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ABSTRACT 

 

Salmonella and Campylobacter are bacterial pathogens frequently affecting both 

humans and animals. Even so, there is limited information concerning the epidemiology 

of these pathogens among canines. Dogs are capable of shedding the bacteria in their 

feces, often without overt signs of infection. As a result of their close contact with 

people, dogs could thus play a significant role in disease transmission, exposing their 

human companions to the bacterial pathogens. In order to fully assess this risk and 

implement efficacious means of disease control and prevention, however, it is essential 

to have a more comprehensive understanding of pathogen distribution and determinants 

as they relate to canine populations. To that end, the present research investigated the 

epidemiology of Salmonella and Campylobacter fecal shedding among shelter dogs 

across Texas using both culture-based and molecular methods. Culture detected 

Salmonella in 27 (5%) of the 554 samples. Salmonella isolates were of many different 

serotypes, five of which have been among top 10 serotypes isolated from human patients 

with laboratory-confirmed salmonellosis in the United States.  Antimicrobial resistance 

among the isolates was minimal. Data analysis suggested that fecal consistency may be 

an indicator of the fecal presence of Salmonella, and that the effects of dog neuter status 

and dog origin deserve further attention. 

For Campylobacter, qPCR suggested a bacterial prevalence of 76% (140 of the 

185 samples). Nonetheless, prevalence of two main human pathogens—Campylobacter 

coli and Campylobacter jejuni—was undetected or low, at 0% and 5.4%, respectively. 
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Statistical assessment of putative shedding indicators demonstrated a possible 

relationship between the presence of fecal Campylobacter, dog sex, and dog duration of 

stay in shelter.  

Campylobacter detection was heavily dependent on the detection method(s) 

employed. The qPCR method used in the present research proved to be much faster and 

more sensitive relative to various culture-based techniques. As such, qPCR may be most 

useful as an adjunct to bacterial culture, perhaps serving to guide selection of an optimal 

approach to culture. Integral to any approach, however, must be the recognition that 

canines are clear participants in Salmonella and Campylobacter epidemiology, and their 

contributions hold substantial import for their close companions. 
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AFLP Amplified Fragment-Length Polymorphism 

AMP Ampicillin 

AMR Antimicrobial Resistance 

ASPCA American Society for the Prevention of Cruelty to Animals 

AT Additional Targets 

AUG Amoxicillin/Clavulanic Acid 

AVMA American Veterinary Medical Association  

AXO Ceftriaxone 

AZI Azithromycin 

CAT Cefoperazone, Amphotericin B, Teicoplanin Selective Supplement 

CDC Centers for Disease Control and Prevention 

CEF Campy Cefex Agar 

CHL Chloramphenicol 

CIP Ciprofloxacin 

CLSI Clinical and Laboratory Standards Institute 

DNA Deoxyribonucleic Acid 

FDA Food and Drug Administration 

FIS Sulfisoxazole 

FOX Cefoxitin 

GEN Gentamicin 
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mCCDA Modified Charcoal-Cefoperazone Deoxycholate Agar 

MIC Minimum Inhibitory Concentration 

NAL Nalidixic Acid 

NARMS National Antimicrobial Resistance Monitoring System 

PCR Polymerase Chain Reaction 

PFGE Pulse-Field Gel Electrophoresis 

qPCR Quantitative Polymerase Chain Reaction 

STR Streptomycin 

SXT Trimethoprim/Sulfamethoxazole 

TET Tetracycline 

WHO World Health Organization 

XNL Ceftiofur 
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1. INTRODUCTION 

 

1.1 Overview of Zoonotic Diseases 

 

Accounting for an estimated 1–26% of all disability-adjusted life years lost due 

to infectious diseases (Grace et al., 2012), zoonoses are among the most pressing of 

public health concerns. They are also among the most difficult concerns to adequately 

address. There are over 200 recognized zoonoses which are, collectively, attributable to 

over 868 unique pathologic agents (Taylor et al., 2001) each with their own vectors, 

reservoirs, and ecological niches.  For any given zoonosis, understanding such 

complexity requires focused, systematic study of its individual elements, alone and in 

combination, in the laboratory and in the field. On account of its role in disease 

prevention, one of the most fundamental elements of a zoonosis is its mode of 

transmission.   

 

1.1.1 Zoonotic Disease Transmission 

 

Zoonotic disease transmission takes a number of different forms. In aerosol 

transmission, the disease agent passes from its site of residence to the human respiratory 

tract by means of airborne particles (Fernstorm and Goldblatt, 2013). Lymphocytic 

choriomeningitis (LCM) provides an interesting example. Human cases of the disease 

have been associated with inhalation of aerosolized rodent excrement, particularly in 
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occupational (laboratory personnel, vendors) or domestic (house mouse-infestation) 

contexts (Emonet et al., 2007).  

Aerosolized particles are not the only means of pathogen transmission through 

air. Many vector-borne zoonoses result from the bites of flying insects. Bites from 

infected mosquitoes, tsetse flies, and sandflies can lead to malaria, sleeping sickness, or 

vesicular stomatitis, respectively.  Other disease vectors, like fleas and ticks, take less 

aerial approaches, moving opportunistically (directly or indirectly) from one organism to 

a (usually proximal) other.  

Proximity and a lack of a third party vector define transmission via direct 

contact.  Ebola is a particularly prominent illustration of this mode of transmission. 

Spread of the hemorrhagic fever often requires close contact between an infected 

individual (or that individual’s bodily fluids) and a susceptible individual (Bausch et al 

2007). Health care workers are especially vulnerable to infection when performing 

procedures ranging from routine physical exams to intubations and laparotomies 

(Muyembe-Tamfum et al., 1999; Osterholm et al., 2015).  

Devices integral to a variety of medical procedures can mediate disease 

transmission.  This manner of disease dissemination, termed fomite transmission, occurs 

when pathogen-contaminated, non-living objects—medical devices, doorknobs, 

faucets— introduce the pathogen to a new host (Boone and Gerba., 2007). A 

contaminated duodenoscope was the fomite implicated in a fatal outbreak of 

carbapenem-resistant Enterobacteriaceae in California between 2014 and 2015 (CDC, 

2015a). Notably, fomite transmission primarily refers to pathogen exposure and 
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infection resulting from direct insertion of contaminated, non-living objects into an area 

normally protected from external elements (e.g. an artery, vein, or organ).  Voluntary 

consumption of a contaminated inanimate product or beverage, however, falls under a 

different classification.  

Oral or foodborne disease transmission generally encompasses diseases resulting 

from the consumption or imbibition of contaminated products. Colloquially known as 

“food poisoning,” this type of transmission hospitalizes approximately 128,000 

Americans each year (Scallan et al., 2011). Apart from its ubiquity and considerable 

social burden, however, foodborne transmission is especially remarkable for the ways in 

which it relates to and reflects the complexities of zoonotic diseases.    

 

1.1.2 Foodborne Zoonoses 

 

As with zoonotic diseases in general, foodborne zoonoses are attributable to a 

wide variety of pathologic agents, social, and environmental conditions. Potential 

pathogens include prions (PrPc), viruses (norovirus, hepatitis viruses A and E), toxins 

(botulinum toxin), and bacteria (Listeria, Salmonella, Campylobacter). These agents can 

be present in food-producing animals, and can thus gain access to the food chain at all 

stages along the pathway from production (“farm”) to consumption (“fork”).  

Consequently, when it comes to foodborne zoonoses, the dynamics between pathogen 

and zoonotic transmission are intricate and multifaceted. Furthermore, although 

consumption or imbibition are the ultimate mode of disease transmission, the pathway 
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from animal to human frequently involves food contamination through other modes of 

zoonotic transmission. Airborne zoonotic pathogens can contaminate beef briskets 

during slaughterhouse preparations, and fomite transmission can occur via knives that 

contact both animal hide and meat product (Burfoot et al., 2006). Likewise, houseflies 

(“filth adulterants” according to the U.S. Food and Drug Administration) can transfer 

bacteria from animal sources to foods for human consumption, as evident from an 

Escherichia coli O157:H7 case from a Japanese nursery school in 1996 (De Jesus et al., 

2004; Moriya et al., 1999). In the end, however, no matter how food contamination 

occurs, by definition, foodborne zoonoses are attributable to oral ingestion of a pathogen 

of animal origin.  

For foodborne zoonoses, investigations into pathogen source illustrate three 

principal categories of animal-related food contamination: industrial, institutional, and 

domestic. Industrial contamination occurs at a farm and factory with national or multi-

state distribution channels, when a vast quantity of animal foodstuffs experience 

pathogen exposure during animal husbandry, food preparation, production, and 

packaging. Industrial contamination often results in widespread disease outbreaks. 

Salmonella-contaminated, Foster Farms brand chicken infected at least 634 people from 

29 states and Puerto Rico from 2013-2014 (CDC, 2014). By contrast, institutional and 

domestic contamination usually affects a smaller number of individuals. Most instances 

of institutional contamination involve food contamination at an individual or regional 

food supplier which distributes to select institutions (restaurants, hospitals, clinics, etc.). 

In 2005, consumption of raw milk from a cow-sharing program in two northwestern U.S. 



 

5 

 

states was a factor in 18 cases of Escherichia coli O157:H7 infection (LeJeune and 

Rajala-Schultz, 2009).  Alternatively, contamination of this category could occur at the 

food-serving institution itself, through faulty food preparation practices or frequent 

animal-human interactions. Similar situations can also arise on a more domestic level. 

Within any given household, lapse of adequate personal hygiene (failure to satisfactorily 

hand wash) subsequent to direct animal contact or contact with pet food could result in 

pathogen exposure and illness. Improper food storage, failure to cook foods thoroughly, 

and cross-contamination (raw meats coming into contact with produce eaten uncooked) 

are other reasons for domestic risk. Unfortunately, research into the circumstances 

surrounding pet-related foodborne zoonoses remains underdeveloped.  

 

1.1.3 Companion Animals as Reservoirs for Foodborne Zoonotic Pathogens 

 

To date, most research relating to foodborne zoonoses centers on food-producing 

animals such as cattle and poultry.  When it comes to pets, or companion animals, 

however, the research is less comprehensive. Reptiles such as turtles and lizards have 

received considerable attention, particularly with regard to their carriage and 

transmission of Salmonella, but more common pets such as cats and dogs remain 

relatively overlooked. This oversight is particularly concerning since the existing 

literature on the subject demonstrates pathogen carriage among and zoonotic 

transmission from companion animals. More than 20 common zoonotic pathogens, for 

example, can be found among dogs or cats (Elchos et al., 2008; Ford, 2008), including 
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Pasteurella, Leptospira, Staphylococcus, Salmonella, and Campylobacter (Damborg et 

al., 2015). Recognizing the public health risks and research gaps relating to companion 

animal zoonoses, in 2011, the Food and Drug Administration's (FDA) Center for 

Veterinary Medicine (CVM) launched a funding initiative to address the pet food aspect 

of this issue (FDA, Center for Veterinary Medicine 2011).  Focusing primarily on the 

population of pet cats and dogs arriving at clinics, however, the FDA data will, like 

previous studies, overlook a critical population: shelter dogs.  

Roaming the interface between the wild and the domestic, shelter dogs are prime 

candidates for pathogen transmission. Broadly defined, a shelter dog is any canine that 

spends time in facility (e.g. a shelter) dedicated to the care, refuge, rehabilitation, and/or 

placement of found, surrendered, homeless or abandoned animals (ASPCA, 2017). 

Socially and medically neglected, shelter dogs may receive exposure to pathogens from 

a variety of sources (wild flora and fauna, livestock, pets, excrement, waste products, 

etc.), pathogens which they could then carry from one milieu to another.  However, 

while there are reports of shelter dogs harboring pathogens such as Salmonella and 

Campylobacter (Chang et al., 2011, Kocabiyik et al., 2006, Tsai et al., 2007) and some 

even tracing cases of human infection to canine contact (Morse et al., 1976, Varga et al., 

2012), very few studies actually describe pathogen epidemiology or molecular 

characteristics among this canine population.   
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1.2 Salmonella Shedding Among Shelter Dogs 

 

To date, there are only a handful of published studies describing the relationship 

between Salmonella and stray or shelter dogs. Varying considerably in regard to year of 

publication, study duration, and sample location, the studies provide a broad overview of 

the subject. Even so, the considerable variations leave many questions unanswered. 

The earliest study here reviewed dates back to 1976. Shimi et al (1976) took 

rectal swabs from 19 stray dogs in Tehran, Iran, detecting Salmonella in 15.8% of the 

samples. Many years later and many miles away, other researchers obtained strikingly 

similar results. Taking rectal swabs from over 1000 dogs in 5 animal shelters in Taiwan, 

Chang et al (2011) found Salmonella in 15.98% of samples. Yet, while well within the 

documented prevalence range of 1–36% for the general canine population (Sanchez et 

al., 2002), the Chang et al (2011) prevalence of ~16% is high relative to other, 

comparable studies at other sites.  

In the years between the Shimi et al (1976) and Chang et al (2011) studies, other 

researchers have reported much lower Salmonella prevalence among stray or shelter dog 

populations. Examining fresh feces or rectal swabs from 82 dogs in 6 dog shelters in the 

Bursa province of Turkey, Kocabiyik et al (2006) obtained a Salmonella prevalence of 

11%. In dogs from shelters in Taiwan and Florida, prevalence was around 6% (Tsai et 

al., 2007; Tupler et al., 2012). And, at least two other studies (in Trinidad and California) 

did not detect Salmonella in any samples from shelter dogs (Seepersadsingh et al., 2004; 

Sokolow et al., 2005). Thus, using only the data from such studies, prevalence of 
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Salmonella in stray or shelter animals appears to range from 0–16%. Influencing this 

prevalence range, however, are multiple factors worthy of consideration.  

Nonetheless, while important for its use in tracking spatial and temporal 

fluctuations, prevalence has its limitations when it comes to cross-study comparisons. 

For one, prevalence varies according to differences in geography, environment, sample 

size and nature, method, and technique (Kocabiyik et al., 2006, Seepersadsingh et al., 

2004). As a result, prevalence data from any given study is limited in its generalizability. 

For another, the overall prevalence of a given bacterial pathogen genus provides 

insufficient information about the pathogen’s level of risk. All Salmonella bacteria are 

not equal when it comes to threatening human health or animal health (Hoelzer et al., 

2011). Consequently, having detailed information, especially information about 

pathogen phenotypic and molecular characteristics, is an essential complement to 

knowledge about general pathogen prevalence. Fortunately, some information about the 

specific nature of stray or shelter dog Salmonella is available. 

Much of the research on stray or shelter dog Salmonella at the genetic and 

molecular level focuses on pathogen serotype (serotype) and antimicrobial resistance 

(AMR). On these topics, cross-study comparison shows two, very general, consistencies. 

First, as with the canine population in general (Sanchez et al., 2002), stray and shelter 

dogs can harbor multiple varieties of Salmonella (including S. Corvallis, S. Dusseldorf, 

S. Enteritidis, S. Heidelberg, and S. Newport), many of which pose a risk to both human 

and animal health. Second, resistance to one or more clinically-used antimicrobial agents 
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is common among Salmonella isolates. Upon close analysis, however, nuances appear in 

the two prevailing similarities. 

When it comes to specifics about serotype frequency and antimicrobial resistance 

profiles, there is notable, cross-study variation. Chang et al (2011) and Steneroden et al 

(2011) found S. Newport to be among the most common serotypes, while for 

Seepersadsingh et al (2006) and Tsai et al (2007), S. Heidelberg and S. Dusseldorf, 

respectively, were more frequent.  Prevalence of antimicrobial resistance was equally 

varied. Resistance to tetracycline was most common in Chang et al’s isolates (2011), 

while resistance to streptomycin, sulfonamide, and azithromycin was most common in 

the respective isolates from Kocabiyik et al (2006) and Seepersadsingh et al (2004), 

Steneroden et al (2011), and Tsai et al (2007). Considering the inter-study differences in 

sample origin, collection, and testing methodology, such variations are unsurprising. 

They are not, however, insignificant; they limit the ability to make evidence-based 

deductions about Salmonella in specific contexts. 

 

1.3 Campylobacter Shedding Among Shelter Dogs 

 

As is the case for Salmonella, there is considerable variation in the literature 

pertaining to Campylobacter shedding among shelter dogs.  Although the canine 

capacity for fecal shedding of the pathogen is well-established, the prevalence and 

circumstances surrounding shedding are less certain. One study examining cases of 

human campylobacteriosis in Denmark detected Campylobacter in only 16 percent of 
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fecal samples from patients’ pets (Damborg et al., 2004). An earlier study of healthy 

puppies presenting to Danish veterinary clinics found evidence of the bacteria at a 

slightly higher prevalence of 21 percent (Hald and Madsen, 1997). Using a similar study 

design with a larger sample size, researchers in Switzerland reported a canine 

Campylobacter prevalence of nearly 42 percent—two to three times greater than that of 

the Danish studies (Wieland et al., 2005). Several other studies, however, make even the 

prevalence of the Swiss study seem small. Between 76 and 77 percent of canine fecal 

samples were positive for Campylobacter in research from 2004 (Hald et al., 2004; 

Koene et al., 2004). Such study-to-study variation in Campylobacter detection is evident 

in the prevalence ranges put forth in relevant publications, with one report noting a range 

of 10–29.6 percent (Hald and Madsen, 1997), another of 1.6–34 percent (Wolfs et al., 

2001), and another of 21–75 percent (Hald et al., 2004). While the overlap in ranges is of 

great consequence for human and animal health, the substantial width of the ranges 

reflects a high degree of study-to-study variation that is important to consider.  

Numerous factors may account for the wide range of Campylobacter prevalence. 

Most notable among such factors are study contexts, animal characteristics, and 

detection methods. An obvious potential contribution to variance in Campylobacter 

detection concerns the general contexts of the detection studies; studies vary both 

spatially and temporally.  Research reports span the globe, from Denmark and 

Switzerland to Canada, California, and Michigan. Publication dates span several 

decades, including but not limited to the 1980s, the 1990s, and the early 2000s. Although 

precise quantification is difficult, such vast distances in space and time could certainly 
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account for differences in detection. More readily quantifiable differences in prevalence 

estimates relate to animal-level variables. In terms of animal characteristics, male dogs 

seem to have higher Campylobacter carriage rates than female ones (Hald et al., 2004), 

urban-dwelling dogs higher rates than rural-dwelling ones (Hald et al., 2004), and 

younger dogs higher rates than older ones (Hald and Madsen, 1997; Wieland et al., 

2005). Some evidence also suggests that Campylobacter shedding may be greater for 

diarrheic dogs (Hald and Madsen, 1997; Wolfs et al., 2001), though results have not 

always been statistically significant (Hald et al., 2004) and may vary according to a 

dog’s age (Hald and Madsen, 1997).  

In addition to animal characteristics, variation in Campylobacter prevalence may 

be attributable to variation in detection methodology. Campylobacter is a particularly 

fastidious pathogen (Chaban et al., 2009), and rates of its isolation can differ according 

to incubation temperature, atmospheric conditions, enrichment procedures, and specimen 

handling (Monfort et al., 1989).  Bourke et al (1998) even goes so far as to comment that 

“isolation and accurate identification of Campylobacter species from fecal specimens by 

using standard phenotypic testing is problematic” (442). Fortunately, most studies try to 

address potential isolation and identification problems by using a combination of 

methods, phenotypic and molecular. Koene et al (2004), for example, used filtration, 

directly plated fecal samples on mCCDA, CAT, and Karmali agar plates, and also tested 

for 16S and 23S rRNA genes using PCR-RFLP.  Unfortunately, methodological 

combinations vary from study to study, complicating direct study-to-study comparisons 

and influencing study findings. Such methodological influence may be especially 
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pronounced when it comes to species-level Campylobacter analysis.  Recovery of C. 

upsaliensis, for instance, may require longer incubation times and different antimicrobial 

combinations or concentrations than are necessary for recovery of other Campylobacter 

species (Hald et al., 2004; Bourke et al., 1998; Labarca et al., 2002). Recovery of 

Campylobacter of any species, however, demonstrates the genuine possibility for 

canine-facilitated human campylobacteriosis.  

Although most cases of human campylobacteriosis are attributable to poultry 

(Allos et al., 2001), published evidence suggests a non-negligible role for canine-to-

human bacterial transmission. Pets like dogs can shed Campylobacter for over a year, 

often without clinical signs of infection or disease (Dambourg et al., 2004). 

Unsurprisingly, epidemiologic studies have identified pet ownership or contact as a risk 

factor for human disease (Hald and Madsen, 1997; Hald et al., 2004). In a study of pet-

owning patients with campylobacteriosis, Dambourg et al (2004) reported probable pet-

human transmission in 1 of the 45 study cases. Zoonosis may also have occurred among 

several dog-owning families from the province of Manitoba in Canada in the 1980s 

(Nayar et al., 1980). More definitive proof of transmission exists in a case report on 

neonatal sepsis. Clinical samples of C. jejuni from a three-week old girl in the 

Netherlands had an amplified fragment-length polymorphism (AFLP) pattern identical to 

that from her newly adopted (and recently ill) Labrador retriever puppy (Wolfs et al., 

2001). Adoption of more specific prevention strategies would help to prevent similar 

cases of canine-related Campylobacter zoonosis. Unfortunately, the spatial, temporal, 

and methodological variations in literature relating to canine- carriage of Campylobacter 
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preclude all but the most general of prophylaxes. Additional epidemiologic research on 

the subject would do much to enhance risk assessment, guide resource allocation, and 

pinpoint opportunities for effective intervention.  

 

1.4 Value of Epidemiologic Research 

 

The value of epidemiologic research into pathogen carriage among stray and 

shelter dogs stems from its ability to guide prevention and control measures. The cross-

study variations in epidemiologic data about prevalence, serotype, and antimicrobial 

profiles, however, limit data application to only the most general of recommendations. In 

order to help make these recommendations more precise, numerous studies have tried to 

identify specific risk factors for shelter dog shedding of Salmonella and Campylobacter. 

Unfortunately, the efforts have been more successful in potential risk determinant 

elimination, identifying factors that seem to have little if any conclusive effect on risk. 

Different studies often reach different, and, at times, contradictory, conclusions about the 

predictive potential of factors such as dog age, sex, and fecal consistency. Since 

differences in study location and/or methodology may be responsible for such 

discrepancies, in-depth, regional epidemiologic investigation by a specially-designated 

research team may yield—for the region and time-frame—more reliable results.  

One of the largest and most populous American states, Texas has considerable 

human, bovine, and stray or shelter dog populations and a considerable number of 

annual salmonellosis and campylobacteriosis cases. Even so, published literature on 



 

14 

 

Salmonella and Campylobacter carriage among the stray or shelter dog population and 

the possible role of these animals as pathogen reservoirs in the state is lacking. As 

evident from studies of other states and countries, stray and shelter dogs can carry the 

bacteria, but the considerable cross-study variations mean that the studies’ results are not 

directly applicable to shelter dogs in Texas. Moreover, these studies neither examine the 

influence of dog environmental histories, nor do they suggest any reliable risk factors for 

pathogen shedding.  Through examining the epidemiologic characteristics of Salmonella 

and Campylobacter isolates from stray and shelter dogs around Texas, the present study 

promises to help fill in gaps in the literature and to expand investigation to include 

neglected areas of research.  

 

1.4.1 Aims of the Present Research 

 

The overarching hypothesis of the present research is that fecal Salmonella and 

Campylobacter shedding occurs among shelter canines and is related to identifiable 

canine-level and/or environmental variables. To test this hypothesis, the project will 

examine this shedding, assess putative shedding indicators, and make reference to 

detection methodology for Campylobacter. In so doing, the present research provides 

insight into the nature, risk factors, and prevalence of bacterial shedding, while 

enhancing the capacity for promoting risk assessment, resource allocation, public health, 

and human and animal well-being.  
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2. THE EPIDEMIOLOGY OF FECAL SALMONELLA SHEDDING AMONG 

SHELTER DOGS IN TEXAS* 

 

2.1 Introduction 

 

Companion animals can serve as reservoirs for a variety of zoonotic pathogens 

(Halsby et al., 2014). Salmonella enterica subspecies enterica, a zoonotic agent causing 

an estimated 1.2 million human illnesses per year in the United States (Scallan et al., 

2011), resides in the intestinal tract of many companion animals and passes into the 

external environment through feces (Hoelzer et al., 2011; Salehi et al., 2013).  Estimates 

of fecal Salmonella shedding can vary considerably across studies, depending on the 

animal population, geographic location, and time of sample collection.  Among canines, 

the prevalence of fecal Salmonella has ranged from 1–5% for pet dogs to 60–80% for 

racing or sled dogs or dogs fed raw-food diets (Hoelzer et al., 2011).  Considering that 

there are an estimated 69.9 million pet dogs living in 36.5% of households in the United 

States (AVMA, 2013), and that there is evidence of likely canine-to-human Salmonella 

transmission (Sato et al., 2000; Fukata et al., 2002; Hoelzer et al.., 2011; Polpakdee et 

al., 2012; Varga et al., 2012), canine Salmonella shedding represents a potential threat to 

public health. Moreover, Salmonella shed by dogs can demonstrate resistance to one or 

*Material in this chapter is reused with permission from Leahy, A.M., Cummings, K.J., Rodriguez-Rivera, 

L.D., Rankin, S.C., and S.A. Hamer. (2016). Evaluation of faecal Salmonella shedding among dogs at 

seven animal shelters across Texas. Zoonoses and Public Health 63: 515 – 521, Copyright [2016] by 

Blackwell Verlag GmbH.   



16 

more antimicrobial agents including tetracycline, streptomycin, and chloramphenicol 

(Chang et al., 2011; Kocabiyik et al., 2006; Tsai et al., 2007).  

Salmonella is also a cause of gastrointestinal disease in adult dogs and puppies.  

Clinical signs of canine salmonellosis can include vomiting, diarrhea, fever, lethargy, 

and abdominal pain; the diarrhea can be hemorrhagic in severe cases (Marks, 2011).  

However, many Salmonella infections among dogs remain subclinical. 

Nevertheless, limited information is available concerning the epidemiology of 

Salmonella among canines in general and shelter dogs in particular.  Exposures to other 

animals, high-stress environments, and the welfare challenges of shelters (scarcity of 

funding, presence of volunteers with limited disease-control training) (Turner et al., 

2012) could serve to increase the susceptibility of shelter dogs to infection with zoonotic 

pathogens including Salmonella. Shelter dogs harboring such pathogens would be 

capable of wide pathogen dissemination due to their contact with other shelter animals, 

shelter personnel, and perspective adoptive families. Preventing pathogen transmission, 

however, requires understanding of pathogen epidemiology among reservoirs. 

Salmonella typing data can facilitate source tracking, risk assessment, and 

communication through its relationship to Salmonella host range and pathogenicity 

(Wain and Olsen, 2013), while trend and risk factor data allow for more effective disease 

control and prevention. Consequently, along with Salmonella prevalence estimates and 

isolate characterization data, elucidation of risk factors for canine Salmonella shedding 

would enhance public health. Although some studies have examined one or more of 
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these epidemiologic aspects for a few shelters in regions of the United States, Iran, 

Taiwan, Trinidad, and several other countries (Cantor et al., 1997; Morley et al., 2006; 

Shimi et al., 1976; Seepersadsingh et al., 2004; Tsai et al., 2007), no published study to 

date has looked at the canine population in shelters in Texas. Thus, the objectives of this 

study were to estimate the prevalence of Salmonella shedding among shelter dogs 

throughout Texas, to identify risk factors for infection, and to characterize the isolates 

through serotyping and antimicrobial susceptibility testing. 

  

2.2 Materials and Methods 

 

2.2.1 Study Design and Sample Collection 

 

 Using a repeated cross-sectional study design, research team members sampled 

dogs in seven animal shelters across Texas between May 2013 and December 2014.  

Shelters were visited for either two (two shelters) or three (five shelters) rounds of 

sampling during this time frame, with an interval of approximately 5 months between 

sampling rounds. The desired sample size of 457 was calculated for a prevalence survey 

with finite population correction using publicly available software 

(http://samplesize.sourceforge.net/iface/), assuming Salmonella prevalence of 5 ± 2% at 

an α of 0.05. Each eligible dog provided one fecal sample and, due to resource 

limitations, it was not feasible to perform serial sampling (collecting sample from the 

same dogs during subsequent shelter visits). Dogs eligible for sample collection were all 
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adoptable dogs healthy and well-behaved enough to provide sufficient fecal sample. 

Each sample consisted of fecal matter obtained directly from the rectum, during 

defecation, or, when fresh and directly traceable to an individual animal, from the kennel 

floor.  When samples were collected from the kennel floor, care was taken to ensure that 

the sample was obtained without contacting the floor surface itself. Samples were scored 

to classify feces as normal (score =1), loose/semi-formed (score =2), or watery (score = 

3). Samples were then placed in sterile bags or commercially-available transport media 

(Meridian Bioscience, Inc., Cincinnati, Ohio; Becton, Dickinson and Company, Franklin 

Lakes, NJ, USA) and maintained at 4°C during transport from the shelter to the lab.  

 

2.2.2 Salmonella Isolation and Identification 

 

 Standard bacteriologic culture methods were used to isolate Salmonella from 

samples, as previously described (Cummings et al., 2014). Each sample was selectively 

enriched in 90mL of Tetrathionate Broth (BD Difco™, Sparks, MD, USA) containing 

1.8 mL of iodine solution. The sample-broth mixtures were then incubated at 42°C for 

18–24 h. Each mixture was then streaked onto Brilliant Green agar with novobiocin 

(Northeast Laboratory, Waterville, ME, USA) and Xylose Lysine Tergitol-4 (XLT-4; 

Northeast Laboratory, Waterville, ME, USA) plates and incubated at 37°C. After 18–24 

hours, the plates were checked for growth of presumptive Salmonella colonies (red, 

lactose-nonfermenting colonies on the Brilliant Green agar with novobiocin and black, 

hydrogen sulfide-producing colonies on the XLT-4). From plates with such colonies, one 
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representative colony was selected and used to inoculate a Kligler Iron Agar slant 

(BBL™ Beckton Dickinson Microbiology Systems, Cockeysville, MD, USA). The 

Kligler slants were then incubated at 37°C for 18–24 h. Following incubation, colonies 

from slants displaying biochemical properties typical for Salmonella were streaked onto 

Tryptic Soy Agar with 5% Sheep blood (Northeast Laboratory, Waterville, ME, USA). 

After incubation at 37°C for 18–24 hours, representative colonies from each plate were 

placed in 3mL of Brain Heart Infusion (BHI) media (Beckton Dickinson Microbiology 

Systems, Cockeysville, MD, USA) and incubated at 37°C for 18–24 hours. 

Subsequently, 850uL of each BHI culture was placed in a sterile storage tube with 

150uL pure glycerol and stored at –80°C. These frozen stocks were then later subject to 

additional confirmation as Salmonella via invA PCR.  

 For invA PCR, each frozen isolate stock was streaked onto Brain Heart Infusion 

Agar (BD Difco™, Sparks, MD, USA). The plates were then incubated overnight at 

37°C. One representative colony from each plate was then placed in 100uL of nuclease-

free water and microwaved for 30 seconds at full power to produce a lysate. A small 

volume (2uL) of each lysate was then added to a PCR tube containing 48uL of invA PCR 

master mix to give a total PCR reaction volume of 50uL. As a positive control, 2uL of 

Salmonella typhimurium ATCC 14028 was used in place of the lysate and 2uL of 

nuclease-water as a negative control. For each sample, the 48uL of the invA PCR master 

mix were as follows: 25uL of ProMega Master Mix (Promega Corporation, Madison, 

WI, USA), 2uL invA forward primer (5’-GAA  TCC  TCA  GTT  TTT  CAA  CGT  

TTC-3’; IDT®) at a concentration of 12.5uM, 2uL invA reverse primer (5’-TAG CCG 
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TAA CAA CCA ATA CAA ATG -3’;IDT®) at a concentration of 12.5uM, and 19uL of 

nuclease-free water.  The PCR was conducted using one 2-minute cycle of 94°C; twenty, 

3-temperature cycles of 94°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 

seconds; and one final cycle of 72°C for 5 minutes. Upon completion of PCR, the PCR 

products were held at 4°C until visualization. For visualization, 2uL of each PCR 

product was added to 2uL of loading dye and loaded into a well of a 1.5% agarose gel. 

Electrophoresis proceeded at 100V for 30 minutes. Samples that yielded a 678bp band 

were interpreted as positive for invA.  

 

2.2.3 Antimicrobial Susceptibility Testing 

 

Antimicrobial susceptibility of Salmonella isolates was determined by use of the 

microbroth dilution method.  Minimal inhibitory concentrations (MIC) were established 

for each isolate using the National Antimicrobial Resistance Monitoring System 

(NARMS) Gram-negative panel of 14 antimicrobial agents (Sensititre; TREK Diagnostic 

Systems, Cleveland, OH): amoxicillin/clavulanic acid (AUG), ampicillin (AMP), 

azithromycin (AZI), cefoxitin (FOX), ceftiofur (XNL), ceftriaxone (AXO), 

chloramphenicol (CHL), ciprofloxacin (CIP), gentamicin (GEN), nalidixic acid (NAL), 

streptomycin (STR), sulfisoxazole (FIS), tetracycline (TET), and 

trimethoprim/sulfamethoxazole (SXT).  Clinical and Laboratory Standards Institute 

(CLSI) guidelines were used to interpret MIC values when available (CLSI, 2008; CLSI, 

2010; CLSI, 2012).  Otherwise, MIC values were interpreted using NARMS breakpoints 
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(FDA, 2012).  Isolates were classified as being resistant or susceptible to each agent; 

those few isolates with intermediate susceptibility were categorized as being susceptible.  

Quality control testing was performed weekly using Escherichia coli ATCC 25922.  The 

MIC ranges for quality control recommended by the CLSI were used, and results were 

accepted if the MIC values were within the expected range for this bacterial strain.  

 

2.2.4 Salmonella Serotyping 

 

 Isolates were sent to the Salmonella Reference Center at the University of 

Pennsylvania for molecular serotyping.  The xMAP® Salmonella Serotyping Assay kit 

(Luminex, Austin, TX) was used to identify Salmonella isolates. Three separate tests 

within the kit determine the O and H antigens simultaneously, and identify the serotype-

specific markers of the AT (Additional Targets) test. Salmonella template DNA was 

extracted using the InstaGene Matrix as described by the manufacturer (Bio-Rad, 

Hercules, CA, USA). DNA was quantified using a NanoDrop 2000 (ThermoFisher, 

Waltham, MA, USA), diluted to a concentration of 100 μg/μl using nuclease free water, 

and stored at –20°C ± 1°C until use.  The O antigen assay detected serogroups B, C1, 

C2, D, E, G, and serotype Paratyphi A (ParaA). The H antigen assay detected 35 

antigens: a, b, c, d, j, (e,h), i, k, r, z10, z, z29, z6, y, L-complex, v, z28, EN-complex, x, 

z15, 1-complex, 2, 5, 6, 7, G-complex, f, (m/g,m), (m/m,t), p, s, t, z51, z4-complex, and 

z24. The three targets in the AT assay were sdf, Vi, and fljB. The first to targets (sdf and 

Vi) were specific for Salmonella Enteritidis and Salmonella Typhi, respectively. The fljB 
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target served as a positive control for the second motility phase of Salmonella. Using 

biotinylated primers, multiplex PCR was performed for the O antigen, H antigen, and 

AT assays. Following the PCR, the labeled amplicon was hybridized with the 

appropriate oligonucleotide probe-coupled bead mixture and then labeled with 

streptavidin-R-phycoerythrin (SAPE) reporter. The assay plate was analyzed on a 

Luminex® LX200™ platform, and the data were exported to Excel (Microsoft, 

Redmond, WA, USA) for analysis. 

 

2.2.5 Epidemiologic Information 

 

 A variety of data were collected on each sampled dog.  Age, breed, sex, neuter 

status, origin, and date of shelter admission were gathered from shelter records or, in the 

case of visible characteristics (age, breed, sex, neuter status), from qualified research 

team members at time of sample collection. Research team members also evaluated fecal 

sample consistency at time of collection, assigning the samples scores of 1, 2, or 3, to 

classify stools as normal, loose/semi-formed, or watery, respectively.  

 

2.2.6 Statistical Analysis 

 

Data from sample collection and laboratory analysis were entered into Microsoft 

Excel (Microsoft Corp, Redmond, WA, USA) and subsequently imported into a 

statistical software program (SAS version 9.4; SAS Institute Inc., Cary, NC, USA) for 
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variable coding and analysis. Assessed variables were dog age (< 1 year old or ≥ 1 year 

old), sex, duration of stay in shelter (in days), origin (stray or surrendered), and fecal 

sample consistency. Season of sampling was also assessed; the period from March to 

May was defined as spring, June to August as summer, September to November as fall, 

and December to February as winter. Initially, bivariable analysis using the χ2 test or 

Wilcoxon rank sum test (for the continuous variable, duration of stay in shelter in days) 

was used to assess the relationship between putative risk factors and laboratory detection 

of Salmonella. Further evaluation of all putative risk factors with P ≤ 0.25 in this initial 

screen was performed according to the multivariable logistic regression model building 

scheme outlined by Agresti (2002, 2007), using the generalized estimating equations 

(GEE) method in addition to the GENMOD procedure in SAS with shelter as the 

random effect and with the exchangeable working correlation. Model fit was assessed 

using the QIC criteria.  Values of P < 0.05 were considered significant.  

 

2.3 Results 

 

2.3.1 Prevalence and Risk Factors 

 

From May, 2013 through December, 2014, we collected 554 fecal samples from 

dogs in seven shelters across Texas.  Distribution of sampling by shelter ranged from 48 

(8.7%) to 107 (19.3%).  Among all sampled dogs, 263 (47.5%) were female and 290 

(52.3%) were male, with sex not recorded for 1 (0.2%) dog.  A total of 381 (68.8%) 
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were recorded as intact and 157 (28.3%) as neutered, with neuter status not available for 

16 (2.9%) dogs.  Among dogs with available data, 72.6% (183/252) of females and 

69.2% (198/286) of males were intact.  Among all sampled dogs, 474 (85.6%) were 

recorded as adults (≥ 1 year old) and 71 (12.8%) as puppies (< 1 year old), with age 

group not available for 9 (1.6%) dogs.  A total of 300 (54.2%) were stray dogs and 82 

(14.8%) were surrendered dogs, with origin not available for 172 (31.0%) dogs.  For 

dogs with available data, the median duration of stay in shelter was 4 days (range: 1-370 

days).    

Salmonella was isolated from 27 (4.9%) of the fecal samples. Within-shelter 

prevalence ranged from 1.9% to 8.3% (median: 5.6%).  Bivariable analysis revealed that 

the prevalence of fecal Salmonella shedding was higher (P = 0.05) among intact dogs 

(5.8%) than among neutered dogs (1.9%).  The prevalence of fecal Salmonella shedding 

was also higher among stray dogs (6.7%) than among surrendered dogs (2.4%), but this 

finding was not statistically significant (P = 0.1) (Appendix Table 2.1).  The median 

duration of stay in shelter was significantly lower (P < 0.0001) for Salmonella-positive 

dogs (median: 2 days) than for Salmonella-negative dogs (median: 5 days).  Salmonella 

prevalence was significantly higher (P = 0.03) among watery fecal samples (14.8%) than 

among normal (3.9%) or semi-formed (3.7%) fecal samples.  Salmonella prevalence did 

not vary significantly by age group or sex.  Prevalence also did not vary significantly by 

season of sample collection (ranging from 3.6% in the winter to 6.9% in the summer) or 

by round of sample collection (ranging from 4.1% to 5.5%). 
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In light of the similar Salmonella prevalence among normal and semi-formed 

samples, fecal consistency was dichotomized (watery vs. other) for the multivariable 

analysis to facilitate interpretation.  Investigation of the effects of origin (stray vs. 

surrendered) and duration of shelter stay were restricted to bivariable analysis because 

relevant data were missing for many dogs.  Similarly, there was no further analysis of 

dog neuter status due to concerns about the potential for misclassification. There was a 

marginal association (P = 0.09) between watery feces and positive Salmonella status, 

after controlling for shelter as a random effect. 

  

2.3.2 Antimicrobial Susceptibility 

 

 The vast majority of the Salmonella isolates were pan-susceptible to the 14 

antimicrobial agents. Resistance to chloramphenicol was detected in only 1 of the 27 

isolates (3.7%). Likewise, resistance to sulfisoxazole, was evident in 1 of the 27 isolates 

(3.7%). Resistance to tetracycline, however, was present in 3 of the 27 isolates (11.1%). 

Lone resistance to tetracycline was present in 2 of the 3 unique isolates demonstrating 

resistance. One of the 3 resistant isolates, however, was resistant to both 

chloramphenicol and sulfisoxazole in addition to tetracycline. This multi-resistant isolate 

was identified as belonging to the Salmonella Dusseldorf/Albany serotype. The two 

isolates with lone tetracycline resistance were identified as belonging to the Salmonella 

Anatum and Salmonella Derby serotypes.  
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2.3.3 Serotypes 

 

 Numerous Salmonella serotypes were represented among the 27 unique 

Salmonella isolates (Appendix Table 2.2). Serotypes Newport, Javiana, Braenderup, and 

Infantis were the most frequently identified, together accounting for over 50% of all 

isolates. An additional 14.8% were non-typeable.  

 

2.4 Discussion 

 

 In the present study, the apparent prevalence of fecal Salmonella shedding 

among shelter dogs in Texas was approximately 5%.  As fecal culture does not have 

perfect sensitivity for detecting the presence of Salmonella and serial sampling was not 

feasible for this study, the 5% is presumably an underestimate of the true prevalence.  

Nevertheless, this prevalence is near the lower end of prevalence reports for Salmonella 

among canines in general but is consistent with several studies of shelter dogs. Among 

canines in general, prevalence of Salmonella shedding can vary from a low of 1% to a 

high of almost 80% (Cobb and Stavisky, 2013). Differences between dog populations 

account for much of this variation. Domestic and pet dogs seem to have a lower 

prevalence of Salmonella shedding (around 1–5%) than do sledding dogs (up to 63%) or 

dogs fed raw-meat diets (up to 80%) (Hoelzer et al., 2011; Cantor et al., 1997; Joffe and 

Schlesinger, 2002). Fortunately, it appears that Salmonella prevalence ranges for shelter 

dogs tend to be closer to those reported for the typical pet dog than to those for racing 
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dogs. Studies of shelter dogs in California, Turkey, and Taiwan reported prevalences of 

0%, 11%, and 16%, respectively (Sokolow et al., 2005; Kocabiyik et al., 2006; Chang et 

al., 2011). Differences in study geographic location; sampling and bacteriologic 

methodology; and social, cultural or medical practices may account for and/or influence 

such variations in Salmonella detection and distribution (Kwaga et al, 1989). 

Furthermore, factors like these may also contribute to differences in reported patterns of 

antimicrobial susceptibility and Salmonella serotypes.  

In the literature, prevalence and patterns of antimicrobial susceptibility for canine 

Salmonella isolates are quite heterogeneous. One study detected resistance to one or 

more antimicrobial agent in 51% of isolates (Chang et al., 2011), another study in 67% 

(Kocabiyik et al., 2006), and another study in over 85% (Seepersadsingh et al., 2004). 

Among these same studies, differences in resistance profiles were also apparent, with 

tetracycline resistance being most common in the first and streptomycin resistance most 

common in the last two. Notably, however, for the study by Kocabiyik et al (2006), 

streptomycin resistance was the only resistance detected; by contrast, for the study by 

Seepersadsingh et al (2004), streptomycin was but one of several different antimicrobials 

to which resistance was detected.  In the present study, antimicrobial susceptibility was 

quite different from the aforementioned reports, with all but three isolates being pan-

susceptible to the 14 assessed antimicrobial agents and no detection of streptomycin 

resistance. The three resistant isolates [3/27 (11.1%)], however, were all resistant to 

tetracycline. Given the lack of detailed histories for the dogs yielding resistant isolates, 

and given the complexities of bacterial resistance itself, determining exactly how, when, 
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and where resistance occurred is difficult. Generally, however, for bacterial isolates from 

domestic animals, resistance to antimicrobial agents can be attributable to the nature of 

an animal’s bacterial exposure and to the presence or absence of resistance-related 

selective pressures.  Animals exposed to bacteria from environments in which 

antimicrobial resistance confers a survival advantage to the bacteria are more likely to 

acquire, carry, and shed resistant bacteria. In the context of animal shelters, detected 

resistance in bacterial isolates is most likely due to therapeutic uses of antimicrobial 

agents among shelter animals (Timoney et al., 1978) or through contaminated animal 

feed. It is also conceivable that bacterial exposure and resistance arose prior to shelter 

admittance, through direct antimicrobial administration to the animal yielding the 

isolate, through antimicrobial use by human or animal residents of the shelter animal’s 

original household, or again, through contaminated animal feed. Thus, the simplest 

explanation for the low level of antimicrobial resistance among the isolates in the present 

study is the lack of exposure to resistant bacteria and/or the lack of resistance-promoting 

selective pressures.   

As with antimicrobial susceptibility, there is considerable diversity with regard to 

Salmonella serotypes among canines (Kocabiyik et al 2006; Tsai et al., 2007; Chang et 

al 2011). Among the 27 Salmonella isolates obtained in the present study, there were 13 

unique serotypes identified along with 4 (14.8%) non-typeable isolates. Interestingly, for 

three of the different serotypes identified herein (Salmonella Agbeni, Salmonella 

Idaban/Mississippi, and Salmonella Muenchen), there are no readily accessible, 

published reports describing their isolation from canine feces. Nevertheless, all have 
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been implicated in human salmonellosis cases or outbreaks (Stevenson, 1953; Jones et 

al., 2008; Taylor et al., 2012; Ashbolt and Kirk, 2006; Boase et al., 1999). Consistent 

with previously published reports, many of the other detected serotypes have also been 

responsible for cases and outbreaks of human salmonellosis. In fact, five serotypes from 

among the top 10 isolated from human patients with laboratory-confirmed salmonellosis 

in the United States (CDC, 2014) are represented in our sample of canine isolates: 

Newport, Javiana, Infantis, Heidelberg, and Muenchen. In 2014 alone, the Centers for 

Disease Control and Prevention issued reports of outbreaks attributable to Salmonella 

Newport (live poultry, contaminated cucumbers, and chia powder), Salmonella 

Braenderup (contaminated nut butter), Salmonella Infantis (live poultry), and Salmonella 

Heidelberg (chicken) among others (CDC, 2015).There are also reports of human cases 

and outbreaks in which dogs have played a role.  Many describe links between human 

infection and pet food (Behravesh et al., 2010) such as a 2012 outbreak of Salmonella 

Infantis in the United States and Canada associated with dry dog food (Imanishi et al., 

2014) and a 2013 Salmonella Typhimurium outbreak associated with chicken jerky pet 

treats (Cavallo et al., 2015). Pet food may not be the only dog-related source of human 

illness, however. An examination of Canadian case records from 2011 found canine 

contact to be a significant (OR=2.17, 95% CI 1.01 – 4.68) risk factor for Salmonella 

Enteritidis infections in Ontario (Varga et al., 2012), while an earlier report describes the 

contemporaneous detection of Salmonella Virchow with similar PFGE pattern and 

antimicrobial susceptibility from a diarrheic infant and two of the three household dogs 

(Sato et al., 2000).  
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 Together, the detection of serotypes commonly associated with human (and, less 

often, animal) illness and the historical evidence for dog-related Salmonella zoonosis 

highlight the importance of having well-defined, broadly-applicable indicators of canine 

fecal Salmonella shedding.  Statistical analysis of our data indicated that dog age, dog 

sex, and season of sampling were not statistically significant risk factors. These findings 

are consistent with those other studies (Sokolow et al., 2005; Tsai et al., 2007; Tupler et 

al., 2012). Origin (stray vs. surrendered) and duration of shelter stay appeared to be 

independently associated with Salmonella status, but missing data precluded 

comprehensive analysis. Nevertheless, several explanatory hypotheses are possible. Both 

canine origin and duration of shelter stay may affect the nature and extent of a dog’s 

bacterial exposure(s), and, thus, the likelihood of detectable canine Salmonella shedding. 

Dogs exposed to environments containing sheep, flies, and rodents, for example, might 

have a higher likelihood of Salmonella carriage (Salehi et al., 2013; Morley et al., 2006; 

Snow et al., 2010).  The positive association between detectable Salmonella and origin 

and between Salmonella and short duration of shelter stay reported in the present 

research, suggests that such pre-shelter Salmonella exposures may account for the 

significance of these variable. Additionally, both canine origin and duration of shelter 

stay may affect a dog’s susceptibility to bacterial colonization, carriage, and/or shedding. 

Dogs from abusive households or with histories of neglect may have immune system 

alterations which impact their length of stay in a shelter and their physiological 

responses to bacteria. Moreover, physiologic responses to stress itself can greatly affect 

pathogenic bacterial properties like bacterial growth, motility, and virulence factor 
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expression (Verbrugghe et al., 2012). In order to determine the precise nature of such 

risk factor-bacteria-host relationships, however, more research is necessary. 

 Neutering (spaying of female dogs and castration of male dogs) is common for 

dogs in the United States, due to concerns related to aggressive behaviors, population 

overgrowth, and certain cancers (Hart et al., 2014).  Even so, very few publications 

mention a role for neutering in the prevention of pathogen carriage or transmission. In 

most cases, such publications describe the pathogen-neutering connection in terms of 

canine reproductive modification. Risk of human and/or animal exposure to 

reproduction-associated pathogens (e.g. Brucella canis), for example, is much reduced 

when neutering renders reproduction impossible (McKenzie, 2010). However, not all 

pathogens are typically present in a reproductive context, and, besides the present 

research, at least one other study has documented a possible connection between 

neutering and Salmonella.  Although not providing information about statistical 

significance, the study, of hospital visitation dogs in Ontario, Canada, noted that all 3 of 

the dogs with Salmonella-positive feces were sexually intact (non-neutered) (Lefebvre et 

al., 2006).  Considering that neutering-induced changes in non-reproductive behaviors 

(e.g. aggression) are highly variable (McKenzie, 2010), neuter status seems unlikely to 

impact canine actions in a manner that would consistently alter canine pathogen 

exposure at a population level. Rather, two alternative hypotheses for a neuter status-

Salmonella relationship seem more plausible. On a microscopic level, endocrine effects 

of neutering could have an effect. The presence or absence of gonadal hormones and 

other endocrine factors can influence immune responses and the host-pathogen 
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relationship (Klein, 2000). On a macroscopic level, neuter status could reflect inherent 

social or environmental differences between neutered and non-neutered canine 

populations. It is possible, for example, that relative to intact dogs, neutered dogs 

received more veterinary care prior to their entry into the shelter (hence the neutering) 

and/or lived in a manner that minimized Salmonella exposure. Additional research 

would help to clarify the existence of any relationship between Salmonella shedding and 

neuter status.   

 In contrast to the shortage of literature regarding neuter status, there is a relative 

abundance of published research pertaining to fecal consistency and its relationship with 

Salmonella detection.  Contrary to our findings, many published reports describe the 

absence of any meaningful connection between diarrhea and Salmonella detection. In 

one such study, 6% of non-diarrheic dogs had feces positive for Salmonella while only 

2% of diarrheic dogs had Salmonella-positive feces (Tupler et al., 2012). Notably, the 

latter study, like many others, had a relatively small sample size (only 100 dogs) and 

examined only a single animal shelter. Small sample sizes provide less reliable and less 

generalizable estimates of effects (dos Santos Silva, 1999). Moreover, as shelter-level 

variables such as dog feed can influence canine fecal consistency (Tupler et al., 2012), 

accounting for the variable effects of shelter in statistical assessment is quite important, 

and failing to account for it or studying only a single shelter may obscure variable-

pathogen relationships. Featuring a large sample size and accounting for inherent shelter 

variability, our study may unmask a fecal consistency-Salmonella relationship; diarrheic 

feces may be more likely to be Salmonella-positive relative to non-diarrheic ones. 
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However, as with previous research, our results also show that non-diarrheic feces can 

contain detectable Salmonella.  In fact, over 60% of Salmonella-positive dogs had 

grossly normal feces. Caution is thus warranted whenever fecal contact occurs or is 

expected, regardless of fecal consistency.  

 When considering the findings of the present research, it is important to note 

several study limitations and strengths. As with many studies, missing data limits the 

ability to draw conclusions. The precise origins and history of many dogs presenting to 

animal shelters is often unclear. Categorization of dogs as strays or surrenders, puppy 

(dogs <1 year) or adult (dogs ≥ 1 year) is, thus, an approximation based on shelter 

records or veterinary assessment, respectively. Additionally, imperfect shelter records 

and canine histories create the potential for neuter status misclassification. Although 

research team veterinarians inspected each animal, neuter status for female dogs cannot 

always be reliably discerned with visual and manual examination (e.g. evidence of 

ovariohysterectomy scars). However, the lack of significant interaction between neuter 

status and sex suggests that the effect of neuter status on Salmonella risk is the same for 

males (the population for which we know the neuter status data are reliable) and females. 

Moreover, the fact that our study even examines neuter status sets it apart from many 

other studies. Also, unlike much previous research on the subject, our study features a 

large sample size, multiple shelters throughout Texas, and an extended study time-frame. 

Together, these factors contribute to the strength and applicability of our findings. 

 In summary, detection of Salmonella in canine feces is positively associated with 

diarrheic feces. Additional research should examine the relationship between fecal 
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shedding and variables such as canine origin (stray vs. surrender), canine neuter status, 

and canine duration in animal shelters. Predictive factors aside, feces of all types from 

dogs of all backgrounds have the potential to harbor culturable Salmonella representing 

a variety of serotypes associated with human disease. Many of these pathogenic 

Salmonella serotypes have been previously detected in canine fecal samples. The present 

study, however, is perhaps the first to describe the fecal presence of Salmonella 

serotypes Agbeni, Idaban/Mississippi, and Muenchen among shelter dogs. All things 

considered, canines are clear participants in the epidemiology of Salmonella, and their 

contributions hold substantial import for their close companions.   
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3. METHODS FOR THE DETECTION OF CANINE FECAL CAMPYLOBACTER  

 

3.1 Introduction  

 

Campylobacter is one of the most predominant human pathogens, with an 

estimated global burden of 7.5 million disability-adjusted life years (DALYs) (WHO, 

2013). Even so, many cases of human campylobacteriosis are likely to go unreported, 

undetected, and/or misidentified (WHO, 2013). Contributing to this lack of recognition 

are the difficulties surrounding Campylobacter cultivation methodologies and the 

diversity of Campylobacter reservoirs. 

The complexities of Campylobacter cultivation center on the bacteria’s fastidious 

nature and species-level heterogeneity. Campylobacter is particularly sensitive to 

atmospheric oxygen, temperature, and humidity (Koene et al., 2004; Monfort et al., 

1989), and incubation typically requires the use of microaerophilic conditions at 37–

42°C (Koene et al., 2004; Allos, 2001). Furthermore, the incubation itself can take 

several days. Adding to these complications, certain growth requirements may be 

species-dependent (Hald et al., 2004), so that a culture method suitable for the growth of 

one Campylobacter species may be suboptimal for that of another. Methodology, 

therefore, impacts not only the detection of Campylobacter, but also the        

identification of it.   

On account of the barriers bacterial culture can impose, there is growing interest 

in molecular methods of Campylobacter detection and identification. The use of PCR for 
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direct analysis of stool samples is particularly appealing on account of the high 

sensitivity, relative speed and automation of the technique. Most studies on 

Campylobacter use primers for the 16S or 23S rRNA gene (On et al., 1996) for genus-

level identification. Species-level detection is also possible (Kulkami et al., 2002). 

Moreover, because it does not depend on bacterial viability or culturability, PCR is one 

of the best methods for detecting bacteria in older, less fresh samples (Maher et al., 

2003) or for detecting uncommon Campylobacter species such as Campylobacter 

hyointestinalis and Campylobacter upsaliensis (Kulkami et al., 2002). Even so, the 

detection ability of PCR may depend on the timing of DNA extraction; Kulkami et al 

(2002) posit that PCR detection may be inversely related to the length of time between 

laboratory receipt of stool samples and DNA extraction. In addition, PCR can increase 

the cost and labor-intensity of investigation, without the benefit of producing a bacterial 

isolate (Kulkami et al., 2002; On et al., 1996). Without a clinical isolate, a suspect case 

of campylobacteriosis cannot be confirmed to CDC standards (NNDSS Condition Case 

Definition 2012 Case Definition).  

The clear standards for case definitions, however, do not extend to laboratory 

protocols for Campylobacter detection.  Within the United States, there is considerable 

inter-laboratory, inter-clinic variation in detection protocols and even in the frequency 

with which samples are subjected to testing (Hurd et al 2012). Yet the problem persists 

beyond borders. A report from a 2012 expert consultation on Campylobacter facilitated 

by the World Health Organization (WHO) concluded that there is a widespread “need 

for standardization and validation of laboratory methods” (WHO, 2013, p.1) and, on 
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multiple occasions, discusses the need to do so in a variety of contexts and with 

consideration of Campylobacter’s myriad possible sources. One such possible source is 

the common canine companion. Thus, the aims of the present study were to assess the 

comparability of several different, commonly used methods (i.e. traditional culture vs 

molecular) of Campylobacter detection and to evaluate the suitability of these methods 

for use in an important under-researched population: shelter dogs.  

 

3.2 Materials and Methods 

 

3.2.1 Study Design and Sample Collection 

 

 The present study proceeded using a post-hoc analysis of results from a cross-

sectional study of the fecal shedding of Campylobacter in dogs from animal shelters in 

Texas. For the cross-sectional study (unpublished data), sampling took place over a four 

month period (September – December 2014) at six participating shelters. Each sample 

consisted of fresh fecal matter directly traceable to an individual animal, with only one 

sample collected per animal. Less than 48 hours after sample collection, 8 mL of 1x PBS 

(Sigma-Aldrich, Co., St. Louis, MO, USA) was added to 2–3g of each stool sample to 

create fecal slurries. Fecal slurries were then subjected to three different methods of 

Campylobacter detection: PCR, direct plating, or indirect plating. 

   

 



 

38 

 

3.2.2 DNA Extraction 

  

DNA was extracted from the fecal slurries using MO BIO PowerFecal® DNA 

Isolation Kits (MO BIO Laboratories, Inc., Carlsbad, CA, USA) and following a (very 

slightly) modified version of the manufacturer guidelines. In brief, the extraction 

protocol proceeded as follows. First, 1 mL of each fecal slurry was pipetted into a 

labeled 1.4mm MO BIO dry bead tube. The bead tubes were then centrifuged at 12,800 

rpm for 10 minutes. The resulting supernatants were removed and 750 μL of MO BIO 

Bead Solution added to each bead tube. The bead tubes were vortexed and 60 μL of 

Solution C1 added to each one. The tubes were inverted several times to allow mixture 

and heated in a 65°C hot water bath for 10 minutes. Using a vortex adapter tube holder, 

the tubes were placed horizontally on a flat-bed vortex pad and vortexed at maximal 

speed for 10 minutes. Next, tubes were centrifuged at 13,000 x g for 1 minute. Following 

centrifugation, 420 μL of each supernatant was then transferred to a new 2 mL 

Collection Tube and 250 μL of Solution C2 added. These tubes were vortexed then 

incubated at 4°C for 5 minutes. After centrifugation at 13,000 x g for 1 minute, 500 μL 

of each supernatant was transferred from the centrifuged tube to another 2 mL Collection 

Tube and 200 μL of Solution C3 was added.  These tubes were vortexed then incubated 

at 4°C for 5 minutes. After centrifugation at 13,000 x g for 1 minute, 600 μL of each 

supernatant was transferred to another 2mL Collection Tube and 600 μL of Solution C4 

was added.   These tubes were vortexed and spun down at 13, 000 x g for 1 minute. 

Another 600 μL of Solution C4 was added, using pipetting to mix prior to loading 600 
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μL of the mixture onto a Spin Filter in a Spin Column. The Columns were then 

centrifuged at 13, 000 x g for 1 minute. The flow-through was discarded and another 600 

μL of the Solution C4-supernatent mixture was added to the Spin Filter apparatus and 

centrifuged at 13, 000 x g for 1 minute. This process was repeated until all of the 

Solution C4-supernatent mixture had been added to and centrifuged in the Spin Filter 

Column. Then, 500 μL of Solution C5 was added to the Spin Filter Column and 

centrifuged at 13, 000 x g for 1 minute. After the flow-through was discarded, the Spin 

Filter Column was centrifuged at 13, 000 x g for 2 minutes. The Spin Filter was then 

removed from the Column and placed into a new 2 mL Collection Tube.  In a biosafety 

cabinet, 50 μL of Solution C6 was placed onto the Spin Filter tube. After an incubation 

of 1 minute at room temperature, each tube was centrifuged at 13, 000 x g for 1 minute. 

The Spin Filter was removed from each tube and the tubes stored at –20°C to preserve 

the DNA.   

 

3.2.3 Culture-Independent Campylobacter Detection 

 

The DNA extracted from the fecal samples was later subjected to quantitative 

PCR (qPCR) using a 7900 HT Fast Real-Time PCR machine and the associated PC 

software (SDS 2.4, Applied Biosystems, Life Technologies, Austin, TX USA). All 

primers and probes used in this study were obtained from Sigma-Aldrich, St. Louis, MO, 

USA. The procedure followed was an adaptation of that used by Lund et al (2004).  

Specifically, 2 μL of each DNA sample was combined with 6.75 μL of nuclease-free 
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water (Ambion® Life Technologies, Austin, TX, USA), 12.5 μl of PCR Master Mix 

(TaqMan® Fast Universal PCR Mastermix, Applied Biosystems, Life Technologies, 

Austin, TX, USA), 1.25 μL (0.5mM) of forward primer for Campylobacter 16S rRNA 

gene (5’-CACGTGCTACAATGGCATAT-3’), 1.25 μL (0.5mM) of reverse primer for 

Campylobacter 16S rRNA gene (5’-GGCTTCATGCTCTCGAGTT-3’), and 1.25 μL of 

the TaqMan probe (5’-FAM-CAGAGAACAATCCGAACTGGGACA-BHQ1-3’) for a 

total reaction volume of 25 μL per sample.  For a positive control, 2 μL of C.jejuni 

ATCC 33560 DNA was used in place of sample DNA, and for a negative control, 2 μL 

of nuclease-free water. All reaction mixtures then underwent absolute quantification 

according to the following amplification cycle: 1 cycle at 95°C for 20 minutes, followed 

by 40 cycles of 1 minute at 95°C and 20 minutes at 60°C. Based on preliminary 

experiments, all samples yielding Ct values between 14 and 33 were considered positive 

for Campylobacter.  

Note that in nearly all cases, qPCR was performed before comparison with the 

culture plating results, so as to reduce the likelihood of biased interpretation. 

   

3.2.4 Direct Plating 

 

 Using sterile, disposable, cotton-tipped applicators, swabs of each fecal slurry 

sample were streaked on agar plates. Two different types of agar—Modified Charcoal-

Cefoperazone Deoxycholate Agar with Cefoperazone, Amphotericin B, Teicoplanin 

selective supplement (mCCDA-CAT) Blood Free Campylobacter Selectivity Agar 
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(HiMedia Laboratories, LLC, Mumbai, India) and Campy Cefex Agar (Acumedia 

Manufacturers, Inc., Neogen Corporation, MI, USA; abbreviated as ‘CEF’ throughout 

this manuscript), each prepared according to manufacturer instructions—were used for 

each sample. As soon as possible, the streaked agar plates were placed into anaerobic 

canisters containing AnaeroPack®-MicroAero, a microaerophilic gas generating system, 

(Mitsubishi Gas Chemical America, Inc., NY, USA) and incubated at 37°C. After 72 

hours of incubation, the canisters were opened and the plates examined for characteristic 

Campylobacter colonies. Suspect colonies were then streaked onto Trypticase™ Soy 

Agar with 5% Sheep Blood (BBL™, Becton Dickinson, Franklin Lakes, NJ, USA). The 

blood agar plates were then incubated under microaerophilic conditions at 37°C for at 

least 48 hours (additional days of incubation were sometimes required to achieve enough 

growth for isolate characterization and preservation). Characteristic Campylobacter 

colonies were then tested using qPCR. The qPCR was performed as outlined above for 

the 16S Campylobacter ribosomal subunit (see ‘Culture-Independent Campylobacter 

Detection’), replacing the extracted DNA with 2 μL of a colony lysate. The colony lysate 

consisted of ~ 1 μL of colony placed in 50 μL of nuclease-free water (Ambion® Life 

Technologies, Austin, TX USA) that was microwaved at full power for 30 seconds.  

Again, as for the qPCR for the 16S Campylobacter ribosomal subunit outlined 

previously (see ‘PCR Detection’), all samples yielding Ct values between 14 and 33 were 

considered positive for Campylobacter. 

 

 



 

42 

 

3.2.5 Indirect Plating 

 

 The indirect plating method described in this study refers to the use of broth 

enrichment prior to agar plating. In this study, 1 mL of each fecal slurry sample was 

dispensed into a 15mL screw-cap conical tube (VWR, Sugar Land, TX, USA) containing 

9 mL of Bolton Broth (HiMedia Laboratories, LLC, Mumbai, India) supplemented with 

Lake Horse blood (Hardy Diagnostics, Santa Maria, CA, USA) per manufacturer 

instructions.  The slurry and broth were mixed and the caps loosened. The tubes were 

then placed inside anaerobic canisters containing AnaeroPack®-MicroAero, a 

microaerophilic gas generating system, (Mitsubishi Gas Chemical America, Inc., NY, 

USA) and incubated at 37°.  After 48 hours, the canisters were removed from the 

incubators and slurry-broth mixtures plated onto mCCDA-CAT Blood Free 

Campylobacter Selectivity Agar (HiMedia Laboratories, LLC, Mumbai, India) and 

Campy Cefex Agar (Acumedia Manufacturers, Inc., Neogen Corporation, MI, USA) 

plates using sterile, disposable, cotton-tipped applicators and loops. Further processing 

then proceeded in the same manner as that described for the direct plating method.  

 

3.2.6 Data Analysis 

 

 Data from sample collection and laboratory analysis were entered into Microsoft 

Excel (Microsoft Corp, Redmond, WA) and subsequently imported into a statistical 

software program (SAS version 9.4; SAS Institute Inc., Cary, NC, USA) for analysis. 
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The kappa statistic was used to assess the level of agreement between methods and the 

level of test result concordance according to the formula (a+d)/n where ‘a’ represents the 

number of samples positive by both tests,‘d’ the number negative by both tests, and ‘n’ 

the total number of samples assessed (Lund et al., 2004; Martin et al., 1997; Smith, 

1995). McNemar’s test was used to assess test performance and detect meaningful levels 

of test result discordance. Test specificity was determined as the number of samples 

negative by both tests divided by the sum of the number of samples negative by both 

tests and the number of samples positive by one test and negative by the counterpart test. 

For culture vs culture comparisons, sensitivity was determined as the number of samples 

positive by both tests divided by the sum of the number of samples positive by both tests 

and the number of samples negative by one test and positive by the counterpart test 

(Mark and Wong, 2012).  

 

3.3 Results 

 

3.3.1 Campylobacter Detection 

 

During the study period, researchers collected and processed a total of 185 

individual fecal samples, approximately 30 fecal samples from each shelter.  Using 

qPCR for the DNA extracted from the fecal slurries (representative amplification curve 

appears in Appendix Figure 3.1), a total of 140 (75.7%) samples tested positive for the 

16S Campylobacter ribosomal subunit, with prevalence varying from a low of 56.7% at 
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one shelter to a high of 93.3% at another. For bacterial culture overall, a total of 84 

(45.4%) were identified as Campylobacter, with positive results ranging from a low of 

25.8% at one shelter to a high of 63.3% at another. All culture-positive samples were 

qPCR-positive. Looking at culture results according to agar type (mCCDA-CAT or 

CEF), plating (direct or indirect) on mCCDA-CAT agar plates yielded slightly more 

Campylobacter positives than plating (direct or indirect) on CEF agar plates (69 [37.3%] 

vs 65 [35.1%]).  Likewise, direct plating (on mCCDA-CAT or CEF agar plates) yielded 

slightly more Campylobacter positives than indirect plating (on mCCDA-CAT or CEF 

agar plates) (65 [35.1%] vs 56 [30.3%]. Direct plating on mCCDA-CAT agar plates 

yielded 52 (28.1%) Campylobacter-positives, while direct plating on CEF agar plates 

yielded 45 (24.3%) Campylobacter-positives. Indirect plating on mCCDA-CAT agar 

plates yielded 43 (23.2%) Campylobacter-positives, while indirect plating on CEF agar 

plates yielded 45 (24.3%) Campylobacter-positives.  

  

3.3.2 Data Analysis 

 

 For all comparisons, there was significant agreement and high levels of test result 

concordance (Appendix Table 3.1 and Appendix Table 3.2). When comparing qPCR 

results to those of culture (Appendix Table 3.1), the highest levels of agreement and 

concordance was between the qPCR and the pooled culture (combined results of all 

culture methods) results (concordance= 69.7%; kappa=0.4170; p <0.0001), with 84/185 

(45.4%) samples positive by both methods and 45/185 (24.3%) samples negative by both 
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methods. Also looking at the comparison between the qPCR results and those of culture, 

the lowest levels of agreement and concordance was between the qPCR and mCCDA-

CAT with indirect plating results (concordance= 47.8%; kappa= 0.1794; p <0.0001), 

with 42/182 (23.1%) samples positive by both methods and 45/182 (24.7%) samples 

negative by both methods. Importantly, however, for all the qPCR vs culture 

comparison, the level of observed agreement exceeded that expected due to chance alone 

(p<0.0001). Despite high agreement, however, the overall performance of qPCR was 

significantly different from that of culture (p values <0.0001). The probability of getting 

a positive result by qPCR was much higher than that of getting a positive result on 

culture. Specificity of qPCR relative to culture was low, ranging from a high of 44.8% 

(qPCR vs pooled culture results) to a low of 32.1% (qPCR vs mCCDA-CAT with 

indirect plating).  

 For culture vs culture comparisons, there was considerable similarity across all 

values of assessment (Appendix Table 3.2). The highest levels of agreement and 

concordance was observed for the comparison of indirect plating on mCCDA-CAT 

plates to indirect plating on CEF plates (concordance= 88.0%; kappa=0.6766; p 

<0.0001), with 34/184 (18.5%) samples positive by both methods and 128/184 (69.6%) 

samples negative by both methods. By contrast, the lowest levels of agreement and 

concordance was between direct plating on mCCDA-CAT plates and indirect plating on 

CEF plates (concordance= 71.4%; kappa= 0.2749; p <0.0001), with 23/182 (12.6%) 

samples positive by both methods and 107/182 (58.8%) samples negative by both 

methods. Nevertheless, performance was not statistically different for any comparison. 
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Sensitivities and specificities did vary, however, with sensitivities ranging from a high of 

80.0% to a low of 44.2%, and specificities ranging from a high of 93.4% to a low of 

78.9%.  

  

3.4 Discussion  

  

 In the present study, the apparent prevalence of fecal Campylobacter shedding 

among shelter dogs in Texas was approximately 76 % according to results from qPCR, 

with only 45.4% of samples positive according to bacterial culture. As neither qPCR nor 

culture have perfect sensitivity for Campylobacter detection, these percentages are 

presumably underestimates. They are, however, in line with previous reports of canine 

Campylobacter prevalence, which document prevalence estimates ranging from 21–77% 

(Hald et al., 2004; Koene et al., 2004). Nevertheless, inter-study comparisons of 

Campylobacter epidemiology and prevalence are complicated by numerous factors, 

including differences in study geographic location, study population, and study 

methodology. The impact of the latter is particularly evident from the results here 

presented. Assessing the same samples, there was a significant difference between the 

performance of culture-independent qPCR and culture. This finding is at least partially 

attributable to the conservative criteria used for determination of a positive result 

according to culture; in the present study a culture-positive sample was one yielding 

colonies suggestive of Campylobacter on culture agar and testing positive for 

Campylobacter on qPCR of colony DNA. However, the performance difference between 
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culture-independent qPCR and culture could also be explained by the high sensitivity of 

qPCR, the difficulty of culturing Campylobacter, and the possibility of viable, non-

culturable bacteria.  

 In contrast to the comparisons involving both culture-independent qPCR and 

culture, the differences evident from our culture-culture comparisons were more subtle. 

Overall, there were no statistically significant differences in performance for any of the 

comparisons, and, generally, levels of agreement and concordance were high. Even so, 

there were notable variations in sensitivity and specificity. Relative to CEF plates, 

mCCDA-CAT plates tended to have higher sensitivities and lower specificities. This 

observation is consistent with other reports. It is posited that blood-using media (such as 

CEF) can make it more difficult to visually identify Campylobacter colonies 

(Nachamkin, 1997). As to plating method, the relationship between direct plating of 

fecal slurry and indirect plating (plating of enriched slurry) was similar to that between 

the two agar types; Relative to indirect plating, direct plating tended to have higher 

sensitivities and lower specificities.  The higher sensitivity of direct plating may result 

from shorter sample processing time and/or lower levels of requisite sample 

manipulation. Specificity may be higher for indirect plating due to the enrichment. 

Trends in sensitivity and specificity, however, showed evidence of interaction between 

plating method and plate type; Indirect plating on CEF plates resulted in higher 

sensitivity than direct plating on CEF plates. While slight, this elevation of sensitivity 

could be attributable to an increased ease of Campylobacter visualization on the blood-

containing agar as a result of enrichment-enhanced selectivity.  



 

48 

 

 Selectivity is also an important issue in a more general way. Potentially affecting 

all Campylobacter culture observations is variation among different Campylobacter 

species; certain species may be more selective in their growth requirements. Relative to 

Campylobacter jejuni, for example, Campylobacter upsaliensis may require longer 

incubation periods and lower concentrations of the antimicrobial cefoperazone (Hald et 

al., 2004). Thus, using multiple methodological techniques (i.e. a mix of different culture 

methods in combination with one or more molecularly-based approaches) may produce 

more robust results.   

 Regarding the results of the present study and their future applications, it is 

important to note several study limitations and strengths. As with many studies, there 

were some missing data. For three of the 185 total samples, plate type and/or plating 

method was not available and in these cases, the isolate was excluded from detailed plate 

type/plating method analyses. Another limitation concerns the importance of experience 

to Campylobacter culture. Although our data show no overt trend of the phenomenon 

(there is no linear increase in culture-positive rate over time), it is conceivable that the 

ability to cultivate and detect Campylobacter from culture improved over the duration of 

the study, thereby influencing results. This limitation could easily apply to other studies, 

past and future.  

 The strengths of the present research could also inform future studies. Our study 

features a large sample size, a unique population from multiple shelters throughout 

Texas, an extended study time-frame, and the head-to-head examination of multiple 
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bacterial detection methods. Together, these factors contribute to the strength and 

applicability of our findings. 

 In summary, use of the culture-independent and colony qPCR procedures here 

described is suitable for the detection of Campylobacter from canine feces. As with 

other PCR techniques, however, its cost and the fact that it does not yield a bacterial 

isolate must be weighed against the benefits of high sensitivity, a same-day result, and 

the nondiscriminatory treatment of different Campylobacter species. Performing culture 

in tandem with or under the guidance of the species information possible with qPCR 

could greatly enhance results. As for culture itself, all methods employed here were 

largely comparable, yet with some variations as to sensitivity and specificity. Future 

research could examine these variations and their potential relationship to different 

species of Campylobacter. In light of the relationship between canines and humans, and 

the impact Campylobacter has on both, investigations into the methodology behind 

bacterial detection promise to augment not only clinical diagnosis and source tracking, 

but also the implementation and identification of preventative strategies. By assessing 

multiple detection methods in an oft-overlooked population, the present study is a step in 

that direction.   
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4. THE EPIDEMIOLOGY OF FECAL CAMPYLOBACTER SHEDDING AMONG 

SHELTER DOGS IN TEXAS* 

 

4.1 Introduction 

 

Companion animals can serve as reservoirs for a variety of zoonotic pathogens 

(Halsby et al., 2014). Campylobacter, a zoonotic agent causing an estimated 35% of 

foodborne infections in the United States (CDC, 2014; Scallan et al., 2011), resides in 

the intestinal tract of many companion animals and passes into the external environment 

through feces (Workman et al., 2005).  Estimates of fecal Campylobacter shedding can 

vary considerably across studies, depending on the animal population, geographic 

location, time of sample collection, and bacterial processing methods.  Among canines, 

the prevalence of fecal Campylobacter has ranged from 2–36% to over 75% (Wolfs et 

al., 2001; Hald et al., 2004; Koene et al., 2004).  Considering that there are an estimated 

83.3 million household dogs in the United States (American Pet Products Association 

2012 estimates; Humane Society), and that there is evidence of canine-human 

Campylobacter transmission (Damborg et al., 2004; Nayar, 1980; Wolfs et al., 2001), 

canine Campylobacter shedding represents a potential threat to public health. Moreover, 

human infection with Campylobacter is associated with serious, debilitating, 

extraintestinal complications including Guillain-Barré paralysis and Miller-Fisher 

*Material in this chapter is reused with permission from Leahy, A.M., Cummings, K.J., Rodriguez-Rivera, 

L.D., Rankin, S.C., and S.A. Hamer. (2017). Faecal Campylobacter shedding among dogs in animal 

shelters across Texas. Zoonoses and Public Health 00: 1 – 5, Copyright [2017] by Blackwell Verlag GmbH.  
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polyneuropathy (WHO, 2013; Bourke et al., 1998). Even so, there remains a lack of 

information about the epidemiology of Campylobacter among canines in general and 

shelter dogs in particular. 

Exposures to other animals, high-stress environments, and the welfare challenges 

of shelters (scarcity of funding, presence of volunteers with limited disease-control 

training) (Turner et al., 2012) could serve to increase the susceptibility of shelter dogs to 

infection with zoonotic pathogens including Campylobacter. Shelter dogs harboring 

such pathogens would be capable of wide pathogen dissemination due to their contact 

with other shelter animals, shelter personnel, and prospective adoptive families. 

Preventing pathogen transmission, however, is complicated by the fact that 

Campylobacter-shedding dogs rarely display any overt clinical signs of bacterial 

carriage (Damborg et al., 2004). Furthermore, once colonized by Campylobacter, dogs 

can continue to shed the bacteria intermittently for over 1 year (Damborg et al., 2004).  

Greater understanding of pathogen epidemiology among shelter dog reservoirs could 

allow for more effective disease control and prevention by facilitating risk assessment 

and the identification of salient indicators of bacterial shedding (Wain and Olsen, 2013). 

Even so, although some studies have reported on Campylobacter epidemiology 

involving dogs in regions of Denmark, Switzerland, California, and several other areas 

(Damborg et al., 2004; Wieland et al., 2005; Labarca et al., 2007), no published study to 

date has looked at the canine population in shelters in Texas. Thus, the objectives of the 

present study were to estimate the prevalence of fecal Campylobacter shedding among 

dogs at 6 animal shelters across Texas, to estimate the specific prevalence of C. jejuni 
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and C. coli shedding amongst these dogs, and to identify risk factors for such 

Campylobacter shedding. 

 

4.2 Materials and Methods 

 

4.2.1 Study Design and Sample Collection 

 

 The present study proceeded using a cross-sectional design to assess fecal 

shedding of Campylobacter in dogs from animal shelters in Texas. Sampling took place 

over a four month period (September – December 2014) in which each of the six 

participating shelters was visited once. In accordance with official and professional 

guidelines, all necessary consents and approvals were obtained. The desired sample size 

of 139 was calculated for a prevalence survey with finite population correction using 

publically available software (http://samplesize.sourceforge.net/iface/), assuming 

Campylobacter prevalence of 10 ± 5% at an α of 0.05. Each sample consisted of fecal 

matter obtained directly from the rectum, during defecation, or, when fresh and directly 

traceable to an individual animal, from the kennel floor.  When samples were collected 

from the kennel floor, care was taken to ensure that the sample was obtained without 

contacting the floor surface itself. All collected samples were thus directly traceable to 

an individual animal. Immediately after collection, approximately 2–3g of each stool 

sample was placed in a labeled Whirl-Pak bag (Nasco, Fort Atkinson, WI, USA) or 50 

mL screw-capped conical Falcon tube and kept on ice during transport from the shelter 
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to the lab. Upon arrival in the lab (less than 48 hours after sample collection), 8 mL of 

1x PBS (Sigma-Aldrich, Co., St. Louis, MO, USA) was added to each stool sample to 

create pipette-able fecal slurries.  

 

4.2.2 DNA Extraction 

  

  DNA was extracted from the fecal slurries using MO BIO PowerFecal® DNA 

Isolation Kits (MO BIO Laboratories, Inc., Carlsbad, CA, USA) and following a 

modified version of the manufacturer guidelines. The modified DNA extraction protocol 

proceeded as follows. First, 1 mL of each fecal slurry was pipetted into a labeled 1.4mm 

MO BIO dry bead tube. The bead tubes were then centrifuged at 12,800 rpm for 10 

minutes. The resulting supernatants were removed and 750 μL of MO BIO Bead 

Solution added to each bead tube. The bead tubes were vortexed and 60 μL of Solution 

C1 added to each one. The tubes were inverted several times to allow mixture and heated 

in a 65°C hot water bath for 10 minutes. Using a vortex adapter tube holder, the tubes 

were placed horizontally on a flat-bed vortex pad and vortexed at maximal speed for 10 

minutes. Next, tubes were centrifuged at 13,000 x g for 1 minute. Following 

centrifugation, 420 μL of each supernatant was then transferred to a new 2 mL 

Collection Tube and 250 μL of Solution C2 added. These tubes were vortexed then 

incubated at 4°C for 5 minutes. After centrifugation at 13,000 x g for 1 minute, 500 μL 

of each supernatant was transferred from the centrifuged tube to another 2 mL Collection 

Tube and 200 μL of Solution C3 was added.  These tubes were vortexed then incubated 
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at 4°C for 5 minutes. After centrifugation at 13,000 x g for 1 minute, 600 μL of each 

supernatant was transferred to another 2mL Collection Tube and 600 μL of Solution C4 

was added.   These tubes were vortexed and spun down quickly. Another 600 μL of 

Solution C4 was added, using pipetting to mix prior to loading 600 μL of the mixture 

onto a Spin Filter in a Spin Column. The Columns were then centrifuged at 13, 000 x g 

for 1 minute. The flow-through was discarded and another 600 μL of the Solution C4-

supernatent mixture was added to the Spin Filter apparatus and centrifuged at 13, 000 x 

g for 1 minute. This process was repeated until all of the Solution C4-supernatent 

mixture had been added to and centrifuged in the Spin Filter Column. Then, 500 μL of 

Solution C5 was added to the Spin Filter Column and centrifuged at 13, 000 x g for 1 

minute. After the flow-through was discarded, the Spin Filter Column was centrifuged at 

13, 000 x g for 2 minutes. The Spin Filter was then removed from the Column and 

placed into a new 2 mL Collection Tube.  In a biosafety cabinet, 50 μL of Solution C6 

was placed onto the Spin Filter tube. After an incubation of 1 minute at room 

temperature, each tube was centrifuged at 13, 000 x g for 1 minute. The Spin Filter was 

removed from each tube and the tubes stored at –20°C to preserve the DNA.   

 

4.2.3 Campylobacter Detection 

 

 To detect Campylobacter, the DNA extracted from the fecal samples was 

subjected to quantitative PCR (qPCR) using a 7900 HT Fast Real-Time PCR machine 

and the associated PC software (SDS 2.4, Applied Biosystems, Life Technologies, 
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Austin, TX, USA). All primers and probes used in this study were obtained from Sigma-

Aldrich, St. Louis, MO, USA. The procedure followed was similar to that used by Lund 

et al (2004) for the detection of Campylobacter from chicken cloacal samples. 

Specifically, 2 μL of each DNA sample was combined with 6.75 μL of nuclease-free 

water (Ambion®, Life Technologies, Austin, TX, USA), 12.5 μL of PCR Master Mix 

(TaqMan® Fast Universal PCR Mastermix, Applied Biosystems, Life Technologies, 

Austin, TX, USA), 1.25 μL (0.5mM) of forward primer for Campylobacter 16S rRNA 

gene (5’-CACGTGCTACAATGGCATAT-3’), 1.25 μL (0.5mM) of reverse primer for 

Campylobacter 16S rRNA gene (5’-GGCTTCATGCTCTCGAGTT-3’), and 1.25 μL of 

the TaqMan probe (5’-FAM-CAGAGAACAATCCGAACTGGGACA-BHQ1-3’) for a 

total reaction volume of 25 μL per sample.  For a positive control, 2 μL of C.jejuni 

ATCC 33560 DNA was used in place of sample DNA, and for a negative control, 2 μL 

of nuclease-free water. All reaction mixtures then underwent absolute quantification 

according to the following amplification cycle: 1 cycle at 95°C for 20 minutes, followed 

by 40 cycles of 1 minute at 95°C and 20 minutes at 60°C. Based on preliminary 

experiments, all samples yielding Ct values between 14 and 33 were considered positive 

for Campylobacter.  

 

4.2.4 Campylobacter Species Identification 

 

 In all Campylobacter 16S-positive DNA samples, identification of two 

Campylobacter species (C. coli and C. jejuni) proceeded using a qPCR procedure  
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similar to that used for genus identification (see Campylobacter Detection, above) with 

species-specific primers, probes, and controls. The reaction mix for C. coli consisted of 2 

μL sample DNA combined with 6.75 μL of nuclease-free water (Ambion®, Life 

Technologies, Austin, TX, USA), 12.5 μL of TaqMan® Fast Universal PCR Master Mix 

(2X) (Applied Biosystems, Life Technologies, Austin, TX, USA), 1.25 μL (0.5mM) of 

forward primer for Campylobacter coli (5’-TTGAAAATATGGGTGCTTCACTTG-3’), 

1.25 μL (0.5mM) of reverse primer for C.coli (5’-TGTGCCATCACCTGCTTGA-3’), 

and 1.25 μL of the probe (5’-[6FAM]AGAAGTGGCAAGCAA[BHQ1]-3’) for a total 

reaction volume of 25 μL per sample. DNA of C. coli ATCC 33559 and C.jejuni ATCC 

33560 were used as positive and negative controls, respectively. All reaction mixtures 

then underwent absolute quantification according to the following amplification cycle: 1 

cycle at 95°C for 20 minutes, followed by 40 cycles of 1 minute at 95°C and 20 minutes 

at 52.5°C. 

The reaction mixture for C. jejuni was identical to that of C.coli, except for the 

use of C.jejuni specific primers and probe.  For C.jejuni, the primers and probe were as 

follows: 1.25 μL of forward primer (5’-TTAATGACGCGGTAAAAGTAACTATGG-

3’), 1.25 μL of reverse primer (5’-TGCTTGGAGCACCAAAGCT-3’), and 1.25 μL of 

the probe (5’-[6FAM]CCAAGAGGACGCAATGT[BHQ1]-3’). DNA of C.jejuni ATCC 

33560 and C.coli ATCC 33559 were used as positive and negative controls, respectively. 

All reaction mixtures then underwent absolute quantification according to the following 

amplification cycle: 1 cycle at 95°C for 20 minutes, followed by 40 cycles of 1 minute at 

95°C and 20 minutes at 52.5°C. 
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Based on preliminary experiments, for both C.coli and C. jejuni, all samples 

yielding Ct values between 14 and 33 were considered positive for Campylobacter coli 

and those yielding Ct values between 14 and 33 positive for Campylobacter jejuni.  

 

4.2.5 Data Collection and Data Analysis 

 

In addition to actual fecal specimens, team members collected information about 

dog providing a fecal sample. Collected information included approximate dog age, 

breed, sex, neuter status, date of admission to shelter, and reason for admission. This 

information came from shelter records, or, with regard to visible characteristics (age, 

breed, sex, fixing status), from qualified research team members at time of sample 

collection. Fecal sample consistency was evaluated at time of collection, assigning the 

samples scores of 1, 2, or 3, to classify stools as normal, loose, or watery (diarrheic), 

respectively. 

 Data from sample collection and laboratory analysis were entered into Microsoft 

Excel (Microsoft Corp, Redmond, WA) and subsequently imported into a statistical 

software program (SAS version 9.4; SAS Institute Inc., Cary, NC, USA) for variable 

coding and analysis. Assessed variables were dog age (< 1 year old or ≥ 1 year old), sex, 

neuter status (neutered or intact), duration of stay in shelter (in days), origin (stray or 

surrendered), and fecal sample consistency (diarrheic= fecal consistency score of 3; non-

diarrheic= fecal consistency scores of 1 or 2). These choices for variable categorization 

were made so as to minimize the chances of data separation and sparsity, as well as to 
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maximize the biologic plausibility, interpretability and practical applicability of the 

regression results.    

Initially, bivariable analysis using the χ2 test or Wilcoxon rank sum test (for the 

continuous variable, duration of stay in shelter in days) was used to assess the 

relationship between putative risk factors and laboratory detection of Campylobacter. 

Further evaluation of all putative risk factors with P ≤ 0.25 in this initial screen was 

performed according to the multivariable logistic regression model building scheme 

outlined by Agresti (2002, 2007), using the generalized estimating equations (GEE) 

method in addition to the GENMOD procedure in SAS with shelter as the random effect 

and with the exchangeable working correlation. Model fit was assessed using the QIC 

criteria.  Values of P < 0.05 were considered significant.  

 

4.3 Results 

 

4.3.1 Overall Prevalence and Risk Factor Analysis 

 

A total of 185 fecal samples were collected, 133% of the planned sample size. 

The number of samples per shelter ranged from 30 to 33, and among all sampled dogs, 

93 (50.3%) were female and 92 (49.7%) were male. A total of 162 (87.6%) dogs were 

adults (≥ 1 year old) and 23 (12.4%) were recorded as puppies (< 1 year old). Ninety-

seven (52.4%) were stray animals, and 34 (18.4%) were surrendered; for 54 (29.2%) 

dogs, origin was not available.  
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A total of 140 (75.7%) of all samples tested positive for the 16S Campylobacter 

ribosomal subunit, with prevalence varying from a low of 56.7% at one shelter to a high 

of 93.3% at another (P value = 0.0267).  For other assessed variables, the differences in 

Campylobacter detection were neither as large nor as statistically significant (Appendix 

Table 4.1). Detection was slightly less among adult dogs (dogs ≥1 year of age) than for 

young dogs (dogs <1 year of age) (75.3% vs 78.3%; χ2 P value= 0.7575), and for 

spayed/neutered dogs than for intact dogs (71.7% vs 77.6%; χ2 P value= 0.3786). 

Bivariable analysis indicated that none of these differences were statistically significant 

enough for inclusion in multivariable modeling.   

Investigation of the effects of origin (stray vs. susrrendered) was restricted to 

bivariable analysis as the relevant data were missing for nearly 30% of dogs. On 

analysis, dog origin was not statistically significant (P = 0.6).   

For more accurate analysis, fecal consistency was dichotomized (normal vs. 

other; fecal score=1 vs. fecal score =2 or 3) due to the small number (n=8) of diarrheic 

(fecal score =3) fecal samples as well as the similar Campylobacter prevalence among 

the diarrheic and semi-formed samples (prevalence of 88% and 80%, respectively).  

Controlling for shelter as a random effect, analysis showed a marginal association (P= 

0.06) between abnormal fecal consistency (diarrheic or semi-formed) and positive 

Campylobacter status.  

For sex and duration of stay in shelter, bivariable analysis did indicate sufficient 

enough association between variable and outcome to justify inclusion in multivariable 

modeling. Among male dogs detection of Campylobacter was slightly greater than it was 
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among female dogs (80.4% vs. 70.1%; χ2 P value= 0.1335).  Likewise, Wilcoxon rank 

sum analysis demonstrated a significant association between duration of stay in shelter 

and Campylobacter detection (P value <0.0004). Median duration of stay in shelter was 

significantly lower (P= 0.03) for Campylobacter-positive dogs (median: 6 days) than for 

Campylobacter-negative dogs (median: 9 days).  Thus, using the threshold of P ≤ 0.25 

on bivariable analysis, both dog sex and dog duration of stay in shelter were eligible for 

inclusion in multivariable regression modeling. Assuming no interactions, the model 

containing the intercept as well as both of these eligible variables did not yield 

statistically significant P values for the coefficients of either variable (Appendix Table 

4.1). Though not significant at the P < 0.05 level, the coefficient for sex suggests that 

Campylobacter detection may be less among female dogs than among male dogs 

(coefficient= -0.5119, odds ratio [OR] = 0.6, 95% CI 0.28 – 1.30, P = 0.1956). Similarly, 

the coefficient for duration in shelter suggests that Campylobacter detection decreases 

the longer a dog stays within a shelter (coefficient= -0.008, OR 0.99, 95% CI 0.98 – 

1.00, P = 0.2762).  

 

 4.3.2 Campylobacter Species 

 

 Of the 140 samples testing positive for the 16S Campylobacter ribosomal 

subunit, 0 (0%) were positive for Campylobacter coli and 10 (7.1%) were positive for 

Campylobacter jejuni (Appendix Table 4.2). The C.jejuni-positive samples were from 

dogs in four of the six sampled shelters; there were three C.jejuni-positive samples from 
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each of three shelters and one C.jejuni-positive sample from another shelter.  Overall, 

the prevalence of C.jejuni-positive samples was 5.4% (10/185; 95% CI, 2.6%–9.7%). 

Fecal samples from these dogs were of normal consistency (seven fecal samples) or 

semi-formed (three samples).  

 

4.4 Discussion 

 

 In the present study, the apparent prevalence of fecal Campylobacter shedding 

among shelter dogs in Texas was approximately 76 percent.  Though high, this 

prevalence is consistent with other studies. Examining fecal samples from 26 healthy pet 

dogs on a monthly basis, Hald et al (2004) detected Campylobacter in over 76% of their 

366 total fecal specimens. A similar study of household dogs in the Netherlands detected 

Campylobacter in 77% (23/30) of fecal specimens (Koene et al., 2004). Studies with 

larger sample sizes than those of Hald et al (2004) and Koene et al (2004), however, 

often report lower prevalence. A study of 72 puppies detected Campylobacter in 21% of 

the animals (Hald and Madsen, 1997), another in 41% of 261 dogs (Wieland et al., 

2005), and another in almost 47% of 130 dogs (Workman et al., 2005). As the sample 

sizes of the latter, larger studies are closer to that of the present study (one fecal sample 

from each of the 185 dogs), it is important to remark on factors that can contribute to 

variations in reports of Campylobacter prevalence.  Most salient among these factors are 

differences in study geographic location, study population, and study methodology. 

Reports on canine Campylobacter shedding hail from a variety of locations across the 
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globe, from Denmark to Barbados. Given that national and/or regionally-based social, 

cultural or medical practices may influence bacterial detection and distribution (Kwaga 

et al., 1989), study location may play a role in study-to-study Campylobacter prevalence 

variation. Likewise, the study populations themselves complicate direct inter-study 

comparisons. Some studies, for example, include only animals from specific age groups 

(puppies), while others include only canines from specific origins (household pets, 

laboratory animals, veterinary clinic clients). For bacteria like Campylobacter, choice of 

study population may be particularly salient to detection prevalence as research suggests 

that stray dogs have especially high levels of Campylobacter carriage (Workman et al., 

2005) and that animal age and physiologic stress can impact animal susceptibility to 

bacterial pathogens (Verbrugghe et al., 2012).     

Beyond the potential impacts of study location and study population, there is the 

not inconsiderable influence of study methodology. Due to the fastidious nature of 

Campylobacter, choice of detection method is especially significant (Monfort et al., 

1989; Bourke et al., 1998; Labarca et al., 2002; Koene et al., 2004). Many studies use 

culture-based bacterial detection methods, rather than the more sensitive genetic 

methods used in the present study, and therefore may report lower bacterial prevalence. 

Thus, study methodology alone or in conjunction with study geographic location and 

study population may contribute to the variation in reports of canine Campylobacter 

prevalence. When it comes to more specific aspects of canine Campylobacter 

epidemiology, however, additional influences are worth consideration.  
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 Beyond overall Campylobacter prevalence, specific information about bacterial 

epidemiology—from species data to shedding risk factors—greatly assist with the 

preservation and augmentation of public health. To this end, the present study examined 

the prevalence of two of the most commonly identified agents of human 

campylobacteriosis: Campylobacter coli and Campylobacter jejuni. Campylobacter coli 

was undetectable in our samples and the prevalence of Campylobacter jejuni was low 

(7.1%).  These findings are consistent with at least two previously published studies, one 

of which detected Campylobacter coli in 0.7% of samples and Campylobacter jejuni in 

19.4% (Hald et al., 2004), and the other which found prevalences of 1.1% and 5.7% for 

Campylobacter coli and Campylobacter jejuni, respectively (Wieland et al., 2005).  

Notably, however, not a few studies have detected higher levels (anywhere from 52-

93%; Workman et al., 2005; Labarca et al., 2002) of Campylobacter jejuni, possibly due 

to study location, study population, and/or study methodology as detailed above for 

overall genus prevalence. Species prevalence for Campylobacter, however, may also 

reflect the influence of animal reservoirs; Campylobacter jejuni, for example, may be 

less prevalent among canines than among poultry. Additionally, some research suggests 

that the predominant Campylobacter species among canines—Campylobacter 

upsaliensis—may be the difficult to culture (Labarca et al., 2002; Hald, et al., 2004; 

Wieland et al., 2005). Regrettably, at the time of our study, we were unable to test for 

this species using a primer set. Even so, we hypothesize that Campylobacter upsaliensis 

or some of the other species found in dogs (Campylobacter lari, Campylobacter 

helveticus) make up a portion of the overall Campylobacter prevalence reported in the 
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present study. Significantly, as there may be species-to-species variation in risk factors 

for Campylobacter carriage (Wieland et al., 2005), Campylobacter species itself may 

underlie some of the risk factor findings in the present study.   

 A priori it is, at present, impossible to accurately predict whether or not 

Campylobacter or a given Campylobacter species will be present in canine fecal 

material.  In order to investigate putative indicators of bacterial presence, the present 

study examined the relationship between Campylobacter detection and several different 

variables: dog age (< 1 year old or ≥ 1 year old), sex, neuter status (neutered or intact), 

duration of stay in shelter (in days), and fecal sample consistency (normal = fecal 

consistency score of 1; other= fecal consistency scores of 2 or 3). With the exception of 

dog sex and duration of stay in shelter, none of these variables showed meaningful 

association with detection of Campylobacter on preliminary analysis. Such results are 

both consistent with and different from previous reports. At least one study has 

documented a relationship between Campylobacter shedding, diarrhea, and young dogs 

(Hald and Madsen, 1997; Wolfs et al., 2001), perhaps because of age-related immune 

system immaturity. No such relationship was detected in the present research, possibly 

because of the small number of dogs less than 12 months old, the small number of 

diarrheic feces, and/or the lack of any true age-diarrhea-Campylobacter association.  The 

observation that all diarrheic puppies (dogs less than 12 months old) in our study yielded 

feces with detectable Campylobacter casts doubt on the latter explanation, although the 

numbers are too small (there were only 3 diarrheic puppies out of the total sample size of 

185) to allow for confidence in generalization.  Looking at the relationship between age 
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alone and Campylobacter presence, however, published reports appear to allow for a 

stronger generalization, suggesting that younger dogs are more likely to shed the bacteria 

(Wieland et al., 2005; Workman et al., 2005), although the nature of the relationship may 

depend on the species of Campylobacter (Wieland et al., 2005). For diarrhea alone, the 

conclusions are more convoluted. A few studies remark that diarrheic feces may be more 

likely to harbor Campylobacter (Hald et al., 2004; Wolfs et al., 2001), an idea in 

concurrence with the bacteria’s sensitivity to oxygen and desiccation (Koene et al., 

2004). As in the present study, however, many published reports document no 

meaningful connection (Workman et al., 2005), a lack that agrees with the observation 

that pets rarely show clinical signs of Campylobacter infection (Damborg et al., 2004). 

Relative to diarrhea, the situation is the reverse for dog sex, with the present study and at 

least one other (Hald et al., 2004) detecting more Campylobacter among male dogs than 

among female dogs, while other studies report a lack of sex-Campylobacter relationship 

(Workman et al., 2005). In defense of our findings, there are two plausible explanations 

for why sex could matter. For one, behavioral differences between male and female dogs 

could result in different levels of bacterial exposure. For another, hormonal differences 

could influence immune responses and the host-pathogen relationship (Klein, 2000). The 

strong influence of other variables (study location, study population, study design, etc.) 

could obscure the effects of sex, thereby accounting for study-study discrepancies over 

its significance.  

 Different from many of the variables discussed above, there are relatively few 

discrepancies regarding neuter status and duration of stay in shelter for the simple reason 
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that almost no studies report findings about these factors. The lack of reporting may be 

attributable to study population characteristics (i.e. all dogs having the same neuter 

status or duration of shelter stay), failure to consider neuter status or duration of stay as 

variables, or publication bias (failure to report an absence of significance). For neuter 

status, the lack of significance found in the present study lends credence to the latter 

hypothesis. With regard to duration of stay in shelter, however, the present study did find 

an association between the variable and Campylobacter detection; longer stays were 

associated with lower detection. If replicated in future studies, this finding could serve as 

a positive reflection on care in Texas veterinary shelters.  

Future studies may also help to address the limitations and to build on the 

strengths of the present research. As with many studies, missing data limits the ability to 

draw conclusions. The precise origins and history of many dogs presenting to animal 

shelters is often unclear. Categorization of dogs as puppy (dogs <1 year) or adult (dogs ≥ 

1 year) is, thus, an approximation based on shelter records or veterinary assessment, 

respectively. Fortunately, the many strengths of our study allow for greater confidence in 

the analysis of other study components. Unlike much previous research on the subject, 

our study features a large sample size, multiple shelters throughout Texas, an extended 

study time-frame, and the inclusion of oft-unreported variables. Together, these factors 

contribute to the strength and applicability of our findings. 

 In summary, detection of Campylobacter in canine feces appears to have a 

marginal association with abnormal fecal consistency, and demonstrated no statistically 

significant relationship to dog age group or origin. Likewise, association with dog sex 
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and duration of stay in shelter was not statistically significant on multivariable analysis. 

Additional research should examine the relationship between fecal shedding, dog sex, 

and dog duration of stay in shelter. Predictive factors aside, feces of all types from dogs 

of all backgrounds have the potential to harbor culturable Campylobacter representing a 

variety of pathogenic species associated with human and animal disease. C. jejuni and C. 

coli are two of these pathogenic species, and while the present study did not detect any 

C. coli, it did yield several samples from different shelters which were positive for C. 

jejuni.  Interestingly, the duration of canine C.jejuni shedding may be shorter than that of 

other Campylobacter species (Haled et al., 2004; Parsons et al., 2011), which has 

implications for the extent of environmental contamination, the likelihood of detection,  

and the window of exposure for direct transmission. Notably, the present study is 

perhaps the first to report on the potential influence of duration of shelter stay on shelter 

dog bacterial shedding. Since this variable did not show statistical significance on 

multivariable analysis, however, additional studies are necessary to further elucidate its 

role in canine bacterial shedding. All things considered, canines are clear participants in 

the epidemiology of Campylobacter, and their role has implications for humans and 

animals alike.   

 



 

68 

 

5. SUMMARY AND CONCLUSIONS 

 

5.1 Summary 

 

 As expected, there was detectable fecal Salmonella shedding among the 554 

Texas shelter dogs sampled in this research. Although the prevalence of Salmonella was 

relatively low (5%), over 11% of isolates demonstrated some antimicrobial resistance. 

Moreover, there were numerous serotypes represented among the detected Salmonella, 

many of which have been linked to human cases of disease, and a few of which may not 

have been previously detected in dogs. Also not widely reported elsewhere was the 

potential association of canine neuter status with the fecal detection of Salmonella. Fecal 

consistency likewise showed an association with fecal presence of the bacteria.  

 Indicators for Campylobacter shedding were less evident than those for 

Salmonella. Only dog sex and duration of stay in shelter showed mild association with 

detection of the pathogen in feces. Nevertheless, Campylobacter was detected at a high 

prevalence of over 75% in this study. While none of the detected Campylobacter 

appeared to be Campylobacter coli, over 7% was identifiable as Campylobacter jejuni, a 

major human pathogen.  

 Along with fast delivery of results and sensitivity, detection to the species level is 

one of the strengths of the culture-independent Campylobacter qPCR detection method 

used in the present research. The culture-independent qPCR method was far more 
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sensitive than the traditional culture methods used. The culture methods, however, did 

provide bacterial isolates able to be preserved for additional, future assessments.  

 

5.2 Conclusions 

 

 Zoonotic pathogens can be transmitted in a variety of different ways and can 

reside in places near and far. For Salmonella and Campylobacter, transmission can be 

related to animal contact and is often fecal-oral. Potential sources of bacterial exposure 

are also near at hand; puppies and adult dogs are capable of carrying and shedding viable 

Salmonella and Campylobacter. Improved awareness, detection, and epidemiologic 

understanding of this shedding will enable better source tracking, allow for more 

targeted disease control measures, and provide for more efficacious disease prevention, 

for humans and canines alike.   



 

70 

 

REFERENCES 

 

 

Agresti, A. (2002). Categorical Data Analysis. Hoboken, New Jersey: John Wiley & 

Sons, Inc.  

 

Agresti, A. (2007). An Introduction to Categorical Data Analysis. Hoboken, New 

Jersey: John Wiley & Sons, Inc.  

 

Allos, B.M. (2001). Campylobacter jejuni infections: Update on emerging issues and 

trends. Clinical Infectious Diseases 32:1201-1206. 

 

Asbolt, R., and M.D. Kirk. (2006). Salmonella Mississippi infections in Tasmania: The 

role of native Australian animals and untreated drinking water. Epidemiology and 

Infection 134(6): 1257-1265.  

 

ASPCA. (2017). Position statement on responsibilities of animal shelters. Available 

online at http://www.aspca.org/about-us/aspca-policy-and-position-statements/position-

statement-responsibilities-animal-shelters. Accessed 9 February 2017. 

 

AVMA. (2013). 2012 U.S. Pet Ownership and Demographics Sourcebook.  

 

Behravesh, C.B., Ferraro, A., Deasy III, M., Dato, V., Moll, M., et al. (2010). Human 

Salmonella infections linked to contaminated dry dog and cat food, 2006-2008. 

Pediatrics 126(3): 477-483. 

 

Boase, J., Lipsky S., Simani, P., Smith, S., Skilton, C., et al. (1999). Outbreak of 

Salmonella serotype Muenchen infections associated with unpasteurized orange juice-

United States and Canada, June 1999. Journal of the American Medical Association 

282(8): 726-728. 

 

Boone, S.A., and C.P. Gerba. (2007). Significance of fomites in the spread of respiratory 

and enteric viral disease. Applied and Environmental Microbiology 73(6): 1687-1696. 

 

Bourke, B., Chan, V.L., and P. Sherman. (1998). Campylobacter upsaliensis: Waiting in 

the wings. Clinical Microbiology Reviews 11(3): 440-449.  

 

Burfoot, D., Whyte, R., Howell, M., Hall, K. et al. (2006). Importance of airborne 

contamination during dressing of beef and lamb carcasses. Journal of Food Protection 

69 (12): 2828-2836. 

 



 

71 

 

Cantor, G.H., Nelson, S., Vanek, J.A., Evermann, J.F., Eriks, I.S., et al. (1997). 

Salmonella shedding in racing sled dogs. Journal of Veterinary Diagnostic Investigation 

9:447-448. 

 

Cavallo, S.J., Daly, E.R., Seiferth, J., Nadeau, A.M., Mahoney, J., et al. (2015). Human 

outbreak of Salmonella Typhimurium associated with exposure to locally made chicken 

jerky pet treats, New Hampshire, 2013. Foodborne Pathogens and Disease 12(5): 441-

445. 

 

Centers for Disease Control and Prevention (CDC). (2013). Antibiotic resistance threats 

in the United States, 2013. Available for download at: 

http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf 

 

Centers for Disease Control and Prevention (CDC). (2014). Multistate outbreak of 

multidrug-resistant Salmonella Heidelberg infections linked to Foster Farms brand 

chicken (Final Update). Available at http://www.cdc.gov/salmonella/heidelberg-10-

13/index.html. Accessed March 27, 2015.  

 

Centers for Disease Control and Prevention (CDC). (2014). National Salmonella 

Surveillance Annual Report, 2012. Atlanta, Georgia: U.S. Department of Health and 

Human Services, CDC, 2014.  

 

Centers for Disease Control and Prevention (CDC). (2015). Reports of selected 

Salmonella outbreak investigations. Updated 20 February 2015. Available at 

http://www.cdc.gov/salmonella/outbreaks.html. Accessed 20 April 2015.  

 

Centers for Disease Control and Prevention (CDC). (2015b). CDC Statement: Los 

Angeles County/UCLA investigation of CRE transmission and duodenoscopes. Updated 

20 February 2015. Available at http://www.cdc.gov/hai/outbreaks/cdcstatement-la-

cre.html. Accessed 20 April 2015.  

 

Centers for Disease Control and Prevention (CDC), NCEZID, and DFWED. (2014). 

Trends in foodborne illness in the United States, 2006-2013. Updated 8 May 2014. 

Available at http://www.cdc.gov/foodnet/data/trends/trends-2013.html.  Accessed 16 

May 2015.  

 

Chang, Y.C., Chuang, H.L., Chiu, C.C., Yeh, K.S., Chang, C.C., et al. (2011). 

Salmonella genomic island 1 and class 1 integron in Salmonella isolates from stray dogs. 

African Journal of Microbiological Research 5(23): 3907-3912. 

 

Clark, C., Cunningham, J., Ahmed, R., Woodward, D., Fonseca, K., et al. (2001). 

Characterization of Salmonella associated with pig ear dog treats in Canada. Journal of 

Clinical Microbiology 39(11): 3962-3968. 

 



 

72 

 

Clinical and Laboratory Standards Institute (CLSI). (2008). Performance Standards for 

Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; 

Approved Standard - Third Edition. CLSI document M31-A3. Wayne, PA: Clinical and 

Laboratory Standards Institute. 

 

Clinical and Laboratory Standards Institute (CLSI). (2010). Performance Standards for 

Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI 

document M100-S20. Wayne, PA: Clinical and Laboratory Standards Institute. 

 

Clinical and Laboratory Standards Institute (CLSI). (2012). Performance Standards for 

Antimicrobial Susceptibility Testing; Twenty-second Informational Supplement. CLSI 

document M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute. 

 

Cobb, M.A., and J. Stavisky. (2013). Salmonella infections in Dogs and Cats. In 

Salmonella in Domestic Animals, 2nd Ed. Eds. P.A. Barrow and U. Methner. London: 

CAB International.  

 

Cummings, K.J., Rodriguez-Rivera, L.D., Mitchell, K.J., Hoelzer, K., Wiedmann, M., et 

al. (2014). Salmonella enterica serotype Oranienburg outbreak in a veterinary medical 

teaching hospital with evidence of nosocomial and on-farm transmission. Vector-borne 

and Zoonotic Diseases 14(7): 496-502.  

 

Damborg, P., Olsen, K.E.P., Nielsen, E.M., and L. Guardabassi. (2004). Occurrence of 

Campylobacter jejuni in pets living with human patients infected with C. jejuni. Journal 

of Clinical Microbiology 42(3): 1363-1364. 

 

Damborg, P., Broens, E.M., Chomel, B.B., Guenther, S., Pasmans, F., et al. (2015). 

Bacterial zoonoses transmitted by household pets: State-of-the-art and future 

perspectives for targeted research and policy actions. Journal of Comparative Pathology: 

http://dx.doi.org/10/1016/j.jcpa.2015.03.004 

  

De Jesus, A., Olsen, A.R., Bryce, J.R., and R.C. Whiting. (2004). Quantitative 

contamination and transfer of Escherichia coli from foods by houseflies, Musca 

domestica L. (Diptera: Muscidae). International Journal of Food Microbiology 93(2): 

259-262. 

 

dos Santos Silva, I. (1999). Cancer epidemiology: principles and methods. Lyon, 

France: International Agency for Research on Cancer.  

 

Elchos, B., Scheftel, J.M., Cherry, B., DeBess, E.E., Hopkins, S.G., et al. (2008). 

Compendium of veterinary standard precautions for zoonotic disease prevention in 

veterinary personnel. Journal of the American Veterinary Medical Association 233(3): 

415-432. 

 



 

73 

 

Emonet, S., Retornaz, K., Gonzalez, J.P., de Lamballerie, X., and R.N. Charrel. (2007). 

Mouse-to-human transmission of variant Lymphocytic Choriomeningitis Virus. 

Emerging Infectious Diseases 13(3): 472-475.  

 

Farzan, A., Friendship, R.M., Dewey, C.E., Poppe, C., and J. Funk. (2010). Evaluation 

of the risk factors for shedding Salmonella with or without antimicrobial resistance in 

swine using multinomial regression model. Zoonoses and Public Health 57 (Supplement 

1): 85-93. 

 

Fernstorm, A., and M. Goldblatt. (2013). Aerobiology and its role in the transmission of 

infectious diseases. Journal of Pathogens 2013: 1-13, article 493960.  

 

Food and Drug Administration (FDA). (2012). National Antimicrobial Resistance 

Monitoring System – Enteric Bacteria (NARMS): 2010 Executive Report. Rockville, 

MD: U.S. Department of Health and Human Services, Food and Drug Administration. 

 

Ford, R. (2010). Zoonoses: How real is the threat? CVC in Kansas City Proceedings, 

DVM 360: 1 August.  

 

Fukata, T., Naito, F., Yoshida, N., Yamaguchi, T., Mizumura, Y., et al. (2002). 

Incidence of Salmonella infection in healthy dogs in Gifu Prefecture, Japan. Journal of 

Veterinary Medical Science 64(11): 1079-1080. 

 

Hald, B., and M. Madsen. (1997). Healthy puppies and kittens as carriers of 

Campylobacter spp., with special reference to Campylobacter upsaliensis. Journal of 

Clinical Microbiology 35(12): 3351-3352. 

 

Hald, B., Pedersen, K., Wainø, M., Jørgensen, J.C., and M. Madsen. (2004). 

Longitudinal study of the excretion patterns of thermophilic Campylobacter spp. in 

young pet dogs in Denmark. Journal of Clinical Microbiology 42(5): 2003-2012. 

 

Halsby, K.D., Walsh, A.L., Campbell, C., Hewitt, K., and D. Morgan. (2014). Healthy 

animals, healthy people: Zoonosis risk from animal contact in pet shops, a systematic 

review of the literature. PLoS ONE 9(2): e89309. doi: 10.1371/journal.pone.0083909 

 

Hart, B.L., Hart, L.A., Thigpen, A.P., and N.H. Willits. (2014). Long-term health effect 

of neutering dogs: Comparison of Labrador Retrievers with Golden Retrievers. PLoS 

One 9(7): e102241. 

 

Hoelzer, K., Moreno-Switt, A.I., and M. Wiedmann. (2011). Animal contact as a source 

of human non-typhoidal salmonellosis. Veterinary Research 42:34. 

 

 



 

74 

 

Humane Society. (2014). Pets by the numbers: Pet ownership survey data and the 

HSUS’s estimates on pets adopted from or euthanized in U.S. shelters in 2012 and 2013. 

30 January. Available at 

http://www.humanesociety.org/issues/pet_overpopulation/facts/pet_ownership_statistics.

html.  

 

Hurd, S., Patrick, M., Hatch, J., Clogher, P., Wymore, K., et al. (2012). Clinical 

laboratory practices for the isolation and identification of Campylobacter in Foodborne 

Diseases Active Surveillance Network (FoodNet) sites: Baseline information for 

understanding changes in surveillance data. Clinical Infectious Diseases 54 (Suppl 5): 

S440-S445. 

 

Imanishi, M., Rotstein, D.S., Reimschuessel, R., Schwensohn, C.A., Woody, D.H., et al. 

(2014). Outbreak of Salmonella enterica serotype Infantis infection in humans linked to 

dry dog food in the United States and Canada, 2012. Journal of the American Veterinary 

Medical Association 244(5): 545-553.  

 

Joffe, D.J., and D.P. Schlesinger. (2002). Preliminary assessment of the risk of 

Salmonella infection in dogs fed raw chicken diets. Canadian Veterinary Journal 43(6): 

441-442. 

 

Jones, T.F., Ingram, L.A., Cieslak, P.R., Vugia, D.J., Tobin-D’Angelo, M., et al. (2008). 

Salmonellosis outcomes differ substantially by serotype. Journal of Infectious Diseases 

198(1): 109-114. 

 

Klein, S.L. (2000). The effects of hormones on sex differences in infection: From genes 

to behavior. Neuroscience and Biobehavioral Reviews 24: 627-638. 

 

Kocabiyik, A.L., Cetin, C., and D. Dedicova. (2006). Detection of Salmonella spp. in 

stray dogs in Bursa Province, Turkey: First isolation of Salmonella Corvallis from dogs. 

Journal of Veterinary Medicine Series B Infectious Diseases and Veterinary Public 

Health 53: 194-196. 

 

Koene, M.G.J., Houwers, D.J., Dijkstra, J.R., Duim, B., and J.A. Wagenaar. (2004). 

Simultaneous presence of multiple Campylobacter species in dogs. Journal of Clinical 

Microbiology 42(2): 819-821. 

 

Labarca, J. A., Sturgeon, J., Borenstein, L, Salem, N., Harvey, S.M., et al. (2002). 

Campylobacter upsaliensis: Another pathogen for consideration in the United States. 

Clinical Infectious Diseases 34: e59-60. 

 

Leahy, A.M., Cummings, K.J., Rodriguez-Rivera, L.D., Rankin, S.C., and S.A. Hamer. 

(2016). Evaluation of faecal Salmonella shedding among dogs at seven animal shelters 

across Texas. Zoonoses and Public Health 63: 515 – 521.  



 

75 

 

 

Leahy, A.M., Cummings, K.J., Rodriguez-Rivera, L.D., Rankin, S.C., and S.A. Hamer. 

(2017). Faecal Campylobacter shedding among dogs in animal shelters across Texas. 

Zoonoses and Public Health 00: 1 – 5.  

 

Lefebvre, S.L., Waltner-Toews, D., Peregrine, A.S., Reid-Smith, R., Hodge, L., et al. 

(2006). Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: 

implications for infection control. Journal of Hospital Infection 62: 458-466. 

 

LeJeune, J.T., and P. J. Rajala-Schultz. (2009). Unpasteurized milk: A continued public 

health threat. Clinical Infectious Diseases 48(1): 93-100. 

 

Maher, M., Finnegan, C., Collins, E., Ward, B., Carroll, C., et al. (2003). Evaluation of 

culture methods and a DNA probe-based PCR assay for detection of Campylobacter 

species in clinical specimens of feces. Journal of Clinical Microbiology 41(7): 2980-

2986. 

 

Mark, D.B, and J.B. Wong. (2012). Decision-Making in Clinical Medicine. In 

Harrison’s Principles of Internal Medicine, 18th ed. McGraw Hill, New York, 3610 pp. 

 

Marks, S.L., Rankin, S.C., Byrne, B.A., and J.S. Weese. (2011). Enteropathogenic 

bacteria in dogs and cats: Diagnosis, epidemiology, treatment, and control. Journal of 

Veterinary Internal Medicine 25: 1195-1208. 

 

Martin, S.W., A.H. Meeds, and P. Willeberg. (1997). Veterinary Epidemiology: 

Principles and Methods. Iowa State University Press, Ames. 

 

M’ikanatha, N.M., Dettinger, L.A., Perry, A., Rogers, P., Reynolds, S.M., et al. (2012). 

Culturing stool specimens for Campylobacter spp., Pennsylvania, USA. Emerging 

Infectious Diseases 18(3): 484-487. 

 

Monfort, J.D., Stills, H.F., and S. Bech-Nielsen. (1989). Effects of sample holding time, 

temperature, and atmosphere on the isolation of Campylobacter jejuni from dogs. 

Journal of Clinical Microbiology 27(6): 1419-1420. 

 

Moriya, K., Fujibayashi, T., Yoshihara, T., Matsuda, A., Sumi, N., et al. (1999). 

Verotoxin-producing Escherichia coli O157:H7 carried by the housefly in Japan. 

Medical and Veterinary Entomology 13(2): 214-216. 

 

Morley, P.S., Strohmeyer, R.A., Tankson, J.D., Hyatt, D.R., Dargatz, D.A., et al. (2006). 

Evaluation of the association between feeding raw meat and Salmonella enterica 

infections at a Greyhound breeding facility. Journal of the American Veterinary Medical 

Association 228(10): 1524-1532. 

 



 

76 

 

Muyembe-Tamfum, J.J., Kipasa, M., Kiyungu, C., and R. Colebunders. (1999). Ebola 

outbreak in Kikwit, Democratic Republic of Congo: Discovery and control measures. 

The Journal of Infectious Diseases 179 (Suppl 1): S259-262. 

 

Nachamkin, I. (1997). Microbiologic approaches for studying Campylobacter species in 

patients with Guillain-Barre Syndrome. The Journal of Infectious Diseases 176 (Suppl 

2): S106-114. 

 

Nayer, G.P.S. (1980). Campylobacter enteritis in dogs and cats. The Canadian 

Veterinary Journal  21(4): 139.  

 

Osterholm, M.T., Moore, K.A., Kelley, N.S., Brosseau, L.M., Wong, G., et al. (2015). 

Transmission of Ebola viruses: What we know and what we do not know. mBio 

March/April 6 (2): e00137-15. 

 

Polpakdee, A., Angkititrakul, S., Suksawat, F., Sparagano, O., and K. Kanistanon. 

(2012). Epidemiology and antimicrobial resistance of Salmonella sp. isolated from dogs 

and cats in northeastern Thailand. Journal of Animal and Veterinary Advances 11(5): 

618-2012. 

 

Potter, R.C., Kaneene, J.B., and W.N. Hall. (2003). Risk factors for sporadic 

Campylobacter jejuni infections in rural Michigan: A prospective case-control study. 

American Journal of Public Health 93(12): 2118-2123. 

 

Salehi, T.Z., Badouei, M.A., Madadgar, O., Ghiasi, S.R., and I.A. Tamai. (2013). 

Shepherd dogs as a common source of Salmonella enterica serotype Reading in 

Garmsar, Iran. Turkish Journal of Veterinary and Animal Sciences 37: 102-105. 

 

Sato, Y., Mori, T., Koyama, T., and H. Nagase. (2000). Salmonella virchow infection in 

an infant transmitted by household dogs. Journal of Veterinary Medical Science 62(7):  

767-769. 

 

Scallan, E., Griffin, P.A., Angulo, F.J., Tauxe, R.V., and R.M. Hoekstra. (2011). 

Foodborne illness acquired in the United States—Unspecified agents. Emerging 

Infectious Diseases 17(1): 17-22. 

 

Seepersadsingh, N., Adesiyun, A.A., and R. Seebaransingh. (2004). Prevalence and 

antimicrobial resistance of Salmonella spp. in non-diarrhoeic dogs in Trinidad. Journal 

of Veterinary Medicine B Infectious Diseases and Veterinary Public Health 51: 337-342. 

 

Shimi, A., Keyhani, M., and M. Bolurchi. (1976). Salmonellosis in apparently healthy 

dogs. Veterinary Record 98: 110-111. 

 



 

77 

 

Smith, R.D. (1995). Veterinary Clinical Epidemiology. CRC Press, Inc., Boca Raton, 

FL. 

 

Snow, L.C., Davies, R.H., Christiansen, K.H., Carrique-Mas, J.J., Cook, A.J., et al. 

(2010). Investigation of risk factors for Salmonella on commercial egg-laying farms in 

Great Britain, 2004-2005. Veterinary Record 166: 579-586. 

 

Stevenson, J.S. (1953). A new Salmonella type: Salmonella Ibadan. The Journal of 

Pathology and Bacteriology 66(2): 574-575. 

 

Taylor, L.H., Latham, S.M., and M.E. Woolhouse. (2001). Risk factors for human 

disease emergence. Philosophical Transactions of the Royal Society of London, Series B, 

Biological Sciences 356(1411):983-989. 

 

Taylor, M., Brisdon, S., Jeyes, J., Stone, J., Embree, G., et al. (2012). Salmonella 

enterica serotype Agbeni, British Columbia, Canada, 2011. Emerging Infectious 

Diseases 18(9): 1542-1534. 

 

Timoney, J.F. (1978). The epidemiology and genetics of antimicrobial resistance of 

Salmonella typhimurium isolated from diseased animals in New York. The Journal of 

Infectious Diseases 137(1):67-73. 

 

Turner, P., Berry, J., and S. MacDonald. (2012). Animal shelters and animal welfare: 

Raising the bar. The Canadian Veterinary Journal 53(8): 893-896. 

 

Tsai, H.J., Huang, H.C., Lin, C.M., Lien, Y.Y., and C.H. Chou. (2007). Salmonellae and 

Campylobacters in household and stray dogs in northern Taiwan. Veterinary Research 

Communications 31: 931-939. 

 

Varga, C., Middleton, D., Walton, R., Savage, R., Tighe, M.K., Allen, V., et al. (2012). 

Evaluating risk factors for endemic human Salmonella Enteritidis infections with 

different phage types in Ontario, Canada using multinomial logistic regression and a 

case-case study approach. BMC Public Health 12: 866. 

 

Verbrugghe, E., Boyen, F., Gaastra, W., Berhuis, L, Leyman, B., et al. (2012). The 

complex interplay between stress and bacterial infections in animals. Veterinary 

Microbiology 155: 115-127. 

 

Wain, J., and J.E. Olsen. Current and new approaches to typing of Salmonella. In 

Salmonella in Domestic Animals, 2nd Edition. Eds P.A. Barrow and U. 

Methner. 

 

World Health Organization (WHO). (2013). The global view of campylobacteriosis: 

Report of an expert consultation, Utrecht, Netherlands, 9-11 July 2012.  



78 

Wieland, B., Regula, G., Danuser, J., Wittwer, M., Burnens, A.P., et al. (2005). 

Campylobacter spp. in dogs and cats in Switzerland: Risk factor analysis and molecular 

characterization with AFLP. Journal of Veterinary Medicine B Infectious Diseases and 

Veterinary Public Health 52: 183-189. 

Wolfs, T.F.W., Duim, B., Geelen, S.P., Rigter, A., Thomson-Carter, F., et al. (2001). 

Neonatal sepsis by Campylobacter jejuni: Genetically proven transmission from a 

household puppy. Clinical Infectious Diseases 32: e97-99. 



 

79 

 

APPENDIX  

 

Table 2.1: Results of bivariable analysis of potential risk factors for positive Salmonella shedding 

status among dogs at seven animal shelters across Texas, USA, May 2013 – December 2014. 

Reprinted with permission from (Leahy et al., 2016). Copyright 2016 by Blackwell Verlag 

GmbH. 

 

Variable Positive results, No. 

(%) 

Negative results, No. 

(%) 

P 

Fecal consistency   0.03 

Normal 14 (3.9) 347 (96.1)  

Semi-formed 4 (3.7) 104 (96.3)  

Watery 4 (14.8) 23 (85.2)  

Age   0.7 

Adult (≥ 1 year old) 22 (4.6) 452 (95.4)  

Puppy (< 1 year old) 4 (5.6) 67 (94.4)  

Sex   0.9 

Female 13 (4.9) 250 (95.1)  

Male 14 (4.8) 276 (95.2)  

Origin   0.1 

Stray 20 (6.7) 280 (93.3)  

Surrendered 2 (2.4) 80 (97.6)  
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Table 2.2: Distribution of Salmonella serotypes identified among 27 canine isolates from Texas, 

USA, May 2013-December 2014. Reprinted with permission from (Leahy et al., 2016). Copyright 

2016 by Blackwell Verlag GmbH. 

 

Serotype No. of isolates % of isolates 

Newporta 6 22 

Javianab 4 15 

Braenderupc 2 7 

Infantisd 2 7 

Agbeni 1 4 

Anatum 1 4 

Derby 1 4 

Dusseldorf/Albany 1 4 

Heidelberg 1 4 

Ibadan/Mississippi 1 4 

No ID Possible 7 26 

a Isolated from dogs in four shelters; b Isolated from dogs in three shelters;  
c Isolated from dogs in two shelters; d Isolated from dogs in two shelters 
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Figure 3.1 Representative amplification curve from Campylobacter 16S qPCR analysis of 

canine fecal samples from Texas, USA, September 2015 – December 2015 

 

 

 

Cycle 

PC = positive control; NC = negative control; T= threshold 
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Table 3.1 Assessment measures comparing qPCR results to results from culture of 

Campylobacter from canine fecal samples from Texas, USA, September 2015 – December 2015 

Assessment Comparison Specificity 

(%) 

Exact 

McNemar P 

value 

Kappa Concordance 

qPCR vs Culture qPCR vs Culture 44.6% <0.0001 0.4170 0.692 

      

Plate Type 

(Media)* 

qPCR vs CAT 

Plates 
39.5% <0.0001 0.3277 0.621 

 qPCR vs CEF 

Plates 
38.1% <0.0001 0.3024 0.599 

      

Plating Method qPCR vs Direct 38.1% <0.0001 0.3024 0.599 

 qPCR vs Indirect 35.4% <0.0001 0.2491 0.549 

      

Plate-Plating 

Method 

Combinations 

qPCR vs CAT + 

Direct Plating 34.6% <0.0001 0.2323 0.533 

 qPCR vs CAT + 

Indirect Plating 
32.1% <0.0001 0.1794 0.478 

 qPCR vs CEF + 

Direct Plating 
32.8% <0.0001 0.1948 0.495 

 qPCR vs CEF + 

Indirect Plating 
33.1% <0.0001 0.2000 0.500 

* CAT= mCCDA-CAT; CEF= Campy Cefex Agar  
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Table 3.2 Assessment measures comparing different methods of culturing Campylobacter from 

canine fecal samples from Texas, USA, September 2015 – December 2015 

 

Assessment Comparison Sensitivity 

(%) 

Specificity 

(%) 

Exact 

McNemar 

P value 

Kappa Concordance 

 

Plate Type 

(Media) 
CAT vs CEF  80.0 85.6 

0.5847 0.6470 0.836 

 CEF vs CAT  75.4 88.6 

      

0.755 

Plating 

Method 

Direct vs 

Indirect  
67.9 78.9 

0.2327 0.4474 
 Indirect vs 

Direct 
58.5 84.9 

       

Reference= 

CAT Direct  

CEF Direct vs 

CAT Direct 
63.5 90.8 0.2810 0.5660 

0.831 

 CEF Indirect 

vs CAT Direct 
44.2 82.3 0.4885 0.2749 0.714 

 CAT Indirect 

vs CAT Direct 
50.0 87.7 0.1641 0.4000 0.778 

       

Reference= 

CAT Indirect 

CEF Direct vs 

CAT Indirect 
55.8 85.0 0.8746 0.4017 0.781 

 CEF Indirect 

vs CAT 

Indirect 

79.1 90.8 0.5235 0.6766 0.880 

 CAT Direct vs 

CAT Indirect 
61.9 81.4 0.1641 0.4000 0.778 

       

Reference=  

CEF Direct 

CAT Direct vs 

CEF Direct 
73.3 86.2 0.2810 0.5660 0.831 

 CAT Indirect 

vs CEF Direct 
53.3 86.2 0.8746 0.4017 0.781 

 CEF Indirect 

vs CEF Direct 
60.0 85.5 0.8714 0.4484 0.792 

       

Reference= 

CEF Indirect 

CAT Indirect 

vs CEF 

Indirect 

72.3 93.4 0.5235 0.6766 0.880 

 CAT Direct vs 

CEF Indirect 
50.0 78.9 0.4885 0.2749 0.714 

 CEF Direct vs 

CEF Indirect 
57.5 86.8 0.8714 0.4484 0.792 
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Table 4.1: Results of bivariable analysis of potential risk factors for positive Campylobacter 

shedding status among dogs at seven animal shelters across, Texas, USA, May 2013 – 

December 2014. Reprinted with permission from (Leahy et al., 2017). Copyright 2017 by 

Blackwell Verlag GmbH. 

 

Variable Positive results, No. 

(%) 

Negative results, No. 

(%) 

P 

Fecal consistency   0.5 

Normal 100 (73.5) 36 (26.5)  

Semi-formed 33 (80.5) 8 (19.5)  

Watery 7 (87.5) 1 (12.5)  

Age   0.8 

Adult (≥ 1 year old) 122 (75.3) 40 (24.7)  

Puppy (< 1 year old) 18 (78.3) 5 (21.7)  

Sex   0.1 

Female 66 (71.0) 27 (29.0)  

Male 74 (80.4) 18 (19.6)  

Origina   0.6 

Stray 76 (78.4) 21 (21.6)  

Surrendered 25 (73.5) 9 (26.5)  

a Origin not available for 54 (29.2%) dogs 
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Table 4.2: Prevalence and species distribution of Campylobacter in canine fecal samples, Texas, 

USA, September – December 2014  

 

Campylobacter No. (%) of qPCR-positive fecal samples 

Campylobacter (all species) 140 (75.7) 

Campylobacter jejuni 10 (7.1) 

Campylobacter coli 0 (0.0) 

 

  


