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ABSTRACT

In recent years, we have noticed tremendous increase of energy consumption and car-

bon pollution in the industrial sector, and many energy-intensive industries are striving

to reduce energy cost and to have a positive impact on the environment. In this context,

this dissertation is motivated by opportunities to reduce energy cost from demand-side

perspective. Specifically, industries have an opportunity to reduce energy consumption

by improving energy-efficiency in their system operations. By improving utilization of

their resources, they can reduce waste of energy, and thus, they are able to prevent paying

unnecessary energy cost. In addition, because of today‘s high penetration of renewable

generation (e.g. wind or solar), many industries consider renewable energy as a promising

solution to reduce energy cost and carbon pollution, and they have tried to utilize renew-

able energy to meet their power demand by installing on-site generation facilities (e.g. PV

panels on roof top) or making a contract with renewable generation farms. Moreover, it is

becoming common for energy markets to allow industries to directly purchase electricity

from them while providing the industries with day-ahead and real-time electricity price

information. In this situation, industries have an opportunity to adjust purchase and con-

sumption of energy in response to time-varying electricity price and intermittent renewable

generation to reduce their energy procurement cost, which are called demand response.

Considering these opportunities, it is anticipated that the industrial sector can save

a significant amount of energy cost, however, time-varying behavior, uncertainty and

stochasticity in system operations, power demand, renewable energy, and electricity price

make it challenging to determine optimal operational decision. Motivated by the afore-

mentioned opportunities as well as challenges, this dissertation focuses on developing

decision-making methodologies tailored for demand-side energy system operations to im-
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prove energy-efficiency based on energy-aware system operations and reduce energy pro-

curement cost by utilizing renewable energy and demand response in an integrated fashion

to optimally reduce energy cost.

For practical application, this dissertation considers real-world practices in data cen-

ters including their operations management and power procurement for the following re-

search tasks: (i) develop a server provisioning algorithm that dynamically adapts server

operations in response to heterogeneous and time-varying workloads to reduce energy

consumption while providing performance guarantees based on time-stability; (ii) pro-

pose stochastic optimization models for optimal energy procurement to determine pur-

chase and consumption of energy based on day-ahead and real-time energy market oper-

ations considering utilization of renewable energy based on demand response; (iii) sug-

gest a decision-making model that integrate the proposed server provisioning algorithm

with energy procurement to achieve energy-efficiency in data center operations to reduce

both energy consumption and energy cost against variability and uncertainty. In terms of

methodologies, this study uses operations research techniques including deterministic and

stochastic models, such as, queueing analysis, mixed-integer program, Markov decision

process, two-stage stochastic program, and probabilistic constrained program.

In conclusion, this dissertation claims that renewable energy, demand response, and

energy storage are worth to be considered for data center operations to reduce energy

consumption and procurement cost. Although variability and uncertainty in system opera-

tions, renewable generation, and electricity price make it challenging to determine optimal

operational decisions, numerical results show that the proposed optimization problems can

be efficiently solved by the developed algorithm. The proposed decision-making method-

ologies can also be extended to other industries, and thus, this dissertation study would be

a good starting point to study demand-side management in energy system operations.
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1. INTRODUCTION

In recent years, many industries have witnessed a tremendous increase in energy con-

sumption that has resulted in enormous expenses as well as carbon pollution. For this rea-

son, energy-intensive industries, such as data centers, are striving to reduce energy cost and

to have a positive impact on the environment. In this context at energy intensive industries,

the so-called demand-side management, which addresses how to procure energy and how

to manage system operation for minimizing energy cost, has received significant attention

and is regarded as a promising research topic in both academia and industries. While con-

sidering energy consumer’s perspective, this dissertation focuses on developing decision

making methodologies designed (i) to improve energy-efficiency based on energy-aware

system operations and (ii) to reduce energy procurement cost by utilizing renewable energy

and demand response for demand-side management. Figure 1.1 captures various aspects

of demand-side management, contrastively against supply-side management.

Although the methodologies developed in this dissertation can be extended to any in-

dustry, the first part of this dissertation comprising of Sections 2 and 3, mainly focuses on

developing models and techniques to improve energy-efficiency in data center operations.

In general, data centers have an issue of low utilization of servers to mitigate the effects

of stochastic, heterogeneous and time-varying workloads, and thus they incur unneces-

sary cost for waste of energy, which is not used for processing workloads. While there

are tremendous opportunities to conserve energy consumption in data centers, due to the

inherent uncertainty and variability in the loads, developing provably effective methods to

manage servers in data centers has been a challenge.

In Section 2, this dissertation models data centers as a system of multiple parallel

single-server queues while considering a scenario where multiple classes of requests ar-
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Figure 1.1: Demand-side management

rive at a dispatcher at time-varying rates (i.e. arrival rates are changing) and they are

routed to one of single-server queues. In addition, we consider a fairly common situation

in data centers that at all times the load from each class is very high and a large num-

ber of servers are necessary. For such a time-varying and fast-changing system, design,

control and performance analysis under such heterogeneous and transient conditions are

extremely difficult. This dissertation asks if time-stability can be attained and used to pre-

vent waste of energy and improve energy-efficiency in data center operations, and Section

2 will investigate how sizing (i.e. number of active servers), assignment and routing are

determined appropriately to ensure performance guarantees by enforcing time-stability for

a time-varying and fast-changing system.

In Section 3, based on the general setting of data center operations considered in Sec-

tion 2, this dissertation additionally considers a unique scenario that the number of applica-

tion classes are much larger than the number of servers and many application classes have

so little load that they would need to be hosted on just one server. This is fundamentally

different from the setting considered in Section 2, where a large number of servers are nec-

essary to host each application class. Also, it is assumed that servers are heterogeneous

2



with different maximum processing speeds and different capacity limits of various re-

sources, and moreover, processing speed of a server can be changed for energy efficiency.

Note that Section 2 considers homogeneous servers running at the constant processing

speed. For the aforementioned scenario and setting, Section 3 will address the follow-

ing research questions: (i) how to stabilize aggregate workload distribution processed at

each server; (ii) how to scale processing speed to achieve time-stable performance at each

server; (iii) how to formulate the optimization problem to minimize energy cost while

providing performance guarantees.

Next, the second part of this dissertation including Sections 4 and 5, addresses a

demand-side energy procurement problem which is designed to determine when and how

much energy to be purchased and consumed to minimize energy procurement cost. In

recent years, as renewable penetration level has grown, industries have an opportunity to

utilize on-site (or direct access to) renewable energy to serve their demand load to curtail

expenses for procuring energy. In addition, there exists another opportunity for indus-

tries to adjust purchase and consumption of energy in response to time-varying price in

the energy market. Traditionally, power consumers use electricity with a flat rate offered

by utility companies or energy market for their usage. However, in recent years, it is be-

coming common for the energy market to allow consumers to directly purchase electricity

while providing day-ahead and real-time price information. Therefore, industries get a

chance to purchase electricity while being fully aware of the time-varying price, and thus,

they have an opportunity to determine the amount of purchase and consumption of en-

ergy depending on electricity price and renewable generation. In this case, industries are

motivated to use energy storage to mitigate fluctuations in electricity prices and renew-

able generations. Although it is anticipated that energy consumers are able to save a huge

amount of cost by procuring energy with renewable energy and time-varying electricity

prices, variability and uncertainty in power demand, renewable generation, and electricity

3



prices make it challenging to determine optimal operational decisions.

For the aforementioned opportunities and challenges, in Section 4, this dissertation

considers a consumer of electricity with inelastic demand that is met by: (i) purchasing

from the energy market; (ii) on-site renewable generation (e.g. solar panels); and (iii)

discharging from energy storage. Furthermore, it is assumed that there are limits and

inefficiency associated with charging and discharging the energy storage. Based on the

above scenario, Section 4 will focus on how to formulate and solve a sequential decision

making problem tailored to real-time power procurement to minimize energy procurement

cost while considering time-varying and stochastic power demand, electricity price, and

renewable generation.

In Section 5, this dissertation specifically considers the operations of day-ahead and

real-time energy markets and proposed a two-stage framework of power procurement such

that: (i) the first stage determines a day-ahead purchase commitment for the forecated

power demand and renewable generation; and (ii) the second stage determines real-time

operational decisions, including purchasing electricity from real-time market, charging

and discharging energy storage to adjust mismatch. In addition, this dissertation considers

a unique opportunity, called demand-response, that is implemented to shift elastic and flex-

ible power demand to use more energy at lower price and utilize more renewable energy.

Specifically, from energy consumer’s perspective, demand response can be implemented

into the proposed two-stage power procurement so that a consumer assigns discrete time

periods in day-ahead to allow demands to be shifted during real-time operations. Based

on the above scenario, Section 5 will address the research question, such as how to for-

mulate the stochastic optimization problem tailored to the two-stage power procurement

with demand response to minimize power procurement cost in presence of variability and

uncertainty.

At the conclusion, Section 6 will finalize this dissertation by presenting summary, con-
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Figure 1.2: Organization of chapters in terms of research topics

tribution, and future research work. Figure 1.2 shows how each of the following sections

can be organized in terms of the research topic based on the big picture of this research.

Note that this manuscript consists of four published/accepted journal articles, [2], [3], [4],

and [5], and each of the journal articles corresponds to the Sections, 2, 3, 4, and 5. The

copyright and publication information will be provided on the first page of the section.

And, each section consists of individual sections including introduction, literature review,

detailed description of problem and solution approach, numerical experiments, and con-

clusion.
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2. TIME-STABLE PERFORMANCE IN PARALLEL QUEUES WITH

NON- HOMOGENEOUS AND MULTI-CLASS WORKLOADS*

2.1 Introduction

Internet applications hosted by data centers are characterized by time-varying work-

loads with significant variations and uncertainties over multiple time scales (Menasce et

al. [6]). Under such workloads it is challenging to appropriately manage resources to con-

serve energy consumption which is skyrocketing (see report [7]) while providing a reason-

able level of performance and meeting service level agreement (SLA) (Chen et al. [8]).

As explained and documented in Hamilton [9] and Koomey [10], data centers consume a

phenomenal amount of power similar to what an entire city would use, albeit inefficiently;

Barroso and Holzle [11] indicated that servers operate most of the time between 10 and

50 percent of their maximum utilization levels, and Vogels [12] reported that many of the

large analyst firms estimate that resource utilization of 15 to 20 percent is common for

operation of data centers. In addition recent studies, Abts et al. [13], Lin et al. [1], Feller

et al. [14], Gandhi et al. [15], Lee and Zomaya [16] and Wang et al. [17] also mentioned

low utilization of data centers and proposed approach for energy efficiency.

While there are tremendous opportunities to conserve energy consumption in data cen-

ters, due to the inherent uncertainty and variability in the loads, developing provably ef-

fective methods to manage resources in data centers has been a challenge. To address

this shortcoming, a number of techniques have been proposed and most of these studies

focus on developing algorithms to determine the right size of servers for non-stationary

workloads. In particular, Singh et al. [18] suggested a mix-aware dynamic provisioning

*Reprinted with permission from “Time-Stable Performance in Parallel Queues with Non-
Homogeneous and Multi-class Workloads" by Soongeol Kwon and Natarajan Gautam, 2016, IEEE/ACM
Transaction on Networking, 24(3), 1322-1335, Copyright c© 2016, IEEE.
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technique using the k-means clustering algorithm to determine workload mix, Gandhi et

al. [19] presented an approach to correctly allocate resources in data centers such that

SLA violations and energy consumption are minimized and Lin et al. [1] proposed a new

on-line algorithm for dynamic right sizing in data centers motivated by optimal offline

solution for energy cost. Also Gandhi et al. [15] studied dynamic capacity management

for multi-tier data centers, Wang et al. [17] provided an analytic framework that captures

non-stationarities and stochastic variation of workloads for dynamic re-sizing in data cen-

ters and Gallego et al. [20] introduced a unified methodology that combines virtualization,

speed scaling, and powering off servers to efficiently operate data centers while incorpo-

rating the inherent variability and uncertainty of workloads. It is worthwhile pointing out

that most of aforementioned approaches [19], [1], [15], [17] and [20] use quasi-steady

state approximations, i.e. the metrics are piecewise constant for time periods long enough

for the system to reach steady-state.

Although the challenges for right-sizing in data centers for non-stationary workloads

have received significant attention, the problem of achieving time-stability over time-

varying workloads has not been effectively addressed. Achieving time-stability is essential

for a non-homogeneous system because it enables the system to provide guaranteed qual-

ity of service. For example, one could compute the tail probability of sojourn times and

probabilistically guarantee an incoming request for an appropriate SLA. Moreover, by sta-

bilizing a non-homogeneous system, it is possible to effectively design and analyze the

system and perform monitoring and control based on time-stability. In the context of data

centers, time-stability has received little attention, although there have been some research

studies in the queueing area. Foley et al. [21] and Barnes et al. [22] showed that the

departure process from the Mt/Gt/∞ queue can be made stationary. There is another

body of literature which provides algorithms to determine appropriate staffing levels for

call centers. Feldman et al. [23] proposed a simulation-based iterative-staffing algorithm
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for time-stable delay probability, and Liu and Whitt [24] suggested a formula-based algo-

rithm to stabilize abandonment probabilities and expected delays using offered-load based

approximations for a queueing model with the non-homogeneous Poisson arrival process

and customer abandonment.

In our case, we have modeled data centers as a system of multiple parallel single-server

queues, and considered a scenario where multiple classes of requests arrive at a dispatcher

at time-varying rates that historically has daily or weekly patterns. For such a scenario, we

develop an approach to simultaneously determine sizing, assignment and routing appropri-

ately so that the resulting system performance is homogeneous over time and uncertainty

is controlled despite the fact that the parameters can vary extremely quickly, not allowing

the system to reach steady-state. Therefore, no matter how fast arrival rates vary, our ap-

proach can provide time-stable distribution of the number of requests in the system as well

as sojourn times, and this is the crucial difference between our approach and other sizing

algorithms dealing with time-varying workloads.

Objective of our study is to address needs of practitioners, such as providing perfor-

mance guarantees while being prudent about energy consumption. Our suggested ap-

proach provides an analytic framework simplifying a multi-dimensional, transient and

non-stationary problem by decomposing into individual simpler stationary ones based

on the strategies for sizing, assignment, and routing in an integrated fashion which has

seldom been implemented jointly. The main contribution of our study is providing perfor-

mance guarantees and bounds which can be simply derived based on stationary analysis

for time-varying and transient system while considering energy efficiency. The remain-

der of the paper is organized as follows: Section 2.2 describes the detailed scenario for

the problem and various options for decisions and control that we would consider; Sec-

tion 2.3 proposes a sequential procedure to determine assignment, sizing, and routing for

the suggested scenario; Section 2.4 introduces an additional insight regarding assignment
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strategies; Section 2.5 describes the notion of time-stability and introduces our approach

to obtain time-stability; Section 2.6 discusses details of time-stability including extension

and limitations; Section 2.7 illustrates the experimental results to support our claims; and

Section 2.8 presents conclusions and future research directions.

2.2 Analytical Framework

This section provides a detailed scenario for multi-class and non-homogeneous re-

quests to servers that are considered in this paper followed by a stochastic model for the

scenario. We then briefly state the asymptotic scaling where the arrival rates and number

of servers are scaled. This section concludes with a description of various options for

decisions and control such as assignment, sizing and routing.

2.2.1 Scenario and Problem Description

We have considered a system using a large number of servers with each server having

its own queue with an infinite waiting area, and the servers and their queues are arranged

in a parallel fashion with dispatcher depicted in Figure 2.1. Considering that today’s data

centers have hundreds or thousands of servers to process huge amount of traffic for cloud

computing, an architecture with multiple servers and a single queue results in significant

communication overload to update the state information of each server to dispatch requests

from queue. Therefore, multiple parallel single server queue system where dispatcher

routes incoming request to servers based on load balancing algorithm is indeed appropriate

to design data centers. This is corroborated by recent studies, Chen et al. [25], Gandhi

et al. [26] and [27] which used multiple parallel queue system to analyze data center

operations. Note that we also assume that the servers are identical, however we would like

to point out that the analysis can be extended to heterogeneous servers as well.

The servers process requests that belong to multiple classes. The requests that are part

of a class are stochastically identical with a common non-homogeneous arrival process and
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… …

Figure 2.1: System of multiple parallel single server queues

also the amount of work they bring. It is assumed that a server can host multiple classes of

requests and every class of request can be hosted on multiple servers. We have considered

a scaled system where the arrival rate for every class is so large that several servers would

need to be operational to respond to the requests of that class alone. However, the arrival

rate for every class is time-varying both deterministically and stochastically. The variabil-

ity is frequent-enough that in the general case one cannot expect the system to reach steady

state before arrival rates change. For such a multi-class, transient and non-homogeneous

system, our intent is to effectively manage resources to ensure time-stability while be-

ing mindful of energy costs. The following are issues that are considered explicitly for

time-stability:

1. Assignment: Applications corresponding to each class of request can be assigned

to servers such that each server hosts one or more classes and each class is hosted

on multiple servers. One focus is to study the impact of host-server assignment on

performance. We assume that there is no direct cost per se for the assignments as

well as no costs for switching assignments.

2. Sizing: Each server could be dynamically powered on or off. Naturally more servers

would be “on” during peak periods than during lean periods. Significant energy cost
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savings can be attained by powering servers off. However, this analysis neither con-

siders switching costs (from on to off and vice versa) nor considers reliability costs

for on-off cycles. Note that some modern servers allow for “sleep" settings instead

of completely turning off servers. From a mathematical standpoint, we consider

them equivalent.

3. Routing: There is a dispatcher that is responsible for routing arriving requests to one

of the queues that not only can serve the request but also has a server that is powered

on. A key assumption is that the dispatcher cannot observe the real-time state of any

of the servers (however the dispatcher knows whether a server is on or off, and what

classes it hosts; as we will see in the model subsequently, these do not vary in real

time).

2.2.2 Model and Notation

For the problem described in the previous sub-section, here we set the notation and de-

velop a stochastic model that would form the inputs to our analysis. We consider a system

ofN parallel queues and each queue is served by a single server that could be dynamically

powered on or off. The dispatcher is responsible for routing arriving requests to one of

the queues that not only serves the request but also has a server that is powered “on.” An

arriving request belongs to one of multiple classes in a discrete set A denoting a set of

applications. The amount of work a class a (for all a ∈ A) request brings is independent

and identically distributed (IID) according to general distribution Ha(·) with mean 1/θa

and squared coefficient of variation (SCOV) C2
a . Recall that the SCOV is the ratio of the

variance to the square of the mean. For ease of exposition, as a probability distribution

that can handle SCOV values greater than, equal to as well as less than one for analysis,

we selected a Coxian-2 distribution for workload. Essentially, a Coxian-2 distribution is

either a sum of two independent exponential distributions (with parameter θa,1 and θa,2)
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with probability pa, or just exponentially distributed (with parameter θa,1) with probability

1 − pa. We chose the units of 1/θa to be kB (kilo-Bytes) with the understanding that the

analysis would not be affected in any way by choosing other units.

Requests of each class arrive to the dispatcher according to a piecewise constant non-

homogeneous Poisson process. It is assumed that the environment process that drives

arrival rates of the non-homogeneous Poisson process is cyclic. This is a fairly reasonable

assumption as arrivals tend to have daily or weekly patterns that repeat in a cyclic fashion

(Gmach et al. [28], Lin et al. [29], Liu et al. [30] and Lin et al. [1]). Using that assumption

we modeled each cycle as divided into a set of phases T so that in each phase ` ∈ T ,

the arrival rate for every class a ∈ A remains a constant λa,` per second. Although the

intention is to convey the richness of the model (in that the analysis would work in such

a general fashion), in practice one would typically choose something like the set of all

disjointed 5-minute intervals (or hourly intervals) in a day (or a week) as the set of phases

T .

Let φ be a target operating speed of a powered on server in units of kB/s (kilo-Bytes

per second). Therefore, a class a (for some a ∈ A) arrival brings a random amount of

workload Wa kB and is routed to an idle server that is capable of serving class a requests,

then the service time (if all the processor capacity is allocated to this arrival) would be

Wa/φ seconds with mean E[Wa]/φ = 1/(θaφ) and SCOV C2
a . Note that the SCOV of

service times is unaffected by the speed of service. At this time, we assume φ remains a

constant. One easy way to accommodate heterogeneous servers is to have them all operate

at φ (since the jobs are assumed to be CPU intensive).

In addition the analysis in this paper uses an asymptotic approach. In particular, we

jointly scaled up the arrival rates and the number of servers so that together they approach
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infinity. Thus, we assume that we can write down for all a ∈ A and ` ∈ T

λa,` = Nαa,`

where αa,` is the normalized arrival rate, and study a sequence of systems by letting N =

1, 2, . . . , which is similar in spirit to the scaling in Liu et al. [24]. However, this is not

the traditional fluid or diffusion limit. All we have is that at any time there is a total

of N servers (some powered on and the rest powered off) and class a requests arrive

at rate λa,` = Nαa,`, then we scale N . The next section describes how to tackle the

aforementioned issues in a sequential manner.

2.3 Sequential Decision Procedure

As described in Section 2.2, our objective is to consider issues regarding assignment,

sizing, and routing for the suggested scenario. These decisions are made at different time-

granularities. Specifically, the assignments are made more-or-less one time, although it

is assumed that at the beginning of each phase ` ∈ T the assignments can be changed

for some servers, possibly (but not necessarily) using virtual migration. We assume that

sizing is done at the beginning of each phase ` ∈ T . In addition, there are real-time issues

such as routing which is determined at every request arrival. The decision to be made is to

determine the server to which an arriving request would be routed with conditions that (i)

the server is powered on, and (ii) the server has been assigned the class of application that

arrives.

2.3.1 Assignment

For each phase ` ∈ T we consider two alternate extreme assignments for analysis:

• all classes to all servers (pooled) assignment

• one class to one server (dedicated) assignment
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In Section 2.5 we will show that time-stability can be obtained by controlling non-

homogeneous traffic based on assignment strategies. In fact it is possible to achieve time-

stability by using dedicated assignment. Also we will introduce an additional insight about

performance comparison between dedicated assignment and pooled assignment in Section

2.4.

2.3.2 Sizing

As described earlier, the objective is to provide time-stability while being mindful of

saving energy. One of the greatest savings in energy costs results from powering servers

off (or sending them to sleep states in more modern servers). Since the workload varies

from phase to phase, we have evaluated the number of servers to be powered “on” in each

phase, and appropriately power on or off the right number of servers. It is also assumed

that there is an ample number of servers available, therefore running out of servers is out

of the question. In fact, that is a reasonable assumption considering how poorly utilized

some of the servers are, as the data centers are typically well over-provisioned. Recall

that N is the total number of servers available. Based on the two alternate assignments

described in the previous section, we have:

• pooled assignment: All applications assigned to all servers; let Nl be the number of

servers powered “on" in phase `, ∀ ` ∈ T

• dedicated assignment: Only one application assigned to one server; let Na,` class a

servers be powered on in phase `, ∀ ` ∈ T and a ∈ A.

We have considered a simple strategy of using enough servers so that the average load

on servers that are powered on remains constant over time as well as across servers (the

latter is indeed typical in load-balancing but not the former). To determine N` and Na,`,

we defined ρ as a desirable traffic intensity (ρ is dimensionless) for any server that is
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powered on during interval `. While determining the number of servers to keep the energy

consumption low, we aim to create enough residual capacity for unforeseen surges by

restricting the utilization of each server to be ρ. In addition we control non-homogeneous

traffic in a time-homogeneous fashion by implementing ρ into sizing algorithm defined as

below. We will show how ρ can be used to achieve time-stability in Section 2.5. We select

the number of “on” servers as follows:

• Dedicated assignment: Only one application assigned to one server

Na,` =

⌈
1

ρφ

λa,`
θa

⌉
(2.1)

• Pooled assignment: All applications assigned to all servers

N` =

⌈
1

ρφ

∑
a∈A

λa,`
θa

⌉
(2.2)

for all ` ∈ T and a ∈ A. Note that under asymptotic scaling N →∞,

⌈
1

ρφ

λa,`
θa

⌉
→ λa,`

ρφθa
and hence

∑
a∈A

Na,` → N`. (2.3)

In such a way, the total number of servers powered on in any phase would be iden-

tical for both pooled assignment and dedicated assignment. By determining the size of

powered-on servers based in Equation (2.1), each powered-on server is assigned a desir-

able traffic intensity ρ in either case. According to the above sizing rules, if it is necessary

to power on more servers between successive phases, we randomly select candidate servers

among the powered-off servers and power them on at the beginning of a time phase. Also,

to power off servers we randomly select the powered-on servers and power them off at

the end of a time phase. In this case if selected server is not idle, then we set state of
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server as “to be off" and do not assign any requests to those servers. We will wait until

selected servers complete service for the remaining requests and power off when those

servers become idle. Note that those requests remaining in “to be off" servers will also

have the same sojourn time distribution since under a first-come-first-served (FCFS) the

sojourn times are not affected by arrivals that come later.

2.3.3 Routing

In the sequential consideration, once the assignment of classes to servers and the num-

ber of servers to be powered “on” are made for each phase ` ∈ T , the next issue is to

determine the routing strategy for the dispatcher. We assume that the dispatcher sends

incoming requests to servers without information of real-time states of the queues in terms

of number of jobs or amount of workload. However, we assume that the dispatcher knows

the assignment of classes to servers as well as whether a server is powered on or off. In

that light two routing policies are considered:

• Round-robin routing: The dispatcher routes job to queues with powered-on servers

in a cyclical fashion. This is straightforward in the pooled assignment case, while

round-robin is done within a class for dedicated assignment.

• Bernoulli routing: The dispatcher routes jobs to queues with eligible servers in a

random fashion. In the pooled assignment case, in phase ` (for any ` ∈ T ) select

any of theN` servers with probability 1/N` and route to that server. For the dedicated

case, if the arriving job belongs to class a, then the dispatcher selects one of the Na,`

servers with equal probability.

Harchol-Balter et al. [31] showed that round-robin routing results in better perfor-

mance than Bernoulli routing. Clearly, other policies such as join the shortest queue and

join the least workload queue would perform better, but they require real-time state infor-
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mation (which is assumed inappropriate for large-scale data centers setting). It is worth-

while noting that the round-robin policy works better because the dispatcher selects the

queue which was the least recently selected (among candidate queues), and that queue

naturally is also the one with the smallest expected number of jobs and smallest expected

workload. We will continue to use both round-robin and Bernoulli policies for load bal-

ancing, although it is fairly clear that round-robin results in better performance. One of the

reasons for continuing to use the Bernoulli policy is the convenience in analytic models,

especially to obtain insights.

2.4 Additional Insight: Dedicated Is Better Than Pooling

This section describes an additional insight regarding assignment strategies based on

our analytical framework. In general, because of the benefits of pooling resources men-

tioned in the literature, the intuition is that performance would be better when we assign

as many applications as possible to a server. However, based on two alternate assign-

ments defined in Section 2.3.1 we will show that dedicated assignment would be better.

Although we have the same number of “on" servers for both dedicated assignment and

pooled assignment in each time period, the queue lengths (or the sojourn times) of overall

system would be higher when we use pooled assignment than use dedicated assignment.

Consider a single server that is always on with time-homogeneous arrivals, i.e. λa,` does

not vary with ` for all a ∈ A and i.e. λa,` = λa ∀` ∈ T . This may appear strange given

that we started the article with non-homogeneous arrivals, however subsequently we will

show that this setting is in fact what is realized in the main problem in Section 2.5.2.1.

It is also assumed that the servers are identical. Consider two cases for the assignments

mentioned above, dedicated assignment or pooled assignment. Recall that in either case,

each powered-on server faces the same traffic intensity of ρ when we determine the num-

ber of servers to be powered on according to Equation (2.1) for dedicated assignment and
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Equation (2.2) for pooled assignment.

Theorem 1. If C2
a is identical for all a ∈ A and Bernoulli routing is used, then the mean

sojourn time (and total number in the system) of pooled assignment is higher than dedi-

cated assignment in a steady state.

Proof. An arriving class a job in steady state brings a workload Wa and service time

Sa = (Wa/φ) for any a ∈ A. Since we assume that C2
a is identical for all a ∈ A, we can use

C2 as SCOV of the amount of work for all a ∈ A. Note that each server has the same traffic

intensity ρ. Based on our sizing strategies, we can calculate the total number of requests in

the whole system for each assignment strategy by using the Pollaczek-Khintchine formula

(P-K formula) (Gautam [32]) as follows:

• for the dedicated assignment, the number of servers for each application a is

Na =
1

ρ

λa
φθa

and arrival rate Λa for each server of application a is

Λa =
λa

1
ρ
λa
φθa

= ρφθa. (2.4)

Thus, the expected number of requests in each queue (server) of application a in

steady state is

L = ρ+
Λ2
a

2

(V ar[Sa] + (E[Sa])
2)

(1− ρ)
. (2.5)

Then, we have the total number of requests in the whole system for dedicated as-

signment case given by

Ldedicated=
∑
a∈A

1

ρ

λa
φθa

(
ρ+

Λ2
a

2

(V ar[Sa] + (E[Sa])
2)

(1− ρ)

)

18



=
∑
a∈A

λa
φθa

+
ρ

2

(1 + C2)

(1− ρ)

∑
a∈A

λa
φθa

. (2.6)

by substituting for (2.4), and realizing that C2 = C2
a = V ar[Wa]

1

θ2α

.

• for the pooled assignment, the total number of servers is

N =
∑
a∈A

1

ρ

λa
φθa

.

In this case, we need to use the Pollaczek-Khintchine formula for multi-class queue,

thus the number of requests in each queue (server) is

L = ρ+
1

2

Λ2E[S2]

(1− ρ)
(2.7)

where

Λ =

∑
a∈A λa∑
a∈A

1
ρ
λa
φθa

(2.8)

and

E[S2] =

∑
a∈A λaE[S2

a]∑
a∈A λa

=

∑
a∈A λa

(
V ar[Sa] + 1

φ2θ2a

)
∑

a∈A λa
.

Then, we can calculate the total number of requests in the whole system for pooled

assignment case as

Lpooled=

(
ρ+

1

2

Λ2E[S2]

(1− ρ)

)∑
a∈A

1

ρ

λa
φθa

=
∑
a∈A

λa
φθa

+
ρ

2

(1 + C2)

(1− ρ)

(∑
a∈A

λa
φ2θ2a∑

a∈A
λa
φθa

)∑
a∈A

λa.

(2.9)

by substituting for (2.8), and realizing that C2 = C2
a = V ar[Wa]

1

θ2α

.
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Based on Equation (2.6) and (2.9), Ldedicated ≤ Lpooled if

(∑
a∈A

λa
φθa

)2

≤

(∑
a∈A

λa
(φθa)2

)∑
a∈A

λa. (2.10)

We can represent left-hand side of Equation (2.10) as

(∑
a∈A

λa
φθa

)2

=
∑
i∈A

∑
j∈A

λiλj
1

φθi

1

φθj
. (2.11)

Likewise the right-hand side of Equation (2.10) as

(∑
a∈A

λa
(φθa)2

)∑
a∈A

λa =
∑
i∈A

∑
j∈A

λiλj
1

(φθi)2
. (2.12)

Now, using the fact that

∑
i∈A

∑
j∈A

λiλj

(
1

φθi
− 1

φθj

)2

≥ 0

we can show Equation (2.10) is true as since

2
∑
i∈A

∑
j∈A

λiλj
1

φθi

1

φθj
≤ 2

∑
i∈A

∑
j∈A

λiλj
1

(φθi)2
. (2.13)

Finally, by using Little’s Law (Gautam [32]), the sojourn times of dedicated assignment

case is better than the pooled case.

From Theorem 1, we can conclude that the dedicated assignment appears to be more

effective than the pooled assignment for the total number of requests as well as the mean

sojourn time.
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Remark 1. Based on Theorem 1, we make the following comments: (i) even if we assign

a subset of applications to each server (not pooling all classes), it would still be worse

than having a dedicated server for each application; (ii) we conjecture that if the C2 were

different for the applications, the result would still remain (we will verify this conjecture in

the numerical studies in Section 2.7.2.1); (iii) we require the arrival rates to be homoge-

neous across time for each application, and it turns out, as shown in the next section, that

this requirement would be satisfied as we will create time-stationary queues as described

in Section 2.5.

2.5 Time-Stability

As we previously mentioned, the main objective is to suggest an approach which pro-

vides performance bounds and guarantees based on time-stability for the non-homogeneous

and transient system. In this section, we describe our notion of time-stability and the ap-

proach to obtain time-stability based on the suggested analytical framework.

2.5.1 Notion of Time-Stability

As we described in Section 2.2.1, we consider a system of N parallel queues with a

single dispatcher. Each queue has a single server that may be on or off at time t. For all

n ∈ {1, . . . , N}, at time t let Xn(t) be the number of jobs in queue n and On(t) be the

status of the server (withOn(t) = 1 denoting ‘on’ andOn(t) = 0 denoting ‘off’). Let λa(t)

be the arrival rate of class a jobs at the dispatcher at time t. We assume that we can divide

time into arbitrarily small intervals (of appropriate time units) such that λa(t) = λa([t]),

i.e. the arrival rate stays constant in the interval [t, t+ 1) for all t (the notation [t] denotes

the integer part of t). Let Wa(t) be the sojourn times experienced by a class a job that

arrives into the dispatcher at time t.

As described in Section 2.3, we seek to obtain a policy for deciding (i)
∑

nOn([t]),

the total number of servers that would be ‘on’ in interval [t, t + 1) for all t (sizing); (ii)
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the allocation scheme of applications to servers (assignment); (iii) the policy for routing

requests from despatcher to server queues (routing). Based on this, our key objective is

to ensure time-stability of both queue lengths for powered-on servers as well as sojourn

times for a class of application. In other words, for all t ∈ [0,∞), s ∈ [0,∞), and

i ∈ {0, 1, 2, . . .},

P{Xn(t) = i|On(t) = 1} = πa(i)

P{Wa(t) ≤ s} = Ψa(s)

where πa(i) and Ψa(s) are computable constants that are not dependent on t. That is the

sense of time-stability we aim to achieve. In the following sections we will show that we

can achieve the aforementioned time-stability via (i) dedicated assignment of applications

to servers, (ii) sizing rule for dedicated assignment in Equation (2.1), (iii) either Bernoulli

routing or round-robin routing, (iv) dummy requests, and (v) adjusting the remaining work

for the head-of-line job. In fact, if we use round-robin (or Bernoulli) routing, then πa(i)

is the stationary probability that a D/G/1 (or M/G/1) queue has i jobs in the system and

Ψa(s) is the CDF of sojourn times of an arbitrary job of the corresponding queue.

2.5.2 Approach to Obtain Time-Stability

In the previous section, we introduce the notion of time-stability considered in this

study. Based on our notion of time stability, in this section we suggest an approach to

obtain time-stability which consists of two main procedures. First we decompose non-

homogeneous, multiple, parallel single-server queue system into individual simple time-

homogeneous queues, and then we add “dummies" to ensure the steady state of each class

a server while powering servers on and off. We describe details of the procedure in the

following subsections.
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2.5.2.1 Non-Homogeneous Traffic Control

As described in Section 2.3.3, we consider two routing strategies, round-robin and

Bernoulli, and the following theorem characterizes the arrival process for both round-robin

and Bernoulli routing based on pooled assignment.

Theorem 2. For the pooled assignment strategy, each server that is powered on during

phase ` gets arrivals deterministically (exponentially) at rate

∑
a∈A λa,`

1
ρ

∑
a∈A

λa,`
φθa

for all ` ∈ T and a ∈ A, under Round-robin (Bernoulli) routing, as N → ∞. And the

expected workload (in KB/s) that each request brings (by conditioning on the class) is

∑
a∈A

(
λa,`∑
b∈A λb,`

)
1

θa
.

Proof. The net arrival rate to the dispatcher in phase ` is
∑

a∈A λa,`. Thus the time between

request arrival at the dispatcher in phase ` is exponentially distributed with parameter∑
a∈A λa,`. Then, due to round-robin routing, each server that is powered on in phase `

observes inter-arrival time which is the sum of N` IID exponentially distributed times with

parameter
∑

a∈A λa,`. Thus, the inter-arrival times to a powered on server is according to

an Erlang distribution with mean N`/
∑

a∈A λa,` and variance N`/
(∑

a∈A λa,`
)2. In the

limit as N → ∞, using the expression for N` in Equation (2.2), the mean term converges

to ∑
a∈A

1
ρφ

λa,`
θa∑

a∈A λa,`

while the variance term converges to zero. Thus the time between arrivals become deter-

ministic in the limit as N → ∞ and each server that is on during phase ` gets arrivals
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deterministically at rate ∑
a∈A λa,`∑

a∈A
1
ρφ

λa,`
θa

.

Now, we can compute the expected workload (in KB) that each request brings (by condi-

tioning on the class) as ∑
a∈A

(
λa,`∑
b∈A λb,`

)
1

θa

and thus by multiplying by the expected arrival rate the expected workload arrival is ρφ

KB/s. Now, if round-robin routing is replaced with Bernoulli routing, then the only change

in the theorem would be to replace both occurrences of the word “deterministically” with

“exponentially distributed.” This is because after a Bernoulli split, the resulting processes

are Poisson processes with identical rates as the deterministic arrivals (however, note that

we do not require the N → ∞ for this case). Otherwise, everything else remains the

same.

Theorem 2 concludes that for either routing case, round-robin or Bernoulli, pooling all

applications in one server (pooled assignment) would result in a non-homogeneous system

without time-stability because each server has time-varying arrival rates for ` ∈ T under

both routing strategies. However, the next theorem shows that time-stability can possibly

be obtained with dedicated assignment strategy.

Theorem 3. For the dedicated assignment strategy, each server of application a that is

powered on at any time gets arrivals deterministically (exponentially) at rate ρφθa under

round-robin (Bernoulli) routing strategies and each arrival brings work according to CDF

Ha(·) as N → ∞. Also, each powered “on" class a server faces an expected workload

ρθa KB/s at all times.

Proof. During phase `, requests of class a arrive according to a Poisson process with

mean rate λa,`. First consider round-robin routing. For the dedicated assignment, each

24



server hosting class a and is powered on in phase ` observes inter-arrival time which is the

sum of Na,` IID exponentially distributed times with parameter λa,` since for each class

a the dispatcher performs a round-robin of the servers within the class. Thus the inter-

arrival times to a class-a powered-on server is according to an Erlang distribution with

mean Na,`/λa,` and variance Na,`/λ
2
a,`. In the limit as N → ∞, Na,` → ∞ the mean

term converges to 1/(ρθa) by substituting for Na,` from Equation (2.1), while the variance

converges to zero. Thus, the time between arrivals becomes deterministic in the limit as

N →∞ and each class-a server that is on during phase ` gets arrivals deterministically at

rate ρφθa. The expected workload (in KB) that each request brings (by conditioning on the

class) to a class-a server is 1/θa, and thus the expected workload arrival rate is ρφ KB/s.

With Bernoulli routing instead of round-robin, the resulting split processes going into each

powered-on server are Poisson process, and each server gets arrivals exponentially at rate

ρφθa.

Based on Theorem 3, when only one application is assigned to a server (dedicated

assignment), each server of application a that is powered on at any time phase gets homo-

geneous arrival process and also each arrival brings work according to CDF Ha(·). These

will form the building blocks for creating time-stable queue length processes in powered-

on servers. The next section describes how to obtain time-stability with powering on and

off schemes.

2.5.2.2 Time-Stability by Adding Dummy Requests

The previous section showed that each individual server of application a gets time-

homogeneous arrival process and workload distribution with dedicated assignment. How-

ever, our concern is whether powering servers on would cause problems for achieving

time-stable performance. It is intuitive to think that stationarity would be affected during

times when servers are powered on and off, i.e. between phases. In other words, homo-
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geneous arrival process and workload distribution are not sufficient to achieve time-stable

performance since the initial conditions in an interval are different when powering servers

on. This is especially the case when time intervals are short and steady-state is not reached,

then the initial conditions become significant.

To address this problem of initial conditions, we introduce dummy requests to adjust

the initial number of requests in a queue of a newly powered-on servers. In order to en-

sure the steady-state of each class a server that is powered on afresh at the beginning of

an interval, we generated dummy requests sampled from the stationary distribution of a

D/G/1 queue for round-robin routing or an M/G/1 queue for Bernoulli routing. For

M/G/1 queue case under a FCFS (note that the formulas have to be tweaked appropri-

ately for other polices such as versions of processor sharing), we can use the probability

generating function of the stationary queue length distribution (Gautam [32]) for class a

server,

πa(i) =
(1− ρ)(1− i)G̃(λa − λai)

G̃(λa − λai)− i
(2.14)

where λa = ρφθa and G̃(s) =
∫∞

0
e−sxdG(x), the Laplace-Stieltjes transform (LST) of

the service time distribution G(·). Note that service time would be X/φ seconds with a

random amount of workload X kB and processing speed φ kB/s, and we have G(y) =

P [Y ≤ y] = P [X
φ
≤ y] = P [X ≤ φy] = H(φy) where H(·) is cumulative distribution

function for workload. From Equation (2.14), we derive moment-generating function of

the stationary queue length distribution for class a server defined by workload distribution

H(·),

πa(i) =
(1− ρ)(1− i)H̃(θaρ− θaρi)

H̃(θaρ− θaρi)− i
(2.15)

where H̃(s) =
∫∞

0
e−sxdH(x), the LST of workload distribution. Now, we can initially

populate the number of requests in queue by sampling from the distribution in Equation

(2.15). For D/G/1 queue case, we do not have an exact formula for the stationary queue
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length distribution, but instead, we can simulate a single D/G/1 queue offline and obtain

the distribution numerically. Note that such a simulation is extremely inexpensive and

straightforward.

In addition since the objective is to create a time-homogeneous system, at any given

time the system characteristics must be stationary. In particular, at times when a server

is powered on, not only the number of dummy requests be according to the stationary

distribution but the amount of work completed for the request at the head of the line (if any)

must also be stationary. Using results from renewal theory, we know that the remaining

work for the job at the head of the line is according to its stationary excess distribution

(Gautam [32]). Stationary excess distribution Fe(t) associated with CDF F (t) in terms of

the mean τ = −F̃ ′(0) such that

Fe(t) =
1

τ

∫ t

0

[1− F (u)]du. (2.16)

We now illustrate the stationary excess distribution and its computation for the Coxian-2

random variable that will be used in Section 2.7. It results in the following theorem for the

stationary excess distribution of Coxian-2 distribution.

Theorem 4. The stationary excess distribution of Coxian-2 distribution is also Coxian-2

distribution albeit with different parameters.

Idea of proof: By using the LST we can easily show that CDF of Coxian-2 distribu-

tion can be represented as a linear combination of two CDFs of exponential distribution.

Moreover, stationary excess distribution of Coxian-2 distribution can be defined as a linear

combination of two CDFs of exponential distribution which means that stationary excess

distribution is also Coxian-2 distribution.

Next, we introduce dummy traffic to adjust the arrival rate to each powered-on server

under dedicated assignment. Recall that we determined the number of class a servers
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powered on in phase `, Na,` using Equation (2.1) as described in Section 2.3.2,

Na,` =

⌈
1

ρφ

λa,`
θa

⌉

to ensure that each powered-on server gets a desirable traffic intensity ρ in any time phase

for both pooled assignment and dedicated assignment. In case N is finite, we need to

adjust λa,` by adding dummy traffic for class a so that the net arrival rate in phase ` is

Na,`ρφθa. Adding dummy traffic can ensure a homogeneous arrival process for each class

with dedicated assignment. In this case the amount of additional dummy traffic would be

(⌈
1

ρφ

λa,`
θa

⌉
− 1

ρφ

λa,`
θa

)
ρφθa ≤ 1× ρφθa.

Note that the maximum amount of additional traffic into each powered on class a server

would be less than ρφθa/
⌈

1
ρφ

λa,`
θa

⌉
and if total number of N is large (which is fairly com-

mon in data centers), then the amount of additional traffic would be insignificant. We will

compare actual arrivals with adjusted arrivals in Section 2.7.2.6). Now, based on the results

from previous sections and strategy for dummies, we can arrive at the following theorem

which shows that time-stable performance can be achieved by the suggested approach.

Theorem 5. The number of requests in any powered on server processing class a requests

at any time in an interval would be stationary according to the stationary distribution

of an D/G/1 or M/G/1 queue depending on round-robin or Bernoulli routing, thereby

resulting in a time-stable performance.

Proof. We need to show that initial conditions of class a servers, especially those pow-

ered on afresh, in an every time interval ` are according to stationary queues with dummy

requests. Considering an arbitrary class a and an arbitrary interval of time `. For conve-

nience, we let the beginning of this interval be time t = 0 and select an arbitrary class a
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server that is powered on afresh at time t = 0, i.e. powered on in interval ` but powered-off

in the previous interval. Clearly, by adding “dummy" jobs as described above, the number

of jobs in the server as well as the amount workload at time t = 0 are according to those of

a stationary D/G/1 (M/G/1) queue under round-robin (Bernoulli) routing. Also, since

the arrival process and the amount of work an arrival brings remain unchanged throughout

the time the server is on (even if it is over multiple intervals) with dedicated assignment

as described in Section 2.5.2.1, the workload process is Markovian for Bernoulli routing

and delayed semi-Markovian for Round-robin routing, due to stationarity and ergodicity

properties which would result in time-stable performance. Thus the number in the system

or the workload observed at any time t during the server’s on-time sojourn would remain

stationary regardless of powering servers on and off (note that this includes time intervals

beyond `).

In Section 2.6.1, we will show that time-stability of the number of requests in system

could be extended to time-stability of sojourn times in a straightforward fashion.

2.5.2.3 Step-by-Step Procedure

The following is a procedure to achieve time-stability:

Step 1. Off-line Phase

Step 1.1. By using dedicated assignment, determine the number of servers for

each class a and for each time period Na,` by using Equation (2.1).

Step 1.2. Obtain the queue length distribution πa(i) for M/G/1 queue ana-

lytically or D/G/1 queue via simulation to sample from for initial number of

dummy requests for initial condition.

Step 1.3. Add dummy traffic so that arrival rate for class a for time ` is

Na,`ρφθa.
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Step 2. On-line Phase

Step 2.1. At the beginning (or end) of each time period, compute the differ-

ence in the number of servers between consecutive time periods based on the

number of servers computed in [Step 1.1].

Step 2.2. If Na,` < Na,`+1, then

Step 2.2.1. SelectNa,`+1−Na,` servers to be powered on randomly among

the “off" servers.

Step 2.2.2. Add dummy requests to each newly powered on server by

sampling the number of dummy requests from the queue length distribu-

tion πa(i) derived in [Step 1.3].

Step 2.2.3. Adjust the amount of remaining work of the very first dummy

request of each newly powered on server based on the stationary excess

distribution.

Step 2.3. If Na,` > Na,`+1, then

Step 2.3.1. SelectNa,`−Na,`+1 servers randomly among the “on" servers.

Step 2.3.2. If selected server is idle, then just power off selected server.

Step 2.3.3. Otherwise, set status of server as “to be off" and do not route

incoming requests to that server, then power off when server completes

service of the last remaining request.

2.5.3 Performance Bounds and Guarantees

As we described in the previous Section 2.5.2.2, dummies are used to (i) adjust the

initial number of requests in a queue of newly powered-on servers and (ii) adjust the class

dependent arrival rate to each powered-on server. Although adding dummies is crucial to
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obtain time-stability, it also degrades performance and thus practitioners may have con-

cerns about this issue. In this situation if the practitioners choose not to add dummy

requests, then time-stability predictions would be an upper bound on actual performance.

In other words, the mean queue length would be time-varying without using dummies,

but strictly bounded by time-stable performance which can be obtained by adding dum-

mies. From both theoretical and practical points of view, such performance bounds are

extremely useful since bounds are provable and derived by stationary analysis of queueing

model (e.g. P-K formula) for non-homogeneous and transient system. Note that it is dif-

ficult to yield time-stable performance or obtain the provable bounds on performance of

time-varying system especially when steady-state cannot be reached.

Remark 2. Time-stable and provable performance bounds cannot be obtained by simply

assuming stationarity without adding dummies. To explain this, let S1 be an original

system which determines Na,` by using (2.1), but does not add both types of dummies. In

fact in S1, arrival rates of class a requests into each powered-on server j, λa,j,` which

can be defined as λa,j,` =
λa,`
Na,`

where
∑

j∈N λa,j,` = λa,`, would be time-varying across

time intervals. In other words, λa,j,` 6= ρφθa for all ` ∈ T , since λa,j,` = λa,`/Na,` but

Na,` =
⌈

1
ρφ

λa,`
θa

⌉
6= 1

ρφ

λa,`
θa

. In this case, we can use standard PK formula for M/G/1

queue model by assuming stationarity to compute the mean queue length. Mean queue

length of class a server in time interval `, La,` can be computed as,

La,` =
λa,j,`
φθa

+
1

2

(
λa,j,`
φθa

)2
(

1 + C2
a

1− λa,j,`
φθa

)
.

Based on above equation, our claim is that we cannot obtain time-stable upper bound

on the mean queue length and thus La,1 6= La,2 6= · · · 6= La,T 6= L̄a where L̄a is an

upper bound on the mean queue length obtained by our suggested approach, since arrival

rates λa,j,` are different across time intervals without adding dummy traffic as described in
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Section 2.5.2.2. In this case, Lmax
a = max{La,1, La,2, . . . , La,T} would be an upper bound,

however L̄a ≤ Lmax
a . In other words, assuming steady-state itself is not enough to obtain

time-stable and provable upper bound L̄a, and our suggested approach provides essential

conditions to obtain an upper bound L̄a which is provable and can be applied to transient

system without assuming steady state assumption (which is impossible for real system).

Although time-stable performance bounds provided by our suggested approach are

useful, it is important to analyze the gap between time-varying actual performance with

performance bounds. First of all, it is reasonable to expect that the gap between bounds

and actual performance would be bigger when arrival rates are increasing more drasti-

cally since the actual performance is highly dependent with the increment of the number

of servers. In other words, since every newly powered-on server starts serving incoming

requests with empty queue, the mean queue length would be decreasing when the number

of server is increasing. In addition the gap between bounds and actual performance is

highly dependent with variance of workloads and also system utilization based on analysis

of queueing model (e.g. P-K formula (2.5) and (2.7) used in Section 2.4). Consider-

ing that providing performance bounds and guarantees based on time-stability opposed

to time-varying and transient system has not been addressed before our study, we believe

that our study has both theoretical and practical contributions. In Section 2.7.2.3 we will

introduce simulation results to compare the time-varying actual performance with time-

stable bounds and analyze the gap for the different SCOV of workload distribution and the

desired traffic intensity ρ.

2.6 Discussion on Time-Stability

In this section we discuss details of time-stability obtained by our suggested approach

in terms of its extension and limitations.
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2.6.1 Extension to Sojourn Times

As introduced in Section 2.5.1, our suggested approach stabilizes queue length dis-

tribution. Then we consider sojourn times as users of data center need to get Quality

of Service (QoS) guarantees in terms of sojourn times. In fact, when the distribution of

the queue lengths is stabilized, performance analysis of system is very straightforward in

terms of sojourn times. Since the distribution of number of jobs in each powered-on class

a server is time-stable, the amount of work brought by jobs is time-invariant, and service

speed is constant for each server, the sojourn time distribution would also be time-stable.

Therefore based on queue length distribution, we can derive time-stable sojourn time dis-

tribution which enables us to provide probabilistic guarantees of the response times for

incoming requests. In other words, under a FCFS regime, distribution of sojourn time of

class a at time t, Wa(t), can be defined as Ψa(w) = P [Wa(t) ≤ w] (which is not de-

pendent on time t). Providing probabilistic guarantees on sojourn times (as well as queue

lengths) based on time-stability has significant benefits since for transient system with

time-varying and non-stationary load, it is extremely difficult to provide guaranteed SLA

without assumption for steady-state. For example, our approach is able to provide a bound

τ on average sojourn time such that E[Wa(t)] ≤ τ , or tail probability of response time for

bound τ such that P [Wa(t) ≤ τ ] ≥ 1 − ε which would remain unchanged across time.

Without assuming that system reaches steady-state in each time interval, the only way

to provide guarantees is running a large number of servers which causes a much higher

energy consumption. In this context, achieving time-stability and providing performance

bounds and guarantees based on dummies is the key benefit of our suggested approach.

As described in Section 2.5.2.1, under suggested framework we can decompose our

system into simpler homogeneous queues, D/G/1 queue for round-robin routing and

M/G/1 queue for Bernoulli routing. In this case, for the M/G/1 queue we have the
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LST of the sojourn time distribution Ψ̃a(s) for class a request as (Gautam [32]),

Ψ̃a(s) =
(1− ρ)sG̃(s)

s− λa(1− G̃(s))
(2.17)

where λa = ρφθa and G̃(s) =
∫∞

0
e−sxdG(x), the LST of service time distribution. Al-

though we do not have a specific formula for the sojourn time distribution ofD/G/1 queue

case, we can derive the sojourn time distribution from simulation with D/G/1 queue set-

ting. Note that it is not easy to derive continuous sojourn time distribution, thus we can

derive it based on queue length distribution, πa(i) itself. Indeed, we can apply derived

sojourn time distribution to each server under round-robin routing in time-stable man-

ner. Based on our analysis, we can also obtain time-stable performance bound on sojourn

times as well as queue lengths. In Section 2.7.2.2 we will introduce simulation results

which show that the mean and standard deviation of sojourn times are stabilized with our

suggested approach.

2.6.2 Time Interval Length

In order to model time-varying arrivals of requests, we assume that requests arrive

according to a piecewise constant non-homogeneous Poisson process where arrival rates

of requests of application classes stay constant in each time interval. In this situation, we

need to carefully think about the effect of time interval length in terms of whether our

suggested approach would be robust to time interval length. In other words, we need to

check whether distribution of queue lengths or sojourn times would be time-stable with

small time interval length when arrival rates change very fast. In this context, we would

like to note that our suggested approach would perform well when time interval length

too small to reach steady-state within each time interval and has a sense of the robustness

to time interval length. Note that for implementation it is reasonable to assume that the

service times and inter arrival times of requests are much smaller than time interval length
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since the case where the service times are longer than time interval length is unlikely in

practice for data centers. In Section 2.7.2.4, we will compare the simulation results with

different time interval lengths to show robustness of our approach.

2.6.3 System Size (Total Number of Servers)

In this study, we consider a fairly common situation in data centers where the traffic

of requests is very high and a large number of servers are necessary, and thus we use the

asymptotic scaling where both the arrival rates and number of servers are scaled with size

N . In fact, our suggested approach itself has limitation with small size N , since for round-

robin routing arrival rate into each powered-on server would not be time-homogeneous if

sizeN is small as shown in proof of Theorem 3. Therefore queue length distribution is also

non-homogeneous with small size N . Note that for the case of using Bernoulli routing,

arrival rate into each powered-on server would be time-stable regardless of size N . In

Section 2.7.2.5 we will compare simulation results with small size N for both round-robin

and Bernoulli routing cases to check the limitation of our approach.

2.7 Numerical Evaluation

In this section we describe the simulation settings and then analyze the results of sim-

ulation experiments to evaluate our approach. We verify our additional insight for assign-

ments and show that our suggested approach provides time-stability in both queue length

distributions and sojourn time distributions based on simulation results. Also we analyze

performance bounds and effects of both time interval length and system size N to time-

stability.

2.7.1 Simulation Experiments

We developed a simulation on a Java platform with N = 1000 possible servers using

two sets of input data for the arrival rates and two sets for the workloads. The input
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Figure 2.2: Normalized arrival rate αa,` for the 5 classes for 1 cycle of 24 equal-length
phases

data will be discussed in the latter part of this section. We used 5 classes of requests,

hence A = {1, 2, 3, 4, 5} and 24 equally spaced time intervals (time interval length is 60

minutes), hence T = {1, 2, ..., 24}. We assume that the request inter-arrival times are

much shorter than the time intervals and it is crucial to note that although for the analysis

we do not require the intervals be equally spaced, it is that way to avoid a cumbersome

presentation.

Next we describe the 5 classes’ workload characteristics. Note that we used Coxian-2

distribution for the workload described in Section 2.2.2. We define two sets of amount of

work data, both having the same mean amount of work 1/θa for all a ∈ A as 20, 15.2381,

25, 17.619, 21 seconds. These two sets have different conditions for SCOV, one has the

same value of SCOV, 0.7, for all a ∈ A and the other has SCOV of the amount of work

for classes 1, 2, 3, 4 and 5 as 1, 0.8887, 2.2, 1.335, and 0.9501 respectively. Since we used

different SCOV for amount of work (but the mean amount of work is the same), we needed

to define the parameters of the Coxian-2 distribution, θ1, θ2 and p, differently for each set

of amount of work. For the same SCOV case, we used probability p as 0.9375, 0.6099,

0.8, 0.9591 and 0.8748 for classes 1, 2, 3, 4 and 5 respectively. Also, for the different
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SCOV case, we have probability p as 0.9, 0.95, 0.05, 0.1 and 0.55 for classes 1, 2, 3, 4

and 5 respectively. The θ1 and θ2 values can be obtained using the fact that the mean and

SCOV of the Coxian-2 distribution are 1
θ1

+ p
θ2

and
1

θ21
+ 2p−p2

θ22
1

θ21
+ p2

θ22
+ 2p
θ1θ2

respectively. Note that we

considered only one processing speed, φ = 0.52.

Also, we used two data sets for arrival rates, pattern A and B for performance analysis.

Graphs of the arrival rates αa,` for two arrival rate patterns are provided in Figures 2.2a

and 2.2b respectively. In pattern A notice that arrival rate of some classes are correlated

with others over time and the peak times are not necessarily the same. Our intention was to

select a representative sample to illustrate both heterogeniety as well as issues such as cor-

relation. Also, in pattern B, we defined arrival rate as sinusoidal function for t ∈ T . The

sinusoidal form of the arrival rate is clearly a mathematical abstraction which has the es-

sential property of producing significant fluctuations over time (Liu and Whitt [24]). This

particular arrival rate pattern is by no means critical for our approach; our approach applied

to an arbitrary arrival rate but it is convenient to show how it achieved time-stable perfor-

mance with time-varying arrival rates. The number of powered-on servers Na,` would be

determined proportional to the arrival rate by our sizing rule in Equation (2.1) in Section

2.3.2. In all our simulations we only considered FCFS because implementing a proces-

sor sharing scheme with a large number of servers is extremely cumbersome with long

run times. However, it is important to note that the time-stable results would be valid for

any work-conserving policy such as processor sharing, limited processor sharing, etc. To

enable a meaningful set of simulations in a reasonable time, we have only presented the

FCFS case.

2.7.2 Results and Findings

For the purpose of performance analysis, we define baseline condition which consists

of the dedicated assignment, sizing as described in Section 2.3.2 and round-robin routing
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(a) Pattern A - same SCOV
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(b) Pattern A - different SCOV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Av
er

ag
e 

to
ta

l n
um

be
r i

n 
sy

st
em

Time Intervals

Dedicated

Pooled

(c) Pattern B - same SCOV
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(d) Pattern B - different SCOV

Figure 2.3: Comparing average total number in system across all classes over 1 cycle:
dedicated vs pooled

with traffic intensity ρ = 0.9. We will evaluate our approach by using baseline condition

in following sections.

2.7.2.1 Performance Comparison Between Assignment Strategies

First, we compare the performance of assignment strategies to verify our insight de-

scribed in Section 2.4. As described in Theorem 1, we use Bernoulli routing for the ded-

icated assignment and pooled assignment. Note that the total number of servers powered

on at any time period is the same for both assignment strategies, we can make a fair com-

parison between assignment strategies. Since, as described in Section 2.5.2.1, the pooled
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assignment results in a non-homogeneous system, it would not be possible to use “dummy"

requests for pooled assignment cases. Therefore, we compare the dedicated assignment

case without using “dummy" requests. We compare the average total number of requests

in the system by plotting it across time (also averaged across all classes) with constant

SCOV in Figure 2.3a for arrival rate pattern A and in Figure 2.3c for pattern B. From the

results, we can verify that dedicated assignment is better than pooled assignment. More-

over, we try to compare assignments with different SCOV defined in the Section 2.7.1 to

check our conjecture that our insight can be extended to more general cases where SCOV

is not constant and each class has a different SCOV value. Figures 2.3b and 2.3d show that

dedicated assignment is also better than pooled assignment with a different SCOV value

for each arrival rate pattern. Since cases with different SCOV values are regarded as more

general, we will consider only different (and high) SCOV for further analysis.

2.7.2.2 Analysis of Time-Stability

Next we analyze the time-stability of our suggested approach. As described in Section

2.5, our approach stabilizes the distributions of the queue lengths as well as the sojourn

times (see Section 2.6.1). Based on both time-stable distributions, first we show that the

mean and standard deviation of queue lengths for 5 classes are time-stable for round-

robin (baseline) in Figure 2.4. Note that both round-robin and Bernoulli routing result in

time-stable performance as mentioned in Section 2.5.2.1, but round-robin routing indeed

results in better performance than Bernoulli routing as described in Section 2.3.3. For this

reason we analyze time-stable performance of baseline (which use round-robin routing)

for further analysis. Also based on Figures 2.4 and 2.5, it is worthwhile to indicate that

our time-stable performance does not depend on arrival rate patterns which verifies the

discussion in Section 2.5.2.1. In addition we check that distribution of sojourn times is

also stabilized described in Section 2.6.1. As we indicated, Figure 2.5 show that the mean
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(b) Mean for pattern B
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(c) Stdev for pattern A
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(d) Stdev for pattern B

Figure 2.4: Mean and standard deviation of queue length for the 5 classes across a cycle
with round-robin routing

and standard deviation of sojourn times for 5 classes are time-stable.

2.7.2.3 Bounded Performance

In Section 2.5.3 we mentioned that our time-stable performance measures would be

an upper bound on actual performance without using dummies. Figure 2.6 compares the

actual time-varying performance obtained our approach without dummies as opposed to

time-stable performance bound. As we already mentioned, if dummies are not used then

the mean queue lengths are time-varying across time intervals (due to empty queue of

newly powered-on servers), but they are strictly bounded by the time-stable mean queue
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(d) Stdev for pattern B

Figure 2.5: Mean and standard deviation of sojourn times for the 5 classes across a cycle
with round-robin routing

lengths obtained by adding dummies. In addition, we have claimed that the gap between

actual performance and bound would be affected by both variance of workload (i.e. SCOV

of workload distribution) and utilization (which can be controlled by the desired traffic

intensity ρ in our approach), but it is not dependent on the time interval length. Figure 2.7

compares the differences between actual performance and bound for application class 3

(which shows the largest variation without dummies) according to the different conditions

of SCOV, utilization and time interval length. As we expected, the performance gap would

be bigger with bigger SCOV and higher utilization, but the same with smaller time interval

length. Although the performance gap seems to be large for bigger SCOV of workload
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(b) Without dummies

Figure 2.6: Performance of the mean queue length for the 5 classes across 24 60-minutes
time intervals

distribution and higher utilization, considering that it is also difficult to analyze dynamics

of time-varying and transient system for both cases, we believe that our suggest approach

still provide significant benefits based on time-stability.

2.7.2.4 The Effect of Time Interval Length

As we discussed in Section 2.6.2, in order to check whether our suggested approach

performs well for the case with smaller time interval length, we run simulation for 288

5-minutes time intervals by decomposing 24 60-minutes interval into smaller ones with

the same daily pattern. Recall that we used data set which has the mean service times of 5

classes as 38.46, 29.034, 48.0769, 33.8826, and 40.3846 seconds, and thus we believe that

5 minutes time intervals are appropriate to check the case of smaller time interval length.

Figure 2.8 shows the bound and actual performance of the mean queue lengths for 288

5-minutes time intervals, and based on the comparison with Figure 2.6 we can conclude

that time-stability obtained by our suggested approach is robust to time interval length.
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(a) 60-minutes, SCOV=2.2, ρ = 0.9
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(d) ρ = 0.95

Figure 2.7: Analysis of the gap between bound and actual performance of class 3 for
different conditions

2.7.2.5 The Effect of System Size

As we mentioned in Section 2.6.3, our suggested approach has a limitation that perfor-

mance would not be stabilized with smaller sizeN for round-robin routing. To analyze the

limitation of our suggested approach, we have run simulation by scaling with sizeN = 100

instead of N = 1000, summarized the results as shown in Figure 2.9. As shown in Figure

2.9, performance by using Bernoulli routing is stabilized with smaller size N = 100 (but

as we mentioned performance is wore than round-robin), however round-robin does not

yield time-stable performance for the case of size N = 100.
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(b) Without dummies

Figure 2.8: Bounds and actual performance of the mean queue length for the 5 classes
across 288 5-minutes time intervals
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(a) Round-robin with N = 100
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(b) Bernoulli with N = 100

Figure 2.9: Bounds on the mean queue length with N = 100 for both routing policies:
Round-robin and Bernoulli

2.7.2.6 Dummy Traffic Analysis

In Section 2.5.2.2, we claimed that the amount of dummy traffic to adjust arrival rates

of each application a is insignificant. We show percentile gap between the actual arrival

rates and adjusted arrival rates in Table 2.1, and the additional dummy traffic is reasonably

negligible to the actual arrivals.
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Time Class Indices
Intervals class 1 class 2 class 3 class 4 class 5

1 0.6200 0.3275 0.4073 1.6294 0.2857
2 0.2857 0.9125 1.0880 1.1895 0.1143
3 1.4000 0.7370 1.0880 0.6569 0.6984
4 0.5333 0.3275 0.3392 1.6294 0.0755
5 1.0880 0.1000 1.6229 0.3462 0.5042
6 1.7391 1.0540 0.1520 1.9990 0.8163
7 2.1091 1.0100 1.0880 0.5058 0.8722
8 0.4488 1.4226 0.3392 0.7533 1.6229
9 0.4073 0.4062 0.4073 0.5570 0.2857
10 0.7390 0.4250 0.5531 0.0717 1.6229
11 0.3935 0.3774 0.3711 0.8464 0.2857
12 0.1915 1.2682 0.0947 0.6986 2.2521
13 0.0552 0.4062 0.0800 0.3462 0.2857
14 0.5702 1.4226 0.3109 1.2685 1.2987
15 0.5568 1.1706 0.2631 0.7151 0.8722
16 0.3663 0.7084 0.0446 0.4384 0.2857
17 0.2857 0.5750 0.0350 0.8281 0.4746
18 0.3737 0.2857 0.2426 0.1776 0.1143
19 0.5049 1.7351 0.0552 0.3462 0.6234
20 0.2857 1.3512 0.4073 1.9990 0.0902
21 0.6200 0.0350 0.4488 0.9365 0.0583
22 0.2857 0.5136 0.5531 1.9990 1.2987
23 0.6909 0.3275 0.8800 1.4194 0.4883
24 1.1484 1.0540 0.3392 0.1192 0.2857

Overall 0.5318 0.7370 0.3752 0.7847 0.5165

Table 2.1: Percentage gap between the actual arrival rates (A) and adjusted arrival rates
(B): (B−A)

A
× 100(%)

2.8 Concluding Remarks and Future Work

A number of approaches have been studied to manage resources in data centers over

non-homogeneous workloads; those approaches have mainly focused on determining right-

sizing of servers to minimize energy cost while considering SLA violation conditions.

However, the aforementioned studies ignore achieving time-stability which makes it con-

venient to analyze system, provide probabilistic guarantees and performance bound under
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transient conditions. To the best of our knowledge, achieving time-stability over time-

varying workloads while considering sizing, assignment and load balancing in integrated

fashion for data centers operations has not been addressed. In this context, we suggest an

approach to effectively reduce energy consumption by powering on and off just the right

number of servers while being able to provide performance bounds and guarantees over

fast varying arrival rates that steady-state cannot typically be reached.

This paper asks if time-stability can be attained using a combination of sizing, assign-

ment, and routing in an integrated fashion. We have suggested an analytic framework

simplifying a large scale, multi-dimensional, and non-stationary problem by decomposing

into individual simpler stationary ones, and have introduced dummy requests to achieve

time stability based on decomposed settings. Performance bounds and probabilistic guar-

antees introduced in this study are provable and simply derived by stationary analysis

based on suggested framework. Also, we have introduced additional insight regarding

assignment strategies and addressed extension and limitation of our suggested approach.

One could consider the following in the future: (i) suggest real-time speed scaling control

by varying φ for time-stable performance, (ii) instead of all classes with a large number of

servers some classes may need to be hosted on only one server, (iii) develop an optimiza-

tion framework to holistically right-size, speed scale, route and assign classes for energy

efficiency, and (iv) extend to multi-server queues.
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3. GUARANTEEING PERFORMANCE BASED ON TIME-STABILITY FOR

ENERGY-EFFICIENT DATA CENTERS*

3.1 Introduction

We consider a data center which consists of a set of heterogeneous servers with differ-

ent maximum processing speeds and different capacity limits of various resources, such as

memory and storage. The data center hosts heterogeneous application classes which have

different workload distributions, for which time-varying requests arrive with resource re-

quirements and levels of quality of service (QoS) guarantees. In this case, servers process

requests that belong to multiple classes, whereas requests categorized into the same class

are stochastically identical, and they arrive to data centers according to a piecewise con-

stant non-homogeneous Poisson process. It is assumed that the environment process that

drives arrival rates of the non-homogeneous Poisson process is cyclic. This is a fairly rea-

sonable assumption as arrivals tend to have daily or weekly patterns that repeat in a cyclic

fashion (Gmach et al. [28], Lin et al. [29], Liu et al. [30], Lin et al. [1] and Kwon and

Gautam [2]). Using that assumption we model each cycle as divided into a set of intervals

corresponding to the piecewise constant period for the arrival process. In addition, we as-

sume that the number of classes is large (larger than the number of servers, e.g. 10 servers

and 20 applications) but their workloads are so little that most servers host a mixture of

heterogeneous classes. For the non-homogeneous arrival process, the arrival rate of each

class is time-varying and also changes so fast that steady-state is not reached before arrival

rates change. Based on the scenario mentioned above, we model a data center as a system

of multiple parallel single server queues where a dispatcher routes arriving applications to

*Reprinted with permission from “Guaranteeing Performance based on Time-stability for Energy-
efficient Data Centers" by Soongeol Kwon and Natarajan Gautam, 2016, IIE Transactions, 48(9), 812-825,
Copyright c© 2016 Taylor & Francis.
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servers.

For such a time-varying and heterogeneous system, our fundamental aim is to manage

servers of data centers in an energy-efficient manner while satisfying performance guaran-

tees by achieving time-stability. For time-varying and heterogeneous systems, arrival rates

of requests change so fast that a steady-state of system is not reached, therefore making

it extremely difficult to provide performance guarantees. Without assuming that system

reaches steady-state, one can provide performance guarantees by powering on large num-

ber of servers responding to peak workload; however, that causes a huge additional energy

cost than necessary. In this context, achieving time-stability is extremely useful for man-

aging a non-homogeneous and transient system because it enables operators to effectively

design and analyze the time-varying system, provides guaranteed QoS as desired, and

effectively performs monitoring and control. Achieving time-stability and providing per-

formance guarantees, while being mindful of energy costs, is the main objective of this

study. To achieve time-stability, we consider the following control decisions that can be

tuned.

• Assignment: Applications corresponding to each class of request can be assigned

to servers such that each server hosts one or more classes and each class is hosted

on multiple servers. We assume that there is no cost for the assignments as well as

switching between assignments.

• Sizing: Each server could be dynamically powered on or off across time intervals.

However, we neither consider switching costs (from on to off and vice versa) nor

consider reliability costs for on-off cycles. Note that some modern servers allow

for “sleep" settings instead of completely turning off servers. From a mathematical

standpoint, we consider them equivalent.

• Routing Fraction: The dispatcher routes arriving requests to one of the powered-
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Figure 3.1: Achieving time-stability for multiple parallel single queues with time-varying
and heterogeneous workloads

on servers based on predetermined routing fractions by considering assignment of

classes to servers. A key assumption is that the dispatcher cannot observe the real-

time state of any of the servers.

• Speed Scaling: For each server, it is possible to dynamically change the processing

speed by scaling the voltage and frequency up to a maximum speed.

We will show that assignment, sizing, routing and speed scaling can be done appropri-

ately in an integrated fashion to achieve both time-stability and energy-efficiency through

the suggested framework described in Sections 3.2 and 3.3. Figure 3.1 briefly shows the

scenario and the main objective of this study. Next we review the relevant literature and

introduce notation used in this paper.

3.1.1 Literature Review

As there has been a surge in demand for cloud computing in recent years, server man-

agement in data centers has received tremendous attention in both industry and academia.

Data centers provide benefits in cost reduction, flexibility, and accessibility by allowing

enterprises to outsource resources for service rather than managing their own resources.

As a result, data centers have challenging tasks to achieve energy efficiency and provide
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performance guarantees in cloud computing environments characterized by time-varying

workloads with significant variation and uncertainties. In general, data centers need to pro-

vide strict QoS guarantees to users, thereby over-provisioning their servers to respond to

peak loads due to inherent uncertainty and variability in demand. On one hand this over-

provisioning of servers results in low utilization as reported in Barroso and Hölzle [33]

and Vogels [12]. On the other hand they incur a significant amount of energy usage for

operating and cooling servers as explained and documented in Hamilton [9] and Koomey

[10]. Fortunately, to abate the skyrocketing energy consumption in data centers (see report

[7]), there are tremendous opportunities to conserve energy consumption in data centers,

such as powering servers off and running them at slower speeds.

In this context, server provisioning plays a key role in improving utilization by select-

ing active servers (e.g. powering off servers or allowing to enter a power-saving mode)

in accordance to traffic changes, while considering performance guarantees, and thus a

number of techniques for efficient server provisioning have been proposed to address the

above problem. Gandhi et al. [19] presented an approach based on a combination of pre-

dictive and reactive provisioning to correctly allocate resources in data centers such that

service level agreement (SLA) violations and energy consumption are minimized. Zhu

et al. [34] presented a data center architectural design based on virtualized resources in

order to reduce provisioning overhead; they also proposed a dynamic provisioning tech-

nique while satisfying user’s SLA and maximizing overall profits. Also, Wang et al. [35]

provided an analytic framework that captures non-stationarities and stochastic variation of

workloads for dynamic re-sizing in data centers. Lin et al. [1] suggested a new on-line

algorithm for dynamic right sizing in data centers motivated by optimal off-line solutions

to minimize energy costs including switch costs. In addition, there have been some studies

that considered heterogeneous workloads for server provisioning and allocation problems.

There is another body of literature that proposed an optimization approach based on pow-
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ering servers on/off and dynamic voltage/frequency scaling (DVFS) to minimize energy

consumption. Bertini et al. [36] proposed a mixed integer program (MIP) for the prob-

lem of selecting the servers’ states and processing speeds with QoS control, and Gallego

Arrubla et al. [20] introduced a unified methodology that combines virtualization, speed

scaling, and powering off servers to efficiently operate data centers while incorporating

the inherent variability and uncertainty.

While all of the aforementioned research is complementary to our work, the key differ-

ence is that our study suggests an approach which aims to not only save energy consump-

tion but also achieve time-stability for providing performance guarantees. Note that, to the

best of our knowledge, the problem of achieving time-stability over time-varying traffic in

data center operation has received little attention and not been effectively addressed. Al-

though time-stability has received little attention in the context of data centers operation,

there have been some research studies in the queueing area. Foley et al. [21] and Barnes et

al. [22] showed that the departure process from the Mt/Gt/∞ queue can be made station-

ary, and in recent days, Whitt [37] suggested the rate matching control algorithm, which

stabilizes the queue length distribution forGt/Gt/1 single-server queue where both arrival

rate and service rate are time-varying. There is another body of literature which provides

algorithms to determine appropriate staffing levels for call centers. Feldman et al. [23]

proposed a simulation-based iterative-staffing algorithm for time-stable delay probability,

and Liu and Whitt [24] suggested a formula-based algorithm to stabilize abandonment

probabilities and expected delays using offered-load based approximations for a queueing

model with the non-homogeneous Poisson arrival process and customer abandonment.

In fact, our previous work [2] suggests an approach to achieve time-stability in both

queue lengths and sojourn times for data center operations where time-varying arrivals are

cyclic. In [2], we considered a scenario of a company that owns a data center (e.g. Yahoo,

Google or Facebook) and operates a large number of servers to host applications. We
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assumed that each application request has high squared coefficient of variation (SCOV)

of workloads. Also, each application needs to be hosted on a large number of servers to

handle the load (in fact, we use an asymptotic scaling, the number of servers Na →∞ for

each application a, which allowed us to attain time-stability). In comparison, this study

considers a unique scenario for hosting data centers that provide hosting service to several

other companies. In general, hosting data centers cluster applications of each company and

assign the cluster to a group of servers for the purpose of security and confidentiality. It is

important for the data centers to monitor the performance experienced by the applications,

and without time-stable performance, monitoring would be difficult. This motivation is to

consider time-stability. We assume that the number of application classes is much larger

than the number of servers and many application classes have so little load that they would

need to be hosted on just one server. Also, we assume that servers are heterogeneous and

host a mixture of heterogeneous application requests, and processing speed of a server can

be changed for energy efficiency (in [2], servers are homogeneous and every server runs

at the same processing speed). Moreover, in this study, we formulate an MIP problem

to optimally determine operational decisions including assignment, routing, and speed

scaling for time-stability as well as energy efficiency, which were not considered in [2].

Therefore, our suggested model in this study is fundamentally different from the problem

considered in [2].

For the purpose of this study, we provide an analytical framework which decomposes

a complex and non-stationary system into individual simpler stationary ones based on

multiple strategies for assignment, sizing, routing, and speed scaling. Based on the sug-

gested framework, our objective is to stabilize queue length distributions of each powered-

on server and provide performance guarantees on waiting time of each application class.

Moreover, for energy efficiency we propose an optimization model to minimize total en-

ergy cost via powering on or off servers, routing, and speed scaling, while satisfying
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the time-homogeneity constraints. In fact, our suggested approach enables us to utilize

standard stationary queueing analysis to obtain performance guarantees for time-varying,

transient, and heterogeneous systems, and we believe that our study has significance and

provides useful insights for practitioners. The main contributions of this study are to: (i)

provide an integrated framework unifying sizing, assignment, routing, and speed scaling

under heterogeneous conditions which has seldom been implemented jointly; (ii) define

time-homogeneity constraints which ensures time-stability; (iii) suggest an approach to

provide performance guarantees based on time-stability; and (iv) introduce an optimization

problem with an MIP formulation to reduce energy cost while considering time-stability.

The remainder of the paper is organized as follows: Section 3.2 introduces our notion of

time-stability and suggests an approach to obtain time-homogeneity constraints; Section

3.3 proposes an optimization problem to determine various decisions for energy conser-

vation and time-stability; Section 3.4 proposes an approach to provide performance guar-

antees; Section 3.5 reports and analyzes the results of numerical experiments; and Section

3.6 presents conclusions and future research directions.

3.1.2 Notations

For the scenario considered in this study, we set the notations to define the problem

and describe our approach appropriately. An arriving request belongs to one of multiple

classes in a discrete set A. We categorize incoming requests into several class types based

on their mean workload and each class has a small squared coefficient of variance. The

amount of work a class a ∈ A request brings is independent and identically distributed

(IID) according to a general distribution Ha(·) with mean 1/θa and SCOV C2
a . Also, each

class a has requirements βka for each resource type k ∈ K (this could be memory or stor-

age, for example). Let T be a collection of contiguous time intervals and in each interval

` ∈ T the arrival rate for each class a ∈ A remains a constant λa`. Also, we consider
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N heterogeneous servers and each server j ∈ N has maximum processing speed φjmax

and capacity limit for each resource type k ∈ K, bkj . Note that instead of defining ser-

vice time distribution, which is generally used in other studies based on queueing models,

our approach uses the combination of workload distribution and processing speed (which

could be varying). In addition, we define the desired traffic intensity ρ for each powered-

on server. In fact, we use the desired traffic intensity to create enough residual capacity

for unforeseen surges by restricting the utilization of each server to be ρ. Next, for time

interval ` ∈ T , server j ∈ N , class a ∈ A, and resource type k ∈ K we define decision

variables considered in this study as follows: (i) the assignment of class a to servers j for

each time interval `, xaj` (e.g. xaj` = 1 if class a assigned to server j in time interval `,

otherwise xaj` = 0.), (ii) whether server j must be powered on or off in time interval `,

yj` (e.g. yj` = 1 if server j is powered on in time interval `, otherwise, yj` = 0), (iii) the

processing speed for server j in time interval `, φj`, and (iv) the fraction of jobs of appli-

cation a to be routed to server j in time interval `, vaj`. Each server j must be powered on

or off in each time interval `, and thus there will be N` =
∑

j∈N yj` powered-on servers in

each time interval `. We summarize the set of indices, parameters, and decision variables

which are used to define optimization problem in Table 3.1.

3.2 Time-stability

Recall that our main objective is to provide performance guarantees for time-varying

and heterogeneous data centers by achieving time-stability. In this section, first we intro-

duce the notion of time-stability considered in this study and then we suggest an approach

to achieve time-stability. We conclude this section by introducing a practical application

of a suggested approach considered in this study. Recall that the benefit of time-stability

has been discussed in Section 3.1.
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Indices
T index set of time intervals ` ∈ T
A index set of classes of requests a ∈ A
N index set of servers j ∈ N
K index set of types of resources k ∈ K

Parameters
λa` arrival rate of class a in time interval `

1/θa average amount of workload brought by class a
ρ desirable traffic intensity for each powered-on server
βka requirement of resource k for class a
bkj capacity limit of resource k for server j
φjmax maximum processing speed of server j

Decision variables
xaj` assignment of class a to server j in time interval `
yj` whether server j must be powered-on or off in time interval `
vaj` fraction of class a to route to server j in time interval `
φj` processing speed of server j in time interval `

Table 3.1: Indices, parameters, and decision variables of suggested optimization problem

3.2.1 Our Notion of Time-Stability

As described in Section 3.1, we consider a scenario where each server may host multi-

ple classes of applications with aggregate workload defined by a mixture of heterogeneous

application classes. For achieving time-stability, we seek to manage the system so that

any powered-on server receives arrivals with a target workload distribution H(·) whose

Laplace-Stieltjes transform (LST) is H̃(s) =
∫∞

0
e−sxdH(x). We denote 1/θ as the target

average amount of work brought by each arrival. We seek to keep the aggregate workload

distribution at any instant of time in each powered-on server to be time-stable in order to

ensure that the distribution of queue lengths at any time for every powered-on server is

according to a stationary distribution of a homogeneous M/G/1 queue. In Section 3.2.2,

we will propose an approach to obtain time-stable queue length distribution by stabilizing

both the aggregate workload distribution and arrival rates, and also in Section 3.3 we will
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show that time-stability would be valid for speed scaling. For mathematical representa-

tion, for all j ∈ N , at time t let Xj(t) be the number of requests in queue of server j and

Oj(t) be the status of the server (Oj(t) = 1 if server j is powered-on at time t, otherwise

Oj(t) = 0). Our approach indeed stabilizes queue length distribution π(i) for all i ≥ 0

which can be represented as P{Xj(t) = i|Oj(t) = 1} = π(i) where π(i) is constant

and not dependent on t. Based on the time-stability in queue length distribution, perfor-

mance analysis is straightforward and probabilistic guarantees on the waiting times can be

provided.

3.2.2 Approach to Achieve Time-Stability

In this section we suggest an approach to achieve time-stability introduced in Sec-

tion 3.2.1. For time-varying arrivals of requests of heterogeneous applications, the main

idea of our suggested approach is to stabilize queueing process of each powered-on server

based on (i) time-invariant aggregate workload distribution obtained by moment match-

ing approximation and (ii) rate matching between arrival rates and processing speeds by

selecting routing fractions appropriately. In the following subsections, we will derive time-

homogeneity constraints for the proposed MIP problem.

3.2.2.1 Moment Matching Approximation for Time-invariant Workload Distribution

For achieving time-stability, we seek to stabilize an aggregate workload distribution

of each powered-on server where the servers host incoming requests of multiple hetero-

geneous applications that have different workload distributions Ha(·). To achieve the in-

variant target workload distribution H(·) with LST H̃(s) and average workload 1/θ, our

objective is to control the system appropriately. This way each powered-on server receives

arrivals of requests with homogeneous aggregate workload distributionH(·) based on mo-

ment matching approximation. To begin, for the desirable traffic intensity ρ and the target

nominal speed φ, we determine the minimum number of powered-on servers for each time
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interval ` ∈ T , N`, which satisfies the following inequality:

∑
a∈A

λa`H̃a(s) ≤ N`H̃(s)ρφθ ∀s ≥ 0 (3.1)

where the left-hand side is the LST of aggregate workload distribution for the entire sys-

tem and the right-hand side represents the LST of aggregate workload distribution of N`

time-stable servers, where each of the N` servers has the target workload distribution H(·)

and arrival rate as ρφθ. Based on the inequality (3.1), N` can be determined so that the

workload served by each of the N` servers would be less than equal to the target work-

load (which is defined by traffic intensity ρ, processing speed φ, and mean workload 1/θ)

when the incoming workload is equally distributed with the same routing fractions to the

powered-on servers. In fact, we can redefine inequality (3.1) based on moment matching

approximation for several moments as follows:

∑
a∈A

λa`
θa
≤ N`ρφ

(−H̃ ′(0))
∑
a∈A

λa` ≤ N`ρφ

(−H̃ ′(0))
∑
a∈A

λa`H̃ ′′a (0) ≤ N`ρφH̃ ′′(0)

(−H̃ ′(0))
∑
a∈A

λa`(−H̃ ′′′a (0)) ≤ N`ρφ(−H̃ ′′′(0))

...

by taking the derivatives of the LST H̃(s) at s = 0. Our aim is to introduce additional

traffic to match the difference between the left-hand side and the right-hand side of each

inequality (each moment) so that the aggregate workload distribution of each of the N`

servers is approximately equal to the target workload distribution H(·). As discussed in
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[38], [39], and [40], additional traffic can be thought of as low priority jobs (or delay-

tolerant jobs) that do not have time constraints that data centers need to process. For addi-

tional traffic with index 0, arrival rate in time interval `, λ0`, and the moment of workload

distribution for each time interval `,−H̃ ′0`(0), H̃ ′′0`(0),−H̃ ′′′0`(0), . . ., can be determined

appropriately through the following equalities based on N`:

(−H̃ ′(0))

(
λ0` +

∑
a∈A

λa`

)
= N`ρφ

λ0`

θ0`

+
∑
a∈A

λa`
θa

= N`ρφ

(−H̃ ′(0))

(
λ0`H̃ ′′0`(0) +

∑
a∈A

λa`H̃ ′′a (0)

)
= N`ρφH̃ ′′(0)

(−H̃ ′(0))

(
−λ0`H̃ ′′′0`(0) +

∑
a∈A

λa`(−H̃ ′′′a (0))

)
= N`ρφ(−H̃ ′′′(0))

...

and then we can approximately define H0`(·) by combining the derivatives. Recall that

there is additional traffic which has low priority of QoS guarantees (e.g. non-interactive

jobs are less sensitive to response time) and is also CPU intensive (it does not need other

resource requirements). In this case, it is reasonable to assume that this additional traffic

can be assigned to the system according to a Poisson process with parameter λ0` and

workload distribution H0`(·) for each time interval ` from front-end proxy servers or other

data centers. We would like to note that our suggested approach allows additional traffic

so that the increment of workloads caused by an addition of traffic would not degrade the

desired performance, but would reduce variability and uncertainty in aggregate workload

while also improving the utilization of CPU for each powered-on server. Note that if we

58



match sufficiently many moments, then the above equalities would result in

λ0`H̃0`(s) +
∑
a∈A

λa`H̃a(s) = N`H̃(s)ρφθ ∀s ≥ 0 (3.2)

whereH0`(·) has−H̃ ′(0), H̃ ′′(0),−H̃ ′′′(0), . . . as moments. By selecting additional traffic

for several moments, our suggested approach stabilizes workload distribution for each

powered-on server.

3.2.2.2 Selecting Routing Fractions for Time-stable Arrival Rates

In addition to stabilizing aggregate workload distribution as introduced in Section

3.2.2.1, next our suggested approach stabilizes an aggregate arrival rate to each powered-

on server so that the queue length distribution of each powered-on server is a stationary

time-homogeneousM/G/1 queue. Based on the minimum number of powered-on servers

N`, arrival rates λ0` and workload distributions H0`(·) of additional traffic for each time

interval ` ∈ T , we seek to route arrivals of requests so that arrival rates into each powered-

on server would be time-homogeneous (i.e. constant across time-intervals) while ensuring

the aggregate workload distribution is also stabilized as the target workload distribution

H(·). Let vaj` be the fraction of arriving requests of class a routed to server j in time in-

terval `, then vaj` can be appropriately selected based on the following time-homogeneity

constraints:

N∑̀
j=1

vaj` = 1 ∀a ∈ A ∪ 0 (3.3)

λ0`

θ0`

v0j` +
∑
a∈A

λa`

θa
vaj` = ρφ ∀j ∈ {1, 2, ..., N`} (3.4)

λ0`v0j`H̃0`(s) +
∑

a∈A λa`vaj`H̃a(s)∑
a∈A∪0 λa`vaj`

= H̃(s) ∀j ∈ {1, 2, ..., N`}, s ≥ 0. (3.5)
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Recall that ρ is the desired traffic intensity and φ is the target nominal speed. Equation

(3.3) means that all application requests should be routed to servers; traffic intensity of

each powered-on server would be ρ based on Equation (3.4); Equation (3.5) ensures that

aggregate workload distribution at each powered-on server j is approximately equivalent

to the target workload distribution H(·). In fact Equation (3.5) is directly derived from

Equation (3.2) by applying vaj` to routing arriving requests instead of distributing equally

to N` powered-on servers. Based on Equations (3.4) and (3.5), arrival rates into each

powered-on server would remain constant at ρφθ across time intervals, since the mean

amount of workload brought by incoming request would be 1/θ based on Equation (3.5)

(i.e. −H̃ ′(0) = 1/θ) and thus,

∑
a∈A∪0

λa`
θ
vaj` = ρφ,

∑
a∈A∪0

λa`vaj` = ρφθ ∀j ∈ {1, 2, ..., N`}.

We will formulate an MIP problem by using time-homogeneity constraints (3.3), (3.4),

and (3.5) to optimally determine vaj` to achieve time-stability in Section 3.3.

3.2.2.3 Adjusting Initial Condition of Time Intervals

The fundamental idea for reducing energy cost is to power servers on and off as they

respond to time-varying workloads. To that end, we will formulate an MIP problem in

Section 3.3 to determine operational decisions (including powering servers on and off)

so that the queue length distribution of every powered-on server is stabilized across time

intervals. In this case, it is intuitive to think that time-stability (stabilized queue length dis-

tribution) would be affected when servers are powered-on afresh (from powered-off state)

since newly powered-on servers start processing jobs with an empty queue; however in

the other case, servers process jobs with a stationary queue. Thus, queue length distribu-

tion would not be stabilized when the length of each time interval is not long enough to

reach steady-state. To address this problem, we add a batch of requests to servers which
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are powered-on afresh at the beginning of a time interval so that queue lengths of ev-

ery powered-on server would be stochastically equivalent to that of a stationary M/G/1

queue. We adopt an approach proposed by our previous work [2] whose main idea is

adding a number of jobs sampled from the stationary queue length distribution defined by

the stabilized workload distribution (H(·)) and arrival rates (ρφθ). If servers selected to be

powered-off are not idle at the end of time interval, then incoming requests would not be

routed to those servers, and we wait until those servers complete service for the remaining

requests (and then power off the servers). As we discussed in [2], the key benefit of the

suggested approach is that performance bounds based on time-stability are provable and

also easily derived by using standard queueing theory results. In addition, for the general

case, we have the following remark for an extension of our suggested approach.

Remark 3 (Extension of Time-stability to Processor Sharing). In Section 3.2.1, we intro-

duce our notion of time-stability based on stationary M/G/1 queues where each server

hosts a mixture of multiple heterogeneous applications with first-come first-served (FCFS)

service discipline. Here our claim is that our suggested approach can be extended to a

model using processor sharing (PS) service policy. Under PS regime, all the jobs or enti-

ties in the system are served simultaneously and equally share the processor at any given

time; it is also fairly common to model computer servers based on PS service policy. In

fact, M/G/1 queue with PS does produce closed form results which are identical to those

of M/M/1 queues with FCFS discipline [32]. Thus, our suggested approach for time-

stability can be applied to the model which uses PS instead of FCFS for service policy.

For PS service policy, the mean queue length L of M/G/1 would be L = ρ/(1 − ρ), and

thus the mean sojourn time would be 1/(θφ(1− ρ)).
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3.2.3 Practical Application of The Suggested Approach

In Section 3.2.2, we introduce the notion of time-stability considered in this study and

suggest an approach to achieve time-stability based on moment matching approximation.

As we mentioned, if we match sufficiently many moments, then aggregate workload dis-

tribution at every powered-on server would be approximately equivalent to H(·), and thus

we could theoretically have stabilized queue length distribution. Moreover, for the prac-

tical application, we can choose to match only a few moments to achieve time-stability.

In this section, we will show that the mean queue lengths of every powered-on server can

be reasonably stabilized across time intervals by considering only first and second mo-

ments in practice. Recall that our aim is to manage each powered-on server as a stationary

M/G/1 queue, and we use the Pollaczek-Khintchine (P-K) formula [32] to determine the

mean queue length L as follows:

L = ρ+
ρ2(1 + C2)

2(1− ρ)
(3.6)

where C2 is the SCOV of service time and ρ is the traffic intensity. Based on our suggested

approach, we need to determine the target workload distribution H(·), and in fact, H(·)

can be determined according to the desired mean queue length. For example, let L̄ be the

desired (i.e. targeted) mean queue length; then it is possible to select C2 of H(·) based

on Equation (3.6) for given L̄ and ρ (recall that ρ is the desired traffic intensity). Since

C2 is solely determined by the first and second moments of H(·) (−H̃ ′(0) and H̃ ′′(0),

respectively), the mean queue length can be stabilized as desired by determining the first

and second moments of H(·) and matching the first and second moments as follows:
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λ0`v0j`(−H̃ ′0`(0)) +
∑

a∈A λa`vaj`(−H̃ ′a(0))∑
a∈A∪0 λa`vaj`

= −H̃ ′(0) ∀j ∈ {1, 2, ..., N`}, s ≥ 0

(3.7)

λ0`v0j`H̃ ′′0`(0) +
∑

a∈A λa`vaj`H̃
′′
a(0)∑

a∈A∪0 λa`vaj`
= H̃ ′′(0) ∀j ∈ {1, 2, ..., N`}, s ≥ 0. (3.8)

In Section 3.3, we will formulate an MIP by using the constraints (3.7) and (3.8) instead

of using (3.5) to stabilize the mean queue length and provide performance guarantees on

the mean waiting time.

3.3 Optimization Problem

In this section, we suggest an optimization problem to determine operational decisions

that correspond to decision variables xaj`, yj`, vaj`, and φj` introduced in Section 3.1.2.

The key idea is to select decision variables, xaj`, yj`, vaj`, and φj` so that it not only

enforces time-stability of the queue length distribution at every powered-on server but

also results in the system being energy-efficient.

3.3.1 Assumption for Energy Cost

For considering the energy cost of data center operation, we define a fixed energy cost

fj for powered-on server j (i.e. energy cost for server j at “idle" state) and an operating

cost cj for processing jobs at server j at speed φj`. In fact, we are assuming that there

is no cost and no service delay for switching server operations between time intervals.

Next we briefly describe the reason we assume there would be no switching cost for our

suggested problem. According to [29] and [1], the switching cost mainly consists of (i)

energy used for powering servers on and off, (ii) a time delay that the server is in setup,

and (iii) increased wear-and-tear on the server toggling. For (i) and (ii), firstly, we would

like to note that the length of time intervals used in our suggested model is much longer
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than the duration of setup time. For example, authors in [41], [42], and [43] reported that

setup times are ranging from 20 seconds to 200 seconds, which are very small compared to

the one hour (3600 seconds) time interval length. In this case, the power consumed during

setup can be negligible compared with the power consumption for running a server during

a one-hour time interval, and thus, it is reasonable to only consider operating cost without

considering extra setup cost. Also our suggested approach is a static control algorithm,

and server schedules (e.g. yj` and φj` for all j ∈ N and ` ∈ T ) are pre-determined,

as opposed to dynamic server provisioning considered in [29] and [1], which determines

whether to put idle servers to sleep or wake up servers in real-time. Thus, based on the

scenario considered in our problem, servers can be set up to process jobs in advance based

on the pre-determined server schedules, and thus service delay also can be negligible. In

terms of (iii), a body of literature (e.g. [44], [42], [29], [1], and [35]) considers the impact

of server on/off cycles on the reliability of the server. For example, the recent studies

[29], [1], and [35] proposed an approach for the dynamic server provisioning model by

considering switching cost that includes server reliability cost for wear-and-tear caused

by toggling servers. However, contrasting the dynamic server provisioning algorithms

proposed by [29], [1], and [35], which change server state frequently, the servers in our

problem would stay at powered-on or powered-off (or sleep) state for at least one hour and

would not change server state frequently; thus the effect of toggling servers on reliability

may not be significant. Moreover, as mentioned in [45] and [46], powering servers off may

extend the lifetime of server components. Therefore, toggling servers may not significantly

affect reliability of servers in our proposed problem. In addition, since the assignment of

classes to servers are changing across time intervals in our suggested problem, one may

argue that there may exist a cost for switching assignments. We would like to mention

that cost for switching assignments can be easily ignored since all applications essentially

reside in all servers and in a given time interval, the applications that are used are fired up
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while others are off. Also, it is reasonable to assume that the assignment of applications

to servers can be changed without service delay since applications can be deployed on

servers concurrently while they process other jobs. Based on the above description, we

consider only fixed energy cost and operating cost without including server switching cost

in our suggested problem.

3.3.2 Formulation

For time-stability, the target aggregate workload distribution H(·), and arrival rates of

additional traffic λ0` and workload distribution H0(·) are determined as described in Sec-

tion 3.2. Recall that we define time-homogeneity constraints to stabilize the mean queue

lengths by using constraints (3.7) and (3.8) based on the first and second moments of work-

load distribution of additional traffic (indexed as “0") 1/θ0` and H̃ ′′0`(0). Based on the set of

indices, parameters, and decision variables, we formulate an MIP optimization problem.

For each time interval ` ∈ T , our suggested optimization problem can be formulated as

follows:

MIP-`: Minimize
∑
j∈N

(fjyj` + cjφj`) (3.9)

s.t.
∑
j∈N

vaj` = 1 ∀a ∈ A (3.10)

λ0`

θ0`

v0j` +
∑
a∈A

λa`
θa
vaj` = ρφj` ∀j ∈ N (3.11)

φj` ≤ φjmaxyj` ∀j ∈ N (3.12)

λ0`v0j`(−H̃ ′0`(0)) +
∑

a∈A λa`vaj`(−H̃ ′a(0))∑
a∈A∪0 λa`vaj`

= −H̃ ′(0) ∀j ∈ N

(3.13)

λ0`v0j`H̃ ′′0`(0) +
∑

a∈A λa`vaj`H̃
′′
a(0)∑

a∈A∪0 λa`vaj`
= H̃ ′′(0) ∀j ∈ N (3.14)
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∑
a∈A

βkaxaj` ≤ bkj ∀j ∈ N ,∀k ∈ K (3.15)

vaj` ≤ xaj` ∀a ∈ A,∀j ∈ N (3.16)

vaj` ≥ 0, xaj` ∈ {0, 1}, yj` ∈ {0, 1}, φj` ≥ 0 ∀a ∈ A,∀j ∈ N .

(3.17)

In the above formulation, the objective function (3.9) is total energy cost in a cycle, which

consists of fixed cost and operating cost that we wish to minimize. We define the cost

function for energy usage as a combination of fixed energy cost and operating cost using a

model of power usage of typical servers adopted by [1]. For operating cost, we would like

to note that modern CPUs can be operated at different speeds during runtime by employing

DVFS, and recent studies Gandhi et al. [26], Kusic et al. [47], and Raghavendra et al. [48]

reported that DVFS results in a linear power and frequency relationship without additional

cost for ramp up/down processing speed as defined in our objective function (3.9). Con-

straint (3.10) ensures that all class a traffic is divided across various servers, and constraint

(3.11) ensures that the traffic intensity for server j be ρ since the average work that arrives

at server j is ρφj` if the server runs at speed φj`. Constraint (3.12) forces the server j’s

speed to be zero when it is off and limits its speed by its maximum value when on. Con-

straints (3.13) and (3.14) match the first and second moments, respectively, to stabilize the

mean queue length as described in Section 3.2.3. Constraints (3.10), (3.11), (3.13), and

(3.14) are derived from the homogeneity constraints defined in Section 3.2.2.2. Recall that

we define constraint (3.4) with constant speed φ, but here we define constraint (3.11) to

allow speed scaling with φj` for minimizing energy cost based on theoretical foundations

described in the online supplement. In fact, Theorem 1 in the online supplement shows

that the queue length distribution of time-varying Mt/Gt/1 queue is stochastically identi-

cal to that of time-homogeneous M/G/1 queue when we adjust processing speed (service
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rate) responding to time-varying arrival rate based on constraint (3.4). In addition, con-

straint (3.15) limits resource k to bkj across classes assigned to server j with requirements

βka for class a, and constraint (3.16) ensures that if class a is not assigned to server j,

then no fraction of arriving requests are assigned to that server. Constraint (3.17) ensures

non-negativity and binary nature of the decision variables. The decision variables xaj`,

yj`, φj`, and vaj` (for all ` ∈ T , j ∈ N , and a ∈ A) can be determined by solving the

above MIP-` problem separately for each time interval ` ∈ T . Although we solve the opti-

mization problem to determine operational decisions independently for each time interval

` ∈ T (e.g. powering server on/off, assignment, routing, and speed scaling), the aggregate

workload distribution and the queue length distribution of every powered-on server would

be stabilized across time intervals. In other words, based on our suggested approach, we

can simplify a large scale, transient, non-stationary problem by decomposing it into in-

dividual smaller problems (i.e. decompose overall problem into 24 MIP-` problems) in

order to achieve time-stability. This is the key benefit of our suggested approach since

we can solve smaller problems instead of large-scale MIP problems while stabilizing the

queue length distribution across time intervals. Although we decompose the overall prob-

lem into individual MIP-` problems, each of the MIP-` problems is indeed NP-hard (we

can simply show that a well-known NP-hard capacitated facility location problem (CFLP)

can be reduced to our suggested MIP-` problem), and it is difficult to solve the problem

for large-size instances; therefore, we need to develop an efficient algorithm to solve the

proposed problem. Note that in this study we choose to focus on introducing the key idea

of our approach to achieve time-stability and analyze numerical results for the smaller in-

stance, and developing an algorithm to solve the suggested MIP problem is beyond the

scope of this study. Based on our suggested approach, we will study approaches to solve

large-scale problems in the future.
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3.4 Performance Guarantee

Through Sections 3.2 and 3.3, we introduce the notion of time-stability and suggest

an approach to stabilize the queue length distribution of each powered-on server. Specifi-

cally, we derive the constraints and formulate an MIP problem to stabilize the mean queue

lengths. Moreover, in this section, we will show that performance bound on waiting time

can be obtained based on the stabilized queue length distribution. In general, users of data

centers commonly require QoS guarantees in terms of waiting times (or response times),

or for that matter SLA and its violation are also defined based on waiting times. Thus,

performance bound on waiting time would be a preferred performance measure and much

more useful to design, monitor, and control data center operations. Recall that, for energy

efficiency, we apply speed scaling techniques and show that the queue length distribution

would be stabilized when the processing speed of each powered-on server changes in pro-

portion to arrival rates in the online supplement. In this case, even if the queue length

distribution is stabilized, waiting time distribution would not be stabilized since the pro-

cessing speed is varying across time intervals. However, based on the stabilized queue

length distribution, we can derive the waiting time distribution and compute the mean

waiting time of each application request for each time interval. For each time interval

` ∈ T , let Xa` be the waiting time of class a in time interval ` with cumulative distribution

function (CDF) Wa`(·), and Xj` be the waiting time of applications which are served by

server j in time interval ` with CDF Wj`(·). Then Xa` can be defined as Xa` = Xj` with

probability vaj`, and the LST of the waiting time distribution for class a in time interval `,

W̃a`(s) can be defined as

W̃a`(s) =
∑
j

vaj`W̃j`(s)
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where W̃j`(s) is the LST of the waiting time distribution at server j in time interval `. For

the stabilized M/G/1 queue, the P-K transform formula for W̃j`(s) is defined as

W̃j`(s) =
(1− ρ)s

s− λ+ λS̃j`(s)
.

Note that aggregate arrival rates λj` at server j in time interval ` would be λj` =∑
a vaj`λa`. In addition, for a random variable Y with a target workload distribution H(·)

and processing speed of server j in time interval `, φj`, the LST of service time distribution

of server j in time interval `, S̃j`(s) can be defined as S̃j`(s) = H̃(s/φj`) (since service

time is defined as Y/φj`). Now we have the LST of waiting time of application a in time

interval ` as

W̃a`(s) =
∑
j

vaj`W̃j`(s) =
∑
j

vaj`
(1− ρ)s

s−
∑

a vaj`λa` +
∑

a vaj`λa`H̃( s
φj`

)
.

Moreover, the mean waiting time of class a in time interval ` as

X̄a` =
∑
j

vaj`X̄j` =
∑
j

(
λj`E[Z2

j`]

2(1− ρ)

)
=
∑
j

vaj`

(∑
a vaj`λa`

2(1− ρ)

(1 + C2)(E[Y ])2

φ2
j`

)
(3.18)

where C2 is SCOV of the target workload. Based on the analysis of waiting times, it

is intuitive to think that waiting times of applications can be controlled in a straightfor-

ward manner by adjusting processing speeds of powered-on servers. Further, if we do not

consider speed scaling and enforce that processing speed of powered-on servers would

be constant across time intervals such that φj` = φ ∀j ∈ N , ` ∈ T , then the wait-

ing time distributions are also stabilized as well as the queue length across time intervals.

In addition, for speed scaling, the mean waiting time of each application class would be

bounded by the minimum and maximum processing speeds of assigned servers. Since
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we have stabilized aggregate workload distribution and queue length distribution for each

powered-on server, an upper bound on the mean waiting times of each class a, τa (e.g.

X̄a` ≤ τa ∀a ∈ A,∀` ∈ T ) can be easily obtained based on the desired mean queue

length L̄ which is introduced in Section 3.2.3 as follows:

τa =
E[Y ]L̄

φmin
a

where φmin
a = min{φj`, j ∈ N on

a , ` ∈ T }. (3.19)

In other words, the upper bound τa is derived by assuming the worst-case scenario reflect-

ing the situation that class a workloads are solely routed to server j with the minimum

speed φjmin among the powered-on servers. Consequently, an upper bound on the mean

waiting times of the overall system across time intervals, τ can be defined as

τ = max{τa, a ∈ A}. (3.20)

Based on the analysis of the waiting time, we define the constraints on the processing speed

of each server j in time interval `, φj`, to define the upper bound on the mean waiting time

as follows

rφjmax ≤ φj ∀j ∈ N , (3.21)

where r is the bound ratio of the minimum speed to the maximum speed of servers. We

will solve our proposed MIP problem by adding constraint (3.21) and analyzing the results

in Section 3.5.

3.5 Numerical Evaluation

In this section we introduce simulation results to show that our suggested approach

stabilizes the mean queue length and we provide performance bound on the mean waiting

time. For the numerical evaluation, we select two test instances; 10 servers with 20 appli-
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(b) Arrival rates of 40 applications

Figure 3.2: Time-varying arrival rates across 24 1-hour time intervals

cations (|N | = 10, |A| = 20) and 20 servers with 40 applications (|N | = 20, |A| = 40)

from [20]. Recall that, although data centers generally operate hundreds or thousands of

servers, considering that in most data centers applications of a single client are clustered

among servers for security and confidentiality, test instances of 10 or 20 servers would

be large enough to show that our suggested approach can be applied successfully in prac-

tice. We model the arrival process of each application’s request as a non-homogeneous

Poisson process with time-varying arrival rates λa` for 24 one-hour time intervals (i.e. 24

equally spaced time intervals for a one-day cycle) such that ` ∈ T = {1, 2, . . . , 24}. In

Figures 3.2a and 3.2b, we plot the arrival rates of both test instances (20 applications and

40 applications, respectively) across 24 one-hour time intervals. Also, for the workload

distribution of each application a, Ha(·), we choose uniform distribution with mean work-

load 1/θa and SCOV C2
a . We also assume that each application has a requirement for

three types of resources (K = {1, 2, 3}) and that each server has a capacity limit for those

resource types. For energy cost, we define fixed energy costs for powered-on server j

as much higher than unit operation costs of server j, cj , considering the fact that energy
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cost of servers is dominated by fixed costs as mentioned in [33]. In this study, we solved

the suggested MIP problem by using CPLEX 12.6 Concert Technology on an Intel Core

i7-3740QM 2.70GHz with 16GB memory, and we used Java to develop a discrete event

simulation framework. We ran simulation experiments by using decision variables, xaj`,

yj`, φj`, and vaj`, which are determined by solving the suggested MIP problem.

3.5.1 Computational Time

Before analyzing the simulation results, to describe the complexity of our suggested

MIP problem, we summarize in Table 3.2 the objective function values and the compu-

tational time obtained by solving MIP-` across time intervals ` ∈ T for the two test

instances. Note that we obtain the optimal objective function values for the instance of

10 servers with 20 applications within 3600 seconds; however, due to the complexity of

the problem, we report the objective function values of the best feasible solution and MIP

gap for 3600, 7200, and 10800 seconds time limits for the instance of 20 servers and 40

applications.

3.5.2 Analysis of Time-Stability

Firstly, we analyze the mean queue lengths of each powered-on server to check whether

our suggested approach achieves time-stability. Recall that as described in Sections 3.2.3,

our suggested approach can be utilized to stabilize the mean queue length by matching the

first and second moments for the desired queue length L̄. For the numerical evaluation,

we select the desired mean queue length L̄ and the first and second moments (E(Y ) and

E(Y 2), respectively) as L̄ = 3 with E(Y ) = 2.3 and E(Y 2) = 7.2737 for 10 servers

with 20 applications and L̄ = 4 with E(Y ) = 3.7 and E(Y 2) = 27.38 for 20 servers with

40 applications. In both cases, we select the desired traffic intensity as ρ = 0.8. Figures

3.5a and 3.6a depict the mean queue length of powered-on servers across 24 time intervals

of both test instances. Although there exist some variations, the mean queue lengths at
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10 Servers and
20 Classes

20 Servers and 40 Classes
with 3600 Seconds Time Limit

20 Servers and 40 Classes
with 7200 Seconds Time Limit

20 Servers and 40 Classes
with 10800 Seconds Time Limit

Time
Objective
Function

CPU Time
(seconds)

Objective
Function

CPU Time
(seconds)

Gap
(%)

Objective
Function

CPU Time
(seconds)

Gap
(%)

Objective
Function

CPU Time
(seconds)

Gap
(%)

1 282.00 694.49 768.17 3603.86 13.38 760.33 7208.60 12.07 760.33 10825.67 12.01
2 255.00 148.59 969.50 3604.75 0.74 962.83 7201.29 0.05 962.33 7068.53 0.00
3 282.00 1534.94 1029.33 70.78 0.00 1029.33 70.78 0.00 1029.33 70.78 0.00
4 309.00 408.02 1037.50 3604.86 0.91 1033.17 7210.60 0.50 1033.17 10800.25 0.49
5 342.00 128.34 1099.67 100.06 0.00 1099.67 100.06 0.00 1099.67 100.06 0.00
6 280.00 1076.35 1029.33 1233.63 0.00 1029.33 1233.63 0.00 1029.33 1233.63 0.00
7 288.00 163.40 957.67 3603.56 6.51 952.33 7225.78 5.99 952.33 10863.99 5.99
8 315.00 2007.39 953.33 3610.75 6.08 953.33 7210.01 6.08 945.67 10831.73 5.32
9 327.00 843.70 833.67 3607.44 12.76 833.67 7206.97 12.58 825.00 10808.16 11.53

10 356.00 663.96 868.67 3603.47 10.65 874.00 7223.31 10.98 874.00 10815.67 10.98
11 356.00 2455.92 822.67 3606.51 12.17 835.17 7218.76 13.67 835.17 10817.75 13.67
12 345.00 91.56 828.83 3605.96 13.21 817.00 7219.87 11.75 817.00 10826.99 11.75
13 318.00 180.09 916.83 3609.30 2.35 902.50 4176.90 0.79 895.33 4176.90 0.00
14 310.00 245.81 853.17 3605.03 2.13 853.17 7204.36 2.13 853.17 10810.11 2.13
15 295.00 305.95 689.00 3602.81 8.75 689.00 7210.23 8.40 689.00 10816.66 8.31
16 256.00 196.19 757.00 3602.22 4.83 757.00 7218.20 4.76 754.17 10816.77 4.40
17 256.00 203.53 690.33 3608.10 11.70 688.00 7217.12 11.29 680.50 10869.92 10.20
18 260.00 121.98 647.17 3603.84 6.89 646.17 7203.58 6.24 639.50 10811.99 5.77
19 295.00 391.58 625.00 3607.68 11.81 622.67 7219.65 11.48 620.67 10864.83 11.20
20 273.00 170.18 614.50 3608.63 10.31 607.83 7209.07 9.32 607.83 10814.04 9.32
21 266.00 89.03 620.67 3605.70 10.87 620.67 7206.45 10.46 620.33 10809.39 9.93
22 263.00 142.93 613.50 3605.06 9.50 611.67 7209.62 9.02 610.17 10818.20 8.49
23 263.00 103.35 627.83 3613.53 15.24 627.83 7217.48 15.22 614.50 10839.07 13.38
24 255.00 214.84 671.00 3621.70 11.45 671.00 7226.45 11.29 670.17 10824.64 10.28

Table 3.2: Objective function value and CPU time: 10 servers and 20 applications and 20
servers and 40 applications

each powered-on server are approximately stabilized as desired across 24 time intervals

as compared to time-varying arrival rates shown in Figures 3.2a and 3.2b. We would

like to note that if we match more moments for the target workload distribution, then

the mean queue lengths would be more stable across time intervals. Also, we compare

the mean queue length resulted by using the decision variables determined by solving

the modified MIP problem which uses the following constraint (3.22) instead of time-

homogeneity constraints (3.11), (3.13), and (3.14),

∑
a∈A

λa`
θa
vaj` ≤ ρφj` ∀j ∈ N . (3.22)

The above constraint (3.22) ensures that the average workload that arrives at every powered-

on server must not exceed the desired traffic intensity ρ for fair comparison of our sug-
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gested approach. As shown in Figures 3.5b and 3.6b, the mean queue length would not

be stabilized without using time-homogeneity constraints as compared to Figures 3.5a and

3.6a. Also, we compare the objective function values obtained by solving our suggested

MIP problem with values obtained by solving the modified MIP problem to check how

much additional energy cost is required for stabilizing the mean queue length, as well as

provide performance guarantees on the mean waiting time. As we can see in Figures 3.7a

and 3.7b, total energy cost for stabilizing the mean queue length is slightly higher, but it

can be reasonably ignored since we can provide provable performance bounds.

3.5.3 Performance Bounds on The Mean Waiting Times

As mentioned in Section 3.4, performance bound on the mean waiting time of requests

can be derived by using the bound ratio r of the minimum processing speed for each

powered-on server based on constraint (3.21). Here, we select the bound ratio r as r =

0.5 for 10 servers with 20 applications and r = 0.4 for 20 servers with 40 applications,

and then we contrast the mean waiting times obtained by using constraint (3.21) with

the results obtained without using constraint (3.21) for both test instances. Figures 3.3a

and 3.4a depict the mean waiting times and the performance bounds of both test instances,

respectively. Note that the mean waiting time is strictly bounded by τ which can be derived

as Equation (3.20) as opposed to the results obtained without using constraint (3.21) shown

in Figures 3.3b and 3.4b.

3.5.4 Benchmark

In addition, we compare our approach against the algorithm proposed by Lin et al.

[1] as a benchmark. Lin et al. [1] considered a data center optimization problem and

proposed an off-line algorithm to determine the number of active servers for minimizing

total energy cost, which consists of operating costs and switching costs. The main idea of

their suggested approach is to minimize energy costs while satisfying the QoS constraints,
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Figure 3.3: Mean waiting times for the test instance of 10 servers with 20 applications
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(a) With bound constraint with r = 0.4
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(b) Without bound constraint

Figure 3.4: Mean waiting times for the test instance of 20 servers with 40 applications

which are defined by using standard queueing theory results as shown in Van et al. [49]

and Rao et al. [50]. Note that Lin et al. [1] implemented a dispatching rule which delivers

equal amount of workload to each powered-on server (i.e. load balancing). Note that Lin

et al. [1] suggested a model that uses quasi-steady-state approximations (i.e. the metrics

are piecewise constant for each time interval long enough for the system to reach steady-
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(b) Without time-homogeneity constraints

Figure 3.5: Mean queue lengths for the test instance of 10 servers with 20 applications
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(a) With time-homogeneity constraints for
L̄ = 4
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(b) Without time-homogeneity constraints

Figure 3.6: Mean queue lengths for the test instance of 20 servers with 40 applications

state) to define QoS constraints for non-stationary system, and it is worthwhile pointing

out that our suggested approach can provide provable performance bound for time-varying

and transient systems. Since Lin et al. [1] assumed that both workloads and servers

are homogeneous and did not consider resource capacities and speed scaling, we slightly

76



0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21 23

To
ta
l E
xp
ec
te
d 
Co

st
s

Time Intervals

Time‐stable

Time‐varying

(a) 10 servers with 20 applications

0

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23

To
ta
l C
os
ts

TIme Intervals

Time‐stable

Time‐varying

(b) 20 servers with 40 applications

Figure 3.7: Comparison of energy cost for two test instances: time-stable results vs time-
varying results

modified their model and ours, and compared the results. In fact, Lin et al. [1] proposed

a QoS constraint that the average waiting time is bounded by certain thresholds based on

M/G/1 processor sharing queue, and we re-defined their constraint by using multiclass

M/G/1 queue with FCFS (Gautam [32]) for the heterogeneous workload. Also, since

our suggested an MIP problem does not consider switching costs (i.e. cost for powering

server on and off), we modified our model by adding the following constraints (3.23)-

(3.24) and cost function (3.25) so that our MIP problem determines operational decisions

while minimizing both operating costs and switching costs. In order to include cost for

powering on/off, we define additional decision variables, uon
j` (e.g. uon

j` = 1 if server j is

turned on at the beginning of time interval `) and uoff
j` (e.g. uoff

j` = 1 if server j is turned off

at the end of time interval `−1). Then we can define the constraints to determine variables

uon
j` and uoff

j` as follows:

yj` − yj(`−1) ≤ uon
j` ∀j ∈ N ,∀` ∈ T (3.23)

yj(`−1) − yj` + uon
j` = uoff

jt ∀j ∈ N ,∀` ∈ T. (3.24)
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Figure 3.8: Comparison of total energy cost: our approach vs Lin et al.’s approach [1]

Recall that decision variable yj` = 1 if server j is active in time interval `; otherwise,

yj` = 0. By using uon
j` and uoff

j` , now we can define the cost function for turning servers

on/off, which can be added to the objective function as follows:

∑
j∈N

∑
`∈T

(con
j u

on
j` + coff

j u
off
j` ), (3.25)

where con
j and coff

j are cost for turning servers on/off, respectively. To compare the ap-

proaches, we solved both problem test instances without considering resource capacity (as

well as constraints (3.23)-(3.24)) and set cost for turning servers on/off so that the fractions

of cost to power cost at “idle" state of each server j, fj as 0.2, 0.4, 0.6, 0.8, and 1.0. For

example, if the fraction is 0.2, then the cost for each time the servers turn on/off would

be 20% of “idle" power cost. In the following Figures 3.8a and 3.8b, we compare total

energy costs of our approach against that of Lin et al. [1] by setting thresholds for the

mean waiting time as equal to the upper bound obtained by our suggested approach under

the same traffic intensity. As shown in Figures 3.8a and 3.8b, the total energy cost of our
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suggested approach is smaller than that of the approach in Lin et al. [1] for the same upper

bounds on the mean waiting time. This is because both the variability of the queue length

and the waiting time get bigger for multiclass jobs (heterogeneous workloads), and thus

more servers are needed to provide the same performance bounds can be derived by our

suggested approach.

3.6 Concluding Remarks and Future Work

In this paper, we considered a fairly common scenario in cloud computing where

requests of heterogeneous applications arrive at time-varying rates to a data center that

consists of heterogeneous servers. For such a time-varying and heterogeneous system,

it is difficult to achieve energy efficiency and provide performance guarantees simul-

taneously; therefore, to tackle this shortcoming, we suggested an approach to achieve

time-stability. For performance guarantees, our suggested approach stabilizes (i) aggre-

gate workload distribution based on moment matching approximation and (ii) arrival rates

based on routing fractions to achieve time stable queue length distribution. We also derived

time-homogeneity constraints based on our approach and formulated an MIP problem to

optimally determine various decisions of sizing, assignments, routing, and speed scaling

to minimize energy costs while considering time-stability. In fact, we can obtain time-

stability of queue length distribution by matching sufficiently many moments based on the

suggested approach. We showed that we can also obtain reasonable time-stability for the

mean queue length by matching only the first and second moment. In addition, based on

time-stable queue lengths distribution, the waiting times of applications are easily con-

trolled by obtaining bounds on processing speeds. Our suggested approach indeed enables

us to provide performance guarantee on the mean waiting times, which is an extremely

useful measurement in terms of QoS for both users and service providers. To evaluate

our approach, we developed a simulation model and summarized results that support our
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claim. In the present study we do not focus on developing an algorithm to efficiently solve

the proposed MIP for the large-scale problem, we leave it for future work.

We acknowledge that our approach is purely based on historical information and fur-

ther work needs to be done before being implemented in practice. We believe that results

from this research can be used by practitioners to develop an initial cut for setting up

servers in their data centers. Then an appropriate analysis tailored to the type of applica-

tions hosted by the data center would need to be performed to determine the number of

stand-by servers to be positioned to handle unexpected surges in demand. Then, traffic can

be monitored and significant deviations from time-stable queue lengths in real time can be

used to trigger the use of stand-by servers. Further, one could develop control algorithms

to dynamically change server settings on the fly and use our proposed approach as the

baseline static setting. We propose to extend our study to develop an on-line algorithm for

such real-time control problems in the future.
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4. MEETING INELASTIC DEMAND IN SYSTEMS WITH STORAGE AND

RENEWABLE SOURCES*

4.1 Introduction

Renewable generation capacity is expanding rapidly to potentially reduce carbon diox-

ide emissions and dependence on fossil fuels. Being a source of non-dispatchable gener-

ation, renewable energy introduces variability into the energy portfolio, and further am-

plifies the difficulty of matching demand with supply in real time. Energy storage is an

environmentally friendly candidate that can provide flexibility to the system and mitigate

the impact of volatile renewable generation.

The focus of this paper is on the operation of electric storages operated by the elec-

tricity consumers who own distributed renewable generation and face time-varying and

stochastic electricity prices. Our motivation stems from the potential of electricity con-

sumers to own and use storage devices (e.g., major consumers like data centers [51] and

individual consumers who own PHEVs [52]), and from a recent study that shows consumer

ownership of storage can be socially beneficial [53]. We also note that there is a growing

trend for residential consumers and data centers to own distributed renewable generation

[40, 54].

In this paper, we consider a consumer of electricity with inelastic demand, i.e., in each

time period the consumer has to consume a certain (time-varying and possibly random)

amount energy that is independent of the price of electricity. Part of the demand can be

met by a renewable energy source (such as photo-voltaic (PV) solar panels) that is situated

locally and owned by the consumer. Note that renewable power supply is time-varying and

*Reprinted with permission from “Meeting inelastic demand in systems with storage and renewable
sources" by Soongeol Kwon, Yunjian Xu, and Natarajan Gautam, IEEE Transactions on Smart Grid, Ac-
cepted, Copyright c© 2016, IEEE.
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stochastic. Remaining demand (if any), beyond what the renewable source can supply, is

satisfied either from the grid or by an in-house Energy Storage Device (ESD) or both. Like

power demand and renewable supply, price for power from the grid is also time-varying

and stochastic.

In the last few years this problem has received a lot of attention. There exists a sub-

stantial literature on the operation of energy storage owned by renewable generators or

system operators. The joint scheduling of variable wind generation and energy storage

systems is studied in order to maximize the joint profit of wind farms and energy storage

systems, through a two-stage stochastic programming formulation [55], and a model pre-

dictive control (MPC)-based approach [56]. The authors of [57] derive an upper bound on

the marginal value of storage (at small installed capacities) for a transmission-constrained

power network. A few recent works study the optimal operation of energy storage devices

with an objective of minimizing the mismatch between the available renewable generation

and system load [58, 59, 60].

Another well studied application of energy storage is the use of storages to arbitrage

[61, 52]. A few recent works conduct a dynamic programming approach to derive the arbi-

trage value of electric storage, in the presence of dynamic pricing [62, 63]. Different from

the setting in the present paper, this aforementioned literature assumes that the operator of

energy storages (e.g., an arbitrager) has zero demand for electricity and puts no value on

its own electricity consumption.

There have been recent studies on the operation of consumer-owned ESDs. The au-

thors of [64] study the day-ahead scheduling of energy storage by analyzing a noncoop-

erative game among consumers. There is a growing literature that applies Lyapunov opti-

mization based on-line algorithms on the operation of consumer-owned ESDs [65, 66, 67].

These on-line algorithms are shown to be asymptotically optimal, as the storage capacity

increases to infinity. It is worth noting that these Lyapunov optimization based on-line

82



algorithms may fail to achieve asymptotic optimality if the storage efficiency is less than

1, i.e., if the storage has non-negligible self-discharging [68]. Unlike the Markov deci-

sion process (MDP), which is computationally complex and requires substantial statistical

information of the system dynamics, Lyapunov optimization based algorithms use simple

linear programs to make storage operation decisions based only on the current system state

(e.g., the current storage level). Our numerical results show that the algorithm proposed

in [66] performs well when the storage capacity is significantly larger than the maximum

charging/discharging rates, i.e., when it takes many hours to fully charge and discharge the

storage.

Closely related to the present paper, a few recent papers establish structural proper-

ties on optimal storage operation policies in a variety of MDP settings that incorporate

time-varying (and/or stochastic) cost and demand [69, 70, 71]. The main results of these

theoretic works are the existence of an optimal policy that can be characterized by (time-

varying and possibly state dependent) operational thresholds. The computation of these

thresholds usually becomes intractable for practical settings with stochastic renewable

generation and varying electricity prices, for example, in our MDP setting where time is

explicitly incorporated into the system state, and each time period lasts for only 5 minutes

(288 time periods per day).

We formulate the storage operation problem as an MDP with periodic cycles. The

parameters of the MDP are trained using a set of real data on electricity prices, solar gen-

eration, consumer demand. The main contribution of this paper is to implement and nu-

merically compare approaches ranging from Markovian models, to hybrid methods based

on statistics and optimization, to those that are based on Lyapunov optimization and re-

quire no historical information, under a variety of parameter settings on the storage size,

the level of solar generation, as well as the maximum charging/discharging rates.

We introduce and test two approximate dynamic programming (ADP) based heuris-
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tic policies, which usually yield the best performance among all tested heuristics. The

first ADP-based policy, which is referred to as One-step Look-ahead Algorithm (OLA),

chooses an action that minimizes the expected cost for the current and the next state. While

OLA always treats the next stage as the terminal stage, the second ADP-based heuristic

policy, which is referred to as One-step Roll-out algorithm (ORA), approximates the cost-

to-go at every possible next system state by solving a deterministic (certainty-equivalent)

optimization problem with future system stochasticity taking the expected value.

The insight we obtain from numerical experiments sheds some light on the effective-

ness of different types of heuristic policies and the value of storage under various parame-

ter settings. We summarize our key findings in the following.

1. Algorithms based on Lyapunov optimization (e.g., the one proposed in [66]) re-

quire minimum (almost negligible) computational efforts, and perform reasonably

well when the storage capacity is significantly larger than the maximum charg-

ing/discharging rates. For fast-charging storage devices that can be fully charged

within 2 hours, on the other hand, ADP-based algorithms (i.e., ORA and OLA)

significantly outperform the one proposed in [66].

2. The value of storage (VoS, which is measured as the net benefit obtained by the con-

sumer if she operates the storage according to an ADP algorithm) is much higher

under 5-minute real-time pricing than that under hourly pricing, due the higher vari-

ability in cost in the former case. VoS increases sharply with the storage capacity

only when the maximum charging/discharging rates grow in proportion to the stor-

age capacity. In other words, the value of storage does not increase appreciably with

increase in storage size, if the maximum charging/discharging rates remain fixed.

The rest of the paper is organized as follows. We describe our problem in Section 4.2.

In Section 4.3 we develop a probabilistic model and suggest ADP-based approaches to
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solve it. We consider other heuristic algorithms in Section 4.4. We compare and discuss

the performance of these algorithms in Section 4.5 by obtaining parameters using a real

training data set and testing them. Finally, we make some brief concluding remarks in

Section 4.6.

4.2 Problem Description

Before describing our model, we state a few key features of our problem setup. We

consider inelastic demand, which must always be met instantaneously in real time and

cannot be either postponed or cut back using incentives such as prices. We note that elec-

tricity consumption usually exhibits inelasticity in the short term [72], and that the setting

of inelastic demand is used in many related works, e.g., [58, 69]. The ESD has a finite

energy storage capacity. Price is non-negative and exogenous (not affected by the con-

sumer’s decisions). There are inefficiencies in charging and discharging, but no leakages

(i.e., self-discharging) in the ESD. This assumption of 100% storage efficiency (no self-

discharging) is reasonable since many popular types of modern batteries (e.g., Lead acid,

Sodium Sulphur (NaS), Lithium ion, and Vanadium redox batteries) have negligible self-

discharge (0− 5% per month) [73], and further, the effective planning horizon for storage

operation is usually no more than a week.

We now describe some notations used in this work (pictorially described in Fig. 4.1).

We consider a discrete-time model where time periods are indexed by t = 0, 1, . . .. The

amount of energy in the ESD at the beginning of period t is denoted by Ut (in kWh). The

stochastic uncontrollable variables are: Dt, the demand for energy in period t (in kWh);

St, the energy supply from renewable source in period t (in kWh); Ct, the cost in period t

for a unit of energy from grid (in $/kWh). Table 4.1 summarizes the acronyms used in this

paper.

There are constraints and inefficiencies in the ESD charging and discharging processes.
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Figure 4.1: Schematic representation of scenario and notation

Acronym Description
ESD Energy Storage Device
MDP Markov Decision Process
OLA One-step Look-ahead Algorithm
ORA One-step Roll-out Algorithm
TBA Threshold-Based Approximation algorithm
NOA Naive Opportunistic Algorithm
HWR The on-line algorithm proposed in Huang, Walrand and Ramchandran [66]

Table 4.1: Summary of acronyms

A maximum of K kWh of energy can be stored in the ESD at any time. The ESD can be

discharged and charged at a maximum rate of cdis and cchar (in kW) respectively. Also,

the ESD discharging and charging efficiencies are ηdis ≤ 1 and ηchar ≤ 1 respectively

(which we explain next). If ρ kWh of energy is used to charge the ESD in period t, then

the increase in ESD level Ut+1−Ut is ρηchar kWh. Likewise if ρ kWh of energy is needed

from the ESD, then the increase in ESD level Ut+1−Ut is−ρ/ηdis kWh. Next we describe

the decision variables under the control of the consumer. Let Xt, Yt and Zt be the energy

drawn (in kWh) from the grid, renewable source and ESD respectively at period t. While

Xt ≥ 0 and Yt ≥ 0 for all t, Zt can be positive or negative.

During every period t, given demandDt, renewable supply St, cost Ct and ESD charge

level Ut, we need to determine the supply from grid Xt, the draw from renewable source

86



Yt, and contribution from the ESD Zt so that the long-run expected total cost is minimized

subject to satisfying demand, staying within ESD capacities and other constraints such as

dynamics and non-negativity. As in [69, 70], we are interested in minimizing the total

expected discounted cost. This sequential decision making problem can be formulated

mathematically as follows,

Minimize(Xt,Yt,Zt) limT→∞
∑T

t=0 β
t E[CtXt] (4.1)

Subject to the following ∀t ∈ {0, 1, 2, . . .}, (4.2)

Xt + Yt + Zt ≥ Dt, (4.3)

0 ≤ Yt ≤ St, ψZt ≤ cdis, (4.4)

−ψmin{Zt, 0} ≤ cchar, (4.5)

Ut+1 − Ut = −max{Zt, 0}/ηdis − ηchar min{Zt, 0}, (4.6)

0 ≤ Ut ≤ K, Xt ≥ 0, (4.7)

where β ∈ (0, 1) is a discount factor, and ψ is a constant for time-unit conversion, i.e.

number of time units per hour (viz. since cchar is in kW and Zt in kWh, if length of period

t is 1 second then ψ = 3600). In constraint (4.3) we have implicitly assumed free disposal

of renewable generation. It is optimal to use the renewable generation first to meet the

demand, and then to charge the residual renewable generation to the ESD. If there is not

enough storage capacity to absorb the residual renewable generation, then it is possible

that Yt + Zt > Dt (note that Xt = 0 and Zt ≤ 0 in this case). For all t ≥ 0, Ct, Dt, and

St are modeled as discrete random variables, and all constraints in the above optimization

problem must hold for every trajectory of realized demand, renewable supply, and cost.

Remark 4. We can reduce the above problem to a 1-dimensional control in Xt or Zt by

realizing that we can let Yt = St and Zt =Dt -Xt - Yt, subject to the charging/discharging
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rate constraints [55, 65, 70]. However, for ease of presentation we will use all variables,

not just Xt or Zt.

Remark 5. It is shown in [65, 69, 71] that the optimal policy can be characterized by two

thresholds. Given the system state at period t, namely t, Dt, St, Ct, and Ut, the optimal

policy does the following: (i) if Ut lies between the two thresholds, do not charge or

discharge the storage; (ii) if Ut lies below the lower threshold, greedily charge the storage

up to this threshold; (iii) if Ut lies above the higher threshold, then discharge the storage to

fulfil the demand. The threshold structure of optimal policies will provide some guidance

on the design of heuristic policies (proposed in Sections 4.3.2 and 4.4). We finally note

that when ηchar = ηdis = 1 (no charging/discharging inefficiency), there exists a simpler

optimal policy with a single threshold [63].

4.3 MDP: Probabilistic Model with Cycles

In this section, we first introduce the way we fit real data into an MDP model, and then

discuss approaches to solve it. Analyzing the data described in [74, 40] and the NREL

labs, it is evident that demand, solar PV supply and cost are time-varying and stochastic.

However, it is also not unreasonable to assume that there are daily or weekly effects. In

other words, there is a deterministic variability as well as stochastic variability. To model

such a phenomenon we consider what we call probabilistic model with cycles.

Definition 1. An uncontrolled process {Vt}∞t=1 is cyclic with cycle length N if the joint

probabilistic distribution of {Vτ+`N}N−1
τ=0 is identical for all ` ∈ {1, 2, . . .}, where N is the

number of periods in a cycle. Each cycle lasts for T hours, and therefore has N = ψT

periods. �

Based on the above definition, we assume that {Dt}∞t=1, {St}∞t=1 and {Ct}∞t=1 are cyclic

with cycle length T (one cycle typically is the equivalent of one day). Further, we write
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down for all t ∈ {0, 1, . . .}, with n = (t mod N),

Dt = dnW
d
t + δn, St = snW

s
t , Ct = cnW

c
t + γn,

where {d1, d2, . . . , dN}, {δ1, δ2, . . . , δN}, {s1, s2, . . . , sN}, {c1, c2, . . . , cN} and

{γ1, γ2, . . . , γN}, are sets of deterministic constants while {W d
t }∞t=1, {W s

t }∞t=1, and

{W c
t }∞t=1, are stationary and independent discrete time Markov chains on state spaces Sd,

Ss, and Sc and transition probability matrices Pd, Ps, and Pc respectively.

One can think of {s1, s2, . . . , sN} as the power supplied by PV panels on a perfectly

sunny day while Ss is a continuous set of values between 0 and 1. The demand and cost

terms do not have such a nice interpretation and one would have to model them carefully

based on data.

Note that since Dt, St and Ct are continuous, so are W d
t , W s

t and W c
t . These random

parameters W d
t , W s

t and W c
t are assumed to be not correlated although Dt, St and Ct

might themselves be correlated due to the correlation in their deterministic components.

However, to model as an MDP, we need state spaces Sd, Ss, and Sc to be discrete. We

discretizeW d
t ,W s

t andW c
t using discrete random variables W̃ d

t , W̃ s
t and W̃ c

t each of which

take M + 1 different values. For example the aforementioned W s
t would be mapped from

a statespace Ss = [0, 1] to S̃s = [0, 1/M, 2/M, . . . , 1]. Thus W̃ d
t , W̃ s

t and W̃ c
t would

each be M + 1 state discrete time Markov chains with transition probability matrices Pd,

Ps, and Pc respectively. By some abuse of notations, for the rest of this paper we let Dt,

St, and Ct denote the corresponding discretized values of demand, renewable generation,

and cost at stage t.

In Section 4.5, we will use training data to estimate dn, δn, sn, cn and γn for all

n ∈ {1, . . . , N} as well as Pd, Ps, and Pc. However, for the rest of this section we

take a probabilistic approach assuming all the aforementioned parameters are known and
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formulate the system as an MDP.

We denote the system state at time t as a 5-tuple

x = {{t/N}+ 1,W d
t ,W

s
t ,W

c
t , Ut}, (4.8)

(where {t/N} denotes (t mod N)) with state space S given by the cartesian product

{1, 2, . . . , N} × S̃d × S̃s × S̃c × S̃u,

where S̃u is the discrete set of values between 0 and K that Ut can take. We note that

the constructed MDP is stationary, because the time dependency and correlations of con-

sumer demand and renewable generation are incorporated by including in the system state

a periodic Markov chain that describes time evolution.

Let the action at time t denote the amount of power to be supplied from the grid, i.e.

Xt, with action spaceA(x) corresponding to the set of all possible real numbers that lie in

the following interval

A(x) =
[ (
D{t/N} − S{t/N} −min{ηdisU{t/N}, cdis/ψ}

)+
,(

D{t/N} − S{t/N} + min
{
K−U{t/N}
ηchar

, cchar/ψ
})+ ]

,

(4.9)

where (·)+ = max{·, 0}. Here, the lower bound of the action space is the amount of

energy needed from the grid to fulfil the demand, when the storage is greedily discharged

for consumption, and the upper bound is the amount of energy needed to meet the demand

and to greedily charge the storage.

As noted in Remark 4, the energy drawn from renewable source and ESD at period t

is determined by Xt, i.e., Yt = St and Zt = Dt - Xt - Yt.

Given any x ∈ S, Xt ∈ A(x), and y ∈ S, we can compute the transition probability
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Pxy(Xt) using appropriate Kronecker products of Pd, Ps, Pc and other matrices of zeros

and ones (which are not explained due to space constraints). The next-stage storage level

is given by

Ut+1 = Ut −max{Zt, 0}/ηdis − ηchar min{Zt, 0}, (4.10)

where Zt = Dt − St −Xt.

The stage cost at time t is the product of the corresponding power cost in state i times

Xt ∈ A(x), CtXt.

By incorporating the time element into the state of the dynamic program, we have

indeed formulated a “stationary” MDP (the quotes are because the state transition is sta-

tionary from one cycle of N values to the next cycle, but not within a cycle). For a given

stationary policy which maps every possible system state x to a point in the action space

A(x), the long-run discounted total cost corresponds to the objective function of our opti-

mization problem defined in Section 4.2 (and also results in a feasible solution).

4.3.1 Exact MDP Solution

Note that the above MDP has a finite state-space and a finite action-space. There are

many methods to obtain the optimal action a ∈ A(x) at state x for all x ∈ S. We consider

a linear program (LP) based method. The following LP solves the optimal cost-to-go at

each state x, {J∗x}x∈S [75]:

Max{Jx}
∑

x∈S
cxJx

s.t. gx(a) + β
∑
y∈S

Pxy(a)Jy ≥ Jx, ∀x ∈ S, ∀a ∈ A(x),
(4.11)

where {cx}x∈S is a given vector with positive components, and gx(a) is the stage cost at

state x under action a. The optimal action to be taken at each state x can then be obtained
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by the following Bellman equation:

a∗ ∈ arg min
a∈A(x)

{
gx(a) + β

∑
y∈S

Pxy(a)J∗y

}
. (4.12)

In this manner it is possible to determine the optimal action in each state (in theory).

In summary, the MDP algorithm works as follows: given the demand, renewable gen-

eration, cost, and storage level at stage t, we first obtain the discretized values Dt, St, Ct

and Ut. Using those we compute the optimal action Zt prescribed by the MDP. Then we

obtain the actions Yt = St and Xt = max(Dt − St − Zt, 0).

We note that an optimal solution to the LP formulated in (4.11) must exist. However in

practice, one could encounter difficulties known as the curse of dimensionality. The exact

MDP can be solved (especially by packages such as MATLAB) only when the action

space is small, ηchar = ηdis = 1, and Ct, Dt and St belong to a small discrete set for all

t ∈ {1, . . . , N}. In the next subsection, we adopt a common procedure usually referred to

as Approximate Dynamic Programming (ADP) to deal with the curse of dimensionality.

4.3.2 Approximate MDP Solution

In this section, we introduce two simple ADP-based algorithms that will be tested

against other heuristics as well as the exact MDP solution in Section 4.5. An effective

way to reduce the computation required by a dynamic program is to truncate the time

horizon and at each stage make a decision based on look-ahead of a small number of stages

[76, 77]. In particular, we will focus on the simplest ADP algorithms that look only a single

stage ahead. Numerical results in Section 4.5 demonstrate that even these simplest ADP

algorithms usually (significantly) outperforms Lyapunov optimization based algorithms.

It is worth noting that, however, even these simplest ADP algorithms require much more

computation than Lyapunov optimization based algorithms.
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According to the simplest ADP-based policy, which is referred to as One-Step Look-

ahead algorithm (OLA) in this paper, given the current state we determine the best action

so that the expected cost for this state and the next state is minimized. Formally, given

the current system state x, the algorithm chooses an action Xt ∈ At that minimizes the

following cost:

CtXt +
∑
y

βPxy(Xt) · Ct+1 · (Dt+1 − St+1 − ηdisUt+1)+ , (4.13)

where (·)+ = max{·, 0}, and y is the system state at time t+1 that includes the parameters

Ct+1, Dt+1, St+1 and Ut+1. In this myopic version of one-step look-ahead policy, the stage

t + 1 is treated as the terminal stage, and therefore the policy fully discharges the storage

to fulfill the demand at stage t + 1. This would result in a stage cost at time t + 1 of

Ct+1 (Dt+1 − St+1 − ηdisUt+1)+.

A natural way to improve OLA is to replace the myopic stage cost at state y by some

approximated cost-to-go at this state. Formally, given the current system state x, a One-

step Roll-out algorithm (ORA) chooses an action Xt ∈ At that minimizes the following

cost:

CtXt +
∑

y∈S
βPxy(Xt) · J̃y, (4.14)

where J̃y is an approximation of the cost-to-go at system state y, Jy. We note that if the

approximation is exact, i.e., if J̃y = Jy, then the above Bellman recursion must yield the

optimal action at the current system state x.

The OLA simply treats stage t+ 1 as the terminal stage and let J̃y be the stage cost at

time t+ 1 in state y. The ORA, on the other hand, solves a certainty equivalent optimiza-

tion problem to approximate the cost-to-go at possible next-stage system states, where all
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random variables take the expected value, given that the system state at time t+ 1 is y:

J̃y = Minimize{X̄τ ,Ȳτ ,Z̄τ ,Ūτ}
t+N∑
τ=t+1

βτ−t−1E[Cτ | y] · X̄τ

Subject to ∀τ ∈ {t+ 1, t+ 2, . . . , t+N},

X̄τ + Ȳτ + Z̄τ ≥ (4.15)

mathbbE[Dτ | y],

0 ≤ Ȳτ ≤ E[Sτ | y], ψZ̄τ ≤ cdis, (4.16)

−ψmin{Z̄τ , 0} ≤ cchar,

Ūτ+1 − Ūτ = −max{Z̄τ , 0}/ηdis − ηchar min{Z̄τ , 0},

0 ≤ Ūτ ≤ K, X̄τ ≥ 0,

where Ūt+1 is determined by the system state y, E[· |y] denotes conditional expectation,

and the minimization is taken over the variables X̄τ , Ȳτ , and Z̄τ .

Certainty equivalent control is a simple and intuitive way to make sequential de-

cisions under uncertainty. It is shown to be optimal for Linear-Quadratic-Gaussian

(LQG) problems [78]. Certainty equivalence is the logic underlying the current prac-

tice of unit commitment (which is a deterministic optimization problem with random de-

mand and renewable generation taking the expected value), and is proposed for the eco-

nomic/environmental dispatch of power systems with intermittent renewable generation

[79]. The certainty equivalent approximation results in significant computational savings

by avoiding computing the exact cost-to-go at stage t + 1, and on the other hand, makes

the ORA suboptimal.

Since the system state space is continuous (due to the continuous storage level), given

the current system state x, it is impossible to evaluate the cost-to-go of every possible state

y at stage t + 1 (by solving the certainty equivalence optimization problem in (4.16)). In
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our simulation, we therefore discretize the space of demand, renewable supply, and cost at

stage t+1, and restrict our attention to a finite set of actionsXt. Formally, given the current

system state x, ORA chooses an action Xt from a finite set of actions Ā(x) ∈ A(x), in

order to minimize

CtXt +
∑

y∈S̄(x)

βPxy(Xt)∑
y∈S̄(x) Pxy(Xt)

J̃y, (4.17)

where S̄(x) is a finite subset of S that includes the discretized states of demand, re-

newable supply, and cost, as well as a finite set of storage levels Ut+1 resulting from

the finite set of actions in Ā(x) (according to Eq. (4.10)). In our simulation, the dis-

cretized states (of demand, renewable supply, and cost) are uniformly distributed in a

compact set that is estimated from real data. The set of actions Ā(x) explored by ORA

at state x includes the following: (i) charge the battery only if there is surplus in renew-

able generation, i.e., Xt = (Dt − St)
+, (ii) greedily discharge the battery to meet the

demand, i.e., Zt = min
{
cdis/ψ, ηdisUt, (Dt − St)+}, (iii) greedily charge the battery,

i.e., Zt = −min
{
cchar/ψ, (K − Ut)+ /ηchar

}
, and several additional actions that are uni-

formly distributed between actions (ii) and (iii).

It is worth noting that unlike MDP, ORA does not discretize the storage level in priori.

Under ORA, the (finite) set of next-stage storage levels in S̄(x) is determined by the set of

actions Ā(x) as well as the current states Ut, Dt, and St.

4.4 Other Heuristics

As a one-step rollout policy on top of certainty equivalent control, ORA uses the

Markovian structure of our model (via the state transition probability from stage t to t+1).

To assess how our key algorithm ORA performs with real data, we compare it against

other certainty equivalence based algorithms that use neither the discrete framework nor

the Markovian structure. For that, in this section we leverage upon existing approaches to

develop two heuristic policies: TBA (threshold-based approximation) algorithm and NOA
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(naive opportunistic algorithm).

For both the heuristic TBA and NOA algorithms, we first solve the following (uncon-

ditioned) certainty equivalence (UCE) problem to obtain the variables X̂τ , Ŷτ , Ẑτ , and Ûτ ,

for τ = 1, 2, . . . , N .

UCE: Minimize{X̂τ ,Ŷτ ,Ẑτ ,Ûτ}
∑N

τ=1 β
τ−1 E[Cτ ]X̂τ ,

Subject to ∀τ ∈ {1, . . . , N},

X̂τ + Ŷτ + Ẑτ ≥ E[Dτ ],

0 ≤ Ŷτ ≤ (4.18)

mathbbE[Sτ ], (4.19)

ψẐτ ≤ cdis,

−ψmin{Ẑτ , 0} ≤ cchar,

Ûτ+1 − Ûτ = −max{Ẑτ , 0}/ηdis − ηchar min{Ẑτ , 0},

0 ≤ Ûτ ≤ K,

X̂τ ≥ 0,

where ÛN+1 = Û1.

Heuristic TBA: Given the state at time t, namely, ({t/N}, Dt, St, Ct, Ut), we deter-

mine Zt so that at time t + 1, Ut+1 is as close to Û{t/N}+1 by appropriately charging or

discharging. The goal is to reach threshold level Û{t/N}+1 in the next time. Thus TBA is

as follows (with n = {t/N}):

if Ut < Ûn+1, Zt = −min

{
Ûn+1 − Ut
ηchar

, cchar/ψ

}
else if Ut = Ûn+1, let Zt = 0,

else Zt = min
{
ηdis(Ut − Ûn+1), cdis/ψ

}
. Then, Xt = max {Dt − St − Zt, 0} and
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Yt = St.

Heuristic NOA: Given the state at time t, namely, ({t/N}, Dt, St, Ct, Ut), we adopt

a naive (but intuitive) strategy – if Ct is cheap, charge the ESD as much as possible;

and if Dt is much higher than St, discharge as much as possible; otherwise do what the

certainty equivalence model suggests. For that we use E[CN ] as the grand cost (computed

over entire cycle N ), and V ar[CN ] the corresponding grand variance; also φc and φ are

parameters to be tuned. We note that both parameters φc and φ are non-negative and

bounded from the above. Since NOA is computationally simple, one can use the training

data to test the performance of NOA under a finite set of feasible parameters φc and φ. It

leads to the following NOA (with n = {t/N}):

if Ct < E[CN ]− φc
√
V ar[CN ], then

Zt = −min {(K − Ut)/ηchar, cchar/ψ} otherwise,

if Dt − St > E[Dn]− E[Sn] + φ
√
V ar[Dn] + V ar[Sn],

Zt = min
{
Dt − St − X̂n, Utηdis, cdis/ψ

}
else

(i.e. Dt − St < E[Dn]− E[Sn] + φ
√
V ar[Dn] + V ar[Sn])

Zt = min
{

max(St −Dt, Ẑn), cchar/ψ, (K − Ut)/ηchar
}

. Then Xt =

max {Dt − St − Zt, 0} and Yt = St.

Heuristic HWR: Before ending this section, we revisit the algorithm proposed in

Huang, Walrand and Ramchandran [66], which is referred to as HWR in this paper. The

algorithm will be numerically tested in the next section. It is a remarkable online algo-

rithm that is based on Lyapunov optimization. The algorithm proposed in [66] does not

use any historical information and makes (myopic) decisions based only on current state

information (such as Dt, St, Ct and Ut).

We now briefly outline the algorithm HWR. At each stage t = 0, 1, . . ., the algorithm
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solves the following LP:

Min(αHt ,β
H
t ,γ

H
t ,δ

H
t ) Hc

t β
H
t −Hs

t γ
H
t +Hr

t δ
H
t

Subject to βHt + δHt ≤ cchar,

γHt ≤ cdis,

δHt ≤ max(St −Dt, 0), (4.20)

αHt + γHt = max(Dt − St, 0),

αHt ≥ 0, βHt ≥ 0, γHt ≥ 0, δHt ≥ 0,

where Hc
t = ηchar(Ut − θ) + Ct/ε, Hs

t = (Ut − θ)/ηdis + Ct/ε, and Hr
t = (Ut − θ)/ηdis,

with θ = K − ηcharcchar/ψ, and

ε = supu≥0Cu/
[
ηchar(θ −min(supu≥0Du, cdis)/(ηdisψ))

]
.

The parameters (Hc
t , H

s
t , H

r
t ) are designed to approximate the total operational cost. The

relation between the decision variables of HWR and those used in this paper is

Xt = αHt + βHt , Zt = γHt − βHt − δHt .

For t+ 1 the algorithm updates the storage level as follows:

ψUt+1 = ψUt − γHt /ηdis + ηchar(β
H
t + δHt ).

It is shown in [66] that HWR achieves asymptotic optimality as the capacity of ESD K

grows to infinity (when θ is big and ε is small). In the next section we will numerically

compare the performance of HWR against the MDP and other heuristic policies in a setting
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with finite storage capacity.

4.5 Numerical Experimentation and Results

In Section 4.5.1, we compare the performance and computational time of heuristic

algorithms against MDP, under different sizes of discretized state spaces (for demand,

solar generation, and cost). Our numerical results show that compared to MDP, the ORA

algorithm requires much less computational time and only slightly increases the total cost

(by less than 2%). Motivated by the excellent performance of ORA, in Section 4.5.2

we benchmark the performance of OLA, HWR, TBA and NOA against ORA under a

variety of parameter settings on storage capacity, charging/discharging rates, and average

solar generation. In Section 4.5.3, we numerically explore the value of storage and solar

generation under the same set of parameter settings considered in Section 4.5.2.

Before representing the numerical results, we would like to briefly discuss the data we

obtained and the way we train our algorithms. Our main purpose was to get a representa-

tive sample that adequately captures the deterministic and stochastic variability over time.

All algorithms are implemented in Matlab R2014a on an Intel Core i7-3740 2.70GHz PC

with 16GB memory.

For 5-minute granularity we obtained 26 days of demand, solar genera-

tion and cost data in a single month. In that spirit we collected solar PV

supply data from NREL (http://www.nrel.gov/midc/), 5-minute electricity prices

from New England ISO (http://iso-ne.org/), and demand data from households

(http://www.doc.ic.ac.uk/ dk3810/data/). Note that for 5-minute granularity we have

ψ = 12. We used 16 days of collected data to train the model, i.e., estimate/fit param-

eters in the MDP model (described in Section 4.3) and the NOA algorithm (described in

Section 4.4). We then use real data in the 10 remaining days (from the original 26 days)

for testing. The length of the truncated horizons used in our simulation is long enough
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to evaluate the steady-state performance of the tested heuristic policies, with a discount

factor β = 0.99.

For 1-hour granularity we obtained 5 years of 3 months’ data of demand, solar genera-

tion and cost in June, July, and August of 2010-2014. We collected demand and (day-ahead

hourly) price data from PJM (http://www.pjm.com/markets-and-operations/energy.aspx).

For solar generation, we collected measurements of solar irradiance under the coverage of

PJM, for the same 15-month period (http://www.nrel.gov/midc/bsc/). For 1-hour granular-

ity we have ψ = 1. We used the first 12 months of collected data to train the model, and

use real data in the 3 remaining months for testing.

To estimate dt and δt for any t ∈ [1, N ], we use D(1, t), D(2, t), . . ., D(16, t), the

realized demands in 16 days, to compute δt = mini[D(i, t)] and dt = maxi[D(i, t)] − δt.

Likewise for ct and γt. In case of supply st, the minimum value is zero. Then for the

DTMCs {W̃ d
t }∞t=1, {W̃ s

t }∞t=1, and {W̃ c
t }∞t=1, we first select the number of states M + 1.

The state space of these three DTMCs is a set of discrete values 0, 1/(M −1), 2/(M −1),

. . ., 1. Then we estimate the elements of Pd, Ps, and Pc as the respective frequency of

transition based on the 16 days’ data (for the 5-min case) and the 12 months’ data (for the

1-hour case). For all the 1-hour test cases, we use the weekdays’ and the weekends’ data

(of demand and cost) to train two different transition matrices for weekdays and weekends,

respectively. The objective is to capture the weekly fluctuation of demand and electricity

prices through the constructed MDP model. For all the 1-hour test cases, each algorithm

(MDP, ORA, OLA, HWR, TBA, NOA) makes storage operation decisions based on the

corresponding transition matrix (of demand and cost) in weekdays and weekends.

For MDP, we consider 13 discretized actions that are uniformly distributed in the con-

tinuous action space expressed in Eq. (4.9). Given the current system state, ORA considers

a finite number of possible next system states resulting from a set of 7 actions (note that the

choice of these 7 actions depends on the current system state Ut, Dt and St (cf. the discus-
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sion at the end of Section 4.3)), and chooses the action that minimizes the approximated

cost-to-go. For the data set we use, increasing the number of explored actions (beyond 7)

leads to negligible improvement in the performance of ORA. The OLA algorithm takes

into account the same set of 7 actions as the ORA algorithm. The other three heuristic

polices (HWR, TBA, and NOA), on the other hand, do not discretize the action space. For

all the numerical experiments we use cchar = cdis and η = ηchar = ηdis.

4.5.1 Benchmarking Heuristics against MDP

In this subsection, we will 1) compare the performance of MDP and ORA under the

daily model (where a single transition matrix is trained using real data) and the weekly

model (where two different transition matrices are trained using weekday’s and weekends’

data, respectively), and 2) benchmark the performance and computational time of heuristic

algorithms against MDP under different sizes of discretized states.

All numerical results presented in this subsection have a 1-hour interval. The two

representative parameter settings considered in this subsection are:

1. η = 1, K = 600 kWh, cchar = cdis = 300 kW, K/E[Dt] = 1.0572, E[St]/E[Dt] =

0.5357;

2. η = 0.85, K = 800 kWh, cchar = cdis = 100 kW, K/E[Dt] = 2.17, E[St]/E[Dt] =

0.468.

For MDP, we use 7 discretized storage levels under the first parameter setting, and 9

discretized storage levels under the second parameter setting. (Note that the other heuristic

policies do not discretize storage level.)

In Fig. 4.2 and 4.3 we present the total discounted cost resulting from MDP and ORA

under the daily model and weekly model. We note from these figures that the incorporation

of weekly fluctuation mildly improves the performance of MDP and ORA (by about 1 −
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Figure 4.2: Total cost resulting from MDP under the daily and weekly models
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Figure 4.3: Total cost resulting from ORA under the daily and weekly models

2.5%). We will therefore apply the weekly model for MDP and ORA in all our 1-hour

tests throughout the section. Here we do not include the comparison for OLA because

incorporating weekly fluctuation leads to negligible performance improvement for OLA.

In Fig. 4.4 and 4.5 we compare the total discounted cost resulting from all algorithms

under different sizes of the discretized states (of demand, solar generation, and cost). We

observe from Fig. 4.4 that while the performance of MDP is slightly improved as the

number of discretized states increases, the performance of other heuristic policies are not
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Figure 4.4: Cost comparison under the weekly model and various sizes of discretized
states
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Figure 4.5: Fractional cost savings comparison under the weekly model and various sizes
of discretized states

sensitive to the size of state space. We observe from Fig. 4.5 that ORA achieves the

best performance: the gap between ORA and MDP is almost always less than 2% (except

in the (6, 6, 6) case under the second parameter setting). OLA is the second best, and

results in about 1− 4% more cost than MDP. HWR achieves similar performance as OLA

under the second parameter setting, but leads to much higher cost than OLA under the first

parameter setting. This is in correspondence with the observation in Section 4.5.2: HWR
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(3,3,3) (4,4,4) (5,5,5) (6,6,6)
MDP 25.72 345.48 4516.00 21880
ORA 14.46 22.57 45.3 63.08
HWR 2.023 2.023 2.023 2.023
TBA 0.001 0.001 0.001 0.001
NOA 0.0016 0.0016 0.0016 0.0016
OLA 0.069 0.07 0.071 0.073

Table 4.2: Computational time under the first parameter setting (in second)

(3,3,3) (4,4,4) (5,5,5) (6,6,6)
MDP 57.76 1376.6 29671 117081
ORA 11.07 21.89 65.72 94.5
HWR 1.834 1.834 1.834 1.834
TBA 0.001 0.001 0.001 0.001
NOA 0.0014 0.0014 0.0014 0.0014
OLA 0.072 0.0908 0.0962 0.1123

Table 4.3: Computational time under the second parameter setting (in second)

performs well when the number of hours needed to fully charge the storage, K/cchar, is

big. We have implemented the ORA and OLA algorithms with much larger state space

(up to (40, 40, 40)); the performance of both algorithms remains almost the same as the

size of state space increases from (6, 6, 6) to (40, 40, 40).

In Table II and III we compare the computational time of all algorithms for the schedul-

ing of one-week storage operation. While the size of discretized states significantly

(mildly) increases the computational time of MDP (ORA, respectively), it has little in-

fluence on the computational time of the other heuristic algorithms. We note that the

computational time of MDP is much higher under the second parameter setting, mainly

because of the high value of K/cchar that leads to more discretized states of storage level.

It is also worth noting that ORA takes much less computational time than MDP in all

cases, and that somewhat surprisingly, OLA is faster than HWR.
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In summary, ORA is comparable to MDP: with problem sizes of (3, 3, 3) and (4, 4, 4),

it leads to 0.2− 2% more total cost than MDP, and is faster than MDP in the (4, 4, 4) case.

OLA leads to 1 − 4% more total cost than MDP, and requires negligible computational

time. HWR achieves similar performance as OLA under the second parameter setting

withK/cchar = 8, and leads to significantly higher cost than OLA under the first parameter

setting with K/cchar = 2.

4.5.2 Benchmarking Heuristics against ORA

Here we compare the five heuristics ORA, OLA, HWR, TBA and NOA but without

MDP. Motivated by the excellent performance of ORA (cf. Section 4.5.1), we compare the

other four algorithms against ORA in the next set of experiments. In addition we let stor-

age charging/discharging efficiency η = 0.85, and consider both 1-hour/5-min intervals

(corresponding to N = 24 and N = 288, respectively). We vary the storage capacity K

and scale the average PV supply E[St] based on the average demand E[Dt]. While we will

consider variations, we will mainly consider the baseline of: Hours of “average” demand

in storage, i.e. K/E[Dt] as 2.17; Hours to fully charge/discharge, i.e. K/cchar as 8; Ratio

of average PV supply to average demand, E[St]/E[Dt], as 0.468.

We first estimate the state transition matrices (of demand, solar generation, and cost)

using training data. We tried various alternatives for size of the state space. We chose

number of states in demand, renewable generation, and cost Markov chain to be (4,4,4).

Incidentally, when we increased the number of states to (10,10,10), the results approxi-

mately remain the same.

The simulation results are described in Fig. 4.6-4.9 where we compare the five heuris-

tic algorithms with the y-axis denoting (b−a)/a where a is the minimum total discounted

cost (that is obtained by the ORA algorithm) and b is the corresponding heuristic’s total

discounted cost. While the left side displays correspond to the 1-hour case, the right side
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Figure 4.6: Heuristics’ performance over varying storage capacity (via K/E[Dt]) keeping
cchar constant
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Figure 4.7: Heuristics’ performance over varying storage capacity (via K/E[Dt]) keeping
K/cchar = 8

figures are based on 5-min real data.

For the testing we letU0 = K/2, i.e., the initial storage level is 50% of storage capacity.

For NOA, we selected tolerance parameters φc = φ = 0.25 by testing several options.

Interestingly the 0.25 value is robust and the solutions do not change with much higher or

lower values of φ. We observe from these four figures that for most all 1-hour cases, the

ADP-based OLA algorithm performs slightly worse than ORA, and yields the minimum
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Figure 4.8: Heuristics’ performance over varying hours to completely charge/discharge
storage (via K/cchar) keeping K fixed
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Figure 4.9: Heuristics’ performance over varying ratio of average solar supply to average
demand (via E[St]/E[Dt])

total discounted cost among the four heuristics. In many 5-minute cases, however, OLA

algorithm performs worse than some other heuristics (e.g., TBA). This is intuitive since

OLA always treats the next stage (the next five minutes in 5-minute case) as the terminal

stage and completely ignores the system dynamics after the next stage.

In Fig. 4.6, we fix the maximum charging rate cchar and vary the storage capacity K.

Note that the ratio K/cchar is 4, 8, 16, and 32 hours for the four cases, respectively. We
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observe from Fig. 4.6 that HWR performs reasonably well in all cases, and yields 2% −

13% more cost than ORA. Also, we observe that TBA achieves the minimum cost (among

the four heuristics) in the 5-minute case. In Fig. 4.7, we fix the ratio K/cchar = 8 and

vary the storage capacity K. This is a more practical setting since the maximum charging

rate usually grows (nearly) proportionally to the storage capacity. The performance gap

between ORA and the four heuristics increases with storage capacity.

In Fig. 4.8 we fix the storage capacity K and vary the capacity to charging rate ratio

K/cchar. The parameter setting in our simulation is motivated by the development of

fast-charging batteries [80]. For example, the lithium-ion titanate batteries are capable of

recharging to 95% of full capacity within approximately ten minutes [80]. We observe

from Fig. 4.8 that the performance of HWR heavily depends on the ratio K/cchar: the

performance gap between HWR and ORA is mild when this ratio is larger than 8 (i.e., it

takes more than 8 hours to fully charge the storage); however, for fast-response storage

devices with K/cchar ≤ 2, both ORA and OLA significantly outperform HWR.

Finally, in Fig. 4.9, we vary the ratio of average solar supply to average demand

(E[St]/E[Dt]) while fixing the other parameters. The parameter setting is motivated by the

fast growing installment of solar panels on the consumer side. We note that as the solar

penetration increases, ORA still outperforms the other four heuristics (including OLA),

especially in the 5-minute case.

4.5.3 The Value of Storage and PV

There are costs to install a solar PV system and/or an ESD. A natural question to ask is

whether the PV and/or ESD installation was worth it. For that we consider two parameters:

value of storage and value of PV and storage. We use the same test data as the previous

sub-section and policy based on ORA. In Fig. 4.10-4.13, the y-axis denotes (a − b)/a

where b is the total discounted cost using both PV and storage, while a in the left bars
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Figure 4.10: Value of storage/PV over varying storage capacity (via K/E[Dt]) keeping
cchar constant
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Figure 4.11: Value of storage/PV over varying storage capacity (via K/E[Dt]) keeping
K/cchar = 8

correspond to the (optimal) use of only PV (we note that without storage, the optimal

operation of PV is trivial: simply use as much solar generation as possible to fulfill the

current demand), and a in the right bars correspond to the use of neither PV nor storage.

The left bars present the fractional cost savings due the operation of storage, and can

be therefore viewed as an illustrator on the value of storage. Similarly, the right bars

illustrates the value of storage and PV. We observe from Fig. 4.10-4.13 that the value
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Figure 4.12: Value of storage/PV over varying hours to completely charge/discharge stor-
age (via K/cchar) keeping K fixed
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Figure 4.13: Value of storage/PV over varying ratio of average solar supply to average
demand

of storage is much higher in 5-minute cases, due to the higher variability in costs under

5-minute real-time pricing than that under hourly pricing.

As shown in Fig. 4.10, the values of storage and PV do not increase appreciably with

increase in storage size (without increasing rates of charging/discharging). We observe

from Fig. 4.11 that the value of storage increases sharply with the storage capacity K,

when the maximum charging rate cchar grows in proportional to K. We observe from Fig.
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4.12 that the values of storage and PV increase with the maximum charging/discharging

rate of the storage. Fig. 4.13 shows that the values of storage and PV increase with average

solar PV generation.

4.6 Conclusion

Although deceptively easy to state, the problem of determining energy mix from the

grid, renewable source and storage device is fairly complex to solve. We implemented six

policies MDP, ORA, OLA, HWR, TBA and NOA, and compared their performance using

real data of energy demand, renewable generation, and electricity prices.

The following were our findings.

1. ORA outperforms the other four heuristics in all cases, and at the same time, requires

the most computing power among the five heuristics. For 1-hour cases, ORA results

in 0.2−2% more total cost than MDP, and OLA leads to 1−4% more total cost than

MDP. For many 5-minute cases, however, ORA significantly outperforms OLA; this

is intuitive, since OLA always treats the next stage (the next five minutes in this

case) as the terminal stage and completely ignores the system dynamics after the

next five minutes. TBA performs well in some 5-minute cases. Tuning tolerance

and coefficient parameters had virtually no effect on NOA.

2. HWR is an easily implementable algorithm that needs no training. Its perfor-

mance to a large extent depends on the number of hours to fully charge storage (i.e.

K/cchar). It achieves almost the same total discounted cost as ORA when K/cchar

is large (e.g. > 8). On the other hand, the two ADP-based algorithms, ORA and

OLA, significantly outperform HWR for the case with K/cchar ≤ 2.

3. Under the one-step roll-out algorithm (ORA) and hourly pricing, value of storage is

not too high with K/cchar = 8. Value of storage is much higher in 5-minute cases,
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because the cost is much more fluctuating under 5-minute real-time pricing than

that under hourly pricing. Value of storage would improve greatly if the storage size

increases along with speed of charging and discharging. As solar penetration goes

higher, storage has more value.
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5. OPTIMAL DAY-AHEAD POWER PROCUREMENT WITH RENEWABLE

ENERGY AND DEMAND RESPONSE*

5.1 Introduction

In recent years, many industries have witnessed a tremendous increase in energy con-

sumption that has resulted in enormous expenses as well as carbon pollution. In 2013,

U.S. data centers, one of the today’s fastest-growing industries, consumed an estimated 91

billion kilowatt-hours of electricity, which is equivalent to the annual output of 34 large

(500-megawatt) coal-fired power plants. Moreover, data centers energy consumption is

projected to increase to roughly 140 billion kilowatt-hours annually by 2020, costing $13

billion annually in electricity bills and emitting nearly 100 million metric tons of carbon

pollution per year [81]. For this reason, many energy-intensive industries are striving to re-

duce energy cost and to have a positive impact on the environment. In this situation, renew-

able energy is considered as a promising solution for them to be energy-efficient. In other

words, industries have an opportunity to utilize renewable energy to partially or fully serve

their demand load to curtail expenses for procuring energy. In fact, U.S. renewable elec-

tricity has grown up to 13.5% of total electricity, and 7.4% of energy consumption in the

industrial sector is currently met by renewable energy [82]. In addition, the amount of in-

dustrial energy consumption saved by renewable energy has been continuously increasing,

and this trend is expected to continue in the future. In addition, from the energy-consumers

perspective, there exists an opportunity for industries to adjust purchase and consumption

of energy in response to time-varying price in the energy market. Traditionally, power

consumers use electricity with a flat rate offered by utility companies or energy market for

*Reprinted with permission from “Optimal Day-Ahead Power Procurement with Renewable Energy
and Demand Response" by Soongeol Kwon, Lewis Ntaimo, and Natarajan Gautam, IEEE Transactions on
Power Systems, Accepted, Copyright c© 2016, IEEE.
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Figure 5.1: Demand-side power procurement

their usage. However, in recent years, it is becoming common for many utilities to offer

day-ahead and real-time prices for smart pricing [83], and some independent system oper-

ators, such as ERCOT and California ISO, have recently allowed consumers to purchase

electricity directly form the market while providing price information. Therefore, indus-

tries get a chance to procure energy by participating in the market while being fully aware

of the time-varying price, and they may have an opportunity to determine the amount of

their energy consumption depending on the electricity price. This opportunity is called de-

mand response. Moreover, considering an opportunity to use renewable energy, demand

response can also be successfully implemented to utilize renewable energy by consuming

more renewable energy when it is available. In addition, by applying demand response

to energy procurement, energy storage can be used to mitigate fluctuation of intermittent

renewable supply and volatile electricity price. Data centers are one of promising applica-

tion areas for demand response, since they have manageable and flexible workloads [84]

and are currently using renewable energy to supply power demand by installing on-site

renewable generation facility or make contracts with solar or wind farms [85]. Applying

demand response in demand-side power system management is studied under the concept

of “Virtual Power Plant" [86], [87], and [88]. To realize the aforementioned oppor-
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tunities, practitioners are strongly encouraged to develop new technologies for planning,

design, control, and operations of power systems against variability and uncertainty in

renewable energy and electricity price. In other words, since the conventional systems

and techniques have not been designed while considering integration of renewable energy

and demand response into power system operations, intermittent renewable generation

and volatile electricity price challenge power system engineers’ decision making. In this

context, current research in the power system has been focused on integrating optimization

techniques to yield reliable and robust energy generation and procurement. It is anticipated

that application of optimization techniques will have a significant impact on planning, de-

sign, control, and operations of power systems. For these reasons, this study focuses on

developing a decision-making methodology for demand-side power procurement with re-

newable energy, storage, and demand response using a stochastic optimization technique.

Specifically, this study considers a two-stage power procurement composed of day-ahead

and real-time procurements. Note that there is a body of literature on demand-side power

procurement based on Markov decision process, [65], [69], [71], [89], [4], and Lyapunov

optimization [51], [66], [90], [91]. While all of the aforementioned literature focuses on

modeling the sequential stochastic control problem and designing optimal policy tailored

to real-time power procurement, this study proposes a two-stage stochastic optimization

problem tailored to day-ahead power procurement and suggests a solution approach based

on Benders decomposition. To the best of our knowledge, the two-stage stochastic op-

timization approach for day-ahead power procurement problem with renewable energy,

storage, and demand response has not been addressed in the literature. Thus, this study

would be a good starting point to study demand-side power procurement problem based

on the framework of two-stage stochastic program. The rest of this paper is organized as

follows: Section 5.2 gives a detailed description and assumption of the proposed two-stage

power procurement problem and formulates the problem as a mathematical model. Sec-
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tion 5.3 introduces an algorithm based on Benders decomposition and suggests strategies

designed to improve the algorithm. Section 5.4 analyzes the results obtained by numerical

experiments, and Section 5.5 ends the paper with concluding remarks and future research

directions.

5.2 Problem Description

5.2.1 Scenario and Assumption

Based on scenario considered in this study, consumer’s power demand can be met

by the following sources: (i) purchase from energy market, (ii) renewable energy, and

(iii) discharge from energy storage as depicted in Figure 3.1. In practice, energy market

includes day-ahead and real-time markets that work together as follows:

• Day-ahead energy market lets participants commit to buy electricity one day before

the operating day to help avoid price volatility.

• Real-time energy market allows participants to buy electricity during the course of

the operating day to balance mismatch between day-ahead purchase commitment

actual demand load.

Considering the operations of energy market, we consider a two-stage framework that

consists of day-ahead and real-time power procurement, and propose day-ahead procure-

ment problem. Based on a two-stage stochastic program, the proposed day-ahead power

procurement problem is designed so that the first-stage problem determines day-ahead

purchase commitment (here-and-now decisions) based on the forecasted demand load and

renewable supply, while the second-stage determines the real-time purchase (recourse de-

cisions) to adjust the mismatch between purchase commitments and the actual power de-

mand and renewable supply. We assume that day-ahead electricity price, forecasted power

demand and renewable supply are known in the first-stage, but real-time electricity price,
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actual power demand and renewable supply are time-varying and stochastic. Note that

forecasting power demand and renewable supply are out of the scope of this study. In ad-

dition, we consider energy storage operations with finite capacity, maximum charging and

discharging rates, and inefficiency in charging and discharging. In fact, the frequent cycle

of charging or discharging causes the degradation of the energy storage in terms of lifetime

and efficiency. However, this study does not consider the degradation since it is assumed

to be negligible within one-day operations. Moreover, we implement demand response

into the proposed day-ahead power procurement so that consumer assigns time periods

in day-ahead and allows demands to be shifted in real-time at assigned time periods, but

should be met by the deadline in real time operation. According to the proposed two-

stage power procurement framework, based on day-ahead purchase commitment, power

loss (i.e. procured power that could not be used to neither serve power demand nor charge

storage) might be occurred depending on actual demand load and renewable generations.

In our study, we define a penalty cost charged for power loss to ensure that both day-ahead

purchase commitment and renewable energy are fully used in real-time operations.

5.2.2 Nomenclature

For the description of mathematical formulation and solution approach, the set of in-

dices, parameters and decision variables are summarized as follows:

5.2.2.1 Sets and Indices

• T : Index set of time periods t ∈ T

• ω: Index set of scenarios ω ∈ Ω

5.2.2.2 Deterministic Parameters

• Dt: Forecasted power demand at time t ∈ T

• Rt: Forecasted renewable supply at time t ∈ T
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• CDA
t : Day-ahead electricity price at time t ∈ T

• M char, Mdis: Charging and discharging rate of storage

• Smax: Maximum level of energy storage

• ηchar, ηdis: Charging and discharging inefficiency of storage

• P loss
t : Penalty cost for power loss at time t ∈ T

• Lmax: Allowed number of time periods for shifting demand

• TW : Time window to meet shifted power demand

• ε: Maximum fraction of amount of shifted load

5.2.2.3 Stochastic Parameters (for Each Scenario ω ∈ Ω)

• Dt(ω): Actual power demand at time t ∈ T

• Rt(ω): Actual renewable supply at time t ∈ T

• CRT
t (ω): Real-time electricity price at time t ∈ T

5.2.2.4 First-Stage Decision Variables (Day-Ahead Operations)

• xt: Day-ahead purchase commitment at time t ∈ T

• ut: Binary variable indicates whether demand load at time t ∈ T can be shifted by

demand response

• zcDAt , zdDAt : Amount to be charged/discharged at time t ∈ T

• sDAt : Level of storage at the beginning of time t ∈ T
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5.2.2.5 Second-Stage Decision Variables (Real-Time Operations)

• yt: Real-time electricity purchase at period t ∈ T

• ylosst : Power loss at period t ∈ T

• vt`: Amount of load shifted from time t ∈ T will be satisfied at time ` ∈ T (t < `)

• wt: Amount of shifted load at the beginning of time t ∈ T

• zcRTt , zdRTt : Amount to be charged/discharged at time t ∈ T

• sRTt : Level of storage at the beginning of time t ∈ T

5.2.3 Mathematical Model

We formulate the proposed day-ahead power procurement problem as a two-stage

stochastic mixed-integer programming (SMIP) problem. The first-stage problem deter-

mines the purchase commitment and assign periods for shifting demand based on the

day-ahead electricity price, forecasted demand and renewable supply considering stor-

age operation to minimize day-ahead purchase cost and the expected recourse cost caused

by the real-time procurement for each possible scenario. In the second-stage, the sub-

problem is defined to adjust mismatch caused by forecasting errors against actual power

demand and renewable supply by purchasing electricity from a real-time market and shift-

ing consumers demand based on operations of energy storage (charging/discharging). Our

proposed day-ahead power procurement problem can be formulated as a two-stage SMIP

as follows:

Min
∑
t∈T

CDA
t xt + E[f(x, u, ω̃)] (5.1)

s.t. xt + zdDAt − zcDAt = Dt −Rt ∀t ∈ T (5.2)
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∑
t∈T

ut ≤ Lmax (5.3)

zcDAt ≤ min{M char, Smax − sDAt } ∀t ∈ T (5.4)

zdDAt ≤ min{Mdis, sDAt } ∀t ∈ T (5.5)

sDAt+1 − sDAt − ηcharzcDAt +
1

ηdis
zdDAt = 0 ∀t ∈ T (5.6)

xt, s
DA
t , zcDAt , zdDAt ≥ 0 ∀t ∈ T (5.7)

ut ∈ {0, 1} ∀t ∈ T (5.8)

where for each scenario ω ∈ Ω

f(x, u, ω) =
∑
t∈T

(
CRT
t (ω)yt + P loss

t ylosst

)
(5.9)

s.t. yt − ylosst + zdRTt − zcRTt +
t+TW∑
`=t+1

vt` −
t−1∑

`=t−TW

v`t = Dt(ω)−Rt(ω)− xt ∀t ∈ T

(5.10)
t+TW∑
`=t+1

vt` ≤ Dt(ω)ut ∀t ∈ T (5.11)

wt+1 − wt −
t+TW∑
`=t+1

vt` +
t−1∑

`=t−TW

v`t = 0 ∀t ∈ T (5.12)

wt ≤ ε
t−1∑
`=1

D`(ω) ∀t ∈ T (5.13)

zcRTt ≤ min{M char, Smax − sRTt } ∀t ∈ T (5.14)

zdRTt ≤ min{Mdis, sRTt } ∀t ∈ T (5.15)

sRTt+1 − sRTt − ηcharzcRTt +
1

ηdis
zdRTt = 0 ∀t ∈ T (5.16)

yt, y
loss
t , v`t, wt, s

RT
t , zcRTt , zdRTt ≥ 0 ∀`, t ∈ T. (5.17)

In the above formulation, the objective function (5.1) is composed of day-ahead power

procurement costs and the expected recourse cost for real-time power procurement in the
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second-stage corresponding to the one-day operation cycle. Constraint (5.2) is the power

balance equation for day-ahead power procurement plan ensuring that day-ahead purchase

commitment is determined so that forecasted power demand is fully satisfied by consider-

ing forecasted renewable supply and energy storage operations. Constraint (5.3) assigns

time periods for shifting demand in real time with a maximum allowed number of time

periods. Constraints (5.4)-(5.6) are for day-ahead storage operations. Constraint (5.7) are

the non-negativity restrictions and constraint (5.8) gives the binary restrictions on the first-

stage decision variables. In the second-stage, the objective function of the subproblem for

each scenario is formulated to minimize real-time operations cost, which is composed by

real-time purchase cost and penalty cost for power loss as (5.9). Constraint (5.10) is the

power balance equation for real-time power procurement operation including shifting and

serving power demand (for demand response) corresponding to the actual power demand

and wind power supply given day-ahead purchase commitment. Note that, power loss

may happen when the amount of total power procurement is exceeding the actual power

demand and the maximum charging amount. Constraints (5.11)-(5.13) are for demand

response. Constraint (5.11) defines a condition that power demand can be shifted only at

pre-assigned time periods, and constraint (5.12) is the balance equation for demand shift-

ing under demand response. We define the quality of usage constraint as (5.13) so that the

fraction of the amount of shifted demand (but not yet served) to the total amount of power

demand cannot be exceeded a pre-agreed level. Constraints (5.14)-(5.16) are for real-time

energy storage operations, and constraint (5.17) are the non-negativity restrictions on the

second-stage decision variables.

Note that “min{}" function used in constraints (5.4), (5.5), (5.14), and (5.15) can sim-

ply be linearized by two separate constraints. For example, constraint (5.4) is equivalent

to zcDTt ≤ M char and zcDTt + sDTt ≤ Smax ∀t ∈ T . We would like to emphasize that

in the two-stage SMIP formulation, only the fist-stage problem includes integer variables
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and the subproblem is formulated without any integer variables, and thus, the proposed

two-stage SMIP problem has continuous recourse. In addition, the two-stage SMIP has

relatively complete recourse [92] such that every solution obtained by solving the master

problem always results in a feasible subproblem.

5.3 Solution Approach

As described in Section 5.2.3, our proposed day-ahead procurement problem is for-

mulated as a two-stage SMIP problem with continuous recourse where only the master

problem includes binary decision variables. Note that the two-stage SMIP problem can be

modelled as a deterministic equivalent problem (DEP) that is formulated as a large mixed

integer programming problem with a finite number of scenarios. In general, solving a DEP

of the two-stage SMIP problem is inefficient with a large number of scenarios, and in this

case, decomposition techniques can be used to solve the problem efficiently. Specifically,

for the continuous recourse, the L-shaped algorithm [93] and the multicut L-shaped algo-

rithm [94] can be used to solve the two-stage stochastic programming problem based on

Benders decomposition [95]. The main idea of the L-shaped algorithm and the multicut

algorithm is to solve the decomposed master and subproblems separately by approximat-

ing a recourse function by adding Benders cuts within the course of solving the master

problem. However, both algorithms based on Benders decomposition may lead the slow

convergence to get an optimal solution depending on problem structure as well as scenario

data. For these reasons, there has been a body of literature that the proposed techniques to

generate stronger Benders cuts that accelerate the convergence of the algorithm [96], [97],

[98], and [99].

In this study, we propose cut generation strategy (Section 5.3.1) that introduces valid

inequalities to generate stronger Benders cuts and define valid optimality cuts that can

be added to the master problem in addition to Benders cuts during the course of the
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multicut L-shaped algorithm. In addition to cut generation strategy, we suggest cut

aggregation strategy (Section 5.3.2) based on the relative trade-off between the single

cut and multicut methods [100], while investigating the optimal aggregation level of

Benders cuts. Let us redefine decision variables used in formulation (5.1)-(5.17) as

a set of vectors, x,u and y, such that x denotes vectors of continuous variables (i.e.

xt, s
DA
t , zcDAt , zdDAt for all t ∈ T ) and u denotes binary variables (i.e. ut for all t ∈ T )

in the first stage, and y denotes vectors of continuous variables in the second stage

(i.e. yt, y
loss
t , v`t, wt, s

RT
t , zcRTt , zdRTt for all `, t ∈ T ). Then, with suitable matrices,

A,D,W,T,H(ω), and vectors, c,b, e,q(ω), r(ω), our proposed two-stage day-ahead

power procurement problem (5.1)-(5.17) can be defined as follows,

Min c>x + E[f(x,u, ω̃)] (5.18)

s.t. Ax ≤ b (5.19)

Du ≤ e (5.20)

x ≥ 0,u ∈ {0, 1}n (5.21)

where for each scenario ω ∈ Ω

f(x,u, ω) = Min q(ω)>y (5.22)

s.t. Wy ≤ r(ω)−Tx−H(ω)u (5.23)

y ≥ 0, (5.24)

where ω̃ is a multivariate random variable defined on a probability space with outcome

scenarios ω ∈ Ω. Let s denote index of scenarios such that s = 1, . . . , S (S = |Ω| < ∞)

and ps denote the probability of occurrence for each scenario, then based on the multicut
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L-shaped algorithm, we solve the following master problem iteratively,

Min c>x +
S∑
s=1

psηs (5.25)

s.t. Ax ≤ b (5.26)

Du ≤ e (5.27)

β>t(s)x + γ>t(s)u + ηs ≥ αt(s) t(s) = 1, ..., u(s), s = 1, ..., S (5.28)

x ≥ 0, u ∈ {0, 1}n, ηs free, s = 1, . . . , S, (5.29)

where t(s) is an index of Benders optimality cuts generated by solving the sub problem

with scenarios s ∈ S and u(s) is the number of Benders optimality cuts added to the

master problem during the course of algorithm. Note that Benders optimality cuts (5.28)

are generated by solving the following dual subproblem for each possible scenario,

fs(x) = Max π>s (rs −Tx−Hu) (5.30)

s.t. π>s W ≤ q (5.31)

πs ≤ 0, (5.32)

with αs = ps(π
∗
s)rs, β>s = ps(π

∗
s)>T, and γ>s = ps(π

∗
s)>Hs with π∗s(x) an optimal so-

lution of the dual subproblem. We would like to emphasize that our proposed two-stage

SMIP problem has relatively complete recourse, and thus, only optimality cuts (5.28) are

generated and added to the master problem based on the multicut L-shaped algorithm.

In this study, we implement the Benders decomposition based on single search tree

referred to as “Branch-and-Benders-cut" (B&BC) algorithm [101] by using the lazy con-

straints pool provided by CPLEX Concert Technology (IBM ILOG CPLEX [102]). The

main advantage of B&BC is that Benders cuts can be added to the master problem dur-
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ing the course of branch-and-cut algorithm (i.e. single search tree) rather than re-solving

the master problem as a new problem at each iteration when Benders cuts are generated

and added by solving the subproblems. This can expedite solving the master program.

However, there also might be disadvantages of using the lazy constraints pool due to the

following reasons. During the course of branch-and-cut algorithm, Benders cuts are gener-

ated and added each time when the integer (and fractional) solutions are encountered, and

the algorithm check the lazy constraint pool for the fractional solution. This might take

longer computational time than the classical implementation of Benders decomposition.

Therefore, we conducted preliminary experiments, and results showed that the B&BC

algorithm using the lazy constraints pool outperforms the classical implementation for

solving the proposed problem. Hence, we implement the multicut L-shaped algorithm by

using the lazy constraints pool. The details of our proposed cut generation and aggregation

strategies are described in the following Sections 5.3.1 and 5.3.2, respectively.

5.3.1 Cut Generation Strategy

5.3.1.1 Valid Inequalities

The key idea for improving performance of the multicut L-shaped algorithm is to gen-

erate stronger Benders cuts so that the solution space of the master problem can be sig-

nificantly restricted. For the purpose of generating stronger Benders cuts, we propose

the following valid inequalities (5.33) and (5.34). By adding valid inequalities (5.33) and

(5.34), and projecting them into the solution space of the subproblem, the additional ef-

fects of the master problem’s solution can be reflected in the subproblem’s solution, and

thus, stronger Benders cuts can be generated and added.

t+TW∑
`=t+1

vt` ≤ ε
( t−1∑
`=1

D`(ω)
)
− wt +

t−1∑
`=t−TW

v`t + εDt(ω)ut ∀t ∈ T (5.33)
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wt+1 ≤ ε
t−1∑
`=1

D`(ω) + εDt(ω)ut ∀t ∈ T. (5.34)

For demand response, the two set of valid inequalities ensure that the amount of shifted

demand at time period t ∈ T does not exceed the actual allowable limit that is restricted

by the quality of usage constraint (5.13). We have the following propositions and proofs

to show the validity of the proposed inequalities (5.33).

Proposition 1. The following inequality,

t+TW∑
`=t+1

vt` = ε

(
t−1∑
`=1

D`(ω)

)
− wt +

t−1∑
`=t−TW

v`t + εDt(ω) ∀t ∈ T, (5.35)

is valid for problem (5.1)-(5.17).

Proof. By plugging (5.13) into (5.12), we can show that

t+TW∑
`=t+1

vt` = wt+1 − wt +
t−1∑

`=t−TW

v`t

≤ ε

(
t∑

`=1

D`(ω)

)
− wt +

t−1∑
`=t−TW

v`t

= ε

(
t−1∑
`=1

D`(ω)

)
− wt +

t−1∑
`=t−TW

v`t + εDt(ω) ∀t ∈ T,

which proves the result.

Proposition 2. The inequality,

t+TW∑
`=t+1

vt` ≤ ε
( t−1∑
`=1

D`(ω)
)
− wt +

t−1∑
`=t−TW

v`t + εDt(ω)ut ∀t ∈ T, (5.36)

is valid for problem (5.1)-(5.17).

Proof. Considering the value of decision variable ut for all t ∈ T , we have the following
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two cases:

• Case 1: If ut = 0, then
t+TW∑
`=t+1

vt` = 0, (5.37)

by constraint (11). Now, for ut = 0, we have the inequality (5.36) as,

t+TW∑
`=t+1

vt` ≤ ε
( t−1∑
`=1

D`(ω)
)
− wt +

t−1∑
`=t−TW

v`t. (5.38)

Note that the RHS of (5.38) would be positive by constraint (13), and v`t ≥ 0 for all

`, t ∈ T . Hence, inequality (5.36) is valid for ut = 0 for all t ∈ T .

• Case 2: If ut = 1, then inequality (5.36) is equivalent to inequality (5.35) which is

valid for the proposed problem (1)-(17). Hence, inequality (5.36) is valid for ut = 1

for all t ∈ T .

In addition, the following proposition shows the validity of inequality (5.34).

Proposition 3. The inequality,

wt+1 ≤ ε

t−1∑
`=1

D`(ω) + εDt(ω)ut ∀t ∈ T, (5.39)

is valid for problem (5.1)-(5.17).

Proof. By plugging (5.12) into valid inequality (5.36), we obtain inequality (5.39).

Note that our proposed valid inequalities (5.36) and (5.39) are equivalent because of

equation (5.12), however, their contribution to improve the performance of Benders de-

composition might be different. In Section 5.4, we will compare performance improve-

ment by applying each of valid inequalities (5.36) and (5.39).
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5.3.1.2 Valid Optimality Cuts

In addition to Benders optimality cuts, we introduce a set of valid optimality cuts

designed to be added to approximate the recourse function in the first-stage problem of the

two-stage SMIP problem. Note that Laporte and Louveaux [103] developed the optimality

cut for approximating the expected recourse function with the binary first-stage problem

(i.e. the first-stage problem includes only binary decision variables). In this study, we

extend their optimality cut so that it can be used to approximate the expected continuous

recourse F (x,u) = E[f(x,u, ω̃)] for the mixed-binary first-stage problem where x is

continuous and u is binary decision variables. To introduce the proposed valid optimality

cuts, we assume that a lower bound L on E[f(x,u, ω̃)] is known, that is,

L ≤ min
x,u
{E[f(x,u, ω̃)]|Ax ≤ b,Du ≤ e,x ≥ 0,u ∈ {0, 1}n}.

Let xk and uk denote the master problem’s solution at kth iteration during the course of

the multicut L-shaped algorithm, then we have recourse function for xk and uk as,

F (xk,uk) = E[f(xk,uk, ω̃)],

and define the set Sk for kth binary decision variables as,

Sk = {t | ukt = 1}.

We summarize our proposed optimality cut in the following theorem.

Theorem 6. The following cut is a valid cut for F (x, u):

η ≥ (F (xk,uk)− L)

(∑
t∈Sk

ut −
∑
t/∈Sk

ut − |Sk|+ 1

)
+ L− c>(x− xk). (5.40)
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Proof. 1. If u = uk, (
∑

t∈Sk ut −
∑

t/∈Sk ut − |Sk|+ 1) = 1.

• If x = xk, then the cut η ≥ F (xk,uk) is tight (i.e. active).

• If x 6= xk, then the cut η ≥ F (xk,uk) − c>(x− xk) is valid for

x ∈ {Ax ≤ b,x ∈ Rn
+,x 6= xk}. In addition, for incumbent solution xk and

uk obtained during the course of branch-and-cut algorithm, the following in-

equality is valid,

c>x + F (x,uk) ≥ c>xk + F (xk,uk), (5.41)

for all x ∈ {Ax ≤ b,x ≥ 0}. Note that c>x + F (x,u) represents objective

function value of overall problem (i.e. including the first and second-stage

objective function value) decision variable u is fixed as u = uk in both left-

hand-side and right-hand-side of the above inequality (5.41). Now we have the

following inequality:

η ≥ F (x,uk) ≥ F (xk,uk)− c>(x− xk). (5.42)

This shows that the cut η ≥ F (xk,uk)− c>(x− xk) is valid.

2. If u 6= uk, then (
∑

t∈Sk ut−
∑

t/∈Sk ut− |Sk|+ 1) ≤ 0. And let M = (F (xk,uk)−

L)
(∑

t∈Sk ut −
∑

t/∈Sk ut − |Sk|+ 1
)
, then M ≤ 0 since F (xk, uk) ≥ L.

• If x = xk, then the cut is η ≥M + L and it must be valid.

• If x 6= xk, then the cut η ≥ L+M − c>(x− xk) is valid since,

η ≥ F (x,uk) ≥M + L− F (xk,uk) + F (x,uk)

≥M + L− c>(x− xk),
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based on inequality (5.41).

We would like to emphasize that optimality cut (5.40) is weak, therefore it should

be used together with Benders cuts to improve the performance. In addition, optimality

cut (5.40) can be implemented into the cut aggregation scheme based on the multicut L-

shaped algorithm. Let j ∈ J be the index of cut aggregate and define the expected recourse

function for the subset of scenarios corresponding to each cut aggregate as,

Fj(x,u) = E[f(x,u, ω̃j)]. (5.43)

Assuming that a lower bound Lj is known, that is,

Lj ≤ Minx,u{E[f(x,u, ω̃j)]|Ax ≤ b,D ≤ e,x ≥ 0,u ∈ {0, 1}n}. (5.44)

Then, the following cut is a valid optimality cut for Fj(x, u):

ηj ≥ (F (xk,uk)j − Lj)

(∑
t∈Sk

ut −
∑
t/∈Sk

ut − |Sk|+ 1

)
+ Lj − c>(x− xk). (5.45)

Optimality cut (5.45) can be added to the master problem together with Benders optimality

cuts for the approximated recourse function of each cut aggregate, ηj . To implement

optimality cuts (5.45), lower bound Lj can be determined by solving the following relaxed

problem:

Lj = Min
∑
ω∈Ωj

p(ω)q(ω)>y(ω)

s.t. Wy(ω) ≤ r(ω)−T(ω)x−H(ω)u ∀ω ∈ Ω
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Ax ≤ b (5.46)

x ≥ 0,u ∈ [0, 1]n, y(ω) ≥ 0 ∀ω ∈ Ω,

where Ωj represents subset of scenarios corresponding to cut aggregate j ∈ J . Note that

problem (5.46) is relatively easy to solve with relaxed binary decision variables.

5.3.2 Cut Aggregation Strategy

The motivation of cut aggregation stems from the relative advantages of the L-shaped

(single cut) algorithm and the multicut L-shaped algorithm. In general, the multicut L-

shaped algorithm has less major iterations via passing more information by allowing for

cuts up to the number of scenarios than the L-shaped algorithm, however, solving the

master problem requires more computation time. On the other hand, when we aggregate

cuts and less number of optimality cuts are added to the master problem, the algorithm may

have more major iterations due to loss of information caused by aggregation. However,

the master problem can be solved easier than when the multicut L-shaped algorithm is

used. Based on the trade-off in terms of computational time, authors of [100] suggested

an adaptive optimality multicut method that dynamically adjusts the level of aggregation

of the optimality cuts in the master problem during the course of the algorithm. The

numerical results of [100] show that the optimal computational time is achieved on some

middle level of aggregation, but this level is not known a priori and depends on problem

structure. In a similar fashion, we try to investigate an appropriate aggregation levels based

on the trade-off of algorithm performance in terms of computational time.

In this study, we propose a cut aggregation strategy that assigns Benders optimality cuts

to be aggregated for the given aggregation level during the course of the algorithm. The

fundamental idea of our suggested strategy is to aggregate Benders cuts while minimizing

loss of information caused by cut aggregation. This can be accomplished by aggregating
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Benders optimality cuts obtained from the subproblem defined by “similar" scenario data.

Each scenario consists of three-dimensional vectors, power demand, renewable supply,

and electricity prices, respectively. These vectors show time-varying patterns across 24

hours periods corresponding to one-day time horizon. We would like to emphasize that

relations among power demand, renewable supply, and electricity prices have a significant

impact on the solution of the subproblem due to the problem structure. For example, if

there exists a negative correlation between power demand and electricity price, then the

optimal solution of subproblem is determined so that storage is charged and discharged

more frequently as well as more power demand is shifted to minimize expense. In this

context, we characterize the structure of each scenario data using pairwise correlations

between power demand, renewable supply, and electricity prices and measure similarity

of scenario data based on those correlations. For example, correlation between series of

Dt(ω) and CRT
t (ω) across time periods t ∈ T for each scenario ω ∈ Ω, ρDC(ω), can be

computed as follows:

ρDC(ω) =

∑24
t=1(Dt(ω)−D(ω))(Ct(ω)− C(ω))√∑24

t=1(Dt(ω)−D(ω))2
∑24

t=1(Ct(ω)− C(ω))2

, (5.47)

where D(ω) is the average power demand and C(ω) is the average electricity prices for

each scenario ω ∈ Ω. Likewise, we can determine pairwise correlation between power de-

mand and renewable supply, ρDR(ω), and renewable supply and electricity price, ρRC(ω),

for each scenario ω ∈ Ω.

To implement our idea for cut aggregation, we cluster scenarios using k-means clus-

tering algorithm based on pairwise correlation values of each scenario. As mentioned

above, three pairwise correlations are computed for each scenario, and thus we can cluster

scenarios using k-means up to 3-dimensions based on selection of those pairwise corre-

lations. For example, for 1-dimensional clustering, we can pick one of ρDC(ω), ρDR(ω),
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Energy Storage
Smax Smax = E[Dt(ω)]

2

M char,Mdis M char = Mdis = E[Dt(ω)]
4

ηchar, ηdis ηchar = ηdis = 0.9

Demand Response
Lmax Lmax = 4
TW TW = 4
ε ε = 0.05

Forecasted Demand Dt Dt = E[Dt(ω)] ∀t ∈ T
Forcasted Renewable Rt Rt = E[Rt(ω)] ∀t ∈ T

Penalty Cost P loss
t P loss

t = CDA
t

Table 5.1: Parameter setting

and ρRC(ω)), and for 2-dimensional clustering, we can choose combination of two correla-

tions, ρDC(ω) and ρDR(ω), ρDR(ω) and ρRC(ω)), ρDC(ω) and ρRC(ω)). Note that original

k-means clustering algorithm does not guarantee to generate equal-sized cluster, therefore

we implemented k-means algorithm by using an open source data mining software [104]

so that it yields equal-sized k clusters (i.e. each cluster consists of n/k where n is the

number of scenarios) for balanced aggregation. Once the scenarios are clustered, Benders

optimality cuts generated by solving the subproblem for scenarios in the same cluster will

be aggregated and added to the master problem.

5.4 Numerical Experiments

For numerical experiments, we investigated the performance of the proposed algo-

rithm using scenarios generated by the probabilistic model introduced by Kwon et al. [4].

Through analyzing real historical data, it is evident that power demand, wind generation,

and electricity price are time-varying and stochastic, however, it is also reasonable to as-

sume that there exist daily cyclic patterns in power demand and electricity price. In other

words, there are deterministic and stochastic variabilities in power demand, renewable

generation, and electricity price. Kwon et al. [4] proposed the probabilistic model using

on Markov chain to adequately capture the both deterministic and stochastic variabilities.
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To generate a set of representative scenarios that adequately captures the both determin-

istic and stochastic variabilities, we train the probabilistic model by using real historical

data obtained from Pennsylvania New Jersey Maryland (PJM) interconnection [105], and

randomly generate scenarios using Monte Carlo simulation for replications. Note that the

proposed probabilistic model using discrete time Markov chains on discrete state spaces,

and we mapped random variables to 20 discretized states (M = 20) so that power de-

mand, wind supply, and electricity price have 20 different values for each time period.

Once we generate a pool of 100,000 scenarios, we obtain 10 replications for each sam-

ple size, 100, 200, 300, 400, 500, and 600 by selecting instances randomly from scenario

pool. In addition, in terms of parameters in the proposed problem, we set parameters’

value as described in Table 5.1. All the experiments were conducted on an Intel Core i7-

3740 2.70GHz processor with 16GB memory. We summarize various numerical results

for performance evaluation in the following Sections 5.4.2 and 5.4.3.

5.4.1 Value of Stochastic Solution

Before analyzing performance of our proposed approach, we would like to discuss the

value of stochastic solution (VSS) [106]. In general, stochastic programs are computa-

tionally difficult to solve, and thus, practitioners may want to formulate the real-world

problem as simpler versions, e.g. deterministic optimization problem by using nominal

values as you mentioned. The solution obtained from the simpler versions of problems

may provide nearly optimal solutions, however, sometimes yield totally inaccurate solu-

tion due to the lack of considering uncertainties. In this case, we can measure the value

of the stochastic program by using VSS which is the possible cost reduction obtained by

solving the stochastic optimization problem. When no further in formation about the fu-

ture is available, VSS becomes more practically relevant [92]. We conducted preliminary

experiments to analyze the quantity of VSS and we checked that about 10-15% of procure-
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(a) Computational time (b) % Reduction against DEP

Figure 5.2: Performance comparison: DEP vs L-shaped vs multicut L-shaped

ment cost can be reduced by solving stochastic optimization problem instead of solving

deterministic optimization problem using the expected value.

5.4.2 Performance Analysis of Cut Generation Strategy

We analyze the performance of the cut generation strategy introduced in Section 5.3.1.

Based on the L-shaped and multicut L-shaped algorithms, we solve the problems for vari-

ous sizes of scenarios by applying (i) the proposed valid inequalities (5.33) and (5.34), (ii)

the proposed valid optimality cut (5.45), and combination of both (i) and (ii). We compare

the performance of the L-shaped and the multicut L-shaped algorithm against the DEP. As

depicted in Figure 5.2, as the size of scenarios increases, the L-shaped and the multicut

L-shaped algorithms outperform the DEP. Moreover, we can find that the L-shaped algo-

rithm shows better performance than the multicut L-shaped algorithm, and this indicates

that the performance of the multicut L-shaped algorithm can be improved with cut ag-

gregation strategy as we conjectured. We will investigate the algorithm performance for

the different levels of aggregation in Section 5.4.3. Next, we investigate the performance

improvement by the proposed valid inequalities for both the L-shaped and the multicut L-
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(a) L-shaped algorithm (b) Multicut algorithm

Figure 5.3: Performance analysis of the proposed valid inequalities (5.33) and (5.34)

shaped algorithm in terms of computational time. As depicted in Figures 5.3 and 5.4, both

the L-shaped and the multicut L-shaped algorithm are improved by applying our proposed

valid inequalities. We found that valid inequality 5.34 performs better than valid inequal-

ity (5.33) in many instances, however, it does not dominate. In addition, we analyzed the

performance improvement by applying the proposed valid optimality cut (5.45) combined

with the valid inequalities (5.33) and (5.34). As depicted in Figure 5.4, we can see the

most improved performance when applying both the proposed valid inequalities and valid

optimality cut simultaneously during the course of the algorithm. Based on these findings,

we use the proposed valid inequalities and valid optimality cuts when we investigate the

effect of cut aggregation on the performance in Section 5.4.3.

5.4.3 Performance Analysis of Cut Aggregation Strategy

We conducted experiments aimed at studying the performance of the proposed cut ag-

gregation strategy using k-means clustering algorithm introduced in Section 5.3.2. Specif-

ically, we evaluated the performance of the proposed cut aggregation strategy comparing

with the static multicut aggregation used by Trukhanov et al. [100]. Under the static mul-
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(a) L-shaped algorithm (b) Multicut algorithm

Figure 5.4: Performance analysis of the proposed valid inequalities (5.33) and (5.34) com-
bined with optimality cut (5.40)

ticut aggregation, total n Benders optimality cuts that are generated from n scenarios were

aggregated into k cuts so that each of k cuts is composed of n/k Benders cuts. For exam-

ple, for 100 possible scenarios (n = 100), static cut aggregation with k = 1 corresponds to

the L-shaped algorithm, k = 100 corresponds to the multicut algorithm, and 1 < k < 100

corresponds to the partial aggregation that resigns between full aggregation (i.e. L-shaped

algorithm) and full disaggregation (i.e. multicut algorithm). In addition, for implemen-

tation of the proposed cut aggregation, we use k as an input parameter (i.e. number of

clusters) of k-means clustering algorithm, and Benders optimality cuts would be aggre-

gated based on clustered scenarios. As described in Section 5.3.2, we have an option to

choose dimensions of k-means clusters (up to 3-dimensions) for the combinations of three

pairwise correlations, ρDC(ω), ρDR(ω), and ρRC(ω)). Note that we use one-dimensional

k-means clustering for the pairwise correlation between power demand and renewable

supply, ρDR(ω), that shows the most improved performance for the scenarios used in this

study. Figures 5.5 and 5.6 show the computational times to obtain an optimal solution us-

ing the multicut L-shaped algorithm with various aggregation level k where 1 ≤ k ≤ n for
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(a) Number of scenarios n =
100

(b) Number of scenarios n =
200

(c) Number of scenarios n =
300

(d) Number of scenarios n =
400

(e) Number of scenarios n =
500

(f) Number of scenarios n =
600

Figure 5.5: % Reduction in CPU time: static versus cluster aggregations combined with
valid inequality (5.33) and valid optimality cut (5.40)

each size of scenarios n = 100, 200, 300, 400, 500 and 600. Through analyzing the results

of numerical experiments, we find that (i) both the static and the proposed cut aggregation

improve the performance of algorithm at certain level of aggregate k, where 1 ≤ k ≤ n,

(ii) the proposed cut aggregation strategy shows better performance improvement than

the static aggregation, and (iii) the best k exists between both extreme cases. We would

like to emphasize that the multicut L-shaped algorithm shows better performance at higher

aggregation level for scenario data used in this study.

5.5 Concluding Remark and Future Work

This study is motivated by an opportunity to reduce the energy cost and carbon pollu-

tion by utilizing renewable energy and adopting demand response from the demand-side

138



(a) Number of scenarios n =
100

(b) Number of scenarios n =
200

(c) Number of scenarios n =
300

(d) Number of scenarios n =
400

(e) Number of scenarios n =
500

(f) Number of scenarios n =
600

Figure 5.6: % Reduction in CPU time: static versus cluster aggregations combined with
valid inequality (5.34) and valid optimality cut (5.40)

perspective. While utilizing renewable energy to meet power demand, consumers may be

willing to adjust their demand load, which is called as demand response, to avoid peak

electricity price as well as optimally utilize renewable energy to reduce procurement cost.

In addition, energy storage can be used to mitigate fluctuations of intermittent renewable

supply and volatile electricity price. Considering renewable energy, demand response,

and energy storage, the main objective of this study is to propose decision-making models

that enable energy consumers to procure energy in a cost-efficient manner in response to

variability and uncertainty of renewable supply as well as electricity price. In summary,

the main contributions of this paper are: (i) propose day-ahead power procurement prob-

lem and formulate it as a two-stage SMIP problem; (ii) introduce cut generation and cut
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aggregation strategies that can be integrated with the course of the multicut L-shaped al-

gorithm to improve algorithm performance; and (iii) implement the proposed algorithm

by using lazy constraints pool provided by CPLEX Concert Technology and investigate

performance by conducting numerical experiments with various settings. The proposed

day-ahead power procurement problem and solution approach can be applied to many

industries (e.g. data centers and manufacturing) and also extended to grid-level power

system operations (e.g. micro grid) to curtail expenses of procuring energy to meet de-

mand load. We believe that this study would be a good starting point to study demand-side

power procurement problem based on the framework of two-stage stochastic program and

will have a significant impact on study for the utilization of renewable energy and imple-

mentation of demand response.
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6. CONCLUSION

6.1 Summary of The Study

This study is motivated by pressing issues, such as a tremendous increase of energy

consumption and cost in industrial sectors, and the main objective is to develop decision

making methodologies to improve energy-efficiency and reduce energy cost in demands

side, i.e. energy consumption side.

Firstly, this study focuses on improving energy-efficiency in data center operations

and developed a server provisioning algorithm leveraging upon standard queueing anal-

ysis to simultaneously determine sizing (i.e. number of active servers), assignment and

routing appropriately to ensure performance guarantees by enforcing time-stability for a

time-varying and fast-changing system. By implementing the proposed server provision-

ing algorithm, the number of active servers can be adjusted in proportion to time-varying

workloads to improve utilization of the servers. Specifically, this dissertation showed that

the proposed provisioning algorithm provides performance bounds on both the mean queue

length and the mean sojourn time, which can be derived by stationary analysis of queueing

model for non-homogeneous and transient system. In addition, this study developed a dis-

crete event simulation and conducted numerical experiments to evaluate the prosed server

provisioning algorithm (Section 2). In addition, based on the proposed server provision-

ing algorithm, this dissertation suggests an approach that stabilizes (i) aggregate workload

distribution based on moment matching approximation and (ii) arrival rates based on rout-

ing fractions to achieve time stable queue length distribution at each active server. Based

on time-stability, time-homogeneity constraints can be derived so that they can be used

to formulate a mixed-integer program to optimally determine various decisions of sizing,

assignments, routing, and speed scaling to minimize energy costs while providing proba-
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bilistic performance guarantees on waiting times. Simulation results obtained by using the

solution of the proposed mixed-integer program as input parameters show that the mean

queue length is stabilized and the mean waiting time is bounded by the targeted value

(Section 3).

Secondly, this study suggested a demand-side energy procurement model that enables

energy consumers to procure energy to meet their power demand in a cost-efficient manner

while considering usage of renewable energy based on demand response. Specifically, this

dissertation developed a stochastic sequential decision making problem tailored to real-

time energy procurement and formulated it as a Markov decision process with periodic

cycles. As the dynamic program is computationally intensive for large-scale problems, this

dissertation proposed algorithms based on approximate dynamic programming and com-

pared performance of the proposed algorithms against the exact Markov decision process

solutions and Lyapunov optimization-based algorithms under a variety of parameter set-

tings on the energy storage capacity, the level of renewable generation, as well as the max-

imum charging/discharging rates (Section 4). Moreover, based on the real world practice

in energy market operations, this dissertation formulated a day-ahead power procurement

as a two-stage stochastic mixed integer program to minimize the expected energy pro-

curement cost against possible scenarios. To efficiently solve the proposed problem, this

dissertation suggests cut generation and cut aggregation strategies that can be integrated

with the course of the multicut L-shaped algorithm based on Benders decomposition and

conducted numerical experiments to analyze performance improvement by the suggested

strategies (Section 5).

As a natural next step, integration of server provisioning and energy procurement will

be proposed to minimize both energy consumption and cost for energy-efficient data cen-

ter operations. In recent years, many companies that own and operate data centers (e.g.

Google and Apple) have been tried to use renewable energy by installing on-site renewable
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Figure 6.1: Integration server provisioning and power procurement

generation facilities (e.g. installing photovoltaic panels on rooftop) or make contracts with

solar or wind farms. Moreover, data centers are regarded as one of the promising indus-

tries in which demand response can be successfully applied since they have manageable

and flexible (i.e. delay-tolerant) demand load (Wierman et al. [84]). By adopting demand

response, data centers are able to avoid peak electricity prices and use more renewable

energy by adjusting purchase and consumption of energy. For the aforementioned op-

portunities, new decision-making methodologies tailored to determine server provisioning

and power procurement in an integrated fashion with incorporation of renewable energy

and demand response are urgently needed. Figure 6.1 depicts a concept of integration of

server provisioning and energy procurement considered. To the best of the author’s knowl-

edge, the proposed model that integrates server provisioning and power procurement with

renewable energy and demand response has not been well studied in the literature.

Based on the previous study described in Sections 2, 3, 4, and 5, the proposed model

integrating server provisioning and energy procurement can be formulated as a probabilis-

tic constrained two-stage stochastic program. Specifically, constraints on performance

guarantees and violation for the predefined quality of service level can be defined as prob-

abilistic constraints based on the server provisioning algorithm proposed in Sections 2 and

3, and it can be integrated with the proposed energy procurement model formulated as a
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two-stage stochastic program in Section 5. Specifically, the proposed integration model

includes both probabilistic constrained and two-stage stochastic program features so that:

• The first stage determines proactive server provisioning and day-ahead purchase

commitment (i.e. here-and-now decisions) for predicted workloads and forecasted

renewable supply,

• the second stage determines reactive server provisioning and real-time purchase (i.e.

recourse decisions) against the deviation of actual workload, renewable supply, and

electricity price while satisfying probabilistic constraint with the given quality of

service level.

The key idea behind the integration of server provisioning and energy procurement is to

design a stochastic optimization problem so that (i) operational decisions on energy pro-

curement are determined according to energy consumption derived by server provisioning

and (ii) server provisioning can be adjusted by shifting delay-tolerant workloads to avoid

purchasing electricity at peak price and utilize more renewable energy under a demand

response scheme. The fundamental objective using a probabilistic constrained two-stage

stochastic optimization is to obtain reliable and efficient solutions for demand-side man-

agement of energy-efficient data center operations considering both server provisioning

and power procurement while satisfying quality of usage constraints, typically, in the pres-

ence of variability and uncertainty.

The proposed probabilistic constrained two-stage stochastic program can be reformu-

lated as a deterministic mixed-integer program by introducing a big-M term for each in-

equality in the probabilistic constraint and a binary variable for each scenario (Luedtke

et al. [107]). Note that the reformulated deterministic version of the problem is a large-

scale mixed-binary program, and thus, it is not easy to solve. Moreover, the weakness of

the linear program relaxation of a big-M formulation corresponding to probabilistic con-
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straints makes it hard to solve using the conventional branch-and-cut algorithm provided

by commercial tools, such as CPLEX (Liu et al. [108]). Thus, for the proposed probabilis-

tic constrained two-stage stochastic programming problem, the plan is to develop strong

valid inequalities to strengthen the linear program relaxation and propose a decomposi-

tion algorithm to solve the problem efficiently. Performance of the proposed algorithm

and effectiveness of valid inequalities will be analyzed through numerical experiments

by comparing it to the result of solving the deterministic mixed-integer program using

CPLEX.

6.2 Contribution of The Study

The main contributions of this dissertation can be summarized as follows:

• Developed server provisioning algorithms that provide provable performance

bounds that can be simply derived based on stationary analysis for time-varying

and transient system while considering energy efficiency. (Section 2)

• Proposed an integrated framework unifying sizing, assignment, routing, and speed

scaling under heterogeneous conditions, which has seldom been implemented

jointly. (Section 3)

• Introduced a mixed-integer program to reduce energy consumption while provid-

ing performance guarantees based on time-homogeneity constraints, which ensures

time-stability based on moment matching approximation. (Section 3)

• Implemented and numerically compared approaches ranging from Markovian mod-

els to hybrid methods based on statistics and optimization to those that are based

on Lyapunov optimization, under a variety of parameter settings on the storage size,

the level of solar generation, as well as the maximum charging/discharging rates.

(Section 4)
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• Proposed day-ahead power procurement problem and formulated it as a two-stage

stochastic mixed integer program and developed cut generation and cut aggregation

strategies that can be integrated with the course of the multicut L-shaped algorithm

to improve algorithm performance. (Section 5)

• Proposed decision making model that integrates server provisioning and power pro-

curement with renewable energy and demand response, which has not been proposed

in the literature. (Section 6)

6.3 Future Research Work

Based on the results described in the dissertation, there is possible future research work

for each section as follows:

• Suggest real-time speed scaling control by varying server processing speed for time-

stable performance. (Section 2)

• Develop an algorithm to efficiently solve the proposed mixed-integer program for

the large-scale problem. (Section 3)

• Develop better algorithm to analyze the proposed Markov decision process and im-

prove the developed approximated dynamic program. (Section 4)

• Integrate the proposed day-ahead power procurement model with data center opera-

tions and extend it to grid level energy system operations. (Section 5)
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