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ABSTRACT 

Host-associated differentiation (HAD) is a form of ecologically mediated host-race 

formation between parasite populations. Since HAD can ultimately lead to speciation, it 

has been proposed as a way to account for the vast species diversity observed in parasitic 

arthropods. However, the importance of HAD to species diversity is unclear because the 

factors explaining the occurrence of HAD are only partially understood. Still, there are 

several examples of parasite-host case study systems for which there is a known cause of 

reproductive isolation between host-associated parasite populations. Thus, several 

biological and ecological factors (e.g., immigrant inviability or allochrony) have been 

proposed as explanatory factors for HAD occurrence. The body of research presented 

here represents the first quantitative assessment of the generalized relationship between 

HAD occurrence and the incidence of the proposed explanatory factors. This research 

was supported by field experiments that assessed the co-occurrence of HAD and 

particularly important explanatory factors. These experiments were conducted in a 

community of Aphidomorpha species living on pecan and water hickory trees. I found 

that HAD can be explained in general based on the incidence of specific explanatory 

factors (i.e. immigrant inviability, gall-making, short generation times, volatile 

preference, morphological differentiation, and host-shifting opportunities). These factors 

were used to create a hierarchy of conditional probabilities that can successfully separate 

the presence of HAD from its absence. The field experiments corroborated that the 

occurrence of HAD is correlated with immigrant inviability as well as allochrony. 
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CHAPTER I  

INTRODUCTION TO RESEARCH AND STUDY SYSTEM1 

This dissertation focuses on an ecologically-mediated form of host-race formation in 

which sympatric parasite populations become genetically distinct due to their host 

associations (Bush 1969, Feder, Chilcote and Bush 1988). This host-associated 

differentiation (HAD) represents an early stage in the continuum of ecological speciation 

and has the potential to account for the vast species diversity observed in parasitic 

arthropods, especially insect herbivores (Schluter 2001, Abrahamson, Blair, Eubanks 

and Morehead 2003, Stireman, Nason and Heard 2005) Theoretically, HAD is a 

phenomenon created and maintained by differential selection pressures experienced by 

host-associated parasite populations and leading to a subsequent reduction in gene flow 

between parasite populations (Nosil 2008, Feder, Egan and Nosil 2012). For example, if 

parasites experience strong, host-specific selection pressures linked to a trait important 

to parasite reproduction (e.g., traits determining host choice in parasite species that mate 

on their host), then reproductive isolation can develop between host-associated parasite 

populations alleles (Dres and Mallet 2002, Rundle and Nosil 2005, Geiselhardt, Otte, 

Hilker and Turlings 2012). Once reproductively isolated, parasite populations may 

accumulate genome-wide genetic differences due to genetic drift (especially if the 

1 Figure 1 of this chapter is the peer reviewed version of the following article: Host-associated 

differentiation in a pecan and water hickory Aphidomorpha community, which has been published in final 

form at the Journal of Entomologia Experimentalis et Applicata. This article may be used for non-

commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Figure 1 is 

reprinted with permission from Medina, Dickey, Harrison, and Miller, 2017. 
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number of individuals occurring on a novel host is initially small) and/or disruptive 

selection acting on adaptive alleles (Loxdale 2010, Michel, Sim, Powell, Taylor, Nosil 

and Feder 2010), this phenomenon can be detected by comparing genome-wide genetic 

markers between putatively host-associated populations (Hardison 2003, Stein et al. 

2003). Since HAD leads to the accumulation of distinct genetic differences between 

reproductively isolated populations, HAD may constitute the beginning stages of 

ecological speciation (Schluter 2001, Wiens 2004, Rundle and Nosil 2005, 

Matsubayashi, Ohshima and Nosil 2010). 

For example, multiple instances of host-mediated genetic differentiation or even 

speciation have been described among cactiphilic members of the Drosophila genus 

(Diptera: Drosophilidae) (Heed 1971, Fellows and Heed 1972). A complex of closely-

related Drosophila species present in the Sonoran Desert (i.e., D. arizonensis Patterson 

& Wheller and D. aldrichi Patterson & Crow) experience host-mediated selection for 

choosing their natal cactus species over other available cactus species for oviposition 

(Ruiz and Heed 1988). This pattern of host-specificity in host/habitat choice by the 

Drosophila reflects the fact that these flies also experience a reduction in fitness when 

living on a novel cactus host. In addition to these fly species, D. sechellia Tsacas & 

Baechli and D. simulans Sturtevant also experience host-mediated selection but have 

instead adapted to plant secondary metabolites (R'kha, Capy and David 1991). D. 

sechellia has evolved to live exclusively on Morinda citrifolia L., a fruit-bearing citrus 

tree that is toxic to most insect species including the generalist D. simulans. This 
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differential response to host-plant chemistry is sufficient for generating reproductive 

isolation between these species despite being genetically similar and living in sympatry 

(Kliman, Andolfatto, Coyne, Depaulis, Kreitman, Berry et al. 2000). For examples 

beyond Drosophila, Aphidomorpha appear to be useful for testing the relationship 

between factors potentially explaining the occurrence of HAD and the evolution of HAD 

(Via 1999, Via, Bouck and Skillman 2000, Peccoud, Ollivier, Plantegenest and Simon 

2009). For example, several other aphid species have been shown to involve HAD: a 

figure in Dickey and Medina (2010) identifies 18 aphid species that have tested positive 

for HAD including the model pea aphid, Acyrthosiphon pisum Harris. However, these 

aphid species are all herbivores of herbaceous plants, meaning it is unclear whether 

arboreal aphids are prone to HAD. Like with most parasite-host systems involving HAD, 

the pecan and water hickory host-plants are perennial (Guldemond and Mackenzie 1994, 

Dres and Mallet 2002, Abrahamson, Blair, Eubanks and Morehead 2003, Blair, 

Abrahamson, Jackman and Tyrrell 2005, Leppänen, Malm, Värri and Nyman 2014). 

Unlike these systems, though, multiple generations of a single herbivore population can 

be sustained by an individual tree, meaning the host-specific selection pressures 

experienced by these parasites are in response to a single tree genotype within a species; 

this has the potential of increasing the stability and strength of selection for host-specific 

adaptations by decreasing the effect that environmental variability can have on HAD 

evolution (Edmunds and Alstad 1981, Mopper 2005, Dickey and Medina 2010, Craig, 

Itami, Ohgushi, Ando and Utsumi 2011). Aphids are also interesting for the study of 

HAD because they possess biological traits that have been hypothesized to increase the 
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probability that HAD would evolve. Specifically, asexual organisms (such as aphids) 

may develop host-associated lineages faster than sexually reproducing organisms 

because recombination can break apart the accumulation of host-specific alleles under 

host-mediated divergent selection (Mitter, Futuyma, Schneider and Hare 1979, Lynch 

and Gabriel 1983, King 1993, Simon, Carre, Boutin, Prunier-Leterme, Sabater-Munoz, 

Latorre et al. 2003, Razmjou, Vorburger, Moharramipour, Mirhoseini and Fathipour 

2010, Feder, Egan and Nosil 2012, Medina 2012). 

Despite the existence of multiple parasite-host case study systems involving HAD, it is 

still unclear which set of biological and ecological factors best explain its occurrence 

(R'kha, Capy and David 1991, Abrahamson, Brown, Roth, Sumerford, Horner, Hess et 

al. 1993, Feder, Hunt and Bush 1993, Komatsu and Akimoto 1995, Abrahamson and 

Weis 1997, Via 1999, Via, Bouck and Skillman 2000, Dres and Mallet 2002, Rundle and 

Nosil 2005, Stireman, Nason and Heard 2005, Sword, Joern and Senior 2005, Funk, 

Nosil and Etges 2006, Lozier, Roderick and Mills 2007, Dorchin, Scott, Clarkin, 

Luongo, Jordan and Abrahamson 2009, Peccoud, Ollivier, Plantegenest and Simon 2009, 

Schluter and Conte 2009, Matsubayashi, Ohshima and Nosil 2010, Barman, Parajulee, 

Sansone, Suh and Medina 2012, Dickey and Medina 2012, Hartfield and Keightley 

2012, Medina, Szendrei, Harrison, Isaacs, Averill, Malo et al. 2013, Althoff, Fox and 

Frieden 2014). For example, Dr. Aaron Dickey, Dr. Raul F. Medina, and I characterized 

the host-associated genetic structuring in six species of arboreal Aphidomorpha (Medina, 

Dickey, Harrison, and Miller, 2017, in press). Initially, we hypothesized that feeding-
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mode would be the primary factor explaining the occurrence of HAD in pecan and water 

hickory Aphidomorpha. The Aphidomorpha community we studied consisted of three 

endophagous Phylloxeridae and three exophagous Aphididae (Dickey 2010). We 

endorsed this hypothesis because it was proposed that endophagous feeders may 

experience stronger differential selection than exophagous feeders such as prolonged and 

intense exposure to plant chemical defenses (Abrahamson, Brown, Roth, Sumerford, 

Horner, Hess et al. 1993, Cornell, Hawkins and Hochberg 1998, Stiling and Rossi 1998, 

Schick and Dahlsten 2003, Abbot and Withgott 2004). Additionally, galling parasites are 

further constrained since they require specific adaptations that allow them to manipulate 

host-plant metabolism to induce gall-formation; this paradigm is supported in the 

goldenrod system wherein two thirds of the endophagous feeders studied experienced 

HAD but no HAD was evident in either of the two exophagous feeders studied (Waring, 

Abrahamson and Howard 1990, Eubanks, Blair and Abrahamson 2003, Stireman, Nason 

and Heard 2005, Stireman, Nason, Heard and Seehawer 2006, Stireman, Janson, Carr, 

Devlin and Abbot 2008). In spite of our well-supported hypothesis, the genome-wide 

AFLP markers used to characterize population genetic structuring discovered that the 

pecan and water hickory Aphidomorpha community consists of two endophagous, gall-

making phylloxeran species with complete HAD (Phylloxera notabilis Pergande and P. 

devastatrix Pergande), one exophagous aphid species with complete HAD (Monelliopsis 

pecanis Bissell), one phylloxeran without HAD (P. texana Stoetzel), one aphid without 

HAD (Melanocallis caryaefoliae Davis), and an aphid with a special case of ‘partial 

HAD’ in which a pecan-specialist population evolved alongside a host-generalist 
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population (Monellia caryella Fitch) (Figure 1). Thus, the pattern of HAD occurrence in 

the pecan and water hickory Aphidomorpha community could not be explained by 

feeding-mode alone (Medina, Dickey, Harrison, and Miller, in press). Therefore, for the 

purposes of this dissertation, I proposed exploring other biological and ecological factors 

that could explain the occurrence of HAD in this community. 

STUDY SYSTEM DESCRIPTION 

Host-plants – The study system in which I conducted my research involved two 

sympatric trees in the genus Carya: pecan, Carya illinoinensis Wangenh, and water 

hickory, Carya aquatica Michx (both Fagales: Juglandaceae). Since the Aphidomorpha 

involved in this study share the same host-plant species pair, this is an ideal system for 

making inferences about ecological traits potentially relevant to HAD without the 

confounding factors imposed by dealing with different host-plant species pairs. Pecan 

and water hickory, are large, deciduous trees which occur in sympatry in the study area. 

The Carya genus is native to North America and it is estimated to be at least 34 million 

years old (Manchester 1987). Modern pecan and water hickory trees are commonly 

found in areas of low water shed in the hardwood forests of eastern and southern North 

America (Fralish 2002). Even though pecan and water hickory trees are often difficult to 

distinguish visually, there are many differences between the plants which may promote 

or maintain HAD in insects. Specifically, water hickory trees break bud approximately 

three weeks after pecan trees (Grauke, Kalinsky and Strout 1984), making these trees 

phenologically distinct. Plants with different phenologies can create temporal selection 
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Figure 1. Population Genetic Structuring of Pecan and Water Hickory Aphidomorpha Based on AFLP’s, 

Reprinted with Permission from Medina, Dickey, Harrison and Miller (2017). Each column represents an 

individual insect. The proportion of color in each column represents the probability that an individual is a 

member of one genetically distinct population (light grey) or another (dark grey). This figure is the peer 

reviewed version of the following article: Host-associated differentiation in a pecan and water hickory 

Aphidomorpha community, which has been published in final form at the Journal of Entomologia 

Experimentalis et Applicata. This article may be used for non-commercial purposes in accordance with 

Wiley Terms and Conditions for Self-Archiving. 
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pressures that influence the timing of adult insect diapause and eclosion, potentially 

isolating host-associated populations across time (i.e., allochronic isolation). Allochronic 

isolation has also been invoked to explain genetic differences in parasite-host systems 

involving HAD, including Rhagoletis pomonella Walsh (Diptera: Tephritidae) living on 

apple and hawthorn trees (Komatsu and Akimoto 1995, Feder and Filchak 1999). 

Phenological differences between pecan and water hickory trees are similar in magnitude 

to those of apple and hawthorn (Grauke, Pratt and Morris 1987). Therefore, 

Aphidomorpha experiencing host-associated selection pressures on these trees may have 

the potential to evolve allochronic isolation (further explored in Chapter IV). For the 

reasons stated above and because all Aphidomorpha considered in this system share the 

same host-plant species, I believe the pecan and water hickory systems provides an ideal 

system for testing the relationships between potentially explanatory factors (e.g., 

immigrant inviability and allochrony) and HAD. 

 

Parasites – Likes their host-plants, the Aphidomorpha in this study system possess other 

traits hypothesized to increase the likelihood of HAD occurrence. Specifically, asexually 

reproductive insects (such as parthenogenetic aphids) may develop host-associated 

lineages faster than sexually reproducing insects because host-specific genetic changes 

are not lost to recombination during asexual generations. Thus, adaptive alleles rapidly 

increase in frequency and/or become fixed within populations, amplifying or 

accelerating host-specific responses to selection (discussed above). I studied three 



 

9 

 

species of phylloxera (Hemiptera: Phylloxeridae) that all attack pecan and water hickory 

trees in central Texas: Phylloxera notabilis, P. devastatrix, and P. texana.  

 

Unfortunately, little is known about these phylloxera species compared to their aphid 

counterparts. However, all three phylloxeran species are gall-forming, cyclically 

thelytokous parthenogens (Stoetzel 1985b). After overwintering, eggs hatch in the spring 

and summer and asexual females emerge. These females induce gall formation, living 

and taking food from inside the galls. These phylloxera also reproduce inside galls, 

laying eggs that develop into either sexual or asexual adults. Asexually reproducing 

phylloxera are all apterous while sexually reproducing adults are all winged. The sexual 

adults will eventually emerge from the gall and migrate. After mating, females either lay 

eggs on leaves or on the bark of tree branches. Eggs laid on trees will hatch during the 

same season, producing an asexual female that will induce gall-formation again (a 

generation of galls). Eggs laid on bark will overwinter and hatch during the next season 

(Stoetzel 1985a). 

 

P. notabilis is commonly known as the pecan leaf phylloxera. Pecan leaf phylloxera 

galls form on pecan and water hickory leaves from mid-May to late July. Pecan leaf 

phylloxera produce five generations of galls annually.  

 

P. devastatrix is commonly known as pecan stem phylloxera. Unlike the other 

phylloxera in this system, pecan stem phylloxera only produces a single generation of 
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galls each year during May. Otherwise, their biology is quite similar to that of pecan leaf 

phylloxera.  

 

P. texana have no common name. They are very similar to the pecan leaf phylloxera in 

appearance as well as life history and have only recently been described as a separate 

species (Stoetzel 1981). However, this phylloxeran exhibits a peculiar behavior in that it 

engages in host-alternation between asexual generations, a characteristic that the other 

pecan and water hickory phylloxera lack (Stoetzel 1985b).  

 

I also study three aphid species (Hemiptera: Aphididae) that attack pecan and water 

hickory trees in central Texas: Monelliopsis pecanis, Monellia caryella, and 

Melanocallis caryaefoliae. All three aphid species feed on the underside of leaves and 

are also cyclically thelytokous parthenogens, producing dozens of asexual generations 

annually throughout the spring and summer months. Putatively, these asexual 

generations are followed by a single sexual generation in the fall. 

 

M. pecanis is commonly known as the yellow pecan aphid and persists on pecan and 

water hickory trees from late-April to mid-August. Yellow pecan aphid populations 

experience between 22 and 32 overlapping generations of ovoviviparous thelytokous 

parthenogens annually, each adult producing 5 to 83 individuals in a life-time (Tedders 

1978). The adults of the asexual generations are polyphenetic; they can be winged or 

apterous, meaning migration from one host tree to another is possible throughout the 
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season. The yellow pecan aphid produces a single generation of winged, sexual adults in 

August (Tedders 1978). The asexual adults mate and produce eggs which will 

overwinter and hatch the following season. 

 

M. caryella is commonly known as the black-margined aphid. Like the yellow pecan 

aphid, black-margined aphids persist on pecan and water hickory trees from late-April to 

mid-August. Black-margined aphid populations experience 16 to 32 overlapping 

generations of ovoviviparous thelytokous parthenogens annually, each adult producing 

80 to 215 offspring in a life-time (Tedders 1978). All black-margined aphid adults are 

winged and, thus, have the potential to migrate all season. Like yellow pecan aphid, the 

black-margined aphid produces a single sexual generation during August. The sexual 

adults mate and produce eggs which will overwinter and hatch the following season. 

 

M. caryaefoliae is commonly known as the black pecan aphid and persists on pecan and 

water hickory trees from late-April to September. Unlike the yellow pecan aphid and the 

black-margined aphid, though, the black pecan aphid has a relatively low population 

density until late-July to early-August (Tedders 1978). This is due to the first few 

generations reproducing less than later generations. All asexual black pecan aphid adults 

are winged and, thus, have the potential to migrate all season. The black pecan aphid 

produces a single generation of apterous sexual females and winged sexual males in 

September (Tedders 1978). The sexual adults mate and produce eggs which will 

overwinter and hatch the following season. 
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The goal of this dissertation was to explain the evolution of HAD in pecan and water 

hickory Aphidomorpha and HAD in general. For example, Figure 14.1 of Medina (2012) 

describes the theoretical relationship between the likelihood of HAD evolving in a given 

parasite-host system and two factors believed to mediate the evolution of HAD: 

recombination rate and level of concealment. Specifically, the less recombination a 

population undergoes (such as with thelytokous Aphidomorpha), the more likely that 

host-specific adaptations will accumulate and vice versa. Also, organisms that are 

completely concealed and live mostly inside their host-plant (e.g., fruit-feeders and gall-

makers). The ideas presented by the verbal model are supported by parasite-host case 

study systems; for example, genetic recombination between populations experiencing 

disruptive, host-associated selection pressures can break up the independent 

accumulation of host-adapted alleles within host-associated populations (Rundle and 

Nosil 2005, Michel, Sim, Powell, Taylor, Nosil and Feder 2010, Feder, Egan and Nosil 

2012, Flaxman, Feder and Nosil 2013). However, models such as the one presented in 

Medina 2012 have yet to be verified quantitatively; for more examples of these verbal 

models, see (Feder, Chilcote and Bush 1988, Via 1999, Via, Bouck and Skillman 2000, 

Nosil, Vines and Funk 2005, Stireman, Nason and Heard 2005, Funk, Nosil and Etges 

2006, Nosil, Harmon and Seehausen 2009). Therefore, Chapter II of this dissertation 

resolves this issue by making a quantitative assessment of the explanatory power for 

several key factors previously proposed to explain the occurrence of HAD. I show that a 

few, key factors (e.g., gall-making, immigrant inviability, short parasite generation 
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times, and volatile preference) are significantly related to the presence of HAD and can 

explain its occurrence based on conditional probabilities. Since the results of the Chapter 

II research show that immigrant inviability is an especially important factor explaining 

HAD occurrence, Chapter III is dedicated to testing for immigrant inviability in a pecan 

and water hickory aphid species (yellow pecan aphid). This aphid experiences a special 

form of HAD, called ‘partial HAD’ in which a host-specialist population lives in 

sympatry with a host-generalist population. This ‘partial HAD’ provides an exciting 

opportunity for testing the evolution of host-plant specialization by comparing a 

specialist population to a sympatric generalist population within the same species 

complex. Reciprocal transplant experiments showed that pecan-specialist aphids 

experience a reduction in fitness when transferred to water hickory while generalist 

aphids experience no such reduction. These results support the significance of immigrant 

inviability in explaining HAD occurrence. Finally, Chapter IV explores a factor that 

could not be properly assessed in the quantitative literature due to a lack of 

representative studies present in the current literature: allochrony. Despite the absence of 

supporting literature, allochronic isolation is thought to be important since it explains the 

occurrence of HAD in the model organism, Rhagoletis pomonella (Feder, Hunt and 

Bush 1993, Feder and Filchak 1999). Therefore, I tested for evidence of allochronic 

isolation in three pecan and water hickory aphid species: M. pecanis, M. caryella, and M. 

caryaefoliae; this was done by surveying the average aphid density per tree throughout 

the pecan and water hickory growing season. For all three species, the occurrence of 
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HAD correlates with the occurrence of allochrony, adding support to the importance of 

allochrony as a potential factor explaining HAD occurrence.  
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CHAPTER II 

EXPLAINING THE OCCURRENCE OF HOST-ASSOCIATED DIFFERENTIATION: 

A QUANTITATIVE LITERATURE REVIEW 

 

SYNOPSIS 

The evolution of reproductive isolation between parasite populations associated with 

different host species, or host-associated differentiation (HAD), has been proposed as a 

significant source of parasitic arthropod diversity. Previous research has described verbal 

models attempting to attribute the occurrence of HAD to specific organismal factors 

believed to generate or maintain reproductive isolation between host-associated parasite 

populations. However, the relevance of postulated factors thought to explain HAD is 

uncertain. Although, postulated factors have been shown to be important for the 

evolution of HAD in specific case studies, their generalizability have yet to be 

quantitatively assessed. In this research, I performed a quantitative literature review that 

evaluated the correlation between putative explanatory factors and the general 

occurrence of HAD. First, a MANOVA and canonical correspondence analysis (CCA) 

were used to characterize the simple co-occurrence between putative explanatory factors 

and HAD occurrence. Although the MANOVA showed that some factors and 

combinations of factors are significantly correlated with HAD occurrence (e.g., gall-

making, immigrant inviability, short generation times, and volatile preference), the CCA 

showed that these factors, taken altogether, were not able to successfully distinguish 

HAD presence from absence. Thus, I used an infinite forest algorithm to test whether 
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conditional probabilities based on the incidence of significant explanatory factors could 

successfully separate the presence of HAD from the absence of HAD. The results of the 

infinite forest algorithm allowed us to develop a probabilistic decision tree to 

successfully explain the occurrence of HAD based on significant explanatory factors. 

The decision tree gives researchers a tool for making general predictions about the 

likelihood that a given parasite-host system would involve HAD and supports the 

hypothesis that HAD can arise through several distinct mechanisms involving 

combinations of reproductive isolating factors. 

 

INTRODUCTION 

Parasitic Arthropoda are one of the most biodiverse groups of multicellular life. Of the 

estimated 1 million described arthropod species, over 60% are involved in some form of 

parasitism with plant or animal hosts (Price 1980, Poulin 1997, Dobson, Lafferty, Kuris, 

Hechinger and Jetz 2008). Parasites represent the majority of species in some of the most 

specious insect clades (e.g., Coleoptera, Hemiptera, Hymenoptera), especially among 

phytophagous insects (Mitter, Farrell and Wiegmann 1988, Wiegmann, Mitter and 

Farrell 1993, Farrell 1998). In fact, estimates of total species number for several obligate 

parasitic arthropod clades (e.g., Braconidae, Ichneumonidae, and Acariformes) are a 

magnitude greater than the current number of described species, meaning the actual 

prevalence of parasitism among arthropods is expected to be greater than 60% 

(Slowinski and Guyer 1989, Dolphin and Quicke 2001, Smith, Rodriguez, Whitfield, 

Deans, Janzen, Hallwachs et al. 2008). Forbes et al. succinctly describe the relationship 
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between parasitism and species diversity when they theorized “a major cause for 

biodiversity may be biodiversity itself” (Forbes, Powell, Stelinski, Smith and Feder 

2009). Ecological speciation has been proposed as a mechanism contributing to parasitic 

arthropod diversity (Futuyma and Moreno 1988, Schluter 2001, Via 2001, Rundle and 

Nosil 2005, Mallet, Meyer, Nosil and Feder 2009, Matsubayashi, Ohshima and Nosil 

2010). Under ecological speciation, divergent selection imposed by parasite hosts can 

drive the evolution of reproductive isolation among parasites associated with different 

hosts (Price 1980, Funk 1998). If disruptive selection on different host species acts on 

parasite traits linked to their reproduction, then strong reproductive isolation can evolve 

relatively quickly between parasite populations on these different hosts (Bush 1969, 

Groman and Pellmyr 2000b, Althoff, Groman, Segraves and Pellmyr 2001). The host-

mediated evolution of reproductive isolation between parasite populations associated 

with different host species can cause them to independently accumulate host-specific 

adaptations through selection and genetic drift (Bush 1975a, Jaenike 1990, Berlocher 

and Feder 2002, Abrahamson, Dobley, Houseknecht and Pecone 2005, Flaxman, Feder 

and Nosil 2013). Given enough time, this process of host-associated differentiation 

(HAD) can lead to the evolution of pre- and post-mating reproductive incompatibilities 

between parasite populations. Therefore, HAD constitutes an early stage of ecological 

speciation by which host-races evolve prior to co-cladogenesis (Bush 1994, Pritchard, 

Stephens and Donnelly 2000, Via and Hawthorne 2002, Linn, Dambroski, Feder, 

Berlocher, Nojima and Roelofs 2004, Futuyma 2008, Peccoud, Ollivier, Plantegenest 

and Simon 2009, Michel, Sim, Powell, Taylor, Nosil and Feder 2010, Powell, Hood, 
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Murphy, Heilveil, Berlocher, Nosil et al. 2013). For this reason, HAD has been proposed 

as a way of explaining the origins of parasitic arthropod diversity (Funk 1998, Stireman, 

Nason and Heard 2005, Funk 2010). 

 

It is still unclear, though, how common HAD is in nature and which parasitic arthropod 

systems are prone to its development (Stireman, Nason and Heard 2005). Multiple 

factors have been proposed to account for the occurrence of HAD (Bush 1974, Bush 

1975b, Price 1977, Futuyma and Moreno 1988, Abrahamson, Brown, Roth, Sumerford, 

Horner, Hess et al. 1993, Feder and Filchak 1999, Via 1999, Via, Bouck and Skillman 

2000, Abrahamson, Eubanks, Blair and Whipple 2001, Craig, Horner and Itami 2001, 

Funk, Filchak and Feder 2002, Nosil, Crespi and Sandoval 2002, Nosil, Vines and Funk 

2005, Funk, Nosil and Etges 2006, Stireman, Nason, Heard and Seehawer 2006, 

Dorchin, Scott, Clarkin, Luongo, Jordan and Abrahamson 2009, Forister, Dyer, Singer, 

Stireman and Lill 2012, Medina 2012). These factors are thought to promote the 

evolution of reproductive isolation between host-associated parasite populations. The 

most commonly discussed factors include:  

 

Host fidelity – Host-associated parasitic arthropods can experience host fidelity or the 

tendency of insects to remain on or return to a host used as a nymph or larva (Bush 1969, 

Feder, Opp, Wlazlo, Reynolds, Go and Spisak 1994, Wood, Tilmon, Shantz, Harris and 

Pesek 1999, Craig, Horner and Itami 2001, Stelinski and Liburd 2005). When parasite 

populations use different host species, the evolution of preference for a natal host can 
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result in divergent selection in response to differential cues (e.g., plant volatile 

preference) presented by different host species (Abrahamson, McCrea and Anderson 

1989, McCall, Turlings, Lewis and Tumlinson 1993, Frey, Feder, Palma and Bush 1998, 

Pureswaran, Gries and Borden 2004). When host preference evolves in parasites that 

rely on their hosts to find a mate, then parasites populations may experience pre-mating 

reproductive isolation (Futuyma and Moreno 1988, Jaenike 1990, Egan and Funk 2006). 

For example, host fidelity has been demonstrated in pea aphid populations 

(Acyrthosiphon pisum Harris) experiencing HAD. Pea aphids from clover prefer to feed 

on clover compared to alfalfa and aphids from alfalfa prefer to feed on alfalfa or clover 

(Via 1999, Via, Bouck and Skillman 2000). Similarly, the apple maggot (Rhagoletis 

pomonella Walsh) consists of two host-associated populations, one preferring to oviposit 

and mate on Hawthorne trees and another population preferring apple trees (Feder, Opp, 

Wlazlo, Reynolds, Go and Spisak 1994, Dambroski, Linn, Berlocher, Forbes, Roelofs 

and Feder 2005). Importantly, the host fidelity of apple maggots is also reflected in their 

preference for host-specific volatiles that assist them in recognizing suitable habitats 

(Frey, Feder, Palma and Bush 1998). 

 

Allochronic isolation – In order for parasites to survive, they must be able to appear in 

the same space and time as their hosts or when their host produces the resources on 

which they depend (e.g., fruits and seeds). This dependency imposes selection on 

parasites to match their hosts’ phenology. If host-associated parasite populations adapt to 

different host species with divergent phenologies, then parasites will experience 



 

20 

 

disruptive selection in traits relevant to seasonal timing. This can generate temporal or 

‘allochronic’ reproductive isolation (Alexander and Bigelow 1960, Groman and Pellmyr 

2000b, Raijmann and Menken 2000, Cooley, Simon, Marshall, Slon and Ehrhardt 2001, 

Abbot and Withgott 2004, Fudickar, Greives, Atwell, Stricker, Ketterson, Williams et al. 

2016). For example, differences in fruit availability between apple and hawthorn trees 

impose differential selection pressures on adult emergence and eclosion times in the 

apple maggot, generating HAD (Bush 1969, Feder, Chilcote and Bush 1988, Feder and 

Filchak 1999, Raijmann and Menken 2000).   

 

Selection against migrants – Pre-mating isolation can evolve when migrants moving 

from a natal host species to a novel host species experience a reduction in fitness, 

reducing contact between host-associated populations of a parasite species (Funk 1998, 

Via, Bouck and Skillman 2000, Nosil, Vines and Funk 2005, Nosil 2007, Dickey and 

Medina 2011a). Furthermore, if hybrids of migrants retain the maladapted traits of their 

parents, then post-mating isolation can also evolve between parasite populations (Wade 

and Johnson 1994, Wu and Palopoli 1994, Naisbit, Jiggins and Mallet 2001, Schluter 

2001, Rundle 2002). In order for immigrant inviability to evolve, parasites must acquire 

pre-adaptations that allow them to survive on a novel host species, creating a barrier to 

reproduction by physically separating parasites with host-specific adaptations from 

parasites without similar adaptations. Thus, selection against migrants could result from 

the expression of one or several traits acting in concert (e.g., habitat preference and 
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allochrony) to increase the specialization of parasite populations to the hosts they 

parasitize (Matsubayashi, Ohshima and Nosil 2010).  

 

Feeding mode – Endophagous feeders are thought to experience stronger disruptive 

selection pressures compared to exophagous feeders (Cornell, Hawkins and Hochberg 

1998, Stiling and Rossi 1998, Stireman, Nason and Heard 2005). For example, 

endophagous feeders encounter prolonged and intense exposure to plant chemical 

defenses compared to exophagous feeders (Waring, Abrahamson and Howard 1990, 

Abbot 2001, Abrahamson, Eubanks, Blair and Whipple 2001). This is especially true for 

gall-making phytophagous insects, which are presumed to experience particularly strong 

host-associated selection pressures due to the hypothetical gene-by-gene mechanism 

thought to be behind the hijacking of plant physiology in order to induce gall formation 

(Abrahamson, Brown, Roth, Sumerford, Horner, Hess et al. 1993, Brown, Abrahamson, 

Packer and Way 1995, Abrahamson, Eubanks, Blair and Whipple 2001, Stireman, 

Janson, Carr, Devlin and Abbot 2008, Dickey and Medina 2012). The selection 

pressures inherent in gall-making biology may promote the evolution of pre- and post-

mating reproductive isolation since hybrids of parasites adapted to a natal host-plant 

species would likely fail to successfully induce gall formation in novel host-plants 

(Craig, Itami, Horner and Abrahamson 1994, Itami, Craig and Horner 1998).  

 

Reproductive mode – Parthenogenetic parasites (e.g., aphids, thrips, and certain mites) 

may evolve reproductive isolation faster than sexually reproducing insects since host-
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specific adaptations would not be lost to recombination (or would be lost at a much 

lower rate in the case of cyclical parthenogens). Thus, adaptive alleles would rapidly 

increase in frequency and/or become fixed within populations, amplifying or 

accelerating host-specific genetic differentiation (Hartl 1972, Lynch and Gabriel 1983, 

Lynch 1984, King 1993, Neiman and Linksvayer 2006, Loxdale 2008, Dickey and 

Medina 2010). Parthenogens usually possess short generation times which could also 

result in the relatively rapid accumulation of host-specific adaptations (Martin and 

Palumbi 1993, Li, Ellsworth, Krushkal, Chang and Hewett-Emmett 1996). Furthermore, 

parasites with short generation times would experience several more rounds of host-

mediated selection pressures per growing season compared to parasites with long 

generation times. The effect of low recombination rate and short generation times on the 

speed of host-specific adaptation is apparent in aphids since HAD appears to be 

particularly common in these parasites; for examples, see Dickey and Medina (2010). 

 

Sexual selection – Divergent mating cues and habitat preference can reduce the 

probability of individual parasites successfully initiating mating between host-associated 

parasites, generating sexual reproductive isolation. For example, host-mediated mate 

choice has been documented between populations of goldenrod gall flies (Eurosta 

solidaginis Fitch) associated with different goldenrod species (Craig, Itami, Abrahamson 

and Horner 1993, Craig, Horner and Itami 1997). Also, sexual isolation has been 

observed between populations of walking sticks (Timema cristinae Vickery) associated 

with two different host-plant species (Ceanothus spinosus and Adenostoma 
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fasciculatum) (Nosil, Crespi and Sandoval 2002). In these cases of sexual isolation, 

morphological differences arose between host-associated populations, meaning the 

relationship between sexual isolation and morphological differentiation is intrinsically 

linked. Sexual isolation might arise because of distinct morphological traits linked to 

host-plant use, however the actual factors contributing to sexual isolation between 

populations adapted to different hosts are usually unknown (Jiggins, Hurst and Majerus 

2000, Dobson, Fox and Jiggins 2002, Fordyce and Nice 2003, Nosil 2007, Egan, Nosil 

and Funk 2008, Fordyce 2010). Therefore, I chose to examine morphological 

differentiation as a potential indicator of sexual selection. Such assertion, though, would 

need to be verified in the future due to the fact morphological differentiation can arise 

through other host-associated factors such as the ability to feed or oviposit on a 

particular host (Pappers, Velde, Ouborg and Groenendael 2002). 

 

Host shifting opportunities – Parasites may use a novel host species if it is closely related 

to their natal host species and shares characteristics important to successful parasitism 

(Berlocher and Feder 2002, Dres and Mallet 2002). The closer a novel host species’ 

characteristics are to the natal host species, the higher the probability that a parasite will 

mistakenly accept a novel host and the higher the probability that the parasite can 

survive on the novel host. For example, when parasite species are provided an 

opportunity to expand their range (e.g., invasive insect pests in a new continent), then 

host shifts may take place (Murphy 2004, Schwarz, Matta, Shakir-Botteri and McPheron 

2005, Agosta 2006, Craig, Itami, Ohgushi, Ando and Utsumi 2011). Since the 
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interaction between hosts and parasites is likely to select for host-specific adaptations in 

parasites (see ‘Habitat fidelity’ and ‘Selection against migrants’ above), then systems 

involving invasive or otherwise non-native hosts or parasites may be prone to the 

development of HAD. 

 

Although many of these factors have been shown to cause reproductive isolation and are 

thought of as the most likely causes of HAD in the specific case studies in which they 

have been described (e.g., allochrony in apple maggots; habitat fidelity in pea aphids; 

and immigrant inviability in Timema walking sticks, etc.), it is unclear which (if any) of 

these factors can explain the occurrence of HAD in general. Highlighting this 

consideration is the existence of several examples in which HAD is absent in parasite-

host systems even though they present the factors thought to explain HAD (Jaenike and 

Selander 1980, Clements, Sorenson, Wiegmann, Neese and Roe 2000, Baer, Tripp, 

Bjorksten and Antolin 2004, Gómez‐ Díaz, González‐ Solís, Peinado and Page 2007, 

Althoff 2008, Lozier, Roderick and Mills 2009, Dickey and Medina 2010, 2011b, 

Kohnen, Wissemann and Brandl 2011, Simonato, Battisti, Zovi and Medina 2012). For 

example, host-specific volatile preferences and allochrony failed to generate HAD in the 

cranberry fruitworm (Acrobasis vaccinii Riley) on blueberry and cranberry (Medina, 

Szendrei, Harrison, Isaacs, Averill, Malo et al. 2013). In contrast, these same factors 

were sufficient for generating HAD in the blueberry gall midge (Dasineura oxycoccana 

Johnson) in the same blueberry and cranberry system (Cook, Ozeroff, Fitzpatrick and 

Roitberg 2011). Similarly, pecan and water hickory trees share six Aphidomorpha 
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species, all expected to exhibit some degree of HAD due to their shared parthenogenetic 

mode of reproduction yet only three species exhibit HAD (Medina, Dickey, Harrison, 

and Miller, in press). Thus, there exists a need to determine the specific biological and 

ecological factors that best explain the occurrence of HAD in general.  

 

The ability to predict HAD occurrence has implications for evolutionary biology, 

agriculture, and disease ecology. First, as discussed above, HAD may account for the 

high level of diversity observed in parasitic arthropods. Second, host-associated 

populations of pestiferous insects can differ in host-associated adaptations relevant to 

pest control (Hufbauer and Roderick 2005, Medina 2012). Lastly, HAD has important 

implications for disease ecology specifically with respect to vector competence (Burban, 

Fishpool, Fauquet, Fargette and Thouvenel 1992, McCoy, Léger and Dietrich 2015, 

Esteve‐Gassent, Castro‐Arellano, Feria‐Arroyo, Patino, Li, Medina et al. 2016). In order 

to predict which parasite-host systems are prone to the evolution of HAD in general, I 

performed a quantitative literature review that compared the occurrence of HAD against 

the incidence of factors previously proposed to explain HAD occurrence in specific case 

studies. I hypothesized that the occurrence of HAD is non-random and, thus, 

significantly associated with the occurrence of specific explanatory factors. 

 

METHODS 

Data sources and searches. I created a data matrix comprised of parasite-host case-study 

systems tested for HAD and the factors hypothesized to cause the reproductive isolation 
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required for HAD evolution to take place. A single investigator (Harrison, K.) searched 

for SYNOPSISs that described case studies of parasite-host systems tested for genetic 

population structuring in Google Scholar, Web of Science, and JSTOR internet search 

engines. Key words and phrases employed in the search are provided in Table 1. Case 

studies were included in the database if 1) genetic markers (e.g., microsatellites, AFLP’s, 

COI) were employed that characterized genetic structuring among multiple sympatric 

parasite populations on different hosts and if 2) the experimental design specifically 

characterized genetic structuring by host species associations. The literature cited in the 

case-studies was also searched for additional parasite-host systems. Case-studies 

included in the database were placed into one of two categories: Case-studies that 

unambiguously demonstrated genetic population structuring and host-species (HAD 

present) and case-studies that unambiguously demonstrated that population genetic 

structuring was not correlated with host species (HAD absent). Assignment of case 

studies to an HAD category was codified with a 1 or 0, creating an independent variable 

data matrix comprised of 97 case studies (64 ‘HAD present’ and 33 ‘HAD absent’ 

cases).  

 

In addition to assigning case studies to HAD category, the main case studies and the 

scientific literature cited in the main case-studies themselves were searched for 

ecological and biological factors hypothesized to explain HAD observed in each 

parasite-host case study system. For each case study considered, key words representing 

proposed explanatory factors for HAD (see Table 1) were searched for all species  
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Table 1. Search Terms Used to Discover HAD Case Study Systems. Words in parentheses were included 

in search terms after searching for words outside of parentheses. The words “host” and “parasite” were 

also replaced with the specific names of each case study organism. 

 

 

HAD case study search terms HAD explanatory factor search terms 

HAD allochrony 

assortative mating annual 

differentiation community ecology 

ecological specialization concealment 

ecological speciation (cyclical) parthenogenesis 

genetic structuring (differential/distinct) host (plant) phenology 

habitat choice endophagy 

host (plant)-association (selection) exophagy 

host discrimination gall (making) 

host fidelity generalist 

host race generation (time) 

host-related host (plant)/parasite invasive/non-native 

host specific host (plant)/parasite native 

incipient speciation hybrid unfitness 

population structuring immigrant inviability 

reproductive incompatibility longevity 
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Table 1 continued. 

HAD case study search terms HAD explanatory factor search terms 

reproductive isolation morphology/morphological (differentiation) 

Rhagoletis multivoltine 

specialization pest management 

sympatric (speciation) oviposition preference 

 perennial 

 recombination (rate) 

 sexual reproduction 

 specialist 

 trophic (level) 

 univoltine 

 volatile (preference) 
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involved (i.e., all parasites and host species) in the case study and in the references each 

study cited. A total of 129 journal articles that were the main resources for descriptions 

of the case study systems were used to construct a data matrix of potential explanatory 

factors based on the following criteria: 1) The authors tested for the presence or absence 

of an explanatory factor that could cause reproductive isolation between parasite 

populations or 2) Provide citations of authors who had tested these factors in previous 

research. A list of the main case study system descriptions are provided in The 

Appendix. Explanatory factors were codified with a 1 (present) or 0 (absent), creating a 

data matrix comprised of 2247 cells. Matrix cells represented descriptions of explanatory 

factors across all case-study systems. Because several potentially explanatory factors 

have yet to be tested in some parasite-host case study systems, only 1882 out of 2247 

(83.8%) matrix cells were available for my analysis. To avoid the exclusion of entire 

case studies or potential explanatory factors, I employed multiple imputation to simulate 

missing cell values (Hastie, Tibshirani, Sherlock, Eisen, Brown and Botstein 1999, 

Horton and Lipsitz 2001). The singular value decomposition method (SVD) of multiple 

imputation was performed in JMP®, Version 12 (SAS Institute Inc., Cary, NC, 1989-

2016); the SVD method works well with large datasets (Schmitt, Mandel and Guedj 

2015). 

 

Statistical analyses. All statistical analyses were performed using the JMP®, Version 12. 

First, principal components (PCs) were calculated in a discriminant function analysis 

(DFA) to select a subset consisting only of the highest-order variables (i.e., the specific 
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explanatory factors associated with PC’s that captured >95% of the total variance) 

(Jolliffe 2002). The significance of the selected subset of variables compared to 

unselected variables was evaluated using an ANOVA with α = 0.05. The DFA used here 

is similar to the technique employed by de Ruiter et al. (2013) (de Ruiter, DeWitt, 

Carlson, Brophy, Schroeder, Ackermann et al. 2013), which reduces a large dataset with 

many, competing variable effects into a smaller, more informative dataset. This reduced 

dataset consisted of nine, informative explanatory factors (the significant factors shown 

in Table 2). A canonical correspondence analysis (CCA) was used to visualize the 

whole-model effect of distinguishing ‘HAD present’ cases from ‘HAD absent’ cases 

(Ter Braak 1986). A multivariate analysis of variance (MANOVA) was also performed 

to test the significance of individual effects among explanatory factors in explaining 

HAD occurrence as well as the interaction effects between factors. Effect strength scores 

were extracted from MANOVA and provided a heuristic estimate of the relative 

contribution of each independent variable (i.e., the presence or absence of explanatory 

factors) to the total variance separating HAD presence from HAD absence. This allowed 

us to observe whether HAD occurrence was positively or negatively correlated with a 

given explanatory factor. To characterize the interaction effects between dependent 

variables, an infinite random forest algorithm in JMP®, Version 12 (SAS Institute Inc., 

Cary, NC, 1989-2016) was used to create a LogWorth-supported decision tree that 

segregates ‘HAD present’ cases from ‘HAD absent’ cases based on the presence or 

absence of specific explanatory factors  
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Table 2. MANOVA Results Comparing HAD Occurrence and the Incidence of Biological and Ecological 

Factors. MANOVA table depicting whole model effects, individual variable effects, degrees of freedom 

for the numerator (numDF) and denominator (denDF), and significant interaction effects. Bolded values 

indicate significance for α=0.05. 

 

Source F-value numDF denDF Effect Strength Prob>F 

Whole Model  1.1481 47 53 - 0.0354 

Asexual reproduction 0.0234 1 91 -0.155 0.1479 

Differential host phenology 0.0008 1 91 +0.025 0.7867 

Endophagy 0.0003 1 91 -0.018 0.8639 

Gall-making 0.0582 1 91 +0.342 0.0236 

Immigrant inviability 0.0572 1 91 +0.236 0.0248 

Morphological differentiation 0.0179 1 91 +0.120 0.2057 

Parasite or host non-native 0.0095 1 91 +0.088 0.3557 

Short generation times 0.0458 1 91 +0.213 0.0441 

Volatile preference 0.0731 1 91 +0.273 0.0115 

Immigrant inviability*Short 

generation times 

0.2034 1 53 - 0.0018 

Immigrant 

inviability*Morphological 

differentiation 

0.1075 1 53 - 0.0205 

Parasite or host non-

native*Volatile preference 

0.0799 1 53 - 0.0444 
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(Prasad, Iverson and Liaw 2006, Cutler, Edwards, Beard, Cutler, Hess, Gibson et al. 

2007, Criminisi, Shotton and Konukoglu 2012). To determine the most appropriate 

number of end-points for the decision tree, the k-means clustering method was used to 

determine the number of distinct groups among HAD case studies based on the 

explanatory factors (Welling and Kurihara 2006). 

 

Finally, to demonstrate the power of the proposed decision tree model, I conducted a 

validation test by adding parasite-host case study examples to the analysis and directly 

observing whether the model was able to correctly sort these specific case study 

examples into their respective ‘HAD present’ and ‘HAD absent’ categories. This was 

done by adding multiple parasite-host case study systems that were not originally 

included in the generation of the model and recalculating the conditional probabilities 

separating HAD presence from absence. The 11 parasite-host case study systems used in 

this validation test involved cases in which HAD was unambiguously present or absent. 

The parasite-host case study systems used for the validation study are highlighted in gray 

at the bottom of The Appendix. 

 

RESULTS 

My analyses show that there is not a single, generalizable factor that can distinguish the 

presence of HAD from its absence, however an algorithm based on conditional 

probabilities can successfully separate HAD presence from HAD absence. My 
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discriminant function analysis revealed that nine of the explanatory factors together 

could account for 95.1% of the total model variance (P<0.001). These were: parasite 

asexual reproduction, differential host-plant phenology, parasite endophagy, parasite 

gall-making, immigrant inviability in the parasite, parasite morphological differentiation, 

host-shifting opportunities, short generation times in parasites, and parasite volatile 

preference. My canonical correspondence analysis (CCA) was only able to capture 

19.6% of the total variance on the first canonical axis while the second canonical axis 

captured 12.8% (Figure 2). In addition, the CCA did not reveal distinct clusters that 

unambiguously separate the presence of HAD from its absence. In contrast, results from 

the MANOVA comparing HAD presence and HAD absence showed a significant whole-

model effect (F47, 53=1.1481; P<0.0354). The MANOVA also showed that parasite gall-

making (F1, 91=0.0581; P<0.0236), parasite immigrant inviability (F1, 91=0.0572; 

P<0.0248), parasite short generation time (F1, 91=0.0458; P<0.0441), and parasite volatile 

preference (F1, 91=0.0731; P<0.0115) were all significantly correlated with the presence 

of HAD (Table 2). In addition to these significant individual factors, the MANOVA 

indicated that three combinations of explanatory factors are significantly correlated with 

HAD occurrence: immigrant inviability-by-short generation times (F1, 53=0.2034; 

P<0.0018), immigrant inviability-by-morphological differentiation (F1, 53=0.1075; 

P<0.0205), and the host-shifting opportunities-by-volatile preference (F1, 53=0.0799; 

P<0.0444). The MANOVA also showed that significant factors had relatively large 

effect strengths compared to non-significant factors and were all positively correlated 

with HAD presence: parasite gall-making (Effect Strength or ES +0.342), parasite  
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Figure 2. CCA of HAD Occurrence Based on the Incidence of Biological and Ecological Factors. CCA 

depicting the general pattern between potentially explanatory factors, HAD presence (+, black), and HAD 

absence (-, white). Canonical correspondence 1 (CC1) accounts for 19.6% of the total variance while CC2 

accounts for 12.8% of the variance. 
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immigrant inviability (ES +0.236), parasite short generation times (ES +0.213), and 

parasite volatile preference (ES +0.273) (Table 2). Although these factors were 

significantly associated to HAD occurrence, the CCA showed that these factors, when 

considered altogether, cannot effectively distinguish HAD presence from absence. 

Consistent with the MANOVA findings, the infinite random forest algorithm generated 

conditional probabilities based on the nine significant explanatory factors. These 

conditional probabilities confidently separate case studies likely to involve HAD from 

case studies unlikely to involve HAD (R2=0.371, P<0.001). Based on the conditional 

probabilities I calculated, I developed a hierarchical decision tree that shows the 

conditions most likely to involve HAD as well as the conditions least likely to involve 

HAD (Figure 3). Logworth support for branch splits were significant at α=0.05 for all 

branches (1.42 to 2.96 where LogWorth= –log10 [P-value]). The decision tree also 

includes gall-making as a condition even though it lacks LogWorth support because all 

but one parasite-host case study system involved gall-making when HAD was present, 

meaning no informative decisions could be made beyond this factor. The importance of 

gall-making to HAD is also supported by the MANOVA as discussed above. Finally, 

results of my validation test support the results of the infinite forest analysis but only for 

the nine parasite-host case study systems where HAD was present (indicated with an 

asterisk in The Appendix). The two ‘HAD absent’ case study examples in the validation 

study were incorrectly sorted to the ‘HAD present’ category. 
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Figure 3. Hierarchy of Conditional Probabilities Separating HAD Presence from Absence Based on the 

Incidence of Biological and Ecological Factors. Dichotomous key depicting the conditional probabilities 

distinguishing HAD presence from its absence. Each level of the hierarchical dichotomy represents a 

condition in one of the explanatory factors (i.e., the presence or absence of immigrant inviability, 

morphological differentiation, native parasites and hosts, short generation times, and volatile preference). 

The values superimposed on branch splits in conditions represent the logworth statistic of a given split in 

the dichotomy. The black and white bars represent the proportion of case studies expected to have HAD 

present (black) or absent (white). The black-and-white bar at the top of the hierarchy represents the 

original dataset consisting of 33 case studies without HAD and 64 case studies with HAD; this initial 

proportion is modified based on the conditions met while moving down the decision-making hierarchy.  
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DISCUSSION 

The occurrence of HAD is non-random and is significantly associated with the 

occurrence of specific explanatory factors, supporting my initial hypothesis. My 

analyses revealed that there is no simple, generalizable pattern that can distinguish the 

presence of HAD from its absence, however an algorithm based on conditional 

probabilities is able to effectively explain HAD occurrence (Figure 3). The CCA showed 

the lack of a generalizable pattern among explanatory factors that unambiguously 

distinguishes the presence of HAD from its absence (Figure 2). In contrast, the 

MANOVA showed that four, specific explanatory factors were significantly correlated 

with the presence of HAD, contributing to a significant whole-model effect correlated 

with HAD occurrence (P<0.0021). These four factors were: 1) volatile preference, 2) 

immigrant inviability, 3) short generation times, and 4) gall-making (Table 2). In 

addition to these factors, three combinations of explanatory factors are significantly 

correlated with the HAD occurrence: 1) immigrant inviability-by-short generation times, 

2) immigrant inviability-by-morphological differentiation, and 3) host-shifting 

opportunity-by-volatile preference (Table 2). Consistent with the MANOVA findings, 

the infinite tree model showed that conditional probabilities (based on the incidence of 

the above significant explanatory factors) can confidently separate case studies likely to 

involve HAD from case studies unlikely to involve HAD (R2=0.371; P<0.0001). I 

employed these conditional probabilities in a hierarchical decision tree wherein the 

proportion of case-studies expected to involve HAD changes with the co-occurrence or 

absence of specific explanatory factors (Figure 3). Importantly, all of the significant 
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explanatory factors as well as all of the significant interactions between factors were 

represented in the decision tree and the LogWorth support values for all branches were 

significant. The sole exception to this pattern, gall-making, is a special case: all but two 

of the sixteen gall-makers used to create the hierarchy of conditional probabilities 

exhibited HAD (the exceptions being Procecidochares atra Loew and Epiblema 

scudderiana Hodges, see The Appendix), meaning informative comparisons could not 

be made between case studies with HAD and case studies without HAD. However, this 

evidence suggests that gall-making parasites are highly likely to exhibit HAD and were, 

thus, incorporated as a branch on the decision tree despite the lack of LogWorth support. 

This idea is supported by the fact that the validation study successfully placed gall-

makers into the ‘HAD present’ category for two out of three cases considering gall-

makers. However, in the validation study a gall-maker without HAD (Phylloxera texana 

Stoetzel) was incorrectly sorted into the ‘HAD present’ category, suggesting that my 

model cannot accurately predict which conditions produce gall-making parasite 

populations without HAD. This limitation of my model reflects the bias introduced by 

the lack of ‘HAD absent’ case studies published. Lastly, the decision tree can be 

employed to create verbal models to explain the occurrence of HAD. For example, case 

studies involving immigrant inviability are more likely to involve HAD compared to 

case studies without immigrant inviability. Furthermore, case studies involving both 

immigrant inviability and short parasite generation times have an even higher probability 

of involving HAD than cases involving immigrant inviability alone.  
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Four specific findings are consistent with previously described models explaining the 

occurrence of HAD: 1) Gall-making can independently account for the occurrence of 

HAD since most gall-making parasites appear to experience HAD, supporting previously 

described models emphasizing the strength of host-associated selection pressures on 

gall-makers (Abrahamson, Brown, Roth, Sumerford, Horner, Hess et al. 1993, Craig, 

Itami, Horner and Abrahamson 1994, Brown, Abrahamson, Packer and Way 1995, 

Itami, Craig and Horner 1998, Abrahamson, Eubanks, Blair and Whipple 2001, 

Stireman, Janson, Carr, Devlin and Abbot 2008, Dickey and Medina 2012). It appears 

that gall-making is a special case among endophagous feeders since other forms of 

endophagy (i.e., fruit-feeding or endoparasitism) were not significantly associated to the 

occurrence of HAD and did not contribute to the conditional probabilities in the decision 

tree. 2) My findings support the importance of selection against migrants in creating a 

strong reproductive isolating barrier between populations with host-specific adaptations 

(Funk 1998, Via, Bouck and Skillman 2000, Nosil, Vines and Funk 2005, Nosil 2007, 

Dickey and Medina 2011a). Immigrant inviability had a comparatively large impact in 

explaining the occurrence of HAD since it is significantly correlated with the presence of 

HAD, significantly interacts with two other explanatory factors (i.e., short generation 

time and morphological differentiation), and it is the first factor (beyond gall-making) 

contributing to the conditional probabilities employed in the decision tree. Furthermore, 

the interaction effect between immigrant inviability and generation time was one of the 

best-supported branches in the decision tree. Even in the absence of short generation 

times, the presence of immigrant inviability had significant LogWorth branch support 
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when combined with volatile preference to explain the presence of HAD (Figure 3). 

These interactions have important consequences for the ecological interpretation of the 

mechanistic relationship between these factors and the evolution of HAD. For example, 

immigrant inviability and short generation time may have a compounding effect in 

creating host-associated, reproductively isolated populations (Dickey and Medina 

2011a). Specifically, parasites that experience rapid generation turnover (e.g., aphids) 

can quickly accumulate host-associated adaptations and evolve reproductive isolation 

(Groman and Pellmyr 2000a, Schwarz, Matta, Shakir-Botteri and McPheron 2005, 

Loxdale 2009, 2010). As another example, immigrant inviability may compound with 

morphological differentiation by imposing two related reproductive isolating barriers. 

Specifically, migrants with host-specific adaptations would limit interactions between 

populations, creating an opportunity for assortative mating to impose disruptive selection 

on morphological traits used in mate selection (Jiggins, Hurst and Majerus 2000, 

Dobson, Fox and Jiggins 2002, Fordyce and Nice 2003, Nosil 2007, Egan, Nosil and 

Funk 2008, Fordyce 2010). 3) The importance of differential responses to host-plant 

volatiles supports the importance of habitat isolation by way of disruptive selection for 

host fidelity (Futuyma and Moreno 1988, Jaenike 1990, Feder, Opp, Wlazlo, Reynolds, 

Go and Spisak 1994, Dambroski, Linn, Berlocher, Forbes, Roelofs and Feder 2005, 

Egan and Funk 2006). It is interesting that volatile differences independent of other host-

specific cues are able to explain the occurrence of HAD, though not surprising since this 

effect has been shown to impose a strong reproductive isolating barrier in certain 

systems (Finch 1978, Finch and Collier 2000, Bruce, Wadhams and Woodcock 2005). 4) 
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I support one component of the ‘reproductive mode’ model explaining HAD occurrence: 

short generation time. I expected short generation time would be significantly related to 

HAD occurrence, however I also expected asexual reproduction to be related to HAD 

occurrence and it was not. It appears that in this analysis HAD cannot be explained by 

low recombination rates that allow the independent accumulation of alleles in host-

associated populations but, instead, HAD is explained by rapid responses to selection 

pressures under some other mode of reproductive isolation, such as immigrant inviability 

(Gandon and Michalakis 2002, Dickey and Medina 2011a, 2012). Indeed, this 

hypothesis is supported by the significant interaction between immigrant inviability 

(which imposes strong, host-associated disruptive selection) and short generation times 

(which increases the speed of an evolutionary response to selection). Lastly, it is difficult 

to determine the exact nature of the significant interaction between volatile preference 

and host-shifting opportunities, yet this effect still makes a significant contribution to the 

conditional probabilities employed in the decision tree. This could mean that parasite-

host systems where either the parasite or host are introduced to a novel habitat are likely 

to evolve HAD in instances where a pre-adaptation to a host volatile allows them to 

successfully radiate into a novel niche or allow them to maintain HAD due to the use of 

plant volatile as a host-plant recognition clue (Murphy 2004, Schwarz, Matta, Shakir-

Botteri and McPheron 2005, Agosta 2006, Craig, Itami, Ohgushi, Ando and Utsumi 

2011). 
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Although my findings support previously described verbal models explaining HAD 

occurrence, the analyses I developed have limitations. Specifically, information required 

to test the relative importance of certain models in explaining HAD occurrence could not 

be appropriately integrated into the analyses. For example, case studies supporting the 

importance of allochrony for the evolution of HAD have shown that allochronic barriers 

to reproduction can be quite strong (Feder, Hunt and Bush 1993, Feder and Filchak 

1999, Mopper 2005, Svensson, Althoff and Pellmyr 2005, Ueno, Furukawa and 

Tsuchida 2006, Santos, Rousselet, Magnoux, Paiva, Branco and Kerdelhué 2007, Schöfl, 

Heckel and Groot 2009). However, relatively few case study examples could be found 

that tested for allochrony explicitly, meaning this factor was excluded from my analyses 

after the discriminant function analysis (DFA) showed allochrony to be comparatively 

uninformative. Although the DFA included differential host-plant phenology (a proxy 

for allochrony) as an informative factor, the MANOVA and infinite tree model both 

showed this to be an insignificant factor in explaining the occurrence of HAD. It is 

possible, though, that host-plant phenology is a poor proxy for allochrony, being 

necessary but insufficient for mediating the evolution of allochrony. Future research 

should consider testing for allochrony in more host-parasite systems. Lastly, gall-making 

may have an undiscovered, significant interaction effect with allochrony. Specifically, 

allochrony has been shown to create reproductive isolation between host-associated 

populations in a few aphid species experiencing HAD (Akimoto 1990, Komatsu and 

Akimoto 1995, Abbot 2001). For example, the galling aphid, Kaltenbachiella japonica 

Matsumura, consists of eight genetically distinct, host-associated populations which 
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occur at different times in a growing season, corresponding to the timing of budburst in 

their natal host-plant species. In order to appropriately test the relative importance of 

allochrony for explaining HAD occurrence, future research needs to accumulate more 

examples of allochrony specifically tested in systems where HAD can been 

characterized.  

 

Another factor potentially explaining HAD occurrence (i.e., differential infection of 

microbes in host-associated parasites) could not be tested due to the lack of case study 

examples. The exploration of this factor is relatively novel, so the small number of case-

studies is not surprising. Still, evidence exists showing microbial symbionts of insect 

herbivores can play a role in HAD by allowing their host to use different host-plant 

species (Leonardo and Muiru 2003, Simon, Carre, Boutin, Prunier-Leterme, Sabater-

Munoz, Latorre et al. 2003, Tsuchida, Koga and Fukatsu 2004, Ferrari, Scarborough and 

Godfray 2007). The pattern between host-plant use and bacteria composition can be 

tested in more organisms, opening up opportunities for exploring the relationship 

between this explanatory factor and HAD in general. For example, two bacteria (i.e., 

Pantoea agglomerans Gavini and Serratia marcescens Bizio) are differentially found in 

pecan leaf phylloxera, Phylloxera notabilis Pergande showing HAD in pecan and water 

hickory (Medina, Nachappa and Tamborindeguy 2011). This relationship between 

microbial community species composition and HAD has also been found in a few other 

systems (Hosokawa, Kikuchi, Shimada and Fukatsu 2007). As with allochrony, more 

case studies are needed that test the relationship between differential microbe infection 
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and HAD. Lastly, my analyses are unintentionally biased against case study examples 

where HAD is absent. This fact is reflected in the hierarchical decision tree (Figure 3) 

where consistently lower LogWorth support was observed on branches where HAD is 

likely to be absent. This feature of my research highlights the importance of reporting 

‘negative’ results in the scientific literature. Case study examples where a phenomenon 

is expected to be observed but fails to show up are absolutely necessary for quantitative 

literature comparisons (e.g., this study and meta-analyses in general) that attempt to 

explain generalizable patterns. Researchers going forward should place more emphasis 

on reporting negative results in their study systems since these examples are useful for 

my understanding of generalized patterns and I encourage editors of relevant journals to 

consider publication of such results in the future for this reason.  

 

In conclusion, my research has shown that the occurrence of HAD is non-random and 

associated with gall-making, immigrant inviability, short generation time and volatile 

preference. My hierarchical decision tree model demonstrating the probabilistic 

relationship between postulated explanatory factors and HAD occurrence provides 

quantitative evidence suggesting the existence of a set of conditions that could predict 

the occurrence of HAD in a given system. Most likely, HAD will be common in systems 

where parasites produce galls on host-plants, fail to find or migrate to novel host-plants 

due to host-specific adaptations, or experience rapid generation turnover (e.g., aphids, 

mites, and thrips). Furthermore, certain combinations of factors (e.g., immigrant 

inviability and short generation times) can compound, meaning systems involving both 
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of these factors are even more likely to experience HAD. These factors, integrated into 

conditional probabilities, explain which parasite-host systems are likely to exhibit HAD 

and which systems are not, providing a tool for testing the general occurrence of HAD. I 

stress the need for the continued study of additional explanatory factors that could not be 

appropriately tested in my research (i.e., allochrony and differential microbe infection), 

as well as advocate for the publication of negative results in HAD studies. Future 

research into the evolution of HAD and parasite diversity in general will refine the 

findings of this study and may provide novel factors that may contribute to HAD in 

currently unexplored species. 
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CHAPTER III 

ASSESSING THE ROLE OF IMMIGRANT INVIABILITY IN A CASE OF PARTIAL 

HOST-ASSOCIATED DIFFERENTIATION (HAD) INVOLVING THE BLACK-

MARGINED APHID, MONELLIA CARYELLA 

 

SYNOPSIS 

Host-associated differentiation (HAD) is a form of ecologically mediated speciation by 

which two or more parasite populations (e.g., insect herbivores) of the same species 

become genetically distinct due to their associations with different host species (e.g., 

plants). HAD has been proposed as a way to partially account for the vast species 

diversity observed in herbivorous insects. However, the factors explaining the 

occurrence of HAD are not fully understood. For HAD to occur, parasite populations on 

different hosts need to experience reproductive isolation, which causes the accumulation 

of host-associated alleles resulting in genetically distinct populations on different hosts. 

An important mechanism of reproductive isolation involves selection against migrants 

moving from a native to a novel host (i.e., immigrant inviability). Immigrant inviability 

has been found in several organisms showing HAD. Immigrant inviability may appear to 

be important for the evolution of HAD, however it is difficult to separate the effect of 

immigrant inviability from the effects of other species-specific factors that may 

influence the evolution of HAD (e.g., the short generations and low recombination 

experienced by aphids). The present study assessed immigrant inviability in a special 

case of partial HAD in the black-margined aphid, Monellia caryella Fitch (Hemiptera: 
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Aphididae), as it occurs on two host-plant species: pecan, Carya illinoiensis Wangenh 

and water hickory Carya aquatica Michx. Under partial HAD, the black-margined aphid 

consists of two genetically distinct populations: one specialist population occurring 

exclusively on pecan and a generalist population occurring on both pecan and water 

hickory. If immigrant inviability is responsible for HAD, I hypothesized that the 

specialist population will experience it while the generalist population will not. 

Immigrant inviability was assessed by comparing fitness parameters (i.e., fecundity and 

longevity) during reciprocal transplant experiments where aphids were transferred from 

pecan to water hickory and vice versa; during these experiments, the population 

identities of tested aphids were confirmed through single-nucleotide polymorphism 

(SNP) characterizations. Immigrant inviability was only detected in the pecan-specific 

population supporting my hypothesis. 

 

INTRODUCTION 

Host-associated differentiation (HAD) is a form of ecologically mediated speciation by 

which two or more populations of the same parasite species (e.g., insect herbivores) 

become genetically distinct due to each parasite population associating with a different 

host species (e.g., host-plants) (Abrahamson, Blair, Eubanks and Morehead 2003, 

Stireman, Nason and Heard 2005). Putatively, HAD is a phenomenon created and 

maintained by differential selection pressures experienced by host-associated parasite 

populations and depends on the reduction in gene flow between host-associated parasite 

populations. If parasites experience strong, host-specific selection pressures linked to 
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parasite reproduction (e.g., traits involved in mate and/or habitat choice), then 

reproductive isolation between host-associated parasite populations can develop 

relatively quickly (Feder 1998, Groman and Pellmyr 2000a, Loxdale 2009). Once 

reproductively isolated, parasite populations accumulate genome-wide genetic 

differences due to genetic drift and/or disruptive selection acting on adaptive alleles 

(Michel, Sim, Powell, Taylor, Nosil and Feder 2010), this accumulation of genetic 

differences between parasite populations associated with different hosts (i.e., the genetic 

signature of HAD) can be detected using genome-wide molecular markers (Hardison 

2003, Helyar, Hemmer‐ Hansen, Bekkevold, Taylor, Ogden, Limborg et al. 2011). 

Under the circumstances described above, even sympatric parasite populations can 

assume independent evolutionary trajectories so long as reproductive isolation is 

maintained (Flaxman, Feder and Nosil 2013). Given enough time, HAD may result in 

total reproductive incompatibility between parasite populations on different hosts. Thus, 

HAD may constitute the beginning stages of ecological speciation (Dres and Mallet 

2002, Wiens 2004, Stireman, Nason and Heard 2005). Since most insects happen to be 

plant or animal parasites (Price 1980), HAD has been proposed as a way of partially 

explaining the vast species diversity observed in insects (Funk, Filchak and Feder 2002). 

 

It is still unclear which combination of factors involved in parasite and host biology are 

most likely to explain the occurrence of HAD (Stireman, Nason and Heard 2005, 

Medina 2012). However, one mode of reproductive isolation potentially important to the 

evolution of HAD involves immigrant inviability or selection against maladapted 
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migrants moving from a natal to a novel host. Immigrant inviability is commonly present 

in cases of HAD (Feder, Opp, Wlazlo, Reynolds, Go and Spisak 1994, Via, Bouck and 

Skillman 2000, Simon, Carre, Boutin, Prunier-Leterme, Sabater-Munoz, Latorre et al. 

2003, Nosil, Vines and Funk 2005, Ferrari, Godfray, Faulconbridge, Prior and Via 2006, 

Nosil 2007, Ferrari, Via and Godfray 2008, Dickey and Medina 2011a, Matsubayashi, 

Kahono and Katakura 2011, Dickey and Medina 2012). In fact, immigrant inviability 

may be the first reproductive isolating barrier to develop between populations of 

parasites occurring on different host species (Nosil, Vines and Funk 2005). This is 

because HAD likely requires a rapid accumulation of divergent adaptive alleles that 

would otherwise be disrupted by even low levels of gene flow. Therefore, a reduction in 

fitness for migrants and hybrids of migrants would cause a nearly complete reduction in 

gene flow between host-associated populations and promote habitat-specific adaptation 

(Funk 1998, Via, Bouck and Skillman 2000). Evidence for rapid adaptive change under 

immigrant inviability has been shown in parasite populations as a response to differential 

selection pressures imposed by different host species (Bush 1994, Via 2001, Lowry, 

Modliszewski, Wright, Wu and Willis 2008, Funk 2010, Matsubayashi, Ohshima and 

Nosil 2010). For example, differential adaptive responses of insect herbivores to certain 

host-plant characteristics (e.g., plant traits that trigger insect host- or mate-seeking 

behaviors; plant chemical defenses; and plant nutrient content) can act as reproductive 

isolating barriers between host-associated insect herbivore populations and result in 

observable genetic differentiation in as few as 200 years (Bush 1969, Futuyma and 

Moreno 1988, Feder and Filchak 1999).  
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Immigrant inviability is not the only factor responsible for the evolution of HAD. 

Parthenogenesis (Sunnucks, De Barro, Lushai, Maclean and Hales 1997, Dixon 1998, 

Dickey and Medina 2010, 2011a), allochrony (Itami, Craig and Horner 1998, Feder and 

Filchak 1999, Cocroft, Rodríguez and Hunt 2008), and endophagy (Dreger-Jauffret and 

Shorthouse 1992, Stireman, Nason and Heard 2005) have also been postulated as factors 

that could explain the occurrence of HAD. Specifically, HAD can evolve in 

parthenogens more rapidly than in sexually reproducing organisms. This is due to the 

low level of gene flow between parthenogenetic lineages causing the independent 

accumulation of adaptive alleles; this effect is exacerbated by the fact that most aphid 

species experience upwards of 30 generations in a single growing season (Hartl 1972, 

Lynch and Gabriel 1983, Lynch 1984). In cases where two cyclically parthenogenetic 

lineages occur on different host-plants, each can evolve responses to differential 

selection pressures before mating can desegregate host-associated genetic structuring 

(King 1993, King and Murtaugh 1997, Loxdale 2008). In other words, the rapid 

evolution of host associations in aphids is mechanistically caused by the low levels of 

recombination inherent in cyclical parthenogens in conjunction with the short generation 

times experienced by aphids. . This is supported by the fact that aphids in general exhibit 

very strong host specificity with up to 99% of species considered host-plant specialists 

(Eastop 1973); in fact, Dickey and Medina (2010) identified 18 aphid species that 

consist of host races or host-associated genotypes. The low levels of recombination and 

short generation times can also interact with immigrant inviability to produce HAD: if a 
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population of cyclical parthenogens accumulates alleles maladaptive on alternative 

hosts, then the potential for HAD to evolve is reinforced (Rundle and Nosil 2005). 

However, it is difficult to test this rationale because delineating the effect of immigrant 

inviability alone from the effect of other traits such as parthenogenesis (or of any other 

species specific trait) is complicated. 

 

I hypothesize immigrant inviability occurs in host-specialist populations but not in host-

generalist populations (Nosil, Harmon and Seehausen 2009, Forister, Dyer, Singer, 

Stireman and Lill 2012, Powell, Hood, Murphy, Heilveil, Berlocher, Nosil et al. 2013). 

This hypothesis was tested in the black-margined aphid (Monellia caryella Fitch), a 

winged arboreal aphid that feeds on pecan and water hickory leaves. The black-margined 

aphid was chosen for this study because it presents a special form of HAD I call ‘partial 

HAD’. Under partial HAD, the black-margined aphid’s genetic population structuring 

does not perfectly correspond to its host-associations (Raijmann and Menken 2000, 

Johnson, Adams and Clayton 2002, Vialatte, Dedryver, Simon, Galman and Plantegenest 

2005, Ishiguro, Yoshida and Tsuchida 2006, Medina, Reyna and Bernal 2012, Antwi, 

Sword and Medina 2015). The black-margined aphid consists of two genetically distinct 

populations: one occurring exclusively on pecan trees (Carya illinoiensis Wangenh) and 

a second population occurring on pecan and water hickory trees (Carya aquatica Michx) 

(Medina, Dickey, and Harrison, in press). In other words, the black-margined aphid 

consists of a pecan-specialist population and a pecan and water hickory generalist 

population. This system was chosen for this study because it is ideal for testing the 
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singular effect of immigrant inviability on the evolution of host-associated populations 

compared to other factors believed to important to the evolution of HAD. First, the 

specialist and generalist populations used for this study belong to the same species and 

the host-plant species share the same environment, allowing for direct comparisons 

between generalist and specialist performance during reciprocal transplant experiments 

(Mitter, Farrell and Wiegmann 1988, Zeh, Zeh and Smith 1989). More importantly, if 

parthenogenesis is the primary factor for determining the evolution of HAD, then any 

immigrant inviability (or the lack thereof) detected in this system would be independent 

of host associations. This is because the specialist and generalist black-margined aphids 

experience very similar parthenogenetic life histories (i.e., they share the same short 

generation times and low recombination rates); the only exception to this would involve 

mutations on sex-determining chromosomes (Lynch and Gabriel 1983, Lynch 1985, 

Howard and Lively 1994). However, if the evolution of immigrant inviability is the 

determinant factor or the evolution for HAD, then immigrant inviability would be 

present in the host-specialist population only. 

 

METHODS 

Aphid collection and reciprocal rearing. The black-margined aphids persist from late-

April to mid-August and annually produce 16 to 32 overlapping generations of thelytokous 

parthenogens (Tedders 1978). Back-margined aphids also produce a single sexual 

generation towards the end of their growing season that mate and lay overwintering eggs. 

Aphid life history parameters were assessed in a manner similar to Dickey and Medina 
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(2011a). Wild adults were collected from five southeastern Texas sites from June 9th to 

June 20th (pecan) and from July 1st to July 25th (water hickory), 2012. Pecan and water 

hickory trees occur in sympatry at my study area and share lowland plains near rivers and 

streams. One adult black-margined aphid was collected per tree per site (Table 3). Thus, 

it is reasonable to assume that each aphid sampled represents a different genetic lineage. 

All black-margined aphids were placed individually in a Newspring DELItainer® (Pactiv 

Corp., Lake Forest, IL) 8 cm high, 10 cm diameter, 473 mL plastic container and 

maintained in a rearing room heated and lit by a 1,000 W metal halide bulb at a LD 16h: 

8h cycle. Temperatures fluctuated between 26 ˚C and 35 ˚C (average 30 ˚C). Aphids 

collected in the field were then reared until they deposited a nymph; the nymph’s mother 

was then stored in -80 ˚C as a voucher specimen. The first generation (F1) of nymphs was 

reared to adulthood on ~1 g of excised leaf material (leaflet) from their natal host tree (i.e., 

the same tree species from which they were collected). Once these aphids matured to 

adulthood, they were assigned to one of four treatments (i.e., on a leaflet from the natal or 

a novel host-plant, based on the host they were collected) and placed individually in 

randomly arranged plastic containers. Leaf material was replaced daily to reduce fungus 

growth and to ensure a continuous source of food for the aphids.  
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Table 3. Sample Information for Black-Margined Aphids Collected from Pecan and Water Hickory Trees. 

 

 

 

 

 

 

 

 

 

 

 

 

Location Host-plant species 

 Pecan Water Hickory Total by Site 

Bryan, Texas - 3 3 

Highway 50 Roadside 5 - 5 

Lake Somerville 6 5 11 

Lick Creek Park - 12 12 

Pecan Breeding and Genetics 15 6 21 

Texas A&M Campus 4 - 4 

 

Total by Host-plant 

 

30 

 

26 

 

56 
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 Immigrant inviability data analyses.  Each day aphids were monitored for daily survival 

and number of nymphs produced. For each aphid, total longevity in days and total lifetime 

fecundity were calculated at the end of their lives; longevity was defined as the number of 

days from aphid birth to death whereas fecundity was defined as the total number of 

offspring produced by an aphid throughout its lifetime. To measure immigrant inviability, 

firstborn nymphs of the previously described F1 adults were reared under the same 

conditions described above; likewise, longevity and fecundity of the F2 generation were 

summed daily. Differences in longevity and fecundity among migrant treatments (i.e., 

migrants to natal or novel plant species) and differences among generations were assessed 

with Monte-Carlo tests for significance scripted in the PopTools package (Hood 2010) in 

Microsoft Excel™. This test was chosen because lifetime fecundity and longevity data for 

F1 and F2 generations were orthogonal and because a test for significance using a Wilcoxin 

signed-rank test would have been biased due to a high proportion of tied ranks (0’s) in the 

data set. The relative fecundities (f) of pecan and water hickory immigrants (fP and fW) 

were calculated as:  

 

Where ‘x’ is relative fecundity for either pecan (fP) or water hickory (fW). Resident 

fecundity (fr) is defined as the average fecundity of aphids transferred from a natal host-

plant to natal host-plant; immigrant fecundity (fi) is defined as the average fecundity of 

aphids transferred from a natal host-plant to novel host-plant material. The contribution of 
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immigrant inviability was simply calculated as 1 minus relative fecundity (Nosil, Vines 

and Funk 2005). 

 

Aphid genotyping. In order to precisely correlate the pattern of immigrant inviability 

observed in this study with the previously described genetic structuring of pecan-

specialist and generalist populations of black-margined aphid (Dickey, Harrison, and 

Medina, in preparation), single nucleotide polymorphisms (SNPs) were developed using 

the RAD-tag sequencing protocol on the Illumina HiSeq platform (Baxter, Davey, 

Johnston, Shelton, Heckel, Jiggins et al. 2011, Davey and Blaxter 2011, Caporaso, 

Lauber, Walters, Berg-Lyons, Huntley, Fierer et al. 2012). Specifically, SNPs were 

developed from F2aphids reared during the reciprocal transplant experiments; 5 aphids 

were chosen to represent each treatment group in the reciprocal transplant experiments, 

totaling 20 aphids submitted for sequencing. DNA was extracted from aphids using a 

Qiagen DNEasy Tissue Kit (Qiagen Inc., Valencia, CA) following the Qiagen 

recommended protocol (Qiagen 2002). Excess RNA was removed using the RNAseA 

plasmid cleanup kit following the Qiagen recommended protocol. The concentration 

(ng/μl) and purity (ratio of sample absorbance at 260 and 280 nm) of DNA was 

measured using a NanoDrop® spectrophotometer (NanoDrop Technologies, Inc., 

Wilmington, DE). Samples were only submitted if they contained a minimum of 50 ng 

of genomic DNA. Unfortunately, this reduced the number of aphid lineages that could be 

genotyped from the reciprocal transplant experiment because several of these failed to 

produce enough genomic DNA. RAD-tag marker development and Illumina HiSeq 
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sequencing was performed by the Texas A&M University AgriLife Genomics and 

Bioinformatics Service (College Station, TX); this service provided raw sequence reads 

for comparative genomics. Comparative genomic analyses were performed in the Galaxy 

software (Giardine, Riemer, Hardison, Burhans, Elnitski, Shah et al. 2005, Blankenberg, 

Kuster, Coraor, Ananda, Lazarus, Mangan et al. 2010, Goecks, Nekrutenko and Taylor 

2010). Reads were filtered for a minimum 5X coverage using FastQC (Andrews 2010) 

and then trimmed for quality using FastQ Trimmer by column (Blankenberg, Gordon, 

Von Kuster, Coraor, Taylor, Nekrutenko et al. 2010). The Galaxy software was also 

used to visualize genetic population structuring using a principal component analysis 

(PCA). Black-margined aphid sequences were aligned against the pea aphid 

(Acyrthosiphon pisum Harris) reference genome (Richards 2010) for comparative 

mapping and SNP discovery using the Burrows-Wheeler Aligner for Illumina (Li and 

Durbin 2009). These data were also used to generate a pileup and construct consensus 

sequences; the pileup was subsequently filtered to exclude base calls below a 99.9% 

accuracy threshold. Finally, nucleotide variants at each locus were quantified and 

compared in Galaxy to identify statistically significant SNPs; these SNPs were used to 

characterize the genetic structuring of host-associated black-margined aphids. 

 

RESULTS 

Immigrant Inviability Data Analysis. The results of the of the reciprocal transplant 

experiment support the existence of immigrant inviability in the pecan-specialist 

population of the black-margined aphid. The effect of migration on overall black-
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margined aphid longevity and fecundity was dependent on host associations, with F2 

pecan-specialist aphids possessing lower fecundity and longevity on water hickory leaf 

material (Bootstrap statistic=100; P>0.001 and Bootstrap=98; P>0.001, respectively); 

Table 4 shows the comprehensive statistics for longevity and fecundity in the Monte-

Carlo tests of significance. The reduction in both longevity and fecundity experienced by 

pecan-specialist aphids on water hickory relative to pecan indicates immigrant 

inviability. However, these reductions were not observed in F2 host-generalist aphids. In 

addition, the effect of migration was significant in the F2 generation but not in the F1 

generation for all black-margined aphids. Histograms of the fitness variables across the 

four migration treatments (i.e., pecan to water hickory, pecan to pecan, water hickory to 

water hickory, and water hickory to pecan) per generation are given in Figure 4. The 

relative fecundity of immigrants, the relative survival of immigrant’s offspring, and the 

contribution to reproductive isolation of immigrant and offspring inviability are given in 

Table 5. Aphid genotyping. For an analysis of admixture and genetic clustering presented 

here, relatively simple methods of assembly are adequate, meaning the contiguity of the 

assembly need not be great and are not reported here. Trimmed reads (99% of raw reads) 

were aligned to the reference genome, and 89% of the trimmed reads per sample could 

be confidently and uniquely mapped to single positions in the genome; these were used 

for SNP characterization. Approximately 123,000 SNPs were identified per aphid with 

coverage ≥4.8X, allowing us to characterize the genetic clustering among sampled 

black-margined aphids. It was discovered that suspected pecan-specialist black-margined 

aphids were genetically distinct from host-generalist aphids (Figure 5). 
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Table 4. Monte-Carlo Test for Significance in Adult Longevity and Fecundity between Transfer Groups of 

Reciprocal Transplant Experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer group 1 Transfer group 2 Measurement Bootstrap Statistic P-value 

Pecan-to-pecan Pecan-to-water 

hickory 

Longevity 100 <0.001 

  Fecundity 98 <0.001 

Water hickory-to-

water hickory 

Water hickory-to-

pecan 

Longevity 16 0.36 

  Fecundity 9 0.57 
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Table 5. Calculations for the Relative Fecundities and Degree of Reproductive Isolation between Pecan-

Specialist and Generalist Black-Margined Aphids. Calculations for the relative fecundities of F2 pecan-

specialist and generalist black-margined aphids and the contribution to reproductive isolation due to 

immigrant inviability. The calculations of the relative fecundities depict the number of individuals produced 

in aphids transferred from their natal host over the number produced on a novel host (and vice versa). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collected from: Transferred to: Relative fecundity of 

immigrants 

Contribution to reproductive 

isolation due to immigrant inviability 

Pecan Pecan - - 

Pecan Water hickory 0.000/0.560 = 0.000 100% - 0.0% = 100.0% 

Water hickory Pecan 1.060/0.920 = 1.152 100% - 115.2% = -15.2% 

Water hickory Water hickory 0.920/1.060 = 0.868 100% - 86.8% = 13.2% 

Collected from: Transferred to: Relative fecundity of 

immigrants 

Contribution to reproductive 

isolation due to immigrant inviability 

Pecan Pecan - - 

Pecan Water hickory 0.000/0.560 = 0.000 100% - 0.0% = 100.0% 

Water hickory Pecan 1.060/0.920 = 1.152 100% - 115.2% = -15.2% 

Water hickory Water hickory 0.920/1.060 = 0.868 100% - 86.8% = 13.2% 
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Figure 4. Adult Longevity and Fecundity during Reciprocal Transplant Experiments Involving Host-

Associated Black-Margined Aphids. Comparison of average F2 black-margined aphid adult fecundity (a) 

and average adult longevity (b) during reciprocal transplant experiments. Aphids collected from pecan 

were transferred to pecan (P2P) or water hickory (P2W) and tested for significant differences; aphids 

collected from were hickory were transferred to pecan (W2P) or water hickory (W2W) and tested for 

significant differences. Significant differences are indicated by an asterisk (*).  
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Figure 5. CCA of SNPs Characterizing Generalist and Specialist Black-Margined Aphid Populations. 

Principal component analysis (PCA) depicting the genetic differentiation between individual black-

margined aphids from the reciprocal transplant experiment. Color indicates the whether an aphid was 

collected on pecan (black) or water hickory (white). Shape indicates whether an individual was suspected 

to belong to the pecan-specialist (triangle) or generalist (circle) genetic population based on the results of 

the reciprocal transplant experiment. Principal component 1 accounts for 93.8% of the total variance. The 

arrows point to individual aphids previously identified as belonging to the pecan-specialist population and 

the generalist population and were originally part of a different research data set (Medina et al., in review). 
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It was also discovered that black-margined aphids previously demonstrated to be part of 

the pecan-specialist population clustered together with aphids that could only survive on 

pecan during the reciprocal transplant experiment. Similarly, previously identified 

generalist black-margined aphids clustered with aphids that could survive and reproduce 

on either host-plant species. However, since only a single suspected generalist could be 

genotyped from the reciprocal transplant experiment, the conclusion that the individuals 

tested belong to the previously identified populations of pecan-specialist and generalist 

black-margined aphids is only partially supported. 

 

DISCUSSION 

My reciprocal transplant experiments showed that pecan-collected black-margined 

aphids experienced a significant reduction in fitness parameters when transferred from 

pecan to water hickory (i.e., specialist aphids) while other pecan-collected aphids and all 

of the water hickory-collected aphids did not experience a fitness reduction when 

transferred from a natal host to a novel host (i.e., generalist aphids). The reason why this 

was observed only in the F2 generation is most likely attributable to the strong maternal 

effects commonly experienced by aphids and because this effect can quickly be 

overcome by host-specific selection pressures (Via 1991). The characterization of 

population-wide SNPs among pecan- and water hickory-collected aphids showed that 

the specialist and generalist aphids observed in the reciprocal transplant experiments 

belong to the same specialist and generalist populations originally characterized by way 

of AFLP markers (Figure 1 of Medina, Dickey, and Harrison 2016). Furthermore, the 
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survival rates and relative fecundities calculated from the reciprocal transplant 

experiments provided additional insight into the strength of immigrant inviability 

between the specialist and generalist populations of black margined aphids. By 

converting rates of into percentages and subtracting the survival rate of F2 from the total 

(100), I derive the percent contribution to total reproductive isolation due to immigrant 

inviability (Nosil, Vines and Funk 2005, Dickey and Medina 2011a). First, the relative 

fecundity calculated for the pecan-specialist population showed that immigrant 

inviability could cause complete reproductive isolation by the second generation due to 

the failure of F2 specialist aphids to accept water hickory as a host (100 - 0.0% survival 

rate of F2 immigrants = 100.0% reproductive isolation due to immigrant inviability; 

these values and the ones used below are derived from the results shown in Table 5). In 

contrast, generalist aphids moving from pecan to water hickory do not experience 

complete reproductive isolation by the second generation because second generation 

offspring of generalist migrants have a relatively high fitness on water hickory (100 - 

86.8% survival rate of F2 immigrants = 13.2% reproductive isolation due to immigrant 

inviability). By extrapolating the survival rate of immigrants across generations, it can 

be shown that generalist aphids moving from pecan to water hickory should be able to 

produce viable offspring throughout an entire growing season, or 30 generations (0.86830 

= 1.4% relative survival rate) albeit at a very low rate. Though this survival rate is quite 

low, it still does not constitute complete reproductive isolation, especially considering 

100’s to 1000’s of black-margined aphid clones can be produced and sustained by a 

single pecan or water hickory tree throughout the growing season (Harris 1985). Lastly, 
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generalist aphids moving from water hickory to pecan do not experience immigrant 

inviability at all and, in fact, experience a small improvement in fitness on pecan (100 - 

115.2% relative survival rate = -15.2% contribution to reproduction isolation). 

 

The above calculations indicate that the reproductive isolating barrier created by 

immigrant inviability is sufficient to account for the reproductive isolation between 

pecan-specialist and black-margined aphids. These results parallel those of previous 

studies which have either been able to quantify the strength of reproductive isolation 

caused by immigrant inviability or have theorized that immigrant inviability plays an 

integral role in the development or maintenance of ecological specialization in general 

and HAD in particular (Nosil, Vines and Funk 2005, Nosil 2007, Lowry, Modliszewski, 

Wright, Wu and Willis 2008, Schluter and Conte 2009). In contrast, other studies have 

also suggested that the short generation times and low recombination rates of cyclically 

parthenogenetic aphids can explain the occurrence of host-specialist populations in 

aphids and may explain the diversification of host-races and cryptic species within 

aphids in general (Via 1999, Via, Bouck and Skillman 2000, Hawthorne and Via 2001, 

Dickey and Medina 2010, Peccoud, Simon, von Dohlen, Coeur d'acier, Plantegenest, 

Vanlerberghe-Masutti et al. 2010, Medina 2012). Therefore, I could not overlook the 

influence of short generation times or low recombination rate on the evolution of the 

pecan-specialist population in black-margined aphids. However, my results suggest that 

neither of these factors by themselves can explain the occurrence of the pecan-specialist 

population in the black-margined aphid. This is because the generalist and specialist 
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populations of black-margined aphid experience the same number of generations per 

season and the same recombination rate, yet the generalist population is maintained in 

sympatry with the specialist population. It seems that immigrant inviability is the likely 

main source of reproductive isolation in the pecan-specialist genetic lineage whereas 

generation time and recombination rate play a negligible or not role at all. Perhaps, then, 

the reason why HAD and other forms of host specialization are observed so often in 

aphids is due short generation times allowing for the rapid development of reproductive 

isolation (e.g., immigrant inviability) between populations. Therefore, immigrant 

inviability could be a determinant factor explaining the occurrence of HAD while short 

generation times and low recombination may increase the probability that host-specialist 

populations develop in some organisms.  

 

Unfortunately, the genetic identities of the individuals tested in the reciprocal transplant 

experiments could only partially be verified. This is because only a single suspected 

generalist black-margined aphid that was also collected from pecan could be included in 

the genetic verification test. This error was most likely committed due black-margined 

aphids emerging and achieving peek population density twice in a season: once in the 

early season (when all of the pecan-collected individuals were obtained) and again in the 

middle of the season (when all of the water hickory-collected individuals were obtained) 

(see the Methods section). It is now known that pecan-specialist black-margined aphids 

experience allochronic isolation (Chapter IV), meaning aphids captured early in the 

season may entirely belong to the pecan-specialist genetic population; although, the 
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allochronically isolated population of black-margined aphids on pecan have yet to be 

genetically characterized. This phenomenon may also explain why no pecan-collected 

individuals could produce offspring by the F2 generation in the reciprocal transplant 

experiment: It is possible that only pecan-specialist aphids were collected on pecan trees. 

 

To establish a general pattern regarding the relationships between immigrant inviability, 

short generations, and low recombination, more parasites under partial HAD need to be 

tested for immigrant inviability. For example, the sexually obligate orchard ermine moth 

(Yponomeuta padella L.) consists of a genetically distinct, specialist population 

associated with Hawthorne trees (Crataegus spp. Tourn) in sympatry with a generalist 

population that can occur on several host-plants including mountain-ash (Sorbus 

aucuparia L.) and Juneberry trees (Amelanchier lamarckii L.) (Raijmann and Menken 

2000). If reciprocal transplant experiments were performed on these populations moving 

moths collected on mountain-ash to Juneberry and vice versa, then comparisons in the 

strength of reproductive isolation by immigrant inviability could be made between a 

cyclical parthenogen (the black-margined aphid) and a sexually obligate organism (the 

orchard ermine moth). If I can determine that the strength of immigrant inviability is 

greater in the cyclical parthenogens, then this would support the theory that short 

generations and low recombination rates may increase the probability that reproductive 

isolation evolves.  
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The effects of immigrant inviability on the evolution of HAD in the black-margined 

aphid is also comparable to other insect species within the pecan and water hickory 

system. Multiple insect herbivore species within this system have also tested positive for 

host-plant specialization (Medina, Harrison, and Dickey, in preparation, Dickey and 

Medina 2010, 2012). Like the specialist population of black-margined aphids, pecan- 

water hickory-associated populations of yellow pecan aphid (Monelliopsis pecanis 

Bissell) and pecan leaf phylloxera (Phylloxera notabilis Pergande) also experienced 

immigrant inviability during reciprocal transplant experiments (Dickey and Medina 

2011a, 2012). Unlike the black-margined aphid, the yellow pecan aphid and pecan leaf 

phylloxera experience full HAD and the immigrant inviability they experience is 

reciprocal for both the pecan- and water hickory-associated populations. As 

demonstrated in this study, it is possible that the immigrant inviability experienced by 

the yellow pecan aphid and pecan stem phylloxera are the cause of their host-associated 

reproductive isolaiton and that the short generations and low recombination experienced 

by all these aphid species only contributed to increasing the rate at which immigrant 

inviability evolved. 

 

The evolution of the pecan specialist population in the black-margined aphid could be 

important to agricultural science because it fits into a theoretical narrative regarding 

evolutionary ecology and agriculture: It is theorized that human agricultural practices 

have provided a recent niche that selects for host-plant specialization in herbivorous 

insect pests (Jaenike 1990, Via 1990). Apparently, large-scale growing operations 
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involving monocultures of crop plants can provide highly abundant and/or enemy-free 

spaces that allow populations of insect herbivores to thrive (Strong, McCoy and Rey 

1977, Strong, Lawton and Southwood 1984, Ballabeni, Wlodarczyk and Rahier 2001, 

Murphy 2004, Heisswolf, Obermaier and Poethke 2005). This is because host switching 

onto monoculture would incur no cost for an insect herbivore pre-adapted to the crop 

host-plant while simultaneously incurring a search cost for switching back to wild host-

plants. In this scenario, the rapid evolution of crop host-plant specialization is expected 

(Tan, Liu, Lin and Hsu 2014) and immigrant inviability could account for the strong, 

reproductive isolating barrier required for this specialization to take place.  

 

In conclusion, I provide evidence that pecan-specialist black-margined aphids likely 

experience immigrant inviability while generalist black-margined aphids do not. 

However, future validations must be conducted that better test the genetic identities of 

black-margined aphid individuals. Still, this research is unprecedented with respect to 

the study of HAD because it provides us with the first characterization of the strength of 

immigrant inviability in a case of partial HAD. The discovery of immigrant inviability in 

a case of partial HAD improves my understanding of the evolution of reproductive 

isolation during sympatric speciation: a maladapted population of parasites can be 

removed from a host-plant species in as few as two asexual generations. This 

observation supports the hypothesis that ecological speciation is a common phenomenon 

in insect herbivores and that reproductive isolation can easily evolve in sympatric 

populations (Bush 1975b, Bush 1994, Schluter 2001, Via 2001). In order to make further 
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assessments regarding the general relationship between immigrant inviability and the 

evolution of HAD, future research will need to involve more organisms experiencing 

partial HAD across a much broader diversity. 
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CHAPTER IV 

ALLOCHRONY AND HOST-ASSOCIATED DIFFERENTIATION IN APHIDS 

 

SYNOPSIS 

Sympatric populations can become reproductively isolated by being active at different 

times (i.e., allochrony). Allochrony has been proposed as a mechanistic explanation for 

the evolution of population genetic structuring among parasite populations associated 

with different hosts species (i.e., host-associated differentiation or HAD). Specifically, 

populations of insect herbivores can experience disruptive selection in response to 

phenological differences among their host-plant species. For example, host-associated 

populations of insect herbivores (e.g., aphids) will emerge and achieve peak population 

densities at different times in order to co-occur with the resources provided by their 

respective host-plant species. When differential responses to host-plant phenology result 

in allochronic isolation between parasite populations, then HAD can evolve. However, it 

is unclear whether the allochrony created by differences in host-plant phenology are 

sufficient to produce HAD in aphids. I hypothesize that if allochronic isolation via 

differences in host-plant phenology is sufficient for producing HAD, then I should 

observe allochronically isolated populations in exophagous aphids exhibiting HAD. I 

tested this hypothesis in three exophagous aphids occurring on pecan and water hickory. 

One aphid species shows HAD, one shows partial HAD and one lacks HAD. To assess 

the presence of allochrony among aphid populations living on different tree species, 

population density was collected for each aphid species on pecan and water hickory 
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throughout several weeks. I present evidence suggesting the occurrence of HAD and 

allochrony are correlated in aphids.  

 

INTRODUCTION 

Sympatric populations can become reproductively isolated due to allochrony (Alexander 

and Bigelow 1960, Bush 1975a, Cooley, Simon, Marshall, Slon and Ehrhardt 2001, 

Ueno, Furukawa and Tsuchida 2006, Devaux and Lande 2008, Sota, Kagata, Ando, 

Utsumi and Osono 2014, Fudickar, Greives, Atwell, Stricker, Ketterson, Williams et al. 

2016). Specifically, sympatric populations of insect herbivores can experience disruptive 

selection on time-dependent traits when host-plants produce ephemeral (e.g., flowers, 

fruits, seeds) resources at different times, causing reproductive isolation between 

populations active at different times or ‘allochronic isolation’ (Konno, Honda and 

Matsumoto 1981, Pashley, Hammond and Hardy 1992, Abrahamson, Brown, Roth, 

Sumerford, Horner, Hess et al. 1993, Eubanks, Blair and Abrahamson 2003, Mopper 

2005, Santos, Rousselet, Magnoux, Paiva, Branco and Kerdelhué 2007, Stireman, 

Janson, Carr, Devlin and Abbot 2008). For example, when host-plant species produce 

fruits, seeds, or nuts at different times, populations of short-lived insect herbivores can 

experience disruptive selection on traits that determine the timing of eclosion such that 

host-adapted insect herbivores emerge at distinct times and become allochronically 

isolated (Abrahamson, McCrea and Anderson 1989, Feder, Opp, Wlazlo, Reynolds, Go 

and Spisak 1994, Schluter 2001, Santos, Rousselet, Magnoux, Paiva, Branco and 

Kerdelhué 2007, Matsubayashi, Ohshima and Nosil 2010). Given several hundred 
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generations of allochronic isolation, host-associated insect populations can accumulate 

genome-wide genetic differences, leading to host-associated differentiation (HAD) 

(Funk, Filchak and Feder 2002, Stireman, Nason and Heard 2005).  

 

Allochrony has been invoked as an explanation for the evolution of HAD in the apple 

maggot (Rhagoletis pomonella Walsh), as it occurs on apple and hawthorn trees (Bush 

1969, Feder, Chilcote and Bush 1988, Berlocher and Feder 2002, Powell, Forbes, Hood 

and Feder 2014). A mean difference of four weeks between the fruit availabilities of 

apple and hawthorn is sufficient for creating strong reproductive isolation between host-

associated apple maggot populations. This difference in tree phenology is also sufficient 

to select for fly populations with divergent pupal emergence times (Feder and Filchak 

1999) which translate into fly host-associated population densities peaking at different 

times (Feder, Hunt and Bush 1993). Similarly, phenological differences between two 

yucca species are thought to explain reproductive isolation between host-associated five-

spotted bogus yucca moth (Prodoxus quinquepunctellus Chambers) populations 

(Groman and Pellmyr 2000a, Althoff, Fox and Frieden 2014). The relationship among 

host-plant phenology, allochrony, and HAD has been demonstrated in several other 

insect-plant systems as well (Akimoto 1990, Komatsu and Akimoto 1995, Raijmann and 

Menken 2000, Abbot and Withgott 2004, Bethenod, Thomas, Rousset, Frérot, Pélozuelo, 

Genestier et al. 2005, Stelinski and Liburd 2005). However, allochrony and HAD do not 

co-occur in all systems (Jaenike and Selander 1980, McLellan, Nordin and Haynes 1991, 

Baer, Tripp, Bjorksten and Antolin 2004, Antolin, Bjorksten and Vaughn 2006, 
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Martinelli, Clark, Zucchi, Silva-Filho, Foster and Omoto 2007). For example, blueberry- 

and cranberry-associated populations of the cranberry fruitworm (Acrobasis vaccinii 

Riley) emerge and achieve peak population densities at significantly different times in 

parallel with the availability of their respective host-plant fruits, yet they do not exhibit 

HAD (Medina, Szendrei, Harrison, Isaacs, Averill, Malo et al. 2013). Interestingly, a 

gall-making wasp (Dasineura oxycoccana Johnson) exhibits HAD on the same host-

plant pair (Cook, Ozeroff, Fitzpatrick and Roitberg 2011). Thus, the relationship 

between host-plant phenology, HAD, and allochrony appears to be complicated and may 

be affected by other factors. 

 

Besides allochronic isolation, several other factors are believed to promote the evolution 

of reproductive isolation between insect herbivores under HAD (Bush 1975b, Price 

1977, Futuyma and Moreno 1988, Via 1999, Via, Bouck and Skillman 2000, 

Abrahamson, Eubanks, Blair and Whipple 2001, Craig, Horner and Itami 2001, Funk, 

Filchak and Feder 2002, Nosil, Crespi and Sandoval 2002, Nosil, Vines and Funk 2005, 

Funk, Nosil and Etges 2006, Stireman, Nason, Heard and Seehawer 2006, Dorchin, 

Scott, Clarkin, Luongo, Jordan and Abrahamson 2009, Forister, Dyer, Singer, Stireman 

and Lill 2012, Medina 2012). Notably, gall-making insect herbivores are thought to be 

particularly prone to the evolution of HAD due to the hypothesized gene-by-gene 

mechanism required for the manipulation of host-plant phytohormones during insect-

induced gall formation (Abrahamson, Brown, Roth, Sumerford, Horner, Hess et al. 

1993, Craig, Itami, Horner and Abrahamson 1994, Brown, Abrahamson, Packer and 
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Way 1995, Abrahamson, Eubanks, Blair and Whipple 2001, Stireman, Janson, Carr, 

Devlin and Abbot 2008, Dickey and Medina 2012). However, the evolution of HAD in 

gall-making insects may also be tied to host-plant phenology (Mopper 2005). 

Specifically, gall-makers synchronize their biology with host-plant phenology (Yukawa 

2000). Indeed, the existence of phenological differences between host-plant species has 

been shown to create allochronic isolation between host-associated populations in 

multiple gall-making aphid species that experience HAD (Akimoto 1990, Komatsu and 

Akimoto 1995, Abbot 2001). For example, the American gall-forming aphid, Pemphigus 

obesinymphae Riley, consists of two host-associated populations, each occurring on a 

phenologically distinct species of cottonwood tree (Abbot and Withgott 2004). It is 

unclear whether phenological differences alone or gall-making combined with 

phenological differences produces HAD in these aphids. Similarly, the role of allochrony 

in generating HAD in exophagous aphids is unclear. Although several exophagous aphid 

species have been shown to exhibit HAD on phenologically distinct host-plant species  

(Guldemond 1990, Vanlerberghe-Masutti and Chavigny 1998, Via 1999, Via, Bouck and 

Skillman 2000, Lozier, Roderick and Mills 2007, Miller, Favret, Carmichael and 

Voegtlin 2009, Peccoud, Ollivier, Plantegenest and Simon 2009, Dickey and Medina 

2010, Mezghani-Khemakhem, Bouktila, Kharrat, Makni and Makni 2012), the 

occurrence of allochronic isolation in these aphids remains uncharacterized (Harrison et 

al., in review). The apparent dearth of tests for allochrony in exophagous aphids with 

HAD may be due to the fact that exophagous aphids are thought to rely on persistent 

(e.g., leaves and stems) rather than more ephemeral (e.g., fruits and seeds) host-plant 
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resources, presumably freeing aphids from selection for emerging and living within a 

restricted window of time. However, the physiology of relatively persistent plant organs, 

and therefore their suitability to exophagous aphids, is still dependent on plant 

phenology (Senn, Hanhimäki and Haukioja 1992, Mopper 2005). For example, several 

leaf-chewing insects preferentially feed on younger, more nitrogen-rich leaves and their 

population densities reflect these phenological differences (Hunter 1992, Mopper and 

Simberloff 1995). It is still unclear how phloem feeders respond to phenological 

differences, though it is known that these insects respond to water stress which is, itself, 

dependent on plant phenology (Huberty and Denno 2004). Therefore, allochronic 

isolation may occur in exophagous phloem feeding aphids and possibly contribute to the 

evolution of HAD. 

 

I hypothesized that HAD and allochrony may be correlated in exophagous aphids. This 

hypothesis was tested using three aphid species sharing the same pair of phenologically 

distinct hickory species: pecan (Carya illinoinensis Wangenh) and water hickory (Carya 

aquatica Michx). Water hickory trees break bud and produce leaves two weeks earlier 

than pecan; water hickory also begin nut water weight accumulation earlier than pecan 

(Grauke, Kalinsky and Strout 1984, Thompson and Grauke 1991). Pecan and water 

hickory aphids provide an excellent opportunity for assessing the relationship between 

HAD and allochrony in exophagous aphids because they represent a continuum of HAD 

living on a single host-plant pair. Thus, these aphids are faced with the same host-plant 

selection pressures and phenologies. These aphids include one species experiencing 
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HAD (yellow pecan aphid, Monelliopsis pecanis Bissell), one species which lacks HAD 

(black pecan aphid, Melanocallis caryaefoliae Davis), and one species which 

experiences a host-specialized population occurring in sympatry with a host-generalist 

population, or partial HAD (black-margined aphid, Monellia caryella Fitch) (Medina et 

al. 2017, in press). To assess the presence of allochrony across the HAD continuum, 

population density data was collected for each aphid species on pecan and water hickory 

trees during the 2013 growing season. My hypothesis predicts that genetically distinct, 

host-associated aphid populations will achieve peak population densities at significantly 

different times while undifferentiated, generalist populations will not. 

 

METHODS 

 To assess the presence of allochrony in pecan- and water hickory-associated populations 

of yellow pecan aphid, black-margined aphid, and black pecan aphid, the average 

population density of each aphid species was surveyed throughout the 2013 growing 

season and compared between tree species. Sympatric pecan and water hickory trees 

were surveyed for aphids during the aphid growing season from April 5th to October 

15th, 2013 (Harris 1983). Aphids were sampled from five locations in Brazos, Burleson, 

and Lee counties, TX. GPS coordinates were recorded for all trees surveyed, allowing us 

to track the aphid population density on individual trees throughout the sampling period 

(Table 6). Aphid density was assessed in the same 30 pecan and 24 water hickory trees 

multiple times a week. During each survey date, aphids were counted on low-hanging  
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Table 6. Pecan and Water Hickory Locations and Collection Information. Number of sampled trees and 

their GPS coordinates for pecan and water hickory surveyed throughout Brazos, Burleson, and Lee 

counties, TX. Numbers under the “Pecan” “Water Hickory” and “Total by Site” columns indicate the 

number of trees sampled. 

 

 

 

Location Number of trees 

Collection Site GPS Coordinates Pecan Water Hickory Total by Site 

Bryan, Texas 30°40'59.9"N, 96°22'7.4"W - 3 3 

San Salvador Pecan Orchard 30°36'19.3"N, 96°31'53.2"W 5 - 5 

Lake Somerville 30°21'04.4"N 96°35'31.5"W 6 5 11 

Lick Creek Park 30°33'39.4"N, 96°12’52.1"W 

30°33'37.1"N, 96°13'20.1"W 

30°33'33.0"N, 96°13'23.2"W 

30°33'24.9"N, 96°13'29.2"W 

- 

- 

- 

- 

3 

3 

3 

3 

12 

Pecan Breeding and Genetics 30°31'23.2"N, 96°25'27.1"W 

30°31'15.3"N, 96°25'38.1"W 

30°31'11.8"N, 96°25'45.4"W 

30°31'07.3"N, 96°25'40.9"W 

- 

5 

5 

5 

6 

- 

- 

- 

21 

Texas A&M Campus 30°36'51.8"N, 96°20'59.0"W 

30°36'53.2"N, 96°21'03.3"W 

2 

2 

- 

- 

4 

 

Total by Host-plant 

  

30 

 

26 

 

56 



 

79 

 

tree branches for 60 seconds; this count was repeated three times per tree to obtain an 

average aphid count per tree. Based on these counts, the average aphid density per aphid 

species per tree was calculated for each survey date. These aphid density data created 

distributions of average population densities per tree species across the sampling period. 

Distributions of aphid density data across time were compared between pecan and water 

hickory trees using a matched-pairs analysis in JMP® (Version 13. SAS Institute Inc., 

Cary, NC, 1989-2007). The Matched Pairs platform compares means between correlated 

variables (i.e., average aphid density across time) and assesses their differences; the null-

hypothesis assumes that average aphid densities for a given week are different for each 

tree species. Aphid density distributions were checked for homoscedasticity using 

regression diagnostics and normality using a Kolmogorov-Smirnov test performed in 

JMP® 

 

RESULTS 

HAD co-occurs with allochrony in pecan and water hickory Aphididae. For the yellow 

pecan aphid, the matched-pairs analysis for the average aphid density across time showed 

that peak population densities on pecan and water hickory do not significantly overlap 

(t=0.703; P>0.2666). This indicated that allochrony occurs between host-associated 

populations in the yellow pecan aphid (Figure 6). In my study area, yellow pecan aphid 

persisted on pecan and water hickory trees from late-April to mid-August in 2013. 

However, water hickory-associated yellow pecan aphids died out by mid-July which  
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Figure 6. Population Density of Three Pecan and Water Hickory Aphididae during 2013. Average number 

of aphids (A. yellow pecan aphids; B. black-margined aphids, and C. black pecan aphids) occurring on 

pecan (dashed line) and water hickory (solid line) from April 2nd to September 27th of 2013 (30 weeks).  
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allochronically isolated them from the pecan-associated yellow pecan aphid population 

that appeared in August.  

 

For the black-margined aphid, the matched-pairs analysis for the average aphid density 

across time also showed that peak population densities on pecan and water hickory do not 

significantly overlap (t=0.257; P>0.8627). Like for the yellow pecan aphid, this indicated 

that allochrony occurs between host-associated populations in the black-margined aphid 

(Figure 6B). First, a population of black-margined aphid achieved peak density on pecan 

trees only from late-April to mid-May. This population occurred significantly earlier than 

the majority of black-margined aphid which fluctuated in population density on both pecan 

and water hickory trees from early June to mid-August. 

 

Finally, the matched-pairs analysis for the black pecan aphid show that peak population 

densities on pecan and water hickory significantly overlap (t=3.385 P<0.0001; Figure 6C). 

That is, populations of black pecan aphids living on pecan and water hickory are not 

allochronically isolated. Black-margined aphids appear on both pecan and water hickory 

in early June and both experienced a second, larger peak population from the end of 

August to mid-September. 

 

DISCUSSION 

Genetically distinct, host-specialized aphid populations in the pecan and water hickory 

system achieved peak population densities at significantly different times while 
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undifferentiated, generalist aphids did not. Specifically, I observed that water hickory-

associated populations of yellow pecan aphid achieved peak population density 

significantly earlier than pecan-associated aphids (Figure 6A), suggesting allochronic 

isolation may be present in an aphid species with complete HAD. Also, a pecan-

associated population of black-margined aphid achieved peak population density 

significantly earlier than a generalist population associated with both pecan and water 

hickory (Figure 6B), suggesting that the pecan-specialist population in an aphid species 

with partial HAD may be allochronically isolated from the generalist populations; 

however, future research needs to corroborate the genetic identify of early-emerging 

black-margined aphid. Lastly, host-associated populations of black pecan aphid achieved 

peak population density simultaneously (Figure 6C), suggesting a lack of allochronic 

isolation in an aphid species without HAD. 

 

My research provides the first examples of allochrony in exophagous aphids. 

Additionally, these aphids represent a continuum of HAD occurrence in aphids that 

share the same host-plant pair, meaning the specific conditions promoting the evolution 

of HAD and/or allochrony can be studied within the same parasite-host case study 

system. Furthermore, this research can be conducted in an aphids absent the gall-making 

trait. As stated in the introduction, previous examples of allochrony in aphids all 

involved gall-making (Akimoto 1990, Komatsu and Akimoto 1995, Abbot 2001), a 

condition believed to impose strong, host-associated selection pressures on parasite 

populations and drive the evolution of host-specific adaptations (e.g., allochrony) and 
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HAD (Abrahamson, Brown, Roth, Sumerford, Horner, Hess et al. 1993, Abrahamson 

and Weis 1997, Stireman, Nason and Heard 2005). In the pecan and water hickory 

system, though, the presence of allochrony is shown to be related to HAD occurrence in 

leaf-feeding aphids, implying that host-specific adaptations and HAD can evolve in 

aphids independent of the strong selection pressures imposed on gall-makers. I 

hypothesize that allochrony itself may drive the evolution of HAD in pecan and water 

hickory aphids (Abbot and Withgott 2004, Santos, Rousselet, Magnoux, Paiva, Branco 

and Kerdelhué 2007, Fudickar, Greives, Atwell, Stricker, Ketterson, Williams et al. 

2016). This is supported by the fact that pecan- and water hickory-associated black 

pecan aphid lacked both allochrony and HAD. 

 

However, this hypothesis also calls into question the presumed relationship between 

host-plant phenology and the evolution of allochrony because the black pecan aphid 

failed to evolve allochrony on a pair of phenologically distinct host-plants in which two 

other exophagous aphids evolved both allochrony and HAD. That is, if the phenological 

differences between pecan and water hickory trees are sufficient for creating allochronic 

isolation between host-associated populations, then why did the black pecan aphid fail to 

evolve allochrony or HAD? To assess the role of host-plant phenology in generating 

allochrony in pecan and water hickory aphids, I compared my parasite-host case study 

system to other case study systems involving allochrony and HAD. For example, the 

difference in bud break between pecan and water hickory is similar in magnitude to the 

phenological differences between apple and hawthorn hosting the apple maggot, 
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Rhagoletis pomonella Walsh. Water hickory trees bud break and begin nut development 

two weeks earlier than pecan, just like hawthorn trees bud break and begin fruit 

development two weeks earlier than apple (Grauke, Kalinsky and Strout 1984, Grauke, 

Pratt and Morris 1987). Accordingly, hawthorn-associated apple maggot emerge from 

puparia and achieve peak population densities approximately two weeks before apple-

associated apple maggot, adaptations evolved in response to differences in the 

availability of host-plant resources (Feder, Opp, Wlazlo, Reynolds, Go and Spisak 1994, 

Feder and Filchak 1999). The synchronization of parasite population density with host-

plant phenology observed in the apple maggot is paralleled in multiple systems including 

the goldenrod gallfly (Eurosta solidaginis Fitch) which evolved HAD based on 

differences in bud availability between North American goldenrod species 

(Abrahamson, Brown, Roth, Sumerford, Horner, Hess et al. 1993, Stireman, Janson, 

Carr, Devlin and Abbot 2008), Pemphigus gall-making aphids on multiple oak species 

(Abbot and Withgott 2004), and Prodoxus quinquepunctellus Chambers on different 

yucca species (Groman and Pellmyr 2000b). However, the parasite-host case study 

systems presented above all involved ephemeral fruits or galls that can only be made 

within a restricted window of time (Felt 1940, Shorthouse and Rohfritsch 1992, Yukawa 

2000). In contrast, the host-plant organ used by pecan and water hickory aphids (i.e., 

leaves) is accessible for several months, suggesting the selection pressure on time-

dependent traits in exophagous aphids is looser than the selection pressure experienced 

by endophagous parasites. Indeed, this appears to be reflected in the asynchrony between 

host-plant resource phenology and aphid population density in the pecan and water 
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hickory system: First, both yellow pecan aphid and black-margined aphid appear in the 

field weeks after pecan and water hickory leaves have matured. Next, the water hickory-

associated population of yellow pecan aphid achieves peak population density 

approximately five weeks before the pecan-associated population rather than the two 

weeks that I would expect based on the two-week difference in phenology between 

pecan and water hickory trees. Last, the pecan-associated population of the black-

margined aphid emerges before any water hickory-associated aphids, the opposite of 

what I would expect because water hickory phenology precedes pecan. The presented 

evidence suggests that, unlike other parasite-host case study systems, the evolution of 

allochrony in the pecan and water hickory system is not directly mediated by host-plant 

phenology and resource availability but instead by host-plant conditions that also vary in 

time. 

 

Instead of the presence or absence of a specific host-plant resource, I hypothesize pecan 

and water hickory aphids may have evolved allochrony in response to differences in 

host-plant conditions that are indirectly influenced by host-plant phenology. For 

example, leaf quality conditions (e.g., nitrogen and allelochemical content, or water 

availability) vary across time and insect herbivores preferentially feed on leaves with 

high nitrogen and water content (Senn, Hanhimäki and Haukioja 1992, Mopper and 

Simberloff 1995, Mopper 2005). Aphids are able to rapidly evolve host-specific 

adaptations in response to the specific conditions presented by host-plant resources 

(Price, Fernandes and Waring 1987, Akimoto 1990, Via 1991, Guldemond and 
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Mackenzie 1994, Vanlerberghe-Masutti and Chavigny 1998, Abbot 2001, Tsuchida, 

Koga and Fukatsu 2004, Peccoud, Ollivier, Plantegenest and Simon 2009, Mezghani-

Khemakhem, Bouktila, Kharrat, Makni and Makni 2012). This is particularly evident in 

the genetic structuring observed in the galling aphid, Kaltenbachiella japonica 

Matsumura, which have been shown to evolve HAD in response to individual host-plant 

bud break (Komatsu and Akimoto 1995). If aphid populations are able to evolve 

adaptations in response to individual variation in host-plant conditions (e.g., bud break 

phenology), then aphids may also evolve in response to individual variation in host-plant 

leaf quality across time. Future research should track the variation in several leaf quality 

characteristics in pecan and water hickory trees (e.g., water, nitrogen, and tannin 

concentration-per-leaf) across the growing season and compare these to the population 

densities of yellow pecan aphid, black-margined aphid, and black pecan aphid. I predict 

that the genetically distinct, pecan and water hickory aphid population densities 

synchronize with leaf quality conditions that promote aphid feeding (e.g., a high ratio of 

water/nitrogen content vs. allelochemicals in leaves). 

 

Alternative to variation in phenology or host-plant leaf quality, I hypothesize that the 

evolution of allochrony in pecan and water hickory aphids may be explained by other 

factors correlated with time, such as horticultural practices. Large-scale growing 

operations involve monocultures of host-plants treated with insecticides, providing large, 

enemy-free spaces where insect herbivores thrive (Strong, McCoy and Rey 1977, 

Strong, Lawton and Southwood 1984, Ballabeni, Wlodarczyk and Rahier 2001, Murphy 
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2004, Heisswolf, Obermaier and Poethke 2005). Specifically, enemy-free spaces may 

promote the evolution of allochrony in exophagous aphids living on pecan because 

highly-damaging, early-season pecan-pests (e.g., the pecan nut casebearer, Acrobasis 

nuxvorella Neunzig, and pecan stem phylloxera, Phylloxera devastatrix Pergande) 

initiate the application of fast-acting, broad spectrum insecticides to counteract damage 

to pecan buds (Harris 1983, Tedders 1983). Certain insecticides previously used in my 

study sites (e.g., WARRIOR® or LorsbanTM 4E) likely killed-off early populations of 

important aphid predators (e.g., Chrysoperla rufilabris Burmeister and Hippodamia 

convergens Guérin-Méneville) (Mizell and Schiffhauer 1990), which are known to 

greatly reduce pecan aphid populations (Liao, Harris, Gilstrap and Mansour 1985). 

Without these biological control agents, early emergence would be highly selective in 

yellow pecan aphid living on pecan and pecan-specialist black-margined aphids, 

allowing allochronically-distinct populations to form. This scenario also supports the 

absence of allochrony in the black pecan aphid since their relatively late emergences in 

June and August prevent them from taking advantage of enemy-free spaces provided by 

the pest management practices described above. 

 

Lastly, I hypothesize that allochrony may not be a cause of HAD in the pecan and water 

hickory system but a consequence. There are ecological and biological factors apart from 

gall-making and allochrony have been shown to be causes of re For example, immigrant 

inviability, or the reduction in fitness of migrants and hybrids of migrants, In fact, 

immigrant inviability exists in the yellow pecan aphid (Dickey and Medina 2011a) as 
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well as the pecan-specialist population of black-margined aphid (Harrison & Medina, in 

Preparation). It is possible that host-specialist populations of yellow pecan aphid and 

black-margined aphid become reproductively isolated through the spontaneous 

acquisition of immigrant inviability and later acquired traits that optimized the timing of 

emergence on their respective host-plants, resulting in allochrony between host-

associated populations. The necessity of immigrant inviability to host-specific adaptation 

may explain the absence of allochrony as well as HAD in the black pecan aphid. I 

suspect that black pecan aphid never acquired immigrant inviability between pecan or 

water hickory trees and, thus, never evolved a reproductive isolating barrier between 

host-associated populations. However, this hypothesis is contingent upon the fact that 

these aphids are indeed cyclically parthenogenetic and produce the sexual morphs that 

can disrupt the accumulation host-specific adaptation; these sexual morphs have yet to 

be discovered in my study system. Future research should test for the presence of 

immigrant inviability and sexual reproduction in the black pecan aphid to further test the 

relationship between immigrant inviability, allochrony, and HAD. If HAD develops in 

response to host-specific adaptations, then I would predict that the black pecan aphid 

migrants would experience no reduction in fitness during reciprocal transplant 

experiments moving pecan-collected individuals to water hickory and vice versa. 

 

In conclusion, the discovery of allochrony in the yellow pecan aphid and the black-

margined aphid has important implications for the continued effort to fully characterize 

HAD evolution. Specifically, I provided evidence suggesting allochrony and HAD are 
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related in the pecan and water hickory parasite-host case study system. Also, I have 

provided examples of parasites evolving HAD and allochrony without a clear link to 

host-plant phenology. Furthermore, I have also shown, for the first time, that aphids 

without the gall-making trait evolve HAD under allochrony. The community of pecan 

and water hickory aphids examined in this research not only provide us with these novel 

insights, but they also provide a platform for future research that can test the mechanistic 

relationship between allochrony and HAD. Future research should include tests 

comparing host-plant leaf quality across time with aphid population densities, tests for 

the relationship between allochrony and enemy-free spaces, and tests for immigrant 

inviability in the black pecan aphid. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Results from this dissertation have improved my understanding of the factors explaining 

the occurrence of HAD, both in general and in the pecan and water hickory 

Aphidomorpha system. First, the results of the quantitative literature (Chapter II) review 

demonstrated that the occurrence of HAD is non-random and likely common in systems 

where parasites produce galls on host-plants, fail to find or migrate to novel host-plants 

due to host-specific adaptations, or experience rapid generation turnover. In general, the 

combination of ecological factors that can best explain the occurrence of HAD seems to 

be more complex than previously proposed. Factors shown to be important in specific 

study systems are not necessarily generalizable to other study systems. Instead, a 

combination of factors (e.g., gall-making, immigrant inviability, short generation times 

in parasites, host-specific volatile preference, morphological differentiation, and whether 

the host or parasite is an invasive species) best explain the occurrence of HAD (Figure 

3). Future research should employ the conditional probabilities I calculated to improve 

my estimates for the number of parasitic arthropod species likely to experience HAD. 

Based on my description of HAD occurrence in general, I predict that gall-making 

arthropods and arthropod species with short generation times will be highly diverse and 

consist of many cryptic species and host-race complexes. The hierarchy of conditional 

probabilities based on HAD explanatory factors provides a tool for estimating the 

parasite systems likely to involve HAD, providing a novel avenue for assessing the 
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prevalence of HAD and its importance for the origins of parasite diversity (Colwell and 

Coddington 1994, Lewinsohn, Novotny and Basset 2005). This ‘decision tree’ tool can 

be used by ecologists and applied biologists to develop and to test novel verbal models 

to describe the interaction between explanatory factors that may account for HAD 

occurrence, models that can then be tested in natural systems. Furthermore, the tool is 

also helpful to agriculturalists or conservation biologists that want to know the 

likelihood of HAD occurrence on their crops or on natural reserves without having to 

conduct expensive and time-consuming genetic tests. Such valuable information can be 

used to develop more effective integrated pest management (IPM) strategies (Medina 

2012). However, there are still limits to this model and avenues to improvement through 

future research. Specifically, the study systems used to design the decision tree were 

biased for case studies positive for HAD. This is most likely due to the current bias 

against publishing studies in which tested hypotheses were not supported by 

experimental results (Matosin, Frank, Engel, Lum and Newell 2014). These kinds of 

‘negative’ results are an important contribution to the scientific literature because they 

provide a critical evaluation of the current paradigms in the HAD research (Rosenthal 

1979, Knight 2003, da Silva 2015). For example, the pecan and water hickory 

Aphidomorpha system provides an example demonstrating that endophagous feeding is 

an insufficient predictor of HAD occurrence (Medina et al., in review). 

 

I demonstrated that the pecan-specialist population of black-margined aphid (Monellia 

caryella) experiences immigrant inviability while generalist black-margined aphids do 
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not (Chapter III). This supports the hypothesis that immigrant inviability may be an 

important mechanisms to explain HAD in some systems as described in Chapter II 

(Nosil, Vines and Funk 2005, Rundle and Nosil 2005, Feder, Egan and Nosil 2012) . 

This research is the first demonstration of immigrant inviability in a case of ‘partial 

HAD’. The discovery of immigrant inviability in this case study has an exciting 

implication for my understanding of ecological speciation: immigrant inviability can 

completely remove maladapted aphids from a host-plant species in as few as two asexual 

generations (calculations in Chapter III). This observation supports the hypothesis that 

ecological speciation may be a common phenomenon in insect herbivores and that 

genetic differences can accumulate between sympatric populations without invoking 

extraordinary circumstances (Dieckmann and Doebeli 1999, Schluter 2001, Via 2001, 

Futuyma 2008). Furthermore, the pattern of immigrant inviability in pecan and water 

hickory Aphidomorpha is consistent with the pattern of allochrony observed in Chapter 

IV. Both immigrant inviability and allochrony were observed in the yellow pecan aphid 

and pecan-specialist population of black-margined aphid. To corroborate this pattern, 

though, future research should test whether the black pecan aphid experiences immigrant 

inviability during reciprocal transplant experiments. I predict that they will not 

experience immigrant inviability. 

 

Finally, I have provided evidence supporting the hypothesis that allochrony and HAD 

are correlated, demonstrating a lack of allochrony in an aphid species without HAD, 

allochrony in a specialist population of an aphid species, and allochrony in an aphid 
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species with complete HAD. Despite previous research demonstrating allochrony as an 

important factor explaining HAD evolution (Feder, Hunt and Bush 1993, Komatsu and 

Akimoto 1995, Feder and Filchak 1999, Morrow, Scott, Congdon, Yeates, Frommer and 

Sved 2000, Abbot 2001, Abbot and Withgott 2004, Mopper 2005), this hypothesis could 

not be supported in the Chapter II research and is contradicted by other case study 

systems. For example, the cranberry fruitworm (Acrobasis vaccinii L.) is an 

endophagous, fruit-feeding moth that experiences allochronic isolation by its host yet 

has failed to evolve HAD (Medina, Szendrei, Harrison, Isaacs, Averill, Malo et al. 

2013). Again, negative results like this provide an opportunity for critical analysis of 

current scientific thinking (like with the allochrony model in HAD). Consistent with the 

importance of negative results in research discussed above, the pecan and water hickory 

Aphidomorpha community provides curious examples of aphids evolving HAD under 

allochrony without a clear link to host-plant phenology. As mentioned above, previous 

research showed that host-associated populations of gall-making aphids were intimately 

linked with their host-plant’s phenology (Komatsu and Akimoto 1995). This is likely 

due to the strong selection pressures operating on the gene-to-gene interaction between 

host-plant and gall-maker (Weis and Abrahamson 1986, Schick and Dahlsten 2003). 

Similarly, the relationship between HAD and host-plant phenology is clear in 

frugivorous insects, such as the apple maggot, which must emerge when a host-plant 

produces a resource with limited availability (i.e., fruits) (Jaenike 1981, Feder, Opp, 

Wlazlo, Reynolds, Go and Spisak 1994, Dekker, Ibba, Siju, Stensmyr and Hansson 

2006). The exophagous pecan and water hickory aphids, though, are not so intimately 
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linked with their host-plant’s resources, yet still experience allochrony. As described in 

the ‘Discussion’ section of Chapter IV, other hypotheses may explain the origins of 

allochrony in each pecan and water hickory aphid species. For example, if the 

application of pesticides on pecan trees early in the growing season causes aphid 

predator populations to diminish, then the timing of emergence and propagation of the 

pecan-specialist black-margined aphid would correlate with the timing of these ‘enemy-

free-spaces’ (Thompson 1988, Gratton and Welter 1999, Heard, Stireman III, Nason, 

Cox, Kolacz and Brown 2006). Testing this hypothesis is important because of its 

consequences for pesticide application decisions in pecan integrated pest management 

(IPM) programs (Harris 1983, Liao, Harris, Gilstrap, Dean, Agnew, Michels et al. 1984). 

 

The community of pecan and water hickory aphids examined in this research not only 

provide us novel insights but also an ideal platform for future research that can test the 

mechanistic relationship between allochrony, gall-making, immigrant inviability, 

volatile preference, and HAD. While several tests have been described above and in 

Chapters 2 through 4, still others are applicable. For example, the gall-makers in the 

pecan and water hickory Aphidomorpha could not be characterized for allochrony or 

immigrant inviability due to my failure to sample generalist M. caryella from pecan trees 

during my dissertation research. Since immigrant inviability has already been shown to 

exist between host-associated populations of the pecan leaf phylloxera, so it is highly 

likely that immigrant inviability would also be observed in the pecan stem phylloxera. 

The existence of allochrony in these two phylloxera would also be expected since it 
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would parallel the pattern between HAD and allochrony in this and other case studies 

(Komatsu and Akimoto 1995). Phylloxera texana, by comparison, would likely not 

experience either allochrony or immigrant inviability due to its lack of HAD. Lastly, 

volatile preference is entirely untested in pecan and water hickory Aphidomorpha; this is 

despite its apparent importance described in Chapter II and in other parasite-host case 

study systems (Wickremasinghe and Emden 1992, Ngi-Song, Overholt, Njagi, Dicke, 

Ayertey and Lwande 1996, Linn, Dambroski, Feder, Berlocher, Nojima and Roelofs 

2004, Dambroski, Linn, Berlocher, Forbes, Roelofs and Feder 2005, Linn, Dambroski, 

Nojima, Feder, Berlocher and Roelofs 2005). Thus it would be interesting to compare 

the incidence of volatile preference among the members of this community. 

 

In conclusion, I have shown that the evolution of HAD is non-random and mediated by a 

few key factors which can be integrated into a hierarchy of conditional probabilities to 

predict which parasite-host systems are most prone to HAD occurrence. I also show that 

HAD is likely common in specific systems, particularly in those involving gall-making 

and immigrant inviability. I also show that the study of HAD needs to be improved with 

the inclusion of more studies focused on the relationship between allochrony and HAD. 

With these contributions to the scientific community, I are now closer to explaining the 

vast species diversity observed in phytophagous insects and other parasitic arthropods. 
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APPENDIX 

Each row (numbered on each page, 1-108) lists the individual parasite species (Column 

1), host species (Column 2), HAD occurrence (Column 3), and biological/ecological 

factors (Columns 4-21) that characterize the case study systems analyzed in the 

quantitative literature review; supporting literature for each case study system is 

provided in Columns 23-25 at the end of the Appendix. Each row represents a single 

parasite-host case study system. Case studies highlighted in grey were used for the 

validation study only and were not included in the development of my model. 

Underlined Column headers depict the factors that were significantly related to HAD 

occurrence in the MANOVA. Specifically, Column 3 describes the presence or absence 

of genetic structuring between host-associated populations of each parasite species. 

Columns 4 and 5 provide the Order and Family of each parasite species while Columns 6 

and 7 provide the Order(s) and Family/Families of every host species involved in 

parasite-host system. Column 8 describes the trophic position of each parasite species. 

Column 9 describes the host resource used by each parasite species. Column 10 

describes whether each parasite species is an endophagous or exophagous feeder. 

Column 11 describes the mode of reproduction used by each parasite species. Column 

12 describes the approximate average number of generations experienced by each 

parasite species annually. Column 13 describes whether each parasite species uses their 

host as a habitat for discovering mates. Column describes whether morphological 

differences can be observed between host-associated parasite populations. Column 15 

describes the timing of availability of the host resources used by each parasite. Column 
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16 describes whether host-associated populations of each parasite species will 

preferentially choose the volatiles specific to one host species over another during Y-

tube choice experiments. Similarly, Column 17 describes whether host-associated 

parasites will preferentially choose to oviposit on one host species over another during 

choice-arena experiments and Column 18 describes whether host-associated parasites 

experience a reduction in fitness parameters while living on non-natal hosts during 

reciprocal transplant experiments. Column 19 describes whether host-associated parasite 

populations occur at significantly different times. Column 20 describes whether the 

parasite, host, or both occur in a geographic range outside of their natal range, creating 

opportunities for host-shifting events. Column 21 describes whether each system is 

maintained or cultivated by humans. Column 22 describes whether the species 

composition of microbiota infecting each parasite species is different depending on host 

association.  
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