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ABSTRACT 

 

This work aims at development of new dynamical methods to control a resonant 

light-matter interaction as well as at their application for producing new sources of 

coherent intense sub-fs radiation in x-ray range. The dynamical control is based on 

modulation in time and in space of the parameters of the atomic transition (coupled to the 

resonant high-frequency field) by means of sufficiently strong off-resonant low-frequency 

control field. In particular, it may result in efficient transfer of quasi-monochromatic VUV 

or XUV radiation into ultrashort pulses via its resonant interaction with atomic hydrogen 

gas or plasma of hydrogen-like ions respectively by means of two different techniques: 

time and space dependent linear Stark effect or interruption of resonant interaction by the 

tunneling ionization, as shown in previous works of our group. 

In this thesis, I further develop these ideas and demonstrate their important 

potential applications. First of all, both techniques are extended to arbitrary (non-

hydrogen-like) atomic medium. Furthermore, advanced analytical and numerical solutions 

describing a process of pulses formation are found and shown to be in excellent agreement 

with each other. A deep physical analogy between the processes of coherent forward 

scattering of γ-ray radiation in the vibrated quasi-resonant nuclear absorber and the XUV 

field propagation in the quasi-resonant atomic medium in the presence of the moderately 

strong IR field is established. 

Finally, the application of the developed techniques for production of intense 

coherent attosecond sources of soft X-ray radiation, including so-called “water window” 
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range (2.2-4.3nm) (especially promising for dynamical imaging of the proteins in a living 

cell) is proposed. Two different paths towards production of intense coherent attosecond 

pulses in a soft X-ray range are suggested: (i) via efficient transformation of the 

picosecond radiation of the high energy pulses of the existing x-ray plasma lasers into the 

trains of attosecond pulses in the resonant passive plasma, and (ii) via amplification of the 

low energy pulses of the existing high harmonic sources in the resonant active plasma of 

x-ray lasers. 
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XUV field is equivalent to an excitation of a two-level system (involving the 

ground state 1  and the corresponding quasi-energy state) with a periodically 
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CHAPTER I1  

INTRODUCTION 

All fundamental optical processes (absorption, emission, propagation, refraction, 

fluorescence, and scattering of light) are greatly enhanced near atomic resonances. Such 

resonant processes have been widely used both to probe matter and to manipulate light 

itself. Recently much attention has been paid to the possibilities to control the interaction 

of the signal typically high-frequency field with a resonant medium by means of a strong 

low-frequency coherent control field. Such coherent control of resonant light-matter 

interaction may be implemented under two essentially different scenarios. The first one is 

the situation when both the signal and control field resonantly interact with the adjacent 

transitions and became coupled to each other through the excitation of two photon 

coherence (Figure 1(a)). The second one when control field is off-resonant with any 

atomic transition but it is strong enough to modulate in time and/or in space the parameters 

                                                 

1 Partially reprinted with permission from “Formation of ultrashort pulses from quasimonochromatic XUV 

radiation via infrared-field-controlled forward scattering” by T.R. Akhmedzhanov, V.A. Antonov and O. 

Kocharovskaya, 2016, Phys. Rev. A, vol. 94, pp. 023821, Copyright [2016] by American Physical Society; 

“Attosecond pulse formation via switching of resonant interaction by tunnel ionization” by V.A. Antonov, 

T.R. Akhmedzhanov, Y.V. Radeonychev and O. Kocharovskaya, 2015, Phys. Rev. A, vol. 91, pp. 023830, 

Copyright [2015] by American Physical Society; “Attosecond pulse formation via switching of resonant 

interaction by tunnel ionization” by T.R. Akhmedzhanov, V.A. Antonov, Y.V. Radeonychev and O. 

Kocharovskaya, 2015, Proc. SPIE 9589, X-Ray Lasers and Coherent X-Ray Sources: Development and 

Applications XI, 95890W, Copyright [2015] by SPIE; “Ultimate capabilities for few-cycle pulse formation 

via resonant interaction of XUV radiation with IR-field-dressed atoms” by T. R. Akhmedzhanov, M.Yu. 

Emelin, V. A. Antonov, Y. V. Radeonychev, M.Yu. Ryabikin, and Olga Kocharovskaya, 2017, accepted to 

Phys. Rev. A, Copyright [2017] by American Physical Society; “Coherent forward scattering of gamma-ray 

and XUV radiation in the medium with the modulated quasi-resonant transition” by T.R. Akhmedzhanov, 

V.A. Antonov and O. Kocharovskaya, 2016, J. Phys. B: At. Mol. Opt. Phys., vol. 49, pp. 205602, Copyright 

[2016] by IOP Publishing; the related work “Formation and amplification of sub-femtosecond X-ray pulses 

in a plasma medium of the hydrogen-like ions with a modulated resonant transition” by T.R. Akhmedzhanov 

et al. will be submitted to journal publication soon. 
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of atomic transition resonant to the signal field (Figure 1(b)). Both approaches are united 

by using induced quantum interference. 

The first approach based on resonant interaction of the control field with a 

transition adjacent to the transition resonant to the signal field proved to be very fruitful. 

Such phenomena as coherent population trapping (CPT), electromagnetically induced 

transparency (EIT), lasing without inversion (LWI) (based on control of resonant 

absorption) and slow and stored light (based on the control of the refraction index) have 

been intensively studied both theoretically and experimentally in many laboratories 

around the world (for reviews see [1-9]). An enormous interest in this field of research has 

been motivated by a high potential for applications, including spectroscopy, metrology 

and magnetometry [10,11], resonant nonlinear optics [12-15], controllable optical delay 

lines [16,17], quantum memories [18-21], etc.  

 

Figure 1. Two scenarios of coherent control of resonant light-matter interaction. 

Signal field, shown by violet arrow, is interacting with resonant atomic transition. This 

interaction is controlled by low-frequency control field, shown by red arrow. (a) both the 

signal and control field resonantly interact with the adjacent transitions and became 

coupled to each other through the excitation of two photon coherence. (b) control field is 

off-resonant with any atomic transition but it is strong enough to modulate in time and/or 

in space the parameters of atomic transition resonant to the signal field 
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Recently the second approach based on dynamical control of the resonant 

interaction has become a topic of active theoretical and experimental studies In particular, 

interaction of VUV and XUV radiation produced via high harmonic generation (HHG) 

with the atomic or molecular medium that is simultaneously coupled to the strong far-off-

resonant infrared or visible laser radiation has been intensively studied [22-33]. The 

properties of the medium and, thus, the way it interacts with the VUV and XUV radiation, 

can be dynamically controlled by changing the parameters of the control IR field, such as 

its frequency and intensity. The applications of such dynamical control of forward 

scattering of VUV and XUV radiation such as modulation of both ionization yield 

[22,34,35] and absorption of the individual spectral components of XUV field as a 

function of the IR field delay [24,26,36], as well as suppression or enhancement of some 

spectral components of the incoming radiation [27,33] have been widely discussed. 

Another promising application, namely, the possibility of efficient transformation of 

quasi-monochromatic VUV or XUV into the train or individual sub-femtosecond pulses 

in the hydrogen atomic gas or plasma of the hydrogen-like ions has been proposed and 

developed in a series of works of our group [37-42]. 

Two regimes of pulse formation were suggested: (i) via the linear Stark effect 

caused by the nonionizing z-polarized IR field propagating in x-direction [38,41], and (ii) 

via interruption of the resonant interaction due to rapid excited-state tunneling ionization 

[37,40,42]. In the first case, the pulse formation relies on adiabatic (quasi-static) splitting 

of the degenerate resonant excited atomic energy level in space and time due to the linear 

AC Stark effect. Namely, under the action of modulating field the instantaneous energies 
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of the excited energy sub-levels (dressed by IR field) linearly depend on the instantaneous 

value of modulating field at the considered moment of time and point in space. This 

modulation results in appearance of Stokes and anti-Stokes sidebands of an incident field 

in the coherently forward scattered radiation. The phases of these sidebands can be 

matched with the proper choice of the modulation index.  

The second regime is based on sudden interruption of the resonant interaction of 

the XUV field with the medium twice within IR field cycle due to depletion of the resonant 

excited state by ionization near the peaks of absolute value of the IR field. It requires 

stronger IR field providing large ionization rate compared to the maximum value of the 

Stark shift and may lead to formation of extremely short isolated pulses [37]. The 

theoretical analysis of pulse formation in the optically thin medium in both regimes was 

conducted by different methods: i) numerical solution of density matrix equation within a 

three-level and two-level models (for the first and second regimes, accordingly), including 

time and space-dependent Stark shifts and excited state ionization rates [37,38,40-42]; ii) 

approximate analytical solution of those equations in the first regime [38,40].  

It is worth to emphasize that the proposed mechanisms hold a promise for a very 

important application, namely, for producing the intense coherent sub-fs sources of soft-

X-ray radiation, which presents the major motivation for this work. 

Indeed, such coherent intense sub-femtosecond soft x-ray pulses would open 

extremely wide applications for dynamical, element-specific microscopy and diffraction 

imaging in chemistry, biology, medicine, nanoscience and material science, providing 

unique combination of the unprecedented high spatial and temporal resolution, ultimately 
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determined by the nm carrier wavelength and attosecond pulse duration accordingly (see 

reviews on x-ray lasers [43-52] and attosecond physics [53-61]). Production of the bright 

ultrafast coherent sources in a “water window” range (between the C and O K-shell 

absorption edges at 284–540 eV, i.e. 4.4–2.3 nm), is considered to be especially important 

for imaging of the protein dynamics in the living cells [44-68].  

Currently there are three types of coherent sources in the soft x-ray wavelength 

range: free-electron lasers [69-76], x-ray plasma-based lasers [46-48,50,77,78] and high 

harmonic generation (HHG) sources [64-68]. Free-electron lasers produce high energy 

pulses, but the pulse duration is currently limited by fs and pulses are typically not 

transform limited due to the short noise. Such lasers present themselves large-scale state-

of-the-art expensive facilities and there are only few of them available in the world. Table-

top soft x-ray plasma-based lasers produce relatively high energy pulses (up to several mJ) 

but of rather long pico-second duration. The HHG sources allow producing thousands of 

high harmonics stretching into x-ray range. Potentially, they can constitute the attosecond 

x-ray pulses (under condition of atto-chirp compensation), but the harmonics energy in 

the soft x-ray range, in particular, in a water window range, does not exceed nJ due to the 

low (less than 10-7) conversion efficiency. 

 This dissertation aims at the following goals: 

1. To generalize the regime of pulses formation, based on modulation of the 

resonant excited atomic state by the nonionizing IR field from the hydrogen-like 

to the non-hydrogen-like medium.  
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2. To clarify the physics beyond the second regime of pulses formation and 

to get an analytical solution describing this regime. 

3. To get an analytical solution describing the transition from the first to the 

second regime with an increase of the intensity of the control field. 

4. To determine the ultimate capabilities and the limits of applicability of both 

methods of pulses formation based on direct simulation of the time-dependent 

Schrodinger equation and its comparison with the approximate analytical solutions 

of the simplified three-level model. 

5. To establish a close physical analogy between coherent forward scattering 

of γ-ray radiation in the vibrating quasi-resonant nuclear absorber and the XUV 

field propagation in the quasi-resonant atomic medium in the presence of the 

moderately strong IR field. 

6. To develop the new application of the proposed technique for producing of 

intense coherent attosecond sources of soft-X-ray radiation via two different paths, 

namely, (i) via efficient compression of picosecond radiation of x-ray plasma 

lasers into attosecond pulse trains without essential loss of the energy; (ii) via 

amplification of an individual high-harmonic radiation in an active medium of x-

ray lasers accompanied by formation of attosecond pulses. 

The structure of the thesis is as follows.  

In Chapter II, a highly efficient method of ultrashort pulse formation from the 

resonant XUV radiation due to sub-laser-cycle modulation of the excited state of non-

hydrogen-like atoms by a nonionizing IR laser field is suggested. This modulation results 
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in formation of the Raman Stokes and anti-Stokes sidebands in coherently forward 

scattered radiation, which, in turn, leads to formation of short pulses, when the phases of 

the sidebands are matched. This method is a generalization of recently suggested 

technique [38] to non-hydrogen-like medium. Possibility to form 2 fs XUV pulses in the 

gas of helium atoms and 990 as XUV pulses in the plasma of Li+ ions with efficiencies 

over 80% is shown. 

In Chapter III, an analytical solution uncovering the origin of few-cycle attosecond 

pulse formation from vacuum-ultraviolet (VUV) radiation in an atomic gas simultaneously 

irradiated by a moderately strong infrared (IR) laser field, which does not perturb atoms 

in the ground state, but induces rapid quasistatic ionization from the excited states [42], is 

derived. The derived solution shows that the pulses are produced due to periodic switching 

of the resonant interaction between the incident VUV radiation and the atoms: turning it 

off near the crests of the IR-field strength and switching it back on near the IR field zero-

crossings. The method originally proposed in [42] is extended to non-hydrogenlike media 

and it is shown that the pulses can be produced from resonant VUV radiation in a variety 

of atomic gases. The pulses are nearly bandwidth-limited without external adjustment of 

phases of the generated sidebands. Proximity of the carrier frequency of the produced 

pulses to intra-atomic resonances may allow their utilization for nondestructive steering 

of ultrafast dynamics of the bound electrons. The experimental possibilities for attosecond 

pulse formation from 58.4 nm VUV radiation in helium and from 73.6 nm VUV radiation 

in neon dressed by the 3.9 m laser field, as well as from 122 nm VUV radiation in atomic 

hydrogen dressed by CO2-laser field are discussed. 
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In Chapter IV, possibility to form a single attosecond pulse using the ionization 

switching mechanism in He atoms is shown. Formation of a train of attosecond of 

attosecond pulses manifests multifrequency response of atoms to XUV field. In order to 

form a single pulse, one needs to restrict such a response to an ultrashort period of time. 

This can be done using IR pulse with steep front edge [37]. In this approach XUV field 

resonantly excites resonance coherence which is then ionized by the coming IR field in 

less than its period. Thus, multifrequency response of atoms is effectively limited to an 

ultrashort period of time, which allows formation of a single attosecond pulse. 

In Chapter V, an ab initio study of the ultimate capabilities and limits of 

applicability of the method for few-cycle pulse formation via the resonant interaction of 

an extreme ultraviolet (XUV) radiation with atoms dressed by moderately strong infrared 

(IR) laser field is performed. Taking into account all the multiphoton processes in the 

systems under consideration on the basis of numerical solution of the three-dimensional 

time-dependent Schrödinger equation (TDSE) in the single-active-electron 

approximation, the possibility to produce 1.1 fs pulses from 124.6 nm XUV radiation via 

linear Stark effect in atomic hydrogen, as well as 500 as pulses from 58.4 nm XUV 

radiation via excited-state ionization in helium is shown. A generalized analytical solution, 

which takes into account the interplay between sub-laser-cycle Stark effect and excited-

state ionization and allows to analyze the results of TDSE calculations is derived. It is 

found that the ultimate intensity of the IR field suitable for few-cycle pulse formation via 

the linear Stark effect or excited-state-ionization is limited by the threshold for atomic 

ionization from the resonant excited state or the ground state, respectively.  
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In Chapter VI, a close physical analogy between coherent forward scattering of γ-

ray radiation in the vibrating quasi-resonant nuclear absorber and the XUV field 

propagation in the quasi-resonant atomic medium in the presence of the moderately strong 

IR field is established. Both processes, under certain conditions, are described by similar 

Maxwell-Bloch equations for a two-level medium with modulated parameters of the 

resonant transition. It results in similar transformation of both γ-ray and XUV fields at the 

exit from the medium, fully determined by the characteristics of applied modulation and 

spectral content of the incident fields. An appropriate analytical solution describing 

transformation of the electromagnetic field as a result of its propagation in the modulated 

medium is derived. It is shown, in particular, that recently observed effects of (i) 

suppressed resonant absorption in coherent γ-ray scattering of vibrating absorber and (ii) 

ionization rate modulation in IR pump - XUV probe experiments, present themselves as 

different manifestations of the same general physical phenomenon of modulation induced 

transparency (MIT). That transparency is induced by modulating the parameters of the 

resonant transition. While only partial MIT was observed so far, certain conditions for 

conducting some realistic experiments, which should demonstrate nearly 100% 

transparency in both processes, are suggested. 

In Chapter VII, a technique to form amplified trains of sub-femtosecond pulses 

from an incident weak X-ray radiation in the active medium of such lasers via modulation 

of the frequency of an operating transition by a moderately strong IR or optical laser field 

is suggested. Such modulation leads to appearance of the number of sidebands of the X-

ray radiation accompanied by its amplification in the inverted resonant medium. With the 
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proper choice of the parameters of the system, most of sidebands are in phase with each 

other, which results in a formation of a train of strong sub-femtosecond X-ray pulses at 

the output of the medium. Experimental realizations of the suggested technique in the 

active media of Li III ions modulated by the mid-IR laser and of C VI ions modulated by 

the optical laser is proposed.  
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CHAPTER II 

FORMATION OF ULTRASHORT PULSES FROM QUASI-

MONOCHROMATIC XUV RADIATION VIA INFRARED-FIELD-

CONTROLLED FORWARD SCATTERING2 

 

II.1 Introduction 

Sub-femtosecond XUV pulses provide a unique combination of high spatial and 

time resolution and find numerous applications to capture the motion of electrons, atoms, 

and molecules in real time, to observe element-specific dynamics at the M- and L- shells 

absorption edges of magnetic materials, etc. [27,61,79-82]. The conventional way of 

producing such ultrashort XUV pulses in table-top setup is high harmonic generation 

(HHG) in gases [65,83]. This method allows formation of very short pulses (up to 67 as 

[84]). However, the efficiency of conversion of visible or IR laser radiation into high 

harmonics is low. In particular, in the water window 2.3-4.4nm, it is 10-8-10-9 [66,67]. It 

results in low total energy of the generated pulse trains (on the order of nJ) which limits 

their applications. Much higher energy per pulse can be achieved at XFELS in a few 

femtosecond regime, but there are only few such facilities in the world [70,76,85,86]. 

Modern table-top X-ray lasers are able to generate high energy (in the mJ range) X-ray 

pulses, but with relatively long duration in the range of few picoseconds [63,78,87]. Thus, 

                                                 

2 Reprinted with permission from “Formation of ultrashort pulses from quasimonochromatic XUV radiation 

via infrared-field-controlled forward scattering” by T.R. Akhmedzhanov, V.A. Antonov and O. 

Kocharovskaya, 2016, Phys. Rev. A, vol. 94, pp. 023821, Copyright [2016] by American Physical Society. 
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a highly efficient method of transformation of an output pulse of X-ray laser into the sub-

femtosecond pulses would be very desirable. 

Recently, a technique for production of ultrashort pulses from a quasi-

monochromatic XUV radiation via the resonant interaction with atoms, dressed by a 

moderately strong IR laser field was suggested [41,42] and studied [37,38,40]. The two 

regimes of pulse formation were considered: (i) via the linear Stark effect in hydrogen-

like medium, irradiated by the nonionizing IR field, and (ii) via rapid excited-state-

ionization in arbitrary atomic gas. In the first case, the pulse formation relies on adiabatic 

(quasi-static) splitting of the resonant excited atomic energy level in space and time due 

to the linear AC Stark effect. Namely, under the action of modulating field the 

instantaneous values of transition frequencies from the ground to excited energy levels 

linearly depend on the instantaneous value of modulating field at the considered moment 

of time and point in space. The degeneracy of the first excited energy level of hydrogen 

(or a hydrogen-like ion) and the anti-phase shift of its relevant sublevels under the action 

of the IR field play a key role in the pulses formation. The second regime is based on 

sudden interruption of the resonant interaction of the XUV field with the medium due to 

the complete atomic ionization from the resonant excited state within each half-cycle of 

the IR field. In this case, the produced pulses are extremely short. However, since the pulse 

formation is essentially based on ionization, this regime can’t be realized in the active 

media of X-ray plasma lasers. Besides, its efficiency is essentially lower than that in the 

first, nonionizing, regime, which is characterized by the very high efficiency of 

transformation of an incident XUV radiation into the ultrashort pulse trains (close to unity) 
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and can be potentially realized in the active media of X-ray lasers. But, since it essentially 

relies on the degeneracy of the first excited state of hydrogen-like atoms, the possibility 

of its generalization and realization in the other atomic gases remains questionable. 

In the present chapter we suggest the generalization of the technique, based on 

modulation of the resonant excited atomic state by the nonionizing IR field. This approach 

is not restricted to the atoms of hydrogen and hydrogen-like ions with degenerate excited 

energy levels. Below, we consider its implementation in the medium of helium or helium 

like ions, but it can be realized in a variety of atomic gases, which makes its experimental 

realization more feasible and promising for wider potential applications. By using Floquet 

formalism [88], we study the formation of a train of ultrashort pulses from quasi-

monochromatic XUV radiation in the gas of IR-field-dressed He atoms. We investigate 

the case of not too strong IR field, when the role of ionization is negligible in comparison 

with mixing and modulation of the excited atomic states. Under the action of IR field the 

excited states of atoms are properly described in Floquet basis [88], rather than in the bare 

one. It is shown, that the parameters of the IR field can be optimized in a way that one of 

the Floquet states produces a few in-phase sidebands of an incident field with comparable 

amplitudes. If the incident XUV field is tuned in resonance with this state, the scattered 

XUV field contains a few sidebands in phase with each other, which, after attenuation of 

an incident spectral component to the level of generated sidebands, leads to formation of 

a train of ultrashort pulses. Firstly, within a three-level model of He atom, we show that 

the pulses with time duration of 2 fs can be produced at the output of an optically thin 

medium of He atoms. Secondly, we verify that neither the presence of higher lying discrete 
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excited states nor ionization affect the possibility of pulse formation. Thirdly, we consider 

the propagation problem and show that the efficiency of transformation of an incident 

quasi-monochromatic XUV field into the train of femtosecond pulses in the optically thick 

medium of helium may exceed 80%. Finally, we show that with proper scaling of the 

parameters of an IR field, the suggested method allows formation of the train of sub-

femtosecond pulses in the plasma of He-like ions with an efficiency 87.4%. 

The chapter is structured as follows. In Section II.2, we analyze the spectral and 

temporal properties of the XUV field scattered by an optically thin layer of He atoms 

within a three-level approximation, using Floquet approach [88]. We show that for the 

properly chosen dressing IR field wavelength and intensity, a train of ultrashort pulses can 

be produced at the output of the medium. In Section II.3, we study an influence of the 

higher lying excited states and ionization from the excited states on the pulse formation. 

At first, we consider 5 level model of He and show that taking into account of the two 

extra excited states does not change the pulse shape appreciably. After that we confirm 

the possibility of the pulse formation by solving the full time dependent Schrodinger 

equation (TDSE), taking into account all the bound and continuum states of an atom in a 

single active electron approximation. In Section II.4 we numerically study the propagation 

of an XUV field in the optically thick medium and demonstrate high efficiency of 

transformation of the incident radiation into the train of ultrashort pulses. In Section II.5 

we discuss a possibility to reduce the pulse duration using plasma of He-like ions and 

derive the scaling law which allows immediately find the IR field parameters required for 



 

15 

 

pulse formation in He-like media. In Section II.6, we summarize the main results of the 

chapter. Atomic units are used throughout the chapter, unless specified otherwise. 

II.2 Three-level model 

Let us consider the linearly polarized quasi-monochromatic XUV radiation, 

propagating along x-axis through the atomic gas with quasi-resonant atomic transition 

from the ground state, 1 , to an excited state, 2 . At the input of the medium ( 0x  ), 

the field is given by: 

 0

1
( , ) ( , )exp c.c.

2
E x t z E x t i   , (II.1) 

where 0z  is the unit vector directed along the polarization of the field, ( , )E x t  is an 

amplitude of the field,   is its carrier frequency, c is the speed of light in vacuum, and

c.c.  stands for complex conjugation. /t x c    is the local time in the reference frame, 

co-moving with the X-ray radiation wave. The XUV field is considered to be sufficiently 

weak so that it does not change the population of the ground and excited states during the 

interaction time. We consider an interaction of the XUV field with the atomic gas in the 

presence of an additional linearly polarized IR field, propagating in the same direction as 

the XUV radiation: 

0( , ) cos( )IR IR IRE x t z E   , (II.2) 

where 
IRE  is amplitude of IR field, IR  is its frequency. The IR field is moderately strong: 

it does not couple the ground state to the excited states, but it couples the state 2 to 

another excited state 3 . 
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Mixing of the states 2 and 3  by the IR field leads to appearance of two Floquet 

states [88]. The wave function of the IR-field-dressed atom can be represented in the 

Floquet basis as follows [24]: 

1

1,2

1 exp( ) ( )
i ii

i

c c i   


    , (II.3) 

where energy of the ground state is chosen to be zero. Here i  is the quasi-energy of the 

ith Floquet state 
i

 , which periodically depends on time and constitutes the Fourier 

series: 
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    , (II.4) 

and 
i

c  is an amplitude of this Floquet state. The amplitudes ;i

ma   of Fourier components 

of Floquet states (II.4) and quasi-energies i of these states are determined by the intensity 

and the frequency of the IR field and can be expressed analytically in terms of the infinite 

continued fractions (see, e.g. [89]). In general case ;i

ma   are the complex numbers. For the 

field (II.2) they can be chosen to be real. The index   enumerates excited states of a bare 

atom (an atom in the absence of the IR field), that is, 2  and 3 states. It is worth noting 

that quasi-energy of Floquet state is defined up to integral number of IR  since Floquet 
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i IR
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      with quasi-energy i IRn   is 

physically the same as state   ;( ) exp
i

i

IR m

m

im a 




   




     with quasi-energy i  



 

17 

 

[88]. In the following we choose the quasi-energies in a way that 0m   corresponds to 

the levels, nearest to the unperturbed energy of the 1s2p state. Another important property 

of Floquet states is that coefficients ;2i

ma are not zeroes only for even m , and ;3i

ma  are not 

zeroes only for odd m  (or vice versa – depending on the choice of the quasi-energy) 

[24,88,90], that is, with our choice of quasi-energies, ;2

2 1 0i

ma    and ;3

2 0i

ma  . 

If the XUV field is tuned close to the exact resonance with the transition from the 

ground state  to the only step with m k  one Floquet state i , then, within the 

framework of perturbation theory, the slowly-varying amplitude of the XUV field at the 

output of an optically thin medium can be found as [24,90]: 
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 (II.5) 

Excitation of another Floquet state by XUV field is negligible as long as the 

bandwidth of incident XUV pulse is small as compared to the frequency separation 

between the two neighboring Floquet states (i.e. the pulse duration is sufficiently large). 

As it is seen from (II.5), the properties of the output field are controlled by the amplitudes 

;2

2

i

ma  of Fourier components of Floquet states, which are determined by the parameters of 

the IR field. In order to form a train of ultrashort pulses we need to find the wavelength 

and intensity of the IR field that correspond to a Floquet state where the majority of 

coefficients ;2

2

i

ma  will have comparable amplitudes and nearly the same phases. Within the 

1
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framework of Hermitian Floquet theory, this optimization can be quickly done 

numerically for some specific atom. The ;2

2

i

ma  are determined by the two dimensionless 

parameters, namely by the ratios of the IR field frequency, IR , and the Rabi frequency of 

the IR field, 
2,3IRE d  (where 

2,3d  is dipole moment of transition 2  3 ), to the frequency 

of transition 2  3 , those are 23/IR   and 
2,3 23/IRE d  . 

Let us consider, in particular, a gas of helium atoms under the following 

conditions. The XUV field is weak and its frequency is close to the frequency of transition 

from the ground state 1s2 to 1s2p state. So it couples only these states, exciting polarization 

at the transition 1s21s2p. The IR field is low frequency (as compared to the frequencies 

of transitions from the resonantly populated 1s2p state to the other states of helium) and 

not too strong. Taking into account that the dipole moment of transition 1s2s1s2p is a 

few times larger than those of transitions from the resonant1s2p state to the other excited 

states, while the frequency of transition 1s2s1s2p is a few times smaller, it is reasonable 

to consider coupling of the IR field only to 1s2s1s2p transition. The corresponding 

transition wavelengths are shown in Figure 2(a). Thus, the three-level model, including 

1s2, 1s2s and 1s2p states (which are the states 1 , 3 and 2  in our notation, 

correspondingly) is well justified in the case under consideration (the role of other excited 

discrete states and continuum will be investigated in the next sections). 
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Figure 2. (a) Three level model and its implementation in helium. Vertical arrows 

correspond to the transition wavelengths. Transition energies are shown in atomic units. 

(b) Coupling of 1s2s and 1s2p states of He by the IR field leads to formation of the two 

Floquet states. Each state corresponds to the energy ladder with the steps separated by the 

IR field frequency. However, the steps containing the same state ( 2  or 3 ) are separated 

by the doubled photon energy of the IR field. Only the steps containing 2p state are shown. 

Note that these steps don’t contain 2s state, since ;2

2 0i s

ma  (vice versa, the steps containing 

2s state don’t contain 2p state, since ;2

2 1 0i p

ma   , and hence they are not coupled to the XUV 

field). The vertical axis corresponds to energy in atomic units, while numbers near the 

steps correspond to the amplitudes ;2

2

i p

ma . The quasi-energies 1  and 2  are shown by the 

dashed black horizontal lines. The IR field parameters are 
12 2=6176 nm, I=2.5 10 /W cm  . 

As it was already mentioned, mixing of 1s2s and 1s2p states by the IR field leads 

to appearance of two Floquet states. We optimize the IR field parameters in order for one 

of the Floquet states to have a few ;2

2

i p

ma ’s of the same phase and comparable amplitudes. 

The result of optimization is shown in Figure 2(b). As it can be seen, the first Floquet state 

(the left ladder in Figure 2(b)) contains 6 sidebands of the same order of magnitude, with 

5 of them having the same sign. The IR field producing this Floquet states has wavelength 
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6176 nm (corresponding to 23/ 1/ 3IR   ) and intensity 
12 2Ι=2.5 10 /W cm  

(corresponds to 
23 23/ 1.11IRE d   ). 

The spectral structure of the resonantly scattered field is fully defined by the 

structure of the Floquet ladder itself. However, the XUV radiation at the output of an 

optically thin medium is a sum of the incident and scattered fields. In an absorbing 

medium, the resonant component of scattered field is always in antiphase to the incident 

field. Therefore, if the resonant component is in anti-phase to the others, then all the other 

spectral components will be in-phase with the incident XUV field, resulting in pulse 

formation, while if the resonant component is in-phase with the others, then most of the 

sidebands will be in anti-phase with the incident field, and the pulses will not be produced. 

Thus, the XUV field should be tuned in resonance with the step of Floquet ladder with 

1;2

2 0.228pa   , which has opposite sign in comparison to the other steps. In the considered 

case, it corresponds to wavelength 59.16 nm. It is worth noting that in general, when the 

excited-state-ionization is taken into account, the quasi-energies i  are complex numbers 

[88]. In order to take into account the finite lifetime of the excited states 2 and 3  within 

the three-level model, we add a small complex part i  to both 1  and 2 , i ≪

1 2,IR   , artificially. The value i  determines the half-linewidths of transitions to 

the ground atomic state, 1 ↔ 2  and 1 ↔ 3 . In its turn, the bandwidth of an incident 

XUV field is considered to be smaller than this linewidth. Under such conditions the XUV 

field, scattered by atoms under the simultaneous action of monochromatic XUV and IR 

fields, is given by 
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where 
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2 12 p sN d
A
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  and

0E  is incident XUV field amplitude. The validity of these 

assumptions is justified in the next sections via numerical solution of the full TDSE. The 

spectral structure of this field corresponds to the left Floquet ladder in Figure 2(b). The 

XUV radiation at the output of thin medium is given by the sum of scattered field and the 

incident field: 
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 (II.7) 

Summation of the incident and the resonantly scattered fields results in phase 

matching of the central frequency component with the sidebands. To produce the pulses 

of shortest duration, the amplitude of the incident XUV field spectral component at the 

output of the medium should be attenuated to the level of the generated sidebands. In such 

a case, the output XUV field takes the form: 

1,2
1,2 1,22
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Figure 3. Intensity of the 59.16 nm XUV field at the exit of an optically thin layer 

of helium, irradiated by 6176 nm IR field with intensity
12 2I=2.5 10 /W cm . The solid red 

line corresponds to three-level model, dash black line corresponds to five-level model. 

The incident XUV frequency component is attenuated according to (II.8). 

This field corresponds to the train of well-shaped pulses with pulse duration 2 fs, 

shown in Figure 3 by solid red line. An attenuation can be produced by frequency selective 

multilayer mirrors with half of FWHM of reflectivity curve less than 2 IR  [91,92]. On the 

other hand, it is not necessary to attenuate the incident XUV spectral component with the 

additional tools. Instead, one may simply increase the optical thickness of the resonant 

absorbing modulated medium. In the last case, the produced pulses will be slightly longer, 

but the efficiency of transformation of the incident XUV radiation into the pulse train can 

exceed 80%. The possible experimental realizations of the last approach are discussed in 

Sections IV and V. 

It is worth noting that the pulse formation does not require exact tuning of 

wavelength of the IR and XUV fields, which may vary in the ranges 6100-6200 nm and 

59.05-59.25 nm, respectively (although, a larger pedestal up to 0.2 of peak pulse intensity 

might appear). 
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The choice of modulation field parameters, presented above, is not unique. 

Namely, the proper Floquet state with comparable amplitudes and nearly the same phases 

of the spectral components, resulting in ultrashort pulses formation, can be produced with 

different choices of frequency and intensity of the IR field. For example, in Figure 4 we 

show the train of pulses with duration 1.2 fs and carrier wavelength 59.24 nm, formed in 

optically thin layer of helium atoms irradiated by 4117 nm IR field with intensity 

12 2I=8.0 10 /W cm  (the incident XUV spectral component is attenuated according to 

(II.8)). However, in general, with further increase of intensity or shortening of wavelength 

of the IR field, the three-level approximation becomes invalid, so that more levels need to 

be taken into account. Moreover, the linewidth of the resonant XUV transition becomes 

broader due to the increased excited-state-ionization rate, making the selective interaction 

of the XUV field with the only one specific Floquet state impossible. 

 

 

Figure 4. Intensity of the 59.24 nm field at the exit of an optically thin layer of 

helium irradiated by 4117 nm IR field with intensity
12 2I=8.0 10 /W cm . The incident XUV 

spectral component is attenuated according to (II.8). 
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II.3 Role of higher lying states and ionization 

In this section, we study the influence of higher lying bound energy levels of 

helium, as well as ionization, on the spectral and temporal properties of the output XUV 

radiation and prove that the results, derived in previous section for the three level model, 

still hold within more accurate models of helium atom. 

Firstly, we repeat the Floquet state calculation, taking into account five 

unperturbed states of helium atom, namely, 1s2, 1s2s, 1s2p, 1s3s and 1s3d states. We have 

added 1s3s and 1s3d states, since they correspond to the strongest dipole allowed 

transitions from 1s2p state (with an exception of the 1s2s1s2p transition) and are the 

closest to it in energy. The excited states 1s2s, 1s2p, 1s3s and 1s3d are coupled to each 

other by the IR field. The IR field with the same parameters, as considered in the previous 

section (those are wavelength 6176 nm and intensity 
12 2I=2.5 10 /W cm ) produces four 

Floquet states. One of these states has the amplitudes of the “steps” ;2

2

i p

ma ’s, which are very 

similar to ;2

2

i p

ma ’s of the one of two Floquet states, calculated within the three-level model 

(the corresponding ladder looks similar to the one on the left in Figure 2(b)). Excitation of 

this state by the resonant XUV field with the wavelength 59.23 nm (which is slightly 

different from the value 59.16 nm, given by the three-level model) and subsequent 

attenuation of the incident XUV spectral component to the level of the sidebands 

according to (II.8) leads to formation of the ultrashort pulse train shown in Figure 3 by 

dashed black line. As it can be seen, the agreement between the predictions of 3-level and 

5-level models is excellent, except minor difference in pedestal shape. 
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Secondly, we study the influence of the higher-lying bound atomic states as well 

as ionization on pulse formation on the basis of numerical solution of full TDSE for helium 

atom simultaneously interacting with XUV and IR field. We use the numerical scheme 

first introduced in [93], and the model potential [94]. In order to find the proper frequency 

of the incident XUV field for TDSE calculation, we firstly repeat the Floquet states 

calculation within the five-level model of with parameters of the states 1s2, 1s2s, 1s2p, 

1s3s and 1s3d, defined by the model potential [94]. The XUV field, quasi-resonant to the 

required Floquet state, has wavelength 59.24 nm. We perform TDSE calculation for He 

atoms placed in this XUV field along with 6176 nm IR field with intensity 

12 2I=2.5 10 /W cm . As a result, we numerically find the induced dipole moment 

( ) ( )d t z t . The XUV field at the output of the optically thin medium is given by: 

2
( , ) (0, ) , ( )XUV XUV

x dP
E x E P Nd t

c dt


    . (II.9) 

The squared modulus of this field after attenuation of the incident XUV spectral 

component to the level of the adjacent sidebands is shown in Figure 5 by the thin blue line. 

As it can be seen, the pulses are clearly formed and are in a rather good agreement with 

predictions of the three-level model, shown in Figure 5 by the bold red line. Thus, the 

performed calculations confirm validity of the simple three level model of He and open 

up the prospects for experimental realization of the suggested method. 
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Figure 5. The results of TDSE calculation. Intensity of the 59.24 nm XUV 

radiation after propagation through an optically thin medium of helium, irradiated by 

6176 nm IR field with intensity 
12 2I=2.5 10 /W cm . The spectral component at the 

incident XUV radiation frequency is attenuated to the level of the adjacent sidebands. 

 

II.4 Propagation effects and efficiency of the method 

In this section we analyze the effects of propagation of the XUV radiation through 

the optically thick medium of helium, dressed by the IR field, on the shape of produced 

pulses and determine the efficiency of transformation of the incident XUV radiation into 

the pulse train. 

Propagation of the resonant XUV field through an optically thick gas of helium 

irradiated by the strong IR field is described by the wave equation for the XUV field and 

the density matrix equations for the helium atoms. Use of the density matrix allows taking 

into account both ionization- and collisional-broadening of the atomic transition lines. 

Within the previously formulated three-level model, in the slowly varying amplitude 

approximation for the XUV field and the resonant polarization of the medium, as well as 

the rotating-wave approximation for the elements of the density matrix, and the 

approximation of the given amplitude of the IR field, the equations take the form 
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(II.10) 

where 
ij are the slowly-varying amplitudes of the density matrix elements, P  is slowly 

varying atomic polarization, 
2 ,1 2 1( ) /s s s sE E    and 

2 ,1 2 1( ) /p s p sE E    are the 

frequencies of transitions 1s2s1s2p and 1s21s2p, respectively, while i  and 
,i j  are 

decay rates of the diagonal and non-diagonal elements of the density matrix. The 

population decay rate i  is estimated as ionization rate from the corresponding 
thi  atomic 

state under the action of the IR field, which is determined from auxiliary numerical 

calculation (by numerically solving time-dependent Schrodinger equation with He model 

potential [94]). For the considered parameters of the IR field, those are wavelength 6176 

nm and intensity 
12 2I=2.5 10 /W cm , 

2 2 0.11p IR   , 2 2 0.055s IR   ,and 1 0s  . 

Since in a rare atomic gas, exposed to a strong laser field, the collisional and Doppler 

broadenings are negligible in comparison with the ionization one, the off-diagonal decay 

rates can be calculated as  , / 2i j j i    . The initial and boundary conditions are: 
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where ( )f t  is an envelope of the incident XUV field. These equations are written and 

numerically solved in the basis of bare atomic states using a fourth order Runge-Kutta 

scheme for time step and a second order Adams-Bashforth scheme for step in x [95]. 

Let us consider a propagation of an incident XUV pulse with carrier wavelength 

59.16 nm and Gaussian envelope with FWHM 145 fs and peak intensity 
10 2I=10 /W cm

through the gas of helium with atomic density 
17 310 cm

, irradiated by 6176 nm IR field 

with intensity 
12 2I=2.5 10 /W cm . The bandwidth of the incident XUV pulse is 0.01eV , 

which is much less than the energy separation between the Floquet states, 

1 2 0.58 0.12IR eV     . The XUV field with such wavelength and pulse duration might 

be produced via the resonantly enhanced high-harmonic generation in InP plasma plume 

[96,97]. Another way to generate it is frequency doubling of 355 nm radiation in a 

nonlinear crystal, followed by its frequency tripling in a gas. The time-dependence of the 

output XUV intensity strongly depends on whether the output spectral component at the 

frequency of the incident XUV radiation is attenuated, or not, see Figure 6. In the presence 

of attenuation to the level of the generated sidebands the well-shaped pulses with duration 

2 fs and peak intensity, equal to 0.87 maximum intensity of the incident XUV radiation 

are produced at the output of the medium with the optimal propagation length 4.00 mm, 
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Figure 6(a). It is worth noting, that an optical thickness, defined as a ratio of medium 

length to characteristic length at which an intensity of the resonant field is decreased by 

e ≈ 2.718  times, in the medium of IR-dressed-atoms is smaller, than in the unperturbed 

medium. Namely, additional multiplier
1,2 1,2

2 2

0

exp( 2 )p p

m IR

m

a a im 


  appears in (II.7). Thus 

the effective optical thickness for perturbed medium might be roughly estimated as 

2

2 2 ,11,2

2

1 ,2

2
2

p sp

s p

xN d
a

c




. For the considered parameters of the medium and the IR field, it 

is equal to 0.87. Under these conditions, the efficiency of transformation, defined as a ratio 

of the incident XUV radiation energy to the energy contained in the pulse train, equals 

19.3%. For shorter propagation lengths a form of pulses is almost identical, while their 

intensity (and, thus, the transformation efficiency) is smaller. For longer propagation 

distances, the peak intensity of the produced pulses is no longer increasing, while their 

duration becomes larger. In the absence of attenuation, both the peak pulse intensity and 

the efficiency of transformation are substantially increased at the cost of increased pulse 

duration and pedestal. Thus, for the same parameters of the incident XUV and IR fields 

and the medium in the absence of attenuation the peak intensity of the pulses is 2.7 times 

larger than peak intensity of the incident XUV radiation, while the efficiency of 

transformation reaches 80.6%, Figure 6(b). 
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Figure 6. (a) The XUV pulse at the entrance to the medium (black dashed line) and 

after propagation through 4 mm of helium gas with atomic density 
17 310 cm

 irradiated by 

6176 nm IR field with intensity 
12 2I=2.5 10 /W cm  (blue solid line). The resonant 

component of the output XUV radiation (corresponding to the incident field) is attenuated 

to the level of adjacent sidebands. Inset: a couple of pulses from the train shown in the 

main figure. (b) The same as in (a), but the resonant XUV spectral component is not 

attenuated. 

II.5 Scaling to other atomic systems 

The suggested method is easily scalable to an arbitrary three-level system with one 

high frequency (say, XUV) dipole-allowed transition and one low frequency (say, IR) 

dipole-allowed transition. Such a scalability potentially allows to adjust the carrier 

frequency and duration of the produced pulses of XUV radiation via the proper choice of 

the generating medium. Let us consider an atomic system with some IR transition with 

frequency 23 . Choosing the frequency and the amplitude of the IR field according to the 

criteria presented in Section II, that is 23/ 1 / 3IR    and 
2,3 23/ 1.11IRE d   , leads to 
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creation of Floquet states with the same coefficients 
0;

m

ia   as in Section II and allows pulse 

train formation from the resonant XUV radiation. Suppose we choose three-level atoms 

with IR transition frequency X times bigger than 2s2p transition in He and set the 

frequency and the Rabi frequency of the IR field to be X times bigger as well (the incident 

XUV radiation frequency has to be properly adjusted). In this case, the sideband 

separation, 2 IR , will also be X times bigger than in case of He atoms, which means that 

the pulses duration (as well as the repetition period) will be X times smaller. It opens up 

the possibility for efficient conversion of an XUV radiation into a train of sub-

femtosecond pulses.  

Let us consider, for example, Li+ ions. The energy level diagram of Li+ ion is the 

same as for helium, but the transition wavelengths for 1s21s2p and 1s2s1s2p 

transitions are 19.928 nm and 958.4 nm, correspondingly. The other relevant parameters 

of Li+ ions can be found in [98]. It is worth noting that 19.9 nm Li+-based X-ray laser 

was theoretically suggested and investigated [99-101]. An emission at 19.9 nm was 

experimentally observed from lithium plasma XUV sources [102,103]. Applying the 

described scaling approach, we immediately find the wavelength and intensity of the IR 

field, required for the ultrashort pulse formation, which are 3 958.4 ~ 2875 nm and 

13 2I=4.4 10 /W cm , respectively. Using Floquet approach, we find that XUV field 

resonant to the first Floquet state has wavelength 20.1 nm. In order to estimate an 

efficiency of transformation of the XUV radiation into the pulse train we simulate 

propagation of both XUV and IR fields in an optically thick Li+ plasma layer taking into 
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account the plasma dispersion, as well as the collisional broadening of the relevant 

transition lines. The plasma dispersion for the IR field is taken into account in Eqs. (10) 

by replacing cos( )IR   with cos( ( / ))IR plasmat xn c  , where 2 21 /plasma p IRn     is the 

plasma refractive index, p  is plasma frequency; the plasma dispersion for the XUV field 

is negligible. For the typical temperature and concentration of plasma ~ 5000 K and 

18 310 cm
, the linewidths 

1 2 1 2 2 2, ,s p s s s p   are mainly determined by collisional broadening 

and are in the range of a few meV [104,105]. Since the ionization potentials of 1s2s and 

1s2p states are much higher in Li+ than in He (while the required intensity of the IR field 

is just an order of magnitude higher), a contribution of the ionization rates is negligible. 

As it follows from the numerical solution of Eqs. (10), at the output of the medium with 

the length 80 µm (which corresponds to the effective optical thickness 

2

2 2 ,11,2

2

1 ,2

2
2 3.9

p sp

s p

xN d
a

c




 ), a train of pulses will be produced with the pulse duration 

0.99 fs (which is remarkably close to the prediction of the scaling law, 

2 2875 / 6176 0.93fs fs  ), see Figure 7. The efficiency of transformation into the pulse 

train equals 26.6%. The output pulses are delayed with respect to incident one due to the 

resonant dispersion of Li+ ions, which turns out to be important, since bandwidth of the 

incident XUV radiation exceeds linewidth of the resonant transition 1s21s2p. Similar to 

the case of He atoms, without attenuation of the resonant output XUV spectral component 

both the peak pulse intensity and the efficiency of transformation are substantially 

increased at the cost of increased pulse duration and pedestal. Thus, for the same 
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parameters of the medium in the absence of attenuation the peak intensity of the pulses is 

2 times larger than the peak intensity of the incident XUV field, while efficiency of 

transformation reaches 87.4%, see Figure 7(b). 

 

 

 

Figure 7. Intensity of the 20.1 nm XUV field at the entrance to the medium (black 

dashed line) and after propagation through 80 µm of Li+ plasma along with 2875 nm IR 

field with intensity 
13 2I=4.4 10 /W cm  (blue solid line). (a) The resonant frequency of 

the XUV field at the exit of the medium is attenuated. Ion density is 
18 310 cm

. Inset: a 

couple of the pulses from the train shown in the main figure. (b) The same as (a), but the 

resonant XUV spectral component is not attenuated. 

II.6 Conclusion 

In the present chapter, we have shown the possibility to produce the ultrashort 

femto- and sub-femtosecond pulses of XUV radiation via its resonant interaction with the 

medium of IR-field-dressed non-hydrogen-like atoms. The mechanism of pulse formation 
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is based on mixing and modulating of the excited atomic states by the nonionizing 

relatively low frequency IR field. Using Floquet formalism within the three-level model 

of He atoms and He-like Li+ ions, we found the optimal parameters (frequency and 

amplitude) of the IR field, providing formation of well-shaped pulses with duration 2 fs 

and 990 as, correspondingly. We verified that the presence of the other bound atomic states 

and ionization results in only slight changes in the shape of produced pulses. We found a 

simple scalability law which can be used for determination of the optimal parameters of 

the IR field providing the ultrashort pulse formation in various non-hydrogen-like media 

under conditions when the three-level model approximation is applicable. Under the 

optimal conditions, the efficiency of pulse formation reaches 80-90%, which makes the 

suggested technique very favorable for time shaping of picosecond pulses of X-ray lasers. 

Since this method does not imply ionization neither from the ground, nor from the excited 

states of the generating medium, it can be potentially used directly in the active media of 

X-ray lasers. 
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CHAPTER III 

ATTOSECOND PULSE FORMATION VIA SWITCHING OF RESONANT 

INTERACTION BY TUNNEL IONIZATION3 

III.1 Introduction

The first decade of the millennium was marked by the birth of attosecond 

science - the branch of physics devoted to direct investigation and control of the motion 

of charged particles in atoms, molecules, clusters, and solids, unfolding on the attosecond 

time scale [52,54,56-59]. 

In recent years, there has been a growing interest in investigation of the ultrafast 

dynamics of atoms, simultaneously irradiated by an intense low-frequency (LF) laser field, 

far detuned from all the atomic resonances, and a high-frequency (HF) radiation, quasi-

resonant to a transition from the ground to an excited bound or autoionizing atomic state 

[22,24,25,27,28,34-36,59,106]. Utilization of quasi-resonant radiation substantially 

enriches the toolset of attosecond science, allowing for switching the pathways of 

multiphoton excitation and/or ionization of atoms by the LF field, and under certain 

conditions leading to quantum interference of these pathways [22,24,25,27,28,34-36,106]. 

Up to now, however, the experimental studies are mainly limited to investigation of 

helium atoms, possessing the highest ionization potential among the neutral atoms and the 

highest-frequency transitions between the bound states. This choice is primarily motivated 

3 Reprinted with permission from “Attosecond pulse formation via switching of resonant interaction by 

tunnel ionization” by V.A. Antonov, T.R. Akhmedzhanov, Y.V. Radeonychev and O. Kocharovskaya, 2015, 

Phys. Rev. A, vol. 91, pp. 023830, Copyright [2015] by American Physical Society. 
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by the aspiration to perform an intra-atomic excitation using high-order harmonics of laser 

radiation and attosecond pulses with sufficiently high carrier frequency generated in noble 

gases [52,54,56]. 

Recently, a method to produce extremely short pulses with relatively low carrier 

frequency in the vicinity of the resonances of hydrogen-like atoms was proposed 

[37,41,42] and discussed [38,39,107,108]. The pulses are produced due to the resonant 

interaction of an incident HF radiation with hydrogen-like atoms, dressed by a moderately 

strong LF laser field. While the resonant HF radiation excites atoms from the energy level 

n=1 to the energy level n=2 (where n is the principal quantum number), the LF field 

produces the sub-LF-field-cycle perturbation of the excited energy level. The perturbation 

constitutes (i) time-dependent splitting and shift of the excited energy levels via the Stark 

effect as well as (ii) time-dependent broadening of these levels via tunnel ionization from 

the corresponding excited states. The sub-LF-field-cycle variation of the instantaneous 

values of splitting and/or broadening of the excited energy levels, determined by the 

instantaneous strength of the LF field [25], leads to a multifrequency atomic response to 

the quasi-monochromatic incident HF radiation. As shown in references 

[37,39,41,42,107,108], under the appropriate conditions this corresponds to formation of 

extremely short few-femto- and attosecond pulses with carrier frequency inherently 

determined by the frequency of the resonant atomic transition. Since most of the spectral 

components of the produced pulses lay below the threshold of ionization and dissociation 

of various neutral atoms and molecules, such a source of the resonant attosecond pulses 

constitutes a unique tool for the nondestructive (nonionizing) study and control of ultrafast 
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dynamic of the bound atomic and molecular electrons. This essentially distinguishes the 

proposed technique from the commonly used approach to attosecond pulse formation via 

the high-order harmonic generation (HHG) of laser radiation in gases [52,54,56]. In the 

latter case, the pulses consist of high-order harmonics, corresponding to the plateau and/or 

cutoff regions of the generated spectrum, and possessing frequencies far above the 

ionization threshold of the generating atoms. Consequently, interaction of such pulses with 

atoms/ molecules, which ionization/dissociation potential is comparable to that of the 

generating medium, results primarily in photoionization or photodissociation, 

respectively. Another difference of the proposed technique for attosecond pulse formation 

from HHG in gases is the absence of attochirp [56]: the pulse formation does not imply 

adjustment of phases of the generated sidebands, since all of them are produced in-phase. 

In the present chapter, we extend the method of extremely short pulse formation 

from resonant radiation to various non-hydrogenlike atoms and show the possibility to 

produce attosecond pulses in helium and neon. We derive an analytical solution 

uncovering the origin of attosecond pulse formation from the resonant HF radiation in the 

case of a relatively strong LF field [37,39,42,108]. In this case the probability of atomic 

ionization from the excited state, corresponding to the upper energy level of the resonant 

HF atomic transition, approaches unity over each half-cycle of the LF field. For hydrogen-

like atoms this corresponds to amplitude of the LF field strength, EC, exceeding 

3 30.15 AZ n E , where Z is the nucleus charge and 2 5 4

A eE m e  is the atomic unit of 

electric field (e and em  are the charge and the mass of electron, respectively,   is the 

Planck's constant). Ionization from the ground atomic state remains unimportant as far as 
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3

C 0.05 AE Z E  . The derived solution shows that the attosecond pulses are produced due 

to confinement of the resonant atomic response to the incident quasi-monochromatic HF 

radiation within the extremely short time-intervals in the vicinity of zero-crossings of the 

LF field. For the rest of the time the resonant interaction between the HF radiation and the 

atoms is effectively switched off (the resonance disappears) because of rapid ionization 

from the excited atomic state, produced by the LF field. Both analytically and numerically, 

we show that in this regime, the effect of extremely short pulse formation from the 

resonant radiation is insensitive to the particular dependences of (i) Stark shift / splitting 

of the excited atomic energy level as well as (ii) rate of quasistatic ionization from the 

corresponding excited state(s) on the LF field strength. Thus, the discussed mechanism 

can be used for attosecond pulse formation in a variety of atomic gases, possessing 

sufficiently high ionization potential. Extension of the proposed method to non-

hydrogenlike media is important for an experimental realization, since both atomic 

hydrogen and hydrogen-like ions are unstable. Use of various media for attosecond pulse 

generation also substantially increases the practical value of the proposed technique, 

enabling formation of pulses at different carrier frequencies, suitable for ultrafast 

excitation of different atomic, molecular and solid-state systems. 

The chapter is organized as follows: after the introduction, we describe the model 

and derive the analytical solution for a resonant HF radiation, propagating through an 

atomic gas dressed by an intense LF field. We compare the analytical results to the results 

of numerical solutions, obtained within the more general models [42,109] and discuss the 

possibilities to produce attosecond pulses from 58.4 nm vacuum-ultraviolet (VUV) 
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radiation in helium dressed by 3.9 m laser field [110], as well as from 73.6 nm VUV 

radiation in neon dressed by 3.9 m laser field and 1-fs pulses from 122 nm VUV radiation 

in atomic hydrogen dressed by a CO2-laser field [111]. 

III.2 Analytical solution

Let us consider interaction of a HF radiation with an atomic gas. The incident HF 

radiation is monochromatic and propagates along the z-axis. At the entrance to the 

medium, z=0, it has the form 

 0 0

1
( ) exp c.c.

2
incE t x E i t   , (III.1) 

where E0 is its amplitude,   is the angular frequency, and c.c.  stands for complex 

conjugation. The HF radiation (III.1) is chosen to be near-resonant to a transition |1↔|2 

from the ground atomic state to one of the lowest excited states, 0

21   (where 0

21  is the 

unperturbed frequency of the resonant transition). 

The gas is simultaneously irradiated by a moderately strong linearly polarized LF 

laser field 

  0 0

1
( ) exp c.c.

2
LF CE x E i t z c          (III.2) 

Here EC is the amplitude of the LF field,   is its angular frequency, 0  is its initial phase, 

and c is the speed of light in vacuum. The term low-frequency (LF) means that the 

frequency of the field is much smaller than the frequencies of all the transitions from both 

the ground and the resonantly excited by the HF radiation atomic states. Due to far-

detuning from the relevant atomic resonances, the LF field (III.2) does not suffer from the 
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atomic dispersion at the considered propagation distances and traverses the medium 

without substantial modification along the direction of propagation of the HF radiation. 

Since both HF and LF fields are polarized in the same direction, 
0|||| xEE LFinc


, their 

polarizations are not changed during propagation through an isotropic gas, so that the 

vector notations will be omitted, for now on. 

Figure 8. Sketch of the theoretical model used for derivation of the analytical 

solution. The incident HF radiation with frequency ω selects the lower, |1, and upper, |2, 

states of the resonant atomic transition, possessing the energy E1s and E2p, respectively. 

The LF field with frequency Ω rapidly ionizes atoms from the excited state |2 leading to 

periodic broadening of the corresponding energy level twice within the LF field cycle. At 

the same time, the ground atomic state |1 is unaffected by the LF field. The linewidth of 

the resonant transition |1  |2 takes the minimum value min2  during the time-intervals 

zerot  near zero-crossings of the LF field and the maximum value max2  during the time-

intervals zerot     near the LF field crests. 

The amplitude of the LF field is chosen to be under the threshold of atomic 

multiphoton excitation and/or ionization from the ground state |1, however, the LF field 

is strong enough to almost completely ionize atoms from the excited state |2 over every 

half-cycle, producing extreme broadening of the |1↔|2 transition line in the vicinity of 

its crests, Figure 8. The Keldysh parameter of the LF field for the excited state |2 is much 
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smaller than unity, 1Keldysh  , so that the excited-state-ionization takes place via 

tunneling mechanism. If the state |2 corresponds to an eigenstate in spherical coordinates, 

then according to [112], the ionization rate from it is given by 
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, (III.3) 

where t z c   is the local time (in the reference frame, comoving with the LF 

wavefront), 
(2)

P HI I  , (2)

PI  is the ionization potential from the excited atomic state |2, 

4

22

e
H

m e
I   is the ionization potential from the ground state of atomic hydrogen, m is the 

projection of the angular momentum l on the LF electric field, n Z    is the effective 

principal quantum number, Z is the atomic core charge, 
lC  is the dimensionless 

asymptotic coefficient of the atom wave function, and 
3

( )
( ) LF

LF

A

E
F

E





  is the reduced 

dimensionless LF field. The tunnel ionization rate from an eigenstate in parabolic 

coordinates differs from (III.3) only by the pre-exponential factor [37,42,113]. 

The LF field also produces instantaneous Stark shift of the energy level, 

corresponding to the excited atomic state |2, which energy 2E  takes the form 

(0)

2 2 2E E E ( )   , (III.4) 
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where (0)

2E  is the unperturbed energy of the excited state |2, and 2E  is the instantaneous 

shift of the energy level, induced by the LF field. In the lowest order of perturbation theory 

one has 2E ( )LFF    for hydrogen-like atoms and 2

2E ( )LFF    for non-hydrogen-

like atoms. 

Propagation of the HF radiation through the medium is described by the wave 

equation 

2

2

22

2

22

2 41

t

P

ct

E

cz

E HFHF













 
, (III.5) 

where EHF is the HF radiation strength and P is the resonant HF polarization of the gas. 

At the considered propagation distances, the nonresonant interaction of the HF radiation 

with atoms is unimportant and can be disregarded. Since the characteristic scales of spatial 

evolution of the HF radiation in any gas are much larger than the HF radiation wavelength, 

the substitution t t z c    allows reducing wave equation (III.5) to 












 P

cz

EHF 2
. (III.6) 

Equation (III.6) implies the slowly-evolving-wave approximation [114,115], 








 HFHF E

cz

E 1
. Within the additional approximation of slowly-varying-envelope, 

 
1

( , ) ( , )exp c.c.
2

HF HFE z E z i     ,  
1

( , ) ( , )exp c.c.
2

P z P z i     , 
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  HFE
~

,  P
~

, czEHF 
~

, czP 
~

, equation (III.6) has 

the solution 

0

2
( , ) (0, ) ( , ), ( , ) ( , )

z

HF HF Scatt ScattE z E E z E z i P z dz
c


         , (III.7) 

where ( , )ScattE z   is the slowly-varying envelope of HF radiation, resonantly scattered by 

the atoms, which is entirely determined by the slowly-varying envelope of the resonant 

polarization P . 

The envelope of polarization P , in turn, is proportional to the envelope 21a  of the 

atomic coherence   ia  exp2121  at the resonant transition |1↔|2: 

12 21( , ) 2 ( , )P z Nd a z  , (III.8) 

where N is the atomic density, and 12d  is the dipole moment of the resonant transition. 

The value 21a  satisfies an equation 

  21
21 21 21 12 21( ) ( )

2
HF

da i
i a n d E

d
    


    , (III.9) 

where 21( )   is the instantaneous frequency of the transition |1↔|2, 21( )   is its 

instantaneous decoherence rate, 
HFE  is the envelope of the HF radiation, 12n  is 

population difference between the states |1 and |2, 12 11 22n     (in the following we 

consider a relatively weak HF field, which does not change populations of the atomic 

states considerably during the interaction time, 12 1n  ), and 
21 12d d  . 
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In general, (0)

21 21 2( ) E ( )      and (0) (2)

21 21( ) ( ) 2ionw     , where (0)

21  and 

(0)

21  are the unperturbed transition frequency and decoherence rate, correspondingly. 

However, 2E   LFF  or 2

LFF , while 
(2) 2

exp
3

ion

LF

w
F

  
  

  
. Hence, in the case of a strong 

LF field, max 0.1LFF , considered in this chapter, the peak value of ionization broadening 

of the resonant transition line considerably exceeds the depth of Stark sweeping of the 

resonant transition frequency,    (2)

2max max Eionw   . Therefore, in order to obtain 

an analytical solution one may neglect variation of frequency of the resonant transition as 

compared to variation of its linewidth, assuming (0)

21 21( )   . The opposite case of a 

relatively weak LF field, where    (2)

2max max Eionw   , has been considered (for the 

hydrogen-like atoms) in our recent paper [38]. 

Taking into account the strongly nonlinear dependence of the tunnel ionization rate 

(III.3) on the LF field strength (III.2), we adapt a stepwise approximation for the local-

time-dependence of decoherence rate of the resonant transition: 

min zero

21

max zero

, 0 ,
( )

, ,

t

t

 
 

  

  
 

   

21 21( ) ( )       . 

(III.10) 

The decoherence rate 21( )   takes it minimum value min  near zero-crossing of 

the LF field at zero 2t    (corresponding to  0 zero 2t    in (III.2)), and 

maximum value max  at the rest of time, Figure 8. Since the excited-state ionization rate 
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(III.3) is a periodic function of time, which period equals the half-cycle of the LF field, 

the decoherence rate (III.10) possesses the same periodicity. 

According to the results of our numerical calculations [42] extremely short pulses 

can be produced from the quasi-monochromatic HF radiation in an infinitely thin medium, 

while an increase of the medium thickness leads only to an increase of the peak amplitude 

of the pulses (due to increased intensity of the generated sidebands) at the cost of slight 

increase of the pulse duration (because of phase mismatching of the sidebands). Therefore, 

similarly to [38], in order to derive an analytical solution we assume that the length of the 

medium L is small enough, such that the incident HF spectral component dominates over 

the generated sidebands. In this case, the resonant atomic response can be calculated 

accounting only for the scattering of the incident HF radiation, and neglecting rescattering 

of the generated sidebands. This corresponds to assumption ( , )HFE z   ( )incE  in right 

hand of (III.9). Substitution of (III.1) into (III.9) and use of the approximations (III.10) 

and (0)

21 21( )    lead to the steady-state solution 

(1)

21 zero

21 (2)

21 zero

( ), 0 ,
( )

( ), ,

a t
a

a t

 


  

   
 

   
(III.11) 

where (1) (2)

21 21(0) ( )a a    and (2) (1)

21 zero 21 zero( ) ( )a t a t   . The dependences (1)

21 ( )a   and 

(2)

21 ( )a   are given by 

  

    

(1)

21 1 min 1

(2)

21 2 max zero 2

( ) exp ,

( ) exp ,

a C i D

a C i t D

   

   

    


     

(III.12) 

where (0)

21      and 
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(III.14) 

According to (III.7) and (III.8), the envelope of the resonantly scattered HF 

radiation has the form 

(1)

zero

(2)

zero

( ), 0 ,
( )

( ), ,

Scatt

Scatt

Scatt

E t
E

E t

 


  

   
 

   

( ) ( )Scatt ScattE E     , 

(III.15) 

where (1) (1)

21( ) A ( )ScattE i a    and (2) (2)

21( ) A ( )ScattE i a   ; 
124 Nd L
с


  . 

Equations (III.15), (III.11)-(III.14) acquire especially clear form in the case of 

almost complete ionization from the excited state |2 in the vicinity of crests of the LF 

field,   max zeroexp 1t      , and relatively small instantaneous ionization rate 

near the LF field zero-crossings,  min zero min zeroexp 1t t      , which is realized in a 

sufficiently strong LF field. Assuming that detuning of the incident HF radiation from the 

resonance is substantively smaller than the doubled LF field frequency, 

 exp 1i i     , one obtains 
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 (III.16) 

where 

2

12 212 Nn d
L

с

 
  . As follows from (III.16), the scattered HF radiation has a 

form of a pulse train with sub-LF-field-cycle duration 
zero

max

2 1 ln 2

22
pulse t




  

zero

max

0.35
0.3 t


    (the duration of pulses is defined as the full width at half-maximum of 

the scattered intensity 2 ( )Scatt ScattI E  ). 

The Fourier transform of the scattered radiation (III.15) has the form 

 2( ) exp 2Scatt n

n

E i i n  




     . (III.17) 

In the particular case (III.16) the coefficients n2  are determined by the following 

expressions: 
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 (III.18) 

The direct component of the slowly-varying amplitude of the scattered field 

( )ScattE   has the form 

2

0 zero
0

max

.
A 2

zeroE t t
i



 

  
  

 
 (III.19) 

In general case (III.15) the coefficients n2  can be expressed as 
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(III.21) 

where iC , 
jD  are defined by equations (III.13), (III.14). The derived solution (III.7), 

(III.15)-( III.21) is valid for arbitrary atomic system. The quantitative features of field-

atom interaction specific for a given medium and LF field are taken into account via 

parameters min , max , and zerot . In the following, we compare the derived analytical 

solution to the results of numerical calculations within the more general models [42,109], 

taking into account the ground and two excited energy levels, which instantaneous 

positions and widths are modulated by the LF field through the nonlinear (taking into 

account the linear, quadratic and cubic constituents) Stark effect and the tunnel ionization, 

respectively. The numerical calculations are performed without the slowly-varying 

amplitude and rotating-wave approximations. The model [109] is designed specifically for 

non-hydrogen-like medium. Contrary to the models, used in papers [37,39,42,108], it 

takes into account not only the adiabatic influence of a LF field on the atomic system 
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through the sub-LF-field-cycle shift and/or broadening of the energy levels, but also non-

adiabatic transitions between the nondegenerate excited energy levels, induced by the LF 

field. 

III.3 Possibilities for experimental implementation in helium, neon and atomic

hydrogen 

Let us apply the above model to study the possibility to produce few-cycle 

attosecond pulses from 58.4 nm VUV radiation due to the resonant interaction with 

1s2p transition of helium dressed by 3.9 µm infra-red (IR) laser field from OPCPA 

source [110]. The incident VUV radiation can be generated in different ways. Firstly, it 

can be produced via frequency tripling of 175 nm radiation in a gas. The 175 nm radiation, 

in turn, can be generated via frequency doubling of 350 nm radiation in a nonlinear crystal 

with sufficiently wide transparency range, such as lithium triborate (LBO). The latter 

radiation can be produced by OPA/OPO or via frequency tripling of either Nd: YLF or 

Nd: YAG laser field. Secondly, the incident VUV radiation can be obtained via the 

resonantly enhanced HHG of Ti:Sa laser field in InP plasma plume [96,97]. In both cases 

the efficiency of conversion of the radiation energy from visible/near-infrared to VUV 

spectral range normally exceeds the achieved conversion efficiency of attosecond pulse 

formation via HHG., This is because of (i)the absence of a tiny factor, determined by the 

probability of recombination of the detached electron [116], inherent to HHG process, and 

(ii) the possibility to resonantly enhance the atomic susceptibility. Under the action of the 

laser field with an intensity IIR=1.51013 W/cm2 the resonant response of helium atoms to 

the incident VUV radiation and, correspondingly, the resonantly scattered radiation, are 
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confined to the sub-IR-field-cycle time intervals near zero-crossings of the IR field, Figure 

9. This can be understood referring to the dependence of the optical depth of a medium, 

G, on the linewidth of the resonant transition, γ: G~1/γ [117]. Since in the vicinity of the 

IR field crests excited-state-ionization greatly (by orders of magnitude) broadens the 

resonant transition line, it leads to the proportional decrease of the optical depth, making 

the medium transparent for the resonant VUV radiation. On the contrary, in the vicinity 

of zero-crossings of the IR field (during the time intervals zerot ) the ionization 

broadening is small, providing conditions for the resonant absorption and scattering of the 

incident VUV radiation. The Fourier transform of the atomic response is plotted in Figure 

10. It corresponds to a broad comb of the equidistant spectral components, separated by 

the doubled frequency of the IR field. The generated sidebands are almost in-phase to each 

other and in-anti-phase to the incident VUV radiation, corresponding to burning of the 

extremely short dips in the time-dependence of the output VUV intensity because of the 

resonant absorption of the VUV radiation in the vicinity of zero-crossings of the IR field, 

Figure 11. In an optically thin medium the output intensity satisfies the relation 
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Figure 9. Time-dependence of radiation, resonantly scattered by the atoms of 

helium under the simultaneous action of the incident 58.4 nm VUV radiation, exciting 1s 

 2p atomic transition, and 3.9 μm IR radiation with intensity IIR=1.51013 W/cm2, 

rapidly ionizing atoms from the 2p state twice within the IR field cycle. The resonant 

scattering is confined to the time intervals zerot  near zero-crossings of the IR field. For 

the rest of time the resonant scattering is suppressed due to the huge broadening of the 

resonant transition line, see Figure 8. The black solid line corresponds to the radiation 

envelope, calculated analytically (III.15), (III.16). The rapidly oscillating blue dashed line 

corresponds to absolute value of the radiation strength, calculated numerically within the 

three-level model [38], taking into account the nonadiabatic coupling between 2p and 2s 

states of helium, as well as instantaneous quadratic Stark shift of the corresponding energy 

levels and tunnel ionization from them.  
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Figure 10. Fourier transform of the slowly-varying envelope of the resonantly 

scattered radiation plotted in Figure 9. The result of analytical calculation for the spectral 

amplitudes of the scattered radiation using equations (III.18) and (III.19) is shown by cyan 

squares. Amplitudes of the spectral components calculated numerically within the three-

level model [38] (see caption to Figure 9) before and after spectral filtering (see the text) 

are shown by red solid and bold lavender dashed line, respectively (this lines almost 

overlap except for the three central spectral components). Transmission of the spectral 

filter, which is zero at the resonance frequency (zero frequency of the envelope) and unity 

far away from it, is shown by black dashed line. The result of analytical calculation for the 

spectral phases of the scattered radiation using equations (III.18) and (III.19) is shown by 

red stars. The numerically calculated [38] phases of the spectral components at the 

multiples of the doubled IR field frequency, ±2Ω, ±4Ω, ... are marked by blue cycles. 
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Figure 11. Intensity of the output VUV radiation, propagated through an optically 

thin medium of helium, simultaneously irradiated by the resonant 58.4 nm VUV radiation 

and the strong 3.9 μm IR field (see caption to Figure 9). The output radiation results from 

coherent summation of the resonantly scattered radiation (Figure 9) with the incident one. 

The blue solid line represents the result of analytical calculation for the envelope of the 

output VUV intensity. The rapidly oscillating dashed cyan curve corresponds to the square 

of the normalized VUV radiation strength, calculated numerically within the model [38]. 

It worth noting, that the presented calculations imply approximation of an infinitely thin 

medium, so that the depth of intensity dips in Figure 11 is much smaller than unity. 

Naturally, the shape of the absorption dips in Figure 11 almost coincides with the 

inversed shape of extremely short bursts of resonantly scattered radiation, plotted in Figure 

9. As is well known, the resonant absorption itself occurs due to the destructive

interference of the incident and resonantly scattered radiation (which in turn is due to π/2 

phase shift of the resonant component of polarization). Thus, elimination of the resonant 

component in the spectrum of the output VUV radiation (frequency of the resonant 

component coincides with the frequency of the incident VUV radiation) and slight 

attenuation of the nearest sidebands by a narrowband spectral filter results in the 

production of the attosecond pulses shown in Figure 12. The pulses arise at the positions 

of the intensity dips, i.e. where the resonant absorption and scattering take place. As seen 



54 

from Figure 9 and Figure 12, the produced pulses are shorter than the bursts of the 

resonantly scattered radiation. This is due to the facts, that (i) while Figure 9 shows the 

radiation strength, Figure 12 illustrates the time-dependence of the radiation intensity 

(squaring of the pulse envelope reduces the pulse duration), and (ii) suppression of the 

resonant component of the output VUV spectrum and attenuation of the most intense 

sidebands lead to effective broadening of the output spectrum and, hence, shortening of 

the produced pulses. The duration of pulses shown in Figure 12 equals 420 as, 

corresponding to 2.15 cycles of the VUV carrier, the pulse repetition period is determined 

by the half-cycle of the IR field and equals 6.5 fs. The produced attosecond pulses are 

nearly bandwidth-limited without external adjustment of phases of the generated 

sidebands. The values of the parameters zero 0.23t    , min 0.1   , max 15   , 

used for the analytical calculations in Figure 9, Figure 10, Figure 11 and Figure 12, were 

chosen in order to support the best agreement between the analytical and numerical 

solutions. Although in this chapter we consider analytically the limit of small optical depth 

of the medium, the numerical analysis [39] for the larger values of the optical depth shows 

that efficiency of transformation of the incident VUV radiation into the attosecond pulses 

can reach ~ 50%, while efficiency of transformation of the total (IR + VUV) radiation can 

reach ~ 5%. 
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Figure 12. Intensity of the attosecond pulses produced from the output VUV 

radiation (see Figure 11) via suppression of the resonant components of its spectrum 

according to Figure 10. The lavender solid line represents the result of analytical 

calculation for the envelope of the pulses. The rapidly oscillating dashed red curve 

corresponds to the square of the normalized VUV radiation strength, calculated 

numerically within the model [38]. The pulse duration is τpulse=420 as, the pulse repetition 

period equals half-cycle of the IR field, T=6.5 fs. 

 
Figure 13. Time-dependence of intensity of the attosecond pulse train, produced 

from 73.6 nm VUV radiation in neon, dressed by 3.9 μm IR field with intensity 

IIR=51013 W/cm2, via the resonant interaction with 2s22p6  2s22p5(2P0
1/2)3s atomic 

transition and suppression of the resonant component of the output VUV spectrum. The 

solid lavender curve represents the analytical solution for the envelope of the pulses. The 

rapidly oscillating blue curve corresponds to the square of the normalized VUV radiation 

strength, calculated numerically within the eight-level model [109], which takes into 

account transitions between the ground atomic state 2s22p6 and the excited states 2s22p53s 

and 2s22p53p, coupled to each other by the VUV radiation and the IR field. The latter also 

induces time-dependent ionization from all the excited atomic states. The pulse duration 

is τpulse=460 as, the pulse repetition period equals half-cycle of the IR field, T=6.5 fs. 
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The pulses of comparable duration, 460 as, shown in Figure 13, can be produced 

from 73.6 nm VUV radiation via the resonant interaction with atoms of neon, dressed by 

3.9 µm IR laser field. The incident VUV radiation is resonant to the transition from the 

ground atomic state, 2s22p6, to one of the lowest excited states, 2s22p5 (2P0
1/2)3s. The 

numerical model, used for calculations, also takes into account the 2s22p5 (2P0
3/2)3s state 

and all the 2s22p53p states of neon. The transitions from the ground state to the excited 

2s22p53s states are induced by the VUV radiation, while the transitions between 2s22p53s 

and 2s22p53p states are driven by the IR field. Simultaneously, the IR field induces rapid 

ionization from all the excited atomic states, which is taken into account via the time-

dependent ionization rates (III.3). The intensity of the IR field, required for ionization 

switching of the resonant interaction in neon and generation of attosecond pulses, shown 

in Figure 13, equals IIR=51013 W/cm2. The higher IR field intensity compared to the case 

of helium is primarily caused by the larger value of ionization potential from the resonant 

excited state of neon (which equals 4.71 eV vs. 3.37 eV in helium). In order to achieve the 

same value of reduced dimensionless laser field, which determines the ionization rate 

(III.3), 31LFF   (
(2)

PI   and (2)

PI  is the ionization potential from the chosen excited 

atomic state), the laser intensity in neon should be increased approximately 2.7 times in 

comparison to that in helium. The pulses, shown in Figure 13, comprise 1.85 cycles of the 

VUV carrier and are nearly bandwidth-limited. The values of the parameters zerot , min

, max , used for the analytical calculation in Figure 13, are zero 0.25t    , 

min 0.1   , max 15   . 
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In order to show that the effect of extremely short pulse formation from an incident 

VUV radiation via ionization switching of its resonant interaction with an atomic gas is 

insensitive to the choice of a specific medium we consider the pulse formation in atomic 

hydrogen. In Figure 14 we plot the time-dependence of the VUV intensity resulted from 

the resonant interaction of 122 nm VUV radiation with 1s2p transition of atomic 

hydrogen dressed by 10.65 µm CO2-laser field with intensity IIR=2.21013 W/cm2 [111] 

and subsequent suppression of the resonant component of the output VUV spectrum. In 

such a case, the output radiation represents a train of pulses with duration 1.1 fs and 

repetition period 17.8 fs. The analytical solution in Figure 14 corresponds to the 

parameters values zero 0.21t    , min 0.1   , max 10   . From Figure 12 and 

Figure 14 it follows that the ratio between duration of pulses, produced in atomic hydrogen 

and helium, 1.1 fs / 0.42 fs ≈ 2.6, almost coincides with the ratio between the wavelengths 

of respective IR fields, used for interruption of the resonant interaction, 10.65 µm / 3.9 µm 

≈ 2.7. This can be understood within the applied approximation (III.10), taking into 

account that the dependencies of ionization rates from the 2p states of helium and atomic 

hydrogen on the IR field strength are quite close to each other (the corresponding 

ionization potentials are 3.37 eV for helium and 3.40 eV for atomic hydrogen). In the 

quasistatic approximation, the instantaneous excited-state-ionization rate (III.3) is 

determined solely by the IR field strength, while variation of frequency (wavelength) of 

the IR field results in stretching / shrinking of the time scale (see Figure 8). Therefore, 

since the pulse duration is proportional to the length of time-interval of the resonant 
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interaction in the vicinity of zero-crossings of the IR field, 
zeropulse t   , it is proportional 

to the IR wavelength, 1

zero IRt    . 

Figure 14. Intensity of the ultrashort pulses, produced from 122 nm VUV radiation 

due to the resonant interaction with 1s  2p transition of atomic hydrogen, dressed by 

10.65 m CO2-laser field with intensity ICO2=2.21013 W/cm2, via suppression of the 

resonant component of the output VUV spectrum. The solid black curve represents the 

analytical solution for the envelope of the pulses. The rapidly oscillating lavender curve 

corresponds to the square of the normalized VUV radiation strength, calculated 

numerically within the three-level model [16], which takes into account both tunnel 

ionization from the excited atomic states |2=(|2s+|2p) 2/  and |3=(|2s-|2p) 2/ , and 

Stark shift of the corresponding energy levels. The pulse duration is τpulse=1.1 fs, the pulse 

repetition period equals half-cycle of the CO2-laser field, T=17.8 fs. 

As follows from Figure 9, Figure 10, Figure 11, Figure 12, Figure 13 and Figure 

14, regardless of the different dependencies of the instantaneous Stark shifts and excited-

state-ionization rates on the IR field strength for helium, neon, and atomic hydrogen, the 

derived analytical solution even in its simplest form (III.7), (III.15)-(III.19) is in excellent 

agreement with the results of numerical calculations performed within the more general 

models [42,109] without the slowly-varying amplitude and the rotating-wave 

approximations, taking into account time-dependencies of the instantaneous Stark shifts 

and ionization rates from two excited energy levels [42], nonadiabatic coupling of them 
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[109], as well as complicated energy level structure in the case of neon. This agreement 

originates from the fact that the main effect of the IR field in the considered regime, - the 

periodic switching off the resonant interaction between the VUV radiation and the atoms 

near crests of the IR field strength and resumption of the resonant interaction near the IR 

field zero-crossings, is quite correctly described within the two-level model and stepwise 

approximation (III.10) for the time-dependence of the excited-state tunnel ionization rate. 

III.4 Conclusion 

In conclusion, in this chapter we extended the method of extremely short pulse 

formation from the resonant radiation, originally proposed in [42], to non-hydrogenlike 

media, particularly, to noble gases. We derived the analytical solution for the envelope of 

extremely short atto- and femtosecond pulses produced from the resonant VUV radiation 

in an atomic gas, dressed by an IR laser field [37,39,42,108]. The IR field is chosen to be 

strong enough to almost completely ionize atoms from the upper state of the resonant 

VUV transition during each IR half-cycle but does not essentially perturb the ground state 

during the interaction time. The derived solution reveals the origin of pulse formation, 

which is the interruption of the resonant interaction between the VUV radiation and the 

atoms near the crests of the IR field strength and resumption of the resonant interaction 

within extremely short time-intervals in the vicinity of zero-crossings of the IR field. 

Comparison of the derived analytical solution to the results of numerical calculations 

within the more general models [42,109] shows excellent agreement both for helium and 

atomic hydrogen. In such a way, the effect of extremely short pulse formation due to 

ionization switching of the resonant interaction is shown to be insensitive to the specific 
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properties of an atom (such as dependence of Stark shift and excited-state ionization rate 

on the IR field strength), and can be realized under conditions of tunnel ionization in 

arbitrary atomic gas, possessing spectrally isolated VUV transition from the ground to a 

bound excited state and a sufficiently high ionization potential from this excited state. 

Since the carrier frequency of the pulses lies below the ionization potential of neutral 

atoms and can be varied via the choice of generating atoms and a particular transition, the 

proposed technique for extremely short pulse formation constitutes a promising tool for 

nondestructive steering of ultrafast dynamics of the bound electrons inside atoms, 

molecules, and solids. The discussed approach can be straightforwardly applied for the 

shortening of pulses of existing extreme-ultraviolet and soft-x-ray lasers [43] towards the 

attosecond duration. It is worthwhile to mention, that although the present paper is devoted 

to an analytical description of the attosecond pulse train formation, as it was shown in our 

previous work [37], the same mechanism of interruption of the resonant interaction via 

tunnel ionization allows formation of a single attosecond pulse by means of techniques 

similar to those used for creation of isolated attosecond pulses via high harmonic 

generation, namely, by using a short (as compared to the period of the IR field) incident 

VUV radiation pulse, IR radiation pulse with a steep front edge, or fast polarization switch 

of the IR field. 
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CHAPTER IV 

FORMATION OF A SINGLE ATTOSECOND PULSE VIA SWITCHING OF 

RESONANT INTERACTION BY TUNNEL IONIZATION4 

IV.1 Introduction

In the recent decades there was a growing interest in investigation of the processes 

in atoms and molecules unfolding on the sub-femtosecond time scales. Ultrashort laser 

pulses represent one of the key tools being used in such studies. The most used method of 

producing such pulses is high order harmonics generation in gases (HHG). It allows to 

form pulses up to 67 as long [84], containing harmonics with frequencies up to thousands 

of electronvolts. However, typical efficiency of HHG is relatively low (
5 610 10  ) and 

formation of ultrashort pulses requires external correction of phases of generated 

harmonics. Additionally, a carrier frequency of generated pulses is usually higher than 

ionization potential of most atoms and molecules, which makes investigation of intra-

atomic or intra-molecular processes more complicated and leads to photoionization. 

Recently, a new method for generating of trains of attosecond pulses with a carrier 

frequency in the vicinity of atomic resonances was suggested [37,40,42]. Quasi-

monochromatic extreme ultraviolet (XUV) laser field propagates through the medium of 

quasi-resonant atoms that are simultaneously interacting with moderately strong infrared 

linearly polarized (IR) laser field. IR field ionizes all the excited states of atoms, while 

4 Reprinted with permission from “Attosecond pulse formation via switching of resonant interaction by 

tunnel ionization” by T.R. Akhmedzhanov, V.A. Antonov, Y.V. Radeonychev and O. Kocharovskaya, 2015, 
Proc. SPIE 9589, X-Ray Lasers and Coherent X-Ray Sources: Development and Applications XI, 95890W, 

Copyright [2015] by SPIE. 
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ionization rate from the ground state is negligible. Ionization from excited states is 

adiabatic and follows instantaneous strength of IR field: ionization rate is extremely big 

around crests of IR field and negligible around its zeroes. Since effective optical density 

of a medium is inversely proportional to an ionization rate, there is strong resonant 

interaction between the medium and the XUV field around zeroes of an IR field, while 

around crests of an IR field the medium is effectively transparent for an XUV field. Thus, 

interaction of an XUV field and atoms is periodically switched on and off every half of 

period of an IR field, which can lead to formation of the trains of attosecond pulses. 

In this chapter, we discuss possibility to form a single attosecond pulse using the 

ionization switching mechanism in He atoms. Formation of a train of attosecond of 

attosecond pulses manifests multifrequency response of atoms to XUV field. In order to 

form a single pulse, one needs to restrict such a response to an ultrashort period of time. 

This can be done using IR pulse with steep front edge [37]. In this approach XUV field 

resonantly excites resonance coherence which is then ionized by the coming IR field in 

less than its period. Thus, multifrequency response of atoms is effectively limited to an 

ultrashort period of time. 

The rest of the chapter is structured as follows: in section IV.2 we briefly discuss 

a simple analytical model of an ionization switching mechanism of the attosecond pulses 

trains formation and present results of numerical calculation. In section IV.3 a formation 

of a single attosecond pulse on the steep front edge of IR pulse in the medium of He atoms 

is numerically investigated. Conclusion of the chapter is provided in section IV.4.    
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IV.2 Analytical model of pulse formation 

In this section, we derive analytical solution describing pulse formation following 

[40]. Consider propagation of monochromatic XUV field 

 0

1
( , )exp( / ) c.c.

2
XUVE x E z t i t z c    . (IV.1) 

along z axis through the atomic medium. Here 0x  is polarization vector,   is carrier 

frequency of XUV field and ( , )E z t  is its slowly varying envelope. The XUV field is 

quasi-resonant to transition from the ground atomic state 1  to some excited state 2 : 

21  . An atomic medium is simultaneously irradiated by a moderately strong low 

frequency IR field: 

0 cos( ( / ))IR IR IRE x E t z V   . (IV.2) 

where IRE  is an amplitude of the IR field,   is its frequency and IRV c  is its phase 

velocity. The IR field is off-resonant for any populated atomic transition and is assumed 

to propagate through the medium without any distortion. In the following we assume the 

IR field is strong enough to rapidly ionize the excited states of the medium, but not too 

strong, so that it cannot affect ground state. Since all the fields are linearly polarized in the 

same direction, they will not change their polarization during propagation and we can drop 

vector notation. 

Propagation of the XUV field through the atomic medium is described by 
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2 2 2

2 2 2 2

1 4XUV XUVE E P

z c t c t

  
 

  
. (IV.3) 

where P  is a high frequency polarization of the medium. Switching to local time 

/t z c   , within slowly varying envelope approximation ( ( , )XUVE z  

1
( , )exp( ) . .

2
XUVE z i c c   , ( , )P z  

1
( , )exp( ) . .

2
P z i c c   , ( , ) /XUVE z z  ≪

/XUVE c , ( , ) /XUVE z    ≪ XUVE  , ( , ) /P z z  ≪ /P c , ( , ) /P z    ≪ P ), 

reduces this equation is to: 

2E
i P

z c





. (IV.4) 

In the optically thin medium, the solution of the above equation is found to be: 

0

2
( , ) (0, ) ( , ) (0, ) ( , )

z

XUV XUV Scatt XUVE z E E z E i P z dz
c


         

, 

(IV.5) 

where 
0

2
( , ) ( , )

z

ScattE z i P z dz
c


     is a high frequency field scattered by the atoms. In 

its turn, the slowly varying polarization P  is defined by the slowly varying coherence 21

: 
12 212P Nd  . An atomic coherence is governed by the equation 

 21
21 21 21 12 21( ( ) ) ( )

2

i
i n d E

t


     


   


, (IV.6) 

where 21 21 21( ) ( )        is a transition frequency and 21( )   is a decay rate. Both the 

transition frequency and decay rate are time dependent due to a presence of the IR field. 
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Transition frequency 21( )   contains time-averaged constant frequency 21  (which 

includes unperturbed transition frequency and constant part of Stark shift) and time-

dependent part of Stark shift 21( )  . Decay rate 0 (2)

21 21( ) ( ) / 2ionw     includes 

unperturbed decoherence rate 0

21  and time-dependent part (2) ( ) / 2ionw  , where (2) ( )ionw   is 

tunnel ionization rate. In the following we will assume that ionization of the excited states 

of atom is quasi-static in its nature, which means it follows instantaneous strength of IR 

field. This case corresponds to the small value of the Keldysh parameter 
Keldysh ≪1. 

In the case when the major mechanism of excited state ionization is tunneling, 

ionization probability (2) ( )ionw   is given by [112]: 
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. (IV.7) 

where 
(2)

P HI I  , (2)

PI  is the ionization potential from the excited atomic state |2, 

4

22

e
H

m e
I   is the ionization potential from the ground state of an atomic hydrogen, m is 

the projection of the angular momentum l on the IR electric field, n Z    is the effective 

principal quantum number, Z is the atomic core charge, 
lC  is the dimensionless 

asymptotic coefficient of the atom wave function, and 
3

( )
( ) IR

IR

A

E
F

E





  is the reduced 

dimensionless IR field ( AE  is atomic unit of field). 
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Tunneling ionization rate has a sharp dependence on instantaneous strength of the 

IR field: it is extremely big around its crests and negligible around its zeroes. Since an 

effective optical depth of medium is inversely proportional to decay rate 0

21 21( )   , 

medium becomes almost transparent for XUV field twice during a period of the IR field 

(around its crests). Thus ionization switches a resonant interaction between the XUV field 

and medium twice during its period. It can be used for formation of the ultrashort pulses: 

due to ionization switching, scattered field will be a train of ultrashort pulses. Thus, if at 

the exit of the medium incident XUV field frequency is filtered out, the output field will 

also have a form of a train of ultrashort pulses. 

Such sharp dependence of an ionization rate on the field strength can be effectively 

modelled by stepwise function with a repetition period equal to a half of the IR field 

period: 

min zero

21

max zero

21 21

, 0 ,
( )

, ,

( ) ( )

t

t

 
 

  

    

  
 

   

  

 (IV.8) 

where min  is the minimum value of decoherence rate around zeroes of IR field and max  

is the big decoherence rate, corresponding to the rest of a half of the period. This simplified 

description of ionization of the excited state allows to solve the set of the wave and density 

matrix equations analytically (for strong enough IR field considered in this chapter, Stark 

effect can be neglected [38]). As it was shown in [40], the analytical steady state solution 

for a scattered field is given by: 
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where (1) (1)

21( ) A ( )ScattE i a    and (2) (2)

21( ) A ( )ScattE i a   ; 
124 Nd L
с


  and 

(1)

21 zero

21 (2)

21 zero

( ), 0 ,
( )

( ), ,

a t
a

a t
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where (1) (2)

21 21(0) ( )a a    and (2) (1)

21 zero 21 zero( ) ( )a t a t   . The dependences (1)

21 ( )a   and 

(2)

21 ( )a   are given by 
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where (0)

21      and 
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Figure 15. Intensity of a train of ultrashort pulses formed from output XUV 

radiation via spectral filtering of its resonant component. The lavender line corresponds 

to analytically calculated envelope of the pulses. The red oscillating curve corresponds to 

the results of numerical calculation (see text for details). Figure reprinted with permission 

from [40]. 

After filtering of an incident XUV field frequency the scattered field can have a 

form of the attosecond pulses train [40]. In order to verify the derived solution, we 

compare it with a numerical calculation for He atoms. It models interaction of a weak 

quasi-resonant XUV field with the three-level He (1s, 2s and 2p states) simultaneously 

interacting with the IR field. Ionization of excited state is described by (IV.7). Other 

excited states are taken into account via AC Stark shift. We find XUV field, scattered by 

atom and filter out incident XUV field frequency. We consider the following parameters: 

incident XUV field has wavelength 58.4 nm (resonant to unperturbed 1s-2p transition), IR 

field with wavelength 3.9 µm has intensity IIR=1.51013 W/cm2. The intensity of filtered 

output field is shown in Figure 15 by red oscillating line. Analytical solution with fitted 

parameters zero 0.23 ,t     min 0.1 ,    max 15    is shown by lavender line. As 
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it can be seen from the Figure 15, an agreement between simple analytical model and 

numerical solution is excellent. 

IV.3 Formation of a single attosecond pulse from the resonant XUV radiation on a

steep front edge of a strong IR field 

As it was shown in [40], ionization switching of resonant interaction leads to multi-

frequency atomic response and, thus, formation of a train of attosecond pulses in the output 

XUV field (after filtering its resonant component). However, for many applications [54], 

ability to form a single attosecond pulses would be beneficial. In order to achieve single 

pulse formation, multifrequency response of atoms needs to be confined within an 

extremely short period of time. 

One of the ways to achieve it is to use a strong IR pulse with steep front edge [37]. 

In this method, quasi-monochromatic quasi-resonant incident XUV field enters medium 

before an IR pulse and excites resonant polarization of the medium. At some moment, a 

strong IR field pulse enters medium ionizing most of the excited atoms and cancelling 

resonant interaction between atoms and an XUV field. If front edge of IR pulse is steep 

enough, excited atoms would be ionized within half-cycle of an IR field. It means that 

transient multifrequency response of atoms would be confined within extremely short 

period of time and single attosecond pulse can be formed. 
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Figure 16. Intensity of the single ultrashort pulse produced from the output XUV 

radiation (after filtering incident XUV field frequency). The pulse length is about 640 as. 

Formation of a single attosecond pulse in the medium of hydrogen-like ions was 

discussed in [37]. Here the possibility to form a single attosecond pulse in a thin layer of 

He atoms by the same method is shown. Time dependent Schrodinger equation (TDSE) 

for single He atom simultaneously interacting with the XUV and IR field pulses is 

numerically solved. We use a pseudospectral time-dependent method [93] and a model 

potential [94] for He atom. The XUV field scattered by atom is defined by high frequency 

part of the excited dipole moment (we filter out low-frequency oscillations caused by the 

IR field).  

We consider the IR field with a carrier wavelength 2000 nm, 6th power super-

Gaussian envelope with FWHM about 22 fs, peak intensity IIR=1.01014 W/cm2 and the 

weak incident XUV field with a carrier wavelength 58.4 nm (resonant to transition from 

He ground state 1s2 to the excited state 1s2p). The attosecond pulse which will be formed 

at the exit of a thin medium is shown in Figure 16 (incident XUV frequency is filtered). 

As it can be seen, a single pulse with time duration of ~640 as is formed. 
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IV.4 Conclusion 

We have investigated attosecond pulse formation via switching of resonant 

interaction by tunnel ionization. Quasi-static ionization from the resonantly populated 

state by an IR field leads to a periodic switching of resonant interaction between XUV 

radiation and atoms. This ionization switching allows producing of trains of extremely 

short pulses from the XUV radiation. Use of an IR field pulse with steep front edge allows 

confining multifrequency atomic response almost within a half-cycle of an IR field and 

producing of a single attosecond pulse. Results of numerical calculations show the 

possibility to form a single pulse with time duration of several hundred of attoseconds. 
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CHAPTER V 

ULTIMATE CAPABILITIES FOR FEW-CYCLE PULSE FORMATION VIA 

RESONANT INTERACTION OF XUV RADIATION WITH IR-FIELD-

DRESSED ATOMS5 

V.1 Introduction 

Starting from the turn of the millennium [83,118], attosecond physics has become 

a fascinating branch of modern science, opening the possibility for real-time imaging and 

steering of the electronic motion in atoms, molecules, and solids on its intrinsic timescale 

[56-59,119-121], conceptually similar to the femtosecond optical control of chemical 

reactions [122]. 

During the last years, a remarkable progress has been achieved in understanding 

and manipulating the sub-laser-cycle dynamics of the bound and autoionizing atomic 

states induced by an intense laser field combined with attosecond pulses/pulse trains of 

the extreme ultraviolet (XUV) radiation produced via high-harmonic generation (HHG) 

of a replica of the laser field [22,24,25,27,28,34-36,57,59,90,119,120,123]. In these 

studies, the laser field is not strong enough to ionize or excite atoms from their ground 

state, but it strongly perturbs the excited states resonantly populated by high-harmonic 

radiation. This perturbation has been visualized directly via the attosecond transient 

absorption technique [24,25,119]. Due to mutual coherence of the fundamental laser field 

5 Reprinted with permission from “Ultimate capabilities for few-cycle pulse formation via resonant 

interaction of XUV radiation with IR-field-dressed atoms” by T. R. Akhmedzhanov, M.Yu. Emelin, V. A. 

Antonov, Y. V. Radeonychev, M.Yu. Ryabikin, and Olga Kocharovskaya, 2017, accepted to Phys. Rev. A, 

Copyright [2017] by American Physical Society. 
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and its high-order harmonics, the pathways of atomic excitation and ionization through 

absorption of a higher harmonic photon or a lower harmonic photon along with a few 

photons of the laser field (or, explicitly, the pathways of atomic excitation by different 

harmonics into the same Floquet state) interfere, leading to beatings of the atomic 

ionization yield versus the sub-laser-cycle time delay between the harmonic signal and the 

laser field [22,24,25,28,34,35,123] and allowing for the complete transparency of the 

medium for the resonant XUV radiation [22,90]. However, the possibilities for such 

investigations and control over the ultrafast intra-atomic dynamics are limited by the 

nature of HHG process in gases, which is commonly used for the attosecond pulse 

formation and dictates the relatively high carrier frequency and low efficiency of 

generation of the XUV pulses [56,59,83]. 

Although in recent years both HHG and laser technologies have been considerably 

advanced, resulting, in particular, in the generation of high-energy (~ 1μJ) isolated 

attosecond pulses [124], the photon energy of these pulses remains above the ionization 

potential of both the generating medium and majority of neutral media, which prevents 

from using them for nonionizing manipulation of ultrafast intra-atomic and intra-

molecular processes and impedes investigation of such processes without photoionization 

(to the best of our knowledge, studies of bound-state attosecond electron dynamics have 

been performed only in He and Ne, the atoms with highest ionization potentials). At the 

same time, the below-threshold harmonics can be produced with generation efficiency up 

to 1% (which is much higher than that of the above-threshold harmonics used in [124]) 

under the resonance conditions [125]. However, although the below-threshold harmonics 
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are generated in a comb [126], they are not phase-matched with each other and do not 

constitute attosecond pulses in time domain. Furthermore, the use of resonantly enhanced 

HHG and plasma-based x-ray lasers allow for producing XUV and soft x-ray field with 

high power, exceeding the power of nonresonant high harmonics at the same wavelength. 

In particular, the transitions from autoionizing states to the ground state of multielectron 

atoms (ions) allow to increase the intensity of the resonant (above-threshold) harmonic 

compared to nonresonant ones by two orders of magnitude and achieve 10-4 efficiency of 

a single harmonic generation [96,97,127], whereas transient inversion on high-frequency 

transitions of multiply charged ions in laser-produced plasmas provides an opportunity to 

generate picosecond pulses of XUV and soft x-ray field with energy up to several mJ [44-

47]. However, these sources produce a quasi-monochromatic radiation, which is not 

suitable for the time-domain studies of the ultrafast femto- and attosecond processes. 

Recently, a method has been proposed, which may allow for the conversion of 

XUV and soft x-ray radiation from these high-energy sources into the attosecond pulses. 

This method uses the resonant interaction of an incident XUV radiation with an atomic 

gas dressed by a moderately strong infrared (IR) laser field [41,42] and is based on sub-

laser-cycle splitting (due to the linear Stark effect [25,128]) and/or broadening (due to 

ionization [112,129]) of the excited energy levels, selected and populated by the XUV 

radiation, under the action of the IR field. The magnitudes of the splitting and broadening 

of the atomic energy levels oscillate in time and space along with oscillation of the laser-

field strength, leading to the multifrequency resonant response of the IR-field-dressed 

atoms to the (quasi-monochromatic) incident XUV radiation. Under the optimal 
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conditions, both Stark splitting of the resonant excited atomic energy level in a hydrogen-

like medium [38,41] and rapid quasistatic ionization from the resonant excited state in 

arbitrary atomic gas [37,40,42] allow for the formation of nearly bandwidth-limited few-

femto- or attosecond pulses without external adjustment of phases of the generated 

sidebands (in contrast with the attosecond pulse formation through HHG, which implies 

the attochirp compensation [130]). The possibilities to produce both the (quasi-) periodic 

pulse trains [38,40-42] and the isolated attosecond pulses [37] were shown. The efficiency 

of energy conversion of the XUV field into a pulse train can exceed 75 % [38] in the case 

of pulse formation based on the linear Stark effect and reach 10 % in the ionization-

switching regime [39]. The discussed approach allows for the formation of attosecond 

pulses with the carrier frequency below the ionization potential of neutral atoms / 

molecules and solids (corresponding to the wavelength range of 50 to 200 nm), providing 

an opportunity for the nondestructive sub-femtosecond control of the bound electron 

dynamics [57,59,119-121]. Proximity of the carrier frequency of the pulses to various 

resonances in neutral and ionized media holds the promise to use the resonant 

enhancement of the nonlinear susceptibilities for the implementation of the attosecond 

pump - attosecond probe experiments [124,131]. Furthermore, the possibility to transform 

high energy picosecond pulses of x-ray plasma lasers [44-47,63,78,87] into the trains or 

isolated attosecond pulses, opens the door for numerous applications in dynamical, high 

temporal and high spatial resolution element-specific imaging in biochemistry and 

material science [80,81]. 
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The previously obtained results were restricted to three- or two-level models, 

implying adiabatic approximation for atomic perturbation by the IR field and the resonant 

approximation for interaction of XUV radiation with atoms. The influence of the IR field 

on the atomic system was taken into account through space-time variation of instantaneous 

position and width of the resonant excited atomic energy levels, while interaction of the 

XUV radiation with atoms, although described dynamically, was considered in few-level 

models. Although this approach is correct in the limit of a low frequency and low intensity 

of the IR field and allows for the analytical solutions, as well as numerical treatment of 

the propagation problems, it does not allow for determining the ultimate capabilities and 

the limits of applicability of the method. 

In the present chapter, we address these questions taking into account all the 

multiphoton processes in the considered system on the basis of numerical solution of the 

full three-dimensional time-dependent Schrödinger equation (TDSE) in the single-active-

electron approximation. We find the maximal intensity and the minimal wavelength of the 

laser field suitable for few-femto- and attosecond pulse formation from an incident XUV 

radiation via modulation of the resonant atomic response, as well as the minimal duration 

of the produced pulses. The mechanisms of pulse formation due to the linear Stark effect 

[38,41] and the excited-state ionization [37,40,42] are considered for the hydrogen and 

helium atoms, respectively. The results of numerical calculations are compared to the 

analytical solutions obtained in [38,40]. In order to analyze the differences between these 

quasistatic analytical solutions [38,40] and the results of ab initio TDSE calculations, we 

develop a generalized analytical theory, which takes into account a sub-IR-field-cycle 
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space-time variation of the quadratic Stark effect and the excited-state ionization rates. 

The developed theory allows for distinguishing the differences between the simplified 

analytical solutions [38,40] and the ab initio calculations, which are caused by the 

interplay between the Stark effect and quasistatic ionization, from those originating from 

the nonadiabatic processes. Moreover, the generalized theory allows for tracing a 

transition between the two regimes of pulse formation (based on the linear Stark effect 

and excited-state ionization) with increasing intensity of the IR field. The performed 

TDSE calculations are free of most of the assumptions made in theoretical works 

(restricting the number of levels, neglecting the interaction with a continuum or using the 

quasi-static approximation for ionization rates, neglecting higher-order Stark effect, etc.) 

and, thus, provide a direct bridge to an experimental implementation of suggested 

mechanisms. 

The chapter is organized as follows. In Section V.2, we analyze the possibilities 

for ultrashort pulse formation from XUV radiation via Stark splitting of the resonant 

excited energy level of the atomic hydrogen by a moderately strong IR field of various 

intensities and wavelengths. In Section V.3, we consider the ionization-switching 

mechanism of few-cycle attosecond pulse formation from the resonant XUV radiation in 

helium under the action of a strong IR field. The chapter is finalized by a conclusion. 

V.2 Few-femtosecond pulse formation via linear stark effect in atomic hydrogen 

Let us consider the propagation of XUV radiation through an optically thin 

medium of an atomic gas. At the entrance to the medium, x=0, the radiation is 

monochromatic and its electric field has the form 
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 0 0 0

1
( ) exp c.c.

2
incE t z E i t   , (V.1) 

where E0 is the incident field amplitude, 0  is its angular frequency, and c.c.  stands for 

the complex conjugation. The radiation (V.1) is chosen to be near-resonant to the 

transition |1↔|2 between the ground state and an excited atomic bound state, 0

0 21   

(where 0

21  is the frequency of the unperturbed resonant transition). 

The medium is simultaneously irradiated by a moderately strong IR laser field 

  0 0

1
( , ) exp c.c.

2
IR CE x t z E i t x c       , (V.2) 

where EC is the amplitude of the IR field,   is its angular frequency, 0  is its initial phase 

( 0 0  , unless specified otherwise), and c is the speed of light in vacuum. Both the IR 

field and the XUV radiation propagate along the same direction and are identically 

polarized. Since in an isotropic gas the polarizations of the fields are not changed, the 

vector notations will be omitted for now on. Since the medium considered in the chapter 

is optically thin, due to far detuning from the relevant atomic resonances and tiny 

population of the excited states, the IR field (V.2) does not suffer from atomic dispersion 

and traverses the medium without appreciable distortions. 

Propagation of the XUV radiation through the medium is described by the wave 

equation 

2 2 2

2 2 2 2 2

1 4XUV XUV XUVE E P

x c t c t

  
 

  
, (V.3) 
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where EXUV is the XUV radiation strength, ( 0, ) ( )XUV incE x t E t  , and PXUV is the high-

frequency polarization of the medium. 

Since the characteristic scales of a spatial evolution of XUV radiation in a gas are 

much larger than its wavelengths, the substitution t t x c    (within the slowly-

evolving wave approximation [114,115]) allows for reducing the wave equation (V.3) to 

2XUV XUVE P

x c





 
 

 
. (V.4) 

Finally, in an optically thin medium (when rescattered field remains much weaker 

than the incident one) the output radiation transmitted through the medium of thickness L 

has the form 

2 ( )
( , ) ( ) ( , ), ( , ) XUV

XUV inc Scatt Scatt

L dP
E L E E L E L

c d

 
   


   , 

(V.5) 

where ( , )ScattE L   is the resonantly scattered XUV radiation determined by the incident 

fields (V.1), (V.2). 

In a gas, ( ) ( )XUV XUVP Nd  , where N is the concentration of atoms and ( )XUVd   

is the high-frequency part of the dipole moment of an individual atom, ( ) ( )d e z   

(where e is the electron charge and ( )z   is the expectation value of the active atomic 

electron displacement along the polarization direction of the field). 

In order to get an ab initio solution for ( )d  , we numerically solve the three-

dimensional TDSE for an atom simultaneously irradiated by the XUV and IR fields (V.1) 

and (V.2):
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t
 


 


, (V.6) 

where   is the wavefunction of the active electron, 

2

0 ( )
2

H U r
m

     is the unperturbed 

atomic Hamiltonian (in the case of atomic hydrogen, rerU /)( 2


 corresponds to the 

pure Coulomb potential), and rtEertEeV XUVIR


 )()(  is the Hamiltonian of atom-

field interaction. The solution is obtained using the generalized pseudospectral method 

[93]. The high-frequency component of the dipole moment ( )XUVd   is calculated by

filtering out the low-frequency components of the total dipole moment, ( )d  , at the 

frequencies of low-order harmonics of the IR field and below. An additional filtering is 

applied for the spectral components with photon energies exceeding the atomic ionization 

potential, which accounts for a strong photoabsorption of XUV radiation just above the 

ionization potential. 

In the following, the results of TDSE calculations are compared to the analytical 

solution [38] derived for atomic hydrogen exposed to XUV radiation, which is resonant 

to the transition n=1  n=2 (where n is the principal quantum number). The analytical 

solution takes into account the sub-laser-cycle splitting of the excited energy level n=2 

due to the linear Stark effect produced by the IR field, but neglects time dependencies of 

the shift and broadening of the excited energy level due to the quadratic Stark effect and 

the excited-state ionization, respectively. 
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In order to analyze the discrepancies between the simplified modeling and TDSE 

solution, a generalized analytical solution is derived, which takes into account the 

interplay between the Stark effect and excited-state ionization, as well as the quadratic 

correction to the alternating-current (AC) linear Stark effect in atomic hydrogen. The 

analytical solution implies the approximation of slowly-varying amplitudes: ( )F  

 0

1
( )exp c.c.,

2
F i   

0 ,
dF

F
d



 where ( )F    ( , ), ( , ),XUV ScattE L E L   

( )XUVP  . Within such an approximation, Eq. (V.5) takes the form 

0

2
( , ) ( , ), ( , ) ( )XUV Scatt Scatt XUV

L
E L E E L E L i P

c


      . (V.7) 

The analytical solution for atomic hydrogen is derived within the three-level 

model, which includes the ground energy level n=1 and the two sublevels of the first 

excited energy level n=2 selected and populated by the resonant XUV radiation (V.1). The 

corresponding atomic states are |1=|100, |2=(|200+|210) / 2 , and |3=(|200|210) / 2  

(numerals |nlm label principal, orbital, and magnetic quantum numbers, respectively). In 

the three-level approximation, the nonresonant interaction of XUV radiation with the 

medium is neglected, while the slowly-varying amplitude of the resonant polarization is 

given by 

 21 31( ) 2 ( ) ( )XUV trP Nd a a    , (V.8) 

where N is the concentration of atoms, 7 52 3tr Bd er  is the dipole moment of the resonant 

transitions (e is the charge of the electron, Br  is the Bohr radius), and 21a , 31a  are the
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slowly-varying amplitudes of the atomic coherencies 21 , 31  at the transitions |1  |2 

and |1  |3, respectively. The coherency amplitudes satisfy the equations 

  

  

21 0
21 0 21 21

31 0
31 0 31 31

( ) ( ) ,
2

( ) ( ) ,
2

tr

tr

da d E
i a i

d

da d E
i a i

d

    


    



   


     


 (V.9) 

where 21 31( ), ( )     and 21 31( ), ( )     are the instantaneous frequencies and decoherence 

rates of the transitions |1  |2 and |1  |3, respectively, which vary in space and time 

due to the sub-laser-cycle shift and broadening of the energy levels |2 and |3 introduced 

by the IR field; (0)

1 1( ) E ( )s s s      and (0) ( )

1 1( ) ( ) 2,s

s s ionw     where (0)

1s  and 

(0)

1s  are the unperturbed frequency and decoherence rate of the transition |1  |s, while 

E ( )s   and ( ) ( )s

ionw   are the instantaneous shift of / ionization rate from the excited state 

|s;   is the Planck's constant. The perturbation of the ground state |1 by the laser field 

of intensity relevant to this study is negligible. 

In order to find the generalized analytical solution, we use the biharmonic 

approximation for the dependencies 1( )s   and 1( )s  : 

(1) (2)

1( ) cos( ) cos(2 ),s tr             (V.10a) 

(1) (2)

1( ) cos( ) cos(2 ),s tr              (V.10b) 

where the upper and lower signs correspond to s=2 and s=3, respectively. The values tr  

and tr  characterize the time-averaged position and width of the atomic resonances in the 

presence of IR field; (1)

  and (2)

  are amplitudes of the sweeping of the transition 



 

83 

 

frequencies due to the linear and the quadratic Stark effect, respectively, while 
(1)

  and 

(2)

  are variations of ionization rates from the excited states |2 and |3 at the fundamental 

and the doubled frequency of the laser field (V.2). The values (1)

  and 
(1)

  are nonzero 

due to an asymmetry of the states |2 and |3 of atomic hydrogen in parabolic coordinates. 

 

Figure 17. Time dependencies of a probability for a hydrogen atom initially excited 

into the state |2 or |3 to remain nonionized by the monochromatic IR field of intensity 

IIR = 2.51012 W/cm2 and wavelength λIR = 8 μm. The lower red curves correspond to the 

state |2, while the upper blue curves characterize the state |3. The solid curves are the 

results of ab initio solution of the TDSE, whereas the dashed curves represent the 

approximation (V.10 b).

The parameters tr , 
(1)

 , and 
(2)

  of the decoherence rate for each combination 

of intensity and wavelength of the IR field were determined via ab initio solution of an 

independent auxiliary problem. For this purpose, TDSE was solved for an atom initially 

put into the resonant excited state and subjected to the IR field of required intensity and 

wavelength. Then, the norm of electron wavefunction in the vicinity of atomic core (inside 

a sphere with radius R=25 atomic units) was calculated numerically. As a result, the 
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probability for an atom to remain nonionized by the IR field was found as a function of 

time. An example of such a calculation is shown in Figure 17. The parameters tr ,
(1)

 ,

and 
(2)

  were then found via fitting the obtained time dependence by 1

0

exp ( )s d



  
 

  
 


, where 1( )s    is given by Eq. (V.10 b). The amplitude of the linear Stark effect, (1)

 , is 

calculated via the perturbation theory: 
(1) 3

C

e

E
m e

   ( em  is the electron mass); the time-

averaged transition frequency is (0) (2)

21tr     ; finally, the amplitude of the quadratic 

Stark shift, (2)

 , is chosen to provide the best agreement between the generalized 

analytical solution and the results of TDSE calculations for the output XUV radiation. In 

the limit of low-frequency and low-intensity modulating IR field, the values of (2)



determined in this way are comparable to those predicted by the perturbation theory. Thus, 

for 10.65 μm IR field with intensity 1.41012 W/cm2, we get (2) 0.46   , while the 

static perturbation theory gives (2) 0.52   . In the case of stronger and higher-

frequency IR fields, the perturbation theory overestimates the quadratic Stark shift. 

The steady-state solution of Eqs. (V.7)-( V.10) reads 
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(V.11) 

where  kJ x  and  kI x are the Bessel function of the first kind and the modified Bessel 

function of order k, respectively, and 

(1) (2)(1) (2)
(1) (1) (2) (2), , ,

2 2
P P P P

  
   

  
   

   
 are 

the modulation indices. 

The Fourier decomposition of the resonantly scattered radiation (V.11) has a form 
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(V.12) 

As mentioned above, along with the generalized solution (V.7), (V.11), (V.12), the 

results of TDSE calculations are compared to the simplified analytics derived previously 
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[38] within the approximations 
(2) (1) (2) 0P P P     , tr   , and 0 *tr m    , 

where ,...2,1,0* m : 
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Figure 18. (a) Time dependence of intensity I ~
2

XUVE  of XUV radiation at the 

exit of an optically thin medium of atomic hydrogen simultaneously irradiated by the CO2-

laser field with intensity IIR = 1.41012 W/cm2 and wavelength λIR = 10.65 μm and the 

XUV radiation with intensity IXUV = 2.2108 W/cm2 and wavelength λXUV = 122.2 nm. 

The dimensionless parameters in analytical solution are (1) 4.45P  , (2) 0.23P  , 

(1) 0.05P  , (2) 0.015P  , and 0.04tr   . The bold red curve and the dashed green curve 

correspond to the analytical solutions (V.11) and (V.13), respectively. The rapidly 

oscillating blue curve shows the numerical solution of the TDSE for the squared value of 

the XUV field strength, 
2

XUVE . (b) Fourier transform of the output XUV radiation 

corresponding to the time dependence in (a). The results provided by the generalized 

analytical solution (V.12) for the amplitudes and phases of the spectral components are 

shown by red squares and blue circles, while the predictions of the simplified analytical 

theory (V.13) for the spectral amplitudes and phases are plotted by black asterisks and 

filled green circles. The dashed lavender curve and cyan crosses show ab initio solution 

of the TDSE for the amplitudes and phases of spectral components at the combinational 

frequencies, 0 n    , 0, 1, 2,...n    , respectively. The resonant spectral component, 

0  , of the output XUV radiation is attenuated to the level of the generated sidebands.

Due to its simplicity, the analytical solution (V.13) allows to determine the optimal 

conditions for ultrashort pulse formation via the linear Stark effect in atomic hydrogen. 

As shown in [38], the output XUV radiation represents a train of bandwidth-limited pulses 

if (i) the incident radiation is tuned to the time-averaged position of the atomic resonance, 

0 tr  , (ii) the modulation index (1)P  satisfies the inequality (1) (1) (1)

0 2P   , where 

40.2)1(

0   is the first root of equation 0)(0 J  and 14.5)1(

2   is the first root of 
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equation 2 ( ) 0J   , and (iii) the resonant component of the output XUV radiation is 

attenuated to the level of the generated sidebands. In Figure 18, Figure 19, Figure 20 and 

Figure 21 we compare the results of both the generalized, (V.11), (V.12), and the 

simplified, (V.13), analytical solutions to the ab initio solutions of the TDSE under these 

optimal conditions for different combinations of intensity, IIR, and wavelength, λIR, of the 

IR field (V.2).  

 

Figure 19. (a) Same as Figure 18 (a), but for IR field with intensity 

IIR = 2.51012 W/cm2 and wavelength λIR = 8 μm, and XUV radiation with intensity 

IXUV = 1.6109 W/cm2 and wavelength λXUV = 122.6 nm. The dimensionless parameters in 

analytical solutions are (1) 4.45P  , (2) 0.32P  , (1) 0.21P  , (2) 0.074P  , and 

0.19tr   . (b) Fourier transform of the output XUV radiation corresponding to the time 

dependence in (a). Designations are the same as in Figure 18 (b).
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Figure 20. (a) Same as Figure 18 (a), but for IR field with intensity 

IIR = 1013 W/cm2 and wavelength λIR = 4 μm, and XUV radiation with intensity 

IXUV = 109 W/cm2 and wavelength λXUV = 124.6 nm. The dimensionless parameters in 

analytical solutions are (1) 4.45P  , (2) 0.23P  , (1) 0.8P  , (2) 0.6P  , and 1.3tr   . 

(b) Fourier transform of the output XUV radiation corresponding to the time dependence 

in (a). Designations are the same as in Figure 18 (b). 


Figure 21. (a) Same as Figure 18 (a), but for IR field with intensity 

IIR = 41013 W/cm2 and wavelength λIR = 2 μm, and XUV radiation with intensity 

IXUV = 4109 W/cm2 and wavelength λXUV = 133.4 nm. The dimensionless parameters in 

analytical solutions are (1) 4.45P  , (2) 0.5P  , (1) 1.9P  , (2) 1.8P  , and 3.8tr   . (b) 

Fourier transform of the output XUV radiation corresponding to the time dependence in 

(a). Designations are the same as in Figure 18 (b). 

The analytically calculated envelope (V.7), (V.11) of the output XUV radiation is 

slightly shifted along the time axis in order to provide the best fit to the numerical results. 

This shift originates from inertia of electronic response to the IR field. The timing of pulses 

predicted by the analytical solution is fully determined by time dependencies of 



 

90 

 

frequencies and decoherence rates of the resonant transitions |1  |2 and |1  |3. 

Equations (V.10 a) and (V.10 b) assume that both the frequencies and the decoherence 

rates reach their maximum values at maxima of absolute value of the IR field strength. 

This is correct for the linear Stark shifts but not exactly correct for the decoherence rates. 

The resonant interaction between the atoms and the XUV field decreases with decrease of 

an overlap between the wavefunctions of the atomic ground state and of the ionized 

electron. Therefore, the peak of decoherence rate is slightly delayed with respect to the 

peak of the excited-state ionization rate (and the peak of IR field strength) by a time 

interval needed for the electron to move away from the nucleus by a distance equal to the 

average radius of its wavefunction (which can be estimated on the basis of initial 

wavefunction of the resonant excited state). In such a case, if there were no Stark effect, 

the results of ab initio solution for the time dependence of the output XUV intensity would 

be delayed with respect to the analytical solution by this time interval, which is not taken 

into account by Eq. (V.10 b) but naturally arises in numerical TDSE solution. However, 

as far as the IR field intensity is below the threshold of rapid excited-state ionization, the 

pulse shape is predominantly determined by the linear Stark effect, which is instantaneous. 

For this reason, in the case of low-intensity IR fields, the temporal shift, τ0, between the 

analytical and numerical solutions for the output XUV intensity which maximizes their 

overlap, is very small (~ 10-3 of the IR field cycle). With increasing intensity and frequency 

of the IR field, the value of τ0 increases to ~ 10-2 of the IR field cycle. In the TDSE 

calculations, we assume the IR field in the form ( ) ( )sin( )IR CE E    , with the slowly-

varying amplitude 2( ) sin ( 40)CE     for 0 20     and ( ) 1CE    for 
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20 230      . The XUV radiation has the form 

 0 0( ) ( )sin ( )XUV XUVE E      , where 0 30    and ( ) 0XUVE    for 

0 30    ,   2

0( ) sin 20XUVE      for 30 40      , ( ) 1XUVE    

for 40 220      , and   2( ) cos 220 20XUVE       for 

220 230      . For each combination of intensity and wavelength of the IR field, 

the wavelength of XUV radiation, λXUV, is adjusted to the Stark-shifted position of the 

atomic resonance. 

In Figure 18, we present the results for atomic hydrogen irradiated by the CO2-

laser field with intensity IIR = 1.41012 W/cm2 and wavelength λIR = 10.65 μm, 

corresponding to the modulation index value (1) 4.45P  . These are exactly the same 

parameters as in the original paper [38]. The medium is simultaneously irradiated by the 

XUV radiation with wavelength λXUV = 122.2 nm and intensity IXUV = 2.2108 W/cm2, 

resonantly exciting the atomic transition n=1n=2. As seen from this figure (whose 

panels (a) and (b) are remarkably similar to Figure 3 and Figure 4 of [38]), the ab initio 

TDSE solution fully confirms the possibility of pulse train formation. The pulses produced 

in this case are bandwidth-limited and have the duration τpulse=2.7 fs and repetition period 

T=17.8 fs. The analytical solutions (V.11), (V.12), and (V.13) are in excellent agreement 

with each other and with the ab initio TDSE solution both in time and frequency domain 

representations, see panels (a) and (b) of Figure 18, respectively. This is what we should 

actually expect, since for such parameters of the IR field the applicability conditions of 
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Eq. (V.13) are well satisfied: (i) the spectral lines of the resonant transitions are narrow 

with respect to the laser frequency due to the very low excited-state ionization rates, (ii) 

the sub-laser-cycle oscillations of the quadratic Stark shift and the ionization rates are not 

important, since their amplitudes are small compared to both the laser frequency and the 

amplitude of linear Stark splitting, and (iii) for the considered values of frequency and 

intensity of the IR field, the nonadiabatic effects are negligible. 

The duration of the bandwidth-limited pulses is inversely proportional to their 

bandwidth. Therefore, according to (V.13), for a fixed value of modulation index (1)P  the 

pulse duration (as well as the repetition period) is inversely proportional to the frequency 

of the IR field and proportional to its wavelength, τpulse~ Ω-1~ λIR. Let us further examine 

the possibilities to shorten the pulses via the reduction of the wavelength of the IR field. 

In the following, we consider the cases of λIR = 8 μm, 4 μm, and 2 μm. In order to keep 

the modulation index constant, (1) 4.45P  , the intensity of the IR field is chosen to 

increase inversely proportional to the square of its wavelength, IIR ~ λIR
-2. Figure 19 and 

Figure 20 correspond to the IR field with wavelength λIR = 8 μm and 4 μm and intensity 

IIR = 2.51012 W/cm2 and 1013 W/cm2, respectively. Due to increasing time-averaged 

quadratic Stark shift of the excited energy levels |2 and |3, the wavelength of the resonant 

XUV radiation grows with increasing intensity of the IR field. For instance, we have 

λXUV = 122.6 nm for 8 μm IR field and λXUV = 124.6 nm for 4 μm IR field. The intensity of 

XUV radiation is IXUV = 1.6109 W/cm2 and 109 W/cm2, respectively (it should be much 

lower than the intensity of the modulating field and much higher than the intensity of its 

high-order harmonics). In both cases, a train of pulses is produced at the exit of the 
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medium. It is worth noting that we regard the parameter values as suitable for the pulse 

formation if the peak intensity of spikes in between the pulses does not exceed half peak 

intensity of the pulses. Certainly, the "suitability" criterion can be defined in different ways 

depending on the application of the pulses which one keeps in mind. In the case of 8 μm 

IR field, Figure 19, the duration of pulses equals τpulse=2 fs, the repetition period is 

T=13.3 fs, while for 4 μm IR field, Figure 20, the pulse duration and repetition period are 

τpulse=1.1 fs (which corresponds to 2.6 cycles of the carrier) and T=6.7 fs, respectively. 

Accordingly, the ab initio calculation results show the possibility of producing nearly 1 fs 

few-cycle pulses via the linear Stark effect in atomic hydrogen (reducing the ultimate 

pulse duration by a factor of more than two compared to the results of [38]) using IR fields 

with wavelength ≥ 4 μm. It is noteworthy that at the cost of reducing the ratio of pulse 

repetition period to the pulse duration, one is able to use a shorter wavelength IR field of 

intensity IIR ≤ 1013 W/cm2, corresponding to (1) 2.4P  , for the pulse formation. 

Experimentally, such an IR field can be produced by an OPCPA laser system [110], while 

the resonant XUV radiation can be generated via nonlinear up-conversion of a visible laser 

field [132,133]. Further reduction of the pulse duration can be achieved via the linear Stark 

effect in hydrogen-like ions [38,41]. As follows from similarity between the hydrogen-

like ions, using the ions with nucleus charge eZ , reducing the wavelengths of both the 

XUV radiation and the IR field by a factor of 
2Z , and increasing the intensity of the IR 

field by a factor of 
6Z  with respect to the case of atomic hydrogen will result in the 

formation of pulses with 
2Z  times shorter duration and repetition period. In particular, in 
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the case of Li2+ ions, 3Z  , exposed to the XUV radiation with wavelength 

λXUV = 13.84 nm and the IR field with wavelength λIR = 440 nm and intensity 

IIR = 7.31015 W/cm2, a train of pulses will be produced with the same shape as in Figure 

20(a) but with the pulse duration τpulse=120 as and repetition period T=730 as. 

With decreasing wavelength and increasing intensity of the IR field, the results of 

ab initio calculations for atomic hydrogen increasingly deviate from the predictions of the 

simplified analytical theory (V.13), see Figure 18, Figure 19 and Figure 20. However, 

these deviations are basically reproduced by the generalized analytical solution (V.11). 

Thus, they can be attributed to (i) ionization broadening of the resonant transition lines, as 

well as (ii) sub-laser-cycle oscillations of both the quadratic Stark shift of the excited 

energy levels and ionization rates from them. The generalized analytics shows that in the 

cases of 8 μm and 4 μm IR fields, the distortions of the pulse shape predominantly 

originate from the time-independent part of the excited-state ionization rate, causing 

broadening of the resonant transition lines and violation of the inequality tr   . In the 

case of shorter wavelength, λIR = 2 μm, and, respectively, higher intensity, 

IIR = 41013 W/cm2, of the IR field, which is addressed in Figure 21 (the corresponding 

wavelength of the resonant XUV radiation is λXUV = 133.4 nm; the XUV intensity is 

chosen to be IXUV = 4109 W/cm2), sub-laser-cycle oscillations of ionization rate become 

quite important. As shown in [40], rapid quasi-static ionization, which depopulates the 

resonant excited state within each half-cycle of the IR field, itself leads to the 

transformation of XUV radiation into few-cycle pulses due to the periodic switching of its 

resonant interaction with atoms on and off twice within the IR field cycle. The intensity 
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of the IR field assumed in Figure 21 is not yet enough for such an ionization switching to 

occur. However, the peak excited-state ionization rate already exceeds the amplitude of 

the linear Stark effect, so that the simplified analytical solution (V.13) is not yet applicable, 

and the two mechanisms of pulse formation compete with each other, leading to beatings 

in the time dependence of the output XUV intensity, see Figure 21 (a). At the same time, 

the generalized analytical solution (V.11), (V.12) remains valid in this case, being in a 

qualitative agreement with the results of ab initio solution both in time domain, Figure 21 

(a), and frequency domain, Figure 21 (b). 

In summary, the ab initio calculations show that intensities of the IR field suitable 

for the ultrashort / few-cycle pulse formation via the linear Stark effect are limited by the 

values at which atomic ionization from the resonant excited state becomes significant. 

Further increase of intensity of the IR field leads to the dominating effect of the excited-

state ionization on the resonant atomic response and provides the conditions for the few-

cycle pulse formation due to the ionization-switching mechanism [40]. As was previously 

shown, the ionization switching can be implemented in arbitrary atomic gas. In the 

following section, we consider this regime of pulse formation in a helium, which is more 

convenient for an experimental implementation compared to the atomic hydrogen. 

V.3 Attosecond pulse formation via excited-state ionization in helium 

In the case of helium, we use the unperturbed atomic Hamiltonian from [94], which 

provides a relatively good description of the lowest excited states of He in the single-

active-electron approximation. 
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The incident XUV radiation is tuned in resonance with the unperturbed atomic 

transition 1s21s2p. As shown in [40], this choice of frequency of the XUV radiation is 

optimal for attosecond pulse formation via ionization switching of its resonant interaction 

with the atoms: the interaction is switched on in the vicinity of zero-crossings of the IR 

field strength, when the atomic transition is nearly unperturbed, and switched off at the 

rest of time, when the transition line is strongly broadened due to rapid excited-state 

ionization. Similarly to the case of hydrogen, in order to analyze the results of ab initio 

calculations, we derive the generalized analytical theory taking into account space-time 

dependencies of both the Stark effect and excited-state ionization. However, in the case of 

helium, it is considerably simpler: since the energy level 1s2p is nondegenerate, the 

resonant atomic response is correctly described within the two-level approximation, in 

which the lower and upper energy levels correspond to the states |1=1s2 and |2=1s2p, 

respectively. In such a case, the slowly-varying amplitude of the atomic polarization is 

given by 

21( ) 2 ( )trP Nd a   (V.14) 

and the amplitude of the atomic coherence satisfies the equation 

  21 0
21 0 21 21( ) ( )

2

trda d E
i a i

d
    


    . (V.15) 

Since both |1 and |2 states possess a central symmetry, the simplest 

approximation for the time dependencies of the instantaneous frequency, 21( )  , and 

decoherence rate, 21( )  , of the resonant transition is harmonic: 
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(2)

21( ) cos(2 ),tr         (V.16a) 

(2)

21( ) cos(2 ),tr         (V.16b) 

where 0 (2)

21tr      and 
0 (2)

21tr     . Similarly to the case of atomic hydrogen, for 

each combination of intensity and wavelength of the IR field, the values 0

21  and 
(2)

  are 

found via fitting to the results of the auxiliary TDSE calculation for the time dependence 

of the probability for an atom, which was initially excited into the state |2 and exposed to 

the IR field, to remain nonionized. The fitting gives 0

21 0   in all the cases. The amplitude 

of the quadratic Stark effect, (2)

 , is chosen to provide the best agreement between the time 

dependencies of the output XUV intensity calculated analytically and numerically. The 

obtained values of (2)

  are comparable to the values of 
(2)

  and are much smaller than 

the those predicted by the perturbation theory, similarly to what has been obtained in the 

previous studies of Stark effect in strong fields [134,135]. 

The steady-state solution of Eqs. (V.7), (V.14)-(V.16) has the form 
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 (V.17) 

where (2) (2) 2P     and 
(2) (2) 2P    . 

The Fourier decomposition of (V.17) is 
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(V.18) 

Along with the generalized analytical solution (V.17), (V.18), the results of TDSE 

calculations for helium are compared to the previously derived solution [40], which 

neglects the Stark effect by assuming 21( ) tr    and assumes a stepwise temporal 

change of the excited-state ionization rate:  

min zero

21

max zero

, 0 ,
( )

, ,

t

t

 
 

  

  
 

   
21 21( ) ( ).      

 (V.19) 

The decoherence rate (V.19) possesses a half-IR-field-cycle periodicity, taking the 

minimum value, min , near a zero-crossing of the IR field at zero 2t    (which 

corresponds to  0 zero 2t    in Eq. (V.2)) and the maximum value, max , at the rest 

of time. In order to find the values min , max , and zerot  for each combination of intensity 

and wavelength of the IR field, we perform the following steps: first, we find the ratio 

max min   using the nonadiabatic tunneling ionization rate [136] and calculate the time-

averaged decoherence rate 
min zero max zeroav t t


  



   
        

. Then, we use the 

exponential function  exp 2 av   for fitting to the results of auxiliary TDSE calculation 

for the time dependence of the probability for an atom in the state |2 to remain nonionized 

under the action of the IR field. These steps allow us to represent min  and max  as 
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min min zero( )t    and max max zero( )t   , respectively. Finally, we choose zerot to 

provide best agreement between the analytical and numerical results for the time 

dependence of the output XUV intensity. 

In such an approximation, the slowly-varying amplitude of the resonantly scattered 

XUV radiation takes the form 

(1)

zero

(2)

zero
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(V.20) 

where 
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(V.21) 

The coefficients 
1 2,C C , and 

1 2,D D , in their turn, have the form 
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An analytical expression for the Fourier transform of the solution (V.20)-(V.23) 

for the resonantly scattered radiation is given in [40]. 

In the regime of rapid excited-state ionization, which depopulates the resonant 

excited atomic state twice per IR-field cycle, the generated XUV sidebands are in 

antiphase with the incident XUV radiation and in phase with each other, which 

corresponds to confinement of the resonant absorption of the XUV radiation within 

extremely short time intervals near zero-crossings of the IR field [40]. In such a case, the 

resonantly scattered XUV radiation (V.17), or (V.20)-(V.23), itself represents a train of 

few-cycle pulses. Therefore, the generation of attosecond pulses at the output of the 

medium can be achieved via suppression of the central spectral component of XUV 

radiation (at the frequency of the incident field), for example, via its resonant absorption 

in an additional layer of helium, which is not modulated by the IR field. 
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Figure 22. (a) Time dependence of intensity of XUV radiation at the exit of an 

optically thin medium of helium irradiated by the IR field with intensity 

IIR = 1.51014 W/cm2 and wavelength λIR = 4 μm, and the XUV radiation with intensity 

IXUV = 1011 W/cm2 and wavelength λXUV = 58.4 nm. The incident spectral component of 

XUV radiation is suppressed. The dashed red curve and the solid green curve correspond 

to the harmonical and step-like analytical solutions (V.17) and (V.20)-(V.23), 

respectively. The dimensionless parameters in analytical calculations are (2) 15P  , 

(2) 11.5P  , min 0.056   , max 2.7   , and zero 0.2t   . The rapidly oscillating 

blue curve is the numerical solution of the TDSE for the squared value of the XUV field 

strength, 2

XUVE . (b) Fourier transform of the output XUV radiation corresponding to the 

time dependence in (a). Red squares and blue circles are the amplitudes and phases of the 

spectral components calculated analytically via the harmonical analytical solution (V.18). 

The corresponding results of step-like analytical solution (V.20)-(V.23) are plotted by 

black asterisks and green filled circles. The dashed lavender curve and cyan crosses show 

the ab initio solution of the TDSE for the amplitudes and phases, respectively, of the 

spectral components at the combinational frequencies, 0 n    , 0, 1, 2,...n     The 

upper frequency limit corresponds to the ionization potential of helium.

The results provided by both analytical solutions (V.17), (V.18) and (V.20)-(V.23) 

are compared in Figure 22, Figure 23, Figure 24, Figure 25 and Figure 26 to the ab initio 

TDSE calculations for the helium. Timing of the analytically calculated envelopes of the 

output XUV radiation is fitted to the numerical solutions within a few percent of the laser 

cycle. Similarly to the case of atomic hydrogen, this time shifting originates from inertia 

of atomic response to the IR field: the ionized electron continues participate in the intra-
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atomic processes while its wavefunction overlaps with the atomic ground state. The TDSE 

calculations presented in this section imply the IR field in the form 

( ) ( )sin( )IR CE E    , with 2( ) sin ( 40)CE     for 0 20     and ( ) 1CE    for 

20 90      . The XUV radiation has the form 

 0 0( ) ( )sin ( )XUV XUVE E      , where 0 30   , ( ) 0XUVE    for 0 30    , 

  2

0( ) sin 20XUVE      for 30 40      , ( ) 1XUVE    for 

40 80      , and   2( ) cos 80 20XUVE        for 80 90      . 

The wavelength and peak intensity of the incident XUV radiation are λXUV = 58.4 nm and 

IXUV = 1011 W/cm2, respectively, for all the plots. 

Figure 23. (a) Same as Figure 22 (a), but for IR field with wavelength λIR = 2 μm. 

The dimensionless parameters in analytical solutions are (2) 4.0P  , (2) 4.6P  , 

min 0.14   , max 1.5   , and zero 0.25t   . (b) Fourier transform of the output 

XUV radiation corresponding to the time dependence in (a). Designations are the same as 

in Figure 22 (b).
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Figure 24. (a) Same as Figure 22 (a), but for IR field with wavelength λIR = 1 μm. 

The dimensionless parameters in analytical solutions are (2) 1.0P  , (2) 1.2P  , 

min 0.22   , max 0.88   , and zero 0.4t   . (b) Fourier transform of the output 

XUV radiation corresponding to the time dependence in (a). Designations are the same as 

in Figure 22 (b).

Figure 25. (a) Same as Figure 22 (a), but for IR field with intensity 

IIR = 41014 W/cm2. The dimensionless parameters in analytical solutions are (2) 25P  , 

(2) 20.7P  , min 0.24   , max 6.2   , and zero 0.16t   . (b) Fourier transform of 

the output XUV radiation corresponding to the time dependence in (a). Designations are 

the same as in Figure 22 (b). (i) Cyan crosses and (ii) dark blue pluses show the results of 

TDSE solution for the phases of spectral components at (i) the combinational frequencies, 

0 n    , 0, 1, 2,...n    , and (ii) the high-order harmonics of the IR field, 

(2 1)k    , 1,2,...k  , respectively.
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Figure 26. (a) Same as Figure 22 (a), but for IR field with intensity 

IIR = 81014 W/cm2. The dimensionless parameters in analytical solutions are (2) 50P  , 

(2) 51P  , min 0.66   , max 11.2   , and zero 0.1t    . (b) Fourier transform of 

the output XUV radiation corresponding to the time dependence in (a). Designations are 

the same as in Figure 25 (b). 

Figure 22 represents the case of helium atoms simultaneously irradiated by the 

resonant XUV radiation and the IR field with wavelength λIR = 4 μm and intensity 

IIR = 1.51014 W/cm2. After suppression of the incident spectral component, the output 

XUV radiation corresponds to a train of pulses with duration τpulse=600 as and repetition 

period T=6.7 fs, see Figure 22 (a). Both analytical solutions (V.17) and (V.20)-(V.23) 

correctly describe the shape of the main pulse. However, the generalized analytics (V.17) 

better reproduces the pedestal. This is predominantly due to the fact that, for the assumed 

strength of the IR field, ionization from the resonant excited state is due to suppression of 

the atomic potential barrier rather than tunneling through it. In such a case, the harmonic 

approximation (V.16b) for the time dependence of the ionization rate is more suitable than 

the step-function model (V.19), which better works in the tunneling regime [137]. It is 

worth noting that accounting for the quadratic Stark effect in the analytical solution 

(V.17), (V.18) for the resonantly scattered XUV radiation in the presence of a rapidly 

ionizing IR field, as applied in the present Section, is not as critical as accounting for time-
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dependent excited-state ionization in Section V.2. In the former case, there is only a slight 

improvement of the agreement with the TDSE calculations. Meanwhile, according to the 

ab initio calculations, the intensity of the IR field required for the pulse formation due to 

ionization switching of the resonant interaction is one order of magnitude higher than that 

estimated from the tunneling formula [40]. This follows from the fact that the tunneling 

models overestimate the ionization rate in the barrier-suppression regime [137,138]. As 

seen in Figure 22 (b), which plots the Fourier transform of the output XUV radiation, for 

the chosen parameters of the IR field, the generalized analytical solution (V.18) provides 

a good agreement with the numerical results both in time and frequency domain 

representations. 

Let us further examine the possibilities to reduce the pulse duration via reducing 

the wavelength of the IR field (leading to shrinking of the overall time scale) or via 

increasing the intensity of the IR field (leading to the speed-up of the excited-state 

ionization). Figure 23 and Figure 24 represent the case of the helium atoms irradiated by 

the IR field with the same intensity as in Figure 22, IIR = 1.51014 W/cm2, but with shorter 

wavelengths. The atoms are simultaneously exposed to the resonant XUV radiation. 

Figure 23 corresponds to the IR field with wavelength λIR = 2 μm. In this case, the output 

XUV radiation has a form of a pulse train with pulse duration τpulse=500 as and repetition 

period T=3.3 fs. As seen from the comparison of Figure 23 and Figure 22, the twofold 

reduction of the wavelength of the IR field expectedly leads to a proportional reduction of 

the pulse repetition period. However, the duration of pulses is only slightly reduced. This 

is due to the fact that the pulse duration is determined by the ionization-limited lifetime of 
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the resonant excited state |2, which approximately equals zerot  and is nearly the same 

for 2 μm and 4 μm IR fields of the same intensity. In Figure 24 we show the time 

dependence of the intensity and the spectrum of the output XUV radiation for the case of 

helium irradiated by the resonant XUV field and the IR field with wavelength λIR = 1 μm. 

The resonant component of the output XUV radiation is suppressed. For such a short 

wavelength of the IR field, the pulse formation does not occur, since the intensity of the 

IR field is not high enough to provide complete atomic ionization from the resonant 

excited state during half-cycle of the IR field (which is four times shorter compared to the 

half-cycle of the 4 μm IR field assumed in Figure 22). Correspondingly, ionization never 

switches off the resonant interaction between the XUV field and the atoms, and the 

necessary condition for pulse formation [40] is not met. As follows from Figure 23 and 

Figure 24, for all the considered wavelengths of the IR field, the analytical solutions 

(V.17), (V.18) and (V.20)-(V.23) are in a rather good agreement with the results of TDSE 

calculations. This is due to a quasistatic nature of excited-state ionization in the barrier-

suppression regime [137]. However, the generalized solution (V.17), (V.18) better 

reproduces the results of ab initio calculations due to a proper description of time 

dependence of the excited-state ionization rate in the barrier-suppression regime and 

accounting for the sub-laser-cycle quadratic Stark effect. 

Figure 25 and Figure 26 show the results of the study aimed to examine the 

possibilities to reduce the pulse duration via increasing the intensity of the IR field. The 

wavelength of the IR field is fixed to λIR = 4 μm. Figure 25 corresponds to the laser 

intensity IIR = 41014 W/cm2. As seen from the comparison of this figure with Figure 22, 
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the increase of the IR field intensity leads to a slight reduction of the pulse duration, from 

τpulse=600 as to τpulse=550 as, and suppression of the pulse pedestal. The reason of such a 

slow decrease of the pulse duration with increasing laser field intensity is that the duration 

of pulses is predominantly determined by the length of the time interval near zero-crossing 

of the IR field during which the ionization rate is negligible and the resonant interaction 

occurs rather than by the peak ionization rate. With increasing intensity of the IR field, 

this time interval is shortened quite slowly, therefore, the dependence of the pulse duration 

on the laser intensity is weak. In Figure 26 we show the time dependence of intensity and 

the spectrum of the output XUV radiation after suppression of its resonant component for 

the case of the IR field with wavelength λIR = 4 μm and intensity IIR = 81014 W/cm2. As 

follows from Figure 26 (a), the duration of pulses produced from the resonant radiation is 

reduced to τpulse=400 as. However, along with the pulses of resonantly scattered radiation, 

the other spikes appear due to HHG of the modulating IR field. Indeed, for the parameters 

of the XUV and IR fields related to this case, there are two distinct groups of spectral 

components of comparable amplitudes, see Figure 26 (b). The first group corresponds to 

the combinational frequencies of the XUV and IR fields, 0 2n    , 1, 2,n    , 

while the second group is the high-order harmonics of the IR field, (2 1)k    , 

1, 2,k     Unless the depletion of the ground state is considerable, the HHG yield is 

proportional to the ground-state ionization rate and, thus, grows exponentially with 

increasing IR field strength. Even a small increase in laser intensity beyond the above-

mentioned value will lead to domination of the high-harmonic signal over the resonantly 

scattered radiation. Thus, for the intensities of the incident XUV radiation discussed here, 
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the ultimate intensity of the IR field suitable for few-cycle pulse formation from XUV 

radiation via ionization switching of its resonant interaction with atoms is limited to the 

value at which ionization from the ground atomic state, leading to HHG of the IR field, 

becomes significant. At the same time, as follows from the results of calculations based 

on few-level and quasistatic approximations, the ionization-switching mechanism works 

even if the intensity of the incident XUV radiation reaches quarter intensity of the 

modulating IR field [39]. In such a case, HHG via atomic ionization from the ground state 

does not hamper sub-fs pulse formation from XUV radiation due to the ionization 

switching mechanism. Instead, ultimate capabilities for the pulse formation are limited by 

depletion of the atomic ground state through (i) direct ionization by the IR field and (ii) 

resonant excitation by the XUV radiation followed by excited-state ionization by the IR 

field. 

In summary, based on the ab initio solution of the TDSE, we have shown the 

possibility to produce trains of ~500 as pulses from the XUV radiation with wavelength 

58.4 nm via ionization switching of its resonant interaction with the helium atoms dressed 

by the IR field with wavelength 2-4 μm and intensity 1.5-41014 W/cm2. Experimentally, 

the IR field with these parameters can be generated by a parametric laser system [110], 

while the resonant XUV radiation can be produced, for example, via the resonantly 

enhanced HHG of Ti:Sa laser field in InP plasma plume [97,127]. As discussed in [37,40], 

few-cycle pulse formation via the ionization-switching mechanism can be implemented in 

arbitrary atomic gas. In particular, TDSE calculations show the possibility to produce 

pulses similar to those plotted in Figure 22, Figure 23, Figure 24, Figure 25 and Figure 26 
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from XUV radiation with wavelength 121.6 nm in atomic hydrogen dressed by the IR field 

with wavelength 4 μm and intensity of the order of 1014 W/cm2. The pulses of shorter 

duration can be produced using ions with higher ionization potential from the ground state. 

It is worth noting that few-cycle pulses similar to those discussed above can be produced 

via ionization-switching mechanism in media with lower ionization potential also. In such 

a case, the carrier frequency of the pulses can be considerably lower, which would make 

them especially valuable for non-ionizing steering and probing transient physical, 

chemical, and biological intra-atomic and intra-molecular processes in various media. 

V.4 Conclusion 

In the present chapter, we have studied ultimate capabilities for few-cycle pulse 

formation from XUV radiation via the resonant interaction with IR-field-dressed atoms. 

This study was carried out on the basis of full time-dependent Schrödinger equation. 

Taking into account all the multiphoton processes in the considered systems in the single-

active-electron approximation, we have confirmed the possibilities for few-femtosecond 

pulse formation via the linear Stark effect in atomic hydrogen, as well as attosecond pulse 

formation via quasistatic excited-state ionization in helium. We have found the ultimate 

limitations on the parameters (the minimum wavelength and the maximum intensity) of 

the IR field suitable for the few-cycle pulse formation, as well as characteristics of the 

produced pulses. Particularly, in the case of XUV pulse formation via the linear Stark 

effect in atomic hydrogen, the output pulses can be as short as 1 fs, which is two times 

shorter than predicted by the previous calculations based on the three-level approximation 

[38]; the laser intensity can be up to 1013 W/cm2, while the laser wavelength can be as 
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short as 4 μm. The ionization switching of the resonant interaction in helium requires the 

laser intensity up to 41014 W/cm2, whereas the laser wavelength can be as short as 2 μm; 

the duration of output pulses is ~ 500 as. 

In order to analyze the results of ab initio calculations, we derived the generalized 

analytical solution, which takes into account the interplay between sub-IR-field-cycle 

variations of position and width of the resonant atomic energy levels due to the Stark effect 

and excited-state ionization, respectively. The derived analytical solution is in a good 

agreement with the results of TDSE calculations both in the case of atomic hydrogen in a 

relatively weak IR field and in the case of helium in a strong IR field. Thus, such a solution 

can be used for the analysis of the various resonant phenomena in a system of IR-field-

dressed atoms. Based on a comparison of the numerical and analytical solutions, we 

revealed the limitations of the considered method for few-cycle pulse formation. In 

particular, the possibility of shortening the pulses produced via the linear Stark effect in 

atomic hydrogen by increasing the intensity of the IR field is limited by the growing role 

of exited-state ionization, which leads to a misalignment of phases of the generated 

sidebands. The ultimate intensity of the IR field suitable for attosecond pulse formation 

via rapid quasistatic ionization from the resonant excited state of helium is limited to a 

value at which atomic ionization from the ground state becomes significant, entailing 

HHG and blurring the produced pulses by the high-harmonic signal. To overcome both 

these limitations and produce shorter pulses, we proposed the use of the medium of 

hydrogen-like or helium-like ions with higher ionization potentials from both the ground 

and the excited states. We also pointed out the possibility to produce few-cycle pulses with 
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lower carrier frequency, in a close proximity to resonances of various atomic and 

molecular systems, using media with lower ionization potential. The chapter contains 

accurate estimation of wavelengths and intensities of XUV and IR fields suitable for 

experimental implementation of the method. The proposed method provides a unique tool 

for nonionizing steering of electronic processes inside atoms, molecules, and solids at the 

few-femtosecond and attosecond timescales, thus extending the capabilities of attosecond 

science. Furthermore, the method is very promising for transformation of the picosecond 

pulses produced by the x-ray plasma lasers into sub-femtosecond pulses, which could 

widely extend the applications of such lasers for element selective imaging of the fast 

dynamical processes in biochemistry and material sciences. 
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CHAPTER VI 

COHERENT FORWARD SCATTERING OF GAMMA-RAY AND XUV 

RADIATION IN THE MEDIUM WITH THE MODULATED QUASI-

RESONANT TRANSITION6 

VI.1 Introduction

Propagation of a weak electromagnetic field in a quasi-resonant two-level medium 

experiencing piston-like vibrations has been widely studied both theoretically and 

experimentally in connection with the problem of coherent forward scattering of γ-

radiation in a vibrating nuclear quasi-resonant absorber (see [139-143] and references 

therein). Many interesting effects have been experimentally demonstrated, including an 

observation of vibrational Stokes and anti-Stokes sidebands in the transmitted radiation 

[139,141], demonstration of strongly suppressed absorption of quasi-monochromatic 

incoming γ-radiation [141], demonstration of ultra-short pulses formation and of coherent 

control of the single γ-photon waveforms [142,143]. The possibility of acoustically 

induced transparency, namely, absorptionless propagation of two- or multi-component 

radiation with a specific ratio of their complex amplitudes, determined by the amplitude 

and phase of vibration, has been theoretically predicted [144]. The theoretical studies of 

the above effects were based on analytical and numerical solutions of the Maxwell-Bloch 

equations for the quasi-monochromatic γ-radiation propagating in a quasi-resonant two-

6 Reprinted with permission from “Coherent forward scattering of gamma-ray and XUV radiation in the 

medium with the modulated quasi-resonant transition” by T.R. Akhmedzhanov, V.A. Antonov and O. 

Kocharovskaya, 2016, J. Phys. B: At. Mol. Opt. Phys., vol. 49, pp. 205602, Copyright [2016] by IOP 

Publishing. 
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level medium experiencing coherent harmonic vibrations under the condition that the 

absorber’s thickness was much smaller than the acoustic wavelength. 

In this chapter we establish a direct physical and mathematical analogy between 

these effects occurring in coherent forward scattering of γ-radiation in a vibrating nuclear 

absorber and similar effects taking place within the propagation of a weak XUV field 

through a quasi-resonant absorbing atomic medium in the presence of a moderately strong 

IR field. The experimentally demonstrated effects include modulation of both ionization 

yield [22,34,35] and absorption of the individual spectral components of XUV field as a 

function of the IR field delay [24,26,36], as well as suppression or enhancement of some 

spectral components of the incoming radiation [27,33]. The IR field in these experiments 

was not strong enough to ionize atoms from the ground state. However, it significantly 

perturbed atoms in the excited state allowing to control XUV absorption spectrum 

[26,145-148], and ionization yield from the resonantly populated excited state 

[35,36,149]. The XUV field was produced from the same IR field via high harmonic 

generation (HHG) in a different gas jet and typically contained several high order odd 

harmonics of the IR field below ionization potential, one of which was close to the 

resonance between the ground and some excited atomic states. The theoretically predicted 

(but not yet demonstrated) effects include generation of IR Stokes and anti-Stokes 

sidebands in the transmitted radiation and formation of extremely short pulses, as well as 

XUV transparency, namely, absorptionless propagation of two-component XUV field 

(with a specific ratio of component amplitudes determined by the amplitude of the IR 

field) through the quasi-resonant absorbing medium [22]. The theoretical studies were 
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mainly based on numerical simulations of the time-dependent Schrodinger equation 

(TDSE). The Floquet approach [88] provided an important insight into experimentally 

observed modulation effects [24,35,123] interpreting them as a result of interference of 

the resonant excitation paths, originating from the interaction of different spectral 

components of XUV radiation with the corresponding Fourier components of the same 

Floquet state. 

In this chapter we show that both processes, under certain conditions, are described 

by the same set of Maxwell-Bloch equations for a two-level medium with modulated 

parameters of the resonant transition and find a rather general analytical solution of these 

equations, describing transformation of the electromagnetic field in such a modulated 

medium. It leads to a conclusion that the effects predicted and/or demonstrated in one of 

these physical systems can also be realized in another one. In particular, we show that 

acoustically induced transparency for γ-rays [144] and IR induced transparency for XUV 

field are two different manifestations of the same general phenomenon of modulation 

induced transparency (MIT), i.e. transparency caused by modulating the parameters of the 

resonant transition. 

The outline of the chapter is as follows. In Sec. VI.2 we derive an analytical 

solution for a high-frequency (HF) quasi-resonant field propagating through an ensemble 

of two-level atoms, whose transition frequency and/or decoherence rate are periodically 

modulated in space and time. Modulation of the parameters of the resonant transition leads 

to the inelastic Raman type (Stokes and anti-Stokes) scattering of an incident field. In the 

case of two- or multi-component incident radiation an elastically scattered resonant 
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component of an incident field and the resonant contributions of the inelastically scattered 

components of an incident field interfere either constructively or destructively depending 

on the difference between a relative phase of the spectral components and the modulation 

phase. In general, it leads to enhancement/suppression of some incident spectral 

components and appearance of new spectral components at the exit of the medium, as well 

as variation of the total output intensity as a function of the modulation phase. With a 

proper phase relation and optimal ratio between the amplitudes of the incident spectral 

components (dependent on the modulation amplitude) a complete destructive interference 

is reached resulting in the modulation induced transparency (MIT), i.e., elimination of the 

medium’s effect on propagation of quasi-resonant radiation. We show that under the phase 

matching condition the problem of interaction of the incident HF radiation with the 

modulated resonant transition can be reduced to the problem of interaction of some 

effective field with the non-modulated transition. In these terms, MIT appears when the 

resonant component of the (multi-frequency) incident effective field equals zero. 

In Sec. VI.3 we consider the problem of coherent forward γ-ray scattering by the 

vibrating nuclear absorber and show that it is described by the same set of equations with 

modulation of the transition frequency, caused by the Doppler effect. The change of 

variables in this case corresponds to the change of reference frame from the laboratory 

one to the co-moving with the nuclei. We show how the full MIT could be achieved both 

in the case of quasi-monochromatic and bichromatic incident γ-ray radiation and discuss 

the experimental demonstration of partial MIT in the first case [141]. 
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In Secs. VI.4 and VI.5 we consider atoms with a manifold of N and, as an example, 

of two non-degenerate excited energy levels, one of which is simultaneously coupled to 

the ground state by quasi-resonant XUV field and to the other excited states by the IR 

field. Using the Floquet approach we find that, under certain conditions, this rather 

complicated problem can also be reduced to the same problem of quasi-resonant XUV 

field interaction with the effective two-level atoms with modulated parameters of the 

resonant transition. In Section VI.6, we show that a very simple two-level model with 

modulated parameters of the resonant transition provides a rather good description of the 

results of the recent experiment [22], which was analyzed previously by a numerical 

simulation of TDSE. We also show that lowering the frequency of the IR field is favorable 

for MIT, and suggest possible experiments for demonstration of nearly perfect 

transparency. Finally, the comparison of MIT for the XUV field with other types of field 

induced transparency (transparency caused by Autler-Townes splitting and 

electromagnetically induced transparency (EIT)) is given and foreseen applications are 

discussed. 

VI.2 Transformation of electromagnetic field during its propagation through two-

level medium with modulated parameters of the resonant transition 

Let us consider a linearly polarized quasi-monochromatic high-frequency (HF) 

radiation, propagating along x-axis in the quasi-resonant two-level medium, 

  0

1
( , ) ( , )exp i c.c.

2
E x t z E x t t x c    , (VI.1) 
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where 0z  is the unit vector directed along the polarization of the field, ( , )E x t  is a slowly 

varying complex amplitude of the field, E t  ≪ E , E x  ≪ c E ,   is its carrier 

frequency, c is the speed of light in vacuum, and c.c.  stands for complex conjugation). Let 

the transition frequency 21  and the coherence decay rate 21  depend on space coordinate, 

x , and time, t , as in the running waves (see Figure 27): 

   

   

21 21 21

21 21 21

, / ,

, / .

M

M

x t t x V

x t t x V

  

  

    


   

 (VI.2) 

The wave of modulation propagates along x-axis; MV is the phase velocity of 

modulation; 21 , 21 , and 21 , 21  are the constant and alternating components of the 

transition frequency and decoherence rate, respectively,    21 21 0d d     
 

 

       

, 21 21 0
 

 

 
 

 
. A variable / Mt x V    is the local time in the reference frame, co-

moving along with the wave of modulation. 
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Figure 27. The bold black horizontal line, as well as the oscillating red line of 

variable thickness schematically show the instantaneous position and width of the energy 

levels, corresponding accordingly to the ground state, 1 , and the excited state, 2 , of an 

atom. The excited atomic state is selected and populated by the XUV radiation with 

frequency  . Both the instantaneous energy and linewidth of the level 2  are 

periodically modulated in time and space according to Eq. (VI.2). 

An excitation of two-level atoms by the XUV field is described by the density-

matrix equation: 

 21
21 21 21 12 21

i
i( ( ) ) ( )

2
n d E

t


     


   


. (VI.3) 

It implies the rotating-wave approximation (RWA), assuming that the radiation field in 

Eq. (VI.1) is quasi-resonant to the atomic transition, 21  ≪  ; 21  is the slowly-

varying amplitude of the atomic coherence   21 21( , ) ( , )exp ix t x t t x c     , 21 t 

≪ 21  , 21 x  ≪ 21c  ; 21d  is the electric dipole moment of the resonant transition, 

 is the Planck's constant, and 12 11 22n     is the population difference between the 

lower, |1, and the upper, |2, atomic states. We consider a relatively weak XUV radiation 

(VI.1), which does not appreciably change populations of the atomic states during 
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interaction time, so that 12n ≈ 0
12n , where 0

12n  is the unperturbed value of the population 

difference. Atomic transitions induced by the XUV field (VI.1) result in appearance of the 

resonant polarization of the medium   0

1
( , ) ( , )exp i c.c.

2
P x t z P x t t x c    , P t  ≪

P , P x  ≪ c P
 
with the slowly-varying amplitude 

12 212P Nd  , (VI.4) 

where N is the concentration of atoms and 12 21d d .The induced polarization, in its turn, 

leads to modification of the XUV field, which satisfies wave equation for the slowly-

varying amplitude: 

1 2
i

E E
P

x c t c

 
 

 
. (VI.5) 

The Eqs. (VI.2)-(VI.5) along with the boundary condition for the quasi-resonant 

field (VI.1) make up a self-consistent system describing evolution of the field as well as 

the atomic coherence in the medium. In order to distinguish the effect of the modulation 

(VI.2) on the atomic coherence and the quasi-resonant field, let us introduce the following 

variable: 

 21 21( , ) ( , )exp i ( ) ( )x t x t      , (VI.6) 

where 

21( ) ( )d


   


    and 21( ) ( )d


   


    . (VI.7) 

Plugging Eqs. (VI.6), (VI.7) into Eqs. (VI.3), (VI.5) and using the substitution 
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 ( , ) ( , )exp i ( ) ( )effE x t E x t      (VI.8) 

results in the following system of equations: 

  

  

12
21 21 21

21
21 21 21 12 21

41
1 1 i ( ) ( ) i ,

i
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2

eff eff
M eff

eff

E E Nd
V c E

x c t c

n d E
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 (VI.9) 

Let us further assume that 

   21 211 1 max ( ) ; ( )ML V c        ≪1, (VI.10) 

where L is the length of the medium. The last inequality implies that the phase difference 

between the XUV field and the wave of modulation, acquired within the medium as a 

result of difference between the phase velocities c and VM, is negligible. In particular, this 

condition can be fulfilled if the modulation is produced by an electromagnetic wave, which 

phase velocity is close to the speed of light in vacuum, MV ≈ c , or, in case MV ≪ c , if the 

length of the medium is small enough to satisfy the inequality

 21 21max ( ) ; ( ) ML V      ≪1. If the condition (VI.10) is fulfilled, Eqs. (VI.9) take 

the form 

  

12
21

21
21 21 21 12 21

41
i ,

i
i .

2

eff eff

eff

E E Nd

x c t c

n d E
t

 



   

 
 

  



    

 (VI.11) 

As seen from comparison of Eqs. (VI.11) with Eqs. (VI.3)-(VI.5), the value effE  

has a meaning of slowly-varying amplitude of an effective quasi-resonant field, while the 

value 21  has a meaning of slowly-varying amplitude of an effective coherence of the 
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unmodulated atoms. Thus, the original problem of propagation of the quasi-resonant 

radiation (VI.1) through the medium with space-time-dependent parameters (VI.2) is 

reduced to the problem of propagation of an effective field (VI.8) through the medium 

with constant parameters, which has the well-known solution [150]. Using this solution 

along with the substitution (VI.8) we obtain the analytical expressions for the electric field 

inside the medium both in terms of Fourier transform: 

 

   

 
 

2
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1
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2
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i
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(VI.12) 

and convolution of an incident field with the Green function: 

 

 

1
( , ) exp i ( ) ( )

2

( 0, )exp i ( ) ( ) ( , / )

E x t

E x t t t t t t R x t x c dt

 






    

          

. (VI.13) 

Here ( , )R x t  is the Green function of absorber of thickness z [151]: 

    21 21i
1( , ) ( ) ( ) 2

t b
R x t t e t J bt

t

  


 
   , (VI.14) 

where ( )t  is Heaviside step function, 1( )J x  is Bessel function of the first kind of the 

first order and 

2
12 212 Nn d

b x
c


 . 
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This is worth to note that the expressions (VI.12)-( VI.14) describe a 

transformation of an arbitrary incident field in the quasi-resonant two-level medium with 

an arbitrary modulation of transition frequency and decay rate. 

Let us further assume that the modulation (VI.2) is periodic with the period 

2T   . In such a case, the function   exp i ( ) ( )    can be expanded in the Fourier 

series:  

    exp i ( ) ( ) expn
n

a in      , (VI.15) 

where n is an integer, n  , and the amplitude of the effective field takes a form 

   ( , ) , exp ieff n
n

E x t E x t a n 




  . (VI.16) 

In this case the field inside the medium, according to Eqs. (VI.12) and (VI.13), is 

a periodic function of  . In the case of the multifrequency incident field (VI.1) in a form 

of a spectral comb 

   0, exp im
m

E x t E m t     
(VI.17) 

with one of the components resonant to the atomic transition (without loss of generality 

one can choose 21  ), and with a separation between the components, equal to the 

frequency of modulation,  , the incident effective field takes the form 

( 0, ) exp( i ) exp(i )eff n m
n m

E x t E n t a m t
   

        
   
  . (VI.18) 

In such a case, the effective field contains both resonant, ,eff resE , and nonresonant, 

,eff non resE  , components with the slowly-varying amplitudes 
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,

,

( 0, ) ,

( 0, ) exp(i( ) ) .

eff res n n
n

eff non res n m n
n m

E x t E a

E x t E a m n t a

 

  
      

   



 
 (VI.19) 

If the time-averaged decoherence rate of the atomic transition is small as compared 

to the frequency of modulation, 21 ≪  , and the optical thickness of the medium is not 

too large (so that the off-resonant dispersion is negligible, namely 

2
12 122 Nn d L

c

 


≪1), 

the nonresonant part of the effective field propagates through the medium without 

modification, while the resonant part, , ( , )eff resE x t , is attenuated according to Beer’s law: 

/2
, ( , ) Bx

eff res n n
n

E x t E a e  
  
 
 , where 

2
12 12

21

4
B

Nn d

c





  is the decrement of resonant 

absorption. As a result, the effective field in the medium equals to 

    /2
, exp i( ) ( 1)Bx

eff n m n n
n m n

E x t E a m n E a e     
       

   
   . (VI.20) 

As it follows from Eq. (VI.20), in an optically dense medium ( / 2B L ≫1) for an 

arbitrary multicomponent field (VI.17), an output effective field tends to form the 

“transparent” mode, which is equal to the incident effective field minus its resonant 

component:  exp i( )eff n m n n
n m n

E E a m n E a
   

      
   

   . Going back from the 

effective field given by Eq. (VI.20) to the actual XUV field, one obtains 

   /2
( , ) exp i ( 1)exp i ( ) ( ) .Bx

n n n
n n

E x t E n E a e    
        

 
   (VI.21) 

As it is seen from Eq. (VI.21), when the following condition is fulfilled: 
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0n n
n

E a  , (VI.22) 

the field at the exit of the medium remains the same as an incident field, i.e. the quasi-

resonant XUV radiation is not modified during its propagation through the medium at all. 

This phenomenon can be called Modulation Induced Transparency (MIT), since the 

transparency is induced by the modulation of parameters of the resonant transition. As it 

follows from Eq. (VI.19), the MIT condition in Eq. (VI.22) corresponds to zero amplitude 

of the resonant component of the effective field. It has a simple physical meaning. An 

effective field propagating in the effective “unmodulated” two-level medium does not 

interact with such medium when its net component, resonant to the atomic transition, is 

zero. 

In the optically thin medium the output field is a superposition of an incident field 

and coherently forward scattered field, proportional to the resonant polarization: 

 
2

12 12
i exp i ( ) ( )m m

m

N d n
P E a  







 
    

 
 . (VI.23) 

Different spectral components of an incident field contribute to an excitation of the 

resonant polarization due inelastic (Stokes and anti-Stokes) Raman scattering processes 

caused by modulation of the parameters of the resonant transition. The MIT condition 

(VI.22) corresponds to a destructive interference of these contributions, i.e. to zero net 

resonant polarization, leading to vanishing net coherently scattered field. 

If only the transition frequency is modulated ( ( ) 0  ), the intensity of the 
thn  

harmonic in the output field in Eq. (VI.21) is equal to: 
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, (VI.24) 

while sum of intensities of all the spectral components of the output field (24) is  

 
2

2
( ) ( ) 1 exp( )

8
n n m m

n n m

c
I x I x E E a x



 
     
 
 

   . (VI.25) 

According to Eq. (VI.24) an intensity of field components during the propagation 

would be decreasing or increasing depending on the phase relations between the elastically 

and inelastically scattered spectral components. As it can be seen from Eq. (VI.25), the 

total intensity of the field averaged over the period of modulation is decreasing as it 

propagates through the medium. For an infinitely long medium, the constant component 

of the output intensity would be 
2

2
n m m

n m

E E a  . 

In the case of a monochromatic incident field,  0, mE x t E  , detuned from the 

time-averaged position of the perturbed atomic resonance by the multiple frequency of 

modulation, 21 m    , 0, 1, 2,m    , the MIT condition takes form 0ma  and is 

fully determined by the modulation parameters. It is worth to note that if ma  is not equal 

to zero, the incident field with frequency 21 m     experiences resonant absorption 

and resonant scattering (even when m  is not zero) leading to generation of combinational 

spectral components at the frequencies 21 n    , 0, 1, 2,n     which, under the 

appropriate conditions, may form trains of ultrashort pulses. 
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In the case of two- (or multi-) component incident field, according to Eq. (VI.18), 

each spectral component of the field leads to the specific effective multicomponent 

incident field (Figure 28). As a result, the origin of MIT is remarkably different, as 

compared to the case of the monochromatic incident radiation (VI.1). The MIT results 

from a destructive interference between contributions from the different spectral 

components of the incident HF radiation to the resonant component of the total effective 

field. Namely, MIT is a result of a destructive interference of the resonant components of 

the effective fields produced by each from the spectral components of the incident 

radiation, as it is illustrated by Figure 28. It critically depends on the phase relations 

between the spectral components of the incident field and the modulation phase. This is 

worth to point out that each spectral component of the multicomponent incident field 

(VI.17), in general case, will be partially absorbed and partially transformed into 

sidebands if it is send through the medium alone. However, two (or more) components 

together with specific ratio of the amplitudes and specific phases, satisfying MIT condition 

(VI.22), propagate through the modulated medium without any modification. 

In appendix A, we discuss the particular case of harmonically modulated transition 

frequency and modulation. 
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Figure 28. The amplitude spectra of constituents of the effective field (VI.18), 

corresponding to the different spectral components of the bichromatic incident quasi-

resonant radiation (VI.1). The upper panel shows the spectrum of the effective field, 

corresponding to the resonant spectral component of the incident radiation. The lower 

panel shows the spectrum of the effective field, corresponding to the spectral component 

of the incident radiation, detuned from the resonance by the frequency of modulation,  . 

The bold green curve schematically shows the resonant absorption profile. The vertical 

lines correspond to the amplitudes of spectral components of the effective field, indicated 

in the inserts. The total amplitude spectrum of the effective field is given by the sum of 

the spectral combs, shown in upper and lower panels. The MIT condition (VI.22) 

corresponds to zero amplitude of the resonant component of the total effective field. 

VI.3 Coherent forward scattering of gamma-ray radiation in the vibrating nuclear 

absorber 

In particular, the set of Eqs. (VI.3)-(VI.5) and its solution (VI.12) describe the 

process of coherent forward scattering of γ-ray radiation in the vibrating nuclear absorber. 

In this case only frequency modulation is present. It is caused by Doppler frequency shift, 

0
21 21

2
cos( )

R
t


 


    , induced by an acoustic vibration: sin( )z R t  , of a solid 

nuclear absorber along the direction of propagation of γ-radiation [142]. The typical case 

of harmonic vibrations was studied both experimentally and theoretically. Ultrasonic 

vibrations (at 10 MHz-10 GHz frequencies) allow one to achieve deep modulation of 
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frequencies of the Mössbauer γ-ray (10keV-100keV) nuclear transitions (as compared to 

the extremely narrow, 1 kHz-1 MHz, linewidths of these transitions, see [142] and 

references therein). Besides, due to the favorable combination of high nuclear density and 

narrow linewidths of the Mössbauer transitions, the condition (VI.10) can be easily 

satisfied for an optically dense medium.  

The effective field (VI.8) has an obvious physical meaning. Namely, it corresponds 

to the γ-radiation “seen” by the nuclei in the reference frame, co-moving along with the 

vibrating absorber [144]. In this reference frame the transition frequency is independent 

of time and the resonant polarization can be excited only by the resonant component of 

the electromagnetic field. Thus, the MIT condition (VI.22), which requires the resonant 

component of the effective field to be zero, corresponds to elimination of the resonant 

interaction between an incident field and the nuclei in the absorber's reference frame. Since 

frequency modulation is caused by vibration, MIT in this case can be equivalently termed 

as acoustically induced transparency [144]. 

In the case of harmonic pure frequency modulation and quasi-monochromatic 

incident field in the form: 0( , ) ( ) exp( i ( / ))E t z t E t t z c       (inherent to the radioactive 

sources used in these experiments) detuned from the time-averaged position of the 

perturbed atomic resonance by the multiple frequency of modulation, 21 m    , 

0, 1, 2,m     and under condition of equal linewidths of the source and absorber (typical 

for Mossbauer experiments) the solution (VI.12) takes a form, coinciding with the 

previously obtained in [143]:  
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. (VI.26) 

According to the above equation, the transparency condition implies: ( ) 0nJ P  . 

For 0n   it occurs when 2.40,5.52,...P   

Such values of the modulation index correspond to the absence of the scattered 

field in the laboratory frame, or to zero amplitude of a resonant incident field as “seen” by 

nuclei. It is worth to emphasize that strong suppression of the resonant absorption of 14,4 

keV γ-radiation due to vibration with a particular vibration amplitude of a stainless steel 

foil (completely opaque in the absence of the vibration) was demonstrated in [141]. It 

corresponded to experimental demonstration of the partial MIT for the quasi-

monochromatic incident field. In particular, the output field contained not only the 

resonant component, but also two Stokes and two anti-Stokes sidebands, which would not 

be present under condition of full MIT. The full MIT was not achieved because of 

variation of the vibration amplitude along the surface of the film. 

As it was already pointed out above, in the case of two-component γ-ray field and 

harmonic frequency modulation, MIT condition (A.6) corresponds to destructive 

interference between contributions of two spectral components of an incident field into 

the resonant component of the field “seen” by vibrated nuclei (or to zero resonant 

polarization in the laboratory frame). This case was studied earlier in [144]. Two-

component incident field, required for the experimental demonstration of this effect, can 

be produced using an additional combination of vibrated absorber with relatively small 
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modulation index, for example, 1.3P  , producing just three component field, and a 

resonantly tuned absorber, eliminating one of those components.  

It is hardly possible to provide a deep acoustic modulation of the atomic transitions 

in the visible or XUV spectral ranges, possessing several orders of magnitude smaller 

frequencies (corresponding to the proportionally reduced Doppler shifts) and several 

orders of magnitude larger linewidths. Besides, in the case of acoustic modulation of an 

atomic transition frequency, it is impossible to satisfy the condition (VI.10) for a typical 

optically dense medium. 

At the same time, as it was noticed in [38,40-42,144], deep modulation of both the 

frequency and the decoherence rate of a HF atomic transition, complying with the phase-

matching condition (VI.10), can be produced by a low frequency electromagnetic field, 

propagating through the medium simultaneously with the HF radiation. As it will be 

proven in the following sections, interaction of an XUV radiation, quasi-resonant to an 

atomic transition 1 2 , with atoms in the presence of a moderately strong IR field 

under certain condition, indeed, can be reduced to an interaction of the XUV field with 

the dressed two-level system with the modulated parameters of the two-level transition. 

VI.4 Multi-level atoms coupled to IR field: Floquet formalism and an effective two-

level model with modulated parameters of the resonant transition 

In the following, we analyze propagation of a linearly polarized XUV radiation, 

resonantly coupled to an atomic transition from the ground state |1 to one of N excited 

bound states, namely, the state 0 . We consider an atomic gas in the presence of a 

linearly polarized IR field, propagating in the same direction as the XUV radiation and 
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coupling the state 0  with other excited states. The XUV field is considered to be 

sufficiently weak and far detuned from any atomic transition, except the resonant one, so 

that its interaction with the nonresonant transitions is negligible. The IR field is moderately 

strong; it is not directly coupled to the XUV transition, but it couples the state 0  to 

some other excited states of an atom. We will show that under certain conditions the 

considered problem can be reduced to the problem of interaction of the XUV radiation 

with an effective quasi-resonant two-level system with sub-IR-field-cycle spatiotemporal 

modulation of its properties. This spatiotemporal modulation is caused by the IR field and 

provides conditions for realization of MIT for the XUV radiation. In this section we 

consider a general case of a rather strong or close to some atomic resonances IR field. The 

case of rather weak IR field, when perturbation theory is applicable is discussed in 

Appendix B. Using the Floquet formalism [88], we formulate the conditions under which 

an interaction of the XUV field with the quasi-resonant atomic medium in the presence of 

rather strong IR field can be reduced to an interaction of the XUV field with the effective 

two-level atoms with the modulated parameters of the two-level transition.  

Mixing of 0  with the other 1N   excited states by the IR field leads to 

appearance of N Floquet states. Due to a periodicity of the Hamiltonian describing 

interaction of an atom with the IR field, 
,

,

( ) .atom IR IRH E d c c 
 

  

 
   

 
 


,cos( ) .IR IR ME d c c 


    
 

  
 
 , the wave function of the IR-field-dressed atom 

can be represented in the Floquet basis as following: 
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1 1 exp( i ( / )) ( )
i ii M IR

i

c c           , (VI.27) 

where energy of ground state is chosen to be zero. Here i  is the quasi-energy of the ith 

Floquet state 
i

 , which periodically depends on time and constitutes the Fourier series: 

;( ) exp( i ( ))
i

i
IR M m

m

m a 




    




     , (VI.28) 

i
c  is amplitude of this Floquet state, and M  is the laser phase. The amplitudes ;

m
ia   of 

Fourier components of Floquet states (VI.28) and their quasi-energies i  are determined 

by the intensity and the frequency of the IR field and can be found analytically in terms of 

the infinite continued fractions (see, e.g. [89]). The index   enumerates excited states of 

a bare atom (an atom in the absence of the IR field), e.g., 2s, 2p, 3d states, etc. It is worth 

to note that the quasi-energies i  are defined up to an addition of multiple of IR , i.e.

;exp( i ( / )) exp( i ( )) i
i M IR IR M m

m

m a 



       




      is equivalent to 

  ;exp( i ( / )) exp( i ( )) i
i IR M IR IR M m n

m

n m a 



        





      . In accordance with 

Eq. (VI.28), each Floquet state corresponds to an energy ladder (a set of the equidistant 

energy levels) with the frequency interval between the neighboring “steps” equal to the 

frequency of an IR field. However, due to the dipole transition selection rules (the central 

symmetry of atoms), for an even m , the amplitudes ;i
ma   are not zeroes only for atomic 

states   of the same parity: depending on the choice of the quasi-energy, it could be only 

the odd parity states (such as 2p, 3p, 3f, etc.) or only the even parity states (such as 2s, 2d, 
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3s, 3d, etc.). Vice versa, for an odd m , the amplitudes ;i
ma   would be not zeros only for 

even parity states (such as 2s, 2d, 3s, 3d, etc.) /odd parity atomic states (such as 2p, 3p, 3f, 

etc.) [24]. Therefore, the neighboring “steps”, containing bare atomic states of the same 

parity, are separated by the double frequency of the IR field. 

The coefficients 
i

c  in Eqn. (VI.27) are the amplitudes of excitation of the 

corresponding Floquet states under the action of the XUV field. If the XUV field is weak, 

they can be calculated in the first order of the perturbation theory as follows [24]: 

i
exp(i ) ( ) 1 ,

i ii HFc H d


   


    1 1c  , (VI.29) 

where 
1

1
exp( i ) ( ) 1

2
HF XUVH E d



      is a Hamiltonian describing excitation of 

atom by the XUV field in rotating wave approximation (RWA) and XUV field is assumed 

to be of finite duration. 

Each “step” in a given Floquet ladder consists of a different mixture of the bare 

states (the “even” steps consist of the odd parity states, while the “odd” states consists of 

the even parity states or vice versa). However, in the considered case, when a linear 

response of the medium to the XUV field is determined by transitions to a single bare state 

0 , only a contribution of that 0  in each Floquet “step” participates in this response. 

In this case 
01 0

1
exp( i ) ( ) 1

2
HF XUVH E d     and the high frequency polarization and 

the probability of atomic excitation from the ground state (which determines the ionization 

yield in the combined IR+XUV radiation), are given by 
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      , (VI.31) 

accordingly, where 0;
0 exp( i ( ))

i

i
IR M m

m

m a


       . Combining equation for the 

resonant polarization (VI.30) with the wave equation for the XUV field envelope (VI.5), 

one can analyze the dynamics of the field during its propagation through the dressed 

medium. 

Let us consider the situation, when the XUV field is tuned into resonance with only 

one (ith) Floquet state involving a large admixture of the state 0  and Floquet states are 

separated by the frequency interval, substantially exceeding their spectral widths. In this 

case, the XUV field excites only the ith state and the slowly varying polarization is given 

by: 
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. (VI.32) 

We would like to point out that the same polarization would be excited if we 

consider propagation of the same XUV field through the two-level medium described by 

Eqs. (VI.3)-(VI.5)) with the ground state 1  and the excited state 0 with dipole moment 

    0

0 0

*
,

1 1 2 exp 2i
i

IR Mn
n

d d a n


       (and correspondingly 
0 0

*
1 1d d  ) and constant 
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transition frequency 21 i  . Thus, interaction of the XUV field with the medium of IR-

dressed atoms is equivalent to interaction of this field with two-level medium with space-

time modulated dipole moment. Generally, both phase and absolute moment of dipole 

moment are modulated: 
0 01 1d d       0

*
,

2 exp 2i
i

IR Mn
n

a n


     ( )exp i ( )A    , 

where ( )A   and ( )  are real valued functions. Equivalently, interaction of the XUV field 

with the Floquet state may be treated as interaction of the XUV field with two-level atom 

possessing modulated transition frequency    21 21i        (where 

21( ) ( )d


   


    ) and space-time dependent dipole moment amplitude are given by 

21( ) ( )d A   (but not time modulated frequency and decay rate and constant dipole 

moment). From this point of view, it is meaningful to choose the quasi-energy i  in such 

way that  21  is as small as possible, so that tuning of the XUV field carrier frequency 

close to i  corresponds to closest tuning to atomic resonance. In the case when only phase 

modulation of dipole moment is important (like in the adiabatic limit of sufficiently low 

frequency of an IR field), an interaction of XUV field with the medium of the IR-dressed 

atoms is equivalent to interaction of this field with two-level medium with space-time 

modulated transition frequency    21 21i        and constant dipole moment 21d A . 

Let us consider the incident XUV field in the form of a spectral comb with a finite 

duration of its constituents, 
2

1
( )exp( i( 2 ) ) c.c.

2
HF n IR

n

E E n        with carrier 

frequency  close to resonance with i . We assume that a characteristic duration of each 
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XUV spectral component is much larger than the IR-field-cycle, ,XUV env ≫ 1 / IR , so that 

the spectral components are well separated from each other. In this case, we find from 

Eqs. (VI.30) and (VI.31) the atomic polarization and the excitation probability are 
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 0 0
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2 2exp(i( ) ) ( )exp( i2 )
2
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n

d
P E n a d

  
      

     . (VI.34) 

In this case both the absorption of the XUV field and the atomic ionization yield 

in the combined XUV+IR field (which is proportional to the excitation probability in the 

case of resonantly enhanced ionization) are defined by an interference term 

 0
*

,
2 2exp( 2i )

i
n M n

n

E n a


  , see Eqs. (VI.33), (VI.34). Thus, such interference may be 

equivalently treated either as an interference of atomic excitation paths by the different 

spectral components of the field via the corresponding steps of the same Floquet ladder 

[35,123] or as an interference between contributions from the different spectral 

components of the incident XUV field into the resonant polarization due to elastic and 

inelastic (Raman Stokes- anti-Stokes) scattering processes caused by modulation of the 

parameters of the effective dressed transition. It critically depends on the relative phases 

of resonant polarization components, produced by the different spectral components of the 

incident XUV radiation. In its turn, those phases are determined by the phase of the IR 

field, M , which can be changed by delaying the IR field with respect to the XUV 
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radiation, M ~ IR delay  . Depending on this delay, the interference is either constructive 

or destructive resulting in modulation of the absorption and the ionization yield. With the 

proper choice of the relative amplitudes of the incident XUV spectral components, 

satisfying the condition  0
*

,
2 2exp( 2i ) 0

i
n M n

n

E n a


    one gets the total destructive 

interference, i.e. the perfect MIT. 

VI.5 The three-level atoms coupled to IR field: Floquet formalism and an effective 

two-level model with modulated parameters of the resonant transition 

In this section, we illustrate the general result of Section VI.4 with a particular 

case, when IR field couples only two excited states of the bare atom. It happens, if the IR 

field is close to resonance with the transition between these states and is not too strong. In 

this case, one can restrict the model to the three levels, namely, the ground, 1 , and the 

excited, 2  and 3 , energy levels. Without loss of generality, we assume that XUV field 

couples ground state 1  and excited state 3 . The high frequency polarization and the 

probability of atomic excitation from the ground state (which determines the ionization 

yield in the combined IR+XUV radiation) could be found in a way similar to the one 

described in the previous section. The details of the derivation are provided in Appendix 

C. 

Similar to the analysis of the previous section, if the bichromatic (or the 

multicomponent) XUV field is tuned into resonance with only one of the Floquet states, 

and the Floquet states are separated by the frequency interval, substantially exceeding their 

spectral width, then the excitation of the IR-dressed atoms by the XUV field is reduced to 
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the excitation of a single two-level system formed by the ground state and the 

corresponding dressed space-time modulated excited atomic state (see Figure 29). In this 

case both the absorption of the XUV field and the atomic ionization yield in the combined 

XUV+IR field are defined by an interference term  
*

,3
2 2exp( 2i ) i

n M n
n

E n a  , see 

Eqs. (C.6), (C.7). Total destructive interference, i.e. the perfect MIT, corresponds to

 
*

,3
2 2exp( 2i ) 0i

n M n
n

E n a   . 

 

Figure 29. Interaction of the combined quasi-resonant XUV and intense IR 

radiation with an atomic system is equivalent to interaction of solely the XUV radiation 

with the Floquet states, produced from the excited atomic states by the IR field. Coupling 

of two bare excited states by the IR field results in a formation of two multifrequency 

dressed Floquet states, each corresponding to the energy ladder, i.e. a set of equidistant 

energy levels. The steps of ladders containing the same state ( 2  or 3 ) are separated by 

the doubled photon energy of the IR field. Accordingly, an excitation of each Floquet state 

by the XUV field is equivalent to an excitation of a two-level system (involving the ground 

state 1  and the corresponding quasi-energy state) with a periodically space-time-

dependent both transition frequency and a magnitude of dipole moment. 

Let us consider a possible experimental realization of the MIT for the XUV 

radiation, resonant to the 1s2 1s2p transition of helium (with the wavelength 58.4 nm) 
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dressed by the IR field with the wavelength 2.01μmIR   and intensity 12 24 10 W/cmI   . 

Note that the intensity of the IR field is an order of magnitude larger than in the case, 

discussed in Appendix B, so that the perturbation theory is no longer applicable for 

description of its influence on the atoms. However, since (i) the IR field is very far-detuned 

from all the transitions between the resonantly populated 1s2p state and the other excited 

states of He, except for the 1s2s ↔ 1s2p transition, and (ii) the Rabi frequency of the IR 

field is substantially smaller than the frequencies of all the transitions from the 1s2p state, 

one can neglect all the atomic states, except the 1s2, 1s2s and 1s2p, when investigating the 

MIT. Choosing the XUV radiation consisting of the 33rd and 35th harmonics of the IR field 

(35th harmonic is resonant to one of the two Floquet states), one obtains the transparency 

condition 35 33/ 1.0 / 2.3E E  , which follows from the ratio of amplitudes of the adjacent 

steps 0 0, ,
0 2/ 2.3 /1.0
j j

a a
 

  of the resonant Floquet ladder. 

VI.6 Comparison with experimental results 

In this section, we discuss the recent experiment [22] devoted to the sub-laser-

cycle modulation of the atomic ionization probability by a moderately strong IR laser field, 

combined with its high-order harmonics. We show that the observed modulation of the 

ionization yield corresponds to the partial MIT and discuss the possibilities to achieve a 

complete transparency of an atomic gas for resonant XUV radiation, corresponding to 

suppression of atomic ionization by the combined IR+XUV field. In that experiment, the 

helium atoms were simultaneously irradiated by a moderately strong Ti:Sa IR laser field 

with the wavelength in the range 750-785 nm and intensity 41012 W/cm2 as well as by 
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its 11-th and 13-th harmonics with low intensity. The laser field strength was considerably 

below the threshold of atomic ionization or multiphoton excitation from the ground state, 

1s2, however, it was sufficient for ionization from every excited state of helium. The 13-

th harmonic resonantly promoted atoms from the ground state to the 1s2p excited state, 

while the frequency of the 11-th harmonic was below the frequencies of all the transitions 

from the ground state of helium. The intensity of the harmonics was insufficient for a 

multiphoton excitation. It was shown that probability of atomic ionization by the IR field, 

combined simultaneously with both the 11-th and 13-th harmonics can be appreciably 

smaller, than the probability of ionization by the laser field, combined with each harmonic 

separately. It was also shown, that the probability of atomic ionization oscillates with 

twice the laser frequency as the harmonics are delayed with respect to the oscillation of 

the IR field. Finally, it was pointed out, that a vanishing ionization yield can be achieved 

in the case of a specific delay under the specific ratio of amplitudes of the resonant and 

off-resonant harmonics [22]. These results were interpreted as a consequence of 

interference of the two multiphoton ionization paths: (i) the 13-th harmonic plus three 

photons of the laser field, and (ii) the 11-th harmonic plus five photons of the laser field. 

(Since the ionization was experimentally proven to be resonantly enhanced, the 

suppression of the ionization yield was caused by suppression of the atomic excitation to 

an intermediate 2p state and equivalently could be viewed as a result of interference of the 

two excitation paths: through absorption of the 13-th harmonic and trough absorption of 

the 11-th harmonic and two photons of the laser field.) This interpretation has a simple 

physical meaning, but it does not explain directly why the optimal conditions for 
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transparency imply tuning the 13-th harmonic to the resonance with a dressed (Floquet) 

state and satisfying Eq. (VI.22). These optimal conditions straightforwardly follow from 

the Floquet formalism [88], but the last one lacks simple physically intuitive picture. 

Viewing the observed effect as a partial MIT allows for both understanding of the optimal 

conditions for transparency and getting of its physically intuitive picture, as it is shown 

below.  

 

Figure 30. Relevant energy levels of helium, simultaneously interacting with Ti:Sa 

laser field and its 11-th and 13-th harmonics under the conditions of experiment [22]. The 

black vertical arrows symbolize energies (and wavelengths) of the harmonic photons, 

while the red oscillating curve represents the Ti:Sa-laser radiation. The horizontal lines 

correspond to position of the unperturbed atomic energy levels. 

The ratio of the intensities of the 11-th and 13-th harmonics, required to achieve 

transparency of the medium, as well as the preferable frequencies of the fundamental laser 

field and its harmonics can be calculated within different models of the atomic system 

with a different accuracy. At the laser intensity 12 24 10 W/cmIRI   , used in the experiment, 

the reasonable estimate can be obtained from the five-level model, which takes into 
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account the 1s2 and 1s2p resonant atomic states as well as the 1s2s, 1s3s and 1s3d states, 

which are strongly mixed with the resonantly populated 1s2p state by the IR field, see 

Figure 30. Following the procedure described in the previous section, we find four Floquet 

states, composed from the 1s2s, 1s2p, 1s3s and 1s3d bare atomic states coupled by the IR 

field. Since only one state of four excited states coupled by the IR field (namely, the 1s2p 

state) interacts with the XUV field, for the purpose of calculation of an atomic excitation 

each Floquet state can be replaced by the corresponding quasi-energy level periodically 

modulated in time with a double frequency of the IR field (as it was shown in the previous 

section). The time dependencies of all four energies (obtained from ( ) ) for the 

parameters of the experiment [22] are shown in Figure 31. It turns out that for the laser 

wavelength 765nm  , one of the four quasi-energy levels (which energy is shown in 

Figure 31 by the bold blue line) plays the dominant role for the atomic excitation, while 

transitions to the others quasi-energy levels are either far detuned from the resonance with 

both the 13-th and the 11-th harmonics or have a small dipole moment. For the dominant 

level, modulation of the magnitude of a dipole moment ( )A  is much weaker than 

modulation of its energy. The condition of the perfect MIT for this level is 

2 2
0 2/ 19.6 /1

p p
a a  , corresponding to the ratio of the harmonic intensities 11 13/ 380 :1I I  , 

which is reasonably close to the original result, 11 13/ 256 :1I I   [22], based on the 

numerical solution of the time-dependent Schrodinger equation. More precise results, as 

compared to the five-level model, can be obtained if all the bare excited states of He are 

taken into account in a calculation of the dressed Floquet states on the basis of the non-

Hermitian Floquet formalism [88,152,153]. The results of such a calculation are presented 
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in Figure 32. The effective potential used for calculation is taken from [138] and optimized 

to better reproduce the excited levels of helium. As it can been seen from Figure 32, at the 

ratio of intensities 11 13: 4 :1I I  used in the experiment [22] the ionization yield 

suppression is rather small (ratio of the minimum ionization yield to the maximum 

ionization yield is approximately 0.7). It is in accordance with an experimental result [22]. 

As it can be seen from Figure 32, a ratio of intensities, leading to nearly full transparency 

is 11 13: 256 :1I I  . It is the same as calculated in [22]. It is very challenging to realize 

experimentally such a high ratio of harmonics intensities and hence to achieve high 

transparency in the described experiment. However, nearly perfect MIT with comparable 

intensities of resonant and nonresonant harmonics could be easily achieved using a lower 

frequency IR field, as it was discussed in Sec. VI.5. 
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Figure 31. The local-time-dependencies of the instantaneous energies, 

corresponding to the different Floquet states, and originating from mixture of the 1s2p 

state with the 1s2s, 1s3s and 1s3d states of helium produced by the Ti:Sa laser radiation 

under the conditions of experiment [22]. The local time / Mt x V    is normalized to the 

laser period. The energies are plotted in atomic units. The bold red horizontal line shows 

the position of the resonantly populated 1s2p energy level of helium in the absence of the 

laser field. 

Finally, it is worth to emphasize that a simple effective two-level model involving 

the ground atomic state and just one dressed excited state with modulated energy allows 

to determine the optimal conditions for transparency rather well and provides their simple 

intuitive physical interpretation. In particular, it clarifies the role of an IR field as not just 

adding the IR photons to high harmonics fields and not just mixing, splitting and shifting 

excited levels, but primarily modulating the frequency of the quasi-resonant dressed 

transition. It is this modulation that results in an inelastic Raman type Stokes and anti-

Stokes scattering of the 11-th harmonic. A destructive interference between the 

contributions of the 13-th harmonic and anti-Stokes sideband of the 11-th harmonic into 

the resonant polarization, occurring under the appropriate IR field delay, leads to decrease 

and/or full elimination of an absorption. 
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Figure 32. The ionization yield of helium atoms, simultaneously irradiated by the 

Ti:Sa laser radiation and its 11-th and 13-th harmonics, versus the phase shift of the laser 

field with respect to the harmonic signal. The ionization yield is normalized to its 

maximum value. Different colors correspond to the different values of the ratio between 

intensities of the 11-th and 13-th harmonics. The calculations are performed for the 

conditions of experiment [22]. 

VI.7 Conclusion 

We found rather general analytical solution describing transformation of a weak 

HF radiation propagating through the quasi-resonant two-level medium with periodically 

modulated frequency and decoherence rate of the resonant transition. Compared to the 

case of the stationary parameters, where the transformation of the field as a result of its 

propagation is solely defined by an interference between an incident and elastically scatted 

field, the main new feature inherent to the modulated medium is an inelastic Raman 

scattering, leading to formation of Stokes and anti-Stokes sidebands at the frequencies 

multiple to the modulation frequency. As a result, the additional interference between 

elastically and inelastically scattered spectral components occurs when these sidebands 

overlap with the spectral components of a single or multi-frequency incident field. Such 

interference at the atomic resonance frequency leads to enhancement or suppression of the 
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resonant absorption depending on the phase difference between the relative phase of the 

interfering components of the field and the modulation phase. With a proper selection of 

the amplitudes of the incident spectral components (dependent on the modulation 

amplitude), it leads to complete suppression of the scattered field, resulting in 

phenomenon of the modulation induced transparency (MIT), i.e., elimination of the 

medium’s effect on the HF field. 

 We have proven that it is essentially the same simple physically intuitive picture 

described above which lays the basis for the two different physical processes: coherent 

forward scattering of γ-ray radiation in the vibrating nuclear targets and propagation of an 

XUV field through the atomic gases in the presence of the moderately strong IR field. In 

the first system it is vibration of the medium, while in the second case it is an IR field 

which causes the modulation of the parameters of the resonant transition. Moreover, under 

certain conditions, both systems are described by the identical equations having the same 

solution. It allows to conclude that some effects experimentally demonstrated in one 

system can be realized in the other one and vice versa. For example, a partial MIT 

observed in the case of quasi-monochromatic field in γ-ray scattering can be observed in 

the case of a quasi-monochromatic XUV field (which should be a particular high harmonic 

of IR field) propagation in atomic gases in the presence of an IR field, while partial MIT 

observed in the case of two component XUV propagation can be realized in the case of 

coherent forward γ-ray scattering in the vibrated nuclear absorber. Moreover, perfect MIT 

may be achieved in all these cases. Similarly, the ultrashort pulse formation realized in γ-
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ray range via nuclear absorber vibration [142] can be realized in the XUV range in the 

presence of an IR field [38,40-42]. 

In connection with MIT caused by IR field it is insightful to compare three 

different types of transparency of a medium for HF probe radiation resonant to 1-3 

transition in the presence of a strong LF driving field coupled to an adjacent 2-3 transition: 

(1) electromagnetically-induced transparency (EIT), (2) Autler-Townes transparency 

(ATT) and (3) MIT. The first two types of transparency imply quasi-resonant driving of a 

LF 2 3  transition with the Rabi frequency substantially smaller than its carrier 

frequency [6]. EIT is due to the resonant excitation of the specific two-photon atomic 

coherent superposition state ("dark state") uncoupled to the excited state [3,6]. It requires 

a two-photon resonance condition 31 32HF LF      , and a moderately strong LF 

driving field: 12 23 13IRd E   , where 12  and 13 are the coherences decay rates at 

1 2  and 1 3  transitions. The last condition naturally implies: 12 13  , which is 

difficult to achieve in the hot or dense atomic gases where the linewidths of both 1 3  

and 1 2 transitions are typically defined by collisional or Doppler broadening and have 

comparable magnitude. ATT originates from Autler-Townes splitting of the absorption 

line (determined by the Rabi frequency of the driving field) into the two spectrally 

separated Lorentz contours and hence implies: 23 13IRd E  . Compared to both EIT and 

ATT, MIT implies much stronger LF driving field with the Rabi frequency of the same 

order or higher than its carrier frequency: 23 IRd E ~ LF . Contrary to the ATT and EIT, 

MIT generally implies also either two- or multi-component HF probe radiation with 



 

148 

 

frequency interval between the components, equal/multiple to the doubled frequency of 

the driving field. MIT originates not from excitation of the atomic coherence at the two-

photon transition 1 2  nor from the Autler-Townes splitting, but from a modulation of 

the parameters of the quasi-energy HF transition leading to the destructive interference of 

the coherently scattered fields produced by the different spectral components of the 

incoming radiation in a modulated medium. MIT can be achieved by a proper choice of 

incident fields’ relative amplitudes and phases. 

Along with the indicated differences we would like to point out some analogy 

between MIT and EIT. Indeed, both MIT and EIT result from destructive interference 

between the different pathways of atomic excitation. Modulation of the properties of an 

atomic transition in MIT plays the same role as quantum coherence at the two-photon 

transition in EIT. 

The possible applications of MIT include coherent control and manipulation of the 

bound [22,24] and auto-ionizing [36] atomic states and shaping of the XUV radiation 

pulses [26,29,30,154], as well as controlling and optimizing of HHG in the spectral 

regions, where absorption of XUV radiation by either outer- or inner-shell atomic 

electrons plays an important role [34,126]. It can be also viewed as a prospective 

mechanism of controlling chemical reactions on ultrafast time-scale [22,155]. 

Fundamentally, understanding and controlling light absorption is a basic requirement for 

the light-wave electronics [55]. 
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CHAPTER VII 

FORMATION AND AMPLIFICATION OF SUB-FEMTOSECOND X-RAY 

PULSES IN A PLASMA MEDIUM OF THE HYDROGEN-LIKE IONS WITH A 

MODULATED RESONANT TRANSITION7 

VII.1 Introduction 

Coherent intense sub-femtosecond (sub-fs) soft x-ray pulses would open extremely 

wide applications for dynamical, element-specific microscopy and diffraction imaging in 

chemistry, biology, medicine, nanoscience and material science, providing unique 

combination of the unprecedented high spatial and temporal resolution, ultimately 

determined by the nm carrier wavelength and attosecond (as) pulse duration accordingly 

(see reviews on x-ray lasers [43-52] and attosecond physics [53-61]). Production of the 

bright ultrafast coherent sources in a “water window” range (between the C and O K-shell 

absorption edges at 284–540 eV, i.e. 4.4–2.3 nm), is considered to be especially important 

for imaging of the protein dynamics in the living cells [44-68].  

Currently there are three types of coherent sources in the soft x-ray wavelength 

range: free-electron lasers [69-76], x-ray plasma-based lasers [46-48,50,77,78] and high 

harmonic generation (HHG) sources [65-68]. Free-electron lasers present themselves 

large-scale state-of-the-art expensive facilities and there are only few of them available in 

                                                 

7 The related work “Formation and amplification of sub-femtosecond X-ray pulses in a plasma medium of 

the hydrogen-like ions with a modulated resonant transition” by T.R. Akhmedzhanov et al. will be submitted 

to journal publication soon. 
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the world. They produce high energy pulses, but the pulse duration is currently limited by 

fs and pulses are typically not transform limited due to the short noise.  

Table-top soft x-ray plasma-based lasers produce relatively high energy pulses (up 

to several mJ) but of rather long pico-second (ps) duration. The HHG sources allow 

producing thousands of high harmonics stretching well into x-ray range. However, the 

individual harmonics energy in the soft x-ray range, in particular, in a water window range, 

does not exceed nJ due to the low (less than 10-7) conversion efficiency. The duration of 

a single harmonic is in a range of tens to hundreds fs. Potentially, the set of harmonics 

could constitute the attosecond x-ray pulses (under condition of an attochirp 

compensation) but the energy of such pulses would be still limited by nJ [65,67]. 

This work aims on theoretical study and comparison of two possible paths to 

coherent intense sub-fs x-ray sources, namely, (i) via efficient compression of picosecond 

radiation of x-ray plasma lasers into attosecond pulse trains without essential loss of the 

energy; (i) via amplification of an individual high-harmonic radiation in an active medium 

of x-ray lasers accompanied by formation of attosecond pulses. 

 We show that both paths can be realized by using essentially the same technique 

recently theoretically developed by our group [37,38,41,42]. The basic idea is to use an 

interaction of the x-ray plasma laser or high-harmonic radiation with the plasma medium 

consisting hydrogen-like ions (accordingly, without or with a population inversion) at the 

resonant transition which frequency is modulated by the infrared (IR) laser field. 

The outline of the paper is as follows. In Sec.VII.2 we formulate the basic set of 

the density matrix and wave equations, describing formation of sub-fs pulses in a plasma 
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of hydrogen-like ions in a presence of a moderately strong IR field. In Sec. VII.3 we study 

the possibility of an efficient compression of the quasi-monochormatic radiation of X-ray 

plasma lasers into the trains of sub-fs pulses in the passive (non-inverted) plasma of 

hydrogen-like ions modulated by an IR field. In Sec. VII.4 we analyze the possibility of 

amplification of an individual X-ray high harmonic radiation, accompanied by the sub-fs 

pulses formation in an active inverted plasma of hydrogen-like ions modulated by an IR 

field. We suggest also an experimental realization of both techniques in LiIII (Li2+ions) 

and CVI (C5+) ions in the vicinity of the wavelengths 13.5nm and 3.4 nm, corresponding 

to the resonant transitions from the first excited to the ground state in these ions, modulated 

by the IR laser fields, and determine the ultimate pulses durations and intensities which 

can be achieved by those techniques.  

In Conclusions we summarize the major results and give a comparative analysis 

of two suggested techniques, pointing out their advantages and disadvantages, as well as 

the prospects for extension of these techniques to plasmas of non-hydrogen ions.  

VII.2 Propagation of X-ray radiation through modulated medium of hydrogen-like 

ions 

Let us consider propagation of X-ray radiation along x-axis through a medium of 

neutral plasma of hydrogen-like ions. At the entrance to the medium, x=0, the radiation is 

quasi-monochromatic and has the form 

 , 0 0 0

1
( ) ( )exp c.c.

2
X ray incE t z E t i t    , (VII.1) 
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where 0E  is the slowly varying envelope of incident radiation, 0  is its carrier 

frequencies, and c.c.  stands for complex conjugation. The radiation (VII.1) is chosen to 

be near-resonant to a transition from the ground state |1 to the first excited bound atomic 

state, 
0

0 21   (where 
0

21  is the unperturbed frequency of the resonant transition). 

The medium is simultaneously irradiated by a moderately strong z-polarized IR 

laser field propagating in x direction with a phase velocity determined by the plasma 

refractive index: 

  0( ) cosIR IR plE t z E i t xn c     (VII.2) 

where IRE  is the amplitude of the IR field,   is its angular frequency, 
2

2
1

pl
pln


 


 is 

plasma index of refraction, 
2

2 4 e
pl

e

n e

m


   ( , ,e en m e  are electrons concentration, electron 

mass and electron charge) and c is the speed of light in vacuum. IR field is far-detuned 

from the relevant atomic resonances, and it traverses the medium without appreciable 

distortions. 

Since X-ray radiation is z-polarized and it’s frequency is close to resonance 

between ground state and first excited state of hydrogen-like ion, we take into account 

only two excited states, namely, states: |2= (|2s+|2p,m=0)/2 and 

|3=(|2s|2p,m=0)/2 (which energies are harmonically modulated by z-polarized IR 

field due to the linear Stark effect field, as it may be seen from the density matrix equations 

below). We do not take into account two other excited states 4 =|2p,m=1, and 
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|5=|2p,m=1 (which are not perturbed by an IR field). In the case of passive 

(noninverted) medium, studied in Sec. VII.3, these excited states do not influence in any 

way a propagation of z-polarized field because they have dipole transition moments only 

for y-polarized X-ray field. In the case of active (inverted) medium, a possibility to use a 

three-level approximation is obvious only when transitions 4 -|1 and |5-1 remain 

unsaturated by a y-polarized field. It is due to the fact that gain for z-polarized and y-

polarized fields originates from the different populated excited levels. Thus y-polarized 

field does not influence gain for z-polarized field till it appreciably changes a population 

of a ground state. A possibility to use it for analysis of sufficiently short seeding pulses 

amplification in the case of sufficiently high gain for the y-polarized field (even when the 

last one saturates 4 -|1 and |5-1 transitions) is proved in an Appendix D, where the 

equations for populations of those levels and polarizations of the corresponding 

transitions, as well as the wave equation for y-component of the quasi-resonant X-ray field 

are taken into account. As for the higher excited states, they may be safely neglected, when 

both frequency and intensity of an IR field are sufficiently small, as it was studied in details 

in [156]. Within this approximation, the resonant polarization is defined by density matrix 

elements, ij : 

 12 21 13 31( , ) . .P r t N d d c c     (VII.3) 

where N  is ions concentration and ijd  is dipole moment between states i  and j . 

Within 3-level model, all the non-zero dipole moments are given by: 
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12 1 2 , 0 0 13 1 2 , 0 0

22 2 2 , 0 0 33 2 2 , 0 0

2 , 2 ,

,

s p m s p m

s p m av s p m av

d d z d d d z d

d d z d d d z d

   

   

     

     
 (VII.4) 

In atomic units 
7

5

2

3
d

Z
 , and 3 /avd Z , where Z  is an atomic number. Under the action 

of both X-ray and IR field, the evolution of density matrix elements is given by: 
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(VII.5) 

Here i  is energy of atomic level i . With quadratic Stark effect taken into account, 

2 2
2 2

1 2 3

9 7
1 , 1

2 256 8 4
c c

Z Z
F F  

   
         

   
 where 

3
2

c IRF E
Z

 
  
 

[113]. 

The decay rates ij  are defined as 12 13   / 2 / 2,coll ion radiative    

23 ,coll ion radiative      22 33 ,ion radiative      11 radiative   , where coll  and ion  

are collisional broadening and ionization decay rates correspondingly. radiative  are 

radiative decay rates, which could be found in [157].Collisional broadening was estimated 

according to [158], 

32
3 33 4 4 2

exp
16 3

c
ion

c c c

FZ
e e

F F F

 
      
        
       

 [113].We neglect 

Doppler broadening of transitions since we consider ion temperatures on the order of 1 eV 

as it is typical in recombination X-ray plasma lasers [77], resulting in Doppler broadening 
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comparable or less than collisional broadening. It is worth noting that for parameters we 

consider in the paper, ij  .  

Let us seek for a partial solution in the form 

 
0

12 12

13 13

1
( , ) ( , ) c.c.

2

( , ) ( , ) ,

( , ) ( , ) ,

( , ) ( , ), 12,13

i t kx

z

i t ikx

i t ikx

ij ij

E x t z E x t e

r t r t e

r t r t e

r t r t ij







 

 

 

 





 





 

, (VII.6) 

where ( , )E r t  and ( , )ij r t  are the slowly-varying amplitudes of the field and decay matrix 

elements, respectively, that is 
1 E

E t
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1
E k

E x




, and 

( , )1

( , )

ij

ij

r t

r t t
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1
( , )

( , )
ij

ij

r t k
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. In such a case, within the rotating wave approximation and 

approximation of plane waves, we get 

 21 314
NdE

i
x c


  




 


, (VII.7) 

and 
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where we have introduced local time /t x c   . Equations (VII.7) and (VII.8) along with 

initial conditions 

(0)( , 0)ij ijx t   , (VII.9) 

and boundary conditions (VII.1) describe propagation of a z-polarized X-ray field in x-

direction.  

In the case of passive (non-inverted) medium, which is discussed in the next 

section, initial conditions are:  

11( , 0) 1, ( , 0) 0, 11ijx t x t ij      . (VII.10) 

In order to model amplification of incident X-ray field (VII.1) through inverted 

medium of X-ray plasma based lasers (considered in section VII.4) we assume at the 

moment 0t   all the ions have equal probability to be in the excited states 2 , 3 , 4 , 5  

and there are no coherencies. Namely, initial conditions (VII.10) become: 

22 33( , 0) ( , 0) 0.25, ( , 0) 0, 22,33ijx t x t x t ij          (VII.11) 

Incident X-ray field (VII.1) is considered to be a z-polarized quasi-monochromatic 

pulse resonant to transitions 1 2  and 1 3 .  

As it can be seen from Eqns. (VII.8) for diagonal matrix elements 12 13,  , under 

the action of the IR field the instantaneous transition frequency of transitions 

1 2 , 1 3   is periodically modulated with period equal to the period of the IR field. 

Physically it corresponds to linear AC Stark effect, Figure 33, (where plasma dispersion 
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is neglected, i.e. npl is assumed to be equal to 1). Since transitions 1 2 , 1 3   have 

non-zero component of dipole moment along z direction, modulation of the transition 

frequencies will result in modulated polarization leading to appearance of the sidebands 

in z-polarized field propagating in x-direction. The neighboring sidebands are separated 

by the double IR field frequency due to the atomic symmetry (Figure 33). Both the phases 

and the amplitudes of the sidebands depend on the modulation amplitude and length of the 

medium. With a proper choice of these parameters it appears to be possible to have the 

sidebands in phase with each other as well as with a resonant component and an incident 

field at the exit of the medium. As a result, a train of the sub-fs pulses may be formed.  

In the next sections we consider the formation of such sub-fs pulses in the passive 

(non-inverted) and active (inverted) plasma of the hydrogen-like ions accordingly. 

 

Figure 33. Energy levels of the ground and first excited state of the hydrogen like-

ion dressed by an IR field. 
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VII.3 Efficient transformation of x-ray plasma laser radiation into a train of sub-fs 

pulses in plasma of non-inverted hydrogen–like ions modulated by an IR laser field 

In the case of passive (non-inverted) optically thin resonant medium, when plasma 

dispersion can be neglected, a set of equations (VII.1), (VII.7), (VII.8), (VII.10) has a 

simple analytical solution studied in [38]. The amplitudes and phases of the sidebands in 

this case are defined by the Bessel functions of the modulation index J2n(Pω) ,

, 0, 1, 2...av IRd E
P n    


 In particular, at the modulation index 2.40< Pω <5.14 all 

sidebands are in phase with respect each other and with an incident field (which dominates 

an anti-phased resonant scattering component) [38]. As a result a train of short pulses can 

be formed after suppression of an incident field to the level of the sidebands. With an 

increase of the optical thickness of the medium the amplitudes of the sidebands grow up, 

while an amplitude of an incident field decreases both due to transformation into the 

sidebands and the resonant absorption. It was shown that an efficiency of transformation 

of an incident quasi-monochromatic radiation into the train of the short pulses can be quite 

high. For example, an efficiency of transformation of quasi-monochromatic VUV 

radiation with the wavelength 122.1nm into the train of 3.2fs pulses in atomic hydrogen 

modulated with an IR field with the wavelength 10.65 µm and intensity 1.4 x1012W/cm2 

(corresponding to Pω=4.45) was shown to be ~ 76% .  

In this section we consider the possibility of application of this technique for 

transformation of quasi-monochromatic X-ray radiation into the trains of sub-fs pulses. 

High frequency of radiation implies using a plasma of hydrogen-like ions. Plasma 

dispersion results in increase of the phase velocity of an IR field with respect to the X-ray 
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field. As a result, the phase shifts between the neighboring sidebands determined by the 

phase difference between X-ray and IR field varies with the propagation distance. As a 

result the sidebands formed at different points of medium become out of phase with each 

other, which increases the pulse duration. Obviously, it leads to a trade-off between pulse 

duration and efficiency.  

Let us consider possible experimental realization of this technique for 

transformation of quasi-monochromatic x-ray radiation (i) with a frequency in the vicinity 

of 13.5nm in LiIII and (ii) with a frequency in the vicinity of 4nm in CVI into a train of 

sub-fs pulses and determine its limiting possibilities in terms of the achievable pulse 

duration and transformation efficiency, taking into account the effect of the plasma 

dispersion.  

In the case of Li III (i.e. Li2+) ions we consider the concentrations of ions and 

electrons to be equal
17 31.5 10 , 2eN cm n N   at ion temperature ~1 eV and electron 

temperature ~2eV. (These parameters are chosen to be the same as in the case of active 

plasma, considered in the next section, for convenient comparison of passive and active 

cases. In its turn, the parameters for an active plasma are chosen to be close with those 

used in experimental realization of recombination laser at 2p-1s transition in LIII [87]). 

The relaxation times (which are inverse of decay rates) under such plasma parameters are 

estimated as: 0.425 , 19.7collision radiativeps ps   . In the case of CVI (i.e. C5+) ions we 

consider the concentrations of ions N= 17 31 10 cm and 5N electrons at ion temperature ~3 

eV and electron temperature ~5 eV. The relaxation times are 

0.56 , 1.23collision radiativeps ps   . 
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The plasma dispersion destroys the pulses after some critical length critL , when 

the phase difference between neighboring sidebands phase shifts formed at the entrance 

and at the exit of medium becomes on the order of π.: (1 ) /crit plasmaL n c   . (An 

estimate of this critical length in Li III gives critL =2 mm and in CVI critL =4.5 mm.) Thus, 

in order to achieve the shortest possible duration of pulses, the condition 

(1 )plasmaL n c    needs to be satisfied. For plasman ≈1, (1 )plasman  ~1 /   and decreases 

linearly with increasing  . On the other hand, in order to form sidebands with amplitudes 

comparable with the amplitude of the incident field, the effective optical thickness of the 

medium with physical length L  should be on the order of 1. Since effective optical 

thickness of the medium is inversely proportional to decay rate and decay rate grows 

exponentially with increasing   when index of modulation P   is fixed, the required 

physical length L  grows approximately exponentially with increasing  . Thus, 

requirement (1 )plasmaL n c   limits from the below the wavelength of the modulating 

laser. For the considered Li III and C VI ions, it implies wavelength of the IR field larger 

than approximately 1400 nm for Li III and 400 nm for C VI. The minimum possible 

wavelength of a modulating laser, in its turn, for the fixed modulation index, determines 

the minimum pulse duration to be achieved. The minimum achievable pulse duration can 

be estimated as half of period of an IR field divided by the number of sidebands of 

comparable amplitudes. For the above wavelengths and Pω= 4.45, the estimate gives 330 

as in Li III and 100 as in C VI.  
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An estimate of intensity of the driving field required to realize a modulation index 

Pω=4.45 for those wavelength gives IΩ= 14 27.3 10 /W cm and IΩ= 16 23.6 10 /W cm for LiIII 

and CVI accordingly. 

For considered mechanism of the pulses formation the ionization rate should 

satisfy the condition ion   in order the upper levels would not be depleted by tunneling 

ionization in the interval between the neighboring maxima of a modulating field. For 

chosen parameters of a modulating field this condition is fulfilled.  

A frequency of an incident X-ray field is chosen to be shifted from the resonant 

unperturbed by an IR field transition by a magnitude of the quadratic Stark shift. At the 

chosen field intensities of an IR field this shift is equal to 0.16eV in LiIII and 0.56eV in 

CVI. A peak intensity of an incident X-ray field is chosen as 8 21 10 /W cm . 

The incident X-ray field envelope is chosen in the form:  
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, (VII.12) 

where 25rampt fs , while T =350 fs for Li III and 250 fs for C VI (see Figure 34 (a) and 

Figure 35 (a)). Its duration is a chosen to be the on same order of magnitude as decay time. 

Such field can be produced by X-ray plasma laser seeded with a single high harmonic 

radiation [159,160] or by x-ray free-electron laser.  
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The numerical solution of the Eqns. (VII.1), (VII.7), (VII.8), (VII.10) for the 

described above set of the parameters shows that trains of pulses with duration of 490 as 

could be formed in Li III plasma and trains of pulses with duration of 120 as could be 

formed in C VI plasma. Efficiency of transformation, defined as ratio of incident X-ray 

field energy to output field energy, for the propagation length 0.6 mm in LiIII is 67 % and 

for the propagation length of 1.0 mm in C VI is 72 %. 

 

 

Figure 34. Time-dependence of an X-ray radiation intensity. (a) Incident X-ray 

field, (b) Output field. (c) The same as (b), but showing only a small part of the whole 

envelope). The parameters of the Li III plasma, an IR field and an incident XUV field are 

provided in the text of the paper.  
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Figure 35. Time-dependence of an X-ray radiation intensity. (a) Incident X-ray 

field. (b) Output field. (c) The same as (b), but showing only a small part of the whole 

envelope. The parameters of the C VI plasma, an IR field and an incident XUV field are 

provided in the text of the paper. 

VII.4 Amplification of an individual high harmonic radiation with its simultaneous 

transformation into the train of attosecond pulses in an active medium of hydrogen-

like recombination X-ray plasma lasers modulated by an IR laser field 

In this section we study the possibility of amplification of a relatively weak 

incident X-ray radiation produced by a single high-harmonic generation in the inverted 

hydrogen-like medium accompanied by attosecond pulses formation due to modulation of 

an inverted transition by moderately strong quasi-monochromatic IR pulse. 

Similar to the case of passive medium, let us consider the possibility of realization 

of the suggested technique in Li III and C VI with the same parameters of the plasma as 
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in the passive medium, but under assumption that all ions are fully inverted. It is worth 

noting that lasing on the considered transition in Li III was theoretically studied [161] and 

experimentally demonstrated [87]. The chosen above parameters closely correspond to 

those at which X-ray lasing was realized [87]. An inversion at the operating transition was 

achieved via fast three-body recombination process in the presence of intense laser 

pumping. Lasing at the considered transition in C V was theoretically predicted by 

Princeton’s group [77] and currently is studied experimentally by the same group. 

As it was discussed in the previous section the pulses duration scales as 1 /   with 

IR field frequency. Thus, increasing modulating field frequency might lead to formation 

of shorter pulses. However, there is a physical limit to it. Namely, keeping of the same 

modulation index av IRd E
P 


 requires an increase in the IR field intensity with an 

increase of  , which leads to faster ionization of population of the excited levels of ions 

and vanishing of amplification for X-ray field. The ionization rate from excited states ion  

grows exponentially with IR field strength and, for 4.45P  , it reaches the magnitude of 

inverse incident X-ray pulse duration for IR wavelength of approximately 1660 nm in Li 

III and 440 nm in C VI. With further decrease of IR field wavelength, the extremely large 

ionization rate leads to fast depletion of excited levels of atom and pulses amplification 

becomes impossible. This sets the lower limit for the formed pulses duration via this 

technique in an active medium.  

We consider dressing of Li III ions by quasi-monochromatic 1900 nm IR field with 

intensity 14 24 10 /W cm and driving of CVI ions by a quasi-monochromatic 500 nm laser 
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field with intensity 16 22.3 10 /W cm . The chosen parameters both in LiIII and CVI 

correspond to the value of a modulation index 4.45P  .  

Eqns. (VII.1), (VII.7), (VII.8), (VII.11) are numerically solved for the chosen 

parameters. Contrary to the case of a passive medium where all sidebands were in phase 

with respect each other as well as with resonant component (since an incident field 

dominated an anti-phased resonant scattering component), in an active medium there is a 

significant phase difference between spectral components of X-ray field for 4.45P  . 

The plasma dispersion allows to compensate this phase shift at the specific lengths of the 

medium. As a result well shaped amplified trains of attosecond pulses can be formed at 

the optimal length of the medium. A train of 960 as pulses with peak intensity about 20 

times higher than a peak intensity of the incident pulse can be formed at the length 

1.25L mm  in Li III (Figure 36). A train of 290 as pulses with peak intensity about 10 

times higher than a peak intensity of an incident field can be formed at the length 

2.7L mm  (Figure 37).  

More general case when incident field consists of both z- and y-polarized 

components and a saturation of the 4-1 and 5-1 transition by y-polarized field takes place 

is studied in Appendix D. It is shown, that a presence of strongly amplified y-polarized 

component of an X-ray field does not produce any essential effect on amplification of a 

seed z-polarized pulse. It is due to the fact that this amplification originates from different 

populated excited states, the duration of an seed incident pulse is shorter than the gain 

duration while the peak of a strongly amplified y-polarized component delays as compared 

to a seeded pulse due to the superradiant character of a y-polarized field amplification. 
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Figure 36. Time-dependence of an X-ray radiation intensity. (a) Incident X-ray 

field, (b) Output field. (c) The same as (b), but showing only a small part of the whole 

envelope). The parameters of the inverted Li III plasma, an IR field and an incident XUV 

field, provided in the text of the paper. An abrupt decrease in amplification at about 350 

fs duration is due to the shortness of a seed pulse duration compared to the gain duration. 
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Figure 37. Time-dependence of an X-ray radiation intensity. (a) Incident X-ray 

field, (b) Output field. (c) The same as (b), but showing only a small part of the whole 

envelope). The parameters of the inverted CVI plasma, an IR field and an incident XUV 

field are provided in the text of the paper. An abrupt decrease in amplification at about 

250 fs duration is due to the shortness of a seed pulse duration compared to the gain 

duration. 

VII.5 Conclusion 

We studied two different paths on the way to producing of intense coherent sub-fs 

X-ray radiation: (i) via efficient temporal compression of intense x-ray lasers radiation 

into the trains of sub-fs pulses and (ii) via amplification of the single high harmonic 

radiation accompanied by formation of sub-fs pulses. We have shown that both paths can 

be implemented by using the same technique, namely, via interaction of x-ray radiation 

with a plasma of the hydrogen-like ions with a modulated resonant transition. The first 
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path implies using of non-inverted medium, while the second path requires using of an 

inverted medium. 

Since a limitation on the maximum intensity of the modulated field (and 

accordingly minimum modulation frequency for given modulation index) turns out to be 

less stringent in the passive medium with respect to an active medium, shorter pulses can 

achieved via the first path. 

It would be interesting to extend the obtained results to the wider range of ions, 

i.e. to the case of non-hydrogen like ions. Indeed, in the case of non-hydrogen-like ions 

dressing by an IR field is not reduced to a shift and modulation of the frequency if an 

excited state. However, it results in an effective modulation of the dipole moment of the 

effective dressed transition [90] which, it was shown also allows for very efficient 

transformation of a few hundred fs radiation of X-ray lasers into the trains of sub-fs pulses 

in a passive medium of He or He-like ions [162]. One may expect that similar results can 

be obtained also in the active medium. 

Another interesting extension of this work would be a seeding of an X-ray laser 

with a set of high harmonics rather than a single harmonic. Indeed, modulation of an active 

medium should allow for amplification of the whole set of harmonics within the linewidth 

of an active medium. 
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CHAPTER VIII  

CONCLUSION 

Interplay between relatively weak XUV and strong IR fields under their interaction 

with medium has been widely studied recently. Such studies aim on physical 

understanding of the corresponding processes, development of new coherent sources of 

XUV and X-ray radiation, determination of the medium characteristics, control of 

chemical reactions, ionization and conductivity, etc. Many interesting physical effects, for 

example, high harmonic generation, adiabatic Stark effect in the IR field, modification of 

the XUV absorption/gain profiles in the presence of an IR field, modulation of an 

ionization rate, etc. have been predicted and experimentally demonstrated. 

In particular, the possibility to transfer the quasi-monochromatic XUV radiation 

into the trains of attosecond pulses in atomic hydrogen and hydrogen-like ions in the 

presence of an IR field was theoretically predicted in the previous works of our group on 

the bases of numerical calculations within three-level atomic model.  

In this dissertation, I further developed and broadened this concept. Several goals 

were achieved.  

The method of pulses formation was generalized and deeply studied both 

numerically and analytically. Namely, the approach based on modulation of the quasi-

resonant excited atomic state by nonionizing IR field was generalized to non-hydrogen-

like medium. For the regime of pulses formation based on interruption of the resonant 

interaction due to rapid excited-state tunneling ionization, the analytical solution was 

derived. Ultimate capabilities of both methods were studied numerically and an advanced 
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analytical solution describing the transition between two regimes was derived. All this 

work opens up straightforward way to experimental realization of the suggested technique. 

A deep physical analogy between coherent forward scattering of γ-ray radiation in 

the vibrating quasi-resonant nuclear absorber and the XUV field propagation in the quasi-

resonant atomic medium in the presence of the moderately strong IR field was established. 

It allows to conclude that some effects experimentally demonstrated in one system can be 

realized in the other one and vice versa. The experiment studying modulated induced 

transparency of the vibrating quasi-resonant nuclear absorber is currently being conducted 

by our group.  

Finally, I suggested the new application of the proposed technique for producing 

of intense coherent attosecond sources of soft-X-ray radiation via two different paths, 

namely, (i) via efficient compression of picosecond radiation of x-ray plasma lasers into 

attosecond pulse trains without essential loss of the energy; (ii) via amplification of an 

individual high-harmonic radiation in an active medium of x-ray lasers accompanied by 

formation of attosecond pulses. Such pulses might find multiple applications in element 

specific microscopy and diffraction imaging in chemistry, biology and material science. 
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APPENDIX A 

TRANSFORMATION OF ELECTROMAGNETIC FIELD DURING ITS 

PROPAGATION THROUGH TWO-LEVEL MEDIUM WITH HARMONICALLY 

MODULATED PARAMETERS OF THE RESONANT TRANSITION 8 

In this appendix we consider a particular case of harmonic modulation of the 

atomic transition frequency and decoherence rate, 

21 21

21 21

( ) cos( ),

( ) cos( ).

M

M





    

    

    


    

 (A.1) 

In this case Eq. (VI.21), describing transformation of the HF field as a result of its 

propagation through the medium, takes the form 
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 (A.2) 

Here P     and P     are modulation indices of the atomic transition frequency 

and the decoherence decay rate, respectively. Modulation indices are defined as 

amplitudes of modulation of the transition frequency/decoherence rate, normalized to the 

frequency of modulation. ( )nJ P  and ( )nI P  are the Bessel function and the modified 

Bessel function of the first kind of an order n.  

                                                 

8 Reprinted with permission from “Coherent forward scattering of gamma-ray and XUV radiation in the 

medium with the modulated quasi-resonant transition” by T.R. Akhmedzhanov, V.A. Antonov and O. 

Kocharovskaya, 2016, J. Phys. B: At. Mol. Opt. Phys., vol. 49, pp. 205602, Copyright [2016] by IOP 

Publishing. 
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The MIT condition for the monochromatic incident field, 0na   is given by an 

equality 

i ( ) ( ) 0.n
n n

n

I P J P    (A.3) 

In this case, the transparency condition is insensitive to the phase of modulation (A.1), 

M , and is solely determined by the values of the modulation indices. In particular, if only 

the frequency of transition is modulated (Pγ =0), transparency takes place for ( ) 0nJ P  . 

For 0n   transparency occurs when 2.40,5.52,...P   

In the case of a bichromatic incident radiation,    00, exp ikE z t E E k t     , 

and harmonic modulation of the atomic transition frequency and/or decoherence rate 

(A.1), MIT condition (VI.22) takes the form 

0 i ( ) ( ) exp(i ) i ( ) ( ) 0n n
n n k M n n k

n n

E I P J P E k I P J P       . (A.4) 

If only the frequency of transition is modulated the Eq. (VI.25) takes the form: 

  2 2 2

0 0 0( ) ( ) exp(i ) ( ) 1 exp( )
8

k k M k

c
I x E E E J P E k J P x  


       (A.5) 

and the MIT condition (A.4) reduces to 

0 0 ( ) exp(i ) ( ) 0k M kE J P E k J P   . (A.6) 

Unlike the case of the monochromatic incident field, for the bichromatic radiation, 

the MIT is highly sensitive on the phase difference between the relative phase of the 

resonant spectral components of the incident effective field (i.e. resonant spectral 

components of the elastically and inelastically scattered fields) and the modulation phase 

M . In general, an interference term in (A.5) results in a periodic variation of the 
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transmitted radiation as a function of the modulation phase M . The ratio of spectral 

components amplitudes of an effective incident field at the given modulation amplitude 

determines a range of such variation, i.e. the maximum and minimum values of the 

resonant absorption. When MIT condition (A.6) is fulfilled, the minimum value reaches 

zero, corresponding to fully destructive interference of the resonant components of the 

effective fields (i.e. resonant spectral components of the elastically and inelastically 

scattered fields).  
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APPENDIX B 

MULTI-LEVEL ATOMS COUPLED TO IR FIELD: PERTURBATION THEORY AND 

AN EFFECTIVE TWO-LEVEL MODEL WITH MODULATED PARAMETERS OF 

THE RESONANT TRANSITION 9 

In this appendix we consider the case of a relatively weak IR field 

( , ) cos( )IR IR IRE x t E t kx  , which is far-off-resonance with any atomic transition from 

both the ground, |1, and excited, |2, states, so that the ground state is unperturbed by the 

IR field and the following conditions are satisfied: 

2
2/ ( )

2

k IR
IR k

d E
  ≪1, , 2k N k  , (B.1) 

where 2kd  and 2k  are the dipole moment and the frequency of atomic transition between 

the states k  and 2 , respectively. Eq. (B.1) means that the IR field is not too strong, so 

that most of the initial population of the state 2  remains in this state at every moment of 

time. When the conditions (B.1) are fulfilled, and ionization from the state 2  by the IR 

field is negligible, space-time modulation of state 2  is correctly described by the second-

order perturbation theory. In such a case, atomic wave function may be written as [25,163]: 

  1 2 2 2 21 exp i 1 exp( 2i ) exp(2i ) 2 ...IR IRc c E a a            , (B.2) 

                                                 

9 Reprinted with permission from “Coherent forward scattering of gamma-ray and XUV radiation in the 

medium with the modulated quasi-resonant transition” by T.R. Akhmedzhanov, V.A. Antonov and O. 

Kocharovskaya, 2016, J. Phys. B: At. Mol. Opt. Phys., vol. 49, pp. 205602, Copyright [2016] by IOP 

Publishing. 
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where omitted terms contain excited states other than the state 2 , 
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  is an energy of the state 2  that includes the constant Stark 

shift, 
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 . The 

amplitude of excitation of the state 2  by the XUV field (VI.1) is: 
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Accordingly, the resonant polarization of the medium is given by: 
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(B.4) 

It is worth noting, that the same polarization would be excited and described by 

Eqs. (VI.3)-(VI.5) if we consider propagation of the same XUV field through a medium 

of two-level atoms with the ground state 1 , the excited state 2 , the constant transition 

frequency 21 2 /E  and , the effective space-time modulated dipole moment: 

 *
21 21 2 21 exp(2i ) *exp( 2i )IR IRd d a a       . (B.5) 

Thus, the interaction of the XUV field with the IR-dressed atoms is equivalent to 

the interaction of this field with the two-level atoms, possessing space-time modulated 
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dipole moments. Generally, both the phase and the absolute value of the dipole moment 

are modulated:  21 21 21exp( ( ) )expd d d i d
 

     
 

  
      

  
   , where ( )   and  21   

are real functions:  
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 (B.6) 

The phase modulation of the effective dipole moment, in its turn, is equivalent to 

the transition frequency modulation, i.e. calculation of polarization according to Eqs. 

(VI.3)-(VI.4), using    21 2 21/E       and 21 21 exp( ( ) )d d d      gives the same 

result as using (B.5) and constant transition frequency 21 2 /E  . At the same time, it is 

worth to point out the modulation of the magnitude of dipole moment is not equivalent to 

the modulation of the decay rate of an effective dressed transition, i.e. calculation of 

polarization according Eqs.(VI.3)-(VI.4) using    21 2 21/E       and 21( ) ( )     

does not give the same result as using the effective dipole moment, given by Eqs. (B.5). 

Hence, in a general case, the problem cannot be reduced to an interaction of the XUV field 

with the effective dressed two-level transition, possessing the modulated frequency and 

modulated decay rate.  

In an adiabatic approximation, when the frequency of the IR field is much lower 

than the frequencies of transitions between the excited atomic states, the modulation of a 

magnitude of the dipole moment is negligible in comparison with the modulation of the 
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transition frequency, see Eq. (B.6). In such a case, an interaction of the XUV field with 

the IR-driven atoms is reduced to its interaction with the dressed two-level system with a 

space-time dependent transition frequency. The average frequency of the dressed 

transition and the modulation index are as follows:  

22
2

21 21 2
2 22

kIR

k k

dE
 



   , (B.7) 
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2 24

kIR

k kIR

dE
P

 

  . (B.8) 

Thus an IR field shifts the energy of an upper state and, the most importantly, 

periodically (in this case harmonically) modulates it. Propagation of an XUV field is 

described by the Eqs. (VI.3)-(VI.5) with 2 IR  , 21( )  , determined by the first Eq. in 

the set of Eqs. (A.1), where an average frequency and modulation amplitudes, 21  and 

2 IRP   , are defined by Eqs. (B.7) and (B.8) accordingly. If phase velocities of XUV 

and IR fields are almost equal to each other, so that the phase-matching condition (VI.10) 

is fulfilled, the analytical solutions (VI.12)-(VI.14) of these equations are directly 

applicable. Thus, the problem of propagation of the XUV field in multilevel atoms in the 

considered case becomes exactly equivalent to the problem of coherent forward scattering 

of γ-radiation analyzed in Section VI.3. In particular, for the monochromatic incident field, 

MIT implies ( ) 0nJ P   (that is, 2.40,5.52,...P   at resonant tuning), while for a 

bichromatic field MIT condition is given by Eq. (VI.22). As it was discussed above, the 

last condition corresponds to zero value of an effective field “seen” by unperturbed atoms 

or, equivalently, to zero value of excited resonant polarization caused by a destructive 
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interference of contributions from different spectral components via the elastic and 

inelastic (due to modulation) scattering processes.  

It is worth to note, that the modulation index of the resonant transition is inversely 

proportional to the frequency of the IR field. Thus, lowering the modulation frequency 

results in a deeper modulation of the atomic transition. Physically, an atomic electron 

trajectory is perturbed by the force due to the electric field. This force is acting in one 

direction for a half of the field period, then switches its direction to the opposite one. As 

a result, in the lower frequency field the electron is experiencing the force acting in one 

direction for a longer time, which leads to a large deflection of an electron from a 

stationary orbit. 

The experiment aimed on direct observation of such sub-laser-cycle harmonic 

modulation of the 1s3p and 1s4p energy levels of helium by means of the attosecond 

transient absorption spectroscopy was performed in [25]. It was the first demonstration of 

the sub-laser-cycle modulation of the Stark shift. At the same time, it should be noted, that 

the conditions for the validity of the perturbation theory, Eq. (B.1), were not fulfilled in 

that experiment, as it was already discussed in [24]. (The IR field was strong and close to 

the resonances between 1s3p, 1s4p, and the neighboring energy levels (1s2s, 1s3s, 1s3d, 

etc.), so the excited states were severely mixed, rather than slightly perturbed, by the laser 

radiation.) 

It is worth to note that the harmonic modulation of energy of the excited 1s2p state 

of helium, taking place within the perturbation theory, can be directly observed if both 

lower frequency and lower intensity IR field is used, satisfying the conditions (B.1). An 
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example is the IR field with intensity 11 23 10 W/cmI    and wavelength 3.91 μm  [110]. 

In this case, for the 1s2↔1s2p transition of helium 2 0.06a  . Let us further consider the 

case of the XUV radiation, consisting of the two high-order harmonics of the IR field, one 

of which is resonant to 1s21s2p transition of helium dressed by the IR field (with the 

unperturbed wavelength 58.4 nm), while the other one is detuned from the resonance by 

the doubled frequency of the fundamental field. In such a case, the slowly-varying 

amplitude of the XUV radiation is 0 0 2 2exp( ) exp(i )exp(2i )IRE E i E      , where 0E  

and 2E  are the amplitudes of the resonant and off-resonant harmonics, respectively, while 

0  and 2  are their phases. For 3.91 μm laser radiation, E0 and E-2 correspond to the 67th 

and 65th harmonics, respectively. Amplitude of excitation of 1s2p state will be 2 ( )pc  ~

 0 0 0 2 2 2exp(i ) exp(i )a E a E d


    
 . Under these conditions, for the intensity of the 

IR field equal to 11 23 10 W/cmIRI   , an implementation of MIT requires the following 

ratio between the amplitudes of the XUV spectral components 0 2/ 1:14E E  . 
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APPENDIX C 

THE THREE-LEVEL ATOMS COUPLED TO IR FIELD: RESONANCE 

POLARIZATION AND EXCITATION PROBABILITY IN FLO-QUET FORMALISM10 

In this appendix, we find the high frequency polarization and the probability of 

atomic excitation from the ground state (which determines the ionization yield in the 

combined IR+XUV radiation) for three-level atoms using Floquet formalism. 

Selection rules for a dipole transition put some restrictions on the states 1 , 2

and 3 , for which such model is applicable. Let us assume that the ground state has an 

orbital quantum number l . For the case of the linearly polarized fields, it means that one 

of the excited states, for example, the state 3 , should have the orbital quantum number 

equal to 1l  in order that state to be coupled to the ground state by the HF XUV field. 

Then the state 2  should have the orbital quantum number equal to 2l   or l in order to 

be coupled to the state 3  by the IR field. For example, let us consider a linearly polarized 

XUV field, which, according to the selection rule 1l   , couples the ground state 21s (

0l  ) with the 1 2s p ( 1l  ) state of helium, and the linearly polarized IR field with 

relatively low frequency, which couples that excited 1 2s p state only to the close-by excited 

state 1 2s s ( 0l  ). In this case, 21 1 ,s 2 1 2 ,s s 3 1 2s p . 

10 Reprinted with permission from “Coherent forward scattering of gamma-ray and XUV radiation in the 

medium with the modulated quasi-resonant transition” by T.R. Akhmedzhanov, V.A. Antonov and O. 

Kocharovskaya, 2016, J. Phys. B: At. Mol. Opt. Phys., vol. 49, pp. 205602, Copyright [2016] by IOP 

Publishing. 
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The IR field mixing up two excited levels leads to appearance of two Floquet 

states. According to Eqs (VI.27), the wave function of the IR-field-dressed atom can be 

represented in the Floquet basis as follows: 

1
1,2

1 exp( i ( / )) ( )
i ii M IR

i

c c      


     . (C.1) 

Here i is the quasi-energy of the ith Floquet state 

 ;2 ;3( ) exp( i ( )) 2 3
i

i i
IR M m m

m

m a a    




     , (C.2) 

i
c is its amplitude, and M  is the phase of the IR field. In the first order of the perturbation 

theory, according to Eqs. (VI.29), the amplitudes of excitation of the corresponding 

Floquet states under the action of the XUV field can be calculated as follows: 

i
exp(i ) ( ) 1 ,

i ii HFc H d


   


    1 1c  , (C.3) 

where 31
3

1
exp( i ) ( ) 3 1

2
HF XUVH E d    is the Hamiltonian describing excitation of 

the atom by XUV field in rotating wave approximation (RWA) and XUV field is assumed 

to be of finite duration. According to Eqs. (VI.30) and (VI.31), the high frequency 

polarization and the probability of atomic excitation from the ground state (which 

determines the ionization yield in the combined IR+XUV radiation), are as follows: 

   
2

i31i
( ) 3 exp(i ) ( ) 3i

i ii XUV
i

N d
P e E d
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(C.4) 
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2 iexcitation i XUV
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     , (C.5) 

where ;33 exp( i ( ))
i

i
IR M m

m

m a       . Combining equation for polarization (C.4) 

with the wave equation for the field envelope in Eq. (VI.5), one can analyze the dynamics 

of XUV field during its propagation through the dressed medium. 

Neighboring “steps” of each ladder (i.e. the closest spectral components of the 

same Floquet state) are separated by frequency of the IR field, IR . Due to the dipole 

transition selection rules, ;2i
ma  are not zeroes only for the odd m and ;3i

ma  are not zeroes only 

for the even m  [24]. In other words, “even” steps of each Floquet state contain only the 

state 3 1 2s p , while “odd” steps contain only the state 2 1 2s s . Therefore, neighboring 

“steps” of the same parity are separated by doubled frequency of the IR field. 

Considering the incident XUV field in the form of a spectral comb, 

2

1
( )exp( i( 2 ) ) c.c.

2
HF n IR

n

E E n       , with a characteristic duration of each XUV 

spectral component much larger than the IR-field-cycle, ,XUV env ≫ 1 / IR , we have 
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APPENDIX D 

GENERAL CASE OF AN ARBITRARY POLARIZED INCIDENT FIELD11 

It is worth noting that the transitions 1 4 , 1 5  , which are not modulated 

by a z-polarized IR field, have non-zero dipole moment along y direction. They lead to 

amplification of a y-polarized component of an incident field, however, without formation 

of the sub-fs pulses, since the frequencies of these transitions are not affected by z-

polarized IR field. It is worth to emphasize that modulation of 1 2 , 1 3  transitions 

effectively reduces their dipole moments as compared to 1 4 , 1 5  transitions, 

resulting in smaller magnitude of the gain at that transitions. For considered above value 

of modulation index 4.45P   the effective dipole moment at the modulated transitions is 

approximately 3 times smaller compared to unperturbed transitions. It results in 

approximately 9 times lower gain and in approximately 9 times higher saturation intensity 

for the modulated transition. Thus, even in the case of high ratio between of the z-polarized 

over y-polarized components in the incident field, a saturation of the unmodulated 

transitions occurs at the shorter distances than at the modulated transitions. The saturation 

of the unmodulated transition leads to increase the ground state population due to 

population depletion of levels 4  and 5 , resulting in decrease of population inversion at 

each of two transitions 1 2  and 1 3  and, accordingly, to further reduced gain for 

a z-polarized component of an incident X-ray radiation. 

                                                 

11The related work “Formation and amplification of sub-femtosecond X-ray pulses in a plasma medium of 

the hydrogen-like ions with a modulated resonant transition” by T.R. Akhmedzhanov et al. will be submitted 

to journal publication soon.. 
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Therefore, it is important to investigate an influence of a y-polarized component 

on amplification of a z-polarized component within a general 5-level model, including all 

four excited degenerate levels. 

Let us assume now that at the entrance to the medium, x=0, the X-ray radiation has 

the form 

   , 0 ,0 ,0 0 ,0 ,0

1 1
( ) ( )exp c.c.+ ( )exp c.c.

2 2
X ray inc z z y yE t z E t i t y E t i t      

, 

(D.1) 

where ,0zE  and ,0yE  are the slowly varying envelopes of z-polarized and y-polarized 

components of incident radiation, ,0z  and ,0y  are their carrier frequencies, and c.c.  

stands for complex conjugation. The radiation (D.1) is chosen to be near-resonant to a 

transition from the ground state |1 to the first excited bound atomic state, 
0

0 21   (where 

0

21  is the unperturbed frequency of the resonant transition). 

Propagation of X-ray radiation through medium is described by wave equation 

2 2 2

2 2 2 2 2

4X ray X rayE E P

x c t c t

    
 

  
 , (D.2) 

where 0 0X ray z yE z E y E    is X-ray field strength, P  is the resonant polarization. 

We take into account now the following states of atomic hydrogen: the ground 

state |1s, denoted as |1, and four degenerate first excited states: |2= (|2s+|2p,m=0)/2, 

|3==(|2s|2p,m=0)/2, |4==|2p,m=1, |5==|2p,m=1. Within this approximation, the 

resonant polarization is defined by density matrix elements ij : 
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 12 21 13 31 14 41 15 51( , ) c.c. ,P r t N d d d d         (D.3) 

where N  is ions concentration and ijd  is dipole moment between states i  and j . 

Within 5 level model, all the non-zero dipole moments are given by: 

12 1 2 , 0 0 13 1 2 , 0 0

22 2 2 , 0 0 33 2 2 , 0 0
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 (D.4) 

In atomic units 
7

5

2

3
d d d

Z
   , and 3 /avd Z , where Z  is ion nucleus charge. 

Under the action of both X-ray and IR field, the evolution of density matrix elements is 

given by: 
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(D.5) 

Here i  is energy of atomic level i . With quadratic Stark effect taken into account, 

 where 

3
2

c IRF E
Z

 
  
 

[113]. 
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The decay rates ij  are defined as 12 13   / 2 / 2,coll ion radiative     14 15  

,2 / 2 / 2,coll ion radiative     23 ,coll ion radiative      24 25 34 35     

/ 2coll ion   ,2 / 2 ,ion radiative   45 ,2 ,coll ion radiative      22 33 ,ion radiative     

44 55   ,2 ,ion radiative    11 radiative   , where coll  and ion  are collisional 

broadening and ionization decay rates correspondingly. radiative  are radiative decay rates, 

which could be found in [157].Collisional broadening was estimated according to [158], 

32
3 33 4 4 2

exp
16 3

c
ion

c c c

FZ
e e

F F F

 
      
        
       

 [113]. ,2ion  can be found using Popov-

Perelomov-Terentiev equations [112]We neglect Doppler broadening of transitions since 

we consider ion temperatures on the order of 1 eV as it is typical in recombination X-ray 

plasma lasers [77], resulting in Doppler broadening comparable or less than collisional 

broadening. It is worth noting that for parameters we consider in the paper, ij  .  

Let us seek for a partial solution in the form 
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, (D.6) 

where ( , )vE x t , ,v y z , and ( , )ij x t  are the slowly-varying amplitudes of the field and 

decay matrix elements, respectively, that is 
1 v
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E t
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v

v

E k
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. In such a case, within the rotating wave 

approximation and approximation of plane waves, we get 
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and 
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where we have introduced local time /t x c   . Equations (D.7) and (D.8) along with 

initial conditions 

(0)( , 0)ij ijx t   , (D.9) 

and boundary conditions (D.1) describe propagation of the X-ray field in x-direction. 

In order to model amplification of incident X-ray field (D.1) through inverted 

medium of X-ray plasma based lasers, we assume at the moment 0t   all the ions have 

equal probability to be in the excited states 2 , 3 , 4 , 5  and there are no coherencies. 

Namely, initial conditions (D.9) become: 

22 33 44 55( , 0) ( , 0) ( , 0) ( , 0) 0.25,

( , 0) 0, 22,33,44,55ij

x t x t x t x t

x t ij

   



       

  
 (D.10) 

The results of the numerical solution of these set of equations in Li III plasma for 

the same parameters of the plasma as in Figure 36 and for different values of intensity of 

an incident y-polarized component are presented in Figure 38. 

  



 

202 

 

 

 

Figure 38. Time-dependence of intensities of z-polarized (a) and b)) and y-

polarized (c) and d)) components of X-ray radiation after propagation through 1.25 mm 

of inverted Li III plasma. The parameters of the plasma, IR field and envelope of the 

incident field are the same as in Figure 36. (a) and (b) correspond to 
3 2( 0) ( 0) 10 /z yI x I x W cm    , (b) and (d) correspond to 

6 2( 0) ( 0) 10 /z yI x I x W cm    . 

Comparison of Figure 36 (a), Figure 38 (a) and (c) clearly shows that the presence 

of highly amplified y-polarized component practically does not affect amplification of the 

seeding z-polarized field, which duration is a few times shorter than a polarization decay 

time of the resonant transition. The peak of y-polarized field essentially delays as 

compared to the peak of an amplified the z-polarized seeding pulse. The reason for this 

delay is that an y-polarized emission occurs in a superradiant (SR) regime. Indeed, 
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cooperative frequency for chosen parameters of the medium 
2
41 13

3
1 10

8

sp
c

Nc
Hz

 


   

( 41  is 4 1  transition wavelength and sp  is spontaneous emission decay rate) 

exceeds the line broadening 12
22 / 4.7 10T Hz  . As a result of this delay, saturation of the 

unmodulated transitions and correspondingly a reduction of gain at the modulated 

transition influences only an amplified stage of free induction decay of z-polarized 

radiation. It is worth to note that an increase of an intensity of an y-polarized component 

of an incident field results in both delay time and SR pulse duration reduction due to 

induced nature of the superradiant process, enhancing an influence of an amplified y-

polarized component on the shape of the amplified free induction decay in the vicinity of 

the peak of a y-polarized SR pulse (see a cusp in Figure 38 (c)) due to gain reduction, 

followed by a restoration of a gain at the back edge of the SR pulse. The investigation of 

the time dependence of z-polarized component both at 3 2( 0) 10 /yI x W cm  and at 

6 2( 0) 10 /yI x W cm   (Figure 38 (a) and (c)) with much higher resolution reveals the same 

structure of ultra-short pulse train with duration about 900 as in the case ( 0) 0yI x    

(Figure 36(a)). The amplitude of the pulses in the train is defined by the total radiation 

pulse envelope, according to Figure 38 (a) and (c). The shape of the pulses starts to destroy 

only in the tail of the envelope pulse in a vicinity of 1ps time. 

 




