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ABSTRACT 

 

Synthesis gas, known as syngas, is a mixture of hydrogen and carbon monoxide 

along with other gases. Syngas is an important feedstock for the production of various 

chemicals and fuels such as ammonia, methanol, dimethyl ether, and Fischer-Tropsch 

(F-T) liquid fuels. Typically, syngas is produced from the reforming of natural gas. 

Several mature processes, such as steam methane reforming (SMR), partial oxidation 

(POX), dry reforming of methane (DR) and autothermal reforming (ATR), are used to 

produce syngas. A promising alternative to natural gas is biogas (mostly methane and 

carbon dioxide) which may be used as a feedstock for syngas production. There are 

some advantages of using biogas as the feedstock: (1) Biogas is considered to be a 

renewable energy source, which can be produced from several sources of biomass 

wastes, and (2) Biogas can reduce greenhouse effect by utilizing CO2 generated from the 

waste material gasification process and by mitigating the emission of methane. 

In order to investigate the economic viability in using biogas for syngas 

production, fixed and operating cost issues as well as environmental impact must be 

considered and compared with the use of natural gas. 

The thesis investigates the use of biogas for the production of syngas. The 

separation and reforming units are modeled. The extent of carbon dioxide and methane 

utilization is assessed. Carbon footprint is included in the objective function. A case 

study for producing syngas with a ratio H2/CO=1.5 is analyzed and a sensitivity analysis 

on natural gas price is evaluated to show the feasibility of using biogas instead of natural 
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gas. The final result shows that in the recent past 20 years, 1/4 of the time favors biogas 

over natural gas as the feedstock. In other words, biogas is a suitable substitution for 

natural gas, especially when the natural gas price is higher than about $6.3/MMBtu. 
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NOMENCLATURE 

 

F-T Fischer-Tropsch 

SMR Steam Methane Reforming 

POX Partial Oxidation 

DR Dry Reforming 

ATR Auto- Thermal Reforming 

CAGR Compound Annual Growth Rate 

IFA International Fertilizer Industry Association 

CTL Coal to Liquid 

GTL Gas to Liquid 

DOE Department of Energy 

EIA Energy Information Administration 

GHG Green House Gas 

RWGSR Reverse Water Gas Shift Reaction 

MINLP Mixed Integer Non-Linear Programming 

TEG Triethylene Glycol 

TIC Total Investment Cost 

AOC Annual Operation Cost 

TAC Total Annual Cost 

PVAm/PVA Polyvinylamine/Polyvinylalcohol 

IC Investment Cost 
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OC Operation Cost 

PSA Pressure Swing Absorption 

VSA Vacuum Swing Absorption 

MEA Monoethanolamine 

PFR Plug Flow Reactor 

RT Resident Time 
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1. INTRODUCTION  

 

1.1 Background and Motivation 

Increasing global demand for fuels, industrial chemicals, electricity, and 

agricultural goods is an important factor to accelerate growth in syngas market. 

Downstream products of syngas include methanol, ammonia, urea, acetic acid, liquid 

hydrocarbons produced from Fischer-Tropsch synthesis, etc. The following table 

provides some of the downstream chemicals and reactions for them via syngas. 

Table 1. Selected Syngas Downstream Products and Reactions 

Products Reactions 

Methanol CO+2H2 → CH3OH 

Ethylene 2CO+4H2 → C2H4+2H2O 

Aldehyde 2CO+3H2 → CH3CHO+H2O 

Glycol 2CO+3H2 → HOCH2CH2OH 

Propanoic acid 3CO+4H2 → CH3CH2COOH+H2O 

Acetic acid 2CO+2H2 → CH3COOH 

 
Additionally, the F-T process can be utilized to convert syngas into a variety of 

hydrocarbons including alkanes and olefins.  

General reactions are as follows: 

Alkanes: (2n + 1) H2 + n CO → CnH(2n+2) + n H2O 

Olefins:  2n H2 + n CO → CnH2n+ n H2O 
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where n is generally 10-20 depending on different catalysts. 

In cobalt-based F-T catalysts, the dominant reaction is typically [2] 

CO + 2.15H2 → hydrocarbons + H2O 

The H2/CO ratio is about 2.15 as shown in the reaction. When the catalysts are 

switched to iron-based catalysts, since there exists a water gas shift reaction, the H2/CO 

usage ratio is reduced to about 1.7 in low-temperature F-T process, and to approximately 

1.05 in the high-temperature process.  

 

1.1.1 Syngas Downstream Product-- Methanol 

By far, the dominant methanol synthesis method is based on the synthesis gas 

process, which was developed in 1920s. In recent years, global methanol demand has 

experienced a rapid increase. From late 2013 to late 2015, the demand for methanol 

grew up to 80 million metric tons. In other words, the compound annual growth rate 

(CAGR) was about 10.7%. Furthermore, it is expected to see an unprecedented growth 

between 2015 and 2025 with a 4.8% CAGR. Moreover, China and the U.S. are expected 

to have the largest need for methanol in the future. The following figure shows the 

global and regional methanol market trend since 2000. 
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Figure 1. Global and Regional Methanol Market Trend 

 

1.1.2 Syngas Downstream Product-- Ammonia 

Another important downstream product of syngas is ammonia. Ammonia is 

synthesized through the famous Haber process, which follows the reaction shown below, 

[3] 

0.5N2 + 1.5H2 → NH3  ΔH° = −45.7 kJ/mol 

Nitrogen can be derived from processed air, which is less expensive and easy to 

separate. Hydrogen is produced through the syngas production process. First, catalytic 

steam reforming of methane is used to form hydrogen plus carbon monoxide. [2] 

CH4 + H2O → 3H2 + CO ΔH° = 206.2 kJ/mol 

The next step is to convert carbon monoxide into carbon dioxide and more 

hydrogen, which is known as the water-gas-shift reaction. [2] 
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CO + H2O → H2+ CO2 ΔH° = -41.2 kJ/mol 

Over 80% of total produced ammonia is widely used for fertilizing agricultural 

crops in the world. Based on U.S. Geological Survey, 159 million tons of ammonia was 

produced in 2010. [4] The International Fertilizer Industry Association (IFA) reported 

that about 41 million tons of urea capacity are expected to be added between 2013 and 

2018. The major increase is in East Asia (15 million tons), Africa (9 million tons) and 

North America (5 million tons). Figure 2 shows global supplies of ammonia. It indicates 

that the global demand for ammonia is growing in the next few years. Figure 3 shows 

regional and sub-regional share of global increase in ammonia from 2014 to 2018. East 

Asia will potentially have the largest increase in demand for ammonia supplies. 

Figure 2. Global Supply of Ammonia, 2014-2018 



 

5 
 

 

 
Figure 3. Regional Share of World Increase in Ammonia Supply, 2014-2018. [5] 

 

1.1.3 Syngas Downstream Product-- Liquid Hydrocarbons 

In addition to producing methanol and ammonia, syngas could produce liquid 

hydrocarbons through the F-T process. The F-T process was invented in the 1920s 

during World War II to supply hydrocarbon fuels for the German war effort. Depending 

on the source of syngas production, normally coal and natural gas, coal-to-liquid (CTL) 

and gas-to-liquid (GTL) are two general technologies for the Fischer-Tropsch process. 

After decades of development, many refinements and adjustments to the technology 

have been made. Operating plants are using Fischer-Tropsch synthesis all over the world, 

including Nigeria, Qatar, China, Malaysia, etc. The U.S. Department of Energy (DOE) 

reported that the most recent facility using the F-T synthesis in the U.S. is Sasol’s Lake 

Charles GTL and Ethane Cracker Complex in Louisiana, which started operating in 2016. 

Traditionally, liquid fuels like gasoline and diesel are refined from crude oil. 

Two other main routes for liquid fuel synthesis are methanol to gasoline and the F-T 

synthesis. If the oil price remains high, the market demand for CTL and GTL fuel 

productions would remain high accordingly. However, due to its inherently better 
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properties, environmental protection, and less separation complexity in liquid fuel 

synthesis [6], the F-T process is still competitive. Also, with the rapid growth demand of 

liquid fuels, fuels from the F-T process could potentially have a growing market share 

around the world, especially in those countries who rely significantly on imported crude 

oil. Figure 4 illustrates the trend of consumption of petroleum and other liquid fuels from 

1990 to 2040 by region. (Data from International Energy Outlook 2016, EIA) 

 

 
Figure 4. Consumption of Petroleum and Other Liquid Fuels by Region, 1990-2040 

 
According to the above information, three main products from syngas, methanol, 

ammonia and liquid hydrocarbons through the F-T synthesis, are all experiencing a 

mushrooming increase, not only in recent years but also in the forecasted period. 

Furthermore, concerns on environmental protection and increasing initiatives by 

governments to reduce emissions will spur syngas market growth in the future. Thus, 

studies on a more economic and more environmentally friendly syngas production 

process are necessary and pressing. 
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1.1.4 Syngas Production from Natural Gas 

So far, the most economic routes to syngas are natural gas-based processes. [7] 

Thus, most research and applications largely focus on GTL, and natural gas or shale gas 

are the most selected feedstocks. However, although natural gas has been regarded as a 

kind of clean and abundant source, it still has some disadvantages. First, natural gas is 

non-renewable. While large amounts of natural gas have been discovered over the last 

decade, experts believe that it will be depleted in the end and this does not meet the 

requirement for sustainable development. Secondly, natural gas emits some quantities 

greenhouse gas (GHG), which leads to global warming and climate change. Using 

natural gas cannot help minimize carbon dioxide emissions. The biggest downside to 

natural gas is that its lifetime effect of gas mining to the end use, natural gas would 

cause even larger harm to the environment. In addition to those, even though the price of 

natural gas exhibits higher stability than the price of crude oil, people cannot guarantee 

such stability will exist in the long term. According to the data from EIA, in the past 20 

years, the natural gas price may range from 1.63$/MMBtu (the lowest) to 6.73$/MMBtu 

(the highest). The highest recorded value is more than four times the lowest value. Such 

a fluctuation in resource price will largely affect the investment of a facility and will add 

uncertainty to the market price. 

 

1.1.5 Syngas Production from Biogas 

In order to satisfy the increasing competition, environmental concerns, and 

societal pressures, a sustainable design, which can maximize the resource utilization and 
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minimize waste discharge, is crucial. [8] For the syngas production process, people 

proposed that biogas reforming could be a significant complementary source of syngas, 

without utilizing fossil fuels in the near future. Also, reactions and catalysts are proven 

to be effective when using biogas as the feedstock. [9] Several advantages can be seen 

when using biogas. First, biogas is produced from waste (e.g., landfill or sewage), so it is 

considered as a renewable source. It will not be depleted unless humans stop producing 

waste. Secondly, biogas is non-polluting. Biogas is produced by anaerobic digestion, 

which is absent of oxygen and no other fuels or energy are needed for converting. Last 

but not least, it reduces the GHG emission by utilizing gases, which are produced in 

landfills. Biogas contains mainly methane and carbon dioxide, where carbons are from 

waste. In other words, carbons may be decomposed into the atmosphere generating 

greenhouse gas, if not utilized as a form of biogas. 

To summarize, biogas has some advantages over natural gas, especially in the 

sustainable aspect. Therefore, it is worthwhile putting effort to investigate the economic 

benefit of syngas production using biogas and selecting appropriate reaction route and 

reaction conditions. Furthermore, considerations on environmental issues are also 

needed when comparing these two feedstocks. 

 

1.2 Literature Review 

Before 21st century, J.R. Rostrup-Nielsen delivered that manufacturing syngas 

would depend on natural gas and light hydrocarbons for the long term [10]. That is 

because it will cost more than twice on total investment in building a coal-based plant 
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than building a natural gas-based plant. Also, natural gas is considered to be the cleanest 

fossil fuel. Nowadays, natural gas reforming has become a mature process for hydrogen 

generation. 95% of the hydrogen produced in the U.S. is made by natural gas reforming 

[11]. Among all the technologies, the most common and economical way to make 

hydrogen is steam reforming of methane. Two primary reactions can briefly explain how 

it works.  

CH4 + H2O →   3H2 + CO 

CO+ H2O →   H2 + CO2 

The first reaction takes place at about 1500 degrees Fahrenheit with nickel 

catalysts, named as steam reforming reaction. Syngas with H2/CO ratio of 3 can be 

produced from this reaction. If additional hydrogen is needed, CO from the reforming 

reaction may interact with additional steam in the water gas shift reactor, filled with an 

iron chrome based catalyst (shown in the second reaction). 

Partial oxidation of methane (or hydrocarbons) is another pathway for syngas 

production which is a non-catalytic, large-scale process. This process yields syngas with 

H2/CO ratio of about 2 that is optimal for gas to liquid plant [12]. In addition to that, 

partial oxidation of methane has some other advantages over steam reforming: the 

selectivity to syngas and the exothermicity. Data regarding CH4 conversion over 

different reaction conditions are available through 700K-1200K, 1-20 bar. CH4/O2 ratio 

rises from 1.0 to 5.0 over nickel-based catalysts [13]. Reaction is taken place as 

following, [14] 

CH4 + ½ O2 →   2H2 + CO 	∆#$%&' = −35.6	.//123   



 

10 
 

 

Reforming of CH4 with CO2, known as the dry reforming of methane, is 

considered as a promising reaction to mitigate global greenhouse effect by utilizing two 

main greenhouse gases and producing syngas at the same time. Dry reforming process is 

more complicated than other two reactions. That is because CO2 can react not only with 

CH4 but also with H2 simultaneously. This process is known as a reverse water gas shift 

reaction (RWGSR). Some coke formation reactions will also take place in the dry 

reforming reactor. Relating reactions are listed below [15]. 

CH4 + CO2 →   2H2 + 2CO  ∆"#$%& = 246.2	-./012   

CO2 + H2 →   CO+ H2O  ∆"#$%& = 41.4	,-//01   

2CO→   C+ CO2   ∆"#$%& = −172.4	/0/234   

CH4 →   C+ 2H2    ∆"#$%& = 74.9	-./012   

CO2 + 2H2 →   C+ 2H2O  ∆"#$%& = −134.4-./012   

By combining non-catalytic partial oxidation and adiabatic steam reforming in a 

single reactor, auto-thermal reforming is less energy intensive because it uses energy 

more efficiently than SMR. Reactions with carbon dioxide or steam are described by the 

following equations.  

2CH4 + O2 + CO2 → 3H2 + 3CO + H2O 

4CH4 + O2 + 2H2O → 10H2 + 4CO 

As shown above, ratios of H2/CO are 1 and 2.5, respectively. If methane is filled 

into ATR reactor with oxygen, steam and carbon dioxide, the ratio is varied. Thus, ATR 

might be another suitable method for syngas production. 
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Using different processes, such as dry reforming, partial oxidation, steam 

reforming, and auto-thermal reforming, the syngas ratio varies from 1 to 3. After 

checking downstream products in Table 1 and other literature, it was found that no 

matter how the operation condition changes and how the final product varies, nearly all 

the required ratio for syngas remains 1 to 3. By combining the above routes for syngas 

generation, it can satisfy the reaction stoichiometry for most downstream chemicals. 

Among these reactions, dry reforming is a special one because it is indispensable for 

producing low hydrogen syngas. For example, if the low-temperature F-T process is 

going to proceed, dry reforming is necessary for a ratio of 1.7 unless we introduce CO 

additionally. [16] Since it is a CO2 based reaction, there must be carbon economy behind 

its application and that is the reason for this research considering the renewable source, 

biogas, as a feedstock for syngas generation. 

 

1.3 Problem Statement 

As mentioned in the previous section, there are several ways for syngas 

production. Determining the optimal operation condition is essential for each method. 

Furthermore, if there is a requirement on syngas ratio, which satisfies the downstream 

operation, what is the best combination of above reforming routes? And what does the 

term “best” mean? Does that mean most profitable, most environmentally friendly or the 

combination of these two concerns? In addition to those, this research also focuses on 

the feasibility of using biogas to take place of natural gas. What is the total cost for a 

biogas-based facility? Is it cheaper than using natural gas as the feedstock? Since the 
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natural gas price is changing all the time, what value of the natural gas price will the 

using of biogas as a substitution be favorable?  

To solve these problems, a well-designed superstructure that contains all possible 

options and a detailed MINLP (mixed integer non-linear programming) model to 

represent the superstructure are needed. Simulation and optimization software, GAMS 

and Aspen Plus, are used to help solve these problems. 
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2. METHODOLOGY

2.1 Superstructure Formation 

To conduct a comprehensive evaluation on total syngas generation cost from 

biogas, three sources of biogas are taken into account. The general sources of biogas are 

household waste, water treatment plant sludge, and waste of agri-food industry. In this 

study, the biogas from household waste, water treatment plant sludge, and agrifood 

industrial waste are represented as biogas 1, biogas 2, and biogas 3, respectively. 

Compositions of each biogas are listed in Table 2. 

Table 2. Compositions of Biogas from Different Sources 

Components Biogas 1 Biogas 2 Biogas 3 

CH4 % Vol 55% 70% 68% 

CO2 % Vol 36% 26% 26% 

H2O % Vol 5% 3% 6% 

N2 % Vol 3% 1% - 

O2 % Vol 1% - - 

The overall superstructure is described in Figure 5. In order to help reduce 

calculation load in GAMS, this problem is divided into two sections: the pre-treatment 

section and the reforming section. The pre-treatment section includes a dehydration part, 

a membrane unit and a carbon capture part. As shown in Table 2, all kinds of biogas 

contain more than 3% of water. However, the membrane in SMR and POX pathways 
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cannot tolerate water in the feed. SMR and POX pathways are the critical processes to 

separate carbon dioxide and methane, which are the primary elements in biogas. [17] 

Membrane is selected to change CH4 and CO2 compositions. Moreover, in DR pathway, 

water is also prohibited because if there is the presence of water, water gas shift 

reactions are more energetically favored [18]. Thus, a dehydration process is generally 

conducted at the beginning. After water is removed, biogas containing mainly CH4 and 

CO2 can be sent to DR reformer. Another pathway for dehydrated biogas is entering 

membrane to adjust CH4 and CO2 compositions. Separated CH4 is used for SMR and 

POX, and CO2 is either stored for other use or transferred into DR reformer as CO2 

supplement. If additional CO2 is required, CO2 captured from power plant flue gas is 

another possible carbon dioxide supplement for DR. In the reforming section, syngas 

from DR, POX and ATR is directly mixed. In SMR pathway, flash unit aims to 

separated water because water is usually introduced more than methane to increase 

methane conversion [19]. ATR requires O2 and H2O for methane transforming. 

Therefore, biogas can be directly sent into the ATR reactor for syngas generation. 

Additional steam is introduced into ATR. The reasons for using steam instead of oxygen 

are: (1) steam is less expensive than purified oxygen; (2) using steam to reform methane 

will produce more hydrogen, which is a more useful and higher demand product.  

In this study, all the generated syngas is assumed to be well mixed and the 

syngas ratio of H2/CO is set to be 1.5. An MINLP model is utilized to simulate the 

process and to find an optimal solution. 
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Figure 5. Overall Superstructure for Syngas Production through Biogas 

2.2 Pre-treatment Section 

Pre-treatment section includes dehydration part, membrane unit and carbon 

capture part. 

2.2.1 Dehydration Part 

The Superstructure, model and results will be shown in this chapter. 

2.2.2 Superstructure of Dehydration Part

Based on the superstructure shown above, three kinds of biogas should be 

dehydrated because all of them contain water higher than 3%. Existence of water can 
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increase the potential risk of corrosion, freezing and hydrate formation in pipes. [20] 

Condensed water from gas mixture can cause sluggish flowing conditions. Furthermore, 

water may increase the work load and the heat load due to its high heat capacity. Hence, 

dehydration of biogas is necessary in this process. Currently, two kinds of equipment are 

considered in practice. The equipment includes liquid desiccant dehydrator and solid 

desiccant dehydrator according to the type of the absorbent. Among all the absorbents, 

glycols are the most popular media because of their properties and commercial 

application suitability [21]. So far, TEG (Triethylene glycol) is found to be a suitable 

absorbent because TEG is easily regenerated to a higher degree of purity and its vapor 

losses is low. Several other processes include refrigeration, compression & cooling are 

other options for dehydration. In this problem, a basis of biogas flow rate is set to be 

1000 mole/s at 1atm, 373.15K. Final water composition is set to be less than 0.1%. A 

detailed superstructure is provided below. 
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Figure 6. Superstructure for Dehydration Part 

In fact, it is not possible to make the water content ratio lower than its saturation 

composition by just applying refrigeration at 25ºC because of the cryogenic limitations. 

Simulation from Aspen shows the temperature must drop down to 254.3K, which is 

below freezing point of water. Thus, only compression & cooling, defined as option 1, 

and TEG absorption, option 2, are considered in the following model. 

 

2.2.3 Description of MINLP Model of Dehydration Part 

The overall cost for dehydration can be calculated with this equation: 

!"#$%	$''($%	)*ℎ,)-$#."'	/"0# = 2!34 + 674  
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where !  is annualizing factor and a value of 0.2 is suggested [22], TIC is total 

investment cost and AOC is annual operation cost. Expressions for TIC and AOC are 

given as follows, where !"  and !"  represent binary variables. We assume 8000 

working hours per year, 

!"# = #%&&'()*+ + #%&-.)(//&)*+ + #0'1/2+*+ + #13/&)3()*4 + #2(15()*4 + #%&&'()*4
+ #0'1/24*4

!"# = 	8000	*	3600	*	(,-./01233.1*4567658	#9:5*8; + =-..>21* 

!""#$%&	()$#$)*	!"+)**-+!/01	2/01345*6 + 789:;9<*()$#$)*	!"+)**6+7=>>?9<* 

To begin with, a convex hull formulation is described to guarantee the flow rate 

can match the binary variable representing that branch. 

!" = !$ + !& 

!" 	≤ !%*'" 

!" ≥ 0 

!" 	≤ !%*'" 

!" ≥ 0 

!" + !$ = 1 

In order to reduce the heat load on heater, a compressor is introduced ahead of 

the heater in option 1. The equation for the compressor is given as followed:

!" 	=
1
& '()(*

+
+	– 1

-(./
-(

0	–	/
0 - 1

Relation between temperature and pressure is modeled by the ideal gas law: 
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!"#$
!"

= ('"#$'"
)
)	–	$
) 	

	

The performance equations for the heater follows: 

!"#$%#& 	= 	)*(,-./0 1*	-	1*34 + 64789∆;<$-_>8?)			

where !"#$%� �is average heat capacity that is related to composition, 

C"#$% = '()*+,-
-

 
 

Mass balance, component mass balance and Raoult’s law are applied for flash unit: 

!"
"

= !$	
	

!"#$,&
'

= !$#",$ 
 

!"_$
$

= 1	
	

!"#$%&,()*+,( 	= 	 )*.,(		
where ! ∈ #$%&'	)'*&+,-, / ∈ 01'%&'	-'*&+,-, 2 ∈ 34,54$&$'-   

The Antione equation for water is given below. The equilibrium coefficients for 

other components are set to be 10000, which mean little CH4, CO2, O2 and N2 is 

transferred into liquid phase: 

!"#$ =
10^(*- ,

- + /0)
23

 
 

Energy balance is written as: 

!"#"$%&'(,"
*

= !,#,$%&'(,,
-
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Cost of cooler and compressor can be found in H.P. Loh’s process equipment cost 

estimation report in 2002. [23] The flash drum is regarded as large cylindrical vertical 

pressure vessels with thickness of 10mm. The size and the cost of the vessel are based on 

the overall vessel weight as shown below: 

!"#$ℎ&'()*+ = -*.//( 0 1'()*+ + 2&ℎ 4'()*+ + &ℎ
5-01'()*+4'()*+5

Flash unit investment cost follows the following equation: [24] 

!. #.$%&' = )$%&' + +$%&'(-$%&')%/012 	

Parameters for a, b, n are given in Table 3. 

Table 3. Investment Cost Parameters for Typical Equipment [24]

Equipment Unit for sizing, S S_lower S_upper a b n 

Flash drum shell mass, kg 160 250000 11600 34 0.85 

Absorber shell mass, kg 160 250000 11600 34 0.85 

Radius can be calculated based on the flow rate. We assume the flash drum with 

a height to radius aspect ratio of 6:1 [25], and a residence time (RT) to be 100 seconds:

!"(#$%&')#$%&' = 22.4 ∗ /0 *"2 

6"#$%&' = )#$%&'  

Utility cost is collected from U.S. EIA for industrial use in Texas, March 2016 as 

5.28 cent/kW·h and cooling utility is estimated by increasing the amount of heat, which 

must be removed to about 150% [26]. That is because efficiency of energy transferred to
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cooling is lower than heating when applying electricity. TEG price is chosen to be 

$1.54/kg as suggested by ICIS. 

When sizing the TEG absorber column, we can calculate the height of it from 

number of the theoretical stages and the area from mass velocity, G (kg/m"h  ), and mass 

flow rate, m (kg/h), where mass velocity derives from the following equation: [27] 

! = #$ %&(%(-%&)  
!"    is a coefficient for bubble cap column and !"	   and 	"#    are vapor density and 

liquid density, respectively. As shown in Bahadori’s work, water removal efficiency (R) 

is calculated from the following function, where W is the amount of water in the gas: 

! = ($%&-$()*)/$%&   

Take biogas from household waste (biogas 1) as an example, the water removal 

efficiency is 98.1% after calculation with an inlet water composition of 5%. Bahadori 

[27] summarized the relation among water removal efficiency, TEG circulation rate and 

TEG purity to different theoretical stages and they are shown in the following graphs. 
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Figure 7. Water Removal Efficiency vs. TEG Circulation Rate at Various TEG 

Concentrations (Number of Theoretical Stages, N=2.5) in Comparison with Data [28] 
 

 
Figure 8. Water Removal Efficiency vs. TEG Circulation Rate at Various TEG 

Concentrations (Number of Theoretical Stages, N=3) in Comparison with Data [28] 
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Figure 9. Water Removal Efficiency vs. TEG Circulation Rate at Various TEG 
Concentrations (Number of Theoretical Stages, N=4) in Comparison with Data [28] 

After checking the data in the graphs, the following combinations can satisfy the 

requirement of 98.1% water removal efficiency. In order to minimize the cost, we 

choose the lowest TEG circulation rate while satisfying that requirement. 

Table 4. Absorber Information to Satisfy Water Removal Efficiency of 98.1% 

Theoretical 

Stage,	"# 
TEG Purity, !"#$_& TEG circulation rate, !"#$_& 

(!"	$%&/()	*+, )

2.5 0.999 0.04 

3 0.9995 0.021 

3 0.999 0.0225 

4 0.9999 0.0145 

4 0.9995 0.015 

4 0.999 0.016 
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The height of absorption column can be calculated by applying the following 

equations: 

!"#$ = !&'"#$_&
&

 
 

!"#$ = &"#$*4 + 1 *0.6 + 2/ℎ  

where !"    and !"#$_&    are the number of theoretical stage and the binary variable 

determining number of stage, respectively. 

Two theoretical stages are approximately eight bubble cap trays with 0.6 m tray 

spacing [26]. The radius of the column is determined by the following equations: [27] 

!"# =
%
& = %

'( )* )+-)*
 
 

!"# = %&'  

!"#$ = &'( = 	&(+ + -ℎ)(  

where m and G are mass flow rate and mass velocity, respectively. The weight of the 

column is given below: 

!"#$ℎ&'()*+(,+ = .'()*0*12- .'()-2&ℎ *056 + 056*&ℎ ∗ 4 ∗ :'() *;)2,,<   

Investment cost calculation for absorption column follows the same way with 

flash drum. The corresponding parameters are listed in Table 3. Mass of TEG used in 

this process (kg/s) can be determined as following: 
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!"#$ = ('"#$(**+,-(*!"#$()
/

*0"#$*1234	6789,/:;+-*'<=>*?<=>/1000 
 

where !"#$%   and !"#$%   are obtained from Table 4 and !"#$    is the molecular weight of 

water. Models for the heater, flash drum and cooler in TEG absorption pathway (option 

2) are similar to the previous ones. 

 

2.2.4 Dehydration Part Result 

Following results are obtained from simulations in GAMS software. 

 

Table 5. Biogas 1 Dehydrated Result 

Biogas 1 (From household 

waste:!!%	$%&, ()%	$*+, !%	%+*, (%	,+, -%	*+  ) 

Dehydrated gas flow rate 950.951 mole/s 

Dehydrated gas temperature 373.15K 

x"#$  0.5774 

x"#$  0.3786 

x"#  0.0110 

x"#  0.0320 

x"#$  0.0010 

Theoretical stages of TEG column 4 

TEG Purity 0.9999 

TEG circulation rate 0.0145 m"	TEG/kgH+O   

Cost of absorber $660,830 

Cost of flash drum $304,870 

Overall Cost $2,566,398.5185 
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Table 6. Biogas 2 Dehydrated Result 

Biogas 2 (From waste water treatment 

plant :!"%$%&, ()%$*(, +%%(*, ,%-(  ) 

Dehydrated gas flow rate 970.971mole/s 

Dehydrated gas temperature 373.15K 

x"#$  0.721 

x"#$  0.268 

x"#  0.01 

x"#$  0.001 

Theoretical stages of TEG column 4 

TEG Purity 0.999 

TEG circulation rate 0.012 m"	TEG/kgH+O   

Cost of absorber $215,140 

Cost of flash drum $238,110 

Overall Cost $1,343,455.0113 
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Table 7. Biogas 3 Dehydrated Result 

Biogas 3 (From waste of agri-food industry:!"%$%&, (!%$)(, !%%()  ) 

Dehydrated gas flow rate 940.941 mole/s 

Dehydrated gas temperature 373.15K 

x"#$  0.723 

x"#$  0.276 

x"#$  0.001 

Theoretical stages of TEG column 4 

TEG Purity 0.9999 

TEG circulation rate 0.016 m"	TEG/kgH+O   

Cost of absorber $233,400 

Cost of flash drum $349,760 

Overall Cost $3,161,626.9827 

 

Comparing to compression & cooling method, using TEG absorption can save 

30% of the total cost. The cost for dehydration can be reduced to $3.31/ton, $1.94/ton, 

$4.69/ton for biogas 1, biogas 2 and biogas 3, respectively. 

 

2.2.5 Membrane Unit 

As stated above, purified methane should be supplied to SMR and POX 

pathways. So in addition to entering DR reformer, dehydrated biogas may also go 

through a separator which can adjust the CH4 and CO2 compositions. Membranes using 

PVAm/PVA (polyvinylamine/polyvinylalcohol) material are developed. PVAm/PVA 

membrane ensures high selectivity and CO2 permeability. Also, this membrane provides 

long-term stability, excellent mechanical strength and good reproducibility. According to 
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Deng’s work, [29] CH4 loss in a PVAm/PVA blend membrane is only 0.57%, which is 

significantly favorable over current commercial membranes. Such a small amount of 

CH4 is negligible and we assume the outlet streams are pure CH4 and CO2 in retentate 

and permeant, respectively. 

 

2.2.6 Superstructure of Membrane Unit 

Below is the zoom-in superstructure for membrane unit. Since CH4 and CO2 in 

dehydrated biogas reaches up to 95%, dehydrated biogas can partially go straight into 

DR reactor. Membrane is applied to adjust the composition of the rest of dehydrated 

biogas so that CH4 can be separated for feeding SMR and POX reactors. There are two 

ways to deal with the separated CO2. DR requires CH4: CO2 ratio at 1:1, however, as the 

results shown in Table 5, Table 6 and Table 7, neither of the biogas has enough CO2. 

One of the pathway for separated CO2 is to enter DR reactor for supplying extra reactant. 

Because we are not sure if the separated CO2 is overmuch provided, the other stream is 

suggested for permeant CO2. This part of CO2 may be sequestrated for other use. 
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Figure 10. Superstructure for Membrane Unit 

 

2.2.7 Description of Model of Membrane Unit 

Hasan developed the investment and operation cost input-output models for 

several carbon capture technologies based on costs data from rigorous optimization [17]. 

The following simple expressions for investment cost (IC) and operating cost (OC) are 

functions of gas flow rate, F (mol/s), carbon dioxide composition, !"#$  . Unit for IC and 

OC is $/yr. 

!" = 	% + (()*+,- + .)01   

!" = 	%' + ()'*+,-.' + /')12'  

where !, #, $,%, &   are model parameters and they are listed in Table 8. 
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Table 8. Parameters for PVAm/PVA Membrane Input-output Cost Model [17] 

 !  !  !  m n 

IC 177500 16505 18912 0.77 0.88 

OC 0 11619 0 1 0.21 

 

The flow rate of biogas is determined by the initial set basis. Carbon dioxide 

composition can be obtained from the previous dehydration part. By combining 

parameters stated above, cost value can be easily calculated. 

 

2.2.8 Carbon Capture Part 

As introduced above, carbon dioxide may not be enough in DR reformer to 

satisfy the reaction stoichiometry. If DR is more favorable in this situation, there will not 

be much biogas entering membrane. That means little carbon dioxide from membrane 

will be supplied into DR. The required CH4/CO2 ratio is 1. However, the dehydrated 

biogas has small amount of carbon dioxide as shown in Table 5, Table 6 and Table 7. 

Additional CO2 may be needed for feeding DR. Carbon capture is not necessary if no 

more CO2 is needed, but a well-designed superstructure should take into account all 

possible options. 

Power plant flue gas is chosen as the supplement of CO2 because flue gas is 

abundant and zero-cost. CO2 composition of flue gas varies based on different burning 

fuels: gas-fired flue gas, which contains 7.4-7.7% CO2, and coal-fired flue gas, which 

contains 12.5-12.8% CO2 [30]. These data are useful in evaluating carbon capture cost. 
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In addition to membrane unit, there are also other carbon capture technologies 

whose cost can be estimated by previous functions. Actually Hasan provided multiple 

carbon capture methods with their cost function parameters. In his work, pressure swing 

absorption (PSA), vacuum swing absorption (VSA), MEA absorption, PZ absorption and 

membrane are considered. Figure 11 presents total capture and compression cost for 

each technology regarding different flue gas CO2 composition.

Figure 11. CO2 Capture and Compression Costs for Various Materials and 

Technologies[17] 

Obviously, MVY-based PSA is a promising and cost-efficient method for 

capturing carbon from power plant flue gas, where the CO2 composition is either 7.4-

7.7% or 12.5-12.8%. Thus, the model for MVY-based PSA is selected to solve this 

problem. Values of parameter !, #, $, %, &  are displayed in Table 9. 
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Table 9. Parameters for MVY-based PSA Input-output Cost Model [17] 

 !  !  !  m n 

IC 162447 22468 6408.791 0.797 1 

OC 0 7265 1839.193 1 1 

 

2.3 Reforming Section 

The syngas generation section or reforming section, located at the bottom of 

figure 5, it is shown below. 

Figure 12. Superstructure for Reforming Section 

 

The input for DR, SMR and POX is the separated CH4 from previous membrane 

unit. Methane can go through three different types of reformers to be converted into 

hydrogen and carbon monoxide. The primary reaction stoichiometry for each reformer 

and their enthalpies are listed below: 

CH4 + CO2 →   2H2 + 2CO  ∆"#$%& = 246.2	-./012   
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CH4 + H2O →  3H2 + CO  ∆"#$%& = 206	,-//01  

CH4 + ½ O2 →  2H2 + CO  ∆"#$%& = −35.6	.//123  

ATR requires CH4, O2, H2O and CO2 as the reactants. These reactants are all 

involved in biogas. Therefore, biogas can be directly fed as the input into ATR. Since 

the composition of biogas is fixed and the final syngas ratio is also fixed, the reaction 

operation condition and the amount of additional steam can be determined by simulation. 

ATR part is simulated by using Aspen Plus and cost evaluation will be illustrated later. 

2.3.1 DR, POX and SMR Part 

These reactors are modeled as stoichiometric reactors, which has a variable 

reaction conversion depending on temperature and pressure. The equation for 

stoichiometric reactions is shown below: 

!"#",% = !' #',% + !)#),% + *+,-.%!' #',+,-  
where i !  inlet stream containing methane, n !  other inlet streams, k !  outlet streams, 

j	"	 components, !"#$  refers to CH4 conversion and !"  is the stoichiometry of j 

component. This equation is used to determine how much methane is converted and 

what is the outlet stream composition after each reforming reaction based on CH4 

conversion. The conversion of methane also determines the heat of reaction equation, 

which is shown below: 

!" = $% &%,()*+()*,"∆-",./01  

where	"	#  reforming reaction 
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The next step is to put conversion in terms of pressure and temperature. For each 

reforming reaction, the graphs are found in the literature which have the relationship 

between conversion and reaction conditions. A general convex hull formulation is 

described as: 

!" = !$%$$ 	 			

!" = !$$ 	 			

!" = !$$ 	 			

!"" = 1	 			

!"#$%&" ≤ !" ≤ !"()*(&"	 			

!"#$%&" ≤ !" ≤ !"()*(&"	 			

!" = $%×'()*+" + -./+01+*/"    

!"#$%& = ()*+,-.,  -!"#$%&)/(*+
,-.,-*+012)   

For the above equations, s represents discretized scenarios. The variables for 

conversion, pressure and temperature, are also discretized. The data obtained under 

different temperature and pressure is linearly approximated, which is also called 

linearization. Conversion data and linearization process are shown in the following three 

figures for DR, SMR and POX. Actually low pressure favors a higher conversion due to 

the increasing amount of gas molecular in each reaction. And this fact can be discovered 

in the figures. At the same temperature, conversion under pressure of 1 bar is always 

higher than conversion under 5 bar, 10 bar and 20 bar. Thus, data at 1 bar is considered 

in this study. In terms of temperature, it is clear that higher the temperature leads to 

higher the conversion and this comes to an optimization problem: high conversion 
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represents more products, which can make more profit but high temperature costs more 

when operating. To solve this optimization problem, the above MINLP model is created. 

An example is demonstrated to explain the linearization process.  

In Figure 13, conversion at 500℃  -600℃  , which is the third part of that curve, is a 

nonlinear expression. Conversion value at 500 ℃   and 600 ℃   are 0.71 and 0.83, 

respectively. A straight line, whose expression is X" = 0.0012 ∗ T" + 0.11  , is used to 

describe the conversion expression in the range of T"#$% = 500℃   to T"#$%# = 600℃  . 

Binary variable y"   is used for indicating if operating condition is selected in this range. 

 

 
Figure 13. Conversion Linearization for DR Reaction [30] 



 

36 
 

 

 
Figure 14. Conversion Linearization for SMR Reaction [31] 

 

 
Figure 15. Conversion Linearization for POX Reaction [32] 
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Once the temperature is determined, heat load of heater ahead of reactor can also 

be decided by the following equations: 

!"#$%#&,( = *+,-_$/#∆1  

!"_$%& = 	 )** !",*     

where !",$    is the heat capacity of component j. 

The reactor vessels are treated as large cylindrical vertical pressure vessels. The 

size and the cost are evaluated using the same method as flash unit in the previous 

dehydration part. The overall weight of the vessel is calculated based on: 

!"#$%# = '(*"*+	-./**22.4		
10#$ = &$		

!"#$ℎ&' = )*+,,' -.' /' + &ℎ 1-/'1 + 2 &ℎ -/'1   

Reactor length is assumed to be 10 times of the radius to simulate the PFR. 

Resident time (RT) is supposed to be 100 seconds. th represents reactor thickness whose 

value is presumed as 10mm, same as the flash drum. Cost function still follows the 

equation below whose parameters are listed in Table 10. 

!. #.$%&' = )$%&' + +$%&'(-$%&')%/012 		

 
Table 10. Investment Cost Parameters for Reactor Vessel [24] 

Equipment Unit for sizing, S S_lower S_upper a b n 

Reactor vessel shell mass, kg 160 250000 11600 34 0.85 

 

Price of O2 and steam are set to be $0.021/kg and $0.006/kg as suggested in 

paper. [33] [34] Catalysts for SMR and DR are Ni-based and the amount are 2 mol 
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CH4/g∙  h [35] [36]. We assume catalysts are renewed every 6 months and price of Ni-

based catalyst is set to be $100/kg as provided by commercial vendors, such as Alibaba. 

Annual catalyst cost can be expressed as: 

!"#$($/()) =
3600/010,345
2 ∗ 109 *100 ∗ 2 

 

So far, models for equipment and their performances have been put forward. TIC 

includes: PSA, membrane, heaters for three reactions (e.g., DR, SMR and POX reactors), 

and cooler and flash drum in SMR pathway. AOC consists: raw materials including 

biogas, steam and oxygen, OC for PSA, membrane, dehydration, catalyst, and utilities 

for cooler and heater. Objective function aiming to maximize the profit is defined as: 

!"#$%& = ()**	#$	,-	×	,-	/"%01 + ()**	#$	34	×	34	/"%01 -673  

Prices of H2 and CO are $2/kg and $0.075/kg, respectively [33]. GAMS software is used 

for solving the whole model and results will be discussed later comparing to ATR 

method.  

 

2.3.2 ATR Simulation 

The following figure describes the ATR process via biogas. 

 
Figure 16. Superstructure for ATR Process 
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Biogas contains mainly CH4 and CO2, and a trace of H2O and O2, which are all 

reactants for ATR. So untreated biogas can be directly sent into ATR reformer. To 

minimize the free Gibbs energy, an RGIBBS block is chosen. TIC includes heater and 

reactor. AOC includes raw materials cost, heating utility cost and catalyst cost. Cost of 

biogas and steam are the same as previous. Utility cost can be calculated when reaction 

temperature is specified. Amount of catalyst usage also follows the same calculation as 

last chapter. The composition of input and the product syngas ratio are fixed, and the 

only parameter which need to be specified is the reaction temperature. In order to find 

out the optimal reaction temperature for producing syngas with the lowest cost per 

kilogram, simulation software, Aspen Plus, is applied.  

Simulations from 500K to 1300K with the interval of 50K are conducted in 

Aspen Plus. For each temperature, in order to find out the amount of additional steam for 

producing syngas with ratio of 1.5, a sensitivity analysis on steam amount is performed. 

The process is demonstrated by the following example with temperature of 600K. 
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Figure 17. Sensitivity Analysis on Supplied Steam Amount for ATR at 600K 

In Figure 17, the green line represents outlet flow rate of H2 and blue line is the 

outlet flow rate of CO. With a basis of 100mol/s biogas as the feedstock, when the 

additional supplied steam is about 22.4mol/s. As shown on the red line, syngas can 

satisfy the H2/CO ratio of 1.5 as required. Reenter the steam flow rate of 22.4mol/s for 

stream 2 and the following results are obtained. 

Figure 18. Heater Simulation Result for ATR at 600K 
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Figure 19. Reactor Simulation Result for ATR at 600K 

 

 
Figure 20. Stream Simulation Results for ATR at 600K 
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Follow the same procedures as reforming section, TIC and AOC can be 

evaluated using the above results from Aspen simulation. Results for ATR simulation 

and discussion are shown in the next chapter. 



 

43 
 

 

3. RESULT AND DISCUSSION 

 

For the ATR pathway, we found the optimal temperature for required syngas 

with the lowest cost is at 650K. With a 100 mol/s feed biogas 1 basis, total produced 

syngas is over 61,000 tons annually with a total investment of more than $17 million. 

Further calculation shows syngas cost per kilogram using biogas 1 is $0.240/kg. For 

biogas 2 and 3 are $0.286/kg and $0.283/kg, respectively. Thus, on average, using ATR 

for syngas production from biogas approximately costs $0.27/kg. These are the result 

after considering carbon economy. For each type of biogas, ATR process can utilize up 

to 40,000 tons of CO2 every year and these CO2 can be quantified with $15/ton as 

suggested in the report. [37] 

If using the combination of DR, SMR and POX, producing the same ratio of 

syngas costs $3.35/kg, which is much higher than using ATR. Results from GAMS 

shows the combination of DR and SMR is the most cost-effective combination. Such a 

high cost is caused from high price of raw material and complicated pre-treatment 

process. 

Price of syngas using natural gas is suggested in Noureldin’s work [38]. For the 

syngas with ratio of 1.5, its cost is $0.261/kg with H2, which is $2/kg and CO, which is 

$0.075/kg when natural gas is $3/MMBtu. Compares to $0.27/kg, it seems like using 

natural gas as the feedstock still costs less than using biogas. However, this value is 

based on the natural gas price at $3/MMBtu and natural gas price is fluctuating all the 

time. If natural gas price goes higher, producing syngas with it is bounded to higher cost. 
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After calculation, when natural gas price is higher than $6.34/MMBtu, natural gas is no 

more cost-saving than biogas. Detailed calculation is explained as below. 

Syngas with ratio of 1.5 is about $0.27/kg using biogas based on the calculations 

in this research. Price of CO is suggested to be $0.075/kg and this value is considered as 

a fixed value. Price of H2 is related to natural gas price. If H2 price comes to $2.09/kg, 

calculated syngas price ($0.27/kg) will be the same with biogas-based ATR process. 

Based on the 2013 Energy Outlook report and yearly natural gas price by EIA, we 

summarize the following table showing price of natural gas and H2 in different years. 

 

Table. 11 Price of Natural Gas and Hydrogen from 2010 to 2013 [39] 

Year 
Natural gas 

price($/MMBtu) 
H2 price($/kg) 

2010 4.37 0.9 

2011 4.00 0.8 

2012 2.75 0.6 

2013 3.73 0.7 
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Figure 21. Correlation between Natural Gas Price and Hydrogen Price 

 

Figure 21 shows the correlation between natural gas price and hydrogen price 

according to the data in Table 11. In the equation shown in the figure, x represents 

natural gas price and y indicates hydration price. It is easy to solve the x value when y is 

2.09, which means hydration price is $2.09/kg. At this point, natural gas price is 

$6.34/MMBtu.  

Figure 22 exhibits the price of natural gas in recent 20 years. The target line of 

$6.34/MMBtu is displayed (black line). Despite natural gas price is below target line 

during most of the time, in the year of 2001 and from 2005 to 2009, its value is larger 

than 6.34 which means using biogas producing syngas costs less than using natural gas 

in these period. 
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Figure 22. Natural Gas Price in Recent 20 Years 
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4. SUMMARY 

 
This research provides a techno-economic for syngas production from biogas and 

compares the results with traditional natural gas-based processes. Several syngas 

production pathways and pre-treatment units are assessed. The results indicate that 

biogas usage would have been favored over natural gas in producing syngas for about 

1/3 of the past 20 years. The results also show that when natural gas price exceed 

$6/MMBtu, biogas can potentially expand its market in syngas production. 

Nonetheless, there are still existing problems that limit biogas development in 

industry. These problems include: 1. The relatively limited supply of biogas.; 2. 

Transportation problems for handling feedstock at large scales. Some supplies (human 

and agricultural wastes) are not co-located with industrial facilities. Thus, the 

transportation of raw materials becomes an issue. More energy is needed for the 

transportation and more CO2 may be generated during the transportation. 3. High CO2 

content of biogas may offer a challenge to reforming of methane unless substantial 

separation is used. In order to make biogas widely accepted and applied, solutions and 

further research for these problems should be provided. 
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