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ABSTRACT 

 

New complexities have been identified in fractured shale reservoirs, such as multi-

porosity types and non-Darcian transport and storage mechanisms in the shale nano-pores. 

Reservoir simulation serves as a convenient approach for reservoir management. 

However, commercial reservoir simulators remain as black boxes for reservoir engineers. 

Currently none of these simulators offer a full-featured tool to solve those problems. 

In this work, a general Multi-Porosity Model is developed to handle the reservoir 

heterogeneity in the fractured reservoirs. This model allows the simulation of any number 

of porosity systems, and thus it resolves the limited number of porosity types in the Dual-

Porosity Models. Moreover, this model allows arbitrary inter-porosity and intra-porosity 

connections, so it breaks the limitation of fixed connections in the Dual-Porosity Models. 

In addition, a novel porosity subdivision algorithm has been designed, and a new shape 

factor is correspondingly derived to consider the porosity subdivision. Therefore, the 

transient flow can be accurately approximated by the high resolution from the subdivision. 

Finally, the Multi-Porosity Model is implemented as a standalone unstructured tool, and 

thus it is able to be flexibly interfaced with unstructured reservoir simulators. This 

approach is successfully applied to model fluid transport in the fractured reservoirs and 

shale gas reservoirs. 

The second thrust area is the development of a fully compositional simulator, 

General Unstructured Reservoir Utility (GURU). GURU is based on Control-Volume 

Finite-Difference method, so it can conveniently handle different grid discretization 
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methods, such as Cartesian grids, discrete fracture models and Multi-Porosity Models etc. 

Besides, a novel class of compositional space preconditioned VLE methods has been 

proposed for efficient compositional simulation, and it speeds up the flash calculation by 

a more reliable initial estimate. In addition, mechanisms are flexibly considered in GURU. 

Darcy flow is the basic flow mechanism, and multi-component adsorption is optionally 

considered for fluid storage. Gas slippage and Knudsen diffusion are also incorporated for 

the shale gas transport. Furthermore, a unique shale reservoir modeling workflow is 

established for mechanistic investigation. Heterogeneity of the fractures is upscaled by 

sector models, and multi-porosity types are honored by the Triple-Porosity Model, and 

fluid storage and transport physics are implemented in GURU. 
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NOMENCLATURE 

 

Acronyms 

BHP Bottom Hole Pressure 

CRS Compressed Row Storage 

CSIG Compositional Space based Initial Guess 

DFM Discrete Fracture Model 

DFN Discrete Fracture Network Model 

DP Dual-Porosity Model 

DPSP Dual-Porosity Single-Permeability Model 

EDFN Enhanced Discrete Fracture Network Model 

EOS Equation of State 

FIM Fully Implicit Method 

FS Fracture System 

FX 𝑥-axis oriented fractures 

FY 𝑦-axis oriented fractures 

GURU General Unstructured Reservoir Utility 

HF Hydraulic Fractures 

IM Inorganic Matrix 

IMPES IMplicit Pressure Explicit Saturation 

IMPEM IMplicit Pressure Explicit Mass 

LGR Local Grid Refinement 
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NC Neighbor Connection 

NF Natural Fractures 

NNC Non-Neighbor Connection 

NR Newton Raphson method 

MCRS Modified Compressed Row Storage 

MINC Multiple INteracting Continua 

MPM Multi-Porosity Model 

OGIP Original Gas In Place 

OM Organic Matrix 

PIC Pseudo Idle Component 

PKC Pseudo Key Component 

PR-EOS Peng-Robinson Equation of State 

QPQK Quad-Porosity Quad-Permeability Model 

RR Rachford-Rice Equation 

RRP Rachford-Rice Equation Preconditioning 

SRV Stimulated Reservoir Volume 

SSI Successive Substitution Iteration method 

TPDK Triple-Porosity Dual-Permeability Model 

TPSP Triple-Porosity Single-Permeability Model 

TPTP Triple-Porosity Triple-Permeability Model 

VLE Vapor Liquid Equilibrium 

WCIG Wilson’s Correlation based Initial Guess 
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Greeks 

𝛽 Coefficient in shape factor formulation, dimensionless 

𝜂 Gas apparent permeability multiplier, dimensionless 

𝜉𝛼 Viscosity parameter of phase 𝛼 

𝜉𝑖 Viscosity parameter for component 𝑖 

𝜖 Perturbation 

𝜀 Tolerance 

𝜔𝑖 Acentric factor of component 𝑖 

𝒮𝑖 Component shift factor of component 𝑖 for volume translation 

𝜅𝑖𝑗 Binary interaction coefficient between component 𝑖 and 𝑗 

Δ𝑡 Time step size, 𝑑𝑎𝑦𝑠 

Δ𝑥 Grid size in 𝑥 direction, 𝑓𝑡 

Δ𝑦 Grid size in 𝑦 direction, 𝑓𝑡 

Δ𝑧 Grid size in 𝑧 direction, 𝑓𝑡 

𝜙 Porosity, fraction 

Φ Potential, 𝑝𝑠𝑖𝑎 

Φ𝛼 Phase potential, 𝑝𝑠𝑖𝑎 

𝜑𝑖
𝛼 Fugacity coefficient of component 𝑖 in phase 𝛼 

𝜆𝛼 Mobility of phase 𝛼, 𝑐𝑃−1 

𝜆𝛼,𝑝 Mobility of phase 𝛼 for well perforation 𝑝, 𝑐𝑃−1 

𝜆𝑖 Mean free path for component 𝑖, 𝜇𝑚 

𝜇 Fluid viscosity, 𝑐𝑃 
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𝜇𝛼 Viscosity of phase 𝛼, 𝑐𝑃 

𝜇𝛼
∗  Phase viscosity at atmospheric pressure, 𝑐𝑃 

𝜇𝑚𝑓 Average fluid viscosity between matrix and fracture, 𝑐𝑃 

𝜌 Fluid mass density, 𝑙𝑏/𝑓𝑡3 

𝜌𝛼 Fluid mass density of phase 𝛼, 𝑙𝑏/𝑓𝑡3 

𝜌𝛼,𝑠 Average mass density phase 𝛼 in connection 𝑠 

𝜌𝑚𝑓 Average fluid density between matrix and fracture, 𝑙𝑏/𝑓𝑡3 

𝜌𝑠 Rock bulk mass density, 𝑙𝑏/𝑓𝑡3 

𝜌̃𝛼 Molar density of phase 𝛼, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝜌̃𝛼
𝑠𝑐 Molar density of phase 𝛼 at standard condition, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝜌̃𝑟𝛼 Reduced phase molar density for phase 𝛼, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝜌̃𝑝𝑐𝛼
 Pseudocritical phase molar density, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝜎 Shape factor, 𝑓𝑡−2 

𝜎𝑚𝑓𝑖 Shape factor between fracture and matrix sub-blocks in 𝑖 direction 

 (𝑖 = 𝑥, 𝑦, 𝑧), 𝑓𝑡−2 

𝜏𝛼(𝑗,𝑖) Mass transfer rate of phase α between 𝑗𝑡ℎ and 𝑖𝑡ℎ porosity, 

 𝑙𝑏/𝑑𝑎𝑦 

𝜏𝑚𝑓 Transfer flow rate between matrix and fracture, 𝑙𝑏/𝑑𝑎𝑦 

𝜏𝑚𝑓𝑖 𝜏𝑚𝑓 in 𝑖 = 𝑥, 𝑦, 𝑧 direction, 𝑙𝑏/𝑑𝑎𝑦 
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Subscripts and superscripts 

𝛼  Phase index, including oil (𝑜), gas (𝑔), and water (𝑤) 

𝑎𝑣𝑔 Average 

𝑓 Fracture 

𝑖 Fluid component index in compositional space 

𝑗  Cell index or porosity index in material balance equation 

𝑙 Liquid phase 

𝑛 Previous timestep or iteration 

𝑛 + 1 Current timestep or iteration 

𝑛𝑤𝑒𝑡 Non-wetting phase 

𝑚 Matrix 

𝑝 Perforation index 

𝑟𝑒𝑓 Reference pressure condition 

𝑟𝑒𝑠 Reservoir 

𝑠 Connection or connected cell surface index 

𝑠𝑐  Surface condition 

𝑠ℎ𝑖𝑓𝑡 Volume shift 

𝑇 Matrix transpose operation 

𝑣 Vapor phase 

𝑤𝑒𝑙𝑙 Well 

𝑤𝑒𝑡 Wetting phase 
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Variables 

𝑎 PR-EOS mixture parameter 

𝑎𝑖 PR-EOS parameter for component 𝑖 

𝐴 PR-EOS coefficient 

𝐴𝑗 Contact area for the surface of connection 𝑠 or matrix block and 

 fracture in 𝑥, 𝑦, 𝑧 directions, 𝑓𝑡2 

𝑏 PR-EOS mixture parameter 

𝑏𝑖 PR-EOS parameter for component 𝑖 

𝐵 PR-EOS coefficient 

𝐵𝑤 Water formation volume factor, 𝑅𝐵/𝑆𝑇𝐵 

𝑐 Overall correction factor for volume translation 

𝑐𝛼 Phase correction factor for volume translation 

𝑐𝑖 Volume translation correction factor for component 𝑖 

𝐶𝜇𝑤
 Water viscosibility, 𝑝𝑠𝑖𝑎−1 

𝐶𝑟 Rock compressibility, 𝑝𝑠𝑖𝑎−1 

𝐶𝑤 Water compressibility, 𝑝𝑠𝑖𝑎−1 

𝑑𝑓 Half of fracture aperture, 𝑓𝑡 

𝑑𝑖 Distance between matrix block and fracture surface, 𝑓𝑡 

𝑑𝑚,𝑗 Collison diameter of component 𝑗, 𝜇m 

𝐷 Depth of grid, 𝑓𝑡 

𝑓𝑖 Number of surfaces of matrix sub-block connected to fracture in 𝑖 

 direction (𝑖 = 𝑥, 𝑦, 𝑧), dimensionless 
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𝑓𝑙 Liquid mole fraction, fraction 

𝑓𝑙
𝑠𝑐 Liquid mole fraction at surface condition, fraction 

𝑓𝑣 Vapor mole fraction, fraction 

𝑓𝑣
𝑠𝑐 Vapor mole fraction at surface condition, fraction 

𝑓𝑖
𝛼 Fugacity of component 𝑖 in phase 𝛼 

𝑔𝑐 Gravity constant 

𝑔𝑗 Function defining compositional spaces, 𝑗 = 1, 2, 3, 4 

𝐽 Jacobian matrix for Newton-Raphson Method 

𝑘 Rock permeability, 𝑚𝐷 

𝑘𝑎𝑝𝑝 Matrix apparent permeability, 𝑚𝐷 

𝑘0 Rock intrinsic permeability, 𝑚𝐷 

𝑘𝑖𝑗 Average permeability between 𝑖𝑡ℎ porosity and 𝑗𝑡ℎ porosity, 𝑚𝐷 

𝑘𝑚 Matrix permeability, 𝑚𝐷 

𝑘𝑚𝑓 Average permeability between matrix and fracture, 𝑚𝐷 

𝑘𝑟𝛼 Relative permeability, dimensionless 

𝑘𝑟𝑜𝑐𝑤 Oil relative permeability at connate water saturation 

𝑘𝑟𝑜𝑔 Oil relative permeability at connate water and actual gas 

 saturation 

𝑘𝑟𝑜𝑤 Oil relative permeability at actual water saturation 

𝑘𝑥 Rock permeability in 𝑥 direction, 𝑚𝐷 

𝑘𝑦 Rock permeability in 𝑦 direction, 𝑚𝐷 
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𝑘𝑧 Rock permeability in 𝑧 direction, 𝑚𝐷 

𝐾𝑖 Equilibrium ratio of component 𝑖, dimensionless 

𝐾𝑛,𝑖 Knudsen number of component 𝑖, dimensionless 

𝐿 Size of cubic matrix block, 𝑓𝑡 

𝐿𝑖 Size of matrix block or sub-block in 𝑖 = 𝑥, 𝑦, 𝑧 direction, 𝑓𝑡 

𝐿𝑗 Nodal distance from grid block center to interface, 𝑓𝑡2 

𝑛𝐶𝑒𝑙𝑙𝑠 Total number of active cells in a reservoir model 

𝑛ℎ Total number of component in oil and gas phases 

𝑁 Number of orthogonal fracture sets, 𝑁 =  1, 2, 3 

𝑁𝐴 Avogadro’s constant, 6.022 × 1026 𝑘𝑚𝑜𝑙−1 

𝑁𝑖 Moles of component 𝑖 stored in compressed state in unit cell 

 volume, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝑁𝑤 Moles of water in unit cell volume, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝑛𝑊𝑒𝑙𝑙𝑠 Total number of wells in a reservoir model 

𝑀𝑖 Moles of component 𝑖 stored by gas adsorption in unit cell 

 volume, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3 

𝑀𝑊𝑖 Molecular weight of component 𝑖, 𝑙𝑏/𝑙𝑏𝑚𝑜𝑙 

𝑀𝑊𝛼 Molecular weight of phase 𝛼, 𝑙𝑏/𝑙𝑏𝑚𝑜𝑙 

𝑝 Pressure, 𝑝𝑠𝑖𝑎 

𝑝𝛼 Pressure of phase 𝛼, 𝑝𝑠𝑖𝑎 

𝑝𝑏 Bubble point pressure, 𝑝𝑠𝑖𝑎 

𝑝𝑐 Capillary pressure between nonwetting and wetting phases, 𝑝𝑠𝑖𝑎 
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𝑝𝑐𝑖 Critical pressure of component 𝑖, 𝑝𝑠𝑖𝑎 

𝑝𝑝 Pressure at well perforation 𝑝, 𝑝𝑠𝑖𝑎 

𝑝𝑟𝑖 Reduced pressure of component 𝑖 

𝑝𝑤𝑓 Bottom-hole pressure, 𝑝𝑠𝑖𝑎 

𝑝𝑤𝑓
∗  Bottom-hole pressure specified by user, 𝑝𝑖𝑠𝑎 

𝑝𝐿,𝑖 Langmuir pressure of component 𝑖, 𝑝𝑠𝑖𝑎 

𝑃𝑉𝑗  Pore volume in cell 𝑗, 𝑓𝑡3 

𝑄 Well production or injection mass rate, 𝑙𝑏/𝑑𝑎𝑦 

𝑄̃𝛼 Phase molar rate for well, 𝑙𝑏𝑚𝑜𝑙/𝑑𝑎𝑦 

𝑞𝛼
𝑝
 Molar rate of phase 𝛼 in perforation 𝑝, 𝑙𝑏𝑚𝑜𝑙/𝑑𝑎𝑦 

𝑄𝑉,𝛼
∗  Phase volume rate at surface condition for phase 𝛼, 𝑆𝑇𝐵/𝑑𝑎𝑦 or 

 𝑀𝑆𝐶𝐹/𝑑𝑎𝑦 

𝑟 Pore radii, 𝜇𝑚 

𝑟𝑜 Effective wellbore radius, 𝑓𝑡 

𝑟𝑤 Wellbore radius, 𝑓𝑡 

𝑅 Gas constant, 10.7316 𝑓𝑡3𝑝𝑠𝑖𝑎/𝑅/𝑙𝑏𝑚𝑜𝑙 

𝑅⃗  Residual vector 

𝑅𝑓,𝑖 Fugacity equilibrium residual for component 𝑖 

𝑅𝑖,𝑗 Mass balance residual of hydrocarbon component 𝑖 in cell 𝑗 

𝑅𝑟 Rachford-Rice Equation residual 

𝑅𝑤,𝑗 Mass balance residual of water component in cell 𝑗 
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𝑅𝑣𝑜𝑙,𝑗 Volume balance in cell 𝑗 

𝑅𝑤,𝑗 Mass balance residual of water in cell 𝑗 

𝑅⃗ 𝑟𝑒𝑠 Reservoir residual 

𝑅⃗ 𝑤𝑒𝑙𝑙 Well residual 

𝑆𝛼 Saturation of phase 𝛼, volume fraction 

𝑆 Well skin, dimensionless 

𝑡 Time, days 

𝑇 Temperature, ℉ 

𝑇𝑐𝑖 Critical temperature of component 𝑖, ℉ 

𝑇𝐹,𝐹 Intra-porosity transmissibility submatrix in fracture porosity 

𝑇𝐹,𝐼 Inter-porosity transmissibility submatrix between fracture and 

 inorganic porosity 

𝑇𝐹,𝑂 Inter-porosity transmissibility submatrix between fracture and 

 organic porosity 

𝑇𝐼,𝐼 Intra-porosity transmissibility submatrix within inorganic porosity 

𝑇𝐼,𝑂 Inter-porosity transmissibility submatrix between inorganic and 

 organic porosity 

𝑇𝑂,𝑂 Intra-porosity transmissibility submatrix within organic porosity 

𝑇𝑠 Transmissibility between two connected cells, 𝑚𝐷 ∙ 𝑓𝑡 

𝑇𝑟𝑖 Reduced temperature of component 𝑖, dimensionless 

𝓋𝛼 Molar volume of phase 𝛼, 𝑓𝑡3/𝑙𝑏𝑚𝑜𝑙 
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𝓋𝑐𝑖
 Critical molar volume of component 𝑖, 𝑓𝑡3/𝑙𝑏𝑚𝑜𝑙 

𝑉𝑗 Grid volume of cell 𝑗, 𝑓𝑡3 

𝑉𝛼,𝑗 Fluid volume of phase 𝛼 in grid 𝑗, 𝑓𝑡3 

𝑉𝐿,𝑖 Langmuir volume of component 𝑖, 𝑠𝑐𝑓/𝑙𝑏 

𝑉𝑚 Volume of matrix block, 𝑓𝑡3 

𝑊𝐼𝑝 Well geometric index of perforation 𝑝, 𝑚𝐷 ∙ 𝑓𝑡 

𝑥𝑖 Liquid phase mole fraction of component 𝑖 , fraction 

𝑥𝑖
𝛼 Mole fraction of component 𝑖 in phase 𝛼, fraction 

𝑋  Primary variable vector 

𝑦𝑖 Vapor phase mole fraction of component 𝑖 , fraction 

𝑧𝑖 Bulk fluid composition, fraction 

𝑍 Compressibility factor, dimensionless 

  



 

xviii 

TABLE OF CONTENTS 

 

Page 

ABSTRACT ...................................................................................................................ii 

DEDICATION .............................................................................................................. iv 

ACKNOWLEDGEMENTS ........................................................................................... v 

NOMENCLATURE .....................................................................................................vii 

TABLE OF CONTENTS ......................................................................................... xviii 

LIST OF FIGURES ..................................................................................................... xxi 

LIST OF TABLES ...................................................................................................xxvii 

CHAPTER I INTRODUCTION .................................................................................... 1 

1.1  Background ................................................................................................. 1 
1.1.1  Fractured Reservoir Modeling ............................................................. 1 

1.1.2  Shale Reservoir Features ...................................................................... 3 
1.2  Study Scopes ............................................................................................... 4 

1.3  Development Milestones ............................................................................. 6 

CHAPTER II  GENERAL MULTI-POROSITY MODEL ........................................... 8 

2.1  Previous Work in Literature ........................................................................ 8 

2.2  Shape Factor Derivation and Validation ................................................... 13 
2.2.1  Previous Model for Bulk Matrix ........................................................ 14 

2.2.2  New Model Considering Matrix Subdivision .................................... 16 
2.2.3  Numerical Results .............................................................................. 19 

2.3  Multi-Porosity Model ................................................................................ 24 

2.4  Summary ................................................................................................... 31 

CHAPTER III VALIDATION OF GENERAL MULTI-POROSITY MODEL ......... 32 

3.1  Dual-Porosity Models ............................................................................... 32 
3.2  Triple-Porosity Models ............................................................................. 41 
3.3  Two Phase Flow in a Shale Gas Reservoir ............................................... 49 
3.4  Summary ................................................................................................... 57 



 

xix 

CHAPTER IV GENERAL UNSTRUCTURED RESERVOIR UTILITY .................. 59 

4.1  Model Assumption .................................................................................... 59 
4.2  Primary Mathematical Formulation .......................................................... 61 

4.2.1  Mass Balance Equations ..................................................................... 62 
4.2.2  Volume Balance Equation .................................................................. 66 
4.2.3  Well Residual Equation ...................................................................... 66 

4.3  Auxiliary Equations................................................................................... 67 
4.3.1  Equation of State ................................................................................ 68 

4.3.2  Vapor-Liquid Equilibrium .................................................................. 68 
4.3.2.1  VLE Residuals ............................................................................. 69 

4.3.2.2  VLE Preconditioned by Compositional Space ............................ 70 
4.3.2.2.1  Fluids with Slightly Varying or Constant Composition ....... 71 
4.3.2.2.2  Fluids with Sharply Varying Composition ........................... 75 

4.3.3  Volume Translation ............................................................................ 79 

4.3.4  Oil and Gas Viscosities ...................................................................... 80 
4.3.5  Water Properties ................................................................................. 82 

4.3.6  Rock-Fluid Functions ......................................................................... 83 
4.3.6.1  Capillary Pressure ....................................................................... 83 
4.3.6.2  Relative Permeability Curve ....................................................... 83 

4.3.7  Rock Compressibility ......................................................................... 84 
4.3.8  Gas Shale Apparent Permeability ...................................................... 84 

4.4  Global Linear System ................................................................................ 86 
4.4.1  Primary Equations and Variables ....................................................... 86 

4.4.2  Jacobian Calculation and Construction .............................................. 88 
4.4.3  Jacobian Storage and Linear Solvers ................................................. 92 

4.5  Simulation Workflow ................................................................................ 92 
4.6  Summary ................................................................................................... 95 

CHAPTER V VALIDATION OF GURU AND VLE ALGORITHMS ...................... 96 

5.1  Compositional Simulation Benchmark Case............................................. 96 
5.2  Discrete Fracture Reservoir Models ........................................................ 103 

5.2.1  Enhanced Discrete Fracture Network (EDFN) ................................ 104 
5.2.2  Embedded Discrete Fracture Model (EDFM) .................................. 107 
5.2.3  Comparison of EDFN and EDFM .................................................... 107 

5.2.3.1 No Capillary Pressure ................................................................. 113 
5.2.3.2 Considering Capillary Pressure .................................................. 115 

5.3  Performance of Compositional Space Preconditioned VLE ................... 117 
5.3.1  Fixed Fluid Composition .................................................................. 117 

5.3.2  Sharply Varying Fluid Composition with Gas Injection .................. 122 
5.4  Summary ................................................................................................. 129 

CHAPTER VI MODELING SHALE GAS STORAGE AND TRANSPORT .......... 131 



 

xx 

6.1  Workflow from EDFN to Multi-Porosity Modeling ............................... 131 
6.2  Enhanced Discrete Fracture Network (EDFN) Model Upscaling ........... 134 

6.2.1  Upscale Dual-Porosity Model from EDFN Model .......................... 135 
6.2.2  Upscaling Sector Models with Different Fracture Distribution ....... 137 

6.3  Triple-Porosity Triple-Permeability Model ............................................ 140 
6.4  Connectivity Topology in Shale Reservoirs ........................................... 148 
6.5  Flow Mechanism Analysis ...................................................................... 154 
6.6  Summary ................................................................................................. 160 

CHAPTER VII CONCLUSIONS AND RECOMMENDATIONS ........................... 162 

7.1  Conclusions ............................................................................................. 162 
7.2  Recommendations ................................................................................... 166 

REFERENCES ........................................................................................................... 167 

APPENDIX A EQUATION OF STATE ................................................................... 176 

APPENDIX B VAPOR LIQUID EQUILIBRIUM .................................................... 178 

B.1  Successive Substitution Iteration ............................................................ 178 
B.2  Newton-Raphson Iteration ...................................................................... 179 

  



 

xxi 

LIST OF FIGURES 

 

Page 

Fig. 1.1—Dual-Porosity Model .......................................................................................... 3 

Fig. 2.1—Schematic of fluid flowing from a bulk matrix block (gray) to outer  

                surrounding fractures (transparent) .................................................................. 14 

Fig. 2.2—Schematic of matrix-fracture transfer for subdivided matrix: different 

                matrix sub-blocks have different number of surfaces connected to 

                fracture system ................................................................................................. 16 

Fig. 2.3—Comparison of numerical and analytical results of 𝛽 in Equation (2.6) .......... 22 

Fig. 2.4—Comparison of numerical and analytical results of 𝛽 in Equation (2.23) ........ 24 

Fig. 2.5—Conventional Multi-Porosity Model ................................................................ 26 

Fig. 2.6—Multi-Porosity with Subdivision: “HF” – hydraulic fractures; “NF” – 

                natural  fractures; “IM” – inorganic matrix; “OM” – organic matrix. ............. 27 

Fig. 2.7—Fluid transport pyramid of Quad-Porosity Dual-Permeability Model (four 

                porosity types: P1, P2, P3, P4) ......................................................................... 29 

Fig. 2.8—Jacobian matrices of Quad-Porosity Dual-Permeability Models (QPDK): 

                 (a) Jacobian matrix for Fig. 2.5 without matrix subdivision; 

                 (b) Jacobian matrix for Fig. 2.6 with matrix subdivision. ............................... 30 

Fig. 3.1—Fine-Grid Single-Porosity Models for 𝑁 =  1,2,3. ......................................... 33 

Fig. 3.2—Cumulative gas production for three different sets of cases: 

                 (a) N = 1:1 set of fractures; (b) N = 2: 2 sets of fractures; 

                 (c) N = 3: 3 sets of fractures. .......................................................................... 35 

Fig. 3.3—Results for system with three sets of fractures in logarithmic time scale ........ 38 

Fig. 3.4—Dual-Porosity Model with Matrix Subdivision: fracture, 1 grid; 

                matrix, 9 by 9 by 9 grids. ................................................................................. 39 

Fig. 3.5—Results for system with three sets of fractures, with matrix subdivision 

                in Dual-Porosity Models, in logarithmic time scale ......................................... 40 



 

xxii 

Fig. 3.6—Pressure profile of Fine-Grid Single-Porosity Model, 

                time step: 0.002905 hours ................................................................................ 43 

Fig. 3.7—Gas production comparison between Triple-Porosity Dual-Permeability 

                 (TPDK) Models without Matrix Subdivision (different shape factors)  

                 and Fine-Grid Single-Porosity Model ............................................................. 45 

Fig. 3.8—Gas production comparison between Triple-Porosity Dual-Permeability 

                 (TPDK) Models with Matrix Subdivision and Fine-Grid 

                Single-Porosity Model ...................................................................................... 46 

Fig. 3.9—Pressure profile of Triple-Porosity Dual-Permeability Model with 

                6 by 6 by 1matrix subdivision. Time step: 0.002905 hours ............................. 47 

Fig. 3.10—Comparison of grid numbers between Triple-Porosity Dual-Permeability 

                (TPDK) Models and Fine-Grid Single-Porosity Model. .................................. 48 

Fig. 3.11—Comparison of CPU time between Triple-Porosity Dual-Permeability 

                (TPDK) Models and Fine-Grid Single-Porosity Model ................................... 49 

Fig. 3.12—Capillary pressure in the shale model ............................................................ 50 

Fig 3.13—Relative permeability curve in the shale model .............................................. 51 

Fig. 3.14—Two different schemes to discretize the quad-porosity reservoir model: 

                 (a) Scheme I: Quad-Porosity Model without matrix subdivision; 

                 (b) Scheme II: Quad-Porosity Model with subdivision in 

                 inorganic and organic matrix. .......................................................................... 53 

Fig. 3.15—Average pressure in each porosity system for Scheme I and II. .................... 54 

Fig. 3.16—Pressure map after 20 years production: left column – Scheme I; 

                right column – Scheme II. ................................................................................ 55 

Fig. 3.17—Average water saturation in each porosity types in Scheme I and II ............. 56 

Fig. 3.18—Gas production in Scheme I and II ................................................................ 57 

Fig. 4.1—Unstructured data format defined by FORTRAN syntax ................................ 60 

Fig. 4.2—Vapor mole fraction of Maljamar Reservoir Oil at 89.96 ℉, 

                𝐶𝑂2 fraction is 0.1667 ..................................................................................... 72 

Fig. 4.3—Component K-values of Maljamar Reservoir Oil at 89.96 ℉, 



 

xxiii 

                𝐶𝑂2 fraction is 0.1667 ..................................................................................... 73 

Fig. 4.4—Workflow of VLE procedure for fixed fluid compositions ............................. 75 

Fig. 4.5—Phase diagram of North Ward Estes oil at 82.99 ℉ 

                with different 𝐶𝑂2 mole fraction ...................................................................... 76 

Fig. 4.6—K-values of North Ward Estes oil at 82.99 ℉ 

                following the bubble point line in Fig. 4.5 ....................................................... 77 

Fig. 4.7—Workflow of flash calculation for fluid with sharp varying composition ....... 79 

Fig. 4.8—Comparison between numerical differentiation (ND) and 

                hard analytical differentiation (HAD) .............................................................. 89 

Fig. 4.9— (a) 1-D single phase black-oil model with 4 cells; (b) Jacobian for (a) .......... 91 

Fig. 4.10—Module tree in GURU .................................................................................... 93 

Fig. 4.11—Simulation workflow in GURU ..................................................................... 94 

Fig. 5.1—Horizontal permeability distribution in the benchmark case ........................... 97 

Fig. 5.2—Rock-fluid functions used in this study. (a) Oil and water relative  

                permeability in the matrix and fractures; (b) Oil and gas relative  

                permeability in the matrix and fracture; (c) Oil-water and gas-oil  

                capillary pressure curves.Oil-gas capillarity is assumed to be zero. ................ 99 

Fig. 5.3—Comparison of GURU and Eclipse 300 for the benchmark case ................... 101 

Fig. 5.4—Layer averaged fluid saturation with time in the model: (a) 𝑆𝑤; (b) 𝑆𝑔 ......... 102 

Fig. 5.5—Water (a) and gas (b) saturation map at t = 302.7 𝑑𝑎𝑦𝑠 ................................ 103 

Fig. 5.6—(a) Schematic of fracture network distributed in 2D domain; 

                 (b) fracture grids defined by fracture intersections (red nodes) 

                 and fracture extremities (blue nodes) (based on Mi et al. (2016)) ................ 104 

Fig. 5.7—Discretization of the matrix medium in Fig. 5.6 (based on Mi et al. (2016)) 105 

Fig. 5.8—Improve matrix resolution through transforming into a rectangular 

                block and 1D logarithmic refinement (based on Mi et al. (2016)). ................ 106 



 

xxiv 

Fig. 5.9—Connection schematic in EDFN. Fi: fracture grid i; Mij: matrix 

                subgrid 𝑗 associated with 𝐹𝑖 ............................................................................ 106 

Fig. 5.10—(a) reservoir with 31 non-orthogonal fractures; (b) EDFN 

                discretization; (c) EDFM discretization. ........................................................ 108 

Fig. 5.11—Rock-fluid functions used in this study. (a) Oil and water relative  

                permeability in the matrix and fractures; (b) Oil and gas relative  

                permeability in the matrix and fracture; (c) Oil-water and gas-oil 

                capillary pressure curves. Oil-gas capillarity is assumed to be zero. ............. 110 

Fig. 5.12—Jacobian matrix for two different models at the same newton: (a) 

                structure of Jacobian; (b) Jacobian of EDFN; (c) Jacobian of EDFM. .......... 112 

Fig. 5.13—Results for the case without considering capillarity pressure.  

                 (a) bottom-hole pressure; (b) oil production rate;  

                 (c) production gas-oil ratio (GOR); (d) water production rate;  

                 (e) reservoir average oil saturation; 

                 (f) reservoir average gas saturation. .............................................................. 113 

Fig. 5.14—Results for the case with considering capillarity pressure. 

                 (a) bottom-hole pressure; (b) oil production rate; 

                 (c) production gas-oil ratio; (d) water production rate; 

                 (e) reservoir average oil saturation; 

                 (f) reservoir average gas saturation. .............................................................. 115 

Fig. 5.15—Flash iteration for different fluid samples based on: 

                 (1) WCIG + SSI + NR (green square markers), 

                 (2) CSIG + SSI + NR (blue circle markers), (3) CSIG + RRP + NR 

                 (purple triangular markers), and 100 different pressure conditions  

                 randomly from range [100, 𝑝𝑏] 𝑝𝑠𝑖𝑎 for each fluid sample. ........................ 120 

Fig. 5.16—Vapor mole fraction for CO2 mixing with North Ward Estes 

                Oil at 82.99 ℉ ................................................................................................ 123 

Fig. 5.17—𝐶𝑂2 mole fractions and pressure conditions of North Ward Estes Oil ........ 124 

Fig. 5.18—Flash performance for 12 cases in Table 5.9 using WCIG + SSI + NR ...... 126 

Fig. 5.19—Flash performance for 12 cases in Table 5.9 using CSIG + SSI + NR, 

                with 6.67 flash iterations and 5 NR iterations on average ............................. 127 

Fig. 5.20—Flash performance for 12 different cases in Table 5.9 based on 

                CSIG + RRP + NR, with 4.58 NR iterations on average ............................... 128 



 

xxv 

Fig. 5.21—CPU time ratio of CSIG + SSI + NR to CSIG + RRP + NR 

                (red dash line: base line for no speedup) ........................................................ 128 

Fig. 5.22—CPU time ratios for the 3 methods. WCIG + SSI + NR 

                fails in Case 9 to 12 ........................................................................................ 129 

Fig. 6.1—Workflow from EDFN to Multi-Porosity Model ........................................... 133 

Fig. 6.2—(a) 40 fractures distributed in a sector model (red lines: well); 

                (b) EDFN model ............................................................................................. 135 

Fig. 6.3—Dual-Porosity Single-Permeability Model: (a) fracture domain, 

                red circle represents well perforation; (b) matrix domain. ............................. 136 

Fig. 6.4—Result comparison between EDFN and DPSP. (a) gas rate, 

                difference between the two models: 1.96%; (b) average reservoir 

                pressure, difference between the two models: 0.76%. ................................... 137 

Fig. 6.5—Five regional sector models with different number of fractures and 

                fracture configuration, and basically fractures are evenly distributed. .......... 138 

Fig. 6.6—Shape factors for the five different sector models in Fig. 6.5 ........................ 139 

Fig. 6.7—Shape factor distribution based on sector models with  

                different fracture configuration. Upper: shape factor map in field scale; 

                lower: sector model with different fracture distribution. ............................... 140 

Fig. 6.8—Pressure profile in Triple-Porosity Triple-Permeability Model 

                at different stages ........................................................................................... 144 

Fig. 6.9—Comparison of reservoir performance of cases with homogeneous  

                shape factor and case with upscaled shape factor: (a) gas production rate; 

                (b) cumulative gas production; (c) average reservoir pressure. ..................... 146 

Fig. 6.10—Six different Triple-Porosity Models to simulate shale gas reservoirs: 

                 (a) Triple-Porosity Triple-Permeability(TPTP) Model; (b) Triple- 

                Porosity Dual-Permeability(TPDP) Model without intra-porosity 

                flux in OM; (c) Triple-Porosity Single-Permeability(TPSP) Model 

                without intra-porosity flux in OM and IM; (d) TPSP Model with 

                IM and OM tied to FS in parallel; (e) TPSP Model with IM and OM 

                tied to FS in serial as OM-IM-FS-Wellbore; (f) TPSP Model with 

                IM and OM tied to FS in serial as IM-OM-FS-Wellbore. ............................. 149 

Fig. 6.11—Transmissibility matrices for the Triple-Porosity Models in Fig. 6.10. 



 

xxvi 

                Red dot represents a non-zero transmissibility connecting two grid 

                blocks, and black dashed rectangular boxes designate subdomains 

                of inter-porosity or intra-porosity connections. .............................................. 151 

Fig. 6.12—Cumulative gas producing rate (a) and average reservoir pressure (b) 

                of six different models in Fig. 6.10 (a) to (f). ................................................. 152 

Fig. 6.13—The ratio of apparent permeability (kapp) to matrix intrinsic 

                permeability (𝑘0) for 𝐶𝑂2 and 𝐶𝐻4 at reservoir pressure range .................... 155 

Fig. 6.14—Adsorption isotherms for 𝐶𝑂2 and 𝐶𝐻4 ....................................................... 156 

Fig. 6.15—Fluid in place distribution (unit: mol%) in different shale porosity  

                systems: (a) OGIP considering gas adsorption in organic matrix; 

                (b) OGIP with only free gas considered. ........................................................ 157 

Fig. 6.16—Reservoir performance comparison for the consideration  

                of different mechanisms: (a) average reservoir pressure; 

                (b) cumulative gas production. ....................................................................... 158 

  



 

xxvii 

LIST OF TABLES 

 

Page 

Table 2.1—Different 𝛽 values in Equation (2.6) ............................................................. 11 

Table 2.2—Basic parameters to calculate shape factors .................................................. 20 

Table 2.3—Binary connection table to control connections of 4 porosity types 

                in Fig. 2.7 ......................................................................................................... 29 

Table 3.1—Parameters for Fine-Grid Single-Porosity Models and 

                Dual-Porosity Models ...................................................................................... 34 

Table 3.2—Parameters for a model with 6 sets of x-axis oriented fractures (FX) 

                and 6 sets of 𝑦-axis oriented fractures (FY) ..................................................... 42 

Table 3.3—Data for quad-porosity model for each porosity ........................................... 51 

Table 3.4—Reservoir geometry parameter for quad-porosity model .............................. 52 

Table 4.1—Summary of primary equations and variables ............................................... 87 

Table 5.1—Basic reservoir parameters in compositional simulation benchmark case .... 97 

Table 5.2—Compositional fluid properties for 5-component EOS characterization ....... 98 

Table 5.3—Basic reservoir parameters .......................................................................... 109 

Table 5.4—Comparison of discretization of EDFN and EDFM Models ....................... 112 

Table 5.5—Difference between EDFN and EDFM Models .......................................... 114 

Table 5.6—Error of EDFN model compared to EDFM model ...................................... 116 

Table 5.7—Fluid composition and saturation pressure of six fluid 

                samples (Li and Firoozabadi 2012) ................................................................ 118 

Table 5.8—Average flash iterations of different fluid sample 

                based on different approaches ........................................................................ 121 

Table 5.9—12 𝐶𝑂2 mole fractions and pressure conditions of North Ward Estes Oil .. 124 



 

xxviii 

Table 6.1—Basic parameters to EDFN and upscaled DPSP models ............................. 136 

Table 6.2—Basic parameters for each porosity system ................................................. 142 

Table 6.3—Parameters for different matrix type ........................................................... 154 

Table 6.4—Adsorption parameters for different gas component ................................... 155 



 

1 

 

CHAPTER I 

INTRODUCTION 

 

1.1  Background 

1.1.1  Fractured Reservoir Modeling 

There are many hydrocarbon resources stored in fractured reservoirs, including 

carbonate reservoirs, coal bed methane and shale gas/oil reservoirs. Such reservoirs are 

usually partitioned into two different flow units, including matrix and fracture, because 

there is significant difference in fluid storage and flow conductivity between the two units. 

Several approaches have been proposed to simulate fluid flow in fractured reservoirs. 

They are basically categorized into three types, Discrete Fracture Model (DFM), Dual-

Porosity Model, and their combinations. DFM, based on unstructured grid discretization, 

can explicitly describe the effect of fracture geometric details (Mi et al. 2014; Sun et al. 

2012; Sun et al. 2014a; Sun and Schechter 2014b; Yu et al. 2011; Yu et al. 2016), and can 

naturally capture the complex flow phenomena occurring in the vicinities of those sparse 

fractures. However,  such simulators are still not practical for field-scale studies, since 

unstructured gridding becomes challenging and computationally expensive when a large 

number of fractures in a complex distribution is present (Li et al. 2015).  To overcome 

these deficiencies, a simplified model for Discrete Fracture Network (DFN) Modeling was 

developed. This model can decrease the number of grid blocks (Mi, L. et al. 2016) and 

computational time (Basquet et al. 2005; Sarda et al. 2001), while it still conserves the 

advantages of the DFM. 
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On the other hand, the Dual-Porosity Model is the most commonly used fractured 

reservoir modeling approach, and it was originally proposed by Barenblatt and Zheltov 

(1960) and introduced to petroleum industry by Warren and Root (1962), as shown in Fig. 

1.1. This approach assumes that fracture is a continuous flow system with low pore 

volume. The matrix with low permeability provides the main fluid storage space and 

transfers fluid to fracture system as sources. This approach is appropriate and efficient for 

the modeling of reservoirs with densely distributed fracture networks. However, a Dual-

Porosity Model can only simulate two continua, which makes it insufficient to model 

fractured reservoirs with more than two porosity systems. Multi-Porosity Models are 

developed to simulate reservoirs with more than two porosity systems. Extended from 

Dual-Porosity Model, Hinkley et al. (2013) presented a Multi-Porosity simulation model 

and applied it in unconventional reservoir modeling, but it is still based on traditional 

transfer functions and local grid refinement (LGR) to capture the transient flow effect. 

Jiang and Younis (2015) coupled MINC (Pruess 1982) with unstructured DFN (Karimi-

Fard et al. 2004) or EDFM (Moinfar et al. 2013) to honor transient flow in the matrix and 

to model the fracture sparsity. In this model the intrinsic characteristics of MINC allow 

only serial flow mode in the sequence of organics-inorganics-fracture. More recently, 

EDFM has been coupled with a Multi-Porosity Model such that different porosity systems 

and hydraulic fracture sparsity can be characterized (Chai et al. 2016a, 2016b). It works 

as a grid preprocessor for simulation, and leverages the advantages of EDFM and the 

Multi-Porosity Model such that it is flexible to describe different porosity systems and 

fracture geometries. 
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Fig. 1.1—Dual-Porosity Model 

 

1.1.2  Shale Reservoir Features 

Shale reservoirs belong to fractured reservoirs, and one of the major problems for 

shale reservoir simulation is the characterization of complex porosity systems. Those 

porosity types are hydraulic fractures, natural fractures, inorganic matrix and organic 

matrix (Wang and Reed 2009). Among them, the whole fracture network covering 

multiple scales provides the pathway to produce fluid from tight matrix. The matrix is 

partitioned into inorganic and organic matrix with different attributes, such as wettability 

(Odusina et al. 2011) and pore structure (Passey et al. 2010). Therefore, a reservoir 

characterization approach becomes powerful, if it can honor those different porosity types 

and conserve the geometric details of the fracture system in an economical way. 

Actual Reservoir Model Reservoir

Vugs Matrix Fracture Matrix 

block
Fracture
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Another issue related to shale reservoirs is the characterization of fluid transport 

and storage mechanisms and fluid properties. In the shale matrix, the pore size is in nano-

scale and the permeability is in nano-Darcy magnitude. In this scenario the interaction 

between hydrocarbon molecules and the pore-wall becomes significant and fluid 

adsorption/desorption is considered to be remarkable as well. Thus, many investigators 

consider that Darcian flow is quite limited or even breaks down here. Different non-Darcy 

gas flow models have been proposed to consider the coupling effect of slippage flow, 

viscous flow and Knudsen diffusion (Civan 2010; Fathi and Akkutlu 2012; Javadpour 

2009). In liquid-rich shale, multi-component Fickian diffusion and multi-component 

adsorption/desorption is necessary to be considered (Cao et al. 2015), since Darcy flow in 

tight shale matrix is extremely weak there. Besides, the impact of capillary pressure on the 

vapor-liquid equilibrium (VLE) in matrix nano-pores is also remarkable. Wang et al. 

(2013f) showed that for oil-wet reservoirs the confinement effect favors single-phase oil 

flow by suppressing bubble point pressure. 

 

1.2  Study Scopes 

The purpose of this study is to investigate both reservoir heterogeneity and fluid 

physics in reservoir simulation. Therefore, the scope of this study covers two aspects 

related to reservoir simulation, including, (1) general Multi-Porosity Model for fractured 

reservoir modeling; (2) general unstructured reservoir simulator development. 

A generalized Multi-Porosity Model for fractured reservoir characterization is 

proposed based on the extension of Dual-Porosity Model. The newly developed model 
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flexibly honors any number of porosity types in complex fractured reservoirs. As a 

continuous approach, it can consider different properties in different porous media, 

including permeability, porosity and wettability etc., and thus remarkable improvements 

over conventional Dual-Porosity Model are achieved. Besides, the approach is generalized 

to include Multi-Porosity and Multi-Permeability formulations, because it allows arbitrary 

connectivity for intra-porosity flow and inter-porosity flow. Moreover, a porosity 

subdivision function and corresponding new transfer function is developed to honor 

transient flow for inter-porosity fluid transport. The generalized Multi-Porosity Model can 

be a grid discretization tool and thus be coupled with flow reservoir simulation. 

On the other hand, an unstructured compositional reservoir simulator is developed 

as a flow solver. The simulator is called General Unstructured Reservoir Utility (GURU). 

The new simulator GURU is an unstructured reservoir simulator with a flexible and user-

extensible architecture. GURU is based on Control-Volume Finite-Volume method. The 

simulator solves reservoir equations using a fully implicit approach for three-phase flow 

(oil, gas, and water), and hydrocarbon properties are calculated by vapor-liquid 

equilibrium based on cubic equation of state (EOS). Basically GURU is allowed to 

simulate conventional compositional flow problems. Besides, the design of GURU makes 

it naturally compatible with different grid discretization, including structured grids, 

Dual/Multi-Porosity Models, and unstructured grids. Since different fluid transport 

mechanisms are likely to occur in different porosity types in shale reservoirs, GURU is 

designed as a general framework to systematically incorporate multiple mechanisms, such 

as Darcy flow, slippage flow, and multi-component adsorption/desorption. The developed 
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simulator becomes a tool for seamlessly modeling multiple scale levels from the pore-

level to large-scale fractures and finally to the well and field levels. Ultimately, GURU 

allows us to better understand the static and dynamic complexities in shale reservoirs and, 

in turn, serves reservoir engineers as a useful tool to better predict ultimate recovery from 

shale reservoirs. 

 

1.3  Development Milestones 

11 research tasks are defined in this section and they are performed to accomplish 

those above goals in this study. 

1. Formulate and validate transfer function derivation for Multi-Porosity Model with 

porosity subdivision. 

2. Develop a standalone package of Multi-Porosity Model with or without porosity 

subdivision based on the extension of Dual-Porosity Model. 

3. Validate the Multi-Porosity Model with cases of different level of complexities, 

including Dual-Porosity Models, Triple-Porosity Models and Quad-Porosity 

Models. 

4. Develop a standalone unstructured three-phase compositional reservoir simulator 

based on Control-Volume Finite-Difference method and modified Young and 

Stephenson (1983) formulation. 

5. Develop a standalone VLE calculation package based on both successive 

substitution iteration (SSI) method and Newton-Raphson Iteration, and implement 

a global compositional-space preconditioner for VLE. 
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6. Evaluate the performance and accuracy of the VLE package with different fluid 

samples and couple it with GURU. 

7. Interface GURU with different linear solver libraries. 

8. Validate GURU with mature commercial reservoir simulator for 3D 3-phase 

heterogeneous reservoir case. 

9. Couple the reservoir simulator with complex unstructured grid discretization 

approaches and validate the simulator for multiphase fluid flow through non-

orthogonally fractured reservoirs. 

10. Extend GURU’s functionality for modeling non-Darcy flow mechanisms in shale 

gas reservoirs, including multi-component adsorption/desorption and gas slippage 

and Knudsen diffusion. 

11. Bridge GURU with a Multi-Porosity Model for simulating multi-continuum multi-

physics in shale gas reservoirs, and evaluate the impact of fracture system, 

connectivity and non-Darcy flow mechanisms on shale gas production. 
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CHAPTER II 

GENERAL MULTI-POROSITY MODEL 

 

Conventional Dual Porosity Model is challenged to flexibly simulate reservoirs 

with more than two porosity systems and it is also difficult to capture the transient fluid 

transfer between matrix and fracture. This chapter aims to solve those problems in 

complex fractured reservoir simulation. 

 

2.1  Previous Work in Literature 

In fractured reservoirs, the matrix contributes most of the fluid storage but very 

little on fluid transport; on the contrary, the fracture system provides high flow capacity 

but low pore volume. The concept of Dual-Porosity Model was derived by Barenblatt and 

Zheltov (1960) and introduced to petroleum industry by Warren and Root (1962) to study 

the flow behavior in fractured reservoirs. The actual fracture network is homogenized and 

the matrix domain is idealized using sugar cube geometries. The Dual-Porosity Single-

Permeability Model only permits fracture contributing to global flow, but the matrix works 

as sources/sinks for the fracture domain. When the matrix can also contribute global fluid 

transport in a reservoir, the Dual-Porosity Dual-Permeability Model was designed to allow 

both matrix-to-matrix and fracture-to-fracture flow (Gilman 1986; Gilman and Kazemi 

1988). To characterize the transient flow in individual matrix blocks, the method of 

                                                 
 Reprinted with permission from “General Multi-Porosity Simulation for Fractured Reservoir Modeling” 

by Yan B., Alfi M., An C., Cao Y., Wang Y., Killough J., 2016. Journal of Natural Gas Science and 

Engineering, Volume 33, Pages 777-791, Copyright 2016 by Elsevier. 
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“Multiple INteracting Continua” (MINC) was proposed by Pruess (1985) to discretize the 

matrix into a couple of nested volumes to resolve the dynamics in the matrix block. For 

gravity segregation in individual matrix blocks, a “Subdomain” method was used to 

vertically discretize matrix block into vertically stacked sub-blocks to allow gravity 

drainage between them (Fung 1991; Gilman 1986). 

In the Dual-Porosity Model, the matrix is considered as discontinuous 

sources/sinks to feed the continuous fracture system. Assuming that Darcy’s law applies 

for flow in matrix and fracture, mathematically Dual-Porosity Model involves mass 

balance equations for both matrix and fracture systems, shown as Equations (2.1) and (2.2) 

(taking single phase black-oil model as an example). In addition, an extra matrix-fracture 

transfer term, namely “transfer function”, is used to evaluate the interaction between 

matrix and fracture, shown in Equation (2.3), 

𝛻 ∙ [
𝜌𝑘𝑓

𝜇
(𝛻Φ𝑓 )] − 𝜏𝑚𝑓 =

𝜕(𝜙𝜌)𝑓

𝜕𝑡
+ 𝑄                                                                            (2.1) 

𝜏𝑚𝑓 =
𝜕(𝜙𝜌)𝑚

𝜕𝑡
                                                                                                                (2.2) 

𝜏𝑚𝑓 = 𝜎
𝜌𝑘𝑚𝑓 𝑉𝑚

𝜇
(Φ𝑚 − Φf)                                                                                         (2.3) 

 

where 𝜎 is named as shape factor, a geometric parameter considering the surface area of 

the matrix blocks per unit volume and a characteristic length of matrix-fracture transfer 

flow (Thomas et al. 1983). There exist a lot of different methods to derive the shape factor 

𝜎 for Dual-Porosity Model, and it may or may not be derived based on the assumption 

pseudo-steady state conditions. Assuming single-phase quasi-steady-state flow, Warren 
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and Root (1962) derived the first formula for shape factor for a cubic matrix block of size 

𝐿 with 𝑁 sets of orthogonal fractures, shown as Equation (2.4), 

𝜎 =
4𝑁(𝑁+2)

𝐿2                                                                                                                  (2.4) 

 

After then a lot of researchers derived different shape factor formulae based on 

different assumptions, and basically they followed the format of Equation (2.5) but with 

different value of  𝛽 . If permeability anisotropy is considered, the product of 𝜎  and 

permeability 𝑘 can be evaluated together, shown as Equation (2.6), 

𝜎 = 𝛽(
1

𝐿𝑥
2  

+
1

𝐿𝑦
2  

+
1

𝐿𝑧
2 
)                                                                                                    (2.5) 

𝜎𝑘 = 𝛽(
𝑘𝑥

𝐿𝑥
2  

+
𝑘𝑦

𝐿𝑦
2  

+
𝑘𝑧

𝐿𝑧
2 
)                                                                                        (2.6) 

 

Different values of 𝛽 in Equation (2.6) are summarized in Table 2.1. In finite 

difference formulation, assuming a linear potential gradient between the center of a matrix 

block and the fracture surface (Ueda et al. 1989), Kazemi et al. (1976) proposed the 

solution of shape factor, with 𝛽  for Equations (2.5) and (2.6) equal to 4.0; through a 

pseudo-steady-state single phase flow (constant rate), Coats (1989) derived the shape 

factor 𝜎 through solving the diffusivity equation, with 𝛽 for Equations (2.5) and (2.6) 

equal to 8; without assumption of pseudo-steady-state flow, Lim and Aziz (1995) 

presented the approximate solution of diffusivity equation with constant pressure 

boundary condition, and their 𝛽 for Equations (2.5) and (2.6) is 𝜋2. Besides, Lim and 

Aziz's shape factor value is consistent with the result of Zimmerman et al. (1993). 
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Considering the non-orthogonality of fracture systems, Sarma and Aziz (2006) proposed 

a method to calculate the shape factor for arbitrary shape of matrix block, and 

distinguished fluid expansion and imbibition terms in the two phase transfer function. 

 

Table 2.1—Different 𝜷 values in Equation (2.6) 

Model 𝛽 in Equation (2.6) 

Kazemi 4.0 

Lim&Aziz or Zimmerman 𝜋2 

Coats 8 

 

In many fractured reservoirs, there might exist more than two porosity systems. 

For example, those different porosity systems are complex and different from matrix and 

fracture porosity types, and they can be multiple fracture sets with different geometries 

(hydraulic and natural fractures), multiple matrix porosity types with different 

wettabilities or fluid flow and storage mechanisms in shales (Wang and Reed 2009), or 

even free flow domains (vugs and caves in carbonate reservoirs) (He et al. 2015). The 

traditional Dual-Porosity Models cannot comprehensively characterize the complexities 

in those reservoirs. Meanwhile, when there exists an extremely high contrast of 

permeability and pore volume between different porosity types, fluid flow usually covers 

multiple time-scales in different porosity types and transient flow is very important to be 

considered, and people has applied local grid refinement (LGR) into Dual-Porosity 

Models (Rubin 2010) and still use the previous calculation approach for shape factor and 

transfer function (Kazemi et al. 1976). Also people used different approaches to increase 
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the number of simulated porosity types. Wu et al. (2014) proposed a generalized model to 

simulate three different porosity types in shale reservoirs: discrete-fracture for hydraulic 

fracture system, and continuum approach (MINC) for natural fracture system and tight 

matrix blocks. A discrete-matrix in Micro-Scale Model was applied to represent different 

matrix types in fractured shale reservoirs (Alfi et al. 2014a), and for single phase scenario 

the Micro-Scale Model was further upscaled to reservoir scale through a concept of matrix 

apparent permeability for Dual-Porosity Modeling (Yan et al. 2015). After all those 

approaches are still based on the design of the Dual-Porosity Model, and the number of 

simulated porosity systems is increased but still limited. On the other hand, HinkleyWang 

et al. (2013) recently extended the traditional Dual-Porosity Model and designed a Multi-

Porosity Model to honor the multiple porosity types. Theoretically the method was able to 

simulate any number of porosity systems and different physics among them, and it shows 

great application potential in carbonate reservoirs and fractured shale reservoirs. Yet in 

this model the traditional transfer function is applied and it cannot provide a better solution 

to capture the transient flow in multiple porosity systems. 

Based on the unique in-house black-oil reservoir simulator (details referred to (Yan 

et al. 2013b)), this chapter develops a general Multi-Porosity Model to simulate fractured 

reservoirs with more than two porosity systems. Similar to HinkleyWang et al. (2013), 

this model honors any number of porosity systems with different properties. In addition, 

the high contrast of fluid conductivity in different porosity systems results in a multi-scale 

fluid transfer in different porosity systems, so a hierarchical porosity subdivision 

discretization scheme is proposed to solve the problem. Different from conventional LGR 
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application in Dual-Porosity Model, a new formulation of shape factor for porosity 

subdivision is derived to accurately consider the impact of the transient flow on mass 

transfer between matrix and fracture. The new model is generalized such that users can 

specify arbitrary inter-porosity and intra-porosity connections, and make a convenient 

transformation between Multi-Porosity Model (without intra-porosity flow) and Multi-

Permeability Model (with intra-porosity flow). The following section presents the 

derivation and numerical validation of the new shape factor for porosity subdivision, and 

it shows that it is more general than previous formulae. 

 

2.2  Shape Factor Derivation and Validation 

In fractured reservoirs, it is reasonable to assume that the local changes of 

thermodynamic conditions, such as pressure, temperature etc., in matrix blocks depend 

primarily on the distance from the fracture surface, and this is a basic assumption to 

discretize matrix blocks through “MINC” (Pruess 1985). Therefore, bounded by fractures, 

radial flow usually occurs in a matrix block (Yan et al. 2013a). Intrinsically this makes 

shape factors of Kazemi et al. (1976) not preferable to those of Coats (1989) and Lim and 

Aziz (1995), since Kazemi et al. (1976) assumes a linear pressure gradient within the 

matrix block, but the latter two are based on analytic solution of the pressure diffusivity 

equation with boundary constrains. 

In the case of matrix subdivision, none of the above shape factor calculation is 

directly applicable. Since the matrix blocks are partitioned into sub-blocks in each 

direction, the radial flow in the matrix block is eventually decomposed into local linear 
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flow in matrix sub-blocks. Moreover, the shape factor of Kazemi et al. (1976) is similarly 

based on linear flow transfer between matrix and fracture. Therefore, to derive a shape 

factor formulation for subdivided matrix block, it is expected to be good to use similar 

derivations of the shape factor of Kazemi et al. (1976), and then validate it through 

numerical results. Let's briefly go through their derivation of shape factor. 

 

2.2.1  Previous Model for Bulk Matrix 

 

 

Fig. 2.1—Schematic of fluid flowing from a bulk matrix block (gray) to outer 

surrounding fractures (transparent) 

 

Fig. 2.1 shows the schematic of transfer flux between a matrix block and its outer 

fractures, which are transparent for better visualization. Matrix block sizes a 𝐿𝑥, 𝐿𝑦, and 

𝐿𝑧  in 𝑥 , 𝑦  and 𝑧  directions respectively. Define the mass transfer flow rate in each 
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direction as 𝜏𝑚𝑓𝑖 , 𝑖 = 𝑥, 𝑦, 𝑧 ; define the distance from the matrix block center to the 

matrix-fracture interface in 𝑖 direction as 𝑑𝑖 =
1

2
 𝐿𝑖, 𝑖 = 𝑥, 𝑦, 𝑧; define the contact area of 

matrix block and fracture in 𝑥, 𝑦 and 𝑧 directions as 𝐴𝑥 = 𝐿𝑦 𝐿𝑧, 𝐴𝑦 = 𝐿𝑥  𝐿𝑧, 𝐴𝑧 = 𝐿𝑥  𝐿𝑦 

respectively; define matrix block volume is 𝑉𝑚 = 𝐿𝑥 𝐿𝑦 𝐿𝑧 . Assuming linear potential 

gradient inside bulk matrix block, the potential within the single matrix block is averaged 

as a single value 𝛷𝑚, and potential in fracture is a constant boundary condition Φ𝑓. Thus 

the flow through both matrix outer surfaces in each direction is symmetric, shown as 

Equation (2.7), 

𝜏𝑚𝑓 = 2(𝜏𝑚𝑓𝑥 + 𝜏𝑚𝑓𝑦 + 𝜏𝑚𝑓𝑧)                                                                            (2.7) 

 

Based on Darcy’s law, 𝜏𝑚𝑓𝑖 can be written as Equation (2.8), 

𝜏𝑚𝑓𝑖 = 𝜌
𝑘𝑚𝑓𝑖 𝐴𝑖

𝜇
 
Φ𝑚−Φ𝑓

𝑑𝑖+𝑑𝑓 
,           (𝑖 = 𝑥, 𝑦, 𝑧)                                                                (2.8) 

 

Substitute Equation (2.8) into Equation (2.7), it becomes Equation (2.9), 

𝜏𝑚𝑓 = 2(
𝑘𝑚𝑓𝑥 𝐴𝑥

𝑑𝑥+𝑑𝑓 
+

𝑘𝑚𝑓𝑦 𝐴𝑦

𝑑𝑦+𝑑𝑓 
+

𝑘𝑚𝑓𝑧 𝐴𝑧

𝑑𝑧+𝑑𝑓 
)

𝜌

𝜇
(Φ𝑚 − Φ𝑓)                                                    (2.9) 

 

Considering that usually fracture aperture is far smaller than the matrix block size 

(𝑑𝑓 ≪ 𝐿𝑖  or 𝑑𝑓 ≪ 𝑑𝑖). Equation (2.9) is further reduced to Equation (2.10), 

𝜏𝑚𝑓 ≈
𝜌𝑉𝑚

𝜇
{4(

𝑘𝑚𝑓𝑥

𝐿𝑥
2  

 +
𝑘𝑚𝑓𝑦

𝐿𝑦
2 +

𝑘𝑚𝑓𝑧

𝐿𝑧
2 )}(Φ𝑚 −Φ𝑓)                                                  (2.10) 
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Therefore, compared to the Equation (2.3), the product of shape factor 𝜎  and 

permeability 𝑘 in Kazemi et al. (1976) is accordingly, 

(𝜎𝑘)𝑚𝑓 =  4(
𝑘𝑚𝑓𝑥

𝐿𝑥
2 +

𝑘𝑚𝑓𝑦

𝐿𝑦
2 +

𝑘𝑚𝑓𝑧

𝐿𝑧
2 )                                                                          (2.11) 

 

2.2.2  New Model Considering Matrix Subdivision 

Based on the derivation in Section 2.2.1, this section focuses on how to derive the 

shape factor for a subdivided matrix block. 

 

 

Fig. 2.2—Schematic of matrix-fracture transfer for subdivided matrix: different 

matrix sub-blocks have different number of surfaces connected to fracture system 

 

In Fig. 2.2, it shows that a matrix block separated into 3 by 3 by 3 sub-blocks. In 

total there are 26 connection pairs of matrix sub-block and fracture in 𝑥, 𝑦, 𝑧 directions, 
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except that the center matrix sub-block has no connection to the fracture system. Analog 

to the derivation of the model of Kazemi et al. (1976), the shape factor of matrix 

subdivision is derived in the following, but here all the matrix geometric properties are for 

each individual matrix sub-block instead of the bulk matrix block in Section 2.2.1. Here 

we start the derivation from Darcy’s law and decompose the transfer rate of matrix sub-

block into three directional components 𝜏𝑚𝑓𝑖 , 𝑖 =  𝑥, 𝑦 , 𝑧. The following Equation (2.12) 

shows the transfer rate component through a single sub-block surface normal to 𝑥 

direction. 

𝜏𝑚𝑓𝑥 =
𝜌

𝜇 
 
𝑘𝑚𝑓𝑥𝐴𝑥

𝑑𝑥+𝑑𝑓
(Φ𝑚 − Φ𝑓)                                                                                      (2.12) 

 

Based on the assumption  𝑑𝑓 ≪ 𝑑𝑖 , Equation (2.9) is transformed to Equation 

(2.10). Here similarly Equation (2.12) is written in the form of Equation (2.13), 

𝜏𝑚𝑓𝑥 =
𝜌𝑉𝑚

𝜇 
{2

𝑘𝑚𝑓𝑥

𝐿𝑥
2

} (Φ𝑚 − Φ𝑓)                                                                          (2.13) 

 

Therefore, a shape factor for a matrix sub-block connected with fracture in 𝑥 

direction is defined as Equation (2.14), 

(𝜎𝑘)𝑚𝑓𝑥 = 2
𝑘𝑚𝑓𝑥

𝐿𝑥
2                                                                                                   (2.14) 

 

This can be easily extended to the case that matrix sub-blocks are connected to 

fractures in any direction of 𝑖 (𝑖 = 𝑥, 𝑦, 𝑧), shown as Equation (2.15), 

𝜏𝑚𝑓𝑖 =
𝜌𝑉𝑚

𝜇 
 (𝜎𝑘)𝑚𝑓𝑖 (Φ𝑚 − Φ𝑓)                                                                          (2.15) 
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where (𝜎𝑘)𝑚𝑓𝑖 = 2
𝑘𝑚𝑓𝑖

𝐿𝑖
2 , 𝑖 = 𝑥, 𝑦, 𝑧. The shape factor here is for one contacting surface 

between the fracture and matrix sub-blocks. Let 𝑓𝑖 represent the number of surfaces of a 

matrix sub-block connected to fracture system. For an arbitrary matrix sub-block with 

arbitrary division in the directions of 𝑖 = 𝑥, 𝑦, 𝑧, 𝑓𝑖 is possibly equal to 0, 1 or 2. Based on 

the symmetry of mass transfer in each direction, a general shape factor considering all 

possible fracture connected surfaces is proposed to be written as Equation (2.16). 

(𝜎𝑘)𝑚𝑓 = 𝑓𝑥  (𝜎𝑘)𝑚𝑓𝑥 + 𝑓𝑦  (𝜎𝑘)𝑚𝑓𝑦 + 𝑓𝑧 (𝜎𝑘)𝑚𝑓𝑧                                                  (2.16) 

 

For example, if a rectangular matrix block is not subdivided and connected to 

fractures in its 6 surfaces normal to 𝑥, 𝑦, 𝑧 directions, it is valid that 𝑓𝑖 = 2, 𝑖 = 𝑥, 𝑦, 𝑧. 

Thus the model of Kazemi et al. (1976) can be derived as Equation (2.17), 

(𝜎𝑘)𝑚𝑓 = 2(𝜎𝑘)𝑚𝑓𝑥 + 2(𝜎𝑘)𝑚𝑓𝑦 + 2(𝜎𝑘)𝑚𝑓𝑧 = 4(
𝑘𝑚𝑓𝑥

𝐿𝑥
2 +

𝑘𝑚𝑓𝑦

𝐿𝑦
2 +

𝑘𝑚𝑓𝑧

𝐿𝑧
2 )              (2.17) 

 

Therefore, (𝜏𝑘)𝑚𝑓 from Kazemi et al. (1976) is a special case of the new shape 

factor model. Besides, the model of “Subdomain” (Fung 1991; Gilman and Kazemi 1988) 

is also a special case o1f this model, since it subdivides matrix block only in 𝑧 direction 

to improve calculation of gravity displacement and here subdivision in all directions is 

allowed. As a result, the new model naturally improves the characterization of gravity 

effect and fluid phase segregation. The new model is more general and suitable for matrix 

block allowing arbitrary subdivision in any directions. Because of the decomposition of 
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the original transfer flow in bulk matrix block, theoretically it is a perfect approach to 

characterize non-linear fluid transfer between matrix and fracture. 

 

2.2.3  Numerical Results 

In this section, numerical solution of shape factor are calculated based on our in-

house simulator (Yan et al. 2013b). This is a Single-Porosity Model, and fracture and 

matrix media are represented by different cells. Fracture serves as constant pressure 

boundary condition. Methane (compressible gas) is used as fluid flowing in the model, 

and real gas properties are calculated through cubic Peng-Robinson EOS. Basically we 

are solving the diffusivity equation for the system, shown as Equation (2.18), and the 

initial condition and boundary condition are shown as Equations (2.19) and (2.20) 

respectively. The whole nonlinear system is solved by fully implicit approach (Newton-

Raphson method). After solving the system, to calculate shape factors some extra 

parameters are necessarily calculated, including the flux for those connections between 

matrix and fracture grids, and average fluid properties and permeability between matrix 

and fracture. 

𝛻 ∙ [
𝜌𝑘

𝜇
(𝛻Φ)] =

𝜕(𝜙𝜌)

𝜕𝑡
                                                                                                  (2.18) 

Φ𝑚 = Φ0  (𝑤ℎ𝑒𝑛 𝑡 = 0)                                                                                      (2.19) 

Φ𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑤ℎ𝑒𝑛 𝑡 > 0)                                                                          (2.20) 

 

To consider shape factors of all the directions and permeability anisotropy, a case 

with a matrix block subdivided into 6 by 6 by 6 matrix sub-blocks (grids) with fracture 



 

20 

 

grids surrounding the matrix bulk in three directions, and detailed parameters are shown 

in Table 2.2. The shape factors of bulk matrix block (treating 6 by 6 by 6 matrix sub-

blocks as a grouped block) and each single matrix sub-block are calculated based on 

numerical models and then compared with analytical solutions. The results show great 

consistency between them. Note that the fracture permeability is not directly calculated 

based on fracture aperture. Instead, the fracture conductivity is fixed at 3,280.84 𝑚𝐷 ∙ 𝑓𝑡 

to make the fracture infinitely conductive, and scale up the fracture grid size (fracture 

aperture) to avoid extremely small cell volume during simulation. This approach has been 

used by Rubin (2010) in his CMG simulation workflow to model hydraulic fractures in 

unconventional reservoirs, and the accuracy of the results is conserved during this grid 

scale-up process. 

 

Table 2.2—Basic parameters to calculate shape factors 

Matrix Sub-Block 𝐿𝑥 (𝑓𝑡) 3.28084 

Matrix Sub-Block 𝐿𝑦 (𝑓𝑡) 6.56168 

Matrix Sub-Block 𝐿𝑧 (𝑓𝑡) 9.84252 

Matrix Block 𝐿𝑥 (𝑓𝑡) 19.6850 

Matrix Block 𝐿𝑦 (𝑓𝑡) 39.3701 

Matrix Block 𝐿𝑧 (𝑓𝑡) 59.0551 

Fracture Aperture (𝑓𝑡) 0.328084 

Fracture Permeability 𝑘𝑓 (𝐷𝑎𝑟𝑐𝑦) 10 

Matrix Permeability in x Direction 𝑘𝑚𝑥 (𝑚𝐷) 50 

Matrix Permeability in y Direction 𝑘𝑚𝑦 (𝑚𝐷) 10 

Matrix Permeability in z Direction 𝑘𝑚𝑧 (𝑚𝐷) 5 

Initial pressure (𝑝𝑠𝑖𝑎) 2900 

Fracture pressure (𝑝𝑠𝑖𝑎) 1450 for 𝑡 >  0 

Temperature (℉) 212 for 𝑡 >  0 
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For shape factor of bulk matrix block, most of the formulae follow the form of 

Equation (2.5) or (2.6) with different 𝛽 values. Considering permeability anisotropy in 

this case, (𝜎𝑘 )𝑚𝑓 from Equation (2.6) is used here, since it is directly involved in the 

transmissibility of matrix-fracture flux in Dual-Porosity Models. Based on Equation (2.3), 

(𝜎𝑘 )𝑚𝑓 is calculated through Equation (2.21) directly from numerical results, where 𝜇, 𝜌 

are averaged between matrix and fracture. Based on Equation (2.6), the value of 𝛽 is 

calculated through Equation (2.22). 

(𝜎𝑘)𝑚𝑓 =
𝜇𝑚𝑓𝜏𝑚𝑓

𝜌𝑚𝑓(Φ𝑚−Φ𝑓)𝑉𝑚
                                                                                      (2.21) 

𝛽 =
(𝜎𝑘)𝑚𝑓

(
𝑘𝑚𝑓𝑥 

𝐿𝑥
2 +

𝑘𝑚𝑓𝑦 

𝐿𝑦
2 +

𝑘𝑚𝑓𝑧 

𝐿𝑧
2 )

                                                                                      (2.22) 

 

The numerical result of 𝛽 is plotted as the red marker curve in Fig. 2.3, and two 

constant solutions for 𝛽 from traditional models are also presented for comparison. In Fig. 

2.3, it shows that 𝛽 from numerical result declines with time, and ultimately converges to 

𝜋2, which is the result of 𝛽 from Lim and Aziz (1995) but not that from Kazemi et al. 

(1976). This can be explained by that Lim and Aziz's model can better characterize the 

nonlinear pressure gradient in the matrix, but the model of Kazemi et al is based on a linear 

pressure gradient in the matrix. Here Equation (2.21) is similar to the apparent 

permeability defined by Yan et al. (2015), so consistently in Fig. 2.3 it shows that the 

numerical result of 𝛽 declines with time and finally converges to the stable value. 
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Fig. 2.3—Comparison of numerical and analytical results of 𝜷 in Equation (2.6) 

 

Further, the shape factors of each matrix sub-block connected to fractures are 

analyzed. In this model, there are in total 216 connections between matrix sub-blocks and 

fractures. In Table 2.2, it shows that the matrix sub-blocks have different sizes in different 

directions, and anisotropy of matrix permeability is considered as well. As a result, it is 

appropriate to analyze the numerical result of 𝛽 for each connection between individual 

matrix sub-block and fracture grid block. Based on previous analysis, Equation (2.6) is a 

special case of Equation (2.16), with 𝑓𝑥 = 𝑓𝑦 = 𝑓𝑧 = 2. Therefore, the value of 𝜎𝑚𝑓𝑖 can 

be expressed as, 

𝜎𝑚𝑓𝑖 =
𝛽

2
 
1

𝐿𝑖
2 , 𝑖 = 𝑥, 𝑦, 𝑧                                                                                      (2.23) 
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Similar to the scenario of bulk matrix block, Equation (2.21) is still valid here for 

each individual connection of matrix sub-block and fracture, but the properties of matrix 

are from individual matrix sub-block instead of the bulk matrix block, and thus the 

numerical value of 𝜎𝑚𝑓𝑖 is, 

𝜎𝑚𝑓𝑖 =
𝜇𝑚𝑓 𝜏𝑚𝑓𝑖

𝜌𝑚𝑓 𝑘𝑚𝑓𝑖 (Φ𝑚−Φ𝑓 )𝑉𝑚 
                                                                                      (2.24) 

 

Based on Equation (2.23) and (2.24), 𝛽 is, 

𝛽 = 2𝐿𝑖
2 𝜇𝑚𝑓𝜏𝑚𝑓𝑖

𝜌𝑚𝑓𝑘𝑚𝑓𝑖(Φ𝑚−Φ𝑓)𝑉𝑚
                                                                                      (2.25) 

 

Here values of 𝛽 are calculated for all 216 connection pairs of matrix sub-block 

and fracture, and all of them ultimately converge to a single value. For a better 

visualization, here only the converged values of 𝛽 for all connections are plotted, as shown 

in Fig. 2.4. In Fig. 2.4, it shows that for each individual connection of matrix sub-block 

and fracture, 𝛽 values are fairly close to that of Kazemi et al. (1976). This can be explained 

by the fact that the local matrix sub-block is evaluated here, and the original radial flow 

in the bulk matrix block is decomposed to linear flow because of the matrix subdivision. 

To this point, the results are very consistent with our previous derivation of shape factor 

considering matrix subdivision in Section 2.2.2. On the other hand, for cases without 

matrix subdivision, the model of Lim and Aziz (1995) or Zimmerman et al. (1993) is 

preferable to that of Kazemi et al. (1976) for constant fracture pressure condition. 
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Fig. 2.4—Comparison of numerical and analytical results of 𝜷 in Equation (2.23) 

 

2.3  Multi-Porosity Model 

Assume that Darcy’s law applies to a Multi-Porosity Model with 𝑁 number of 

porosity types, the mass balance equation for a multi-phase black-oil fluid system is shown 

as Equation (2.26). 

𝛻 ∙ {𝜌𝛼
𝑘𝑖𝑘𝑟𝛼

𝜇𝛼
(𝛻Φ𝛼,𝑖)} − ∑ 𝜏𝛼(𝑗,𝑖) =

𝜕(𝜌𝛼𝜙𝑆𝛼)

𝜕𝑡𝑗≠𝑖 + 𝑄𝛼 , (𝑖 = 1,… , 𝑁; 𝑗 = 1,… ,𝑁)  (2.26) 

𝜏𝛼(𝑗,𝑖) = 𝜎𝜌𝛼𝑉𝑖
 𝑘𝑖𝑗𝑘𝑟

𝜇𝛼
{Φ𝛼,𝑗 − Φ 𝛼,𝑖}, (𝑖 = 1,… , 𝑁; 𝑗 = 1,… ,𝑁; 𝑖 ≠ 𝑗)               (2.27) 

 

In Equation (2.26), the first term is a conventional convection flux term, the second 

term is a summation of all fluid transfer flux rate between 𝑖𝑡ℎ porosity system and other 

connected porosity systems, the third term is accumulation term, and the fourth term is 

source/sink term. If there is no conventional convection flux term in 𝑖𝑡ℎ porosity system, 
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this porosity system will only consider inter-porosity flux from/to other porosity systems 

(such as the matrix porosity in Dual-Porosity Single-Permeability Model). Meanwhile, if 

there is no transfer flux between 𝑖𝑡ℎ and 𝑗𝑡ℎ porosity, direct flow interaction between them 

will not be considered. In Equation (2.27) the transfer term between different porosity 

systems is calculated. If there is no porosity subdivision, the shape factor can be calculated 

either by different models or user-specified. If any porosity domain is subdivided, the 

shape factor is calculated based on Equation (2.16). 

There are two different configurations in the Multi-Porosity Model. The first 

configuration is conventional Multi-Porosity Model, which is similar to the model from 

HinkleyWang et al. (2013). This configuration is naturally compatible with the 

formulation above. A Quad-Porosity Model with four porosity systems is shown in Fig. 

2.5, which includes P1, P2, P3, and P4. Here all porosity systems are discretized in the 

same fashion. Therefore, the non-neighbor connection between different porosity systems 

is always a one-to-one mapping process. 
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Fig. 2.5—Conventional Multi-Porosity Model 

 

The second configuration is Multi-Porosity Model with Subdivision (Fig. 2.6). 

This model is designed to capture the transient flow in some porosity systems if necessary. 

For example, a shale reservoir can be treated as a Quad-Porosity Model, since it is widely 

accepted that there exist four porosity systems (Wang and Reed 2009), including hydraulic 

fractures, natural fractures, inorganic matrix and organic matrix. Among them hydraulic 

fractures have higher conductivity than natural fractures; on the other hand, those two tight 

matrix systems have different wettabilities and fluid transport mechanisms (Alfi et al. 

2015). Since the inorganic and organic matrix permeability is much lower than that in the 

hydraulic and natural fractures, transient fluid transfer occurs between matrix and fracture. 

To accurately capture this phenomenon, a hierarchical porosity subdivision scheme is used 

to discretize different porosity systems, shown in Fig. 2.6. In Fig. 2.6, the non-neighbor 

connection in the discretization scheme is no longer a one-to-one mapping process. 

P3(4 4)

P2(4 4)

P1(4 4)

P4(4 4)
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Specifically, 1 grid in hydraulic fracture system is corresponding to 4 grids in natural 

fracture system, such that those two fracture sets with different conductivity can be 

distinguished. Further, 1 grid in natural fracture system is corresponding to 16 grids in 

inorganic matrix and organic matrix, which depicts the transient flow more accurately. 

 

 

Fig. 2.6—Multi-Porosity with Subdivision: “HF” – hydraulic fractures; “NF” – 

natural fractures; “IM” – inorganic matrix; “OM” – organic matrix.  

 

In a Multi-Porosity Model with flexible subdivision, the grid number in each 

porosity domain can be either equal (Fig. 2.5) or different (Fig. 2.6), and thus the design 

becomes difficult. Therefore, the grid information and connection information would be 

better stored in an unstructured format (Lim et al. 1995), and this is consistent with the 

configuration of our in-house black-oil simulator (Yan et al. 2013b) or GURU developed 

later in this work, which is formulated in Control-Volume Finite-Difference (CVFD) 

IM(32 32)

NF(8 8)

HF(4 4)

OM(32 32)
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method. Specifically, all grid-based properties are stored through an ordered list, such as 

grid name, pore volume, rock type, phase saturation etc., and all connection-based 

properties are stored through a connection list, such as names of two grids in a connection, 

connection type, and transmissibilities etc. As for the ordering of porosity types, 

HinkleyWang et al. (2013) recommended that the porosity type with the highest 

permeability is first and the one with the lowest permeability comes last, and this facilitates 

the LU factorization process. 

Besides, in the traditional Dual-Porosity Model, a fracture grid is always connected 

with a matrix grid in the same physical location, and thus even those inter-porosity 

properties are conveniently treated as grid-based properties. However, in our design, a 

porosity type might be connected to multiple other porosity types (inter-porosity 

connection), and also flow within each porosity type (intra-porosity connection) can also 

be active or inactive. Therefore, the scenario here is much more complex than that in Dual-

Porosity Model, and thus here a binary connection table is proposed to solve this problem 

conveniently. For example, Fig. 2.7 is a fluid transport pyramid for a Quad-Porosity Dual-

Permeability Model. In this model P1 and P2 are connected to all porosity types and flow 

among themselves is permitted as well; P3 and P4 are both only tied to P1 and P2 in 

parallel and flow among themselves is not allowed here. To effectively characterize this, 

Table 2.3 is a binary connection table designed to control the inter-porosity and intra-

porosity connection from Fig. 2.7. In Table 2.3, value “1” represents an active connection 

between two porosity types while value “0” means an inactive connection. Because of the 

natural symmetry in connection, the binary connection table is symmetric as well. Here in 
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the table the main diagonal entries control the intra-porosity connection, and those off-

diagonal entries control the inter-porosity connections. Therefore, through changing the 

values in the table, arbitrary inter-porosity and intra-porosity in a model is effectively 

controlled. 

 

 

Fig. 2.7—Fluid transport pyramid of Quad-Porosity Dual-Permeability Model 

(four porosity types: P1, P2, P3, P4) 

 

Table 2.3—Binary connection table to control connections of 4 porosity types in 

Fig. 2.7 

 P1 P2 P3 P4 

P1 1 1 1 1 

P2 1 1 1 1 

P3 1 1 0 0 

P4 1 1 0 0 

 

Inter-Porosity Transport 

P3

P1

P2

P4

Intra-Porosity Transport 
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Following the binary connection Table 2.3, assume that single phase fluid flow in 

the models in Fig. 2.5 and 2.6. The Jacobian matrix of the Quad-Porosity Dual-

Permeability Models in Fig. 2.5 and 2.6 are respectively shown in Fig. 2.8 (a) and (b). 

 

     

(a)                                               (b) 

Fig. 2.8—Jacobian matrices of Quad-Porosity Dual-Permeability Models (QPDK): 

(a) Jacobian matrix for Fig. 2.5 without matrix subdivision; (b) Jacobian matrix for 

Fig. 2.6 with matrix subdivision. 

 

In Fig. 2.8(a), the porosity ordering sequence follows P1-P2-P3-P4, we can 

observe that the whole Jacobian matrix is structured and banded, because the non-neighbor 

connection between different porosity systems is one-to-one mapping. Besides, those 

diagonal terms are mainly intra-porosity flux Jacobian and accumulation Jacobian, while 

the off-diagonal terms are mainly inter-porosity flux Jacobian. Similarly, the porosity 

ordering sequence in Fig. 2.8(b) follows HF-NF-IM-OM. Because here the non-neighbor 

connection between different porosity systems is no longer one-to-one mapping, there are 

irregular patterns in the off-diagonal terms for the inter-porosity flux Jacobian. Further, 
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there are three diagonal bands in the lower right part of the Jacobian, since here the matrix 

domain is subdivided and intra-matrix flux is captured by high resolution. 

 

2.4  Summary 

In this chapter, starting from conventional Dual-Porosity Models, a general shape 

factor formulation considering matrix subdivision in arbitrary direction is derived, and it 

is comprehensively validated with numerical experiments. Besides, the original model of 

Kazemi et al. (1976) is demonstrated to be a special case of this formulation. Based on the 

porosity subdivision and the new shape factor formulation, a general Multi-Porosity 

Model is proposed to honor arbitrary modeling porosity types and flexible porosity 

subdivisions, and also conventional Multi-Porosity Model without subdivision is 

considered as one of configurations here. The Multi-Porosity Model is developed in 

unstructured fashion, such that it naturally becomes compatible with unstructured 

reservoir simulator. Besides, the intra-porosity and inter-porosity connection in the Multi-

Porosity Model is flexibly controlled through a binary connection table. 
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CHAPTER III 

VALIDATION OF GENERAL MULTI-POROSITY MODEL 

 

Based on the previously developed Multi-Porosity Model, the main purpose of this 

chapter is to demonstrate its robustness. Specifically, three subtopics are discussed in this 

chapter, shown as the following, 

 Verification of Dual-Porosity Model; 

 Verification of Triple-Porosity Model; 

 Application of Multi-Porosity Model to two phase shale gas reservoir modeling. 

 

3.1  Dual-Porosity Models 

Dual-Porosity is a special case of Multi-Porosity Model when the number of 

porosity systems is two. Therefore, Dual-Porosity Model is firstly verified. To validate 

our implementation of the Dual-Porosity Model, three examples similar to Lim and Aziz 

(1995) were used to validate the application of different shape factors, and further the 

matrix subdivision in Dual-Porosity Model is applied to see if it would make any 

difference in solution. 

 

                                                 
 Part of the this chapter is reprinted with permission from “General Multi-Porosity Simulation for Fractured 

Reservoir Modeling” by Yan B., Alfi M., An C., Cao Y., Wang Y., Killough J., 2016.` Journal of Natural 

Gas Science and Engineering, Volume 33, Pages 777-791, Copyright 2016 by Elsevier. Part of this chapter 

is reprinted with permission from “Extended Abstract: Advanced Multiple Porosity Model for Fractured 

Reservoirs” by Yan B., Alfi M., An C., Cao Y., Wang Y., Killough J., 2015. Paper presented at the 

International Petroleum Technology Conference (IPTC 2015). Copyright 2015 by SPE. 
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Fig. 3.1—Fine-Grid Single-Porosity Models for 𝑵 =  𝟏, 𝟐, 𝟑. 
 

Fig. 3.1 shows three different cases of Fine-Grid Single-Porosity Models. When 

𝑁 = 1, a matrix block is bounded by 1 set of fractures in 𝑥 direction (only discretized in 

𝑥 direction); when 𝑁 = 2, a matrix block is bounded by 2 sets of fractures in both 𝑥 and 

𝑦 directions (discretized in 𝑥 and 𝑦 directions); when 𝑁 = 3, a matrix block is bounded 

by 3 sets of fractures in 𝑥, 𝑦  and 𝑧  directions (discretized in 𝑥, 𝑦  and 𝑧  directions). 

Besides, logarithmic grid spacing around the fractures is applied to resolute the transient 

flow in Single-Porosity Models, and their results are treated as calibrated solutions. As a 

comparison, the Dual-Porosity Models are set in equal model size with corresponding 

Single-Porosity Models, and they have only one grid block for matrix and fracture 

respectively. Besides, in Dual-Porosity Models, fracture permeability values are scaled to 

keep the same fracture conductivity (Rubin 2010), and fracture porosity values are 

modified to conserve the pore volume. 

Table 3.1 shows necessary data for comparison between Fine-Grid Single-

Porosity Models and Dual-Porosity Models. Note that there are no wells in those Fine-

Grid Single-Porosity Models and Dual-Porosity Models, however, fracture systems are set 
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as constant pressure boundary conditions, 𝑝𝑓 = 500 𝑝𝑠𝑖𝑎, and initial matrix pressure is 

𝑝𝑚 =  1,000 𝑝𝑠𝑖𝑎. Because of the pressure contrast between matrix and fracture, fluid in 

the matrix flows into the fracture system in different directions. Fig. 3.1 shows the pressure 

profile at early periods in the three different Fine-Grid Single-Porosity Models, and it 

presents that transient flow effect occurs in those regions neighboring the fracture systems. 

In Lim and Aziz's cases, fluid properties are correlated from steam table, and here in the 

cases of this work, the fluid is methane and it properties are calculated through Peng-

Robinson EOS. 

 

Table 3.1—Parameters for Fine-Grid Single-Porosity Models and Dual-Porosity 

Models 

Fine grid, N = 1  

Grid dimensions 22 x 1 x 1 

Grid spacing (𝑓𝑡) ∆𝑥 = 0.005, 0.005, 0.01, 0.02, 0.04, 0.08, 

0.16, 0.32, 0.64, 1.28, 2.445, 2.445, 1.28, 

0.64, 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, 

0.005, 0.005; 

∆𝑦 = ∆𝑧 = 10; 

Fine grid, N = 2  

Grid dimensions 22 x 22 x 1 

Grid spacing (𝑓𝑡) ∆𝑥 = ∆𝑦 = same as ∆𝑥 for N = 1; 

∆𝑧 = 10 

Fine grid, N = 3  

Grid dimensions 12 x 12 x 12 

Grid spacing (𝑓𝑡) ∆𝑥 = ∆𝑦 = ∆𝑧 =  0.01, 0.02, 0.08, 0.32, 

1.28, 3.30, 3.30, 1.28, 0.32, 0.08, 0.02, 

0.01; 

Rock properties for fine grid models 

Matrix porosity 0.05 

Matrix permeability (𝑚𝐷) 0.001 

Fracture porosity 1.0 

Fracture permeability (𝑚𝐷) 100,000 

Dual-Porosity  
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Table 3.1—Continued. 

Grid dimensions 1 by 1 by 1 

Grid spacing (𝑓𝑡) ∆𝑥 = ∆𝑦 = ∆𝑧 = 10 

Matrix porosity 0.05 

Matrix permeability (𝑚𝐷) 0.001 

Fracture porosity 0.001 (N = 1); 0.002 (N = 2);  

0.006 (N = 3); 

Fracture permeability (𝑚𝐷) 100 

Reservoir conditions for all models 

Initial pressure (𝑝𝑠𝑖𝑎) 1000 

Fracture pressure (𝑝𝑠𝑖𝑎) 500 for 𝑡 >  0 

Initial temperature (℉) 600 for 𝑡 >  0 

 

Dual-Porosity Models based on the shape factors of Warren and Root (1962), 

Kazemi et al. (1976), Coats (1989), and Lim and Aziz (1995) are compared with 

corresponding Fine-Grid Single-Porosity Models. All cases here are for single-phase 

compressed gas flow, and cumulative gas production with time for 𝑁 =  1, 2, 3 are all 

plotted in Fig. 3.2. 

 

 

(a) 

Fig. 3.2—Cumulative gas production for three different sets of cases: (a) 𝑵 = 𝟏: 1 

set of fractures; (b) 𝑵 = 𝟐: 2 sets of fractures; (c) 𝑵 = 𝟑: 3 sets of fractures. 
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(b) 

 

(c) 

Fig. 3.2—Continued 

 

In Fig. 3.2, the results of those Dual-Porosity Models with Lim and Aziz's shape 

factor are in good consistency with Fine-Grid Single-Porosity Models for most of the time 

scale, but those results based on shape factors of Kazemi et al are far smaller than that of 

the calibrated Fine-Grid Single-Porosity models. This can be explained by our previous 

analysis that Kazemi's model assumes a linear flow between matrix and fracture, and it 
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underestimates the matrix-fracture transfer rate. Besides, in all the three figures in Fig. 

3.2, the results are consistently shown in sequence: (DP, Warren-Root) > (Fine Grid 

Model) > (DP, Lim and Aziz) > (DP, Coats) > (DP, Kazemi et al.), which makes good 

agreement with Lim and Aziz's results (Lim and Aziz 1995), and this can also be explained 

by the relative magnitude of shape factors in different models. Therefore, these results 

above have already proven the robustness of our implementation for Dual-Porosity Model 

configuration. 

The transient flow between fracture and matrix usually occurs at the early period. 

Especially for reservoirs with high contrast of permeability in different porosity types, the 

transient flow usually lasts for a long period. From Table 3.4, the matrix permeability in 

Dual-Porosity Model is 100,000 times lower than the fracture permeability, therefore, the 

transient flow between matrix and fracture should be very important and last for a long 

time. Since all three series (𝑁 =  1,2,3) of Dual-Porosity Models without subdivision 

provide consistent results, let's observe the case with matrix bounded by three sets of 

fractures (𝑁 =  3, Fig. 3.2(c)) in a logarithmic time scale, shown as Fig. 3.3. 
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Fig. 3.3—Results for system with three sets of fractures in logarithmic time scale 

 

Fig. 3.3 shows that at the early time none of those Dual-Porosity Models with 

classic shape factor models matches well with the calibrated Fine-Grid Single-Porosity 

Model, because there is only one matrix grid in all those Dual-Porosity Models, and this 

cannot accurately capture the non-linear transient flow between matrix and fracture. 

Therefore, for the case 𝑁 =  3, we will further consider if the subdivision in the 

matrix porosity is helpful to enhance the accuracy. Here, a series of Dual-Porosity Models 

with Matrix Subdivision based on the shape factor from Equation (2.16) are also compared 

with Fine-Grid Single-Porosity Model (𝑁 =  3). Those models correspond to the single 

porosity with 3 sets of fractures in Fig. 3.1, so there is no well in the model as well. 

Fracture system serves as a constant pressure boundary condition, 𝑝𝑓 = 500 𝑝𝑠𝑖𝑎, and 

matrix pressure is initially at 1,000 𝑝𝑠𝑖𝑎 . Three cases of Dual-Porosity Models with 

matrix subdivision are simulated: the matrix grid dimensions of the three cases are 
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respectively 7 by 7 by 7, 9 by 9 by 9, and 11 by 11 by 11, and the fracture grid dimensions 

are still 1 by 1 by 1, and here logarithmic subdivision grid spacing in matrix domain is 

applied. Fig. 3.4 is an example of Dual-Porosity Model with matrix subdivided into 9 by 

9 by 9 grids. Other parameters for Dual-Porosity Models are the same as the Dual-Porosity 

Model (𝑁 =  3) in Table 3.1. 

 

 

Fig. 3.4—Dual-Porosity Model with Matrix Subdivision: fracture, 1 grid; matrix, 9 

by 9 by 9 grids. 

 

The results are plotted in Fig. 3.5 with Fine-Grid Single-Porosity Model as a 

calibrated model. 
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Fig. 3.5—Results for system with three sets of fractures, with matrix subdivision in 

Dual-Porosity Models, in logarithmic time scale 

 

Fig. 3.5 shows that with the increase of matrix subdivision, the solutions of the 

three Dual Porosity Models with matrix subdivision (marker curves) get closer to the 

calibrated model (black solid line). Besides, we also present two Dual-Porosity Models 

without matrix subdivision (dash lines), whose shape factor are based on the model of 

Kazemi et al. (1976) and the model of Lim and Aziz (1995) respectively. Through 

comparison we can see that the transient flow at the early period in those Dual Porosity 

Models with Matrix Subdivision is far better captured than that in Dual Porosity Models 

without Matrix Subdivision, since with subdivision the non-linear flow between matrix 

block and fracture now becomes local linear flow between matrix sub-block and fracture 

with much higher resolution. This is consistent with our expectation. 
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3.2  Triple-Porosity Models 

In the previous section the Dual-Porosity Models have been proved to be robust. 

Besides, good improvement on transient flow has been obtained with matrix subdivision 

scheme. Since Dual-Porosity Model is a special case of Multi-Porosity Model, we hope to 

validate the model with more porosity types as well. 

In the following a gas reservoir model in 2-D is presented. In the reservoir, there 

are 6 sets of 𝑥-axis oriented fractures and 6 sets of 𝑦-axis oriented fractures partitioning 

the reservoir (matrix), and those 𝑥-axis oriented fractures have much higher permeability 

than those 𝑦-axis oriented fractures. In the reservoir a producer is located in the upper-left 

corner, cell (1, 1), which is also the intersection of the 1𝑠𝑡 fractures in 𝑥 and 𝑦 directions, 

and the producer is constrained by constant bottom-hole pressure at 𝑝𝑤𝑓 = 725 𝑝𝑠𝑖𝑎, and 

initial reservoir pressure is 𝑝0 = 4,350 𝑝𝑠𝑖𝑎. Details about the reservoir parameters are 

shown in Table 3.2. Since the permeability values in 𝑥-axis oriented fractures, 𝑦-axis 

oriented fractures, and partitioned matrix blocks are significantly different in magnitude, 

the reservoir is considered as a model with three different porosity types, and thus gas 

production from the reservoir is simulated by both Fine-Grid Single-Porosity Model and 

Triple-Porosity Models. 
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Table 3.2—Parameters for a model with 6 sets of 𝒙-axis oriented fractures (FX) and 

6 sets of 𝒚-axis oriented fractures (FY) 

Fine grid model 

Number of FX 6 

Number of FY 6 

Grid dimensions 56 × 56 × 1 

Grid spacing (𝑓𝑡) 

∆𝑥 = ∆𝑦 = 0.00328084, 0.328084x10, 0.00328084, 

0.328084x10, 0.00328084, 0.328084x10, 0.00328084, 

0.328084x10, 0.00328084, 0.328084x10, 0.00328084;  

∆𝑧 = 0.328084; 

Rock properties for fine grid model 

Matrix block size (𝑓𝑡) 3.28084 × 3.28084 × 3.28084 

Matrix porosity 0.2 

Perm. of matrix (𝑚𝐷) 0.01 

Fracture aperture (𝑓𝑡) 0.00328084 

Porosity of FX 1.0 

Porosity of FY 0.1 

Perm. of FX (𝑚𝐷) 1.0 × 105 

Perm. of FY (𝑚𝐷) 1.0 × 103 

Triple-Porosity Model 

Grid dimensions 5 × 5 × 1 for case without matrix subdivision 

Grid spacing (𝑓𝑡) 
∆𝑥 = ∆𝑦 = 3.2845, ∆𝑧 = 0.328084 for case without 

matrix subdivision 

Porosity of matrix 0.2 

Perm of matrix (𝑚𝐷) 0.01 

Porosity of FX 1.1986 × 10-3 

Porosity of FY 1.1986 × 10-4 

Perm. of FX (𝑚𝐷) 100 

Perm. of FY (𝑚𝐷) 1.0 

Reservoir conditions for all models 

Initial pressure (𝑝𝑠𝑖𝑎) 4350 

Well pressure (𝑝𝑠𝑖𝑎) 725 for 𝑡 >  0 

Temperature (℉) 180 for 𝑡 >  0 

 

Fine-Grid Single-Porosity is treated as a calibrated solution. Fig. 3.6 is the pressure 

map at early production period from the model. In Fig. 3.6, it shows that pressure 

decreases more in 𝑥 -axis direction than that in 𝑦 -axis direction, because fracture 

conductivity in 𝑥-axis oriented fractures is higher than that in 𝑦-axis oriented fractures. 
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With fine grid discretization in matrix, transient flow between the matrix and fracture is 

well captured in Fig. 3.6. 

 

 

Fig. 3.6—Pressure profile of Fine-Grid Single-Porosity Model, time step: 0.002905 

hours 

 

Further, to simulate the reservoir through Triple-Porosity Model, those 𝑥-axis 

oriented fractures and 𝑦-axis oriented fractures are treated as two independent porosity 

domains because of their high contrast of permeability or conductivity. To conserve both 

pore volume and flow conductivity in fractures (Rubin 2010), values of fracture porosity 

and permeability in the Triple-Porosity Model are modified and thus different from those 

in Single-Porosity Model (Table 3.2). Besides, the matrix blocks in the reservoir (Fig. 

3.6) are completely isolated by the two orthogonal fracture sets in the reservoir, so Triple-

Pressure, psia

4000

800



 

44 

 

Porosity Dual-Permeability Model (TPDK) is very appropriate here, in which fluid flow 

between different matrix blocks is not allowed. 

In the Triple-Porosity Models, the producer with constant pressure constraint is 

perforated in cell (1, 1) in 𝑥-axis oriented fracture domain with the highest permeability, 

since in the Fine-Grid Single-Porosity Model (Fig. 3.6) this location is spatially perforated 

with the producer as well. The producer is constrained by constant bottom-hole pressure 

𝑝𝑤𝑓 = 725 𝑝𝑠𝑖𝑎, and initial reservoir pressure is 𝑝0 = 4350 𝑝𝑠𝑖𝑎. 

In TPDK Models without Matrix Subdivision, results of different models to 

calculate shape factors are compared in Fig. 3.7. It shows that the model of Lim and Aziz 

(1995) can provide us with a much more accurate result than the model of Kazemi et al. 

(1976), and this is very consistent with our results of Dual-Porosity Models. However, 

during the early period (before 1 hour) even the model of Lim and Aziz (1995) deviates 

from the Fine Grid Model because of the inaccurate characterization of transient flow. For 

example at time of 0.01 hour, the model of Lim and Aziz (1995) produces 33.7% less than 

that from Fine-Grid Single Porosity Model, and the model of Kazemi et al. (1976) 

produces 59.75% less than that from Fine-Grid Single Porosity Model (note that here 

production rate is in logarithmic scale). This deviation might be more significant when the 

permeability contrast between matrix and fracture increases and transient flow lasts 

longer. 
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Fig. 3.7—Gas production comparison between Triple-Porosity Dual-Permeability 

(TPDK) Models without Matrix Subdivision (different shape factors) and Fine-

Grid Single-Porosity Model 

 

In TPDK Models with Matrix Subdivision, equal matrix subdivision is applied and 

three different cases of matrix subdivisions are presented, respectively 2 by 2 by 1, 4 by 4 

by 1, and 6 by 6 by 1 in 𝑥 − 𝑦 − 𝑧 space, and the shape factor calculation for them is based 

on Equation (2.16). The results are shown in Fig. 3.8. In Fig. 3.8, it shows that with an 

increase of matrix subdivision in TPDK Models, the results gradually approach to that of 

the Fine-Grid Single-Porosity Model. When a matrix block is subdivided into 6 by 6 by 1 

sub-blocks, the result of TPDK Model basically overlaps with the Single-Porosity Model, 

and only 2.4% rate difference exist between them. Similar to Fig. 3.6, Fig. 3.9 is the 

pressure profile in different porosity system at the same time step in TPDK Model with 6 

by 6 by 1 matrix subdivision. It shows that the pressure in the matrix is the highest, 

followed by 𝑦-axis oriented fracture system, and finally 𝑥-axis oriented fracture system. 
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This is consistent with the permeability rank in the three porosity systems (matrix < 𝑦-

axis fracture < 𝑥-axis fracture). Besides, the transient flow in the matrix system is captured 

very well. Therefore, it further validates that the Multi-Porosity Model with Subdivision 

can significantly improve the solution for transient flow. 

 

 

Fig. 3.8—Gas production comparison between Triple-Porosity Dual-Permeability 

(TPDK) Models with Matrix Subdivision and Fine-Grid Single-Porosity Model 
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Fig. 3.9—Pressure profile of Triple-Porosity Dual-Permeability Model with 6 by 6 

by 1 matrix subdivision. Time step: 0.002905 hours 

 

Besides, the numbers of grid blocks used to discretize those different models are 

compared, and the results are presented in Fig. 3.10. Here the Fine-Grid Single-Porosity 

Model have used far more grid blocks than other models since it is treated as an accurate 

solution. In Triple-Porosity Dual-Permeability (TPDK) Models, the more the matrix 

subdivision, the larger the number of grid blocks. TPDK Model with shape factor of 

Kazemi et al. (1976) (purple bar) and TPDK Model with shape factor of Lim and Aziz 

(1995) (green bar) have no matrix subdivision and they have the smallest number of grid 

blocks. For TPDK Models with matrix subdivision, the larger the subdivision number is, 

the more the grid blocks are used. However, all those Triple-Porosity Models use much 

lower grid numbers to characterize the model. 
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Fig. 3.10—Comparison of grid numbers between Triple-Porosity Dual-

Permeability (TPDK) Models and Fine-Grid Single-Porosity Model. 

 

Correspondingly the CPU time for each models is also plotted in Fig. 3.11. The 

results show that the CPU cost for those Triple-Porosity Dual-Permeability Models is 

much cheaper than Fine-Grid Single-Porosity Model, since those models have fewer grid 

blocks. In the reservoir matrix blocks are isolated by fracture sets, and thus flow between 

matrix blocks is not allowed in the Triple-Porosity Dual-Permeability Models. This further 

reasonably reduces the complexity of connectivity in the reservoir, and make those Triple 

Porosity Models run more efficiently. Therefore, even though TPDK model with 6 × 6 ×

1 matrix subdivision (950) have around 1/3 of the number of grid blocks in the Fine-Grid 

Single-Porosity Model (3136), while the CPU time for the former model (38.7 sec) is 
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are matched well (Fig. 3.8). Besides, we can observe that CPU cost increases with matrix 
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subdivision in Fig. 3.11, and it has similar trend to the number of grid blocks used in those 

models (Fig. 3.10). 

 

 

Fig. 3.11—Comparison of CPU time between Triple-Porosity Dual-Permeability 

(TPDK) Models and Fine-Grid Single-Porosity Model 
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system is allowed to communicate with each other. Hydraulic fracture serves a constant 

pressure and constant saturation boundary condition for the reservoir. Therefore, it is 
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relative permeability curves and no capillary pressures are considered in the two fracture 

systems, and Corey’s correlations of capillary pressure and relative permeability curves 

are applied into the two matrix systems. Fig. 3.12 shows the capillary pressure curve used 

for the simulation, and Fig. 3.13 shows the imbibition relative permeability curve 

implemented in the simulator. 

 

 

Fig. 3.12—Capillary pressure in the shale model 
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Fig 3.13—Relative permeability curve in the shale model 

 

Other input parameters during the simulation are presented in the Table 3.3 and 

Table 3.4. 

 

Table 3.3—Data for quad-porosity model for each porosity 

 HF NF IM OM 

𝑘𝑓𝑤𝑓 (𝑚𝐷 ∙ 𝑓𝑡) 100 5 - - 

𝑘 (𝑛𝐷) - - 100 50 

𝜙 (𝑣/𝑣) 1e-4 3e-5 0.06 0.30 

Pressure (𝑝𝑠𝑖𝑎) 500 (constant) 3000 3000 3000 

Initial 𝑆𝑔 (𝑣/𝑣) 0.1 0.7 0.7 0.99 

𝑇 (℉) 180 (constant) 

Wetting phase Aqueous Aqueous Aqueous Organic 
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Table 3.4—Reservoir geometry parameter for quad-porosity model 

Reservoir size (𝑓𝑡) 3100 by 1500 by 50 

Horizontal well length (𝑓𝑡) 1300 

Spacing of hydraulic fracture (𝑓𝑡) 100 

Half-length of hydraulic fractures (𝑓𝑡) 200 

Thickness of hydraulic fracture (𝑓𝑡) 50  

Number of hydraulic fractures 6 

Grid size 100 ft by 100 ft by 50 

Scheme I No matrix subdivision 

Scheme II 5 by 5 by 1 matrix subdivision 

 

As shown in Fig. 3.14, two different QPQK Models are applied to simulate the 

reservoir: (1) Scheme I: Quad-Porosity Model without porosity subdivision in inorganic 

and organic matrix; (2) Scheme II: Quad-Porosity Model with porosity subdivision in 

inorganic and organic matrix. In Fig. 3.14 (a) and (b), the red part in hydraulic fracture 

porosity is to represent both hydraulic fracture and horizontal wellbore. In Fig. 3.14(b), 

the matrix blocks in Scheme II is subdivided into 5 by 5 by 1 cells in 𝑥 − 𝑦 − 𝑧 space. 
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(a) 

 

(b) 

Fig. 3.14—Two different schemes to discretize the quad-porosity reservoir model: 

(a) Scheme I: Quad-Porosity Model without matrix subdivision; (b) Scheme II: 

Quad-Porosity Model with subdivision in inorganic and organic matrix. 
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Through running both models, the average pressure in each porosity system is 

shown in Fig. 3.15. Considering Scheme II as the calibrated results, the pressure difference 

between the two schemes are acceptable, as shown in Fig. 3.15. Besides, in Fig. 3.15, 

during production the pressure in the reservoir changes in sequence: natural fracture first, 

followed by inorganic matrix, and ultimately organic matrix. The sequence is consistent 

with the order of permeability in the three porosity systems. This is further validated by 

the pressure map of both models after 20 years gas production, as shown in Fig. 3.16. 

Besides, due to the coarse gridding in the two matrix domains, Scheme I cannot capture 

the transient flow with high resolution, but Scheme II improves the resolution through the 

grid refinement in the matrix domain. 

 

 

Fig. 3.15—Average pressure in each porosity system for Scheme I and II. 
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Fig. 3.16—Pressure map after 20 years production: left column – Scheme I; right 

column – Scheme II. 

 

The average water saturation in each porosity system is shown in Fig. 3.17. In this 

plot, it shows that water saturation in natural fracture system decreases at an early period, 

and ultimately remains at negligible water saturation. At early period, natural fracture 

system is the upstream of both water and gas flow. Since the water mobility between 

inorganic matrix and natural fracture is much lower than that between natural fracture and 

hydraulic fracture, most of the water in natural fracture flows into hydraulic fracture and 

wellbore, and ultimately water saturation in natural fracture becomes negligible. At the 

later production period, water is imbibed from hydraulic fracture system to inorganic 

matter because of the boundary condition. Organic matrix is assumed to non-water wet, 

and the initial water saturation there is extremely low at 0.01. Therefore, during the whole 
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production period, single gas phase flow occurs in the organic matrix. The difference of 

average water saturation between those two different schemes are still quite good here. 

 

 

Fig. 3.17—Average water saturation in each porosity types in Scheme I and II 

 

Ultimately, the gas production for both schemes are shown in Fig. 3.18. Consistent 

results are still obtained, and the difference is caused by their different capabilities to 
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Fig. 3.18—Gas production in Scheme I and II 

 

3.4  Summary 
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period, since the decomposed porosity sub-blocks can characterize the nonlinear fluid 

transfer between different porosity systems very well. Besides, the performance of Multi-

Porosity Model is also improved compared to the Fine-Grid Single-Porosity Model. 

Finally, Quad-Porosity Quad-Permeability Models with and without matrix 

subdivision are successfully applied into two-phase shale gas reservoir, and they provide 

consistent results, and the model with matrix subdivision brings higher resolution in the 

matrix domains.  
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CHAPTER IV 

GENERAL UNSTRUCTURED RESERVOIR UTILITY 

 

Numerical reservoir simulation is one of the most important approaches to 

investigate multiphase fluid flow transport through porous media. The framework of 

reservoir simulators is based on numerical solutions of material balance, energy balance 

and stress equilibrium equations, and ultimately mimics the complex fluid flow behavior 

in subsurface reservoirs. This chapter illustrates the workflow of a fully implicit 

unstructured compositional reservoir simulator. The simulator developed in this chapter is 

called General Unstructured Reservoir Utility (GURU). 

 

4.1  Model Assumption 

GURU is designed to be general, and its framework is developed based on the 

following assumptions, 

 Control-Volume Finite-Difference space discretization; 

 Backward first order fully implicit time discretization; 

 Isothermal condition in the subsurface system; 

 Two-point flux approximation; 

 Fluid flux is dominated by Darcy flow; 

 Knudsen diffusion and gas slippage flow also contributes to gas flux; 

 Gas can be stored by adsorption; 
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 Oil and gas fluid properties are calculated through vapor-liquid equilibrium based 

on Equation of State; 

 Water is inertial and not involved in thermodynamic equilibrium of hydrocarbon 

components; 

 Multiple fluid systems such as oil/water, oil/gas/water and gas/water are allowed; 

 Capillary pressure and gravity are considered. 

The compositional reservoir simulator is implemented based on control-volume 

finite-difference method (CVFD) (Cao 2002) with two-point flux approximation (TPFA). 

This approach records grid discretization by grid and connection information, as shown in 

Fig. 4.1. It tracks grid discretization via two classes: “Cell” stores grid-based static 

properties including geometric information and rock and fluid properties; “Connection” 

mainly contains flux related properties for connected grid blocks. Therefore, even with 

complex grid geometry conforming geological features, this approach enables to accept 

unstructured grid discretization without barriers. 

 

 

Fig. 4.1—Unstructured data format defined by FORTRAN syntax 

 

TYPE Cell

INTEGER :: ID

INTEGER :: RockType

DOUBLE :: PoreVolume

….

END TYPE

TYPE Connection

INTEGER :: ID

INTEGER :: cell_A

INTEGER :: cell_B

DOUBLE :: Transmissibility

…

END TYPE
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4.2  Primary Mathematical Formulation 

Based on the primarily solved equations in compositional simulation, there mainly 

exist two types of formulation, respectively mass balance type and volume balance type 

(Cao 2002; Valbuena 2015). Primary equations in mass balance type are represented by 

the mass balance equations for each species in the reservoir fluids (Chien et al. 1985; Coats 

1980; Collins et al. 1992; Fussell and Yanosik 1979; Young and Stephenson 1983), and 

this type of formulation can be solved by either Fully Implicit Method (FIM) or IMplicit 

Pressure Explicit Saturation (IMPES). On the other hand, the concept of volume balance 

was introduced to ensure that the pore volume must be completely occupied by the total 

fluid volume in a grid block, and based on this the volume balance equation is transformed 

into the pressure equation (Acs et al. 1985; Wong et al. 1990), and it is usually solved by 

IMplicit Pressure Explicit Mass (IMPEM). 

Further, there are two types of primary variables to solve, respectively natural 

variables (Coats 1980) or overall quantities (Young and Stephenson 1983). Natural 

variables are convenient in terms of Jacobian matrix derivation, but yet it requires to 

switch primary variables when phase appearance/disappearance occurs. On the contrary, 

when overall qualities are used as the primary variables, it is necessary to use chain rule 

to construct Jacobian system, but there is no need to switch primary variables as phase 

changes. In GURU Jacobian is constructed by numerical perturbation for the convenience 

of implementation, and overall qualities are selected as primary variables to construct the 

global linear system inside GURU. As a result, a modified Young and Stephenson (1983) 

compositional formulation is adopted in GURU, showing in the Section 4.2.1. 
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4.2.1  Mass Balance Equations 

In this section, the mass balance equations related hydrocarbon component and 

water are presented. As stated in the assumptions presented in Section 4.1, water is 

assumed to be inertial and the dissolved water in oil and gas phases and the dissolution of 

hydrocarbon components in aqueous phase are ignored. If a cell 𝑗 is arbitrarily connected 

with another cell via grid surface 𝑠 , the mass balance equation associated with the 

hydrocarbon component 𝑖 (𝑖 = 1,⋯ , 𝑛ℎ) in cell 𝑗 is presented in Equation (4.1). 

𝑅𝑖,𝑗 =
𝑉𝑗

𝛥𝑡
(𝑁𝑖,𝑗

𝑛+1 − 𝑁𝑖,𝑗
𝑛  ) +

𝑉𝑗

𝛥𝑡
(𝑀𝑖,𝑗

𝑛+1 − 𝑀𝑖,𝑗
𝑛  ) − ∑ 𝑇𝑠(𝜆𝑜𝜌̃𝑜𝑥𝑖𝛥Φ𝑜 + 𝜆𝑔𝜌̃𝑔𝑦𝑖𝛥Φ𝑔)𝑠 −

∑ (𝜌̃𝑜𝑥𝑖𝑞𝑜
𝑝 + 𝜌̃𝑔𝑦𝑖𝑞𝑔

𝑝)
𝑗𝑝 =  0                                                                                        (4.1) 

 

In Equation (4.1), the first term is the accumulation of hydrocarbon component 𝑖 

in compressed storage, and 𝑁𝑖 is defined in Equation (4.2), which represents the moles of 

hydrocarbon component 𝑖 stored in compressed status in unit cell volume. The second 

term is the accumulation of hydrocarbon component 𝑖 by adsorption, and 𝑀𝑖 is defined in 

Equation (4.3), which represents the moles of hydrocarbon component 𝑖  stored by 

adsorption in unit cell volume. The multi-component gas adsorption/desorption 

formulation in Equation (4.3) is defined based on general extended Langmuir model (Cao 

et al. 2015). The third term in Equation (4.1) is the Darcian flux term here, and the forth 

term is the source or sink term. 

𝑁𝑖 = 𝜙(𝑠𝑜𝜌̃𝑜𝑥𝑖 + 𝑠𝑔𝜌̃𝑔𝑦𝑖)                                                                                        (4.2) 

𝑀𝑖 = (1 − 𝜙)𝜌𝑠𝜌̃𝑔
𝑠𝑐

𝑉𝐿,𝑖𝑦𝑖
𝑝𝑔

𝑝𝐿,𝑖

1+∑ 𝑦𝑘
𝑝𝑔

𝑝𝐿,𝑘

𝑛ℎ
𝑘=1

                                                                            (4.3) 
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Similarly, the mass balance equation of water component in cell 𝑗 is defined in 

Equation (4.4). Here water phase flux obeys Darcy’s law, and water component exists in 

compressed state in pore space, as shown in Equation (4.5). 

𝑅𝑤,𝑗 =
𝑉𝑗

Δ𝑡
(𝑁𝑤,𝑗

𝑛+1 − 𝑁𝑤,𝑗
𝑛 ) − ∑ 𝑇𝑠𝜆𝑤𝜌̃𝑤ΔΦ𝑤𝑠 − ∑ (𝜌̃𝑤𝑞𝑤

𝑝 )
𝑗𝑝 =  0                            (4.4) 

𝑁𝑤 = 𝜙𝑠𝑤𝜌̃𝑤                                                                                                                (4.5) 

 

In Equations (4.1) and (4.4), 𝑇𝑠 is defined as transmissibility in connection via grid 

surface 𝑠, and it is a geometric coefficient to evaluate the connectivity between two cells. 

The inter-cell transmissibility is calculated by harmonic average (Equation (4.6)). The 

half–cell transmissibility for neighbor connection is defined in Equation (4.7). 

𝑇𝑠 =
𝑇𝑠,𝑗𝑇𝑠,𝑗+1

𝑇𝑠,𝑗+𝑇𝑠,𝑗+1
                                                                                                                (4.6) 

𝑇𝑠,𝑗 =
𝑘𝑗𝐴𝑗

𝐿𝑗
                                                                                                                (4.7) 

 

𝜆𝛼  (𝛼 = 𝑜, 𝑤, 𝑔)  is the fluid mobility related to each phase in Darcian flux 

calculation, and it is defined in Equation (4.8). Fluid mobility, molar density and mole 

fraction in the flux terms of those mass balance equations are evaluated by upstream 

weighting based on the direction of phase potential difference. 

𝜆𝛼 =
𝑘𝑟𝛼

𝜇𝛼
                                                                                                                (4.8) 

 

Phase potential Φ𝛼 considers both phase pressure 𝑝𝛼 and gravitational force on the 

fluid, which is defined by Equation (4.9). Therefore, to calculate Darcian flux at 
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connection 𝑠, the potential gradients in Equation (4.1) and (4.4) are evaluated in split form, 

as shown in Equation (4.10). The calculation of phase pressures will be discussed in the 

auxiliary formulation part. 

Φ𝛼 = 𝑝𝛼 − 𝑔𝑐𝜌𝛼𝐷                                                                                                    (4.9) 

ΔΦ𝛼 = Δ𝑝𝛼 − 𝑔𝑐𝜌𝛼,𝑠Δ𝐷                                                                                      (4.10) 

 

Inter-phase transport problem in the vertical direction occurs when there are phase 

discontinuities in two vertically connected cells, and this might lead to numerical 

instability during compositional simulation. To solve this problem the inter-cell phase 

average mass density is weighted by phase saturation but not based on arithmetic average 

(Bowen and Crumpton 2003), as shown in Equation (4.11). 

𝜌𝛼,𝑠 =
𝑆𝛼,𝑗𝜌𝛼,𝑗+𝑆𝛼,𝑗+1𝜌𝛼,𝑗+1

𝑆𝛼,𝑗+𝑆𝛼,𝑗+1
                                                                                      (4.11) 

 

Besides, if cell 𝑗 is perforated by an active well, a source or sink will be taken into 

account in mass balance equations of the cell, and the phase volumetric production rate at 

the local perforation 𝑝  is calculated based on Peaceman Equation (Peaceman 1990). 

Assume there is a perforation 𝑝 in cell 𝑗, then the volumetric rate of phase 𝛼 becomes, 

𝑞𝛼
𝑝 = 𝑊𝐼𝑝 ∙ 𝜆𝛼,𝑝(𝑝𝑝 − 𝑝𝛼,𝑗),                                                                                       (4.12) 
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where 𝑊𝐼𝑝 is the well geometric index for perforation 𝑝 in a well, and 𝜆𝛼,𝑝 is the well 

mobility at perforation 𝑝, and 𝑝𝑝 and 𝑝𝛼,𝑗  are respectively the wellbore pressure at the 

perforation 𝑝 and the phase pressure in perforated cell 𝑗. 

In GURU the well geometric index is a flexible user-defined input, and it can be 

calculated based on geometric parameters of wellbore and perforated cell. If a rectangular 

grid block is perforated by a vertical well, 𝑊𝐼𝑝 is calculated by Equation (4.13). In the 

scenario of horizontal wells, 𝑊𝐼𝑝 can still be obtained by updating corresponding spatial 

variables in Equations (4.13) and (4.14). 

𝑊𝐼𝑝 = 2𝜋
Δ𝑧√𝑘𝑥𝑘𝑦

𝑙𝑛(
𝑟𝑜
𝑟𝑤

)+𝑆
                                                                                                  (4.13) 

𝑟𝑜 = 0.28 
(Δ𝑥2√𝑘𝑦/𝑘𝑥+Δ𝑦2√𝑘𝑥/𝑘𝑦)1/2

√𝑘𝑦/𝑘𝑥
4 + √𝑘𝑥/𝑘𝑦

4                                                                           (4.14) 

 

If the perforation 𝑝 belongs to a producer, the well mobility at the perforation is 

upstreamed and equals to fluid mobility in the perforated cell 𝑗, but special consideration 

should be taken into with regards to the well mobility in an injector, which equals to the 

total fluid mobility in the perforated cell (Valbuena 2015). Therefore, the well mobility is 

summarized in Equation (4.15), 

𝜆𝛼,𝑝 = {

= (
𝑘𝑟𝛼

𝜇𝛼
)
𝑗

(𝑝 ∈ 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟)

= ∑ (
𝑘𝑟𝛼

𝜇𝛼
)
𝑗

𝛼=𝑜,𝑔,𝑤 (𝑝 ∈ 𝑖𝑛𝑗𝑒𝑐𝑡𝑜𝑟)
                                                  (4.15) 

 

 



 

66 

 

4.2.2  Volume Balance Equation 

In GURU it is assumed there are at most three phases (water, oil and gas) in a 

reservoir system, so there exists a volume balance equation with regards to total fluid 

volume (excluding adsorption) and pore space volume. The constraint ensures that the 

total fluid volume of all phases in cell 𝑗 equals to its pore volume, and it is defined as 

Equation (4.16), 

𝑅𝑣𝑜𝑙,𝑗 = 𝑃𝑉𝑗 − ∑ 𝑉𝛼,𝑗𝛼=𝑜,𝑔,𝑤 = 0                                                                          (4.16) 

 

Equation (4.16) also serves as one of the primary reservoir equations. Phase 

volumes are functions of phase moles and phase molar densities, and phase saturations 

can be calculated based on phase volumes and total pore volume. Further, saturations is 

applied to calculate capillary pressure and relative permeability (rock-fluid function). 

 

4.2.3  Well Residual Equation 

There exist multiple well controls, including constant rate, constant bottom-hole 

pressure or their combinations. Well residuals are also involved as part of the primary 

equations, and they are also solved by fully implicit method (Fung et al. 2005). In GURU, 

five different well residuals are implemented, including constant bottom-hole pressure 

(Equation (4.17)), constant oil surface volume rate (Equation (4.18)), constant gas surface 

volume rate (Equation (4.19)), constant liquid (oil and water) surface volume rate 

(Equation (4.20)), and constant water surface volume rate (Equation (4.21)). 

𝑅𝑤𝑒𝑙𝑙 = 𝑝𝑤𝑓 − 𝑝𝑤𝑓
∗ = 0                                                                                      (4.17) 



 

67 

 

𝑅𝑤𝑒𝑙𝑙 =
(𝑄̃𝑜+𝑄̃𝑔)𝑓𝑙

𝑠𝑐

𝜌̃𝑜
𝑠𝑐 − 𝑄𝑉,𝑜

∗ = 0                                                                          (4.18) 

𝑅𝑤𝑒𝑙𝑙 =
(𝑄̃𝑜+𝑄̃𝑔)𝑓𝑣

𝑠𝑐

𝜌̃𝑔
𝑠𝑐 − 𝑄𝑉,𝑔

∗ = 0                                                                           (4.19) 

𝑅𝑤𝑒𝑙𝑙 = 
(𝑄̃𝑜+𝑄̃𝑔)𝑓𝑙

𝑠𝑐

𝜌̃𝑜
𝑠𝑐 +

𝑄̃𝑤

𝜌̃𝑤
𝑠𝑐 − 𝑄𝑉,𝑜𝑤

∗  = 0                                                              (4.20) 

𝑅𝑤𝑒𝑙𝑙 =
𝑄̃𝑤

𝜌̃𝑤
𝑠𝑐 − 𝑄𝑉,𝑤

∗ = 0                                                                                      (4.21) 

 

All of those five well residuals are applicable to producer wells. For example, if a 

producer is controlled by a combined schedule of constant surface oil volume rate and a 

minimum BHP, then the primary equation will be either Equation (4.17) or (4.18). If the 

current reservoir condition can maintain a constant surface oil volume rate, the well 

residual becomes Equation (4.18); otherwise, it will turn to Equation (4.17). As for 

injectors, Equations (4.17) and Equation (4.19) are used in gas injectors, and Equations 

(4.17) and (4.21) are applied in water injectors. Combined schedules are also applicable 

for injectors, and its selection criteria is identical to that in producer. Besides, any of those 

controls related to hydrocarbon components requires surface flash calculation to convert 

hydrocarbon component moles to volumetric qualities in surface condition. 

 

4.3  Auxiliary Equations 

The primary equations in Section 4.2 serves as the basic structure of the global 

primary equation system, yet auxiliary equations provide additional constraints to close 

the system. As a result, in this section several important auxiliary equations used in the 
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multiphase compositional simulation are discussed, including equation of state, vapor-

liquid equilibrium, fluid properties, rock-fluid functions and rock properties. 

 

4.3.1  Equation of State 

In GURU hydrocarbon properties are calculated based on the Peng-Robinson 

Equation of State (PR-EOS) (Peng and Robinson 1976), and it is applied in terms of cubic 

equation to get the analytical solution of the compressibility factor 𝑍 . The detailed 

formulation about PR-EOS can be referred to Appendix A. 

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0                          (4.22) 

 

The EOS can be directly used to calculate fluid properties and fugacity coefficient 

for each component in a specific phase, shown as Equation (4.23). The fugacity 

coefficients and their derivatives to pressure and phase compositions can also be 

analytically solved from the Equation of State, which can be referred to Appendix C in 

(Cao 2002). Those results further provide input for Vapor-Liquid Equilibrium calculation. 

𝑙𝑛𝜑𝑖 = − ln(𝑍 − 𝐵) + (𝑍 − 1) 𝑏𝑖

𝑏
−

𝐴

2√2𝐵
[
1

𝑎
(2√𝑎𝑖 ∑ 𝑥𝑗√𝑎𝑗(1 − 𝜅𝑖𝑗)

𝑛ℎ
𝑗=1

) −

𝑏𝑖

𝑏
] 𝑙𝑛 (

𝑍+(1+√2)𝐵

𝑍+(1−√2)𝐵 
)                                                                                                  (4.23) 

 

4.3.2  Vapor-Liquid Equilibrium 

Vapor-liquid equilibrium (VLE) is used to calculate oil and gas fluid properties. 

Given  bulk fluid compositions 𝑧𝑖 , pressure 𝑝 and temperature 𝑇, fluid thermodynamic 
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properties can be determined by VLE. Therefore, in GURU this procedure is decoupled 

from the primary equation system, and this favors to reduce the dimension of the Jacobian 

system in reservoir simulation and allows flexible interface with EOS and VLE calculation 

from a third party. When primary or secondary variables are updated at time or newton 

level, VLE calculation becomes necessary. 

 

4.3.2.1  VLE Residuals 

Two residuals are solved in the VLE calculation, including component phase 

fugacity equilibrium and molar vapor fraction equilibrium. The first residual is fugacity 

equilibrium. In two-phase flash calculation, the component fugacity equilibrium is shown 

as the following, 

𝑅𝑓,𝑖 = 𝑙𝑛𝐾𝑖 + 𝑙𝑛𝜑𝑖
𝑣 − 𝑙𝑛𝜑𝑖

𝑙 = 0,           𝑖 = 1,⋯ , 𝑛ℎ                                                  (4.24) 

 

The second residual is a component and phase material-balance constraint, called 

the Rachford-Rice Equation (Rachford and Rice 1952). This function is monotonic and 

continuous, shown as Equation (4.25), 

𝑅𝑟 = ∑ (𝑦𝑖 − 𝑥𝑖)
𝑛ℎ
𝑖=1  = ∑ 𝑧𝑖(𝐾𝑖−1)

1+𝑓𝑣(𝐾𝑖−1)

𝑛ℎ
𝑖=1 = 0                                                              (4.25) 

 

The Equations (4.24) and (4.25) together solve the phase component equilibrium 

ratio 𝐾𝑖 and the vapor mole fraction 𝑓𝑣. Those two equations are usually solved through 

combining Successive Substitution Iteration method (SSI) and Newton-Raphson method 

(NR) (Firoozabadi 1999; Li and Firoozabadi 2012; Whitson and Brule 2000). Equation 
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(4.24) is highly nonlinear since 𝐾𝑖  changes nonlinearly with pressure, temperature and 

compositions. The details of SSI and NR method for VLE calculation can be referred to 

Appendix B in this work. 

Initial guesses of 𝐾𝑖 and vapor mole fraction 𝑓𝑣 with good quality can speed up the 

convergence of VLE calculation and avoid the trivial solution. If no additional data is 

available, Wilson’s correlation (Wilson 1968) is usually used to estimate 𝐾𝑖 as shown in 

Equation (4.26). However, estimation based on this correlation is not accurate at high 

pressure conditions and leads to the trivial solution. On the other hand, it is numerically 

reliable to estimate 𝐾𝑖  from a converged flash of the same fluid or fluid with close 

compositions at similar pressure and temperature conditions (Whitson and Brule 2000). 

For example, 𝐾𝑖  from similar conditions such as those from the previous time step, 

previous newton step, or neighboring non-perforated grid blocks can provide initial 

guesses for equilibrium ratios and phase mole fractions. Further, if the quality of those 

values are not ensured, traditionally it turns to stability testing for 𝐾𝑖 values with lowest 

tangent plane distance values (Li and Firoozabadi 2012). However, the stability test is 

usually quite expensive in computation and is not always necessary if the current 

thermodynamic condition is far away from the saturation point. 

𝑙𝑛𝐾𝑖 = 𝑙𝑛
𝑝𝑐𝑖

𝑝
+ 5.373(1 + 𝜔𝑖) (1 −

𝑇𝑐𝑖

𝑇
)                                                              (4.26) 

 

4.3.2.2  VLE Preconditioned by Compositional Space 

To avoid quality check of estimation based on similar thermodynamic conditions 

and unnecessary stability testing, methods for safeguard estimation of 𝐾𝑖 values and vapor 
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mole fraction 𝑓𝑣  are proposed and discussed in the following two sections. Fluids in 

compositional simulation can be classified into two categories: fluids with slight 

composition changes or fixed composition and fluids with sharply varying composition. 

The first scenario is applicable to the depletion processes from conventional reservoirs, 

except for gas-condensate reservoirs and volatile-oil reservoirs. The second scenario 

usually occurs in miscible flooding processes of gas injection and depletion processes of 

gas-condensate or volatile oil reservoirs. Based on the characteristics of those two 

scenarios, two different compositional spaces are constructed prior to the flash calculation. 

Using single variable or multiple variables interpolation from the compositional spaces, 

good initial guesses of 𝐾𝑖  values and vapor mole fractions 𝑓𝑣  can be achieved. The 

compositional space based on slightly varying or constant composition has already been 

successfully implemented in GURU. 

 

4.3.2.2.1  Fluids with Slightly Varying or Constant Composition 

When fluid composition is fixed or slightly changes, it is reasonable to assume that 

the equilibrium ratios 𝐾𝑖 and vapor mole fraction 𝑓𝑣 are only a function of pressure and 

temperature. The degree of freedom further reduces to pressure only in isothermal 

condition. As an example, a petroleum fluid with 11 components from Maljamar Reservoir 

Oil at 89.96 ℉ from Li and Firoozabadi (2012) is used. Its 𝐶𝑂2 fraction is 0.1667 and 

other compositions are normalized based on the number of moles from the original data. 

The bubble point pressure is calculated to be  𝑝𝑏  =  1576.1874 𝑝𝑠𝑖𝑎  at 89.96 ℉ . 

Reducing the pressure from 𝑝𝑏 to around 50 𝑝𝑠𝑖𝑎 (lower end), the changes of 𝑓𝑣 and 𝐾𝑖 is 
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shown in Fig. 4.2 and 4.3. As pressure decreases from 𝑝𝑏 to 50 𝑝𝑠𝑖𝑎, the vapor mole 

fraction gradually increases from 0.0 to 0.5573 (Figure 4.2). In addition, Figure 4.3 

shows that the component equilibrium ratios 𝐾𝑖  change significantly and even cover 

orders of magnitude for some (pseudo) components, such as 𝐶21−28 and 𝐶29+. 

 

 

Fig. 4.2—Vapor mole fraction of Maljamar Reservoir Oil at 𝟖𝟗. 𝟗𝟔 ℉, 𝑪𝑶𝟐 fraction 

is 𝟎. 𝟏𝟔𝟔𝟕 
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Fig. 4.3—Component K-values of Maljamar Reservoir Oil at 𝟖𝟗. 𝟗𝟔 ℉, 𝑪𝑶𝟐 

fraction is 𝟎. 𝟏𝟔𝟔𝟕 

 

The curves in Fig. 4.2 and 4.3 actually define a discrete compositional space for 

isothermal constant composition fluid. As a result, the initial guesses of 𝑓𝑣 and 𝐾𝑖 at an 

arbitrary pressure can be interpolated from this space as long as the pressure falls into the 

pressure range defined in the space. A correct root-searching direction is thus ensured to 

efficiently converge the flash calculation. Since 𝑓𝑣 and 𝐾𝑖 become trivial at pressure out 

of its range in Fig. 4.2 and 4.3, the requirement to conduct interpolation is unconditionally 

satisfied. 

Essentially, in the compositional space the independent variable is pressure and 

the dependent variables are equilibrium ratios 𝐾𝑖 and vapor mole fraction 𝑓𝑣, as shown in 

Equations (4.27) and (4.28). Assume that saturation pressure and the corresponding 

equilibrium ratios 𝐾𝑖 are given, a pressure vector is constructed by reducing pressure from 

saturation pressure to a very low end pressure. Flash calculation at different pressures can 
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then be efficiently performed following the pressure decreasing direction, since the first 

initial guess after saturation pressure can be adopted from values at saturation pressure 

condition. 

𝐾𝑖 = 𝑔1(𝑝)                                                                                                              (4.27) 

𝑓𝑣 = 𝑔2(𝑝)                                                                                                              (4.28) 

 

The basic VLE procedure for fixed composition scenario is provided in Fig. 4.4. 

Step 1 is a static procedure, where a 2D compositional space defining 𝑃 − 𝐾𝑖 and 𝑃 − 𝑓𝑣 

relationships is constructed. This compositional space or database can be established 

before the dynamic simulation or outside of the simulator kernel, for example at the 

initialization step. The regular dynamic flash procedure starts from Step 2 to 4 in the red 

dash rectangular box. Even though the interpolated vapor mole fraction 𝑓𝑣 may not exactly 

results in the convergence of Rachford-Rice (RR) Equation, it will be definitely improved 

after the first SSI iteration. Alternatively, a preconditioning procedure to improve 𝑓𝑣 can 

be done through evaluation of RR equation based on the initial estimates. Therefore, those 

two alternative options are provided in Step 3. 
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Fig. 4.4—Workflow of VLE procedure for fixed fluid compositions 

 

4.3.2.2.2  Fluids with Sharply Varying Composition 

The approach proposed above is appropriate to predict phase behavior of 

petroleum fluid with a fixed composition. However, fluid composition is generally 

variable in many cases such as gas flooding processes. Take the petroleum fluid with 7 

components from North Ward Estes oil at 82.99 ℉ as an example (Li and Firoozabadi 

2012). 𝐶𝑂2  is considered as the injected component and other compositions are 

normalized based on the number of moles from the original data. VLE is performed with 

𝐶𝑂2 mole fraction changing from 0.01 to 0.8. The corresponding phase diagram is shown 

in Fig. 4.5. Clearly the bubble point pressure increases with the increase of 𝐶𝑂2 mole 

fraction. When 𝐶𝑂2 mole fraction is higher than 0.55, the bubble point pressure increases 

significantly. In the original data there is a small region of three phase, but it is not shown 

in two phase diagram here. However, this never hinders the investigation purpose here. 

Construct and

2D Compositional Space
Step 1:

Interpolate from Compositional SpaceStep 2:

Option 1: Preconditioning based on RR Eq.

Option 2: SSI Procedure for Flash Calculation
Step 3:

NR Procedure for Flash CalculationStep 4:
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Fig. 4.5—Phase diagram of North Ward Estes oil at 𝟖𝟐. 𝟗𝟗 ℉ with different 𝑪𝑶𝟐 

mole fraction 

 

Following the path of bubble point line in Fig. 4.5, the equilibrium ratios 𝐾𝑖 for 

the 7 components versus 𝐶𝑂2 mole fraction are plotted in Fig. 4.6. It shows that 𝐾𝑖 of all 

components ultimately converges to values very close to 1, which is actually near the 

critical condition. The 𝐾𝑖  changes for components 𝑃𝐶4 and 𝑃𝐶5 are respectively in the 

magnitude of 106 and 1011 as 𝐶𝑂2 mole fraction increases from 0.01 to 0.8. The high 

nonlinearity presented in this varied composition scenario makes those conventional 𝐾𝑖 

estimation methods inaccurate. Since the basic assumption of constant composition is not 

valid anymore, initial guess from the proposed approach in the previous section cannot 

favorably speed up the flash calculation convergence. 
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Fig. 4.6—K-values of North Ward Estes oil at 𝟖𝟐. 𝟗𝟗 ℉ following the bubble point 

line in Fig. 4.5 

 

As the mole fractions of the injected components continuously increase and are 

ultimately mixed with original petroleum fluid, the composition changes sharply. In 

addition to pressure, compositional dynamics change the PVT behavior correspondingly. 

Therefore, it is reasonable to define those components causing changes as a pseudo key 

component (hereafter referred as “PKC”), which provides an additional freedom to predict 

the phase behavior of petroleum fluids. The rest of the components in the original reservoir 

fluid can be lumped as a pseudo idle component (hereafter referred as “PIC”), whose 

change is induced by PKC. In other scenarios such as depletion processes from gas-

condensate or volatile-oil reservoirs, PKC can be defined similarly with an analysis on 

which component or components in the reservoir fluid dominate the phase behavior. 

The introduction of PKC is to help further successfully define a compositional 

space, in which pressure and PKC mole fraction are considered as independent variables. 
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The equilibrium ratios 𝐾𝑖  and vapor mole fraction 𝑓𝑣  are correspondingly treated as 

dependent variables in Equation (4.29) and (4.30). Assume that the saturation pressures at 

different PKC mole fractions and equilibrium ratios 𝐾𝑖 at those saturation pressures are 

calculated in advance, a vector of pressure decreasing from saturation pressures to a low 

end pressure and a vector of PKC mole fraction can be generated. VLE calculation in the 

compositional space can be efficiently performed using a two-level loop with the pressure 

in the inner loop and PKC mole fraction in the outer loop. Initial guess of 𝐾𝑖 and 𝑓𝑣 can 

be obtained through multi-variable interpolation from the compositional space based on 

specific pressure and PKC mole fraction condition. 

𝐾𝑖 = 𝑔3(𝑝, 𝑧𝑃𝐾𝐶)                                                                                                  (4.29) 

𝑓𝑣 = 𝑔4(𝑝, 𝑧𝑃𝐾𝐶)                                                                                                  (4.30) 

 

The workflow of VLE procedure for sharply varying composition scenario is 

provided in Fig. 4.7. Step 1 is the compositional space construction. Different from Step 

1 in Fig. 4.4, it constructs a 3D compositional space controlled by pressure and PKC mole 

fraction 𝑧𝑃𝐾𝐶. The dynamic flash includes Step 2 to 4 in the red dash rectangular box. 

Similar to Fig. 4.4, here two options are offered in Step 3. It should be noted that the 

compositional space is pre-constructed before the dynamic flash calculation, implying a 

minimal computational overhead. 
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Fig. 4.7—Workflow of flash calculation for fluid with sharp varying composition 

 

4.3.3  Volume Translation 

After hydrocarbon fluid properties are calculated by PR-EOS and VLE, a volume 

translation procedure is used to correct the predicted volumetric properties (Péneloux et 

al. 1982). However, this procedure does not alter VLE calculation before, so it does not 

add much complexity. A component correction factor 𝑐𝑖 is calculated for each component, 

as shown in Equation (4.31). 

𝑐𝑖 = 𝒮𝑖𝑏𝑖, (𝑖 =  1, 2,⋯ , 𝑛ℎ)                                                                                      (4.31) 

 

where 𝒮𝑖 is a shift factor for each component, and 𝑏𝑖 is calculated by Equation (A.7) in 

Appendix A. 

The overall and phase volume correction factors are calculated by composition 

weighted average. 
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𝑐 =  ∑ 𝑐𝑖𝑧𝑖
𝑛ℎ
𝑖=1                                                                                                               (4.32) 

𝑐𝑙 = ∑ 𝑐𝑖𝑥𝑖
𝑛ℎ
𝑖=1                                                                                                                (4.33) 

𝑐𝑣 = ∑ 𝑐𝑖𝑦𝑖
𝑛ℎ
𝑖=1                                                                                                    (4.34) 

 

Based on Equations (4.32) to (4.34), the molar volumes and 𝑍 -factors are 

corrected. 

𝓋𝑠ℎ𝑖𝑓𝑡 =  𝓋 − 𝑐                                                                                                  (4.35) 

𝓋𝑙
𝑠ℎ𝑖𝑓𝑡

= 𝓋𝑙 − 𝑐𝑙                                                                                                  (4.36) 

𝓋𝑣
𝑠ℎ𝑖𝑓𝑡

= 𝓋𝑣 − 𝑐𝑙                                                                                                  (4.37) 

𝑍𝛼
𝑠ℎ𝑖𝑓𝑖𝑡

=
𝑝𝓋𝛼

𝑠ℎ𝑖𝑓𝑖𝑡

𝑅𝑇
                                                                                                  (4.38) 

 

4.3.4  Oil and Gas Viscosities 

After performing VLE and volume translation, oil(liquid) and gas(vapor) 

viscosities are calculated based on the Lohrez-Bray-Clark correlation (Lohrenz et al. 

1964), shown as Equation (4.39), 

𝜇𝛼 = 𝜇𝛼
∗ +

1

𝜉𝛼
[(0.0093324𝜌̃𝑟𝛼

4 − 0.40758𝜌̃𝑟𝛼
3 + 0.058533𝜌̃𝑟𝛼

2 + 0.023364𝜌̃𝑟𝛼 +

0.1023)
4
− 0.0001]                                                                                                    (4.39) 

 

where 𝜇𝛼 is the phase viscosity, 𝑐𝑃; 𝜇𝛼
∗  is the phase viscosity at atmospheric pressure, 𝑐𝑃; 

𝜉𝛼 is the phase viscosity parameter; 𝜌̃𝑟𝛼 is the reduced phase molar density, 𝑙𝑏𝑚𝑜𝑙/𝑓𝑡3. 



 

81 

 

The phase viscosity at atmospheric pressure 𝜇𝛼
∗  in Equation (4.39) is calculated 

based on Equations (4.40) to (4.45). 

𝜇𝛼
∗ = 

∑ 𝑥𝑖
𝛼𝜇𝑖

∗√𝑀𝑊𝑖
𝑛ℎ
𝑖=1

∑ 𝑥𝑖
𝛼√𝑀𝑊𝑖

𝑛ℎ
𝑖=1

                                                                                                  (4.40) 

𝑥𝑖
𝛼 = {

𝑥𝑖 , 𝛼 = 𝑙 (𝑙𝑖𝑞𝑢𝑖𝑑/𝑜𝑖𝑙 𝑝ℎ𝑎𝑠𝑒)
𝑦𝑖,  𝛼 = 𝑣 (𝑣𝑎𝑝𝑜𝑟/𝑔𝑎𝑠 𝑝ℎ𝑎𝑠𝑒)

                                                              (4.41) 

𝜇𝑖
∗ = {

0.00034𝑇𝑟𝑖
0.94

𝜉𝑖
, 𝑇𝑟𝑖  ≤ 1.5

0.0001778(4.58𝑇𝑟𝑖−1.67)5/8

𝜉𝑖
, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                  (4.42) 

𝑇𝑟𝑖 =
𝑇

𝑇𝑐𝑖
                                                                                                              (4.43) 

𝑝𝑟𝑖 =
𝑝

𝑝𝑐𝑖
                                                                                                              (4.44) 

𝜉𝑖 = 5.4402
𝑇𝑐𝑖

1/6

𝑀𝑊
𝑖
1/2

𝑝
𝑐𝑖
2/3                                                                                      (4.45) 

 

The phase viscosity parameter 𝜉𝛼  in Equation (4.39) is calculated based on 

Equations (4.46) to (4.49), 

𝜉𝛼 = 5.4402
𝑇𝑝𝑐𝛼

1/6

𝑀𝑊𝛼
1/2

𝑝𝑝𝑐𝛼

2/3                                                                                       (4.46) 

𝑇𝑝𝑐𝛼
= ∑ 𝑥𝑖

𝛼𝑇𝑐𝑖
𝑛ℎ
𝑖=1                                                                                                   (4.47) 

𝑝𝑝𝑐𝛼
= ∑ 𝑥𝑖

𝛼𝑝𝑐𝑖
𝑛ℎ
𝑖=1                                                                                                   (4.48) 

𝑀𝑊𝛼 = ∑ 𝑥𝑖
𝛼𝑀𝑊𝑖

𝑛ℎ
𝑖=1                                                                                                   (4.49) 
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The reduced phase molar density 𝜌̃𝑟𝛼  in Equation (4.39) is defined by the ratio of 

phase molar density 𝜌̃𝛼 to pseudocritical phase molar density 𝜌̃𝑝𝑐𝛼
, as shown in Equations 

(4.50) to (4.51), 

𝜌̃𝑟𝛼 =
𝜌̃𝛼

𝜌̃𝑝𝑐𝛼

                                                                                                              (4.50) 

𝜌̃𝑝𝑐𝛼
=

1

∑ 𝑥𝑖
𝛼𝑛ℎ

𝑖=1
𝓋𝑐𝑖

                                                                                                  (4.51) 

 

4.3.5  Water Properties 

Water density is calculated based on water formation volume factor 𝐵𝑤, and 𝐵𝑤 is 

related to water compressibility 𝐶𝑤 and pressure changes (Schlumberger 2012), 

𝜌𝑤 =
𝜌𝑤

𝑠𝑐

𝐵𝑤
                                                                                                              (4.52) 

𝐵𝑤 =
𝐵𝑤

𝑟𝑒𝑓

1+𝑋+0.5𝑋2                                                                                                  (4.53) 

𝑋 = 𝐶𝑤(𝑝 − 𝑝𝑟𝑒𝑓)                                                                                                  (4.54) 

 

Viscosity are treated as a function of pressure, and it is calculated based on water 

viscosibility 𝐶𝜇𝑤
 and pressure changes (Schlumberger 2012), 

𝜇𝑤 =
𝜇𝑤

𝑟𝑒𝑓

1+𝑌+0.5𝑌2                                                                                                  (4.55) 

𝑌 =  −𝐶𝜇𝑤
(𝑝 − 𝑝𝑟𝑒𝑓)                                                                                                  (4.56) 
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4.3.6  Rock-Fluid Functions 

4.3.6.1  Capillary Pressure 

In fluid dynamics capillary pressure is the pressure difference across the phase 

interface between two immiscible fluids. In petroleum engineering capillary pressure is 

usually defined as Equation (4.57), which is a phase pressure difference between non-

wetting phase and wetting phase. 

𝑝𝑐 = 𝑝𝑛𝑤𝑒𝑡 − 𝑝𝑤𝑒𝑡                                                                                                  (4.57) 

 

Based on Equation (4.57), only oil phase pressure is involved in the primary 

variable vector, and other phase pressures are considered as secondary variables. Usually 

oil is considered to be a non-wetting phase in oil-water system, and gas is treated as non-

wetting phase if it exists. Capillary pressures are considered to be functions of fluid 

saturations in GURU. 

 

4.3.6.2  Relative Permeability Curve 

In GURU phase relative permeability is involved in multiphase Darcian flux term 

and well term in mass balance equations. Relative permeability curves can be measured 

through experiments, and are characterized as functions of saturations. There exist 

multiple methods to obtain three phase oil relative permeability, and here the default oil 

relative permeability calculation method is Stone II (Stone 1973), as shown in Equation 

(4.58), 

𝑘𝑟𝑜 = 𝑘𝑟𝑜𝑐𝑤[(
𝑘𝑟𝑜𝑤

𝑘𝑟𝑜𝑐𝑤
+ 𝑘𝑟𝑤) (

𝑘𝑟𝑜𝑔

𝑘𝑟𝑜𝑐𝑤
+ 𝑘𝑟𝑔) − 𝑘𝑟𝑤 − 𝑘𝑟𝑔]                                      (4.58) 
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where 𝑘𝑟𝑜 is the oil relative permeability in oil-gas-water system; 𝑘𝑟𝑜𝑤 represents the oil 

relative permeability at actual water saturation; 𝑘𝑟𝑜𝑐𝑤 denotes the oil relative permeability 

at connate water saturation; 𝑘𝑟𝑤  is the water relative permeability at actual water 

saturation; 𝑘𝑟𝑜𝑔 is the oil relative permeability at connate water saturation and actual gas 

saturation; 𝑘𝑟𝑔 is the gas relative permeability at actual gas saturation. 

 

4.3.7  Rock Compressibility 

Rock porosity or pore volume reduces with the decrease of pore pressure, and vice 

versa. Therefore, the rock porosity is calculated based on rock compressibility and pore 

pressure changes (Dake 1978), as shown in Equation (4.59), 

𝜙 = 𝜙𝑟𝑒𝑓𝑒
𝐶𝑟(𝑝−𝑝𝑟𝑒𝑓)                                                                                                  (4.59) 

 

Rock compressibility is a property associated with rock type. For example, in 

fractured reservoirs the compressibilities of fracture and matrix can be different. 

 

4.3.8  Gas Shale Apparent Permeability 

Shale matrix is extremely tight and the influences of non-Darcy flow in the nano-

porous media cannot be ignored. In shale matrix, organic matrix or kerogen distributes in 

inorganic matrix (Ambrose et al. 2012). Nano-pores are widely developed in kerogen due 

to the generation of hydrocarbon in geological ages (Wang and Reed 2009), and those 

nano-pores have good capacity for absorbed gas and compressed gas storage (Ambrose et 

al. 2012). Besides, the interaction between gas molecules and nano-pore wall influences 
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the gas flow within the nano-pores. Thus gas slippage and Knudsen diffusion is also 

important and can be considered using matrix apparent permeability (Civan 2010; 

WuChen et al. 2015; Wu et al. 2016; WuLi et al. 2015). 

Since GURU considers rock types as cell information (Figure 4.1), this eases the 

consideration of gas slippage and Knudsen diffusion in shale matrix through tracking rock 

type of cells. Therefore, the dynamic gas matrix apparent permeability or half-

transmissibility (Equation (4.7)) in each cell is incorporated through a permeability 

multiplier as defined in Equation (4.60), 

𝑘 =  {
𝜂𝑘0, 𝑐𝑒𝑙𝑙 𝑗 ∈ 𝑠ℎ𝑎𝑙𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 & 𝑔𝑎𝑠 𝑓𝑙𝑢𝑥 𝑜𝑛𝑙𝑦
𝑘0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                      (4.60) 

 

where 𝜂 is gas apparent permeability multiplier, dimensionless; 𝑘0 is the intrinsic medium 

permeability, 𝑚𝐷. 

As shown in Equation (4.60), if only Darcy flow is considered for the specific 

component or fluid, the permeability is constant at 𝑘0. 

GURU is a compositional simulator, so the apparent permeability multiplier is 

based on gas component instead of gas phase. Specifically it is related to Knudsen number 

𝐾𝑛,𝑖 (Equation (4.61)), which is a ratio of mean free path of gas molecule to pore radii. 

The mean free path 𝜆𝑖  is calculated component-wise (Jiang and Younis 2016) through 

Equation (4.62) ,and average matrix pore radii is calculated through the correlation from 

Aguilera (2010) (Equation (4.63)). Ultimately the apparent permeability multiplier 𝜂𝑖 is 

also individually for each gas component, and is defined through Equation (4.64) and 

(4.65). 



 

86 

 

𝐾𝑛,𝑖 =
𝜆𝑖

𝑟
                                                                                                              (4.61) 

𝜆𝑖 =
1

√2𝜋𝜌̃𝑔𝑁𝐴𝑑𝑚,𝑖
2                                                                                                   (4.62) 

𝑟 = 2.665 (
𝑘0

100𝜙
)
0.45

                                                                                                  (4.63) 

𝜂𝑖 = 𝑓(𝐾𝑛,𝑖) = (1 + 𝛼𝑖𝐾𝑛,𝑖)(1 +
4𝐾𝑛,𝑖

1+𝐾𝑛,𝑖
)                                                              (4.64) 

𝛼𝑖 =
128

15𝜋2 arctan(4𝐾𝑛,𝑖
0.4)                                                                                      (4.65) 

 

4.4  Global Linear System 

4.4.1  Primary Equations and Variables 

There exist two main categories of primary equations or residuals in GURU, 

including reservoir residuals and well residuals. The reservoir residuals are Equations 

(4.1), (4.4) and (4.16), and the well residuals is any one of the Equations from (4.17) to 

(4.21). Correspondingly, two categories of primary variables are solved from the primary 

equations: the first category is the reservoir primary variables, including the number of 

moles of each hydrocarbon component 𝑁𝑖 and the number of moles of water component 

𝑁𝑤  in unit cell volume, oil pressure  𝑝𝑜 ; and the second category is the bottom-hole 

pressure 𝑝𝑤𝑓. Table 4.1 summarizes those primary equations and variables in the fully 

implicit compositional formulation. As shown in Table 4.1, (𝑛ℎ + 2) × 𝑛𝐶𝑒𝑙𝑙𝑠 reservoir 

residuals and 𝑛𝑊𝑒𝑙𝑙𝑠  well residuals are solved as primary equations, which correspond 

to the same number of primary variables. Here 𝑛𝐶𝑒𝑙𝑙𝑠 and 𝑛𝑊𝑒𝑙𝑙𝑠 represent number of 

active cells and wells in the model respectively. 
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Table 4.1—Summary of primary equations and variables 

Equations Number Variables  Number 

Mass balance (4.1) 𝑛ℎ × 𝑛𝐶𝑒𝑙𝑙𝑠 𝑁𝑖 𝑛ℎ × 𝑛𝐶𝑒𝑙𝑙𝑠 

Mass balance (4.4) 1 × 𝑛𝐶𝑒𝑙𝑙𝑠 𝑁𝑤 1 × 𝑛𝐶𝑒𝑙𝑙𝑠 

Volume balance (4.16) 1 × 𝑛𝐶𝑒𝑙𝑙𝑠 𝑝𝑜 1 × 𝑛𝐶𝑒𝑙𝑙𝑠 

Any well constraint from 

(4.17) to (4.21) 
1 × 𝑛𝑊𝑒𝑙𝑙𝑠 𝑝𝑤𝑓 1 × 𝑛𝑊𝑒𝑙𝑙𝑠 

Total 
(𝑛ℎ + 2) × 𝑛𝐶𝑒𝑙𝑙𝑠 

+𝑛𝑊𝑒𝑙𝑙𝑠 
 

(𝑛ℎ + 2) × 𝑛𝐶𝑒𝑙𝑙𝑠 

+𝑛𝑊𝑒𝑙𝑙𝑠 

 

Therefore, the residual vector 𝑅⃗  is formed by reservoir and well residuals, and its 

size is thus (𝑛ℎ + 2) × 𝑛𝐶𝑒𝑙𝑙𝑠 + 𝑛𝑊𝑒𝑙𝑙𝑠. The global ordering of the residual vector is 

shown in Equation (4.66). The ordering of reservoir residuals is shown in Equation (4.67), 

where there is an inner component loop nested in the cell loop; on the other hand, well 

residuals follow the reservoir residuals and are ordered by the ordering of active wells, as 

shown in Equation (4.68). 

𝑅⃗ =  [
𝑅⃗ 𝑟𝑒𝑠

𝑅⃗ 𝑤𝑒𝑙𝑙

]                                                                                                              (4.66) 

𝑅⃗ 𝑟𝑒𝑠 = [
𝑅⃗ 𝑖,𝑗
𝑅𝑤,𝑗

𝑅𝑣𝑜𝑙,𝑗

]

𝑖=1,⋯,𝑛ℎ; 𝑗=1,⋯,𝑛𝐶𝑒𝑙𝑙𝑠;  

                                                                          (4.67) 

𝑅⃗ 𝑤𝑒𝑙𝑙 = [𝑅𝑤𝑒𝑙𝑙,𝑤 ]
𝑤=1,⋯,𝑛𝑊𝑒𝑙𝑙𝑠

𝑇
                                                                          (4.68) 

 

Similarly, the primary unknown vector 𝑋  is comprised of reservoir and well 

variables, and its length equals to the residual vector. The ordering for 𝑋  is, 
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𝑋 =  [
𝑋 𝑟𝑒𝑠

𝑋 𝑤𝑒𝑙𝑙

]                                                                                                              (4.69) 

𝑋 𝑟𝑒𝑠 = [
𝑁⃗⃗ 𝑖,𝑗
𝑁𝑤,𝑗

𝑝𝑜,𝑗

]

 𝑖=1,⋯,𝑛ℎ;𝑗=1,⋯,𝑛𝐶𝑒𝑙𝑙𝑠; 

                                                                          (4.70) 

𝑋 𝑤𝑒𝑙𝑙 = [𝑝𝑤𝑓,𝑤 ]
𝑤=1,⋯,𝑛𝑊𝑒𝑙𝑙𝑠

𝑇
                                                                                      (4.71) 

 

The global linear system of the model becomes Equation (4.72). Further it can be 

written in the format of Equation (4.73). In Equation (4.73), the Jacobian system includes 

reservoir Jacobian (top row) and well Jacobian (bottom row), and this is consistent with 

the ordering of the primary variables and equations. 

𝐽𝛿 =  𝑅⃗                                                                                                               (4.72) 

 [

𝜕𝑅⃗ 𝑟𝑒𝑠

𝜕𝑋⃗ 𝑟𝑒𝑠

𝜕𝑅⃗ 𝑟𝑒𝑠

𝜕𝑋⃗ 𝑤𝑒𝑙𝑙

𝜕𝑅⃗ 𝑤𝑒𝑙𝑙

𝜕𝑋⃗ 𝑟𝑒𝑠

𝜕𝑅⃗ 𝑤𝑒𝑙𝑙 

𝜕𝑋⃗ 𝑤𝑒𝑙𝑙

] [
Δ𝑋⃗⃗⃗⃗  ⃗

𝑟𝑒𝑠

Δ𝑋⃗⃗⃗⃗  ⃗
𝑤𝑒𝑙𝑙

] = [
𝑅⃗ 𝑟𝑒𝑠

𝑅⃗ 𝑤𝑒𝑙𝑙

]                                                                           (4.73) 

 

4.4.2  Jacobian Calculation and Construction 

The Jacobian matrix in GURU are calculated based on numerical differentiation 

for the sake of its easy implementation and mechanistic investigation purpose in this work. 

Numerical Jacobian basically requires two functional evaluations for the residual 

equations (Dennis and Schnabel 1983), as shown in Equations (4.74) to (4.75), 

𝜕𝑅𝑖

𝜕𝑥𝑗
= 

𝑅𝑖(𝑥𝑗+𝜖𝑗)−𝑅𝑖(𝑥𝑗)

𝜖𝑗
                                                                                                  (4.74) 

𝜖𝑗 = √𝜂 ∙ max {|𝑥 |, 𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑥𝑗} ∙ 𝛩(𝑥𝑗)                                                              (4.75) 
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where 𝑅𝑖 is the residual function, 𝑥𝑗 is the perturbed variable, 𝜖𝑗 is the perturbation, 𝜂 is 

machine precision, 𝛩(𝑥𝑗)  is the correct root searching direction of 𝑥𝑗 , and |𝑥 |  is the 

variable vector belonging to the same type, which in GURU can be {𝑁𝑖}, {𝑁𝑤}, {𝑝𝑜} and 

{𝑝𝑤𝑓}. 

Further, 𝜖𝑗 is ensured to be an exact float number in computer by manipulating it 

as Equations (4.76) and (4.77) (Dennis and Schnabel 1983). 

𝑡𝑒𝑚𝑝 = 𝑥𝑗 + 𝜖𝑗                                                                                                  (4.76) 

𝜖𝑗 =  𝑡𝑒𝑚𝑝 − 𝑥𝑗                                                                                                  (4.77) 

 

Fig. 4.8 presents the comparison between numerical differentiation and analytical 

differentiation. It is based on the derivatives of a well residual with regards to 6 related 

independent variables. It shows that numerical differentiation can provides sufficient 

accuracy for fully implicit approach here. 

 

 

Fig. 4.8—Comparison between numerical differentiation (ND) and hard analytical 

differentiation (HAD) 
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As discussed in Lim et al. (1995), block-based approach to construct Jacobian has 

to evaluate each term in the residuals by cell and cannot avoid trivial zero transmissibilities 

for cells with non-flow boundary conditions, and it becomes extremely difficult and 

redundant for unstructured grid discretization. Moreover, there exist intrinsic symmetries 

in the mass balance equations. Specifically the flux terms between two connected cells in 

the mass balance equations are opposite and they are connection-based, but the 

accumulation term in the mass balance equations and all the volume balance equations 

become locally cells-based. Certainly extra care needs to be taken for source/sink terms, 

but their contribution to the reservoir mass balance equation systems is sparse but not 

global. 

Following the philosophy of Lim et al. (1995), the Jacobian construction is split 

into two parts, including connection-based Jacobian and cell-based Jacobian. For example, 

Fig. 4.9(a) is a case of 1-D single phase black-oil model, and well is temporarily not 

considered in the domain. The construction of Jacobian is a summation of connection-

based Jacobian and cell-based Jacobian, as shown in Fig. 4.9(b). It shows that Jacobian 

submatrix related to flux has both diagonal and off-diagonal entries, and the distribution 

of those nonzero entries depends on the cell connection topology during grid-

discretization. In this 1-D problem here Jacobian submatrix related to flux is simply 

tridiagonal. On the other hand, the Jacobian submatrix related to accumulation has only 

diagonal entries. In multiphase black-oil problems or compositional problems, their 𝑋 and 

𝑌  in the Jacobian might become block submatrices, and the dimensions of those 

submatrices are determined by the degree of freedom solved in each cell. 
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(a) 

 

(b) 

Fig. 4.9— (a) 1-D single phase black-oil model with 4 cells; (b) Jacobian for (a) 

 

Moreover, by applying overall qualities as primary variables, the splitting Jacobian 

construction approach also leads to perfectly linearized accumulation term in Jacobian for 

mass balance equations. Taking Equations (4.1) and (4.4) as examples, their accumulation 

Jacobian terms with regards to component mass in cell, excluding gas 

adsorption/desorption here, become constant as shown in Equations (4.78) and (4.79). 

𝜕

𝜕𝑁𝑖,j
𝑛+1 {

𝑉𝑗

Δ𝑡
(𝑁𝑖,j

𝑛+1 − 𝑁𝑖,j
𝑛  )} =  

𝑉𝑗

Δ𝑡
                                                                          (4.78) 

𝜕

𝜕𝑁𝑤,𝑗
𝑛+1 {

𝑉𝑗

Δ𝑡
(𝑁𝑤,𝑗

𝑛+1 − 𝑁𝑤,𝑗
𝑛 )} =  

𝑉𝑗

Δ𝑡
                                                                          (4.79) 

1 2 3 4
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4.4.3  Jacobian Storage and Linear Solvers 

Jacobian matrices in compositional simulation are usually sparse. Depending on 

the linear solver requirement, multiple sparse matrix storage formats and their mutual 

convertors are implemented in GURU, including triplet format, Compressed Row Storage 

(CRS), and Modified Compressed Row Storage (MCRS) (Tuminaro et al. 1999). Their 

memory cost follows the sequence of triplet format > CRS > MCRS. Since the Jacobian 

filling process in GURU is aligned with the ordering of primary variables in Equation 

(4.73), the matrix is firstly stored in triplet format and then transformed into other formats 

based on the requirement of linear solvers. 

GURU is interfaced with two different GMRES iterative solvers with ILU 

preconditioners. The first one is from Ju and Burkardt (2011), which is compatible with 

CRS matrix format. The other one is from Aztec library developed by Tuminaro et al. 

(1999), which requires MCRS matrix format. For the flash/VLE calculation, linear solver 

is also required to solve the small dense Jacobian matrix of vapor-liquid equilibrium. Here 

the small Jacobian matrix is stored in full format because of its simplicity. The linear 

system in VLE is solved by a self-implemented direct solver of Gaussian Elimination with 

pivoting method. 

 

4.5  Simulation Workflow 

GURU is implemented through a group of modules with independent features, and 

the purpose of this design is to make it be highly extendable for future research. Currently, 

GURU includes six main modules (Fig. 4.10), including rock-fluid, fluid, well control, 
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mobility, flow equations, and linear solver modules. Specifically, rock-fluid module is to 

calculation rock properties, and rock-fluid function, such as relative permeability and 

capillary pressure. Fluid module is important and includes some of the most frequently 

called subroutines such as VLE and PR-EOS subroutines. Besides, water properties and 

multi-component gas adsorption/desorption is calculated here. Well control module is to 

analyze different well constraints, calculate wellbore gradient, and construct well Jacobian 

and residuals. Mobility module is to compute mobility for flux and also other flux-related 

sub-terms. Flow equation module is to construct global Jacobian and residuals (RHS) in 

the linear system. Ultimately, the linear solver module is engine to solve linear systems in 

compositional simulation. GURU is prototyped with MATLAB (Mathworks 2015), and 

then completely rewritten in object-oriented FORTRAN (Chapman 2007). 

 

 

Fig. 4.10—Module tree in GURU 

 

The simulation workflow is presented in Fig. 4.11. After the input file is read, data 

quality is carefully checked, and miscellaneous data and initialization is calculated during 
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this step. Next, data passes through the simulator engine at time-loop level. The newton 

solver is the kernel of the simulator and starts with initial guesses of the primary variables, 

then constructs linear system and delivers it to linear solver package. After linear solver 

converges, solution is returned to update primary variables, followed by updating 

secondary variables. The newton loop is repeated until certain convergence criterion is 

reached. Converged results returned from the kernel is further output as data files, curves, 

and pictures etc. Then get into the next time-step until all simulation time-steps are 

finished. Therefore, the newton loop is nested in the time-step loop. 

 

 

Fig. 4.11—Simulation workflow in GURU 
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4.6  Summary 

In this chapter, a fully implicit unstructured compositional simulator GURU has 

been developed. Based on Control-Volume Finite-Difference method, the simulator 

enables to flexibly handle different grid discretization approaches. Besides, the adoption 

of overall qualities variables enables GURU to avoid variable switch when phase changes. 

Gas shale mechanisms such as multi-component adsorption/desorption, Knudsen 

diffusion and gas slippage flow have been implemented in GURU, so it is ready for shale 

gas reservoir modeling. Besides, an efficient set of compositional space preconditioned 

vapor-liquid equilibrium calculation methods have been proposed, and they are 

appropriate for fluid with slightly varying or constant composition and fluid with sharply 

varying composition. 
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CHAPTER V 

VALIDATION OF GURU AND VLE ALGORITHMS 

 

In Chapter IV, the formulation of GURU and its overall workflow have been 

comprehensively discussed. Based on this, the main task of this chapter is to validate the 

simulator and its related algorithms with regards to the following three aspects, 

 3D multiphase compositional simulation based on GURU; 

 Multiphase discrete fracture reservoir modeling based on GURU; 

 Validation of efficiency for the new proposed VLE workflow. 

 

5.1  Compositional Simulation Benchmark Case 

GURU is unstructured such that it has no limitation to spatial dimension any more. 

Therefore, here a synthetic 3D 3-phase case is tested to calibrate it with Eclipse 300 

(Schlumberger 2012), which is an industrial standard compositional simulator. In Fig. 5.1, 

there are two wells drilled in the reservoir, with a water injector perforated at cell (1, 1, 1) 

and cell (1, 1, 3) and a producer perforated at cell (15, 15, 1) and cell (15, 15, 2), thus the 

model represents a quarter of an inverted five-spot pattern. Besides, horizontal 

permeability distribution is shown in Fig. 5.1. Horizontal permeability in each layer is the 

same and the ratio of vertical to horizontal permeability is 0.10. Thus the permeability 

field is heterogeneous and anisotropic. 
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Fig. 5.1—Horizontal permeability distribution in the benchmark case 

 

Table 5.1—Basic reservoir parameters in compositional simulation benchmark case 

Reservoir size (𝑓𝑡3) 1,320 × 1,320 × 90 
Grid dimension in x-y-z space 15 × 15 × 3 

Reservoir top depth (𝑓𝑡) 2,665 

Porosity (𝑣/𝑣) 0.2 

Mean horizontal permeability 𝑘ℎ (𝑚𝐷) 400.2 

𝑘𝑣/𝑘ℎ (𝑚𝐷) 0.1 

Water saturation 𝑆𝑤 0.35 

Initial reservoir pressure (𝑝𝑠𝑖𝑎) 6,000 

Reservoir temperature (℉) 200 

Perforated cells for producer (15, 15, 1) and (15, 15, 2) 

Reference depth for producer (𝑓𝑡) 2,680 

Minimum producer BHP (𝑝𝑠𝑖𝑎) 1,000 

Maximum producer oil rate (𝑠𝑡𝑏/𝑑𝑎𝑦) 2,000 

Perforated cells for injector (1, 1, 1) and (1, 1, 3) 

Reference depth for injector (𝑓𝑡) 2,680 

Maximum injector BHP (𝑝𝑠𝑖𝑎) 6,500 

Minimum injector water rate (𝑠𝑡𝑏/𝑑𝑎𝑦) 2,000 

Simulation time (days) 365 
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The basic reservoir parameters are presented in Table 5.1. The initial reservoir 

pressure is 6,000 𝑝𝑠𝑖𝑎, initial water saturation is 0.35 and irreducible water saturation is 

0.16. The producer is constrained by a minimum BHP, 1,000 𝑝𝑠𝑖𝑎, and a maximum oil 

rate, 2,000 𝑆𝑇𝐵/𝑑𝑎𝑦, while the injector is controlled by a maximum BHP, 6,500 𝑝𝑠𝑖𝑎, 

and a minimum water rate, 2,000 𝑆𝑇𝐵/𝑑𝑎𝑦. Since this is a Cartesian model, the well 

index for GURU is calculated based on Peaceman’s model (Peaceman 1990). 

The compositional fluid properties are illustrated in Table 5.2. As shown in Table 

5.2, there are 5 components (𝐶𝑂2, 𝐶𝐻4, 𝐶2−4, 𝐶5−6, 𝐶7+) in the hydrocarbon mixture, and 

the bubble point pressure 𝑝𝑏 for the fluid mixture is 5,557.517 𝑝𝑠𝑖𝑎. Because here the 

initial reservoir pressure (6,000 𝑝𝑠𝑖𝑎 ) is higher than the original fluid bubble point 

pressure, so the reservoir starts with oil and water, and then gas phase appears as pressure 

quickly decreases below bubble point pressure. 

 

Table 5.2—Compositional fluid properties for 5-component EOS characterization 

Component n(initial) 𝑻𝒄 (℉) 𝑷𝒄 (𝒑𝒔𝒊𝒂) 𝝎 
𝑴𝒘 (𝒈
/𝒎𝒐𝒍) 

𝜹𝒊,𝑪𝑶𝟐
 𝜹𝒊,𝑪𝑯𝟒

 

𝐶𝑂2 0.0006 88.46 1071.33 0.28686 44.01 - - 

𝐶𝐻4 0.6001 117.40 667.78 0.013 16.093 0.1 - 

𝐶2−4 0.0655 132.35 578.51 0.02567 0.02567 - - 

𝐶5−6 0.0403 605.10 510.15 0.19164 0.19164 - 0.018 

𝐶7+ 0.2935 630.00 357.87 0.89134 0.89134 - 0.041 

𝑝𝑏 (𝑝𝑖𝑠𝑎) 5,557.517 

 

The rock fluid table are from the work of (Valbuena 2015). Oil-water and oil-gas 

relative permeability curves are presented in Fig. 5.2(a) and (b), and the oil relative 
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permeability is calculated based on Stone II method (Stone 1973). Further, in Fig. 5.2(c) 

oil-water capillary pressure is considered but that oil-gas capillary pressure is considered 

to zero. 

 

 

(a) 

 

(b) 

Fig. 5.2—Rock-fluid functions used in this study. (a) Oil and water relative 

permeability in the matrix and fractures; (b) Oil and gas relative permeability in 

the matrix and fracture; (c) Oil-water and gas-oil capillary pressure curves. Oil-gas 

capillarity is assumed to be zero. 
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(c) 

Fig. 5.2—Continued. 

 

The reservoir model with the same input data runs through GURU and Eclipse 

300, and here the comparison between them is presented in Fig. 5.3. Fig. 5.3 illustrates 

that a very good match between GURU and Eclipse 300 results is obtained with respects 

to those important reservoir performance parameters. The relative difference (L-2 norm) 

between the two simulators is quite small and acceptable. In Fig. 5.3(b) and (d) it shows 

there is a switch of producer schedule from constant oil rate to constant bottom-hole 

pressure, and the transition of the switch in GURU is quite smooth and very close to 

Eclipse results. 
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                 (a) Average reservoir pressure                (b) Producer bottom-hole pressure 

   

              (c) Injector bottom-hole pressure                       (d) Oil production rate 

   

                       (e) Gas oil ratio                                         (f) Average gas saturation 

Fig. 5.3—Comparison of GURU and Eclipse 300 for the benchmark case 

 

There are vertically 3 layers in the reservoir. Because of the fluid density contrast, 

it is expected to observe fluid segregation phenomenon. Fig. 5.4 shows the average gas 

and water saturation in 3 layers in the reservoir. Fig. 5.4(a) shows that water saturation 
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increases with reservoir depth increasing and gradually accumulates at the bottom layer. 

On the other hand, after pressure drop to bubble point pressure, gas bubbles emit and lift 

to the top layer and gas saturation increases as reservoir depth decreases, as shown in Fig. 

5.4(b). 

 

   

                                    (a)                                                                     (b) 

Fig. 5.4—Layer averaged fluid saturation with time in the model: (a) 𝑺𝒘; (b) 𝑺𝒈 

 

Fig. 5.5 illustrate the saturation map of water and gas in the reservoir at 

302.7 𝑑𝑎𝑦𝑠 (𝑝𝑎𝑣𝑔 < 𝑝𝑏). It shows that the water saturation is the highest near the water 

injector and a water bed forms at the bottom layer, while the gas saturation is highest as 

gas cap at the top layer and almost zero at bottom layer, which is consistent with blue dash 

line in Fig. 5.4(b). Because gas has much higher well mobility than other phases, gas 

saturation is lower at the top layer nearby the producer than that in neighboring zone at 

the same layer. 
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(a) 

 

(b) 

Fig. 5.5—Water (a) and gas (b) saturation map at t = 302.7 𝒅𝒂𝒚𝒔 

 

5.2  Discrete Fracture Reservoir Models 

One of the thrust areas of GURU is to handle complex grid discretization, so 

discrete geological features such as fracture networks can be conveniently handled by 

GURU. In this section two different unstructured grid discretization approaches from 

external resources are compared based on upon GURU platform. 
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5.2.1  Enhanced Discrete Fracture Network (EDFN) 

The first approach is Enhanced Discrete Fracture Network (EDFN) Model from 

the work of Mi et al. (2016). EDFN adopts the concept of Dual-Porosity Model that 

fracture network contributes the global flow and matrix blocks serve as source/sink terms 

for the fracture system. However, instead of being treated as a homogenized domain, 

fracture system is discretized based on fracture intersection and extremities. By doing this 

the details of fractures are accurately captured with the minimum number of fracture 

computational elements (Fig. 5.6). Therefore, in EDFN fractures always serve as 

boundaries of matrix blocks and reduces the complexity of matrix-fracture connection. 

 

    

(a)                                                     (b) 

Fig. 5.6—(a) Schematic of fracture network distributed in 2D domain; (b) fracture 

grids defined by fracture intersections (red nodes) and fracture extremities (blue 

nodes) (based on Mi et al. (2016)) 
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Further, matrix domain is coarsely partitioned by the closest distance to the local 

fracture grid by rapid image processing algorithm (Sarda et al. 2001). For example, the 

matrix domain in Fig. 5.6 is coarsely partitioned into a grid map as shown in Fig. 5.7. In 

Fig. 5.7, any point in a colored matrix block is closer to the corresponding fracture grid 

than to any other fracture grids in the domain. 

 

 

Fig. 5.7—Discretization of the matrix medium in Fig. 5.6 (based on Mi et al. (2016)) 

 

The geometries of the coarse matrix grid block can be different depending on the 

controlling area of each fracture grid. The accuracy of flow simulation may be heavily 

impacted especially when the matrix blocks have extremely large grid volumes. It thus 

becomes necessary to improve the numerical accuracy. In EDFN a coarse matrix block 

with irregular shape (Fig. 5.8(a)) is firstly mapped to a rectangular matrix block with the 

same grid volume (Fig. 5.8(b)) with the width being equal to the associated fracture length 

(black solid lines in Fig. 5.8). Further, the rectangular matrix block is logarithmically 

refined in the direction perpendicular to the fracture surface. The flow in between those 
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logarithmic fine matrix grids is simply 1D flow. The transient flow between the matrix 

and fracture then can be accurately captured through fine partition in each local coarse 

matrix block. 

 

  

(a)                                (b)                                 (c) 

Fig. 5.8—Improve matrix resolution through transforming into a rectangular block 

and 1D logarithmic refinement (based on Mi et al. (2016)). 

 

 

Fig. 5.9—Connection schematic in EDFN. 𝑭𝒊: fracture grid 𝒊; 𝑴𝒊
𝒋
: matrix subgrid 𝒋 

associated with 𝑭𝒊 

 

As an illustration, the 2D connection topology for two intersected fractures is 

shown in Fig. 5.9. For simplicity it is assumed that only one coarse matrix grid block is 

connected with each fracture grid, and the maximum number of matrix grid refinement is 
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5. As shown in Fig. 5.9, EDFN is theoretically a Dual-Porosity Single-Permeability 

Model, but it honors the fracture sparsity and orientation. 

 

5.2.2  Embedded Discrete Fracture Model (EDFM) 

Embedded Discrete Fracture Model (EDFM) is recently a very popular approach 

for fractured reservoir modeling (Chai et al. 2016a, 2016b; Lee et al. 2001; Moinfar et al. 

2013, 2014). The basic idea is that fractures are treated as quadrilateral plates embedded 

into the structured matrix background. Therefore, the obvious advantage of this approach 

is that it maximally conserves the structured grid discretization and thus brings a more 

structured Jacobian system during flow simulation. 

The fluid flow transfer between matrix and fracture is based on geometric 

transmissibility in terms of Non-Neighbor Connection (NNC). On the other hand, matrix 

grids are globally connected with each other in terms of Neighbor Connection (NC). 

Therefore, EDFM is actually theoretically a Dual-Porosity Dual-Permeability Model. In 

this work, the EDFM grid discretization is provided by the preprocessor developed by 

Chai et al. (2016b). 

 

5.2.3  Comparison of EDFN and EDFM 

GURU is the platform to run both EDFN and EDFM Models here, and it only 

requires different grid discretization following the format of GURU. In this case there are 

31 arbitrarily oriented fractures in a rectangular reservoir, shown in Fig. 5.10(a), and the 
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fracture system exhibits global connectivity. A producer is drilled at the center of the 

rectangular domain and perforates one of the fractures. 

 

   

                                        (a)                                                        (b) 

 

(c) 

Fig. 5.10—(a) reservoir with 31 non-orthogonal fractures; (b) EDFN discretization; 

(c) EDFM discretization. 

 

The discretization of this reservoir model are presented in Fig. 5.10(b) and (c). In 

Fig. 5.10(b), EDFN is applied and the matrix domain is discretized by coarse matrix 

blocks with varying sizes. Further to further ensure the solution accuracy, matrix blocks 

are refined by maximally 5 logarithmic sub-grids. In Fig. 5.10(c), EDFM treats fractures 

as line segments and the matrix is discretized by fine rectangular grids. Basic reservoir 

parameters are illustrated in Table 5.3. Here both of the discrete fracture models 
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completely capture fracture orientations, so fracture conductivity, fracture and matrix pore 

volumes in those two different models are exactly identical. 

 

Table 5.3—Basic reservoir parameters 

Reservoir size (𝑓𝑡3) 1,000 × 500 × 100 

Reservoir top depth (𝑓𝑡) 3,050 

Number of fractures 31 

Fracture permeability 𝑘𝑓 (𝑚𝐷) 1,000 

Fracture aperture 𝑤𝑓 (𝑓𝑡) 0.5 

Fracture porosity 𝜙𝑓 (𝑣/𝑣) 0.4 

Matrix permeability 𝑘𝑚 (𝑚𝐷) 0.1 

Matrix porosity 𝜙𝑚 (𝑣/𝑣) 0.2 

Wellbore radius (𝑓𝑡) 0.25 

Water saturation 𝑆𝑤  0.35 

Initial pressure (𝑝𝑠𝑖𝑎) 5,000 

Reservoir temperature (℉) 200 

Minimum bottom-hole pressure (𝑝𝑠𝑖𝑎) 1,000 

Maximum oil rate (𝑠𝑡𝑏/𝑑𝑎𝑦) 100 

Simulation time (days) 1,000 

 

The rock-fluid functions for both matrix and fracture are presented in Fig. 5.11 (a) 

to (c). Linear relative permeability curves are used in the fractures. In the matrix we 

consider that gas saturation is zero in oil-water system, while oil-gas system is measured 

at connate water saturation (𝑆𝑤𝑐 = 0.16 ). Stone II method (Stone 1973) is used to 

calculate three-phase relative permeabilities. In Fig. 5.11(c) capillary pressures in the 

fractures are considered to be zero, while the capillary pressures between oil and water in 

the matrix are considered as a function of water saturation. It is assumed that matrix is 

water-wet here. 
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(a) 

 

(b) 

Fig. 5.11—Rock-fluid functions used in this study. (a) Oil and water relative 

permeability in the matrix and fractures; (b) Oil and gas relative permeability in 

the matrix and fracture; (c) Oil-water and gas-oil capillary pressure curves. Oil-gas 

capillarity is assumed to be zero. 
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(c) 

Fig. 5.11—Continued. 

 

The fluid compositional properties are from Table 5.2. In this case the initial 

reservoir pressure ( 5,000 𝑝𝑠𝑖𝑎 ) is lower than the fluid bubble point pressure 

(5,557.517 𝑝𝑠𝑖𝑎), such that there are always three mobile phases, including oil, gas and 

water during the whole depletion process in the reservoir. 

The Jacobian systems for those two approaches are shown in Fig. 5.12. In both 

approaches fracture domain is discretized first, followed by matrix domain (Fig. 5.12(a)). 

Fig. 5.12(b) is the Jacobian for EDFN, and Fig. 5.12(c) is the Jacobian for EDFM. In both 

Jacobian systems there is an unstructured diagonal block at the upper left, caused by the 

irregular fracture-to-fracture connections; there is a structured diagonal block at the lower 

right block, induced by the structured intra-matrix connections. The off-diagonal blocks 

are caused by matrix-to-fracture connections. 
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(a)                                         (b)                                        (c) 

Fig. 5.12—Jacobian matrix for two different models at the same newton: (a) 

structure of Jacobian; (b) Jacobian of EDFN; (c) Jacobian of EDFM. 

 

From Fig. 5.12 we can observe that the Jacobian of EDFN is much simpler than 

that of EDFM. To better interpret this, their discretization difference is illustrated in Table 

5.4. Through comparison it shows EDFN has much lower grid and connection number 

than those of EDFM, and this can be attributed to the optimized fracture and 1D matrix 

discretization in EDFN. As a result, the Jacobian of EDFN is much smaller than that of 

EDFM. This greatly reduces the computational burden on linear solver and thus improves 

efficiency when EDFN is applied. 

 

Table 5.4—Comparison of discretization of EDFN and EDFM Models 

 Grid NO. Connection NO. Jacobian dimension Jacobian nonzeros 

EDFN 490 579 3,431 × 3,431 16,302 

EDFM 1,694 3,312 11,859 ×  11,859 71,794 
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5.2.3.1 No Capillary Pressure 

Here the capillary pressure in the matrix is firstly ignored. The results of EDFN 

and EDFM models are plotted in Fig. 5.13, and their differences based on L-2 norm are 

reported in Table 5.5. 

 

 

(a)                                                                     (b) 

 

(c)                                                                     (d) 

Fig. 5.13—Results for the case without considering capillarity pressure. (a) bottom-

hole pressure; (b) oil production rate; (c) production gas-oil ratio (GOR); (d) water 

production rate; (e) reservoir average oil saturation; (f) reservoir average gas 

saturation. 
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(e)                                                                     (f) 

Fig. 5.13—Continued. 

 

Table 5.5—Difference between EDFN and EDFM Models 

BHP Oil rate GOR Water rate Average 𝑆𝑜 Average 𝑆𝑔 

5.22% 5.73% 4.44% 13.52% 0.41% 1.49% 

 

Those two models provide very consistent results in terms of producer BHP, oil 

rate, GOR, average oil and gas saturation. The main difference lies in water rate. 

Specifically the EDFN model has a lower peak water rate than that of the EDFM model. 

In the EDFM model matrix is globally connected, while in the EDFN model matrix is 

locally connected to fractures (Fig. 5.9). Therefore, EDFM is a Dual-Porosity Dual-

Permeability Model, while EDFN is a Dual-Porosity Single-Permeability Model. Besides, 

in EDFM it is extremely difficult to logarithmically refine the matrix grid surrounding 

inclined fractures, but this is what we adopt in the EDFN model. All those factors 

combined together induce that the EDFM model can maintain longer constant oil rate and 

lower peak water rate in its matrix block. 
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5.2.3.2 Considering Capillary Pressure 

Further, water-oil capillary pressure in the matrix (Fig. 5.11(c)) is introduced in 

this case. The results of EDFN and EDFM models are presented in Fig. 5.14, and their 

differences are illustrated in Table 5.6. 

 

 

(a)                                                                     (b) 

 

(c)                                                                     (d) 

Fig. 5.14—Results for the case with considering capillarity pressure. (a) bottom-

hole pressure; (b) oil production rate; (c) production gas-oil ratio; (d) water 

production rate; (e) reservoir average oil saturation; (f) reservoir average gas 

saturation. 
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(e)                                                                     (f) 

Fig. 5.14—Continued. 

 

Table 5.6—Error of EDFN model compared to EDFM model 

BHP Oil rate GOR Water rate Average 𝑆𝑜 Average 𝑆𝑔 

5.62% 6.08% 11.15% 22.58% 0.33% 2.43% 

 

It shows that both models still have very consistent results (Table 5.6). The most 

significant difference of those two models lies in water producing rate, which is the same 

as what we observe in this case ignoring water-oil capillary pressure in the matrix domain. 

This can be caused by different grid configurations: EDFM here uses uniform grid 

refinement in matrix domain (Fig. 5.10(c)) and EDFN actually uses logarithmic grid 

refinement in each coarse matrix block (Fig. 5.8). Besides, in the matrix water is wetting 

phase, so the existence of water-oil capillary pressure actually retards the water flux from 

matrix to fracture. As a result, it is reasonable to see more difference of water producing 

rate with considering capillary pressure. 
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5.3  Performance of Compositional Space Preconditioned VLE 

The compositional space preconditioned VLE/flash algorithms proposed in 

Section 4.3.2.2 are evaluated to demonstrate their performance, and two subsections are 

discussed, including fixed fluid composition and sharply varying fluid composition with 

𝐶𝑂2 injection. 

 

5.3.1  Fixed Fluid Composition 

The workflow of VLE calculation for fixed fluid composition is validated using 

six different fluid samples from Li and Firoozabadi (2012). The samples are Acid Gas, Oil 

B, Maljamar Reservoir Oil, Maljamar Separator Oil, Bob Slaughter Block Oil, and North 

Ward Estes Oil, respectively, in which  𝐶𝑂2  is mixed with hydrocarbon components. 

Using two-phase flash calculation as an example, the mole fractions of 𝐶𝑂2 are a little 

different from the original data to avoid three-phase region. Fluid composition, 

temperature and corresponding bubble point pressure defining those fluid samples are 

presented in Table 5.7. Other PVT parameters are the same as in Table 3 to 8 from Li and 

Firoozabadi (2012). 

The 2D compositional spaces are firstly constructed. Pressure decreases from 

bubble point pressures 𝑝𝑏 to 50 psia with an average pressure interval of 5 psia for each 

compositional space. With the given composition and temperature in Table 5.7, VLE 

calculation is conducted to build the space database. Then dynamic VLE calculation based 

on initial guess interpolated from compositional space can be performed conveniently. 
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Table 5.7—Fluid composition and saturation pressure of six fluid samples (Li and 

Firoozabadi 2012) 

 Acid Gas Oil B 

Maljamar 

Reservoir 

Oil 

Maljamar 

Separator 

Oil 

Bob 

Slaughter 

Oil 

North Ward 

Estes Oil 

𝐶𝑂2 0.19242 0.66914 0.16667 0.65517 0.34099 0.44635 

𝑁2 0.19314 0.00161 - - - - 

𝐻2𝑆 0.05404 - - - - - 

𝐶1 0.18858 0.05454 0.24492 - 0.05872 0.11298 

𝐶2 0.29026 0.01348 0.08492 - - - 

𝐶3 0.08156 0.00994 0.06958 - - - 

𝑖𝐶4 - 0.00120 - - - - 

𝑛𝐶4 - 0.01101 0.02758 - - - 

𝑖𝐶5 - 0.00529 - - - - 

𝑛𝐶5 - 0.00719 - - - - 

𝐶5−7 - - 0.10033 0.08117 - - 

𝐶6 - 0.01111 - - - - 

𝐶8−10 - - 0.13175 0.11362 - - 

𝐶11−14 - - 0.06858 0.05907 - - 

𝐶15−20 - - 0.04400 0.03790 - - 

𝐶21−28 - - 0.02300 0.01979 - - 

𝐶29+ - - 0.03867 0.03328 - - 

𝑃𝐶1 - 0.06067 - - 0.44179 0.06584 

𝐶29+ - - 0.03867 0.03328 - - 

𝑃𝐶1 - 0.06067 - - 0.44179 0.06584 

𝑃𝐶2 - 0.05400 - - 0.15849 0.08280 

𝑃𝐶3 - 0.04193 - - - 0.15974 

𝑃𝐶4 - 0.03192 - - - 0.08313 

𝑃𝐶5 - 0.01938 - - - 0.04915 

𝑃𝐶6 - 0.00761 - - - - 

𝑛ℎ 6 16 11 7 4 7 

𝑇, ℉ -137.83 94.01 89.96 89.96 105.00 82.99 

𝑝𝑏, 

𝑝𝑠𝑖𝑎 
804.36 1225.25 1576.187 944.289 890.123 1286.696 

 

Three approaches are used for flash calculation for comparison: (a) WCIG + SSI 

+ NR, in which flash calculation (NR+SSI) is based on initial guess of K-values from 
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Wilson’s correlation; (b) CSIG + SSI + NR, in which flash calculation (NR+SSI) is based 

on initial guess of K-values and vapor mole fraction from 2D compositional space; (c) 

CSIG + RRP + NR, in which flash calculation (NR only) is based on initial guess of K-

values from 2D compositional space and vapor mole fraction from a Rachford-Rice 

preconditioning. 

For those three cases, the same VLE convergence criteria are applied. Equation 

(5.1) (Schlumberger 2012) is used as SSI error for each iteration. SSI is switched to NR if 

the error is smaller than 10−2 or number of iterations is more than 2. In NR, the L-2 norm 

of global phase equilibrium residual vector [𝑅𝑓,1, 𝑅𝑓,2,⋯ , 𝑅𝑓,𝑛𝑐
, 𝑅𝑟]

𝑇
 is used to evaluate 

the error with an ultimate convergence tolerance of 10−9 . The total number of flash 

iterations is the sum of SSI iteration and NR iteration. Since this parameter is independent 

of implementation platforms and languages, it is used to evaluate the performance of our 

algorithms. 

∑ (
𝑓̂𝑖

𝑙

𝑓̂𝑖
𝑣 − 1)

2
𝑛ℎ
𝑖=1 <  𝜀                                                                                                                                        (5.1) 

 

To show the broad application of the workflow for two-phase flash calculation, 

100 random pressures between 100 𝑝𝑠𝑖𝑎 and bubble point pressure of each sample are 

selected to test the flash algorithms. The flash iterations of different samples are presented 

in Fig. 5.15 (a) to (f), representing Acid Gas, Oil B, Maljamar Reservoir Oil, Maljamar 

Separator Oil, Bob Slaughter Oil and North Ward Oil, respectively. 
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(a) Acid Gas                                                          (b) Oil B 

 

(c) Maljamar Reservoir Oil                            (d) Maljamar Separator Oil 

 

(e) Bob Slaughter Block Oil                             (f) North Ward Estes Oil 

Fig. 5.15—Flash iteration for different fluid samples based on: (1) WCIG + SSI + 

NR (green square markers), (2) CSIG + SSI + NR (blue circle markers), (3) CSIG + 

RRP + NR (purple triangular markers), and 100 different pressure conditions 

randomly from range [𝟏𝟎𝟎, 𝒑𝒃] 𝒑𝒔𝒊𝒂 for each fluid sample. 

 

In Fig. 5.15, 1800 flash calculations (300 per fluid sample) are performed and 

converged, indicating successful implementation of the proposed flash algorithms. 
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Together with Table 5.8, the results show that WCIG + SSI + NR converges with the 

highest number of flash iterations (green square markers), followed by CSIG + SSI + NR 

and CSIG + RRP + NR that costs the lowest number of flash iterations. Those 

performances using different fluid samples soundly support that the initial guesses of K-

values and vapor mole fraction interpolated from 2D compositional space are very close 

to the accurate results after reaching phase equilibrium. 

Table 5.8—Average flash iterations of different fluid sample based on different 

approaches 

Average Flash Iterations 

Fluid 

Sample 

WCIG + 

SSI + NR 

CSIG + 

SSI + NR 

CSIG + RRP + 

NR 

Acid Gas 7.34 4.03 2.36 

Oil B 7.41 4.22 2.55 

Maljamar 

Reservoir Oil 
7.10 4.00 2.08 

Maljamar 

Separator Oil 
7.24 4.20 2.61 

Bob 

Slaughter Oil 
6.65 4.00 2.37 

North Ward 

Estes Oil 
7.75 4.03 2.22 

What’s more, CSIG + RRP + NR on average costs about half iterations of CSIG + 

SSI + NR and one third iterations of WCIG + SSI + NR. In CSIG + RRP + NR, an 

evaluation of the interpolated vapor mole fraction through Rachford-Rice Equation 

becomes very helpful such that the SSI step can even be bypassed. Even though the 

interpolated K-values and vapor more fraction from the discrete compositional space may 
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not exactly satisfy the material balance and fugacity equilibrium, a direct evaluation of 

Rachford-Rice Equation can readily synchronize the vapor mole fraction with the 

interpolated K-values. This simple remediation improves the quality of the initial guess, 

allowing that mere NR can provide convergence. 

In addition, it is also interesting to note in Fig. 5.15 that the convergence is 

generally faster at low pressure than at high pressure for WCIG + SSI + NR. This is 

attributed to the fact that initial guess of K-values based on Wilson’s correlation is not 

accurate at higher pressures, requiring more iterations to converge. 

 

5.3.2  Sharply Varying Fluid Composition with Gas Injection 

Flash calculation for sharp varying fluid composition with 𝐶𝑂2  injection is 

investigated using the North Ward Estes Oil as listed in Table 5.7. 𝐶𝑂2 mole fraction 

increases from 0.01 to 0.8 because of massive injection into the subsurface oil reservoir. 

The mole fractions of the other six components (𝐶1, 𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3, 𝑃𝐶4 and 𝑃𝐶5) in the 

fluid are normalized based on the original mole proportions for those components in the 

mixture. As shown in Fig. 4.5 and 4.6, the bubble point pressure increases and the K-

values change nonlinearly during the 𝐶𝑂2 injection process, and thus here 𝐶𝑂2 is defined 

as the Pseudo Key Component (PKC). 

Using the approach introduced in Section 4.3.2.2.2, a 3D compositional space is 

constructed defining 𝑝 − 𝑧𝐶𝑂2
− 𝐾𝑖  and 𝑝 − 𝑧𝐶𝑂2

− 𝑓𝑣  relationships. More specifically, 

under each discrete 𝑧𝐶𝑂2
, pressure changes from individual bubble point pressure 𝑝𝑏 to a 

low pressure (50 psia) with average pressure interval of 5 psia. 𝑧𝐶𝑂2
 changes from 0.01 to 
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0.8 with interval of 0.01. The 𝑝 − 𝑧𝐶𝑂2
− 𝑓𝑣 relation is plotted in Fig. 5.16, in which the 

color bar represents the magnitude of vapor mole fraction 𝑓𝑣. The curve of 𝑓𝑣 = 0 is the 

liquid-vapor phase boundary, corresponding to the bubble point pressure curve in Fig. 4.5 

as well. As pressure increases and more 𝐶𝑂2 is dissolved into the mixture, vapor mole 

fraction increases and the mixture reaches close to miscible condition. The 𝑝 − 𝑧𝐶𝑂2
− 𝐾𝑖 

relationship for each component is also established. 

 

Fig. 5.16—Vapor mole fraction for 𝑪𝑶𝟐 mixing with North Ward Estes Oil at 

𝟖𝟐. 𝟗𝟗 ℉ 

 

The 3D compositional space constructed above defines phase equilibrium of North 

Ward Estes Oil with varying 𝐶𝑂2 mole fractions and pressure conditions. Following the 

workflow presented in Fig. 4.7, the space is further applied to interpolate 𝐾𝑖 and 𝑓𝑣 for 

flash calculations. As shown in Table 5.9 and Fig. 5.17, 12 𝐶𝑂2  mole fractions and 
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pressure conditions are prepared to validate the workflow, which covers a large range of 

conditions. Especially, Case 9 to 12 already reach to the miscible condition. 

 

Table 5.9—12 𝑪𝑶𝟐 mole fractions and pressure conditions of North Ward Estes Oil 

Case 𝐶𝑂2 mole fraction Pressure (psia) 

1 0.010 400 

2 0.190 750 

3 0.310 820 

4 0.430 860 

5 0.550 900 

6 0.589 1700 

7 0.615 2000 

8 0.641 2400 

9 0.667 2700 

10 0.683 2900 

11 0.707 3300 

12 0.734 3600 

 

 

Fig. 5.17—𝑪𝑶𝟐 mole fractions and pressure conditions of North Ward Estes Oil 
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Three approaches are applied to perform the flash calculation, namely (a) WCIG 

+ SSI + NR, (b) CSIG + SSI + NR and (c) CSIG + RRP + NR, which are the same as 

we defined in the previous section. Since those varying fluid composition are challenging 

for WCIG + SSI + NR, the criteria for switching from SSI to NR is set as iteration count 

larger than 100 or error smaller than 10−5. For CSIG + SSI + NR, the criteria for switching 

from SSI to NR is still the iteration count larger than 2 or error smaller than 10−2 with the 

ultimate convergence criteria for all flash approaches as error smaller than 10−9. Since 

some cases using WCIG + SSI + NR fail to converge, the iteration count of NR and SSI 

are both reported and their summation are the total number of iterations of flash 

calculation. 

Fig. 5.18 shows the performance for flash calculation based on Wilson’s 

correlation. Based on initial guess of K-values from Wilson’s correlation, at low pressure 

scenarios (Case 1 to 5) it works well with the average flash iteration 10.8 (7.8 SSI 

iterations plus 3 NR iterations). In Case 6 to 8, NR fails because the VLE Jacobian system 

becomes very singular and cannot be solved with physical solutions. Thus after the first 

NR iteration flash is forced back to SSI. The total flash iterations after SSI convergence 

for those three cases are 319.7 on average. For the last four cases (Case 9 to 12), the initial 

guesses from Wilson’s correlation are not reliable at all, since it is determined as single 

phase after the first iteration of SSI. 
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Fig. 5.18—Flash performance for 12 cases in Table 5.9 using WCIG + SSI + NR 

 

The initial guess interpolated from the 3D compositional space is expected to 

reduce the number of flash iterations significantly. Fig. 5.19 presents the number of 

iterations for flash calculation (SSI + NR) based on initial guess from 3D compositional 

space. All of the 12 cases by this approach are converged very efficiently. Among those 

cases, the average total flash iterations are 6.67 including 1.67 SSI iterations and 5.0 NR 

iterations. Especially for challenging Cases 6 to 12, the flash performance based on this 

method is much more superior to that based on WCIG + SSI + NR. As a result, this 3D 

compositional space with pseudo key component definition is very helpful to provide 

excellent initial guesses for K-values and vapor mole fraction towards sharply varying 

fluid composition scenario. 
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Fig. 5.19—Flash performance for 12 cases in Table 5.9 using CSIG + SSI + NR, 

with 6.67 flash iterations and 5 NR iterations on average 

 

Finally, the Rachford-Rice preconditioning procedure is applied to skip SSI with 

results shown in Fig. 5.20 for the 12 cases. Since only NR is performed, the number of 

flash iterations is in fact equal to the number of NR iterations. The CPU time ratios of 

CSIG +SSI + NR and CSIG + RRP + NR for the 12 cases are plotted in Fig. 5.21. On 

average, 1.5 times of speedup is achieved using CSIG + RRP +NR in comparison with 

CSIG + SSI + NR. In Fig. 5.22, the CPU times for the 3 methods are further compared. 

Clearly, compared with WCIG + SSI + NR, the improvement is significant. Even though 

the PKC mole fraction varies, the 3D compositional space defines a highly converged 

nonlinear space for multivariable interpolation to provide initial guess of K-values and 

vapor mole fraction. Further, a Rachford-Rice evaluation is used to synchronize vapor 

mole fraction with K-values, moving the phase equilibrium residuals even closer to zero. 
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As a result, NR is generally sufficient by itself to efficiently complete the flash calculation, 

even for challenging fluid systems. 

 

 

Fig. 5.20—Flash performance for 12 different cases in Table 5.9 based on CSIG + 

RRP + NR, with 4.58 NR iterations on average 

 

 

Fig. 5.21—CPU time ratio of CSIG + SSI + NR to CSIG + RRP + NR (red dash 

line: base line for no speedup) 
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Fig. 5.22—CPU time ratios for the 3 methods. WCIG + SSI + NR fails in Case 9 to 

12 

 

5.4  Summary 

In this chapter, GURU is firstly validated with Eclipse 300 by a 3D inverted five-

spot model with a water injector and an oil producer. It is demonstrated that GURU 

provides very well-matched results with Eclipse 300. Besides, phase segregation because 

of gravity in the 3D model are accurately captured in GURU as well. 

Secondly, different unstructured fracture models including EDFN and EDFM are 

run through GURU to simulate multiphase flow in a reservoir with non-orthogonal 

fractures. It shows that EDFN has superiority in terms of Jacobian dimension. Those two 

models provide very consistent results with or without considering capillary pressure in 

the matrix. On the other hand, the difference of their results is caused by different model 
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configurations. Specifically, EDFN is a theoretically Dual-Porosity Single-Permeability 

Model, but EDFM is a Dual-Porosity Dual-Permeability Model. Besides, in those two 

models the matrix refinement method is different. 

Finally, the proposed VLE workflows based on compositional space in the 

previous chapter are validated by different fluid samples. The compositional spaces 

constructed are actually discrete spaces of converged phase equilibria. Initial guesses of 

𝐾𝑖 and 𝑓𝑣 values for flash calculations in other conditions can be interpolated from those 

spaces. It is found that the compositional space provides excellent initial guess for flash 

calculation. Specifically for the challenging 𝐶𝑂2  injection reservoir system, the initial 

guess for flash calculation interpolated from the 3D compositional space provide excellent 

convergence. In addition, an evaluation of Rachford-Rice equation after interpolation 

helps to synchronize 𝑓𝑣 with 𝐾𝑖 of the initial guess values. This remediation improves the 

performance significantly such that SSI can be bypassed, reducing the total flash iterations 

in further. 
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CHAPTER VI 

MODELING SHALE GAS STORAGE AND TRANSPORT 

 

In the previous chapters, a general Multi-Porosity Model has been proposed to 

simulate reservoirs with multiple porosity systems, and an unstructured reservoir 

simulator GURU has been developed for compositional simulation. In this chapter, 

through leveraging those two tools, the connectivity and mechanisms in shale gas 

reservoirs are investigated. Besides, through upscaling from an Enhanced Discrete 

Fracture Network (EDFN) Model, the heterogeneous secondary fracture network inside 

the Stimulated Reservoir Volume (SRV) is characterized and its impact on shale gas 

production is also evaluated. 

 

6.1  Workflow from EDFN to Multi-Porosity Modeling 

After hydraulic fracturing, a complex fracture network is generated by the 

interaction of hydraulic fractures and secondary fractures (CuiYang et al. 2016; CuiZhu 

et al. 2016; McLennan and Potocki 2013). The reservoir volume associated with the 

fracture network corresponds to the Stimulated Reservoir Volume (SRV), and beyond this 

region shale matrix is basically undamaged(Vera and Shadravan 2015). The micro-seismic 

fracture mapping data shows that the micro-seismic fracturing events in SRV were mostly 

located near the center of hydraulic fracture and wellbore (Fisher et al. 2004; Mayerhofer 

et al. 2010). Suliman et al. (2013) estimated SRV as a collective system of fractures and 

shattered matrix blocks. They classified the SRV into Flush, Conductive and Hydraulic 
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SRV depending on the micro-seismic density and the connectivity of every grid block in 

the reservoir model. Therefore, the fracture distribution at the vicinity of horizontal 

wellbore and perforated stages tends to be non-uniform such that the reservoir-scale 

impact of the fracture network on gas production is not likely to be homogeneous. 

Discrete fractures approaches bring the flexibility to handle the fracture geometric 

details. Discrete Fracture Model (DFM), based on unstructured grid discretization, can 

explicitly describe the effect of fracture geometric details (Mi et al. 2014; Sun et al. 2012; 

Sun et al. 2014a; Sun and Schechter 2014b; Yu et al. 2011), and naturally captures the 

complex flow phenomena occurring in the vicinities of those sparse fractures. However, 

it is still not practical for field-scale studies, since unstructured gridding becomes 

challenging and computationally expensive when a large number of fractures in complex 

distribution are present (Li et al. 2015). Further, a simplified model of Enhanced Discrete 

Fracture Network (EDFN) Model was developed, which can decrease the number of grid 

blocks (Mi, L. et al. 2016) and computational time (Basquet et al. 2005; Sarda et al. 2001), 

while it still keeps the advantages of the DFM. Therefore, in this work the EDFN approach 

developed by Mi, L. et al. (2016) is used to capture the fracture geometric details in terms 

of sector models inside SRV. Further, the heterogeneous impact of secondary fracture 

distribution on matrix-to-fracture fluid transfer is revealed by shape factor distribution 

upscaled from EDFN sector models. 

The developed compositional reservoir simulator, GURU, enables to consider 

flexible unstructured grid geometry. Therefore, the EDFN Model and the general Multi-

Porosity Model can be preprocessors for grid discretization, and be connected with GURU 
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for reservoir simulation. Besides, with the occurrence of nano-pores in shale matrix, 

GURU comprehensively considers the interaction between pore-wall and gas molecules 

via gas slippage and Knudsen diffusion, and gas adsorption/desorption on the pore-wall 

of organic matrix is modeled by extended Langmuir adsorption isotherm. 

Therefore, a workflow can be established based on GURU, EDFN, and Multi-

Porosity Model, as shown in Fig. 6.1. EDFN Sector Models with detailed fracture 

geometry are run through GURU. Therefore, the heterogeneous impact of fracture 

network is upscaled from EDFN sector models depending on the fracture intensity in 

different regions, and it is numerically represented by heterogeneous shape factor 

distribution. Further, in Multi-Porosity Model those different porosity systems in shale are 

fully characterized with no assumption of flow mode since arbitrary connection topology 

is allowed, and it is connected with GURU for flow simulation. Besides, within GURU 

the non-Darcy flow physics is captured in those tight matrix porous media. 

 

  

Fig. 6.1—Workflow from EDFN to Multi-Porosity Model 
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6.2  Enhanced Discrete Fracture Network (EDFN) Model Upscaling 

In shale reservoirs, secondary fractures near each hydraulic fracture stage is not 

evenly distributed. A uniform characterization of the secondary fracture zone is thus not 

physically reasonable. We further subdivide those zones into different small sector 

models, in each of which the fracture distribution is assumed to be approximately even. 

The original characterization of fracture network now becomes subtasks to characterize 

those sector models with different fracture distribution. We first present the process to 

upscale a sector model with EDFN (Mi, L. et al. 2016) into a Dual-Porosity Single-

Permeability Model. Based on water imbibition experiments, Kazemi et al. (1992) 

proposed a general formula to calculate shape factor (Equation (6.1)), 

𝜎 =
1

𝑉𝑚

∑ 𝐴𝑖

𝑑𝑖

𝐼
𝑖=1                                                                                                                 (6.1) 

 

where 𝜎 is shape factor; 𝑉𝑚 is bulk volume for matrix block, 𝐴𝑖 represents the exposed 

fracture surface area 𝑖 to matrix block, 𝑑𝑖 equals to the length from the matrix block center 

to fracture surface 𝑖, and 𝐼 is the total number of exposed fracture surfaces. 

As stated by Gilman (2003), this formula is capable of upscaling from complex 

fracture network (DFN model) to equivalent Dual-Porosity Models. In this work, the 

EDFN approach naturally includes a matrix partition based on local fracture segments and 

iso-pressure surfaces (Mi, Lidong et al. 2016; Mi, L. et al. 2016). Based on this optimized 

matrix partition, the parameters in Equation (6.1) can be easily calculated, and thus a shape 

factor for an EDFN sector model can be extracted. 
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6.2.1  Upscale Dual-Porosity Model from EDFN Model 

As shown in Fig. 6.2(a), a sector model is presented with 40 evenly distributed 

fractures. A producer is located at lower right corner. The matrix is partitioned based on 

iso-pressure surfaces and fracture segments (Fig. 6.2(b)). This partition method is 

optimized such that it can be directly applied to calculate shape factor for the sector model 

based on Equation (6.1), which is calculated to be 5.345 𝑓𝑡−2 . The upscaled Dual-

Porosity Single-Porosity Model is shown in Fig. 6.3, with two domains representing 

matrix and fracture systems, respectively. Detailed parameters are shown in Table 6.1. 

 

   

(a)                                                  (b) 

Fig. 6.2—(a) 40 fractures distributed in a sector model (red lines: well); (b) EDFN 

model 
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(a)                                               (b) 

Fig. 6.3—Dual-Porosity Single-Permeability Model: (a) fracture domain, red circle 

represents well perforation; (b) matrix domain. 

 

Table 6.1—Basic parameters to EDFN and upscaled DPSP models 

Sector dimension (𝑓𝑡3) 20 ×  20 ×  100 

EDFN Model  

Number of fractures  40 

Matrix porosity 0.044 

Matrix permeability (𝑛𝐷) 50 

Matrix water saturation 0.16 (irreducible) 

Fracture porosity 1.0 

Fracture conductivity (𝑚𝐷 − 𝑓𝑡) 5.0 

Fracture water saturation 0.0 

DPSP Model  

Grid dimensions 5 ×  5 ×  1 

Grid spacing (𝑓𝑡) ∆𝑥 = ∆𝑦 = 4, ∆𝑧 = 100 
Matrix porosity 0.044 

Matrix permeability (𝑛𝐷) 50 

Matrix water saturation 0.16 (irreducible) 

Fracture porosity 0.00606185 

Fracture conductivity (𝑚𝐷 − 𝑓𝑡) 5.0 

Fracture water saturation (𝑣/𝑣) 0.0 

Shape factor from upscaling (𝑓𝑡−2) 5.345 

Reservoir conditions for all models  

Initial pressure (𝑝𝑠𝑖𝑎) 5400 

Producer pressure (𝑝𝑠𝑖𝑎) 500 for 𝑡 >  0 

Initial temperature (℉) 200 for 𝑡 >  0 

Fluid in the reservoir Gas and irreducible water  

Gas composition 5.0 𝑚𝑜𝑙% 𝐶𝑂2 and 95.0 𝑚𝑜𝑙% 𝐶𝐻4 
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Both the EDFN and DPSP Models are run through GURU, and then the gas rate 

and average reservoir pressure for those two different models are compared. As shown in 

Fig. 6.4, both models provide very well-matched results. Their gas rate difference is 1.96% 

and average reservoir pressure difference is 0.76%. Therefore, with non-orthogonal 

fracture distribution in this sector model, the upscaled Dual-Porosity Model is equivalent 

to detailed EDFN model honoring fracture geometries. 

 

   

                                     (a)                                                                 (b) 

Fig. 6.4—Result comparison between EDFN and DPSP. (a) gas rate, difference 

between the two models: 1.96%; (b) average reservoir pressure, difference between 

the two models: 0.76%. 

 

6.2.2  Upscaling Sector Models with Different Fracture Distribution 

Sector models with different fracture configuration are established to upscale the 

shape factors for Dual-Porosity or Multi-Porosity models. The size for all sector models 

is 20𝑓𝑡 × 20𝑓𝑡 × 100 𝑓𝑡 in this chapter. Those sectors represent different regions near 

hydraulic fracture stages. Within each sector model, the fracture distribution is assumed 

to be even. Cases with different discrete fracture numbers are investigated, shown in Fig. 

6.5(a) to (f), with 5, 10, 20, 30, and 40 fractures, respectively. 
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(a) 5 fractures                         (b) 10 fractures                         (c) 20 fractures 

   

(e) 30 fractures                  (f) 40 fractures 

Fig. 6.5—Five regional sector models with different number of fractures and 

fracture configuration, and basically fractures are evenly distributed. 

 

The shape factors are then calculated for those cases and results are plotted in Fig. 

6.6. Fig. 6.6 indicates that within a sector model the denser the fracture, the larger the 

shape factor. Since the secondary fracture distribution at the vicinity of hydraulic fracture 

stages is not even and those outside of SRV are especially poorly developed, a uniform 
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shape factor distribution of Dual-Porosity or Multi-Porosity Models doesn’t physically 

make sense. 

 

 

Fig. 6.6—Shape factors for the five different sector models in Fig. 6.5 

 

Those shape factors of different sectors in Fig. 6.6 are spatially sampled into the 

vicinity of hydraulic fracture stages such that shape factor decreases as distance from 

hydraulic fractures increases. As shown in Fig. 6.7, shape factors of sector models with 5, 

20, and 40 fractures are embedded to different regions near hydraulic fractures. The shape 

factor in zones closest to hydraulic fractures is highest (red color). Correspondingly the 

secondary fracture distribution near the center hydraulic fracture is shown at the bottom. 

It is considered that there are very few secondary fractures in regions far away from 

hydraulic fractures, and thus assume the shape factor in those regions is 0.01 𝑓𝑡−2. Based 

on shape factor of Kazemi et al. (1976), matrix block size for 𝜎 = 0.01 𝑓𝑡−2  is 𝐿 =

34.64 𝑓𝑡. This makes good sense since regions outside of SRV slowly contribute to gas 

production at the late period. 
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Fig. 6.7—Shape factor distribution based on sector models with different fracture 

configuration. Upper: shape factor map in field scale; lower: sector model with 

different fracture distribution. 

 

6.3  Triple-Porosity Triple-Permeability Model 

As discussed in Chapter II, there are two types of connections in Multi-Porosity 

Model (MPM). The first type of connection is intra-porosity connection or neighbor 

connection (NC), and the second one is inter-porosity connection or non-neighbor 

connection (NNC). The inter-porosity transport represents the mass transport between 

different porosity systems, and intra-porosity transport designates the mass transport 
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within the same porosity system. To be compatible with GURU, those two types of 

connection are all defined under the connection class in GURU, and their difference lies 

in how to calculate the transmissibility, as shown in Equation (6.2) and (6.3), 

𝑇 =
𝑇𝑖𝑇𝑖+1

𝑇𝑖+𝑇𝑖+1
                                                                                                                (6.2) 

𝑇𝑖 = {
𝑘𝑖𝐴𝑖

𝐿𝑖
, (𝑐𝑜𝑛𝑛𝑐𝑡𝑖𝑜𝑛 ∈ 𝑁𝐶)

𝜎𝑉𝑘𝑖 , ( 𝑐𝑜𝑛𝑛𝑐𝑡𝑖𝑜𝑛 ∈ 𝑁𝑁𝐶 𝑖𝑛 𝑀𝑃𝑀)
                                                    (6.3) 

 

A Triple-Porosity Triple-Permeability Model for shale gas reservoirs is used in this 

chapter. “Triple-Porosity” specifically considers fracture system (FS), inorganic matrix 

(IM) and organic matrix (OM) in gas shale. The fracture system includes orthogonal 

hydraulic fractures by explicit gridding and secondary fractures by multi-porosity 

representation. Before investigating the importance of connectivity topology, all possible 

inter-porosity and intra-porosity connections are assumed to be effective. Therefore, 

Triple-Porosity Triple-Permeability Model allows fluid to transport in each individual 

porosity system and between different porosity systems. In the fracture domain, 

logarithmic grid size is used in the direction orthogonal to hydraulic fracture surface such 

that transient fluid transfer can be well captured (Rubin 2010). Shape factor distribution 

in Fig. 6.7 is used to characterize the inter-porosity connections. Based on Equation (6.1), 

the shape factor is not related to permeability of matrix or secondary fractures, but varies 

with the secondary fractures distribution and geometries. Therefore, in this model the 

inorganic and organic matrix permeability is changed to a realistic low value compatible 

with matrix porosity. In this work two-phase (gas-water) Darcy flow is considered to 
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investigate the impact of shape factor distribution. Water is mobile in FS since a certain 

amount of water is resided there after hydraulic fracturing. Water saturation in the IM is 

at the irreducible level and that in OM is zero. Table 6.2 provides the associated basic 

parameters. 

 

Table 6.2—Basic parameters for each porosity system 

Reservoir dimension (𝑓𝑡3) 800 ×  500 ×  100 

Hydraulic Fracture  

Fracture number  5 

Half length (𝑓𝑡) 40, 60, 80, 60, 40 

Fracture spacing (𝑓𝑡) 80 

Porosity (𝑣/𝑣) 0.001 

Fracture conductivity (𝑚𝐷 − 𝑓𝑡) 20 

Water saturation (𝑣/𝑣) 0.2 (mobile) 

Natural Fracture  

Porosity (𝑣/𝑣) 0.001 

Permeability (𝑚𝐷) 5 

Water saturation (𝑣/𝑣) 0.2 

Inorganic Matrix 

Porosity (𝑣/𝑣) 0.05 

Permeability (𝑛𝐷) 100 

Matrix water saturation 0.16 (irreducible) 

Organic Matrix 

Porosity (𝑣/𝑣) 0.10 

Permeability (𝑛𝐷) 10 

Matrix water saturation 0.0 

Reservoir conditions for all models  

Initial pressure (𝑝𝑠𝑖𝑎) 3000 

Minimum BHP (𝑝𝑠𝑖𝑎) 500 for 𝑡 >  0 

Maximum gas rate (𝑀𝑆𝑐𝑓/𝑑𝑎𝑦) 5000 for 𝑡 >  0 

Initial temperature (℉) 200 for 𝑡 >  0 

Fluid in the reservoir Gas and water 

Gas composition 5.0 𝑚𝑜𝑙% 𝐶𝑂2 and 95.0 𝑚𝑜𝑙% 𝐶𝐻4 
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The base case considers the shape factor distribution in Fig. 6.7. Fig. 6.8 illustrates 

the pressure evolution in three porosity systems at different periods. Specifically the 

pressure changes follows a sequential order of fracture–inorganics–organics, which is very 

consistent with the hierarchical permeability distribution in each porosity system. Besides, 

at early period (Fig. 6.8(a)) the transient flow nearby hydraulic fractures is very well 

captured. In Fig. 6.8(b) pressure in the FS decreases to the bottom-hole pressure, while it 

propagates outside of SRV in IM and OM, causing pseudo radial flow. Finally at the late 

period pressure in IM and OM decreases to the bottom-hole pressure as well. 

In addition, it shows at early period the pressure decreases significantly at the 

vicinity of hydraulic fractures, which matches well with the shape factor distribution in 

Fig. 6.7. After hydraulic fracturing, secondary fractures nearby perforated stages are 

generated or reopened from the original sealed status, so the newly generated fractures 

further subdivide tight shale matrix into smaller block sizes and significantly contribute to 

fluid flow from tight matrix to the wellbore. 
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(a) Early period (1 month) 

 

(b) Middle stage (1 year) 

Fig. 6.8—Pressure profile in Triple-Porosity Triple-Permeability Model at different 

stages 
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(c) Late period (4.7 years) 

Fig. 6.8—Continued. 

 

We further compare with Triple-Porosity Triple-Permeability Models with 

uniform shape factor distribution in Fig. 6.9 (a) to (c). Two different values of shape factor 

are used, which are the upper limit (5.345 𝑓𝑡−2) and the lower limit (0.01 𝑓𝑡−2) in the 

upscaled shape factor distribution in Fig. 6.7. Other parameters for those two models are 

exactly the same as the base model. 
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(a) 

 

(b) 

Fig. 6.9—Comparison of reservoir performance of cases with homogeneous shape 

factor and case with upscaled shape factor: (a) gas production rate; (b) cumulative 

gas production; (c) average reservoir pressure. 
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(c) 

Fig. 6.9—Continued. 

 

In Fig. 6.9(a), it shows that at the early period all models produces with the 

maximum allowable gas rate, 5000 𝑀𝑆𝑐𝑓/𝑑𝑎𝑦, but different models maintain this rate 

for different length of time. The model with the lower limit of shape factor ( 𝜎 =

0.01 𝑓𝑡−2) decreases the rate first, while the model with upper limit shape factor (𝜎 =

5.34 𝑓𝑡−2) maintains the maximum rate for the longest time. The model with upscaled 

shape factor falls exactly in between other two models with static shape factor as expected. 

Besides, the gas rate in the model with upscaled shape factor ultimately converges to the 

rate of the model with the lower limit shape factor, because in both models the shape 

factors of matrix in the region outside of SRV are equal to 0.01 𝑓𝑡−2. Fig. 6.9(b) exhibits 

that model with upper limit shape factor reaches to maximum cumulative gas rate for the 

shortest time, and the other two models produces much more slowly because the average 
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shape factor there is much lower. Correspondingly in Fig. 6.9(c) the average reservoir 

pressure in the model with upper limit of shape factor decreases in the highest speed, 

followed by the upscaled model, and the model with lower limit of shape factor has the 

lowest speed to decrease average reservoir pressure. Thus, the comparison tells us that low 

uniform shape factor assumption tends to underestimate earlier gas production but high 

uniform shape factor assumption is likely to neglect the slow gas production from matrix 

outside of SRV. 

 

6.4  Connectivity Topology in Shale Reservoirs 

In this section, the connectivity of different porosity systems in shale is evaluated. 

Different kinds of Triple-Porosity Models have been assumed to be applicable for 

simulating fluid flow in shale gas reservoirs (Jiang and Younis 2015; Sun et al. 2015). The 

developed Multi-Porosity preprocessor in Chapter II enables generation of arbitrary 

connectivity topology with regards to inter-porosity and intra-porosity transport. Six 

different connectivity topologies in shale reservoirs are presented in Fig. 6.10 (a) to (f). It 

is assumed in all models that hydraulic fractures in fracture porosity are ultimately 

connected with wellbore at perforated locations. In Fig. 6.10(a) all inter-porosity and 

intra-porosity flux in the Triple-Porosity Model are taken into account as a calibrated 

model. In Fig. 6.10(b), intra-porosity flux in OM is neglected due to the low permeability, 

making it is a Triple-Porosity Dual-Permeability Model. In Fig. 6.10(c), intra-porosity 

flux in IM is further omitted, resulting a Triple-Porosity Single-Permeability Model. For 

models in Fig. 6.10 (a)-(c), inter-porosity transport in between three different porosity 
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systems are all considered. Based on Triple-Porosity Model in Fig. 6.10(c), the inter-

porosity transport connections are further simplified to for model reduction. Specifically 

in Fig. 6.10(d) inter-porosity flux between IM and OM is ignored such that those two 

matrix porosity systems are connected to fracture system in a parallel fashion. In Fig. 

6.10(e), inter-porosity flux between OM and FS is not considered, so flow occurs in a 

serial mode of OM–IM–FS–wellbore. Similarly, in Fig. 6.10(f) inter-porosity flux 

between IM and FS is not considered, so flow is in a serial model of IM–OM–FS–

wellbore. 

 

 

Fig. 6.10—Six different Triple-Porosity Models to simulate shale gas reservoirs: (a) 

Triple-Porosity Triple-Permeability(TPTP) Model; (b) Triple-Porosity Dual-

Permeability(TPDP) Model without intra-porosity flux in OM; (c) Triple-Porosity 

Single-Permeability(TPSP) Model without intra-porosity flux in OM and IM; (d) 

TPSP Model with IM and OM tied to FS in parallel; (e) TPSP Model with IM and 

OM tied to FS in serial as OM-IM-FS-Wellbore; (f) TPSP Model with IM and OM 

tied to FS in serial as IM-OM-FS-Wellbore. 

 

The connectivity topology in reservoir simulation is numerically represented by 

transmissibility. Each porosity system is discretized by equal number of grid blocks. Grid 

(a) (b) (c)

(f)(e)(d)
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blocks are globally labeled in the sequence of FS, IM and OM grid blocks. Therefore, the 

transmissibility matrices for the six different Triple-Porosity Models in Fig. 6.10 (a) to (f) 

are presented in Fig. 6.11 (a) to (f). In this figure the red dots represent the sparse nonzero 

transmissibilities connecting two grid blocks and here 𝑇𝑚,𝑛  is a block submatrix of 

transmissibility between porosity system 𝑚 and 𝑛, (𝑚, 𝑛 = 𝐹, 𝑂, 𝐼). Therefore, among 

those matrices, the nonzero blocks in the diagonal are transmissibilities for intra-porosity 

connection, and those in the off-diagonals are transmissibilites for inter-porosity 

connection. In Fig. 6.11 (a) to (c) there are respectively 3, 2 and 1 nonzero block 

submatrices on the diagonal, because they correspond to the consideration of 3, 2, and 1 

intra-porosity connections in Triple-Porosity Models, as shown in Fig. 6.10 (a) to (c). 

Block submatrices of transmissibility in off-diagonal are further nullified in Fig. 6.11 (d) 

to (f) since inter-porosity connections are optionally ignored in Fig. 6.10 (d) to (f). 

Therefore, Triple-Porosity models in Fig. 6.10 (d) to (f) are reduced significantly when 

compared to Triple-Porosity models in Fig. 6.10 (a) to (c). Here the rationale about how 

much the Triple-Porosity Model can be reduced to simulate a shale gas reservoir is 

provided, and this is done by comparison of all other models in Fig. 6.10 with Triple-

Porosity Triple-Permeability Model in Fig. 6.10 (a). 
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Fig. 6.11—Transmissibility matrices for the Triple-Porosity Models in Fig. 6.10. Red 

dot represents a non-zero transmissibility connecting two grid blocks, and black 

dashed rectangular boxes designate subdomains of inter-porosity or intra-porosity 

connections. 

 

The comparison results are presented in Fig. 6.12. Note that the shape factor 

distribution in Fig. 6.7 is applied to calculate inter-porosity flux. 

 

(a) (b) (c)

(d) (e) (f)
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(a) 

 

(b) 

Fig. 6.12—Cumulative gas producing rate (a) and average reservoir pressure (b) of 

six different models in Fig. 6.10 (a) to (f). 
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In Fig. 6.12, it shows that model (a), (b), and (c) have equivalent results in 

cumulative gas production and average reservoir pressure, even though model (a) to (c) 

have different consideration in matrix intra-porosity connections. This indicates that the 

matrix intra-porosity connections have negligible impact on fluid flow in gas shale, since 

the shale matrix permeability is extremely low. Therefore, a Triple-Porosity Single-

Permeability Model (Fig. 6.10 (c)) is sufficiently accurate modeling shale gas reservoirs. 

On the other hand, in Fig. 6.10 and Fig. 6.12 model (d) to (f) have different level 

of consideration in inter-porosity connections through removing edges in the triangular of 

model (c) in Fig. 6.10(c). With OM to IM connection neglected in model (d), the 

cumulative gas production after 2000 days decreases about 6.36 % compared to model 

(c). Alternatively, with OM to FS connection neglected in mode (e), the cumulative gas 

production after 2000 days decreases about 13.51 % compared to model (c). Finally, with 

IM to FS connection ignored in model (f), the ultimate cumulative gas production 

decreases about 28.49 %. Thus, the inter-porosity connection is very important to conduct 

fluid from matrix flowing into well via fracture system. Specifically the IM to FS 

connection has the strongest fluid conductivity, the OM to FS connection has the medium 

conductivity, and the OM to IM connection has the weakest conductivity. This is very 

important to develop a Triple-Porosity Model with certain reduction such as model (d) to 

(f), since an assumption without considering one of those inter-porosity connection results 

in significant impact on hydrocarbon recovery in gas shale. 
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6.5  Flow Mechanism Analysis 

In this section, the effects of non-Darcy flow mechanisms in shale matrix are 

evaluated. The pore size in shale matrix is in nanoscales. The interaction of molecular with 

pore walls causes Knudsen diffusion and gas slippage flow. This can be taken into account 

using apparent permeability for different molecular species. Besides, gas 

adsorption/desorption is considered through multi-component Langmuir 

adsorption/desorption model. We considered that gas adsorption is remarkable in OM, 

while pores in IM are easily blocked by water such that gas adsorption/desorption process 

is retarded. 

Based on Equation (4.63) and the values of matrix porosity and permeability in 

Table 6.2, the average pore radius in different matrix medium is calculated and shown in 

Table 6.3. Further, the apparent permeability is calculated for each component in different 

media instead of a group pseudo gas component. The ratios of apparent matrix 

permeability to intrinsic matrix permeability for each component in different media are 

plotted in Fig. 6.13. Those ratio curves in Fig. 6.13 serve as matrix permeability multiplier 

to adjust matrix permeability under different thermodynamic conditions. Thus they impact 

fluxes related to IM and OM. 

 

Table 6.3—Parameters for different matrix type 

Matrix Type 𝑘0, nd 𝜙, fraction Pore radii, (nm) 

Inorganic matrix 100 0.05 20.47 

Organic matrix 10 0.1 5.32 
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Fig. 6.13—The ratio of apparent permeability (𝒌𝒂𝒑𝒑) to matrix intrinsic 

permeability (𝒌𝟎) for 𝑪𝑶𝟐 and 𝑪𝑯𝟒 at reservoir pressure range 

 

The Langmuir adsorption parameters for 𝐶𝑂2 and 𝐶𝐻4 in organic matrix are based 

on data from Ambrose et al. (2011) and are presented in Table 6.4. The corresponding 

Langmuir isotherms for those two components are plotted in Fig. 6.14. The adsorption 

storage capacity of 𝐶𝑂2 is around 2.6 times of that for 𝐶𝐻4. 

 

Table 6.4—Adsorption parameters for different gas component 

Component 𝐶𝑂2 𝐶𝐻4 

𝑝𝐿,𝑖, 𝑝𝑠𝑖𝑎 832 1562 

𝑉𝐿,𝑖, 𝑠𝑐𝑓/𝑡𝑜𝑛 145 56 
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Fig. 6.14—Adsorption isotherms for 𝑪𝑶𝟐 and 𝑪𝑯𝟒 

 

The original gas in place (OGIP) in the unit of 𝑚𝑜𝑙% is presented in Fig. 6.15. 

Fig. 6.15(a) considers both absorbed gas and free gas. The OGIP in terms of absorbed gas 

in OM is around 12.19 𝑚𝑜𝑙%. The OGIP in terms of free gas stored in FS, IM and OM is 

respectively 0.55 𝑚𝑜𝑙% , 29.08 𝑚𝑜𝑙%  and 58.17 𝑚𝑜𝑙% . Therefore, the total OGIP 

stored in OM is 70.36 𝑚𝑜𝑙%. In comparison, Fig. 6.15(b) considers only free gas stored 

in gas shale. The OGIP distribution is 0.63 𝑚𝑜𝑙%  in FS, 33.12 𝑚𝑜𝑙%  in IM and 

66.25 𝑚𝑜𝑙% in OM. In both Fig. 6.15 (a) and (b), less than 1.0 𝑚𝑜𝑙% of OGIP is stored 

in FS due to its low pore volume, while around 30 𝑚𝑜𝑙% of OGIP is stored in IM. 
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(a) 

 

(b) 

Fig. 6.15—Fluid in place distribution (unit: 𝒎𝒐𝒍%) in different shale porosity 

systems: (a) OGIP considering gas adsorption in organic matrix; (b) OGIP with 

only free gas considered. 

 

Fig. 6.16 provides the comparison for investigating the impact of different 
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is applied in the transfer function for all inter-porosity connections. The base case, labeled 

as “Darcy”, considers Darcy flow only in all porosity systems. For comparison the other 

three cases are setup with different considerations of non-Darcy mechanisms in shale 

matrix. In the second case, labeled as “Darcy + Desorption”, the Langmuir isotherms in 

Fig. 6.14 are taken into account for gas storage mechanism in OM. In the third case, 

labeled as “Darcy + Perm Multiplier”, the gas apparent permeability considering gas 

slippage and Knudsen diffusion is considered in both IM and OM. Finally in the fourth 

case, labeled as “Darcy + Desorption + Perm Multiplier”, gas desorption in OM, gas 

slippage and Knudsen diffusion in both IM and OM are considered. 

 

 

(a) 

Fig. 6.16—Reservoir performance comparison for the consideration of different 

mechanisms: (a) average reservoir pressure; (b) cumulative gas production. 
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(b) 

Fig. 6.16—Continued. 

 

As shown in Fig. 6.16, the case “Darcy” produces the least amount of gas in the 

reservoir after 2000 days. The other three combinations of flow mechanisms present 

different impacts on gas recovery and average reservoir pressure decrease. The 

consideration of gas desorption in the OM maintains the average reservoir pressure 

because of its higher OGIP from gas adsorption. Besides, in this case the ultimate 

cumulative gas production after 2000 days is increased by 5.59 %  compared to case 

“Darcy”. With gas slippage and Knudsen diffusion in shale matrix considered (“Darcy + 

Perm Multiplier”), the average reservoir pressure decreases with the highest speed, and it 

produces 7.30 % more gas compared to case “Darcy”. The enhancement is caused by the 

improvement of higher matrix permeability at matrix grid blocks with lower pressure. 
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Further, in case “Darcy + Desorption + Perm Multiplier”, with matrix permeability 

enhancement and more OGIP, this model increases 14.43 % of cumulative gas production 

compared to case “Darcy”. Besides, it has very significant decrease in average reservoir 

pressure but the pressure decreasing speed is slightly lower than that of “Darcy + Perm 

Multiplier”, since gas released from desorption in OM helps to maintain the reservoir 

pressure. 

 

6.6  Summary 

In this chapter, GURU is bridged with Multi-Porosity Model and Enhanced 

Discrete Fracture Network (EDFN) model, and it enables a fully implicit multi-physics 

compositional simulation with a general Multi-Porosity modeling capability for 

investigating gas storage and transport mechanisms in gas shales. The influences of 

discretization and flow physics on shale gas recovery are provided with thorough analysis. 

The Enhanced Discrete Fracture Network (EDFN) approach is used to upscale the 

secondary fracture distribution and provides a shape factor distribution for the Multi-

Porosity Model. It is demonstrated that compared to an upscaled shape factor distribution, 

the low uniform shape factor assumption tends to underestimate earlier gas production but 

the high uniform shape factor assumption is likely to neglect the slow gas production from 

matrix outside of SRV. 

In a Triple-Porosity Model for gas shale, different configurations of inter-porosity 

and intra-porosity connection topology are evaluated. It is concluded that intra-porosity 

connections in the inorganic/organic matrix have negligible contribution to shale gas 
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recovery, while the inter-porosity connections have different levels of importance. Among 

the three inter-porosity connection types, the inorganic matrix to fracture connection has 

the highest contribution to shale gas production, followed by the organic matrix to fracture 

connection, and the organic matrix to inorganic matrix connection. As a result, a Triple-

Porosity Single-Permeability model with all inter-porosity connections considered is 

sufficient for shale gas reservoir modeling. 

Finally, different non-Darcy flow mechanisms are considered in shale matrix. The 

results show that gas adsorption not only increases the OGIP in shale gas reservoirs, but 

also improves the ultimate cumulative gas production. The occurrence of gas slippage and 

Knudsen diffusion in shale matrix porosity system accelerates the pressure drawdown and 

gas production in the reservoir. The consideration of gas adsorption/desorption, gas 

slippage and Knudsen diffusion significantly increases ultimate gas recovery in shale. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

This research work mainly focuses on the development of a general Multi-Porosity 

Model for fractured reservoirs modeling and an unstructured compositional simulator 

GURU, and it brings a better reservoir prediction in fractured reservoirs. This chapter 

illustrates the major conclusions/contributions from the study and also discusses some 

recommendations for future work. 

 

7.1  Conclusions 

1. A general Multi-Porosity Model has been developed. It generalizes 

conventional Multi-Porosity Models to simulate arbitrary number of 

porosity types in heterogeneous reservoirs, and also optionally allows 

porosity subdivision in any porosity system to capture the transient flow 

effect. 

2. Through a binary connection table, the general Multi-Porosity Model is 

featured to allow arbitrary connection in each individual porosity system 

or in between any two porosity systems. This design breaks the limitation 

of fixed connection topology in the conventional Dual-Porosity Models, 

and allows a convenient transformation between Multi-Porosity Models 

and Multi-Permeability Models. 
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3. In addition, a new shape factor considering porosity subdivision is derived 

and validated. If no porosity subdivision is considered, the formulation is 

reduced to shape factor from Kazemi et al. (1976). 

4. When porosity is not subdivided, Multi-Porosity Models with the shape 

factor of Lim and Aziz (1995) perform better than Multi-Porosity Models 

with shape factor of Kazemi et al. (1976), but none of them accurately 

captures early transient flow induced by the high permeability contrast of 

the fracture and matrix. 

5. When the porosity subdivision and new shape factor is applied to calculate 

the inter-porosity mass transfer, the accuracy of Multi-Porosity Models 

increases significantly as the level of the porosity subdivision increases. 

This can be explained by that the transient inter-porosity transfer is 

nonlinear and is better approximated with a higher level subdivision. 

6. Quad-Porosity Models are successfully applied to simulate gas and water 

flow in the shale reservoir. With considering capillary pressure, Quad-

Porosity Models with and without matrix subdivision provide excellently 

consistent results. 

7. A fully implicit unstructured compositional simulator GURU has been 

developed. It serves as a basic flow solver to investigate fractured reservoir 

modeling and shale reservoir modeling in this work. 

8. GURU is successfully interfaced with different discrete fracture modeling 

approaches and the general Multi-Porosity Model, since its framework is 
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based on Control-Volume Finite-Difference method. Therefore, it works 

as a convenient platform to evaluate different grid discretization methods. 

9. A novel class of compositional space preconditioned VLE methods have 

been designed to improve the compositional simulation by faster flash 

convergence. It covers a wide spectrum of reservoir fluids. The 

performance improvement comes from a decent initial estimate in the flash 

calculation. 

10. GURU is robust for compositional simulation in conventional reservoirs. 

It is applied to three phase Cartesian model considering permeability 

heterogeneity, gravity segregation and capillary pressure, and it provides 

well-matched results with a mature commercial compositional simulator. 

11. EDFN (Mi, Lidong et al. 2016) and EDFM (Chai et al. 2016b) are 

compared by GURU platform, and those two models provide consistent 

results for multiphase flow through the highly fractured reservoir. However, 

their difference mainly lies in that EDFN is a Dual-Porosity Single-

Permeability Model, but EDFM is a Dual-Porosity Dual-Permeability 

Model. 

12. GURU provides functionality to model production from unconventional 

reservoirs. It explicitly takes into account the flow physics in those nano-

pores in the shale matrix, including multi-component gas 

adsorption/desorption, gas slippage and Knudsen diffusion in composition 

space. 
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13. A unique physics-based shale reservoir modeling workflow is established. 

Heterogeneity of the fracture system in the SRV is characterized by shape 

factor distribution upscaled from EDFN sector model, and fracture system, 

inorganic and organic matrix are included in the Triple-Porosity Model, 

and non-Darcy flow regimes are taken in account in the GURU engine. 

14. Shape factor upscaled from EDFN sector model is more reasonable than 

uniform distribution of shape factor. A low uniform distribution of shape 

factor tends to underestimate early gas production in the SRV but a high 

uniform distribution is likely to overestimate gas production from regions 

outside of the SRV. 

15. In Triple-Porosity Shale Model, intra-porosity connections in the inorganic 

and organic matrix have negligible impacts on gas recovery. However, the 

inter-porosity connections are important for gas recovery. The inorganic-

to-fracture connection has the highest contribution, followed by the 

organic-to-fracture connection, and the organic-to-inorganic connection 

has the minimum impact. 

16. Gas adsorption in the organic matrix helps to improve the ultimate 

cumulative gas production, and the consideration of gas slippage and 

Knudsen diffusion in both inorganic and organic matrix accelerates the gas 

production in the reservoir. 
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7.2  Recommendations 

1. Implement modules of wellbore and surface network and further apply 

GURU in production optimization, surface facility design etc. 

2. Implement modules to couple reservoir geo-mechanics with GURU, and 

thus evaluate the impact of rock compaction on depletion or injection 

processes in unconventional reservoirs. 

3. To further improve the performance of GURU, the numerical Jacobian 

construction can be replaced by automatic differentiation or analytical 

Jacobian construction. 

4. Implement an Additive Schwartz domain decomposition preconditioner for 

fractured reservoir modeling in GURU, since during fractured reservoir 

simulation the convergence speed of the matrix and fracture domains are 

different. 

5. Implement the compositional space preconditioned VLE for sharply 

varying fluid composition in GURU. So far only the compositional space 

preconditioned VLE for slightly varied fluid composition has been 

implemented in GURU. 

6. The effect of capillary pressure on VLE in the shale nano-pores can be 

considered for the simulation of the liquid-rich shale. 
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APPENDIX A 

EQUATION OF STATE 

 

This appendix illustrates the basic formulation for Peng-Robinson Equation of 

State (PR-EOS), shown as Equation (A.1), 

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0                           (A.1) 

 

Here the parameters are defined as, 

𝐴 =
𝑎𝑝

(𝑅𝑇)2
                                                                                                                (A.2) 

𝐵 =
𝑏𝑝

𝑅𝑇
                                                                                                                           (A.3) 

𝑎 =  ∑ ∑ 𝑥𝑖𝑥𝑗(1 − 𝜅𝑖𝑗)√𝑎𝑖𝑎𝑗
𝑛ℎ
𝑖=1

𝑛ℎ
𝑗=1                                                                            (A.4) 

𝑏 = ∑ 𝑥𝑖𝑏𝑖
𝑛ℎ
𝑖=1                                                                                                                 (A.5) 

𝑎𝑖 = 0.45724𝛼(𝑇)
(𝑅𝑇𝑐𝑖)

2

𝑝𝑐𝑖
                                                                                       (A.6) 

𝑏𝑖 = 0.07780
𝑅𝑇𝑐𝑖

𝑝𝑐𝑖
                                                                                                   (A.7) 

𝛼(𝑇) = [1 + 𝑚𝑖(1 − √𝑇/𝑇𝑐𝑖)]
2                                                                           (A.8) 

𝑚𝑖 = {
0.37464 + 1.54226𝜔𝑖 − 0.2699𝜔𝑖

2 (𝜔𝑖 < 0.49)

0.379642 + 1.48503𝜔𝑖 − 0.164423𝜔𝑖
2 + 0.01167𝜔𝑖

3 (𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)
   (A.9) 

 

𝑍 factors are solved through the equation of state, and then fugacity coefficient can 

be calculated, as shown in Equation (A.10), 
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𝑙𝑛𝜑𝑖 = − ln(𝑍 − 𝐵) + (𝑍 − 1) 𝑏𝑖

𝑏
−

𝐴

2√2𝐵
[
1

𝑎
(2√𝑎𝑖 ∑ 𝑥𝑗√𝑎𝑗(1 − 𝜅𝑖𝑗)

𝑛ℎ
𝑗=1

) −

𝑏𝑖

𝑏
] 𝑙𝑛 (

𝑍+(1+√2)𝐵

𝑍+(1−√2)𝐵 
)                                                                                                  (A.10) 

 

The derivatives of fugacity coefficients with regards to phase compositions and 

pressure can be referred to Appendix A in Cao (2002), so here they are discussed for 

simplicity. Those derivatives are very important to assemble the Jacobian matrix in Vapor-

Liquid Equilibrium. 
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APPENDIX B 

VAPOR LIQUID EQUILIBRIUM 

 

This appendix discusses the basic approaches used in Vapor-Liquid Equilibrium 

(VLE) calculation. VLE can be written in terms of function, as shown in Equation (B.1). 

[𝑥𝑖 , 𝑦𝑖, 𝑓𝑣] = 𝑽𝑳𝑬(𝑝, 𝑇, 𝑧𝑖)                                                                                       (B.1) 

 

Basically two approaches are used to solve Equation (B.1), including Successive 

Substitution Iteration (SSI) method and Newton-Raphson (NR) method. Both of them deal 

with the following two residuals: Equation (B.2) is the phase fugacity equilibrium and 

Equation (B.3) is phase component material balance. 

𝑅𝑓,𝑖 = 𝑙𝑛𝐾𝑖 + 𝑙𝑛𝜑𝑖
𝑣 − 𝑙𝑛𝜑𝑖

𝑙 = 0,           𝑖 = 1,⋯ , 𝑛ℎ                                                   (B.2) 

𝑅𝑟 = ∑ (𝑦𝑖 − 𝑥𝑖)
𝑛ℎ
𝑖=1  = ∑ 𝑧𝑖(𝐾𝑖−1)

1+𝑓𝑣(𝐾𝑖−1)

𝑛ℎ
𝑖=1 = 0                                                               (B.3) 

 

B.1  Successive Substitution Iteration 

(a) Solve vapor mole fraction 𝑓𝑣 from Equation (B.3); 

(b) Update 𝑥𝑖 , 𝑦𝑖 based on Equation (B.4) and (B.5); 

𝑥𝑖 =
𝑧𝑖

1+𝑓𝑣(𝐾𝑖−1)
, (𝑖 = 1,… , 𝑛ℎ)                                                                           (B.4) 

𝑦𝑖 =
𝐾𝑖𝑧𝑖

1+𝑓𝑣(𝐾𝑖−1)
, (𝑖 = 1,… , 𝑛ℎ)                                                                           (B.5) 

 

(c) Calculate fugacities 𝑓𝑖
𝑙 , 𝑓𝑖

𝑣 of liquid and vapor phase based on PR-EOS; 
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(e) Check convergence through the equal-fugacity constraint (Equation (B.6)); 

∑ (
𝑓̂𝑖

𝑙

𝑓̂𝑖
𝑣 − 1)

2

< 𝜀
𝑛ℎ
𝑖=1                                                                                                    (B.6) 

 

(d) If convergence is not reached in step (e), update 𝐾𝑖 with the fugacity ratios, 

showing as Equation (B.7), and repeat step (a) to (d). 

𝐾𝑖
𝑛+1 = 𝐾𝑖

𝑛
(𝑓̂𝑖

𝑙)
𝑛

(𝑓̂𝑖
𝑣)

𝑛
 
                                                                                                   (B.7) 

 

The convergence of SSI is guaranteed but its convergence speed is slow. On the 

other hand, NR converges quickly, and its convergence relies initial guess with good 

quality. Therefore, SSI can be used to provide initial guess for NR. Specifically if the 

iteration of SSI is greater than a maximum iteration to switch to NR, or if the error in 

Equation (B.6) is smaller than a tolerance to switch to NR, SSI loop is terminated and 

provides initial guesses for NR loop. 

 

B.2  Newton-Raphson Iteration 

(a) Based on initial values of 𝑓𝑣 , 𝑙𝑛𝐾𝑖, 𝑧𝑖 , calculate phase compositions; 𝑥𝑖, 𝑦𝑖 

based on Equations (B.4) and (B.5), and then through PR-EOS calculate fugacity 

coefficients and their derivatives to phase compositions {𝑙𝑛𝜑𝑖
𝑙, 𝑙𝑛𝜑𝑖

𝑣,
𝜕𝑙𝑛𝜑𝑖

𝑙

𝜕𝑙𝑛𝑥𝑗
,
𝜕𝑙𝑛𝜑𝑖

𝑣

𝜕𝑙𝑛𝑦𝑗
}; 
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(b) Construct primary variables and residual vectors, shown as Equations (B.8) and 

(B.9), and the length of both vectors are 𝑛ℎ + 1; 

𝑋 = [𝑙𝑛𝐾1, 𝑙𝑛𝐾2, 𝑙𝑛𝐾3,⋯ , 𝑙𝑛𝐾𝑛ℎ
, 𝑓𝑣   ]𝑛ℎ+1

𝑇
                                                               (B.8) 

𝑅⃗ = [𝑅𝑓,1, 𝑅𝑓,2, 𝑅𝑓,3, ⋯ , 𝑅𝑓,𝑛ℎ
, 𝑅𝑟]𝑛ℎ+1

𝑇
                                                               (B.9) 

 

(d) Calculate the error of VLE by the L-2 norm of 𝑅⃗ , and check the convergence 

based on Equation (B.10); 

𝐸𝑟𝑟𝑜𝑟 =  ‖𝑅⃗ ‖
2

<  𝜀                                                                                                 (B.10) 

 

(e) If convergence is reached in step (d), NR-loop is stopped; otherwise, based on 

chain rule, construct the analytical Jacobian of VLE, shown as Equation (B.10); 

𝐽 =
𝜕𝑅⃗ 

𝜕𝑋⃗ 
= 

[
 
 
 
 
 
 
 
 

𝜕𝑅𝑓,1

𝜕𝑙𝑛𝐾1

𝜕𝑅𝑓,1

𝜕𝑙𝑛𝐾2

𝜕𝑅𝑓,1

𝜕𝑙𝑛𝐾1

𝜕𝑅𝑓,2

𝜕𝑙𝑛𝐾2

⋯
𝜕𝑅𝑓,1

𝜕𝑙𝑛𝐾𝑛ℎ

⋯
𝜕𝑅𝑓,2

𝜕𝑙𝑛𝐾𝑛ℎ

⋯ ⋯
𝜕𝑅𝑓,𝑛ℎ

𝜕𝑙𝑛𝐾1

𝜕𝑅𝑓,𝑛ℎ

𝜕𝑙𝑛𝐾2

⋯ ⋯

⋯
𝜕𝑅𝑓,𝑛ℎ

𝜕𝑙𝑛𝐾𝑛ℎ

𝜕𝑅𝑓,1

𝜕𝑓𝑣
𝜕𝑅𝑓,2

𝜕𝑓𝑣
⋯

𝜕𝑅𝑓,𝑛ℎ

𝜕𝑓𝑣

𝜕𝑅𝑟

𝜕𝑙𝑛𝐾1

𝜕𝑅𝑟

𝜕𝑙𝑛𝐾2

⋯
𝜕𝑅𝑟

𝜕𝑙𝑛𝐾𝑛ℎ

𝜕𝑅𝑟

𝜕𝑓𝑣 ]
 
 
 
 
 
 
 
 

(𝑛ℎ+1)×(𝑛ℎ+1)

                         (B.11) 

 

(f) Update 𝑋  through Equation (B.12). Since the dimension of the linear system is 

relatively low, here Gaussian Elimination with pivoting method is used to solve 𝐴𝑋 = 𝑏. 

𝑋 𝑛+1 = 𝑋 𝑛 − 𝐽−1𝑅⃗                                                                                                  (B.12) 

 



 

181 

 

(g) Repeat step (a) to (f). 

 

The derivatives in Equation (B.11) are further discussed. Firstly, the derivatives of 

Equations (B.2) and (B.3) to 𝑙𝑛𝐾𝑗  can be represented by Equation (B.13) and (B.14), 

𝜕𝑅𝑓,𝑖

𝜕𝑙𝑛𝐾𝑗
= 𝛿𝑖𝑗 +

𝜕𝑙𝑛𝜑𝑖
𝑣

𝜕𝑦𝑗
∙

𝜕𝑦𝑗

𝜕𝑙𝑛𝐾𝑗
−

𝜕𝑙𝑛𝜑𝑖
𝑙

𝜕𝑥𝑗
∙

𝜕𝑥𝑗

𝜕𝑙𝑛𝐾𝑗
                                                             (B.13) 

𝜕𝑅𝑟

𝜕𝑙𝑛𝐾𝑗
=

𝐾𝑗𝑧𝑗

[1+𝑓𝑣(𝐾𝑗−1)]
2                                                                                                 (B.14) 

 

where, 

𝛿𝑖𝑗 = { 
1 (𝑖 = 𝑗)
0 (𝑖 ≠ 𝑗)

                                                                                                 (B.15) 

 

Based on Equations (B.4) and (B.5), sub terms in Equation (B.13) can be 

calculated, 

𝜕𝑥𝑗

𝜕𝑙𝑛𝐾𝑗
=

𝜕

𝜕𝑙𝑛𝐾𝑗

{
𝑧𝑗

1+𝑓𝑣(𝐾𝑗−1)
} =  −

𝑧𝑗𝐾𝑗𝑓𝑣

[1+𝑓𝑣(𝐾𝑗−1)]
2                                                             (B.16) 

𝜕𝑦𝑗

𝜕𝑙𝑛𝐾𝑗
=

𝜕

𝜕𝑙𝑛𝐾𝑗

{
𝑧𝑗𝐾𝑗

1+𝑓𝑣(𝐾𝑗−1)
} =

𝑧𝑗𝐾𝑗(1−𝑓𝑣)

[1+𝑓𝑣(𝐾𝑗−1)]
2                                                             (B.17) 

 

On the other hand, the derivatives of Equations (B.2) and (B.3) with regards to 𝑓𝑣 

can be represented by, 

𝜕𝑅𝑓,𝑖

𝜕𝑓𝑣
=

𝜕𝑙𝑛𝜑𝑖
𝑣

𝜕𝑓𝑣
−

𝜕𝑙𝑛𝜑𝑖
𝑙

𝜕𝑓𝑣
                                                                                                 (B.18) 

𝜕𝑅𝑟

𝜕𝑓𝑣
= −∑ 𝑧𝑖(𝐾𝑖−1)2

[1+𝑓𝑣(𝐾𝑖−1)]2
𝑛ℎ
𝑖=1                                                                                      (B.19) 
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where, 

𝜕𝑙𝑛𝜑𝑖
𝑙

𝜕𝑓𝑣
= ∑ 𝜕𝑙𝑛𝜑𝑖

𝑙

𝜕𝑥𝑗
∙
𝜕𝑥𝑗

𝜕𝑓𝑣

𝑛ℎ
𝑗=1                                                                                      (B.20) 

𝜕𝑙𝑛𝜑𝑖
𝑣

𝜕𝑓𝑣
= ∑ 𝜕𝑙𝑛𝜑𝑖

𝑣

𝜕𝑦𝑗
∙
𝜕𝑦𝑗

𝜕𝑓𝑣

𝑛ℎ
𝑗=1                                                                                      (B.21) 

𝜕𝑥𝑗

𝜕𝑓𝑣
= −

𝑧𝑗(𝐾𝑗−1)

[1+𝑓𝑣(𝐾𝑗−1)]
2                                                                                                  (B.22) 

𝜕𝑦𝑗

𝜕𝑓𝑣
= −

𝐾𝑗𝑧𝑗(𝐾𝑗−1)

[1+𝑓𝑣(𝐾𝑗−1)]
2                                                                                                  (B.23) 




