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ABSTRACT 

 “Disaster City” is a 52-acre mock city that serves as a training facility for 

emergency responders. Emergency responders from distant locations come to Disaster 

City (DC) for search and rescue training and exercises. The facility has also been used 

by Texas A&M’s Nuclear Security Science & Policy Institute (NSSPI) for several 

radiological emergency training activities. Periodically, sealed radioactive sources are 

used at DC to train emergency responders and students to become more familiar with 

radiation dose rates and field detection equipment. One of the radiological emergency 

training exercises that is being considered currently is to prepare for potential short-lived 

radiological contamination using unsealed radioactive sources. Contamination control 

and monitoring are important elements of using unsealed radioactive sources in the 

environment. It is paramount, therefore, to document the present environmental 

conditions of the DC site in order to help scientists assess future effects caused by 

human activities. The measurement of naturally occurring radiation to establish baseline 

levels is a normal part of security and emergency preparedness. As a result, this research 

involved the conduction of a preliminary survey of gamma radiation background from 

terrestrial sources at the DC site to provide a baseline for the site prior to the startup of 

radiological contamination. This research involved a ground based radiation survey 

using a 4"x4"x16" thallium-doped sodium iodide (NaI (Tl)) ORTEC search system 

(ORTEC NaI-SS). In addition, soil samples, water samples and in situ measurements 
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were analyzed using a high-purity germanium (HPGe) detector. Aliquot water samples 

were counted using liquid scintillation counter (LSC). All data collected were reviewed 

to identify any radiological anomalies. The ORTEC NaI-SS measured count rates that 

ranged from 656 to 2321 s
-1

. The highest average count rate of 1625±63.2 s
-1 

was

observed in the “Rubble Pile 2 area.” Second by second spectral data were summed in 

areas of where the count rates exceeded 1564 s
-1 

to attempt to identify the reason for the

higher count rates. The analysis showed only increased levels of 
40

K and 
232

Th. Similarly,

collected laboratory samples and in-situ HPGe spectra were reviewed. This review 

showed specific radionuclides in the 
238

U chain, 
232

Th chain, and 
40

K. For the LSC

analysis of water samples, the results indicate no detectable radioactivity. In summary, 

the results of this project indicated the presence of only natural background, and no man-

made radiation sources were discovered. 
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NOMENCLATURE 

DC Disaster City 

TEEX Texas A&M Engineering Extension Service 

Cs Cesium 

NSSPI Nuclear Security Science & Policy Institute 

CEBAF  Continuous Electron Beam Accelerator Facility 

JA  Johnston Atoll 

DRI   Desert Research Institute 

ERG  Environmental Restoration Group 

NRC        Nuclear Regulatory Commission 

GPS Global Positioning System 

MARSSIM        Multi-Agency Radiation Survey and Site Investigation Manual 

NORM Naturally Occurring Radioactive Material 

DOE Department Of Energy 

NRC Nuclear Regulatory Commission 

EPA Environmental Protection Agency 

NSC Nuclear Science Center 

US EML      United States Environmental Measurements Laboratory 

TAMU EHS Texas A&M University Environmental Health and Safety 

HPGe High Purity Germanium 

Ge       Germanium
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FWHM Full Width at Half Maximum 

TSTA Technical Skills Training Area
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1. INTRODUCTION

The Texas A&M Engineering Extension Service (TEEX) is a state agency that 

offers training programs and technical assistance to public safety workers, both in Texas 

and from around the world. The agency sponsors the state’s primary urban search and 

rescue force, and operates the Brayton Fire Training Field. “Disaster City” (DC), is a 52-

acre (0.21 km2: 0.081 sq mi) mock city located on the southern border of the Training 

Field. The site serves as a training facility for emergency responders. Emergency 

responders from all over the world come to DC for search and rescue training. The 

facility has also been used by Texas A&M’s Nuclear Security Science & Policy Institute 

(NSSPI) for several radiological emergency training activities. Periodically, sealed 

radioactive sources have been used at DC to train emergency responders and students to 

become more familiar with the use of radiation detection equipment in the field. One of 

the radiological emergency training exercises that is being considered currently is to 

prepare for a potential short-lived radiological contamination exercise using unsealed 

sources. 

An unsealed source is a form of radioactive material which is not encapsulated or 

contained. The use of unsealed sources carries the risk of contamination when not used 

in a controlled setting. The uncontrolled nature of contamination may lead potentially to 

the contamination of the environment. However, planning and preparation for such 

radiological contamination exercise can help minimize potential public health and 

environmental threats.  In addition, it is essential to conduct and document baseline 
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measurements before the commencement of any contamination exercises. These 

measurements will provide a baseline for clean-up should it be necessary. 

 For this reason, a preliminary-survey of external gamma radiation levels 

throughout DC was conducted. The external survey used a 4"x4"x16" NaI (Tl) gamma 

radiation search mobile detector system. This research also included in situ 

measurements and analysis of soil and water samples using a HPGe detector. In addition, 

liquid scintillation was employed to analyze water samples from surrounding bodies of 

water. 

 The most common radionuclides in soil and ground water are from three natural 

decay series, 238U,  232Th and 40K [1].  Naturally occurring radionuclides found in the 

environment may originate from a variety of sources [2]. In addition, naturally occurring 

radioactive material concentrations can be increased above the average natural 

background through human activities. Considering the environmental factors and 

uncertainties involved, the results from this research will provide a useful baseline for 

future exercises at DC. This research documented all radiological survey results and 

provides detailed information on present radiological conditions at DC. 

The research objectives were: to characterize the radiation background of DC and 

provide a map showing the distribution of gross count rate of background radiation and 

to collect spectra for soil and water samples. A site map of DC is shown in Figure 1. The 

detection of man-made radionuclides other than naturally occurring radioactive materials 

was doubtful. However, if any man-made radionuclides were identified, the samples 
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would be retained and the Radiological Safety Division of Texas A&M University 

Environmental Health and Safety (TAMU EHS) would be informed immediately.  

Figure 1. Map of sampling and measurement location. 
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2. LITERATURE REVIEW

There are many other examples of site surveys that have been performed to screen 

large areas for radioactive material. The following examples closely pertain to the 

project objectives at DC.  

Wollenberg et al., [3] conducted a survey of the gamma radiation background from 

terrestrial sources at the Continuous Electron Beam Accelerator Facility (CEBAF) site in 

Newport News, VA, on November 12-16, 1990. The survey provided a gamma-radiation 

baseline for the site prior to the startup of the accelerator. The survey measurements 

were conducted using a portable gamma-ray spectrometer system (the Geometrics GR 

410), incorporating a 3-inch diameter by 3-inch thick NaI(TI) detector, accompanied by 

the collection of soil samples. Wollenberg conducted the survey by placing the detection 

devices approximately 3-ft above the ground while traversing the site on foot. The soil 

samples were collected by troweling the top 2 to 3-cm of the soil from several points 

over a 20-ft diameter area into plastic bags.  

Wilson-Nichols et al. [4] conducted a radiological survey in 1980 to determine the 

extent of surface transuranic contamination on Johnston Atoll (JA). The survey was also 

conducted to help evaluate the gamma radiation background. Survey measurements were 

made with different grid spacing depending on the specific areas being surveyed. For 

some areas, a 50-100-ft grid spacing was used in the survey measurements. A series of 

ground measurements were conducted through soil sampling. Each soil sample was 

composed of 12 subsamples, each 15-cm on a side and 3-cm deep within a given 50-ft 
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by 50-ft sampling location. Results of the survey were compiled into a long-term 

database by the Desert Research Institute (DRI) for future reference. 

The Environmental Restoration Group (ERG) [5] conducted a baseline radiological 

study for the Dewey Burdock uranium in-situ recovery project site owned by Powertech 

(USA), Inc. The study was performed between August 2001 and August 2008 to obtain a 

radioactive material license from the U.S. Nuclear Regulatory Commission (NRC). The 

radiological field measurements consisted of the following activities: a). performing 

Global Positioning System (GPS)-based gamma-radiation surveys at 100 to 500-m 

transects spanning the site; b). collecting surface soil samples (0-15-cm) at 75 randomly 

selected and at 5 different locations. 

The GPS-based gamma-radiation survey was conducted using an unshielded 2” x 2” 

NaI detector and a Trimble Pro XRS GPS receiver. In order to find greater variations in 

gamma-ray emission, the transect spacing was reduced in certain areas. The survey 

speed was maintained between 2 and 5-ft per second with x and y coordinates and 

gamma-ray count rates recorded every second. The NaI detector height was relatively 

constant at approximately 18-inches above the ground surface.   

The studies above were mainly used to provide guidance to meet the objectives 

of this study. Some specific survey techniques and data analysis methods were 

implemented on this project. For example, Wollenberg et al. conducted the ground- 

based measurements on foot as implemented in this study. In addition, the survey 

described here used techniques similar to the Environmental Restoration Group to 

conduct in-situ analysis. Ground measurements conducted by Wilson-Nichols et al. 
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provided insight into soil sampling and analysis. Using examples of past research helped 

shape the execution of this work.      
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3. RADIATION IN THE ENVIRONMENT

Human exposure to radiation is an inescapable part of life. Everyone is exposed 

to ionizing radiation in their daily life. Other than medical treatment, the majority of our 

daily exposure comes from primordial sources of radiation from radionuclides that 

remain from the creation of all matter billions of years ago [6]. Among the primordial 

sources are the 40K (half-life 1.27 x 109 yr), and the 238U (half-life 4.46 x 109 yr) and 

232Th (half-life 1.39 x 1010 yr) decay series as shown in Figure 2. These radionuclides are 

found in rock, soil, and water bodies, as well as other environmental media. All 

radionuclides present in the soil are somehow part of the food chain that leads to the 

human body. For example, these radionuclide can drain into water, plants absorb the 

water through the soil and are released into the air where they are consumed and inhaled 

by humans. Another exposure path can be found through building materials containing 

primordial radionuclides. The radiation emitted by primordial radionuclides contributes 

about 90% of the average exposure to natural background ionizing radiation in the 

United States and 76% of the average exposure when considering all other sources such 

as medical x-ray, nuclear medicine, consumer products, etc. [7]. 

The remaining 10% of the average exposure to natural background radiation in 

the United States comes from cosmic radiation. It is also interesting to note that natural 

background radiation levels vary from one location to another. These exposures depend 

on two things: altitude and the position of the earth. The atmosphere serves as a shield- 

that is why living at sea level results in lower background doses than living in Denver. 

But, position on earth is also important, that is, equator versus the poles. In addition, 
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under certain weather conditions, there may be short-term variations of natural radiation 

levels. 

Radiation in the environment has been mapped and surveilled to better 

understand the variation of radiation intensity. In addition to natural radiation, man-made 

radionuclides from nuclear weapons fallout, nuclear power plants, and many radiological 

accidents have contributed to contamination of the environment, thus making studies in 

environmental radioactivity even more important. 

Figure 2. The radioactive decay in 232Th and 238U series [8] 
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3.1 Anthropogenic sources 

Anthropogenic sources are man-made (artificial) radionuclides, which are 

produced as a result of human activities. Most artificial radionuclides are used to 

manufacture goods and produce energy. For example, 241Am is used in smoke detectors. 

Humans also produce radionuclides for use in agriculture, research and medicine. There 

are many other examples of radionuclides in consumer products, and each contributes to 

some exposure to mankind. 

Other artificial radionuclides that can impact environmental studies include 

fallout radiation from past atmospheric nuclear weapon tests. During the 1950s and 

1960s, many radioactive elements were released into the atmosphere [9]. These 

radioactive contaminants have been transported through the atmosphere and deposited 

around the world. A few examples of atmospheric releases are: 137Cs, 90Sr, and 95Zr [10]. 

In summary, all sources of natural and man-made radiation can contribute to background 

radiation. 
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3.2 Pathways of radionuclides in the environment 

As mentioned above, natural or artificial radiation sources can contribute to some 

levels of radioactivity present in the environment. The three main migration pathways 

for radiological contaminants include air, ground water and soil. Mostly these migration 

pathways can be concentrated with NORM or artificially produced radionuclides. Other 

ways of releasing radionuclides in the environmental are through accidents and poor 

waste disposal. Contamination of food and water sources can occur from dust 

transported by wind from uranium mine sites and waste deposits [11]. 

 The major routes of exposure pathways to humans are ingestion, inhalation, and 

direct exposure. Human receptors may be exposed through ingestion and inhalation of 

radiologically contaminated dust and soil particles in the environment. Also, direct 

gamma exposure may occur when receptors are near enough to radiological 

contamination to receive a dose. A good illustration of the many pathways that the 

public may be receive radiation exposure is shown in Figure 3. 
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Figure 3. Radionuclides exposure to humans [12] 
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4. SURVEY METHODS

4.1 Detector functionality 

To assure spectral data were accurate a rigorous detector response check regime 

was maintained. The detector spectrum was set at a 3 MeV scale in order to detect a 

series of nuclides that might be found naturally on the site and would be used during 

contamination exercises. There were a series of detector operational response checks 

conducted before and after every walkover survey. Prior to leaving for DC, the energy 

response of the instrument was checked using a single 137Cs source (10 µCi). This was 

done to assure the functionality of the detector before transporting it to the site. Due to 

problems that might have occurred during transportation of the detector system, a second 

response check was performed at the site. By doing this, any change in detector response 

was noticed before a survey was conducted.  After a 1-hr background acquisition, the 

detector was gain stabilized on natural potassium (40K) at 1460.2 keV using the ORTEC 

system software. A rigorous-energy calibration was not performed since exact 

radionuclide identification was not the purpose of the survey. The purpose of the survey 

was to evaluate background levels present in DC. Therefore, a single energy response 

check provided the quality assurance that the detector system was functional. 

In addition, the function of the survey instrument was checked at the end of each 

work day using the same radionuclide standard. At every scan interval (water break), a 

five-minute, energy-response measurement was performed using the same radionuclide 

standard. This check was performed periodically during the day to determine the 

functionality of the detector. 
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The ORTEC NaI-SS was conveniently packaged in a rugged plastic container 

and controlled by a computer system via a USB cable. The NaI-SS used a ORTEC 

digiBASE, which provided high voltage and a digital multi-channel analyzer (MCA) for 

the NaI(TI) detector. The detector system was controlled by NaISS-B32 system software 

version 2.5. The ORTEC MAESTRO-32 analysis software (included in the NaISS-B32 

software suite) was used for spectra analysis. The NaISS-B32 system acquires and 

records second by second gross counts, gamma-ray spectra and GPS locations in an 

internal database. A GPS, integrated into the measuring system, records the exact 

position of the detected radiation. 

 In addition, the NaISS-B32 system software has a feature for setting regions of 

interest (ROI): a way to denote energy ranges in the spectrum for specific radionuclides. 

The NaISS-B32 system software operational manual was followed to set the ROIs for 

the survey [13]. The energy ranges of the ROIs selected for the survey were based on the 

naturally occurring radioactive materials such as 238U, 232Th, and 40K. Due to the low 

gamma-ray energy of 238U, the daughter radionuclide 234mPa with highest gamma-ray 

energy (1001 keV) was used. The following radionuclides were also included in the 

ROI: 99mTc, 56Mn, and 18F. These radionuclides were identified for potential use at DC.  

However, since rigorous calibration was not performed these ROIs were not trusted. To 

test the functionality of the energy ranges set in the ROI, the detector was tested with 

reference radionuclides of 60Co and 137Cs. These are industrial long-lived radionuclides 

which might be present in DC, and therefore, were tested and monitored during the 

survey 
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Although the concentration of radioactive materials in effluents of research 

reactors are much lower compared to power reactors, environmental monitoring is still 

essential. The DC site under study is approximately 2 miles north-east to the Texas 

A&M University Nuclear Science Center (NSC) that houses 1MW TRIGA research 

reactor. For this reason, other radionuclides of environmental concern were added to the 

ROIs for monitoring purposes. Some of these radionuclides that were included in the 

ROIs were: 137Cs and 131I. 

. 
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4.2 Gamma walkover survey 

Ground-based survey and water sampling procedures of the DC site were 

performed with well-established methods in the Multi-Agency Radiation Survey and 

Site Investigation Manual (MARSSIM) and Environmental Monitoring Laboratory 

(EML) manual respectively [14, 15]. The MARSSIM document is a multi-agency 

consensus document that was developed together by four Federal agencies having 

authority and control over radioactive materials: Department of Defense (DOE), 

Department of Energy (DOE), Environmental Protection Agency (EPA), and Nuclear 

Regulatory Commission (NRC). The MARSSIM and EML document provided 

information on planning, conducting, sampling, and documenting building surface, 

vegetation, water, and surface soil radiological survey. 

The walkover survey was conducted using a 4"x4"x16" ORTEC NaI- Search 

System (NaI-SS). The ORTEC NaI-SS was mounted on a four-wheel cart and pulled at a 

walking speed between 2 and 3-feet per second, in a “serpentine” pattern with a line 

spacing of approximately 10-20-ft, throughout the area as terrain and obstacles 

permitted. The detector was kept at approximately 18-inches above the ground and in the 

same orientation as shown in Figure 4. The goal was to record data for natural 

background radioactivity, to identify radionuclides that are present in the areas, and to 

map the distribution of background gamma radioactivity. The data collected coupled 

with mapping tools such as Quantum Geographical Information System (QGIS) was 

used to provide a visual representation of background radioactivity. 
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Figure 4. Walkover system configuration used for the DC survey. 

The GPS-based gamma survey was conducted over 3 days between June 07, 

2016 to July 22, 2016. For the survey purposes, the DC site was categorized into five (5) 

sections: Rubble Pile 1 Area, Rubble Pile 2 Area, Disaster Victim Triage Area, 

Technical Skills Training Area (TSTA), and Parking Lot Area as shown in Figure 5. For 

completeness, the roads in DC were covered in the survey. The surveys were transected 

at approximately 40-60-ft apart in all areas as permitted by terrain and obstacles. The 

second by second spectra and count rates were recorded. ROI count rates were also 

recorded. The count rate from the survey measurement was assigned a color code; blue 

(low count rates (656-1025 s
-1

)), yellow (mid-range count rate (1025-1564 s
-1

)), and red
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(high count rate (1564-2321 s
-1

)) and plotted on a map of DC. The map of background

radiation was developed using Quantum Geographic Information System (GIS) version 

2.16.  In addition, minimum, maximum, and mean of the data points were compared to 

one another.  

Figure 5. Map of DC with the survey areas displayed. 
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4.3 In situ measurements 

In situ measurements were taken using a HPGe in areas not accessible by the 

cart. These areas include Rubble Pile 1 and 2 since they are most likely to be used during 

a contamination exercise. Measurements were collected on six different static locations 

on top of the rubble piles as shown in Figure 6.  A portable tripod-mounted gamma 

spectroscopy system (HPGe) was used in these measurements. The detector was 

suspended at a height approximately 3-ft above the surface. The face of the HPGe 

detector was pointed at the ground to detect gamma rays from the pile as shown in 

Figure 7. Each measurement was counted 15-minutes. 

Figure 6. In situ measurement locations. 
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Figure 7. Tripod-HPGe detector apparatus used for in-situ measurements on the rubble 

piles. 
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5. SOIL SAMPLING

Soil samples were collected based on a review of the walkover survey. Based on 

the ground-based map distribution of natural radioactivity, the location with the highest 

gamma-ray reading logged was selected for soil sampling. Additionally, samples were 

collected in areas to be impacted by future operations.  During the sample collection, 

latitude and longitude were recorded to provide traceability. 

In total, a set of twenty two samples were collected from DC with depths of 2-5-

cm (surface soil). In all, nine samples were collected from Rubble Pile 1 area, three 

samples from Rubble Pile 2 area, three samples from DVTA, and three samples from the 

TSTA area (See Figure 5). The soil sample location identifiers and location are listed in 

Table 1. Visual location of soil samples and geographical location are shown in Figure 8 

and listed in Table 1 respectively. 
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Table 1. Collected soil samples and geographical locations. 

Geographical Location 

Sample Location Sample Code Latitude o Longitude o 

Rubble Pile 1 

Pile 1-SA1 30.575767 -96.350400 

Pile 1-SA2 30.575650 -96.350383 

Pile 1-SA3 30.575533 -96.350450 

Pile 1-SA4 30.575433 -96.350550 

Pile 1-SA5 30.575217 -96.350550 

Pile 1-SA6 30.575183 -96.350317 

Pile 1-SA7 30.575400 -96.350100 

Pile 1-SA8 30.575033 -96.350500 

Pile 1-SA9 30.575550 -96.350267 

  Rubble Pile 2 

Pile 2-SA1 30.575667 -96.351617 

Pile 2-SA2 30.575800 -96.351967 

Pile 2-SA3 30.576100 -96.352533 

Disaster Victim Triage Area 

DVTA-SA1 30.576450 -96.349383 

DVTA-SA2 30.575983 -96.349217 

DVTA-SA3 30.575550 -96.349417 

DVTA-SA4 30.575817 -96.348617 

DVTA-SA5 30.575167 -96.349250 

Technical Skills Training Area 

TSTA-S1 30.575883 -96.349950 

TSTA-S2 30.576583 -96.351617 

TSTA-S3 30.576000 -96.351383 

TSTA-S4 30.576117 -96.350333 

Training Center TC_S1 30.574150 -96.350433 
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Figure 8. Soil sample locations in Disaster City. 

Sampling equipment was selected based on the type of soil and required sample 

depth. Soil samples were collected using a bulb planter (to provide uniform diameter) 

and hand trowel (to remove vegetation cover). The vegetation cover (e.g., rocks, plant 

roots, or concrete) was removed before sampling. To eliminate problems associated with 

different depth profile for samples, constant surface area and depth were maintained. 

After collection, the samples were carefully transferred into 0.5-L Marinelli beakers 

(approximate weight of 450-g) for radionuclide analysis using an HPGe high-resolution 

gamma-spectrometer in Figure 9. When performing sample analyses, errors in the 

measured quantities because of inappropriate sampling and sample preparation methods 

can occur. Considering these concerns, every procedure employed in this research was 
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consistent with United States Environmental Measurements Laboratory (US EML) 

approved procedures [16]. 

Figure 9. Soils samples sealed into 0.5-L Marinelli Beakers. 
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5.1 Gamma spectroscopy of soil and water samples 

The advantage of gamma-ray spectrometry is the ability to measure gamma 

emitters directly in samples without performing chemical separations. To record spectra 

of soil samples, an HPGe detector was used. HPGe detectors are used in gamma-ray 

spectroscopy analysis because of their excellent energy resolution. Each sample was 

measured with a 55% relative efficiency HPGe and a multichannel analyzer with 8192 

channels (Appendix A). 

 Prior to the analysis, the HPGe detector was energy calibrated. In addition, a 24-

hour background measurement was performed in the shielded detector. The detector was 

surrounded by a cylindrical shield consisting of lead with thickness of about 5-cm, 

which provided shielding for background gamma radiation present at the laboratory. A 

counting time of twenty-four hours was allocated for each sample to record a spectrum. 

For each samples, a background-subtracted spectrum was evaluated using ORTEC’s 

GammaVision 32 software program. 
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6. WATER SAMPLING

Water is important in environmental studies because of its ability to transport 

pollutants. NORM is a common part of natural waters, in particular alpha-radiation-

emitting uranium, radium, and their progeny, including radon [17]. In addition, when 

contamination is identified in soil samples, there is a greater chance of contaminants 

migrating to ponds and lakes in the vicinity of DC. Therefore, when assessing the 

groundwater condition at a site, serious consideration should be given to water migration 

paths [18]. This is mainly possible after a heavy rain via groundwater flow since these 

provide avenues for quick contaminant migration. For this reason, the environmental 

division of TAMU EHS accepted an invitation for a site visit to DC to help identify 

groundwater flow directions. The visit was very helpful in identifying suitable water 

sampling locations. Lake Esti is the closest body of water to the proposed locations for 

the future contamination exercises. In the event of a heavy rain, Lake Esti has the 

potential to overflow and could drain into White Creek. At the same time, Lake Esti was 

constructed to hold a large volume of water and has not overflowed in past years. 

Therefore, White Creek was not a major concern and was eliminated as a sample 

location. 

Water samples were collected at Lake Esti and a pond in the vicinity of DC as 

shown in Figure 10. The water samples approximately 12-40-cm deep were collected in 

2-L polypropylene bottles. Dose rate measurements were performed on each one gallon 

of water sample collected using a Victoreen (Fluke 451 Ion Chamber Survey Meter). 

The collected water samples were left for twenty-four hours in polypropylene bottles to 
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allow settling of any suspended solid materials. Aliquot samples were transferred into 

0.5-L Marinelli beakers for radionuclide analysis via gamma-ray spectrometry. The 

remaining samples were used in LSC analysis for better counting efficiency for alpha 

and beta emitters. 

Figure 10. Water sampling locations in Disaster City. 
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6.1 Liquid Scintillation analysis of water samples 

LSC is the most common and practical method for measuring low-energy beta 

emitters. The samples are combined into a “cocktail,” which combines the nuclides with 

a liquid scintillator to optimize the counting efficiency of alpha and beta particles. In the 

cocktail, there is an emulsifier (solvent) and flour (solute). The incident radiation is 

deposited in the solvent molecule, which transfers energy to the fluor molecules [19]. 

Part of the kinetic energy of the ionizing particle is transferred to the cocktail and 

converted into light, which is detected by the LSC system. 

In total, a set of ten water samples were collected from bodies of water in DC. 

Seven water samples were collected from Lake Esti while three water samples were 

collected from the pond (Figure 10 and Table 2). The LSC analysis of water samples 

were conducted using a Tri-Carb 3110 TR Liquid Scintillation Analyzer system located 

at the TAMU EHS Radiological Safety Office as shown in Figure 11. The detector 

assembly is surrounded by a minimum of 5-cm of lead. The instrument was calibrated 

before any samples were counted. The calibration was performed using the Self-

Normalization and Calibration (SNC) standard containing 14C, 3H, and a background 

source. The calibration standards have varying efficiencies for the two radionuclides; the 

efficiency with the 14C standard was 95% and that of 3H was 60%.  For the purpose of 

screening and being conservative, the counting efficiency of the LSC system was 

assumed to be 33%. The efficiency was assumed in order to help overestimate count 

rate. The LSC system has the capability of setting three separate measuring regions for 

alpha and beta counts. Counting was conducted to analyze the following energy regions: 
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channel A (1.9 to 18.6 keV), B (1.9 to 157.0 keV), and C (1.9 to 2000 keV). These 

regions represent the energy range of alpha, beta and gamma, respectively. 

Table 2. Collected water samples and geographical locations. 

Geographical Location 

Sample Location Sample Code Latitude o Longitude o 

Lake Esti 

LE1 30.576100 -96.352600 

LE2 30.576700 -96.352300 

LE3 30.577000 -96.351900 

LE4 30.577600 -96.350800 

LE5 30.578100 -96.351800 

LE6 30.577700 -96.352700 

LE7 30.577200 -96.352700 

Pond 

P1 30.578800 -96.349800 

P2 30.579200 -96.349800 

P3 30.579400 -96.349300 
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For the purpose of recording background count rate, the TAMU Radiological 

Safety Office procedures for counting “carboy liquid waste” samples were employed. 

For the carboy waste measurements, a 1-mL to 5-mL sample-cocktail ratio was used. 

The ratio was modified to accommodate the low-level environmental water samples. 

Higher sample volume allows for better counting results. Therefore, 3-mL water sample 

aliquots were transferred into a vial containing 15-mL of cocktail and agitated for 1-min. 

Background count rates were determined by measuring control water samples (triple 

purified distilled water) and cocktail in the same proportions and conditions as DC 

samples. After sample preparation, the samples were left in the LSC counter for 2-3 

hours to obtain dark effect. This step reduces the chemiluminescence influenced by both 

the water sample and the concentration of cocktail added. Chemiluminescence results in 

the emission of light as a result of a chemical reaction between the water sample and the 

cocktail. This process could cause a false reading (high CPM). One way of overcoming 

chemiluminescence counting problems is to leave the samples in the dark before 

counting. Subsequently, after dark adapting the samples were counted for 60-minutes.   

If samples with counts double the background were discovered, these samples 

were to be set aside for further measurement using alpha/beta discrimination. 
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Figure 11. TriCarb 3110 TR Liquid Scintillation System. 
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7. RESULTS AND DISCUSSION

7.1 Measurement results of mobile radiological survey 

The walkthrough scanning of DC was conducted over three separate days. In 

total, the actual survey took just over 1-hour. The reason the survey was spread out over 

several days was to work around DC scheduling and system checks. In all 4659 second-

by-second and spectral measurements were recorded. The 4659 gamma readings are 

plotted as a color scheme on the map of DC to show the location at which they were 

taken as shown in Figure 12. 

Figure 12. Visual distribution of total counts per second of gamma-rays in Disaster City. 
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The results indicated that the natural background gamma radiation count rates on the site 

ranged from 656 to 2321 s-1 using a 4"x4"x16" thallium-doped NaI detector.  The count 

distributions were grouped into three categories: with 656 to 1025 s-1 being the blue, 

1025 to 1564 s-1  being the yellow and 1564 to 2321 s-1  as red. These regions were 

chosen to represent equal interval of the data. Figure 13 shows the histogram of the 

combined count rate recorded in the detector at various surveyed zones at DC. 

Figure 13. Histogram of the count rates recorded in various survey zones at Disaster 

City. 

 The graph shows that the combined count rates do not demonstrate a normal 

(bell-shape) distribution. Collectively, the most frequently recorded count rates were 

between the ranges of 1650-1750 s-1  and 1750-1850 s-1. In addition, the data set was 

summarized into a histogram for individual areas surveyed as shown in Figures 14 

through 19. Each histogram has a bi-modal distribution that is different for each areas 
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surveyed. The variability appears to be due to the natural background radiation variation. 

The average, minimum, and maximum spectrum count rate registered for different 

surveyed areas are shown in Table 3. 

From the ground survey, it was shown that some areas have higher average count 

rates. For areas around the rubble piles, increased background is probably due to the 

increased concrete and building materials present. For the open grassland, the 

temperature (heat) creating moisture from the soil can contribute to higher count rate 

[20]. In addition, the detector walk-over was conducted on open grassland with no 

shielding covering the grassland. This can cause a higher count rate of natural 

background radiation. 

In situ measurements were completed and spectra were analyzed. Figure 20 

shows a typical gamma-ray spectrum collected for in situ measurements. The in situ 

measurements showed the same photopeak structure as that of the soil samples. 

Radionuclides in the NORM group (238U chain, 232Th chain, and 40K) were identified. 
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Table 3. Total count rate registered for different survey areas in Disaster City. 

Figure 14. Histogram of total count rate recorded in Disaster Victim Traige Area. 

TSTA Parking Lot DVTA Rubble Pile 1 Rubble Pile 2 Roads

Average 1556.6±510 943±33.6 1308±44.3 1461±50.3 1625±63.2 931±29.8

Maximum 2244 1196 1989 2025 2321 1317

Minimum 909 778 656 831 927 711

Data Points 695 572 1241 481 810 860

Count Rate (s
-1

)

0

20

40

60

80

100

120

140

160

F
re

q
u

en
cy

Count Rate

1241 Data Points



35 

Figure 15. Histogram of total count rate recorded in Parking Lot area. 

Figure 16. Histogram of total count rate recorded in Rubble Pile 1. 
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Figure 17. Histogram of total count rate recorded in Rubble Pile 2. 

Figure 18. Histogram of total count rate recorded in TSTA area. 
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Figure 19. Histogram of total count rate recorded on the Roads. 
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Figure 20. Typical gamma-ray spectrum for in situ measurements. 

In addition, 10-sec selected spectra were summed for survey locations where 

"high" and "low" background count rates were observed. This was done to compare the 

spectra and to identify the reasons for elevated count rates in some areas such as Rubble 

Pile 2. Figure 21 and Figure 22 illustrate 10 seconds, each, of summed spectra from 

Rubble Pile 2 area ( count rates between 1634 s-1 and 2321 s-1) and the Parking Lot area 

(background) . The ten high count rate areas were all compared to the background areas 

and shows similar results. The spectra were over-laid for comparison as shown in Figure 

23. Gamma analysis software GammaVision-6.0 was used.
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Figure 21.  A 10-sec summed spectra of high background count rates in Rubble Pile 2. 

Figure 22. A 10-sec summed spectra of low background count rates in Parking Lot. 
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Figure 23. Comparison of spectra in Figure 19 and 20. The cyan color represents 

selected summed spectra from low background count rate area. The green represent 

selected spectra from high background count rate area. 

From the second-by-second spectra comparison of areas surveyed, it was 

observed that the increase in count rate was due to elevated counts obtained from 40K 

(1460.2 keV) and 232Th (through the intensity of 2614 keV gamma-line). The Compton 

region (that is the lower energy end of the spectrum) was also observed to be higher than 

the lower background areas.  This is due to the higher energy photons from 40K and 

232Th Compton Scattering, which adds to the counts in this region.  
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7.2 Radioactivity in soil samples 

The soil samples were collected based upon a review of data collected from the 

field survey. These areas showed the highest count rates during the walk-over survey. 

Samples were taken in the proximity of areas where the count rates were above 1634 s-1. 

This count rate was chosen based on the survey results, 73.3% of the data points were 

below this count rate. In addition, samples were collected in areas that may be impacted 

by future contamination exercises. A set of 22 samples were analyzed via gamma 

spectroscopy. As anticipated, various radionuclides in the NORM group (238U chain, 

232Th chain, and 40K) were identified. During the spectra review, special attention was 

given to radionuclides whose photopeaks may not be easily resolved: 238U (49.55 keV) 

and 226Ra (186.2 keV). These radionuclides have low-gamma-energy lines and are a 

concern for regulation purposes during environmental analysis. The presence of uranium 

and radium was verified by identifying daughter photopeaks. In general, 214Bi (609 keV), 

which is in secular equilibrium with 226Ra can be used as a surrogate for determining the 

presence of 226Ra. Likewise, 234mPa (1001 keV) can be used to determine the presence of 

238U. 232Th can be identified with the daughter (208TI) through the intensity of 2614 keV 

gamma-line. These assumptions were used because of the secular equilibrium status of 

the parent and daughter radionuclides. Spectra were collected for soil samples and all 

similar NORM photopeaks and their associated radionuclides were identified. A typical 

spectrum for soil samples collected in DC is shown in Figure 24. 
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Figure 24. Typical background-subtracted gamma-ray spectrum for measurements of 

soil samples. 

Based on the measured soil samples, specific radionuclides in the 238U chain, 

232Th chain, and 40K were identified in the spectra. The spectra showed a low level single 

photopeak of 137Cs in the soil samples. The 
137

Cs detected in the soil samples are not

related to the operations at DC. This is not unexpected; long lived decay and activation 

products from nuclear weapon tests and/or nuclear facilities (mainly 
137

Cs) add to the

normal background radiation in the environment [21]. Today, approximately 30 years 

since latest deposition, low level of
 137

Cs can still be measured in soils in the

environment [22]. Soil samples from different regions of DC showed similar photopeak 

structures. The spectra of soil samples and reports were saved to provide a baseline. In 

the future, any changes or contaminant in soil samples other than NORM can be easily 

identified. 
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7.3 Radioactivity in water samples 

Aliquot water samples were put into a standard geometry (0.5-L Marinelli 

beaker) for gamma-ray counting. The pH values of the water samples were measured on-

site. The pH of the groundwater varied from 7.1 to 7.8.  To record spectra of water 

samples, a HPGe detector was used. All gamma spectra were analyzed and stored in the 

appropriate software-compatible device for future reference. A typical background 

subtracted spectrum collected from the Lake Esti and the Pond is shown in Figure 25.  

Figure 25. Typical background-subtracted gamma-rays spectrum for measurements of 

water samples. 
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As expected, radionuclides in the NORM group (238U chain, 232Th chain, and 

40K) were identified and measured. The photopeaks were identified directly with their 

gamma-rays energies and via their daughter radionuclides. 40K was identified by using 

its own gamma-ray photopeak at 1460.2 keV. Recorded counts in the HPGe water 

spectra were two times lower than those observed in soil samples. The background 

counts in the water mainly came from natural sources through the sediments. The higher 

counts in soil samples originate mainly from the uranium and thorium decay series and 

radioactive potassium. Dose rate measurements were in the range between 3-8-µR h-1. In 

the future, any changes or contaminants in water samples other than NORM can be 

easily identified via gamma spectroscopy. 

7.3.1 Liquid Scintillation counting analysis 

The LSC results from Lake Esti water samples are shown in Table 4. The first 

column represents the water sample identification number. Due to the wide energy range 

in region C, the results in that column presented the total gross counts in the samples. 

The results showed an average background count rate of approximately 20 cpm. The 

results obtained were approximately equal to or less than the controlled background 

sample count rate. 
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Table 4. Results for total radioactivity in Lake Esti water samples (See Figure 10). 

Lake Esti - 60-minutes Count Surveyed by    IYT 

16-Nov-2016 Survey Date 11/4/2016 

PerkinElmer Tri-Carb 3110 TR User # 31 Input by IYT 

Average 

Background 19.8 Efficiency 33% Input Date 11/8/2016 

Minimum Detectable Activity (MDA) in DPM 65.7 Date Counted 11/7/2016 

Minimum Detectable Activity (MDA) in CPM 21.67 Samples 7+3 

Sample # CPM A CPM B CPM C 

Sample Gross Counts 

LE1 8.33± 2.9 13.67±3.6 20.00±4.5 

LE2 8.33±2.9 13.67±3.6 19.67±4.4 

LE3 8.33±2.9 13.67±3.6 20.00±4.5 

LE4 8.67±4.0 14.00±3.7 19.67±4.4 

LE5 8.33±2.9 13.67±3.6 20.00±4.5 

LE6 8.33±2.9 13.67±3.6 19.67±4.4 

LE7 8.33±2.9 13.67±3.6 20.00±4.5 

BKG 1 8.67±4.0 14.00±3.7 19.67±4.4 

Background BKG 2 8.33±2.9 13.67±3.6 20.00±4.5 

BKG 3 8.33±2.9 13.67±3.6 19.67±4.4 



46 

The results obtained from the Pond are shown in Table 5.  It was observed that 

the count rates obtained with triple-distilled water compared with the collected samples 

did not differ significantly. Both Lake Esti and the Pond showed results approximately 

equal to the background measurements. The results indicate no detectable radioactivity 

in the water samples. 
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Table 5. Results for total radioactivity in pond water samples 

Pond - 60-minutes Count Surveyed by    IYT 

16-Nov-2016 Survey Date 11/4/2016 

PerkinElmer Tri-Carb 3110 TR User # 31 Input by IYT 

Average 

Background 19.8 Efficiency 33% Input Date 11/8/2016 

Minimum Detectable Activity (MDA) in DPM 65.7 Date Counted 11/7/2016 

Minimum Detectable Activity (MDA) in CPM 21.67 Samples 3+3 

Sample # CPM A CPM B CPM C 

Sample Gross Count 
P1 8.33±2.9 14.00±3.7 19.67±4.4 

P2 8.00±2.8 13.67±3.6 19.67±4.4 

P3 8.33±2.9 14.00±3.7 19.67±4.4 

BKG 1 8.00±2.8 13.67±3.6 20.00±4.5 

Background BKG 2 8.33±2.9 14.00±3.7 19.67±4.4 

BKG 3 8.00±2.8 13.67±3.6 19.67±4.4 
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8. SUMMARY AND CONCLUSION

To expand the training capabilities at the Disaster City complex, NSSPI 

researchers are investigating the use of loose contamination in and around the facility 

structures. However, prior to using loose contamination, it is important to know the 

existing radiation environment. This research conducted a baseline survey for the 

purpose of determining the natural radiation levels currently present within Disaster 

City. A ground-based radiation survey was conducted a using 4"x4"x16" thallium-doped 

sodium iodide (NaI(Tl)) gamma radiation search mobile detector system. Other 

environmental media such as water, soil and in situ measurements were analyzed by 

using a HPGe detector. Also, water samples were counted by a liquid scintillation 

counter. 

The results from the walk-over survey with the 4"x4"x16" thallium-doped 

sodium iodide (NaI(Tl)) recorded the highest average count rate of 1625±63.2 s-1 at the 

Rubble Pile 2 location. A comparison between the water and soil samples showed 

spectra typical of NORM in the environment. Also, similar spectral signatures are found 

in the in situ measurements on the rubble piles. In addition, the LSC analysis of water 

samples indicated no detectable radioactivity is present in Lake Esti and the pond. 

In conclusion, this research was able to provide a baseline measurement of 

background radiation throughout DC.  Spectra of soil and water samples were collected 

and saved for future reference. With reference to these baseline results, any future 

changes in the environment radiation levels, mainly those arising from radiological 

training activities at the Disaster City, can be ascertained. However, considering that 
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environmental conditions may change over a period of time, DC should be monitored 

periodically. Particularly, at the start of the contamination exercise, possible impacted 

areas should be re-surveyed. Soil and water samples should be re-collected for gamma-

ray spectroscopy analysis. This will provide more current results that will be used to 

compare with the study already done by this thesis.  
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APPENDIX A 

HPGE DETECTOR SPECIFICATION SHEET 
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APPENDIX B 

WEATHER CONDITIONS DURING THE WALK-OVER SURVEYS 

Date of Site Visit Wind  Humidity Temp. (oF ) Pressure Visibility 

UV 

Index 

Precipitation 

(mm)  

6/07/2016 

W 6mph 73% 91 30.00 inHg 10.2 mi 1 0 

              

6/11/2016 

S 8mph 82% 76 29.00 inHg 10.0 mi 1 0 

              

7/22/2016 

SW  7mph 77% 82 30.10 inHg 10.0 mi 1 0 

       
 

 

 

 

 

 

 

 




