, elements were fed using a 32-way power divider network connected

to the active port of a network analyzer (Agilent FieldFox) (see Figures 5.2 and 5.3).

Each leg of the power divider network introduces a separate, constant phase offset
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(a) Trial 1
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(b) Trial 2

Figure 5.1: Element positions. The main beam will be formed along the +x axis (to
the right).
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Figure 5.2: Block diagram of experiment trials.

(a) Closeup. (b) Receiver.

Figure 5.3: The test setup. (a) shows the transmit antennas and power divider
network. (b) shows the receiver antenna in the foreground, with the transmit array
in the background.
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between the input signal and the radiated signal for each element. These phase shifts

were measured for each trial, and established as the intrinsic phase offset (φ0i) for

each element.

The input port of the network analyzer was connected to another monopole an-

tenna. This receiver antenna was in the plane of the optics table, approximately

6.5m away on the main beam axis.

Each trial followed these steps (starting with n = 27, w = 2π):

1. With n antennas active, measure the power gain between the two ports of the

network analyzer.

2. Decrement n. If n = 1, stop. Otherwise, decrease w until the maximal interval

(computed as in Section 4.1) contains n elements.

Figure 5.4 plots the resulting gain versus the maximal interval width.

The results of Trial 1 agree in general with my predictions in Sections 4.2 and 4.3.

When w is small, received power is very low. As w increases, received power increases,

attaining a maximum near w = 2rad, followed by a dropoff as w approaches 2π.

Trial 2 does not present a clear peak, and received power attains its maximum

at w = 2π (where all elements are active). This doesn’t agree with my predictions,

since I expect received power in the main beam to drop back to the sidelobe level as

w approaches 2π.

The results from both trials are not very clean. There are two main factors that

could contribute to this:

• environmental reflections : The lab environment in which the trials were run

is electromagnetically cluttered. There are many large metal panels and wires

that could reflect or scatter power from the sidelobes of the array to the receiver

antenna.
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Figure 5.4: Measured gain versus maximal interval width for both trials.
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• mutual coupling : The optics table is quite crowded when filled with 27 trans-

mitters — each trial had many elements within a single wavelength of each

other. This causes some of the power emitted by an element to be captured

and re-radiated by nearby elements. This effect can be mitigated by increasing

the inter-element distance (physically, by increasing the diameter of the array;

or virtually, by decreasing the working wavelength).
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6. CONCLUSIONS

In this thesis, I proposed deactivation steering, a new method for controlling a

random transmitter or receiver array. The primary benefit of deactivation steer-

ing is that it requires only passive knowledge of an element’s phase space position,

rather than active control — in other words, deactivation steering doesn’t need phase

shifters.

I provided an algorithm (choose maximal interval, Figure 4.1) that selects the

best phase interval to activate for any given array, and analyzed the expected perfor-

mance of arrays controlled by it. The expected behavior compares well to classically-

steered random arrays, but pays an overall power penalty for deactivating a fraction

of the available elements (forfeiting use of their output power). In addition, I proved

that deactivation steering of width w is guaranteed to activate a certain fraction of

the available elements, independent of their specific positions.

Finally, I conducted benchtop trials of random arrays using deactivation steering.

These trials, while imperfect, indicate the basic viability of the steering method.

The analysis implies that deactivation steering is a useful control strategy that

pays a power penalty compared to classical steering, but has the advantage of not

requiring any phase shifters. There are situations where this may be a worthwhile

tradeoff, for example:

• If an existing distributed system with many basic antennas must be retrofitted

with dynamic beamforming capability;

• If cost analysis of a new system indicates that the price of per-element phase

shifters outweighs the benefits of dynamic beamforming.
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There are two immediate avenues for furthering this line of research. First, it

would be helpful to run more physical trials of the system, with more elements, more

widely separated. This will allow performing statistical tests of agreement between

the simulated and actual distributions of main beam power. The second is to de-

velop a distributed version of choose maximal interval — requiring a centralized

algorithm for phasing limits the use of deactivation steering in decentralized environ-

ments, like robot swarms or wireless sensor networks. These decentralized, large-scale

systems are likely to be where the particular tradeoffs of deactivation steering are

most worthwhile.
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APPENDIX A

CLASSICAL STEERING SIMULATION

Python 3 source code for simulating array factor under classical steering:

import sys

import numpy as np

import scipy.constants as spc

def array_factor(emitter_position,

steering_vector,

sample_wave_vector):

’’’Compute the array factor for the given emitters’’’

steering_rank2 = np.reshape(steering_vector,

(len(steering_vector), 1))

sample_distance_phase = np.einsum(’ik,jk->ij’,

emitter_position,

sample_wave_vector)

emitter_factor = steering_rank2 * np.exp(-1.0j * sample_distance_phase)

# Sum the emitter factors over all emitters in each sample direction.

return np.sum(emitter_factor, 0)

def run_trials(n_trials,

sample_wave_vector,

emitter_generator):

’’’Run N trials, returning array factors shape (N_TRIALS, N_SAMPLE_DIRS)’’’

trial_array_factor = np.empty((n_trials, sample_wave_vector.shape[0]))

for trial_idx in range(n_trials):

# Generate emitters for this trial

emitter_position, steering_vector = emitter_generator()

# Compute array factor for this trial

af = array_factor(emitter_position, steering_vector, sample_wave_vector)

trial_array_factor[trial_idx,:] = np.abs(af)

return trial_array_factor

def classical_steering_func(emitter_position, main_beam_wave_vector):

’’’Compute the classical steering vector for the given emitters’’’

emitter_phase = np.einsum(’ik,k->i’,

emitter_position,

main_beam_wave_vector)

return np.exp(1.0j * emitter_phase)
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def main():

’’’Drive the simulation’’’

DIST_SIZE = 10

N_EMITTERS = 64

N_TRIALS = 1000

N_SAMPLE_DIRS = 512

MAIN_BEAM_DIR = np.asarray((1.0, 0.0, 0.0))

WAVELENGTH = 1

wave_number = (2 * spc.pi / WAVELENGTH)

main_beam_wave_vector = wave_number * MAIN_BEAM_DIR

# Generate a set of sample directions (confined to XY plane)

sample_angle = np.linspace(0,

2*spc.pi,

N_SAMPLE_DIRS,

endpoint=False,

dtype=np.float32)

sample_wave_vector = np.empty((len(sample_angle), 3))

sample_wave_vector[:, 0] = wave_number * np.cos(sample_angle)

sample_wave_vector[:, 1] = wave_number * np.sin(sample_angle)

sample_wave_vector[:, 2] = wave_number * 0.0

def dist_generator():

points = np.empty((0,3))

while points.shape[0] < N_EMITTERS:

remaining = N_EMITTERS - points.shape[0]

candidates = np.random.uniform(-1, 1, (remaining, 3))

candidates = candidates[np.linalg.norm(candidates, axis=1) < 1]

points = np.concatenate((points, candidates))

emitter_position = points * DIST_SIZE

steering_vector = classical_steering_func(emitter_position,

main_beam_wave_vector)

return emitter_position, steering_vector

trial_array_power = run_trials(N_TRIALS,

sample_wave_vector,

dist_generator)

pctile_025_array_power = np.percentile(trial_array_power, 25, 0)

pctile_050_array_power = np.percentile(trial_array_power, 50, 0)

pctile_075_array_power = np.percentile(trial_array_power, 75, 0)

# The array factor of a classically-steered random array along the main beam

# is the number of elements in the array.

ref_power = N_EMITTERS
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pctile_025_array_gain = 10 * np.log10(pctile_025_array_power / ref_power)

pctile_050_array_gain = 10 * np.log10(pctile_050_array_power / ref_power)

pctile_075_array_gain = 10 * np.log10(pctile_075_array_power / ref_power)

# Output plot using matplotlib

sys.stdout=sys.stdout.buffer

import matplotlib as mpl

pgf_with_custom_preamble = {’figure.autolayout’: True,

"font.family": "serif",

"text.usetex": True,

"pgf.rcfonts": False,

"pgf.preamble": ["\\usepackage{siunitx}",

"\\usepackage{unicode-math}"]}

mpl.rcParams.update(pgf_with_custom_preamble)

import matplotlib.pyplot as plt

plt.figure(figsize=(float(sys.argv[1]), float(sys.argv[2])))

plt_pct025, = plt.polar(sample_angle,

pctile_025_array_gain,

label=’25th %ile’)

plt_pct050, = plt.polar(sample_angle,

pctile_050_array_gain,

label=’50th %ile’)

plt_pct075, = plt.polar(sample_angle,

pctile_075_array_gain,

label=’75th %ile’)

plt.legend(handles=[plt_pct025, plt_pct050, plt_pct075],

prop={’size’: (10 if sys.argv[3] == ’svg’ else 6)},

bbox_to_anchor=(1.0, 1.0),

borderaxespad=0)

ax = plt.gca()

ax.set_rlim([-15, 0])

ax.set_yticks([-15, -10, -5])

ax.set_yticklabels([r’-15dB’, r’-10dB’, r’-5dB’])

ax.set_xticks([0, spc.pi/2, spc.pi, 3*spc.pi/2])

ax.set_xticklabels([’$0^\circ$’,

r’$90^\circ$’,

r’$180^\circ$’,

r’$270^\circ$’])

plt.tight_layout()

plt.savefig(sys.stdout, format=sys.argv[3], bbox_inches=’tight’)

if __name__ == ’__main__’:

main()
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APPENDIX B

DEACTIVATION STEERING SIMULATION

Python 3 source code for simulating array factor under deactivation steering:

import sys

import numpy as np

import scipy.constants as spc

def array_factor(emitter_position,

steering_vector,

sample_wave_vector):

’’’Compute the array factor for the given emitters’’’

steering_rank2 = np.reshape(steering_vector,

(len(steering_vector), 1))

sample_distance_phase = np.einsum(’ik,jk->ij’,

emitter_position,

sample_wave_vector)

emitter_factor = steering_rank2 * np.exp(-1.0j * sample_distance_phase)

# Sum the emitter factors over all emitters in each sample direction.

return np.sum(emitter_factor, 0)

def run_trials(n_trials,

sample_wave_vector,

emitter_generator):

’’’Run N trials, returning array factors shape (N_TRIALS, N_SAMPLE_DIRS)’’’

trial_array_factor = np.empty((n_trials, sample_wave_vector.shape[0]))

for trial_idx in range(n_trials):

# Generate emitters for this trial

emitter_position, steering_vector = emitter_generator()

# Compute array factor for this trial

af = array_factor(emitter_position, steering_vector, sample_wave_vector)

trial_array_factor[trial_idx,:] = np.abs(af)

return trial_array_factor

def deactivation_steering_func(emitter_position,

active_width,

main_beam_wave_vector):

’’’Compute deactivation steering vector for the given emitters’’’

ideal_phase = np.fmod(np.einsum(’ik,k->i’,

emitter_position,
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main_beam_wave_vector),

2 * spc.pi)

# Sweep a window of ACTIVE_WIDTH over all elements, remembering the start of

# the window that contained the most elements.

max_count = -1

max_src = -1

max_lim = -1

for phase_i in ideal_phase:

cur_count = 0

window_src = phase_i

window_lim = phase_i + active_width

for phase_j in ideal_phase:

if ((window_src <= phase_j and phase_j < window_lim)

or (window_src <= phase_j + 2 * spc.pi

and phase_j + 2 * spc.pi < window_lim)):

cur_count += 1

if cur_count > max_count:

max_count = cur_count

max_src = window_src

max_lim = window_lim

gating = np.logical_or(np.logical_and(max_src <= ideal_phase,

ideal_phase < max_lim),

np.logical_and(max_src <= ideal_phase + 2*spc.pi,

ideal_phase + 2*spc.pi < max_lim))

return gating.astype(np.complex128)

def main():

’’’Drive the simulation’’’

DIST_SIZE = 10

N_EMITTERS = 64

N_TRIALS = 1000

N_SAMPLE_DIRS = 512

MAIN_BEAM_DIR = np.asarray((1.0, 0.0, 0.0))

WAVELENGTH = 1

MAXIMAL_INTERVAL_WIDTH = float(sys.argv[1]) * 2 * spc.pi

wave_number = (2 * spc.pi / WAVELENGTH)

main_beam_wave_vector = wave_number * MAIN_BEAM_DIR

# Generate a set of sample directions (confined to XY plane)

sample_angle = np.linspace(0,

2*spc.pi,

N_SAMPLE_DIRS,

endpoint=False,
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dtype=np.float32)

sample_wave_vector = np.empty((len(sample_angle), 3))

sample_wave_vector[:, 0] = wave_number * np.cos(sample_angle)

sample_wave_vector[:, 1] = wave_number * np.sin(sample_angle)

sample_wave_vector[:, 2] = wave_number * 0.0

def dist_generator():

points = np.empty((0,3))

while points.shape[0] < N_EMITTERS:

remaining = N_EMITTERS - points.shape[0]

candidates = np.random.uniform(-1, 1, (remaining, 3))

candidates = candidates[np.linalg.norm(candidates, axis=1) < 1]

points = np.concatenate((points, candidates))

emitter_position = points * DIST_SIZE

steering_vector = deactivation_steering_func(emitter_position,

MAXIMAL_INTERVAL_WIDTH,

main_beam_wave_vector)

return emitter_position, steering_vector

trial_array_power = run_trials(N_TRIALS,

sample_wave_vector,

dist_generator)

pctile_025_array_power = np.percentile(trial_array_power, 25, 0)

pctile_050_array_power = np.percentile(trial_array_power, 50, 0)

pctile_075_array_power = np.percentile(trial_array_power, 75, 0)

# The array factor of a classically-steered random array along the main beam

# is the number of elements in the array.

ref_power = N_EMITTERS

pctile_025_array_gain = 10 * np.log10(pctile_025_array_power / ref_power)

pctile_050_array_gain = 10 * np.log10(pctile_050_array_power / ref_power)

pctile_075_array_gain = 10 * np.log10(pctile_075_array_power / ref_power)

# Output plot using matplotlib

sys.stdout=sys.stdout.buffer

import matplotlib as mpl

pgf_with_custom_preamble = {’figure.autolayout’: True,

"font.family": "serif",

"text.usetex": True,

"pgf.rcfonts": False,

"pgf.preamble": ["\\usepackage{siunitx}",

"\\usepackage{unicode-math}"]}

mpl.rcParams.update(pgf_with_custom_preamble)

import matplotlib.pyplot as plt

plt.figure(figsize=(float(sys.argv[2]), float(sys.argv[3])))

plt_pct025, = plt.polar(sample_angle,

pctile_025_array_gain,
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label=’25th %ile’)

plt_pct050, = plt.polar(sample_angle,

pctile_050_array_gain,

label=’50th %ile’)

plt_pct075, = plt.polar(sample_angle,

pctile_075_array_gain,

label=’75th %ile’)

plt.legend(handles=[plt_pct025, plt_pct050, plt_pct075],

prop={’size’: (10 if sys.argv[4] == ’svg’ else 6)},

bbox_to_anchor=(1.0, 1.0),

borderaxespad=0)

ax = plt.gca()

ax.set_rlim([-15, 0])

ax.set_yticks([-15, -10, -5])

ax.set_yticklabels([r’-15dB’, r’-10dB’, r’-5dB’])

ax.set_xticks([0, spc.pi/2, spc.pi, 3*spc.pi/2])

ax.set_xticklabels([’$0^\circ$’,

r’$90^\circ$’,

r’$180^\circ$’,

r’$270^\circ$’])

plt.tight_layout()

plt.savefig(sys.stdout, format=sys.argv[4], bbox_inches=’tight’)

if __name__ == ’__main__’:

main()
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