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ABSTRACT

We have implemented a new high-order low-order (HOLO) algorithm for solving

thermal radiative transfer (TRT) problems. Within each discrete time step, fixed-

point iterations are performed between a high-order (HO) exponentially-convergent

Monte Carlo (ECMC) solver and a low-order (LO) system of equations. The LO

system is based on spatial and angular moments of the transport equation and a

linear-discontinuous finite-element (LDFE) spatial representation, producing equa-

tions similar to the standard S2 equations. The LO solver is fully implicit in time and

efficiently converges the non-linear temperature dependence with Newton’s method.

The HO solver provides a globally accurate solution for the angular intensity to a

fixed-source, pure absorber transport problem. This global solution is used to com-

pute consistency terms in the LO equations that require the HO and LO solutions

to converge towards the same solution. The use of ECMC allows for the efficient

reduction of statistical noise in the solution.

We investigated several extensions of this algorithm. A parametric closure of the

LO system was used for the spatial variable, based on local relations computed with

the HO solver. The spatial closure improves consistency between the two solvers

compared to a standard LDFE spatial discretization of the LO system. The ECMC

algorithm has been extended to integrate the angular intensity in time, with a consis-

tent time closure of the LO radiation equations. The time closure increases accuracy

in optically-thin problems compared to a backward Euler discretization. Finally, we

have applied standard source iteration and Krylov procedures to iteratively solve the

LO equations, with linear diffusion synthetic acceleration.

Herein, we present results for one-dimensional, gray test problems. Results
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demonstrate several desirable properties of this algorithm: the HOLO method pre-

serves the equilibrium diffusion limit, prevents violation of the maximum principle,

and can provide high-fidelity MC solutions to the TRT equations with minimal sta-

tistical noise. We have compared results with an implicit Monte Carlo (IMC) code

and compared the efficiency of ECMC to standard Monte Carlo in this HOLO al-

gorithm. Our HOLO algorithm is more accurate and more efficient than standard

IMC. The extent to which this is so is problem-dependent.
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“To live is to suffer, to survive is to find some meaning in the suffering.”

–Friedrich Nietzsche
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1. INTRODUCTION

Accurate transient solutions to the thermal radiative transfer (TRT) equations

are important for simulations in the high-energy, high-density physics regime, e.g.,

for inertial confinement fusion and astrophysics. Moment-based hybrid Monte Carlo

(MC) methods have demonstrated great potential for accelerated solutions to TRT

problems [1, 2, 3]. These nonlinear acceleration methods perform fixed-point itera-

tions between a high-order (HO) transport equation and a low-order (LO) system.

The LO system is obtained from the HO system by means of spatial and angular

moments. The HO system provides closure terms to the LO system that make the

LO system exactly reproduce the HO moments, upon nonlinear convergence. The

LO system provides low-order source terms to the HO system that are expensive

to iteratively converge, e.g., the photon emission and isotropic scattering sources.

The two systems are synergistic in that the LO system with fixed closure terms can

be fully solved much more efficiently than the HO system, and the HO system can

accurately compute angular closure terms given fixed low-order source terms.

We have developed a new high-order low-order (HOLO) algorithm for solving

TRT problems. This algorithm has several desirable properties, some of which im-

prove on current computational methods: the HOLO method preserves the equilib-

rium diffusion limit, prevents violation of the maximum principle, and can provide

high-fidelity MC solution to the TRT equations in an efficient manner. In particu-

lar, our HOLO method utilizes an exponentially-convergent Monte Carlo (ECMC)

algorithm to solve the associated radiation transport equation. The ECMC method

significantly decreases the statistical noise associated with MC transport calculations

for TRT problems. In conjunction with the ECMC algorithm, we use a nonlinear
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low-order (LO) system that is fully implicit in time and is solved with Newton’s

method. The lower-dimensional equations are derived directly from the TRT equa-

tions, formed such that the LO system can preserve the accuracy of the ECMC

treatment of particle transport. The LO equations are formed with linear finite-

element (FE) based spatial moments and angular moments over each half-range. A

linear-discontinuous (LD) representation is used to discretize the temperature field.

Two different spatial closures of the LO equations have been investigated: the stan-

dard LD FEM closure and a new parametric closure that is fully consistent with

the HO equations. Our LO system and approach to enforcing consistency contrast

from the formulations used in other moment-based acceleration methods, e.g., those

in [1, 4, 5].

We have also investigated several extensions and improvements of this method.

First, alternative, iterative solution methods to the LO equations were implemented,

using typical source iteration methods with linear diffusion synthetic acceleration.

The primary goal is to present a solution method for the LO equations that is more

extendible to higher dimensions. Additionally, we have investigated methods to re-

solve issues when the optically thick mesh cells produce intensity gradients that are

too difficult to resolve with the LDFE mesh representation. In the HO equations,

we can add artificial sources that make the solution more easily representable by

the chosen mesh resolution, without altering the zeroth moment of the transport

equation, neglecting statistical noise. This approach was found to provide minimal

improvement in some problems. Finally, higher accuracy treatment of the time vari-

able in the transport equation was investigated. The ECMC algorithm was modified

to include integration of the time variable; this includes the introduction of a step,

doubly-discontinuous (SDD) trial space representation in time. A new parametric

closure of the LO equations was derived to capture the time accuracy of the ECMC
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simulations in the LO equations, with the same computational cost to solve as Back-

ward Euler (BE) time-discretized LO equations. The main interest is in increasing

accuracy in resolution of radiation wavefronts in optically thin regions, where a BE

time discretization propagates radiation energy through space artificially fast.

The HOLO algorithm has been developed and implemented for a simplified model

with one spatial dimension and frequency-integrated equations. Although not dis-

cussed here, the HOLO method approach developed in this work was also applied to

1D neutronics problems in [6]. Throughout this work, we compare our method to the

implicit Monte Carlo (IMC) method [7], which is the standard MC transport solution

method to the TRT equations. Results are given for several test problems to demon-

strate the benefits of the HOLO method. We have also demonstrated the efficiency

of ECMC over standard Monte Carlo as a HO solver in the HOLO algorithm.

1.1 Dissertation Layout

In the remainder of Chapter 1, a brief description of thermal radiative transfer

and the simplified model used for this work are given, followed by a discussion of the

standard Monte Carlo solution method and other related research. In Chapter 2, an

overview of the outer HOLO algorithm and a description of how the HO and LO

systems interact is given. Chapter 3 gives a detailed derivation of the LO moment

equations, the closure of the system, and how they are solved. Chapter 4 details

the ECMC algorithm and how it is applied to solve the HO transport problem.

Then, Chapter 5 provides computational results to demonstrate desirable qualities

of this method, with comparisons to IMC. Some of the results from Chapter 5 were

previously published in [2].

The remaining chapters provide details on extensions made to the standard algo-

rithm. Chapter 6 details a source iteration and Krylov solution method for the LO
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equations, with a linear diffusion synthetic acceleration method. In Chapter 7 we

investigate a potential approach for resolving issues with difficult to resolve solutions

in the ECMC algorithm. For the majority of this work time-discretized equations

are assumed, but in Chapter 8 a MC-based time treatment of radiation transport

is investigated. Finally, Chapter 9 provides a summary, discussion, and potential

future work for the method.

1.2 Thermal Radiative Transfer Background

Thermal radiative transfer (TRT) physics describe the time-dependent coupling

between a photon radiation field and a high-temperature material, which is typically

a plasma. The desired transient unknowns are the spatial energy-density distribu-

tions of the radiation and material. As photons transport through the medium, they

interact through scattering and absorption by the material, depositing momentum

and energy. The material is heated through absorption of photons and is cooled

by emission of thermal x-ray photons into the radiation field. The emission pro-

cess is a strongly nonlinear function of temperature [8]. Additionally, the material

properties are typically a function of temperature, in particular the absorption cross

section. The temperature-dependent material properties and absorption and ree-

mission physics lead to systems that require accurate modeling of photon transport

through a mix of streaming and optically-thick, diffusive regions.

Accurate modeling of TRT physics becomes relevant in the high-energy, high-

density physics regime. Radiative transfer is a dominant form of heat transfer in

high-temperature systems, where the material temperature is O(106) K or higher.

Typical computational applications of TRT include simulation of inertial confinement

fusion and astrophysics phenomena. In most applications where TRT is important,

the fluid material is typically in motion and exchanges momentum with the radiation
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field. In this work, we neglect motion of the material, which would require inclusion

of hydrodynamics in our model [8]. However, our LO equations are well-suited for

coupling to material motion via typical operator-splitting methods for radiation-

hydrodynamic systems [9, 10].

1.2.1 The Equations of Thermal Radiative Transfer

First, the photon radiation field, with the appropriate units used throughout this

work, is characterized. Photons transporting through a material are described by

the particle position vector r (cm), direction vector Ω (str, i.e., steradians), time t

(sh, where 1 sh ≡ 10−8 s), and frequency ν (Hz). The primary radiation unknown

is the angular intensity I (r,Ω, ν, t) (jk cm−2 s−1 Hz−1 str−1), which represents a

distribution function of energy contained in the radiation field, per unit of phase

space. We use the energy unit jerks (jk), where 1 jk = 109 joules. The intensity can

be related to the volumetric density of photons N (r,Ω, ν, t) (photons cm−3 Hz−1

str−1) via the relation

I (r,Ω, ν, t) = chνN (r,Ω, ν, t) , (1.1)

where c = 299.792458 cm sh−1 is the speed of light and h = 4.13567 × 10−18 keV

Hz−1 is Planck’s constant. The angular intensity is a useful quantity because it is

directly related to reaction rates.

The governing conservation equation for the radiation field is a transport equation

given by [8, 11, 12]

1

c

∂I (r,Ω, ν, t)

∂t
+ Ω · ∇I (r,Ω, ν, t) + σt(r, ν)I (r,Ω, ν, t) =

∞∫
0

∫
4π

σs(Ω
′ → Ω, ν ′ → ν)φ(r′, ν ′, t)dΩ′dν ′ + σa(r, ν)Bν(r, ν, T ), (1.2)
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where

Bν(r, ν, T ) =
2hν3

c2

1

ehν/T − 1
(1.3)

is the black-body Planckian emission spectrum at temperature T (keV) [8], and

the macroscopic scattering, absorption, and total cross sections are σs, σa, and σt,

respectively. The scattering source includes integration over all possible incoming

angles Ω′ in differential solid angle dΩ′. The absorption cross section σa is typically

a strong function of temperature, i.e., σa ≡ σa(T ). Following standard notation, we

report temperatures in units of keV as an effective energy, obtained by multiplying

by the Boltzmann constant kB [8]. Thus, all material temperatures are T ≡ TKkB,

where kB is the Boltzmann constant (keV K−1) and TK is the temperature in kelvin.

The material is characterized by the material internal energy as a function of

position. The internal energy E is related to the material temperature T through

an equation of state. In this work, a perfect gas equation of state is assumed [13],

which produces the relation ρcvT = E, where ρ is the material mass density and cv

is the specific heat. Thus, we will use T (r, t) as the primary unknown to describe

the material energy distribution. The material energy conservation equation is

ρ(r)cv(r)
∂T (r, t)

∂t
=

∞∫
0

∫
4π

σaI (r,Ω, ν, t) dΩ− σa4πBν(r, ν, T )

 dν (1.4)

In derivation of the above equations, the conditions of local thermodynamic equilib-

rium were assumed, i.e., the emission source is described point-wise by the Planck

function at the temperature at that position, and the material is well-described by

the local temperature [8, 12]. The emission source is a non-linear function of tem-

perature and is proportional to T 4 after integration over frequency.
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1.2.2 Derivation of 1D Grey Model

At this point, we introduce the simplified equations that will be used in the re-

mainder of this work. First, the solutions are assumed to only vary in one spatial

dimension using Cartesian coordinates, referred to as the 1D slab geometry [11]. The

position is described by a single coordinate x and the direction of particle travel is

described by µ, which is the cosine of the angle between the particle direction and

the positive x axis. The angular intensity is assumed symmetric in angle azimuthally

about the x axis. To simplify the equations, the equations are integrated over all

frequencies. We also assume that the material properties are independent of photon

frequency, or equivalently we know the weighting spectrum of the frequency inte-

grated cross sections. Finally, we assume physical scattering is isotropic in angle.

With these assumptions, integration over the azimuthal angle and all frequencies,

with algebraic manipulation, ultimately yields the 1D grey equations [12, 8]

1

c

∂I(x, µ, t)

∂t
+ µ

∂I(x, µ, t)

∂x
+ σtI(x, µ, t) =

σs
2
φ(x, t) +

1

2
σaacT

4(x, t) (1.5)

ρcv
∂T (x, t)

∂t
= σaφ(x, t)− σaacT 4(x, t). (1.6)

The equations have associated incident boundary conditions for the angular intensity:

I(0, µ) = I inc,+(µ), µ > 0 (1.7)

I(X,µ) = I inc,−(µ), µ < 0, (1.8)

for a spatial domain spanning 0 ≤ x ≤ X. In the above equations the fundamen-

tal unknowns are the material temperature T (x, t) and the grey angular intensity

I(x, µ, t) =
∞∫
0

I(x, µ, ν, t)dν. The mean radiation intensity φ(x, t) =
∫ 1

−1
I(x, µ, t)dµ

is related to the radiation energy density Er (jk cm−3 sh−1) by the relation Er = φ/c.
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The integral of Bν(r, ν, T ) over all frequencies and angles produced the grey Planck-

ian emission source σaacT
4 [8] in Eq. (1.6), where a = 0.01372 jk cm−3 keV4 is the

radiation constant, which is proportional to the Stefan-Boltzmann constant. The

term σaφ is the rate of energy absorption by the material, whereas the emission term

represents losses to the material internal energy. We have developed our algorithm

to produce efficient solutions to Eq. (1.5) and (1.6).

1.2.3 The Equilibrium Diffusion Limit

A critical aspect for any numerical solution to the thermal radiative transfer

equations is preservation of the asymptotic, equilibrium-diffusion limit (EDL) [14,

15]. In the EDL, the material becomes optically thick and increasingly diffusive,

as σa becomes large and ρcv becomes small. The solution approaches equilibrium

with I(x, µ) = 1
2
acT 4(x), where the distribution of the solution is well described by

the material temperature [15]. The spatial scale length for diffusive solutions, the

diffusion length, can be equal to an arbitrary number of mean-free-paths (MFPs), but

transport discretization schemes are only guaranteed to converge in the limit as the

number of MFPs per cells becomes small [14]. To achieve convergence with a small

number of diffusion lengths per cell in diffusive problems, the transport discretization

must preserve the EDL.

Discretization schemes of the transport equation that preserve the EDL correctly

limit to the appropriate discretized diffusion equation in diffusive problems. Spatial

discretizations that do not preserve the EDL can produce inaccurate solutions, even

though the mesh size accurately resolves the diffusion length scale, with inaccuracies

that are much greater than expected from truncation error. Such non-preserving

methods require spatial mesh resolution on the order of a MFP [14]. The EDL

regime is typical in applications of TRT, so discretizations must preserve this limit
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to produce accurate solutions with reasonable mesh resolutions.

1.3 Previous Work

This sections describes related work on Monte Carlo solution to the TRT equa-

tions, as well as some additional important properties that numerical solution to

TRT equations must preserve. The Monte Carlo (MC) method [16] is a standard

computational method in the field of radiation transport. It has been used to great

success, providing high-accuracy solutions to particle transport problems described

by the linear Boltzmann transport equation for many decades. The application of

MC to the linear Boltzmann equation is well documented in literature [17, 16, 11].

The Monte Carlo method samples the underlying physics distributions to estimate

the average behavior of a field of particles. This can provide highly-accurate results,

in particular for treatment of the angular variable associated with particle transport

problems. Detailed descriptions of MC simulation of particle tracking, sampling of

interactions, etc. can be found in literature [17, 18, 16].

With respect to TRT problems, the temperature equation is almost always solved

deterministically to produce a linear particle transport equation. Monte Carlo solu-

tion to this transport equation can introduce large statistical noise into the material

temperature distribution, which is undesirable when coupling to other physics, e.g.,

in radiation hydrodynamics. To improve the efficiency of MC solutions, hybrid MC

methods utilize a deterministic solution to accelerate the MC solution.

In the remainder of this section, we detail the standard method for MC solution

to TRT equations, the implicit Monte Carlo (IMC) method, and then discuss related

moment-based acceleration and other alternative hybrid solution methods. We also

discuss the residual Monte Carlo (RMC) method, which is similar to the HO solver

in our method.
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1.3.1 The Implicit Monte Carlo Method

The IMC method [7, 18] is the standard approach for applying the MC method

to TRT problems. The IMC method partially linearizes Eq. (1.5) & Eq. (1.6) over

a discrete time step, with material properties evaluated at the previous-time-step

temperature. Linearization of the system produces a linear transport equation that

can be solved with MC simulation. The transport equation contains an approximate

emission source and an effective scattering cross section representing absorption and

reemission of photons over a time step. The transport equation is solved with MC

simulation to advance the distribution of radiation to the end of the time step and

determine the energy absorbed by the material over the time step. The energy

absorption by the material is tallied over a discrete spatial mesh, computed with

cell-averaged quantities. Integration of the time-variable is treated continuously for

radiation variables over the time step via MC sampling, but the linearized Planckian

source in the transport equation is based on a time-discrete approximation.

The IMC method has some notable limitations. In optically thick regions, or for

large time steps, the effective scattering dominates interactions. In these diffusive

regions IMC becomes computationally expensive. Acceleration methods typically

attempt to improve efficiency by allowing particles to take discrete steps through

optically-thick regions based on a spatially-discretized diffusion approximation [19,

20]. In IMC, temperature-dependent material properties, in particular cross sections,

are evaluated at the previous-time step temperature. These lagged cross sections can

produce inaccurate solutions but do not cause stability issues.

An important aspect for numerical simulation of TRT equations is preservation of

the discrete maximum principle (MP). The MP states that the material temperature

and mean intensity in the interior of the domain should be bounded by the solution
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at the boundaries of the domain, in the absence of interior energy sources [21, 22].

The analytic solution to the TRT equations satisfies the MP [22], so we desire nu-

merical approximations that preserve the MP in a discrete sense, for each time step.

The BE time discretization of the TRT equations has been shown to preserve the

MP [22]. For some problems, the IMC method can yield non-physical results that

violate the MP if the time step size is too large or the cell size is too small [21].

The violation of the maximum principle results in the material temperature being

artificially higher than the effective radiation temperature. The violation by IMC is

caused by the approximate linearization of the end-of-time-step emission source; the

emission source is not truly implicit in time. The linearized estimate of the emission

source typically can not be iteratively improved due to the high computational cost

of the MC transport. The work in [23] uses less-expensive MC iterations to produce

an implicit system which prevents this from happening, but the method as currently

formulated has slow iterative convergence in diffusive problems.

In IMC the material and radiation energy fields are discretized spatially to solve

for cell-averaged values. Inaccurate spatial representation of the emission source

over a cell can result in energy propagating through the domain artificially fast,

yielding non-physical results that are often referred to as “teleportation error” [24].

The IMC method uses a fixup known as source tilting to mitigate this problem.

Source tilting reconstructs a more accurate linear-discontinuous representation of

the emission source within a cell based on the cell-averaged material temperatures in

adjacent cells. This linear reconstruction is also necessary to preserve the asymptotic

equilibrium diffusion limit (EDL), at least for a more general time step size and class

of problems than for a piece-wise constant representation [25]. Recent work in IMC

has incorporated a linear-discontinuous finite-element representation directly into the

discretization of the material temperature equation [26].
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1.3.2 Moment-Based Acceleration Methods

An alternative application of MC to the TRT equations is moment-based hybrid

MC methods. Recent work has focused on so-called high-order low-order (HOLO)

methods [4, 5, 1, 6, 2]. These methods involve fixed-point iterations between high-

order (HO) MC solution of a transport equation and a deterministic LO system. The

low-order (LO) operator is based on angular moments of the transport equation,

formulated over a fixed spatial mesh. Physics operators that are time consuming

for MC to resolve, e.g., absorption-reemission physics, are moved to the LO system.

The reduced angular dimensionality of the system and Newton methods allow for

non-linearities in the LO equations to be fully resolved efficiently [4, 5]. The high-

order (HO) transport problem is defined by Eq. (1.5), with sources estimated from

the previous LO solution. The HO transport equation can be solved via MC to

produce a high-fidelity solution for the angular intensity. The MC estimate of the

angular intensity is used to estimate consistency terms, present in the LO equations,

that require the LO system to preserve the angular accuracy of the MC solution.

These consistency terms are present in all spatial-regions of the problem, requiring

statistical variance to be reduced sufficiently throughout the entire domain of the

problem. The LO equations are typically based on nonlinear Diffusion Acceleration

(NDA) [4, 5].

The LO system used in our method is similar to the hybrid-S2 method developed

in [27], which was applied to continuous energy neutronics problems. Angularly, the

method integrates over half-ranges to form nonlinear functionals, which in our work

are referred to as consistency terms. The primary difference is in the treatment of the

spatial discretization; because a linear reconstruction of the emission source is needed

for accurate solution to TRT problems, we cannot perform the same manipulations
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as in [27] where only cell-averaged unknowns are determined. Additionally, the

diamond-difference spatial discretization used is not accurate for TRT problems in

the equilibrium diffusion limit [15].

1.3.3 Residual Monte Carlo Methods

Another area of related research is the application of residual Monte Carlo to TRT

problems. The goal of these methods is to use MC simulation to solve a auxiliary

continuous transport equation for the error in some estimate of the intensity. The

error is then added to the estimate of the solution, which can produce an overall

solution for the intensity that has less statistical noise than solution of the original

transport equation would produce. The work in [1] used residual MC as a HO solver

for 1D grey TRT problems. In [1], the residual is formed with a fixed estimate of

the solution, based on the previous time intensity, such that only sources on the

faces of cells must be sampled. This reduces the dimension of the phase-space to be

sampled [1]. The RMC algorithm demonstrated impressive reduction in statistical

variance for slowly varying solutions. However, a piecewise constant representation

is used for the space-angle representation of the intensity, which does not preserve

the EDL and can be inaccurate in angularly complex regions of the problem. In

this work, we apply the exponentially convergence MC (ECMC) algorithm that was

previously applied to simplified steady state neutronics problems [28].

Similar to RMC, a difference formulation has been applied to another algorithm

known as the symbolic IMC method (SIMC), for the case of 1D frequency-dependent

problems [29]. SIMC forms a standard FE solution to the material energy balance

equation, and uses symbolic weights in the MC transport to solve for expansion

coefficients. The difference formulation modifies the transport equation to solve

for unknowns representing the deviation of the intensity from equilibrium with the
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material energy. The difference formulation was also applied to a linear-discontinuous

FE spatial representation of the emission source, demonstrating accuracy in the

EDL [30]. The algorithms in [29] and [1] produced minimal statistical noise in slowly

varying problems where the behavior of the system is near equilibrium.
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2. OVERVIEW OF THE HOLO ALGORITHM

The HOLO algorithm is a nonlinear acceleration method. Fixed-point iterations

are performed between a high-order (HO) transport equation and a low-order (LO)

system formulated with angular moments and spatial moments on a fixed spatial

mesh. With the exception of Chapter 8, we will derive and discuss our HOLO

method using a backward Euler (BE) time discretization for simplicity. We have

also assumed constant specific heats and cell-wise constant cross sections, although

our method could easily be extended to a general material equation of state. The

BE time-discretized equations are

µ
∂In+1

∂x
+

(
σn+1
t +

1

c∆t

)
In+1 =

σs
2
φn+1 +

1

2

(
σaacT

4
)n+1

+
In

c∆t
(2.1)

ρcv
T n+1 − T n

∆t
= σn+1

a φn+1 − σaac(T 4)n+1, (2.2)

where ∆t is the time step size, and the superscript n is used to indicate the n-

th time step. Cross sections are evaluated implicitly, i.e., at the end of time step

temperature (σn+1
a ≡ σa(T

n+1)). It is noted that in IMC the time derivative in

Eq. (1.5) is typically treated continuously using time-dependent MC over each time

step, but with the temperature implicitly discretized. Our HO transport equation is

discrete in time for simpler application of ECMC and to avoid difficulties in coupling

to the fully-discrete LO solver. In chapter 8, time-dependent transport is included

in the ECMC algorithm with consistent LO equations, similar to the IMC treatment

of the time variable, improving accuracy in optically thin regions.

In the HOLO context, the LO solver models isotropic scattering and resolves the

material temperature spatial distribution T (x) at each time step. The LO equations
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are formed via half-range angular and spatial moments of Eq. (2.1) and Eq. (2.2).

The spatial moments are formed over a finite-element mesh using linear finite-element

(FE) basis functions. The angular treatment in the LO equations has the same form

as those used in the hybrid-S2 method in [27], with consistency parameters that

represent angularly-weighted averages of the intensity. In this work, consistency

refers to how accurately the LO moments reproduce moments of the HO solution.

The angular consistency parameters are analogous to a variable Eddington factor [31].

If the consistency parameters are exact, then the LO equations are exact, neglecting

spatial discretization errors. This provides the potential for the LO equations to

correctly reproduce the associated space-angle moments of the HO solution. These

consistency parameters are lagged in each LO solve, estimated from the previous HO

solution for In+1(x, µ), as explained below. For the initial LO solve for each time

step, the parameters are calculated with In(x, µ) from the previous HO solve. The

discrete LO equations always conserve total energy, independent of the accuracy of

the consistency terms. Additionally, the implicit time discretization, with sufficient

convergence of the nonlinear emission source, will ensure that the method will not

exhibit maximum principle violations [22].

Our LO operator is different from the nonlinear diffusion acceleration (NDA)

methods used by other HOLO methods [1, 5, 4]. In NDA methods, an ad hoc

term is added to the LO equations to enforce consistency and estimated using a

previous HO solution. In our method we simply algebraically manipulated space-

angle moment equations to produce our consistency terms, and then introduce a

spatial closure. This should produce more stability in optically-thick regions where

NDA methods demonstrate stability issues, although a formal stability analysis has

not been performed.

The directionality of the half-range integrals are convenient for closing the equa-
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tions spatially with a discontinuous trial space. Spatially, the radiation moment

equations are closed using either a linear-discontinuous (LD) closure or with a para-

metric relation derived from the HO solution. A linear-discontinuous finite-element

(LDFE) representation of T (x) and T 4(x) are used to eliminate the remaining spa-

tial unknowns. The LDFE spatial discretization correctly preserves the equilibrium

diffusion limit, a critical aspect for TRT equations [15, 14]. Also, the LDFE repre-

sentation of the emission source mitigates artificial propagation of radiation energy

across a spatial cell.

The solution to the LO system is used to construct a LDFE spatial representation

of the isotropic scattering and emission sources on the right hand side of Eq. (2.1).

This defines a fixed-source, pure absorber transport problem for the HO operator,

with an emission source that is truly implicit in time. This HO transport problem

represents a characteristic method that uses MC to invert the continuous streaming

plus removal operator with an LDFE representation of sources; the representation of

sources is similar to the linear moments method discussed in [32]. We will solve this

transport problem, which has the form of a steady-state transport equation, using

the ECMC method. The output from ECMC is Ĩn+1(x, µ), a space-angle LDFE

projection of the exact solution In+1(x, µ) to the described transport problem. Once

computed, Ĩn+1(x, µ) is used to directly evaluate the necessary consistency parame-

ters for the next LO solve. Since there is a global, functional representation of the

angular intensity, LO parameters are estimated using quadrature and do not require

additional tallies. The HO solution is not used to directly estimate a new tempera-

ture at the end of the time step; it is only used to estimate the angular consistency

parameters for the LO equations, which eliminates typical operator splitting stability

issues that require linearization of the emission source.

Sufficient MC histories must be performed to eliminate statistical noise in the
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consistency terms that can contaminate the LO solution. Exponentially-convergent

Monte Carlo (ECMC)[28, 6] provides an algorithm that can efficiently reduce sta-

tistical noise to the same order as the HOLO iteration error with significantly less

particle histories than standard MC. Additionally, each particle history requires less

computational cost in particle tracking than IMC because no scattering events occurs

in the HO solver. In particular, ECMC is exceptionally efficient in time-dependent

TRT problems because the projection of the intensity from the previous time step

can be used as an accurate initial guess for the new end of time step intensity. Addi-

tionally, no particle histories are required in regions where the radiation and material

energy field are in equilibrium, similar to [1]. However, implementation of ECMC is

non-trivial, requiring a finite-element representation of the solution in all phase-space

variables that are being sampled with MC. The fundamental transport of particles is

the same as standard Monte Carlo transport codes, but the source will now contain

positive and negative weight particles.

One HOLO fixed-point iteration k denotes the process of an ECMC solve of

the HO problem to estimate LO parameters, based on the current LO estimate of

sources, followed by a solution of the LO system for T n+1(x) and φn+1(x). The

process of performing subsequential HO and LO solves, within a single time step,

can be repeated to obtain increasingly accurate solutions if the HO solution has

sufficiently low statistical noise. Thus, the HOLO algorithm, for the n-th time step,

is

1. Perform a LO solve to produce an initial guess for T n+1,0(x) and φn+1,0(x),

based on consistency terms estimated with Ĩn.

2. Solve the HO system for Ĩn+1,k+1/2(x, µ) with ECMC, based on the current LO

estimate of the emission and scattering sources.
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3. Compute LO consistency parameters with Ĩn+1,k+1/2.

4. Solve the LO system with HO consistency parameters to produce a new esti-

mate of φn+1,k+1 and T n+1,k+1.

5. Optionally repeat 2 – 4 until desired convergence is achieved.

6. Store Ĩn ← Ĩn+1, and move to the next time step.

where the superscript k denotes the outer HOLO iteration1. The consistency terms

force the HO and LO solutions for φn+1(x) to be consistent to the order of the current

HOLO iteration error, as long as the LDFE spatial representation can accurately

represent φ(x) and T (x).

1Throughout this dissertation, the outer HOLO iteration index k is often suppressed for visual
clarity. Where necessary, subscript “HO” and “LO” are also used to indicate terms from respective
solvers explicitly.
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3. THE MOMENT-BASED LOW-ORDER EQUATIONS

The LO equations are based on moments, i.e., integrals of the equations, to

produce a lower-dimensional system. The equations incorporate extra parameters,

referred to as consistency terms, that allow for the equations to preserve the accuracy

(particularly in angle) of the HO solver, which is detailed in the next chapter. The

formulation of the LO equations is similar to a discontinuous FE method. Weighted

integrals of the equations are taken using weight functions that have local support.

The equations are written with element-wise moments of I(x, µ) and T (x) as un-

knowns. Leaving the solution in this form allows for use of information from a

previous HO solution to eliminate auxiliary unknowns from the equations. This is

different than a standard Galerkin or collocation FE method [33, 14, 34] where a

functional form of the solution is directly assumed. The final equations will have a

similar form to S2 equations, but we have not used a collocation method in angle,

which should limit ray effects [34, 11] in higher spatial dimensions.

The remainder of this chapter is structured as follows: the general moments will

be derived and then the use of HO information to close the system in angle is dis-

cussed. We then detail two separate spatial closures: a standard linear-discontinuous

finite-element (LDFE) closure [14] and the use of the HO solution to define an exact

closure. Details on solving the equations are also given.

3.1 Forming the Space-Angle Moment Equations

3.1.1 LO Spatial Mesh and Finite-Element Spatial Moments

The LO equations are formulated over a FE mesh. The domain for the i-th spatial

element (or cell) has support x ∈ [xi−1/2, xi+1/2] with width hi = xi+1/2 − xi−1/2

and cell center xi = xi−1/2 + hi/2. There is a total of Nc elements, spanning the
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spatial domain 0 ≤ x ≤ X. For simplicity, this spatial mesh is fixed throughout the

simulation. Mesh adaptation is only applied in the HO solver, where applicable.

1

xi−1/2 xi+1/2

bR,i(x)bL,i(x)

x

Figure 3.1: Illustration of linear finite element basis functions bL,i(x) and bR,i(x), for
spatial element i.

The spatial moments are defined by integrals weighted with the standard linear

finite element (FE) interpolatory basis functions. An illustration of the two linear

FE basis functions for the i-th element (or cell) is given in Fig. 3.1. The left basis

function is defined as

bL,i(x) =


xi+1/2 − x

hi
xi−1/2 ≤ x ≤ xi+1/2

0 elsewhere
, (3.1)

corresponding to the node xi−1/2. The right basis function is

bR,i(x) =


x− xi−1/2

hi
xi−1/2 ≤ x ≤ xi+1/2

0 elsewhere
, (3.2)

corresponding to the node xi+1/2. With these definitions, a local linear approxi-

mation to a function f can be formulated as f(x) ' fL,ibL,i(x) + fR,ibR,i(x), x ∈
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[xi−1/2, xi+1/2].1

The spatial moments are defined by integrals over the each element, using the two

basis functions. We use 〈·〉 to indicate weighted integration over a spatial element.

The spatial moments are

〈·〉L,i =
2

hi

∫ xi+1/2

xi−1/2

bL,i(x)(·)dx (3.3)

and

〈·〉R,i =
2

hi

∫ xi+1/2

xi−1/2

bR,i(x)(·)dx, (3.4)

where the factor of 2/hi is a normalization constant. In this notation 〈φ〉L,i and

〈φ〉R,i represent spatial moments of the intensity over cell i, as opposed to φL,i and

φR,i, which represent the interior value of the linear representation of φ(x) at xi−1/2

and xi+1/2 within the cell.

To simplify notation and discussion, we also define the slope and average moments

over a spatial cell. The element-averaged scalar intensity is

φi =
1

hi

∫ xi+1/2

xi−1/2

φ(x)dx (3.5)

and the average slope of the scalar intensity within the element is

φx,i =
6

hi

∫ xi+1/2

xi−1/2

(
x− xi
hi

)
φ(x)dx. (3.6)

The linear representation over a cell can be written as φ(x) = φi + 2φx,i(x− xi)/h2
i ,

for x ∈ (xi−1/2, xi+1/2).

1In literature the linear FE basis functions are formally defined with support over two adjacent
elements. However, in our notation our functions only have non-zero support in element i. This
accommodates our later definition of moments and discontinuous unknowns.
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3.1.2 Definition of Angular Moments

To reduce the angular dimensionality, positive and negative half-range integrals of

the angular intensity are taken. The angular integrals are denoted with a superscript

as

(·)± = ±
∫ ±1

0

(·)dµ (3.7)

The half-range integrals of I are defined as φ+(x) =
∫ 1

0
I(x, µ) dµ and φ−(x) =∫ 0

−1
I(x, µ) dµ, respectively. Thus, in terms of half-range quantities, the mean inten-

sity is φ = φ− + φ+.

3.1.3 Space-Angle Moments of the Radiation Transport Equation

The LO radiation equations are formed by applying the space and angle moment

operators to the transport equation and performing algebraic manipulation. We

provide a detailed derivation of the L and + radiation moment equation and state

the final results for the other moment operators. The independent variables are often

suppressed for some, or all, of the dependent variables for compactness.

First, the L moment operator is applied to the time-discretized transport equa-

tion, i.e., Eq. (2.1); application of integration by parts to the streaming term of the

resulting equation yields

− 2

hi
µIn+1(xi−1/2, µ) +

2

h2
i

∫ xi+1/2

xi−1/2

µIn+1(x, µ)dx+

(
σn+1
t,i +

1

c∆t

)
〈In+1(x, µ)〉L,i

− σs,i
2
〈φn+1(x)〉L,i =

1

2
〈σn+1

a,i acT
n+1,4(x)〉L,i +

1

c∆t
〈In(x, µ)〉L,i. (3.8)

Here, the cross sections have been assumed constant over a cell and evaluated with

T n+1. Now, the mean intensity in the scattering term is expanded in terms of half-

range unknowns. The integral can be rewritten in terms of L and R moments by
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noting that bL,i(x) + bR,i(x) = 2/hi. These substitutions are made, independent

variables are suppressed, and the resulting equation is multiplied by hi to produce

− 2µIn+1
i−1/2 + 〈µIn+1〉L,i + 〈µIn+1〉R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈In+1〉L,i

− σs,ihi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,−
L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i +
hi
c∆t
〈In〉L,i, (3.9)

where Ii−1/2(µ) ≡ I(xi−1/2, µ). The resulting equation is integrated over the positive

half range:

− 2
(
µIn+1

i−1/2

)+

+ 〈µIn+1〉+L,i + 〈µIn+1〉+R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,+

L,i

− σs,ihi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,−
L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i +
hi
c∆t
〈φ〉n,+L,i . (3.10)

3.1.4 The Angular Consistency Terms

Now, algebraic manipulations are performed on the streaming terms to produce

face and volume averages of µ, weighted by the intensity. Each term in the streaming

term of Eq. (3.10) is multiplied by a factor of unity, with the desired unknown

appropriate to each term in the numerator and denominator, as in [27]. Temporarily

dropping the time index for clarity, the manipulations applied to the streaming term

are as follows:

〈
µ
∂I

∂x

〉+

L

= − 2

hi

(
µIi−1/2

)+
+

1

hi

[
〈µI〉+L,i + 〈µI〉+R,i

]
(3.11)

= − 2

hi

(
µIi−1/2

)+ (Ii−1/2)+

(Ii−1/2)+ +
1

hi

[
〈µI〉+L,i

〈I〉+L,i
〈I〉+L,i

+ 〈µI〉+R,i
〈I〉+R,i
〈I〉+R,i

]
(3.12)

= − 2

hi

{
(µI)+

i−1/2

φ+
i−1/2

}
φ+
i−1/2 +

1

hi

[{
〈µI〉+L,i
〈φ〉+L,i

}
〈φ〉+L,i +

{
〈µI〉+R,i
〈φ〉+R,i

}
〈φ〉+R,i

]
(3.13)
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The ratios in braces are what we will formally define as angular consistency terms.

These nonlinear functionals are approximated by the HO solver, similar to the ap-

proach in [27]. The angular consistency term for the L and + moments is defined

as

{µ}n+1,+
L,i ≡

〈µIn+1〉+L,i
〈In+1〉+L,i

=

2

hi

1∫
0

xi+1/2∫
xi−1/2

µ bL,i(x)In+1(x, µ)dxdµ

2

hi

1∫
0

xi+1/2∫
xi−1/2

bL,i(x)In+1(x, µ)dxdµ

. (3.14)

The consistency terms on the face represent averaging at a point, with a similar

definition as

µ+
i+1/2 ≡

(
µIi+1/2

)+

φ+
i+1/2

=

1∫
0

µI(xi+1/2, µ)dµ

1∫
0

I(xi+1/2, µ)dµ

. (3.15)

There are analogous definitions for the R and − moments, e.g.,

{µ}n+1,−
R,i ≡

〈µIn+1〉−R,i
〈In+1〉−R,i

=

2

hi

0∫
−1

xi+1/2∫
xi−1/2

µ bR,i(x)In+1(x, µ)dxdµ

2

hi

0∫
−1

xi+1/2∫
xi−1/2

bR,i(x)In+1(x, µ)dxdµ

. (3.16)

Substitution of Eq. (3.16) and (3.15) simplifies moments of the streaming term for

the L and + operators:

〈
µ
∂I

∂x

〉+

L

= − 2

hi
µ+
i−1/2I

+
i−1/2 +

1

hi

[
{µ}+

L,i 〈φ〉
+
L,i + {µ}+

R,i 〈φ〉
+
R,i

]
(3.17)

It is noted that this expression does not contain a cross section in the denominator,

such as in the variable Eddington factor approach [35], eliminating issues in a void

where σt = 0.
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3.1.5 The Exact Radiation Moment Equations

A final form of the moment equation resulting from application of the L mo-

ment and positive half-range integral is obtained by substitution of Eq. (3.17) into

Eq. (3.10):

−2µn+1,+
i−1/2 φ

n+1,+
i−1/2 +{µ}n+1,+

L,i 〈φ〉n+1,+
L,i +{µ}n+1,+

R,i 〈φ〉n+1,+
R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,+

L,i

− σs,ihi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,−
L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i +
hi
c∆t
〈φ〉n,+L,i , (3.18)

The other radiation moment equations are derived analogously. Pairwise application

of the L and R basis moments with the + and − half-range integrals to Eq. (2.1)

ultimately yields four moment equations per cell. The equation for the R and +

moment is

2µn+1,+
i+1/2 φ

n+1,+
i+1/2 −{µ}

n+1,+
L,i 〈φ〉n+1,+

L,i −{µ}n+1,+
R,i 〈φ〉n+1,+

R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,+

R,i

− σs,ihi
2

(
〈φ〉n+1,+

R,i + 〈φ〉n+1,−
R,i

)
=
hi
2
〈σn+1

a acT n+1,4〉R,i +
hi
c∆t
〈φ〉n,+R,i , (3.19)

The equations for the negative half-range moment are identical to the above with

the negative half-range integrals replacing the positive where applicable. Explicitly,

−2µn+1,−
i−1/2 φ

n+1,−
i−1/2 +{µ}n+1,−

L,i 〈φ〉n+1,−
L,i +{µ}n+1,−

R,i 〈φ〉n+1,−
R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,−

L,i

− σs,ihi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,−
L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i +
hi
c∆t
〈φ〉n,−L,i (3.20)

and

2µn+1,−
i+1/2 φ

n+1,−
i+1/2 −{µ}

n+1,−
L,i 〈φ〉n+1,−

L,i −{µ}n+1,−
R,i 〈φ〉n+1,−

R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,−

R,i
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− σs,ihi
2

(
〈φ〉n+1,+

R,i + 〈φ〉n+1,−
R,i

)
=
hi
2
〈σn+1

a acT n+1,4〉R,i +
hi
c∆t
〈φ〉n,−R,i , (3.21)

Ultimately, the two half-ranges will be treated differently when the equations are

closed spatially due to upwinding in direction.

3.1.6 Material Energy Equations

To derive the LO material energy equations, an approximation must be intro-

duced to relate T (x) and T 4(x) within a cell. We represent T (x) spatially with a

LDFE trial space, i.e., T (x) ' TL,ibL,i(x) + TR,ibR,i(x), x ∈ (xi−1/2, xi+1/2). This

trial space will ensure preservation of the equilibrium diffusion limit and limit ar-

tificial propagation of energy across the system [24]. Similarly, the emission term

is represented in the material and radiation equations with the LDFE interpolant

T 4(x) ' T 4
L,ibL,i(x) + T 4

R,ibR,i(x). The L and R spatial moments are taken of the

material energy equations, and the LDFE representations for T (x) and σaacT
4(x)

are used to simplify the spatial integrals. The final LO material energy equation

resulting from application of the L moment is

ρicv,i
∆t

[(
2

3
TL,i +

1

3
TR,i

)n+1

−
(

2

3
TL,i +

1

3
TR,i

)n]
+ σn+1

a,i

(
〈φ〉+L,i + 〈φ〉−L,i

)n+1

= σn+1
a,i ac

(
2

3
T 4
L,i +

1

3
T 4
R,i

)n+1

. (3.22)

The equation for the R moment is

ρicv,i
∆t

[(
1

3
TL,i +

2

3
TR,i

)n+1

−
(

1

3
TL,i +

2

3
TR,i

)n]
+ σn+1

a,i

(
〈φ〉+R,i + 〈φ〉−R,i

)n+1

= σn+1
a,i ac

(
1

3
T 4
L,i +

2

3
T 4
R,i

)n+1

. (3.23)
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Cross sections have been assumed constant over each element, evaluated at the av-

erage temperature within the element, i.e., σn+1
a,i = σa,i([T

n+1
L,i + T n+1

R,i ]/2). Because

the material energy balance equation only contains angularly integrated quantities,

there is no need to take angular moments of the above equations.

3.2 Closing the LO Equations in Space and Angle

At this point, the LO equations have too many unknowns: the relation between

the volume and face averaged quantities and the angular consistency parameters are

not known a priori. The HO solution is used to eliminate the consistency parameters

and other approximations are used to eliminate the extra spatial unknowns from the

equations. The six desired degrees of freedom (DOF) over each cell i are the four

moments 〈φ〉+L,i, 〈φ〉
+
R,i, 〈φ〉

−
L,i, and 〈φ〉−R,i and the two spatial edge values TL,i and

TR,i. After closure, the four radiation and two material energy equations define a

system of equations for the six DOF, coupled spatially through the streaming term.

Before introducing the additional closures, we emphasize that at this point the

only spatial or angular approximations to the radiation moment equations are an

LDFE representation for T 4(x) and cell-averaged cross sections; these moment equa-

tions are exact with respect to the chosen time discretization and these approxima-

tions. The material energy equations, as well as the emission source, required an

approximation of LDFE in space for T (x) and T 4(x). Some approximation is always

necessary to relate T and T 4.

3.2.1 Angular Closure

The angular consistency parameters (e.g., Eq. (3.16) and (3.15)) are not known

a priori. A lagged estimate of In+1 from the previous HO solve is used to estimate

the angular consistency parameters. In the HOLO algorithm, the equations for LO

unknowns at iteration k + 1 use consistency parameters computed using the latest
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HO solution Ĩn+1,k+1/2 as an approximation for In+1(x, µ), e.g.,

{µ}n+1,+
L,i '

〈µĨn+1,k+1/2
HO 〉+L,i

〈Ĩn+1,k+1/2
HO 〉+L,i

=

2

hi

1∫
0

xi+1/2∫
xi−1/2

µ bL,i(x)Ĩ
n+1,k+1/2
HO (x, µ) dxdµ

2

hi

1∫
0

xi+1/2∫
xi−1/2

bL,i(x)Ĩ
n+1,k+1/2
HO (x, µ) dxdµ

. (3.24)

We evaluate these terms using quadrature based on the LDFE functional represen-

tation ĨHO(x, µ) provided by the HO solution.

3.2.2 LDFE Spatial Closure

After approximating the angular consistency terms in the time-discretized LO

moment equations, a equation relating the spatial moments and outflow face val-

ues is needed to eliminate the final auxiliary unknowns, i.e., a spatial closure. We

will eliminate the face terms to produce equations exclusively in terms of the de-

sired moment unknowns. Several closures were investigated. The simplest closure

is a linear-discontinuous (LD) spatial closure with the usual upwinding approxima-

tion [14]. A closure based on the HO solution is discussed in Sec. 3.6. Because

there are no derivatives of T in Eq. (2.2), there is no need to define T on the faces in

Eq. (3.22) and Eq. (3.23); only moments of φ appear in the material energy equations,

thus they are fully defined at this point and require no additional spatial closure.

Now, the LDFE closure is applied to the radiation moment equations for the

case of positive flow (i.e., Eq. (3.18) and (3.19)). The LD closure over for the i-

th cell and positive µ is illustrated in Fig. 3.2. The face terms µi−1/2 and φi−1/2

are upwinded from the previous cell i − 1 or from a boundary condition; the terms

at xi+1/2 are linearly extrapolated, computed using the L and R basis moments.

The linear approximation φ+(x) = bL,i(x)φ+
L,i + bR,i(x)φ+

R,i, for x ∈ (xi−1/2, xi+1/2],
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is substituted into the definition for the moments (i.e., Eq. (3.3) and (3.4)) and

solved for the LD edge value φ+
i,R; The resulting outflow relation for positive flow is

φ+
i+1/2 ≡ φ+

i,R = 2〈φ〉+R,i − 〈φ〉
+
L,i; the LD closure for the negative half range produces

φ−i−1/2 = 2〈φ〉−L,i − 〈φ〉
+
R,i. The L moment and positive half-range equation with the

LD closure and upwinding is

− 2µn+1,+
i−1/2

(
2〈φ〉n+1,+

R,i−1 − 〈φ〉
n+1,+
L,i−1

)
+ {µ}n+1,+

L,i 〈φ〉n+1,+
L,i + {µ}n+1,+

R,i 〈φ〉n+1,+
R,i

+

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,+

L,i − σs,ihi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,−
L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i +
hi
c∆t
〈φ〉n,+L,i . (3.25)

Similar equations can be derived for the other directions and moments, fully defining

the radiation equations. The closed equations are equivalent in numerical complexity

to an LDFE discretization of the S2 equations [14, 11], but with different quadrature

points on the face and interior.

µ

xi−1/2 xi+1/2

φ+
i (x)

φ+
i,R

φ+
i,R

Figure 3.2: Linear-discontinuous trial space for half-range mean intensity and µ > 0,
in LO equations.
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Note that we have chosen to leave µn+1,+
i−1/2 as a value to be estimated from the

HO solver, which is more conducive to the HO spatial closures described in Sec. 3.6.

Alternatively, the spatial closure could be introduced before performing the algebraic

manipulation to form consistency terms (e.g., into Eq. (3.11)). This would produce

only volume-weighted consistency terms in the equations.

3.2.3 Boundary Conditions

For all spatial closures, the specified incident angular intensity is incorporated

into the upwinding term of the appropriate radiation moment equation. At the left

boundary, the upwinded current is known, so for that L moment equation

µ+
1/2φ

+
1/2 =

∫ 1

0

µI inc,+(µ)dµ, (3.26)

where I inc,+(µ) is the specified incident angular intensity at the left boundary. For

all results in this work, only isotropic incident intensities were considered. A similar

expression is derived for the right boundary. For S2-equivalent LO solves, i.e., all

consistency terms are ±1/
√

3, the half-range flux in the above equation is renormal-

ized by multiplying the term in the moment equations by 2/
√

3 to produce accurate

solutions [34].

3.3 Newton’s Method for LO Equations

Summation over all cells of the closed equations forms a global system of coupled

equations. The equations are nonlinear due to the Planckian emission source and,

for some problems, the temperature-dependent material properties. We have used

a local, hybrid Picard-Newton method to solve the nonlinear system, based on a

standard linearization of the Planckian source with cross sections evaluated at tem-

peratures from the previous iteration, as described in [14]. A derivation of the LO
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Picard-Newton equations is given in A.2.

The equations for each half-range are coupled together via scattering. In one

spatial dimension, the scattering terms can be included in the discrete system ma-

trix and directly inverted. We consider an alternative iterative solution method that

could be more easily extended to higher spatial dimensions in Chapter 6. For the

direct solution method, isotropic scattering, including effective scattering terms from

the linearization, are included in the system matrix. The system matrix is an asym-

metric, banded matrix with a band width of seven and is inverted directly. Newton

iterations are repeated until φn+1(x) and T n+1(x) are converged to a desired relative

tolerance. Convergence in the Newton iterations is calculated using the spatial L2

norm of the change in φn+1(x) and T n+1(x), relative to the norm of each solution.

In certain problems, the nonlinearities of the system can lead to divergence of

the Newton iterations. This is often the result of taking relatively large time steps

for problems with large values of σa and small values of ρcv. To prevent divergence,

a damped Newton method [36] can be used, at the cost of increased numbers of

iterations. For a damped Newton’s method, the estimated change in the solution

between iterations is multiplied by a factor ξ ∈ (0, 1), where ξ is referred to as the

damping factor. Sufficient reduction of the change in solutions between iterations

will allow iterations to continue converging, by ensuring the solution remains with

the domain of convergence. The details of modifying the Newton iterations in this

work to include a damping factor are given in App. A.2.1. For simplicity, a fixed

value of ξ was used for all iterations in problems where damping was found to be

necessary.
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3.4 Accuracy of LO Equations in the Equilibrium Diffusion Limit

In our LO scheme, the LO equations use an LDFE representation for the tem-

perature. The radiation terms can also be closed with an LDFE closure. In the

EDL limit, the MC HO solution will estimate angular consistency terms associated

with an isotropic intensity, based on a spatially LD emission source. This produces

LO equations that are equivalent to the S2 equations, but with quadrature points

defined by ±1/2. Because the spatial closure produces equations that are equivalent

to an LDFE solution to the S2 equations, we expect the equations to preserve the

equilibrium diffusion limit; the LDFE discretization of the S2 equations is known to

preserve the EDL based on discrete asymptotic analysis [14].

3.5 Fixups for Negative Solutions with LDFE Closure

The linear-discontinuous (LD) closure with upwinding is not strictly positive.

In particular, for optically thick cells with a steep intensity gradient, the linear

representations for φ(x) and T (x) can go below the floor temperature or negative.

The floor temperature Tmin is defined as the initial temperature of the material and

radiation in problems where boundary sources are applied at each of the boundaries.

In such problems the radiation and material should continue to heat on the interior

of the domain, and physically should not fall below the initial temperature. Negative

values of intensity can propagate to adjacent cells. In thick regions of TRT problems,

reasonably fine spatial cells can still be on the order of millions of mean free paths;

negative values with an LD representation are unavoidable in practice for such cells

and mesh refinement is of minimal use.

Typically, for a standard LDFE Galerkin spatial discretization, the equations are

lumped to produce a discretization that is strongly resistant to negative values (for

1D) [14]. However, standard FE lumping procedures would introduce difficulties
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in computing the consistency terms from the HO solution. Alternatively, we have

derived a modified spatial closure that produces unknowns equivalent to those from

a lumped LD method in 1D. The L and R moments are defined the same as before,

preserving the average within a cell, but the relation between the moments and the

outflow is modified. In the lumping-equivalent closure, the outflows are defined as

φ+
i+1/2 = 〈φ〉+i,R (3.27)

φ−i−1/2 = 〈φ〉−i,L. (3.28)

The system is then fully defined with upwinding and the assumption of a linear

relationship on interior of the element. This modified closure produces a linear rep-

resentation that preserves zeroth moment, but the relation between the slope of the

line and the first spatial moment has been modified. Because the basis functions

bR,i(x) and bL,i(x) are strictly positive, the outflows tends to be positive. Strong

sources and gradients can still lead to negativities at the edges of the LD represen-

tation. Details on the derivation of this relation are in Appendix A.1. The lumping

closure was optionally applied in all cells or only in cells where negative intensities

occur.

For simplicity, we also lump the emission source and temperature terms in the

equations following the standard procedure [14]. For example, the lumped version of

Eq. (3.22) is

ρicv,i
∆t

(
T n+1
L,i − T

n
L,i

)
+ σn+1

a,i

(
〈φ〉+L,i + 〈φ〉−L,i

)n+1
= σn+1

a,i ac
(
T n+1
L,i

)4
(3.29)

noting that no modification was made to the radiation moment term in this equa-

tion. It was found that lumping the temperature equations generally produced more
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robustness than exclusively modifying the spatial closure, but it is not necessary for

all problems.

3.5.1 Balance Preserving Fixup

We also investigated an alternative closure of the equations based on energy

conservation and forcing the appropriate edge value to be the floor value. The

equations within cells that produce a negativity are modified to ensure the edge

intensities are not below the floor temperature, and energy balance is conserved.

This fixup is applied in cells where a negative intensity is detected during a Newton

iteration. For example, if φ+
R,i is found to be negative, the modified equations (for

the positive half range) in that cell are the balance equation, i.e.,

− µn+1,+
i−1/2

(
2〈φ〉n+1,+

R,i−1 − 〈φ〉
n+1,+
L,i−1

)
+ µn+1,+

i+1/2

(
2〈φ〉n+1,+

R,i − 〈φ〉n+1,+
R,i

)
+

(
σn+1
t,i +

1

c∆t

)
hi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,+
R,i

)
− σs,ihi

4

(
〈φ〉n+1

L,i + 〈φ〉n+1
R,i

)
=
hi
4
σn+1
a,i ac

(
〈T n+1,4〉L,i + 〈T n+1,4〉R,i

)
+

hi
2c∆t

(
〈φ〉n,+L,i + 〈φ〉n,+R,i

)
(3.30)

and the closure equation, i.e.,

2〈φ〉+i,R − 〈φ〉
+
i,L = Tmin. (3.31)

Because our solution method directly inverts the LO system, negative edge in-

tensities must be detected, the fix-up applied locally to all elements and half-ranges

where necessary, and then that Newton solve repeated. In practice, this flooring

procedure was observed to produce positive answers, but was not as robust as the

lumping closure in all cells. In general, as the time step size or problem nonlinearities

were increased, this fixup led to the Newton solves diverging.
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3.6 Spatial Closure Based on the HO Solution

This section describes an alternative spatial closure to the LO equations with a

parametric relation determined with the HO solution. In addition to estimating the

angular consistency terms, the HO intensity is used to estimate a relation between

volume and face-averaged intensities to eliminate the face unknowns from the LO

equations. The goal is to improve consistency compared to the LDFE discretization,

although additional statistical noise is introduced through face-based tallies. In the

remainder of this section, we motivate the HO spatial closure by manipulating a half-

range balance equations to form a single unknown for each cell and half range. We

will then discuss the forms of HO spatial closures investigated, based on modifications

to standard spatial closures.

3.6.1 Motivation

Independent of angular accuracy and convergence of outer iterations, the LDFE

closure of the LO equations will generally not produce the same moments as the

LDFE projection of the HO solution. As an example of this difference, in the LO

equations the linearly extrapolated outflow from one cell is defined as the inflow

into the next cell through upwinding. For the HO solver, the linear, projected MC

outflow from a spatial cell does not not match the actual energy that flowed into a

downstream cell via MC particles. Thus, we introduce additional unknowns at the

face of cells to exactly capture the relation between moments and face values.

A half-range balance equation for µ > 0 is formed by adding the exact L and R

radiation moment equations given by Eq. (3.18) and (3.19), i.e.,

µ+
i+1/2φ

+
i+1/2 − µ

+
i−1/2φ

+
i−1/2 + σa,ihiφ

+
i =

hi
2
qi, (3.32)
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where qi represents the cell-averaged emission source. In the HOLO algorithm, after

estimating the consistency terms µ+
i±1/2, upwinding the inflow term φ+

i−1/2, an ad-

ditional equation is needed to eliminate the outflow φ+
i+1/2 to produce an equation

for a single unknown φ+
i . Standard spatial discretizations techniques use a fixed

approximation for all cells to eliminate the outflow in terms of other unknowns. Al-

ternatively, the HO solution can be used to estimate a parametric relation between

the other unknowns and the outflow, i.e.,

φ+
i+1/2 = f(γ+,HO

i , φ+
i , φ

+
x,i, φ

+
i−1/2), (3.33)

where γHO,+i is a local constant to be estimated with the HO solution and f is some

function of some number of the input variables. The ECMC solution can provide

all of the unknowns in the above equation, so the value of γHOi can be determined

directly.

If the problem were linear, or the nonlinear problem was fully converged, then

application of this closure can ensure that the HO and LO equations produce the

same moments, preserving the HO solution. To produce the same zeroth moment,

the HO solution must also satisfy the local balance equation, e.g., Eq. (3.32). Then

the LO equations and HO equations will have the same moments to satisfy both

Eq. (3.33) and Eq. (3.32), upon nonlinear convergence of the outer HOLO iterations.

To accurately reproduce the L and R basis moments, then the HO and LO solutions

must also satisfy the first moment equation.

As TRT problems are non-linear (i.e., scattering or thermal emission are included

in q), the moments will only be preserved upon non-linear convergence of the source.

The nonlinearity introduces the possibility for stability issues, particularly with MC

noise. However, we have already consistently formed angular consistency terms, so
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the the spatial closure should be more stable than introducing auxiliary terms, such

as in NDA methods [1, 4], but has a higher memory cost per spatial cell.

3.6.2 Choice of Spatial Closure

We will explore two different closure relations based on modifications to the stan-

dard LD closure: a scaled slope, i.e.,

φ±i±1/2 = φ+
i ± γ±i φ+

x,i (3.34)

and a scaled average

φ±i±1/2 = γ±i φ
+
i ± φ+

x,i, (3.35)

where a value of γi = 1 produces the standard linear discontinuous expressions for the

extrapolated outflows. Our LO system is formulated in terms of L and R moments,

rather than the average and slope. Thus, Eq. (3.34) and (3.35) are expressed in

terms of the L and R unknowns, using the relations given in App. A.1. In terms of

these moments, the scaled-slope closure is

φ+
i+1/2 =

(
1− 3γ+

i

2

)
〈φ〉+L,i +

(
1 + 3γ+

i

2

)
〈φ〉+R,i (3.36)

φ−i−1/2 =

(
1 + 3γ−i

2

)
〈φ〉−L,i +

(
1− 3γ−i

2

)
〈φ〉−R,i (3.37)

and the scaled-average relation is

φ+
i+1/2 =

(
γ+
i − 3

2

)
〈φ〉+L,i +

(
γ+
i + 3

2

)
〈φ〉+R,i (3.38)

φ−i−1/2 =

(
γ−i + 3

2

)
〈φ〉−L,i +

(
γ−i − 3

2

)
〈φ〉−R,i. (3.39)

The HO solution is used to estimate γi. The MC solution must be modified to
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tally the MC estimated intensity on faces. For example, for µ > 0, the LO equations

for moments at k + 1 use closure parameters evaluated at k + 1/2 as

γ+,k+1
i =

φ
+,k+1/2
i+1/2 − φ+,k+1/2

i

φ
+,k+1/2
x,i

, (3.40)

for the scaled-slope closure. For this closure, as the slope goes to zero this expression

becomes undefined. In cells where the slope is O(10−13ψi), we use γi = 1. The main

benefit of the scaled-slope closure is it allows for values of γ that are equivalent to

other closures, as discussed in App. A.1: γi = 0 produces a step closure [15], which

has a zero slope over the cell, and γi = 1/3 produces a lumping-equivalent closure.

3.6.3 The Linear Doubly-Discontinuous Trial Space

Because of the temperature unknowns and the HO scattering source representa-

tion, a representation on the interior of the cell for the temperature and intensity

is needed for construction of sources in the HO solver. Thus, we introduce a linear

doubly discontinuous (LDD) trial space for the half-range intensities, which is de-

picted in Fig. 3.3. The linear relation on the interior of the cell preserves the L and

R moments of the solution, and the outflow from the cell is some parametric (i.e.,

non linear) extrapolation of those moments. The temperature is still represented

with a linear interpolant of T 4 and T . This trial space has an extra unknown in the

radiation equations for each cell and direction, which is eliminated from the system

with the HO spatial closure. The ECMC algorithm is modified to also include a LDD

trial space which allows for estimation of the solution at faces, as discussed later in

Sec 4.5.
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µ

xi−1/2 xi+1/2

φ+(x)

Figure 3.3: Linear doubly-discontinuous representation for mean intensity in LO
equations.

To solve the LO equations, Eq. (3.36) or (3.38) is substituted locally for the

appropriate outflow face term in each LO moment equation. There is a spatial

closure parameter for each half-range, for each cell. The γ±i are estimated from the

previous HO solution. For the initial LO solve within each time step, the outflow is

assumed continuous, using the standard upwinding and LD closure. As an example,

the positive half-range and L moment equation (i.e., Eq. (3.18)), for the scaled-slope

closure, becomes

− 2µn+1,+
i−1/2

[(
1− 3γHO,+i−1

2

)
〈φ〉+L,i−1 +

(
1 + 3γHO,+i−1

2

)
〈φ〉+R,i−1

]

+ {µ}n+1,+
L,i 〈φ〉n+1,+

L,i + {µ}n+1,+
R,i 〈φ〉n+1,+

R,i

+

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,+

L,i − σs,ihi
2

(
〈φ〉n+1,+

L,i + 〈φ〉n+1,−
L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i +
hi
c∆t
〈φ〉n,+L,i , (3.41)

and the R moment equation becomes
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2µn+1,+
i+1/2

[(
1− 3γHO,+i

2

)
〈φ〉+L,i +

(
1 + 3γHO,+i

2

)
〈φ〉+R,i

]

− {µ}n+1,+
L,i 〈φ〉n+1,+

L,i − {µ}n+1,+
R,i 〈φ〉n+1,+

R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φ〉n+1,+

R,i

− σs,ihi
2

(
〈φ〉n+1,+

R,i + 〈φ〉n+1,−
R,i

)
=
hi
2
〈σn+1

a acT n+1,4〉R,i +
hi
c∆t
〈φ〉n,+R,i . (3.42)

These equations contain only the original desired radiation moment and LD tem-

perature unknowns. During the Newton solve, once new half-range intensities are

determined, the temperatures are updated using the same material energy equations

as for the LD closure, i.e., Eq. (3.22) and Eq. (3.23).

Because the outflow from one cell is upwinded into the next cell, energy con-

servation by the LO equations is preserved. The closed equations have the same

numerical complexity as the LDFE LO equations, but with an increased storage on

the coarse mesh for the γ±i values. The linear representation for the interior solutions

and emission source approaches the LD closure in the equilibrium diffusion limit, as

long as the HO spatial closure is estimated with sufficient statistical accuracy.

3.6.4 Fixup for the Linear Doubly-Discontinuous Trial Space

The doubly discontinuous trial space presents an additional difficulty for resolving

negative intensities because the outflow is now unhinged from the linear relationship.

In the case of strong gradients, the interior representation and outflow can be driven

negative. In such cases, we apply the lumping-equivalent relation from App. A.1 to

define the linear representation. For example, the lumped emission source is

T = 〈T 〉4L,ibL,i(x) + 〈T 〉4R,ibR,i(x), x ∈ (xi−1/2, xi+1/2) (3.43)
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where TL,i ≡ 〈T 〉L,i and TL,i ≡ 〈T 〉L,i for the lumping closure. There are analogous

relations for T (x) and φ±(x) over the interior of each cell. These expressions are

positive as long as the moments are positive. If the lagged, MC spatial closure

produces an outflow from a cell that is negative, then these moments could become

negative. It is important to note that the spatial closure will still have the same

relation between the moments and the outflow; the lumping relation only affects the

linear representation that the moments correspond to. For example in the L moment

of the material energy (Eq. (3.22)), the lumped representation changes 2/3TL,i +

1/3TR,i to TL,i, but no modifications are made to the absorption term σa,i〈φ〉L,i; no

modifications are made to the radiation terms in the radiation moment equations.
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4. THE EXPONENTIALLY-CONVERGENT MONTE CARLO HIGH-ORDER

SOLVER

The time-discretized transport equation to be solved by the HO solver is

µ
∂In+1,k+1/2

∂x
+

(
σkt +

1

c∆t

)
In+1,k+1/2 =

σs
2
φn+1,k +

1

2

(
σkaacT

4
)n+1,k

+
Ĩn

c∆t
(4.1)

where the superscript k represents the outer HOLO iteration index. Here, k + 1/2

denotes the HO solve within outer HOLO iteration k, whereas k and k+ 1 represent

successive LO solves. The sources at k in Eq. (4.1) are estimated by the previous

LO solution. Temperature-dependent cross sections are evaluated at T n+1,k. As all

sources on the right side of the equation are known, this defines a fixed-source, pure

absorber transport problem. The above transport equation has the same form as

a steady-state neutronics problem. We will solve this transport problem using the

ECMC method.

Exponentially-convergent Monte Carlo (ECMC)[28, 6] provides an iterative al-

gorithm that can efficiently reduce statistical noise to acceptable levels with signif-

icantly less particle histories than standard MC. In the remainder of this chapter,

an overview of the ECMC solution method applied in this work is given. First,

the LDFE trial space used by the ECMC algorithm is detailed. Then, the ECMC

algorithm is developed, followed by more specific sampling and tracking details.

4.1 Implementation of LDFE x-µ Trial Space

To form the algorithm, a trial-space representation for the intensity is necessary.

The ECMC solver uses a finite element representation in space and angle. On the

interior of the cell with the i-th spatial index and j-th angular index, the linear
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representation is defined as

Ĩ(x, µ) = Ia,ij +
2

hi
Ix,ij (x− xi) +

2

hj
Iµ,ij (µ− µj) , (x, µ) ∈ Dij, (4.2)

where Dij : xi−1/2 ≤ x ≤ xi+1/2 × µj−1/2 ≤ µ ≤ µj+1/2 is a rectangular cell in space

and angle. The spatial cell width is hi, the angular width is hj, the center of the cell

is (xi, µj), and

Ia,ij =
1

hihj

∫∫
Dij

I(x, µ) dxdµ (4.3)

Ix,ij =
6

hihj

∫∫
Dij

(
x− xi
hi

)
I(x, µ) dxdµ (4.4)

Iµ,ij =
6

hihj

∫∫
Dij

(
µ− µj
hj

)
I(x, µ) dxdµ, (4.5)

where Ia is the cell-averaged intensity, and Iµ and Ix define the first moment in µ

and x of the intensity, respectively. The streaming term requires definition of I(x, µ)

on faces. Standard upwinding in space is used to define I(µ) on incoming faces, e.g.,

for an unrefined mesh,

Ĩij(xi−1/2, µ) =

 Ia,i−1,j + Ix,i−1,j + 2
hj
Iµ,i−1,j (µ− µj) 0 ≤ µj−1/2 ≤ µ ≤ µj+1/2

Ia,ij − Ix,ij + 2
hj
Iµ,ij (µ− µj) µj−1/2 ≤ µ ≤ µj+1/2 ≤ 0

(4.6)

and

Ĩij(xi+1/2, µ) =

 Ia,ij + Ix,ij + 2
hj
Iµ,ij (µ− µj) 0 ≤ µj−1/2 ≤ µ ≤ µj+1/2

Ia,i+1,j − Ix,i+1,j + 2
hj
Iµ,i+1,j (µ− µj) µj−1/2 ≤ µ ≤ µj+1/2 ≤ 0

,

(4.7)
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for all i and j on the interior of the domain. For all simulations in this work,

boundary conditions are provided as a specified isotropic intensity. Thus, the value

of I1j(x1/2, µ) is a constant, for all j.

4.2 The ECMC Algorithm

The ECMC method is an iterative residual MC method. In operator notation,

Eq. (4.1) can be written as

LkIn+1,k+1/2 = qk (4.8)

where In+1,k+1/2 is the transport solution of the angular intensity based on the k-th

LO estimate of qk. The linear operator Lk is the continuous streaming plus removal

operator, given by the left-hand side of Eq. (4.1), i.e.,

Lk(·) =

[
µ
∂

∂x
+

(
σkt +

1

c∆t

)]
(·) (4.9)

We will use superscript (m) to indicated the m-th inner HO iteration. The LDFE

representation of the m-th approximate solution to Eq. (4.8) is denoted Ĩn+1,(m)(x, µ).

The associated residual is defined as r(m) = q − LkĨn+1,(m). Explicitly, the residual

at iteration m is

r(m),k+1/2 =
σs
2
φn+1,k +

1

2

(
σaacT

4
)n+1,k

+
Ĩn

c∆t

−

(
µ
∂Ĩn+1,k+1/2

∂x
+

(
σkt +

1

c∆t

)
Ĩn+1,k+1/2

)(m)

(4.10)

where the k terms have a LDFE representation in space on the coarsest mesh and

are not recalculated at any point during the HO solve. The spatial derivative in the

streaming term produces δ-functions due to the discontinuities in the trial space. The

LDFE functional form of Ĩn is defined from the final HO solution of the previous time
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step. The HOLO iteration indices are suppressed for the remainder of this chapter

because the LO-estimated qk and Lk remain constant for the entire HO solve.

Addition of LIn+1 − q = 0 to the Eq. (4.10), i.e., the residual equation, and

manipulation of the result yields the error equation

L(In+1 − Ĩn+1,(m)) = Lε(m) = r(m) (4.11)

where In+1 is the exact solution1 to the problem defined by Eq. (4.1) and ε(m) is the

true error in the approximate solution Ĩn+1,(m). In the above equation, the incoming

error is treated with a vacuum boundary condition. The residual source incorporates

the incident intensity at boundaries through the face source. The L operator in the

above equation is inverted with the MC method, which statistically estimates an

LDFE projection of the error in Ĩn+1,(m), i.e.,

ε̃(m) = L−1r(m) (4.12)

where L−1 is the Monte Carlo inversion of the streaming and removal operator. This

inversion is strictly a standard Monte Carlo simulation; particle histories are tracked

and the mean behavior estimated as in standard solutions to a Boltzmann transport

equation [16, 17], although the source is complicated and produces both positive and

negative statistical weights; sampling of the source is detailed in Sec. 4.3. It is noted

that the exact error in Ĩn+1,(m) (with respect to Eq. (4.1)) is being estimated with

MC; tallies produce an integral projection of the error onto a LDFE space-angle trial

space. Volumetric flux tallies over each space-angle element are required to estimate

ε̃(m), as detailed in Sec. 4.4. The space-angle moments of the error, preserved with

1For clarity, in this chapter the exact solution is the exact solution to the transport problem
defined by Eq. (4.1), not to the continuous equations that are trying to be solved.
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the representation ε̃(m), can be added to the moments of Ĩn+1(m) to produce a more

accurate solution.

The ECMC algorithm iterates on this process as follows:

1. Initialize the guess for Ĩn+1,(0) to Ĩn or the projection of Ĩn+1 from the latest

HO solve

2. Compute r(m).

3. Perform a MC simulation to obtain ε̃(m) = L−1r(m) with a batch of Nb particle

histories.

4. Compute a new estimate of the intensity Ĩn+1,(m+1) = Ĩn+1,(m) + ε̃(m)

5. Repeat steps 2 – 4 until desired convergence criteria is achieved.

Exponential convergence is obtained if the error ε is reduced each batch. With each

batch, a better estimate of the solution is being used to compute the new residual,

decreasing the magnitude of the MC residual source at each iteration m, relative to

the solution In+1. The initial guess for the angular intensity In+1,(0) is computed

based on the previous solution for Ĩn. This is a critical step in the algorithm; it

significantly reduces the required number of particles per time step because the

intensity does not change drastically between time steps in optically-thick regions.

4.2.1 Projection and Statistical Accuracy of ECMC

Here, we emphasize the solution Ĩn+1,(m) represents the LDFE projection of the

exact Monte Carlo solution to the transport problem defined by Eq. (4.1). The

discretization error is in q, i.e., the LD spatial representation of the emission and

scattering source and the LDFE space-angle projection Ĩn(x, µ). The projection of

the intensity is in general far more accurate than a standard finite element solution,
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e.g., a SN collocation method in angle. In typical IMC calculations, the average

energy deposition within a cell is a projection that is computed with a standard

path-length volumetric flux tally; the zeroth moment of the LDFE projection of ε is

computed using an equivalent tally, preserving the zeroth moment of the true error.

To see why the true error is being estimated, it is important to note that L in

Eq. (4.11) is the continuous operator. The MC inverse L−1 is a statistical solution

method for an integral equation. The solution to this integral equation can be shown

to provide the analytic inverse of the operator L [16, 37]. Applying L−1 to Eq (4.11)

and adding the result to the previous solution yields the desired moments of the

exact solution:

Ĩn+1,(m+1) = Ĩn+1,(m) + ε̃(m) (4.13)

' Ĩn+1,(m) + L−1
(
q − LĨn+1,(m)

)
(4.14)

' L−1q (4.15)

where the above expression is equal in the limit of an infinite number of histories,

within a single batch.

A MC batch provides a standard MC transport estimate of moments of the er-

ror. Each batch estimate of the moments of ε has a statistical uncertainty that,

with sufficient sampling, is governed by the standard 1/
√
N convergence rate [16],

for a particular source r(m), where N is the number of histories performed. If the

statistical estimate of the projection ε̃ is not sufficiently accurate, then the iterations

would diverge. It is noted that there is statistical correlation across batches because

In+1,(m+1) and ε(m) are correlated through In+1,(m) and the MC source r(m). A gen-

eral proof of exponential convergence for related adaptive MC transport methods is

given in [38].
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Because the intensity is saved between time steps, there is correlation that can

not be easily measured. However, within a batch, the statistical uncertainty in

moments of ε(m) can be estimated with the sample variance of histories, using the

standard sample-variance of MC mean estimators [16]. This provides a statistical

estimate of moments of the solution estimated in that batch that asymptotically

obey the central limit theorem [16], conditioned on the previous solution In+1,(m).

However, care must be taken with these statistical estimates, as they do not have the

usual MC interpretation of confidence intervals because of correlations. Explicitly,

if a particular simulation is repeated with independent sets of random numbers,

the sample means will not (on average) correctly reproduce the confidence interval

that the sample variance from the original simulation estimated. Additionally, the

number of histories within each batch are likely too low for the central limit theorem

to truly apply, as they do not sample the full solution space sufficiently [17].

Even for a fixed-source problem, the solution produced by the ECMC method

only preserves global energy balance to the order of the magnitude of the residual.

At the end of any batch, the continuous equation satisfied by the solution is

∂Ĩn+1(x, µ)

∂x
+ σtĨ

n+1 = q − r(x, µ). (4.16)

Integration of the residual over x and µ will generally produce a non-zero zeroth

moment over each cell, due to the δ-function face sources and slope of the solution

within a cell. Thus, integration over the domain will not produce the desired balance

relation that would result if there was a zero residual. The magnitude of the zeroth

moment of the residual provides some measure of how well balance is being pre-

served. However, it is noted that all of the energy created within a batch, through

positive and negative weight particles, is being conserved correctly; all weight is
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either absorbed or leaked from the system.

4.2.2 Adaptive Mesh Refinement

Because the exact angular intensity does not in general lie within the LDFE trial

space, the iterative estimate of the error will eventually stagnate once the error cannot

be sufficiently represented by a given FE mesh. An adaptive h−refinement algorithm

has been implemented that can be used to allow the system to continue converging

towards the exact solution [28, 6]. For TRT problems where absorption-reemission

physics dominate, the diffusive and slowly varying regions of the problem require a

less refined angular mesh to capture the solution than typical neutronics problems.

However, greater spatial resolution is needed due to steep spatial gradients. Once

error stagnation has occurred (and mesh refinement has reached a maximum level),

additional histories can be performed with a fixed residual source to estimate the

remaining error in the current solution. Although the remaining error will converge

statistically at a standard 1/
√
N convergence rate, the remaining error will be much

smaller than for a standard MC simulation, producing a much more efficient solution

method overall.

Detailed equations for performing projections between meshes and computing the

residual source on the refined meshes can be found in [28]. At the end of the ECMC

batch, refinement is performed in space-angle cells based on a jump indicator. The

jump indicator is the magnitude of the different between I(x, µ) in adjacent cells,

averaged over each edge. The value of the largest jump, out of the four edges within

a cell, is used as the indicator for that cell; alternatively, the error could directly be

used as an indicator. Based on this indicator, a preset fraction of cells are refined

based on the indicator. The refinement of a cell is chosen to be symmetric, with

each space-angle cell divided into four equal-sized cells and only one refinement level
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difference between adjacent cells is allowed, except for cells that share an edge across

µ = 0. The solution for Ĩn+1(x, µ) of the batch is projected onto the finer mesh

for the next batch. Because the dimensionality of the sample space has increased,

we increase the number of histories per batch such that the ratio of the number of

histories to total cells is approximately constant for all meshes. At the end of the

last HO solve in a time step, Ĩn+1 is projected back onto the original, coarsest mesh

and stored as Ĩn for the next time step.

4.2.3 Negative Values for the Radiation Intensity

For the HO solver, in cells with a steep gradient, the LDFE trial space can result

in negative values of Ĩn+1(x, µ), similar to in the LO equations. In general, in such

cells where the trial space cannot accurately represent the solution, error stagnation

will rapidly occur. More sophisticated methods for resolving negative values are

investigated in Chapter 7. However, because the residual formulation in ECMC

allows for negative weight particles to occur, it is not strictly necessary to treat these

cells specially during each MC batch. Instead, two simple fixups can be applied:

unphysical angular consistency terms can be modified, or the LDFE projection of

the intensity can be modified to be strictly positive at the end of the MC batch.

To modify angular consistency terms, we determine if consistency terms lie in the

appropriate half space at the end of the HO solve, an indication that the intensity

was negative within that spatial cell. If any terms are non-physical, then they are

replaced with the corresponding S2-equivalent value, i.e., µ± = ±1/
√

3. For the

second fixup, we scale the slopes of the solution to produce a positive representation,

as detailed in Sec. 7.1.
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4.3 Systematic Sampling Algorithm for Residual Source

The LDFE representation given by Eqs. (4.2), (4.6), and (4.7) is substituted into

Eq. (4.10) and evaluated to produce the residual source for each ECMC batch. The

MC source r(m)(x, µ) in Eq. (4.12) consists of volumetric sources and face sources

that are sampled. The face sources result from the spatial derivative applied to the

discontinuities in the trial space, including a discontinuity at the boundaries for in-

coming directions [28]. The source can also produce positive and negative weight

particles. The probability distribution function (PDF) for sampling particle coordi-

nates is formed by dividing r(m)(x, µ) by ‖r(m)(x, µ)‖1, i.e., the L1 norm over space

and angle of the residual. Particle coordinates (in x and µ) are sampled from the

strictly positive PDF; then, if the residual is negative at the sampled coordinates,

the weight of the particle history is negative. With the statistical weights of each

particles normalized to unity, then the tallies must be multiplied by ‖r(m)‖1 to pro-

duce the correct magnitude for moments of error. More details on specific equations

for evaluating integrals of the residual for steady-state neutronics problems can be

found in [28].

As a method to improve statistical efficiency within a batch, a modified version

of the systematic sampling method [16] (a form of stratified sampling) was imple-

mented for determining the number of histories sampled from each space-angle cell.

In the systematic sampling algorithm, the number of particle histories sampled in

each space-angle cell is predetermined and proportional to the integral of the PDF

over that cell. The goal is to effectively distribute particle histories to regions of

importance, but to sample a preset, minimum number of histories Nmin in less prob-

able regions; this is to limit bad statistics in low probability cells (this is primarily

important for adaptively refined meshes). However, there is no need to sample his-
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tories from regions in thermal equilibrium, where the probability of a particle being

born is on the order of roundoff. In most of the simulations performed for this work

Nmin = 1; this choice is made to keep the total number of histories per time step

constant throughout the simulation for comparison to IMC.

The unmodified probability of a particle being born in cell ij is

pij =
‖r(m)‖1,ij

‖r(m)‖1

(4.17)

where ‖r‖1,ij is the L1 norm over cell ij, including the upwind face and interior

volumetric source. Thus, the number of particles in cell ij is

Nij =


b(Nbpij)e Nbpij > Nmin

0 pij < O(εprec)

Nmin else

(4.18)

where Nmin is the minimum number of histories in significant cells, Nb is the total

number of histories sampled that batch, and εprec is on the order of double precision.

Particle weights must be adjusted to account for the difference between the number

sampled from a particular cell and the original probability of that element being

sampled. This rounding requires some additional histories needing to be sampled,

or removed, to reach a specific number of histories. These modifications are made to

the most probable cell

The algorithm for sampling each of the Nij starting histories, from each ij ele-

ment, is

1. Sample random number η ∼ U(0, 1)

(a) If η < ‖r(m)
face‖1,ij/‖r(m)‖1,ij:
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• Sample (x, µ) from rij,face face source with rejection sampling

(b) Else:

• Sample (x, µ) from rij,int volumetric source using rejection sampling

2. Set particle weight to pijNb/Nij

where ri,face and ri,int are the upwind face and interior residual in cell ij.

The residual gives a good indication of where histories are most likely to con-

tribute to the error, particularly in optically thick cells where particles do not trans-

port long distances. Systematic sampling is a variance reduction technique that

reduces the variance of the function, i.e., the residual, being sampled [16]. Thus, we

expect variance to be reduced by more efficiently sampling the residual in optically

thick cells. In thin cells, where particles transport farther, this sampling procedure

does not guarantee less variance overall.

4.4 Continuous Weight Deposition Tallies

During a MC batch, moments of the error are tallied. The necessary moments

of the error are defined analogously to Eq.’s (4.3)–(4.5). The tallies are evaluated

by weighting the particle density with the appropriate basis function and integrat-

ing along the history path through the cell. The LDFE representation results in

local tallies where only particles entering a particular cell contribute to that cell’s

estimators. For the cell average, the n-th particle that enters the cell ij makes the

contribution, or score,

εna,ij =
1

hihj

snf∫
sno

wn(x, µ)ds, (4.19)

where sno and snf are the beginning and end of the n-th particle track in the cell and

w(x, µ) is the weight of the error particle in the MC simulation.
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As in [5], because we are solving a pure absorber problem with Monte Carlo, we

will allow particles to stream without absorption to reduce statistical variance in the

tallies. The weight of particles is reduced deterministically along the path as they

stream, with no need to sample a path length. Histories are allowed to stream in

this manner for 6 mean free paths (MFP) before switching to analog path length

sampling; this limits the tracking of very small weight histories. The choice of 6

MFP allows particles to continuously deposit weight until they reach 0.25% of their

original weight. Path lengths are tracked in terms of MFP, so there is no need to

re-sample at material interfaces.

Weight is attenuated exponentially, i.e., w(x, µ) ∝ exp(−σeff
t |x/µ|), where for the

time-discretized equations σeff
t = σt + 1/(c∆t). Substitution of the weight represen-

tation into Eq. (4.19) produces the result

εna,ij =
w(x0, µ)

σeff
t hihj

(
1− e−σeff

t sn
)
. (4.20)

Here, w(x0, µ) is statistical weight of the particle at the start of the path and sn is

the length of the track. The contribution of a particle track to εx is given by

εnx,ij =
w(x0, µ)

h2
ihjσ

eff
t

[
x0 − xfe−σ

eff
t sn +

(
µ

σeff
t

− xi
)(

1− e−σeff
t sn
)
,

]
(4.21)

where x0 and xf are the beginning and ending x coordinates of the n-th path. The

contribution to the first moment in µ is

εnµ,ij =
w(x0, µ)

h2
jhiσ

eff
t

(µ− µj)
(

1− e−σeff
t sn
)
, (4.22)

where the particle x-direction cosine µ does not change, because it is a pure-absorber

simulation. The unbiased estimators for the moments of the error, e.g., ε̂a,ij, are
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simply the average score from all histories:

ε̂
(m)
a,ij =

1

Nb

Nb∑
n=1

εna,ij (4.23)

where Nb is the number of particle histories performed within that batch.

4.4.1 Face Tallies and Correction Near µ = 0

Face-averaged estimators of ε(x, µ) are required to compute the outflow for es-

timating the spatial closure discussed in Sec. 3.6. The standard face-based tal-

lies [16, 39] are used. Tallies are weighted by the appropriate basis functions to

compute a linear FE projection in µ at each face. The tally score, for the angular-

averaged error εa,i is defined as

ε̂a,i±1/2,j =
1

N

Ni±1/2,j∑
m=1

wm(xi±1/2, µ)

hµ|µ|
, (4.24)

where N is the number of histories performed and Ni±1/2,j is the number of histories

that crossed the surface i± 1/2, in the j angular element. For the first moment, the

tally is

ε̂µ,i±1/2,j =
1

N

Ni+1/2,j∑
m=1

6

(
µ− µj
hµ

)
wm(xi±1/2, µ)

|µ|hµ
. (4.25)

For positive and negative directions, solutions are only tallied on the xi+1/2 and xi−1/2

faces, respectively. Particles are only tallied after leaving a cell, and, as discussed in

Section 4.5, particles born on a surface do not contribute to the tally of that surface.

Near µ = 0, particles can contribute large scores to the zeroth angular moment

that lead to large and unbounded variances [39]. To avoid large variances, we have

applied the standard fixup [17, 39]. For |µ| below some small value µcut, particles

contribute the expected score over the range (0, |µcut|) for an approximate isotropic
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particle density. Thus, scores in this range have no variance, but are biased for non-

isotropic intensities. For all results in this work µcut = 0.01. Assuming an isotropic

particle density I0, the average of 1/µ, for positive µ, is

1/µ =

∫ µcut

0

1

µ
I0 dµ∫ µcut

0

I0 dµ

=
2

µcut
. (4.26)

For negative µ, 1/µ = −2/µcut. All particles in the range (0, |µcut|) contribute the

expected score by evaluating the appropriate estimator at ±µ = ±2/µcut. It is noted

that the first angular moment would be well behaved, but it is inconsistent to only

modify the zeroth moment in the Iµ estimators. Additionally, assuming an isotropic

intensity near µ = 0 helps to limit the first µ moment, where the LD trial space often

cannot resolve the solution anyway.

4.5 ECMC Solution with Linear Doubly-Discontinuous FE Trial Space

In this section, the treatment of the spatial variable for the ECMC method is

extended to a linear, doubly-discontinuous (LDD) trial space. This extension is

necessary for computing the HO spatial closure for the LO equations discussed in

Sec. 3.6. To incorporate a projection of the MC solution at faces, a second disconti-

nuity is introduced into the trial space. A projection of the intensity that is separate

from the linearly-extrapolated outflows allows for a angular LD projection of the MC

solution at faces. This solution is incorporated into the LO solution through the HO

spatial closure of the LO equations. Additionally, the independent solution at faces

allows for face-averaged consistency terms (e.g., Eq. (3.15)) to be directly evaluated.

The LDD trial space is demonstrated for the x variable in Fig. 3.3. For the HO

solver, the LDD trial space is the same as the LDFE space-angle trial space, except
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for an extra discontinuity in space at the outflow face. The solution at faces is linear

in angle over the angular width of each x-µ cell. The LDD representation for cell ij

is

Ĩij(x, µ) =


Ia,i−1/2,j + 2

hj
Iµ,i−1/2,j (µ− µj) x = xi−1/2

Ia,ij + 2
hi
Ix,ij (x− xi) + 2

hj
Iµ,ij (µ− µj) xi−1/2 < x < xi+1/2

Ia,i+1/2,j + 2
hj
Iµ,i+1/2,j (µ− µj) x = xi+1/2

, (4.27)

for µj−1/2 ≤ µ ≤ µj+1/2. The face-tallied quantities Ia,i±1/2 and Iµ,i±1/2 are shared

between adjacent cells, so the expression is the same for positive and negative µ. The

linear representation at faces preserves all angular moments of the intensity needed

for the spatial closure and face-averaged consistency terms.

The residual source and process of estimating moments of the error on the in-

terior of space-angle cells is unchanged. The process of estimating the solution on

the outgoing face requires tallying the error when particles leave a cell, using the

face-averaged tallies discussed in Section 4.4.1. Face-averaged consistency terms are

directly evaluated using Ĩ(xi+1/2, µ) evaluated at the face of each coarse mesh cell.

Particularly near µ = 0, the linear representation in µ can be driven negative. In

such cells, we scale the slope in µ so that the solution is positive.

The inclusion of the outflow discontinuity in space has a minimal effect on

the treatment of the residual source. Applying L to the LDD intensity given by

Eq. (4.27), results in two δ functions at each interior face. For positive flow, at a face

xi+1/2, the face portion of the residual is defined as

rface(xi+1/2) = −µ∂Ĩ
(m)

∂x

∣∣∣∣
x=xi+1/2

(4.28)

= rface(x
−
i+1/2)δ−(x− xi+1/2) + rface(x

+
i+1/2)δ+(x− xi+1/2) (4.29)
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where

rface(x
−
i+1/2) = −µ

(
Ĩ(m)(xi+1/2, µ)− Ĩ(m)(x−i+1/2, µ)

)
(4.30)

rface(x
+
i+1/2) = −µ

(
Ĩ(m)(x+

i+1/2, µ)− Ĩ(m)(xi+1/2, µ)
)
. (4.31)

Here, I(m)(xi+1/2, µ) is the face-estimated solution at xi+1/2 and I(m)(x+
i+1/2) and

I(m)(x−i+1/2) are the LDFE solution extrapolated to xi+1/2 from the x cell i + 1 and

cell i, respectively; all three terms are linear in µ over µj−1/2 ≤ µ ≤ µj+1/2. Particles

sampled from the two δ-functions have the same starting location. The only difference

is, for positive µ, only the particles sampled from rface(x
−
i+1/2) will contribute to the

face tally at xi+1/2; the opposite is true for negative µ.

To reduce variance, we do not sample the two δ functions independently. Instead,

the two δ-functions are combined into a single face source in each element2, and

particles do not score at the face from which they are sampled. To account for the

un-tallied error, we add the analytic contribution to εi+1/2 from rface(x
−
i+1/2), at the

end of each batch. This analytic contribution to the error at faces is derived in

Sec. B.1. The update for I(xi+1/2, µ) becomes

Ĩ(m+1)(xi+1/2, µ) = Ĩ(m)(x−i+1/2, µ) + ε(m)(xi+1/2, µ) µ > 0 (4.32)

Ĩ(m+1)(xi+1/2, µ) = Ĩ(m)(x+
i+1/2, µ) + ε(m)(xi+1/2, µ) µ < 0 (4.33)

This result has the serendipitous effect that the estimation of the solution on a face

depends only on the previous interior solutions Ĩ(m)(x−i+1/2, µ) and Ĩ(m)(x+
i−1/2, µ) and

not the previous face value Ĩ(m)(xi+1/2, µ). This has an additional benefit that the

face values can be estimated at any chosen batch, in particular cells. For this work,

2The combination of the two δ-functions produces the same residual source as the original LD
trial-space residual.
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the solution is estimated in all cells with the LDD trial space.
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5. COMPUTATIONAL RESULTS

In this chapter, we compare results of the time-discretized HOLO method to

IMC with a source tilting algorithm for two test problems [40]. Also, we briefly

compare performance in Section 5.4. For all IMC results, no local, discrete diffusion

acceleration methods for effective scattering (e.g., those in [19, 20]) were applied.

Additionally, we demonstrate the efficiency advantage of ECMC in our HOLO al-

gorithm by comparing the results to the same HOLO algorithm with the ECMC

algorithm replaced with a standard Monte Carlo (SMC) simulation. Finally, we

present results that demonstrate preservation of the equilibrium diffusion limit and

the discrete maximum principle by the HOLO algorithm. Some of the results in this

section were published previously in [2]1

5.1 Metrics of Accuracy and Statistical Efficiency

Several different metrics were used to quantify results throughout this chapter as

appropriate. A measure of variance in cell-averaged mean intensities was calculated

to provide a quantitative measure of the statistical accuracy of different solution

methods. To form the sample standard deviations, Nsim independent simulations

for each particular result were performed, using unique random number generator

seeds. Unless otherwise indicated, Nsim = 20. The sample variance of a particular

cell-averaged φ(x) is

S2
i =

1

Nsim − 1

Nsim∑
l=1

(
φi − φ(l)

i

)2

, (5.1)

1Portions of this chapter are reprinted with permission from ”A High-Order Low-Order Algo-
rithm with Exponentially Convergent Monte Carlo for Thermal Radiative Transfer”, 2017. Nuclear
Science & Engineering 185(1), 159–173, Copyright 2017 by the American Nuclear Society.
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where φ
(l)
i is the cell-averaged scalar intensity for cell i from the (l)-th of Nsim inde-

pendent simulations and φi is the corresponding sample mean from the Nsim simu-

lations. To provide a normalized, spatially-integrated result, we form a norm over

cells as

‖s‖a,rel =


Nc∑
i=1

S2
i

Nc∑
i=1

φi
2


1/2

, (5.2)

where Nc is the number of spatial cells.

We will also form a figure of merit (FOM) to demonstrate how statistical accuracy

scales with the number of histories performed. Our FOM is defined as

FOM =
1

Ntot‖s‖2
a,rel

(5.3)

where Ntot is the total number of histories performed over the simulation. A larger

value of the FOM indicates that the method produced less variance in the solution

per history performed, for a given problem. This form of the FOM is typically

chosen because the variance is expected to reduce inversely proportional to Ntot, so

for standard MC simulations the FOM becomes, on average, independent of Ntot [16].

The FOM is not necessarily expected to be independent of Ntot for IMC or our HOLO

method due to correlation of the solution between time steps; additionally, ECMC

has correlations between batches.

The consistency between HO and LO solutions and the accuracy as compared to

a reference solution were computed for some simulations. The consistency for the

(l)-th particular simulation is measured with the relative L2 norm of the difference
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between the projected HO and LO solutions, i.e.,

‖φHO − φLO‖(l)
2,rel =

√∫ X

0

(
φ
n+1,(l)
HO (x)− φn+1,(l)

LO (x)
)2

dx√∫ X

0

(
φ
n+1,(l)
LO (x)

)2

dx

(5.4)

where φLO(x) and φHO(x) are the LDFE representations in space of the intensity

from the HO and LO solvers, from the end of the last time step. The error between

a reference solution, e.g., a fine mesh solution, and the l-th simulation is computed

as

‖e‖(l)
2,rel =

‖φn+1,(l)
LO (x)− φn+1,ref

LO (x) ‖2

‖φn+1,ref
LO (x) ‖2

(5.5)

All L2 norms were computed using quadrature over the finest spatial mesh. An

integrated measure of the error in cell-averaged mean intensities on the mesh of the

l-th simulation, with N
(l)
c spatial cells, is computed as

‖e‖(l)
a,rel =


N

(l)
c∑
i=1

(
φ
n+1,(l)
i − φn+1,ref

i

)2

N
(l)
c∑
i=1

(
φn+1,ref
i

)2



1/2

, (5.6)

where φn+1,ref
i is computed by spatially averaging the reference solution over the i-th

coarse spatial cell, with the assumption of uniform mesh spacing.

Because the method is stochastic, it is necessary to approximately estimate the

average error of each metric. The sample mean of each of the above norms is es-

timated based on Nsim independent simulations; the sample standard deviation for
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the sample mean of each quantity is also reported, e.g.,

s
(
‖e‖(l)

2,rel

)
=

1√
Nsim

[
1

Nsim − 1

Nsim∑
l=1

(
‖e‖(l)

2,rel − ‖e‖2,rel

)2
]1/2

, (5.7)

where

‖e‖2,rel =
1

Nsim

Nsim∑
l=1

‖e‖(l)
2,rel (5.8)

is the corresponding sample mean.

5.2 Marshak Wave

For the first problem, the radiation and material energies are initially in equilib-

rium at 2.5 × 10−5 keV. An isotropic incident intensity of 0.150 keV is applied at

x = 0; the incident intensity on the right boundary is 2.5× 10−5 keV. The material

properties are ρ = 1 g cm−3 and cv = 0.013784 jks/keV-g. The absorption cross sec-

tion varies as σ(T ) = 0.001 ρ T−3 (cm−1), for T in keV. The simulation was advanced

until t = 5 sh (1 sh ≡ 10−8 s) with a fixed time step size of 0.001 sh. For comparison

purposes, we have not used adaptive mesh refinement, only performed one HOLO

iteration per time step, and use a fixed 3 HO batches with equal number of histories

per batch. A relative tolerance of 10−6 for the change in φ(x) and T (x) was used

for the LO newton solver for all results. Radiation energy distributions are plotted

as an effective temperature given by Tr = (φ/(ac))0.25. The effective temperature

represents the temperature of the material, if the material and temperature were in

equilibrium. Cell-averaged quantities are plotted. For this problem, when negative

values for φn+1,±(x) were detected, the lumping-equivalent discretization was used

within those cells and that Newton step was repeated. Non-physical angular con-

sistency terms were replaced with S2-equivalent terms. For reference, the fixup in

Sec. 3.5 that strictly enforces the floor temperature and preserves half-range balance
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produced similar accuracy and stably converged for this problem.

Figure 5.1a on page 66 depicts the cell-averaged radiation temperatures for the

IMC and HOLO method with ECMC, for various number of spatial mesh cells Nc;

we have used HOLO-ECMC to denote our algorithm because later results will use

different HO solvers. For all IMC calculations, n = 105 histories per time step were

used. For the HOLO method, we have used 4 equal-sized cells in µ for the finite-

element angular mesh used by the ECMC solver. The spatial grid is the same for

the HO and LO solvers. For the cases of Nc = 25 and Nc = 200, 4, 000 histories

per batch (12, 000 per time step) were used. For Nc = 500, 16,000 histories per

time step were used due to the increased number of space-angle cells that need to

be sampled. The IMC and HOLO solutions agree as the mesh is converged. There

is similar agreement in the location of the wavefront due to the linear shape of the

emission source over a cell. The cells nearest the wavefront required use of the

lumping-equivalent discretization of the radiation and S2 equivalent terms during

the LO solve, resulting in strictly positive cell-averaged quantities.

A comparison of the solutions for the case of 200 cells is given in Figure 5.1b.

For the IMC solution 105 histories per time step were simulated; for the HOLO

method only 4, 000 histories per batch (12,000 per time step) were simulated. There

is significant statistical noise in the IMC solution compared to the HOLO solution.

The HOLO solution visually demonstrates no statistical noise. Because the ECMC

solve is only determining the change over the time step, the statistical noise in the

result is small relative to the magnitude of In+1. Also, the source sampling only

places particles in cells where the residual is large. No particles are sampled in the

equilibrium region out front of the wave. Only a few angular cells are necessary to

accurately reproduce the mean intensity for this problem.

Comparisons of ‖s‖a,rel and the FOM for IMC and the HOLO method are given
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(a) Convergence of IMC and HOLO-ECMC solutions.
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Figure 5.1: Comparison of radiation temperatures for Marshak wave problem at
t = 5 sh.
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in Table 5.1, for different numbers of histories per time step. The FOM results are

normalized to the value for IMC with n = 12, 000. The HOLO method demonstrates

less variance for the same numbers of histories, producing FOM values that are two

orders of magnitude greater than for IMC. Where as the FOM remains relatively

constant for IMC, as n is increased the FOM improves for the HOLO method. This

is a result of each batch producing more statistically accurate estimates of the error

ε, which results in an increased convergence rate of ε overall.

Table 5.1: Comparison of sample statistics for the Marshak Wave problem. Simu-
lation end time is t = 5 sh.

‖s‖a,rel FOM

hists./step IMC HOLO-ECMC IMC HOLO-ECMC

12,000 3.40% 0.28% 1 145

100,000 1.22% 0.057% 0.93 422

5.3 Two Material Problem

This problem consists of an optically thin (left) and an optically thick (right) ma-

terial region, with temperature-independent cross sections. The material properties

are given in Table 5.2. Initially the radiation and material energies are in equilib-

rium at a temperature of 0.05 keV. An isotropic incident intensity of 0.500 keV is

applied at x = 0 at t = 0; the isotropic incident intensity on the right boundary

is 0.05 keV. The simulation end time is 5 sh. For all HOLO simulations, we have

used 8 equal-sized mesh cells in µ. As for the Marshak problem, the cells nearest

the wavefront required use of the lumping-equivalent discretization and S2-equivalent

angular consistency terms during the LO solve.
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Table 5.2: Material properties for two material problem.

x ∈ [0, 0.5) cm x ∈ [0.5, 1.0] cm

σa (cm−1) 0.2 2000

ρ (g cm−3) 0.01 10.0

cv (jks/keV-g) 0.1 0.1

Fig. 5.2a depicts the HOLO and IMC radiation temperatures at the end of the

simulation. The IMC and HOLO results show good agreement over the finer mesh.

On the coarse mesh (Nc = 20), the LDFE representation of T 4 in the HOLO method

predicts the location of the wavefront more accurately than the IMC method with

source tilting.

The results in Fig. 5.2b demonstrate the benefit of ECMC as a HO solver com-

pared to standard MC. The HOLO algorithm with the ECMC HO solver (HOLO-

ECMC) results are for running 3 batches of 10,000 histories, per time step. The

solution for the HOLO method with a standard MC solver as the HO solver (HOLO-

SMC) with standard source sampling uses 105 histories per time step. The HOLO-

SMC solution demonstrates significant statistical noise. This noise is introduced into

the LO solver by bad statistics in computing the consistency terms. Also plotted

is an S2 solution obtained with consistency terms that are equivalent to S2 and no

HO correction. The S2 solution results in an artificially fast wavefront, as expected,

demonstrating the necessity of HO correction in this problem.

Table 5.3 gives the FOM and ‖s‖a,rel for IMC and the HOLO-ECMC method.

The FOM values are normalized to the value for IMC with n = 30, 000. The end time

was reduced to 2 sh for these results to reduce computational times. The reduction

in variance by the HOLO method over IMC is substantial. The improvement of the
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FOM for the HOLO method compared to IMC is greater than for the Marshak wave

problem. This improvement is because the wave moves much slower in right region

of this problem, due to the large, constant cross section. Also, in the optically thin

region of the problem the solution quickly comes to equilibrium. Thus, the ECMC

algorithm has to estimate a very small change in the intensity over a time step.
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Figure 5.2: Comparison of radiation temperatures for two material problem.
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Table 5.3: Comparison of sample statistics for the two material problem for 200 x
cells. Simulation end time is t = 2 sh.

‖s‖a,rel smax

hists./step IMC HOLO-ECMC IMC HOLO-ECMC

30,000 3.63% 0.01% 1 104,000

100,000 1.96% 0.003% 1.03 360,000

5.4 Performance Comparison of IMC and HOLO-ECMC

We have measured the total CPU time for simulations to provide a simplified

measure of the computational cost. These results compare how computational times

change for the two different problems and how the methods scale with time step

size and particle histories. Absolute comparisons in the computational cost of the

two methods cannot be made, because the methods are implemented in different

code infrastructures. Additionally, the HOLO method fully resolves non-linearities

at each time step, whereas IMC is using a single linearized step with lagged cross

sections. Simulations were performed on the same processor, using a single CPU

core. Reported times are the average of 10 runs and all results used 200 x cells,

∆t = 0.001 sh, and an end time of t = 2 sh.

The average simulation time per history performed for the Marshak wave problem

is given in Table 5.4. The average time per history is computed by dividing the total

simulation time by the total number of histories performed (e.g., the time of the LO

solves is included for the HOLO method). Results are given for different numbers of

histories per time step, as well as a case with an increased time step size. The table

also includes the number of LO iterations performed per LO solve for the HOLO

method, averaged over all time steps; there are two LO solves per time step. The
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same results are reported for the two material problem in Table 5.5.

The HOLO method does not scale with the number of histories due to the fixed

cost of the LO solver. The cost of the LO solver is more significant at the lower

history counts compared to the case of 105 histories, for both problems. There is

a slight increase in the number of newton iterations as the time step is increased,

but the average cost per history is not significantly increased. Similar to the results

in [5], as the time step size is increased to to 0.005 sh, the IMC method increases in

cost per time step, due to an increase in effective scattering events, particularly for

the two material problem. Because the cross sections in the two material problem

do not have a T−3 behavior, the cost of the effective scattering cross section in IMC

is more apparent, resulting in longer simulation times.

Table 5.4: Comparison of average CPU times per history and LO iteration counts
for the Marshak Wave problem.

hists./step ∆t(sh) IMC (µs/hist.) HOLO (µs/hist) Newton iters./LO solve

100,000 0.001 10 5.3 3.8

12,000 0.001 9.7 8.1 4.1

12,000 0.005 19 9.4 6.2

Table 5.5: Average CPU times per history and LO iteration counts required for the
two material problem.

hists./step ∆t(sh) IMC (µs/hist.) HOLO (µs/hist) Newton iters./LO Solve
100,000 0.001 17 3.5 4.9
30,000 0.001 18 6.9 5.0
30,000 0.005 59 7.4 7.6
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5.5 Comparison of Different HO Solvers

In this section we compare the results of our HOLO algorithm with different HO

solvers for the test problems in Section 5.2 and 5.3. We compare standard MC (SMC)

as a HO solver to the HOLO algorithm with ECMC using both three batches and

a single batch, per time step. The use of a single batch is similar to the approach

in [1]. Results are tabulated for 200 x cells, using the same total number of histories

per time step, divided evenly among the batches.

Tables 5.6 and 5.7 depict the results for the Marshak wave and two material prob-

lems. The number of batches for each ECMC case is indicated in parenthesis. The

FOM values are normalized to the reference IMC result for the corresponding prob-

lem. For HOLO-SMC there is minimal reduction in variance compared to IMC in the

Marshak wave problem, and the two material problem actually demonstrates worse

variance. Sufficient histories are not performed to accurately estimate consistency

terms throughout the problem. For ECMC, a single batch produces less variance

than the case of three equal batches. This indicates that if the solution cannot be

resolved with the trial space (i.e., the intensity is driven negative), a single large

batch may be more accurate. It is noted that these results only estimate statistical

variance and do not strictly account for accuracy.

Table 5.6: Comparison of sample statistics for the Marshak Wave problem. Number
of ECMC batches is indicated in parenthesis.

‖s‖a,rel FOM

hists./step SMC ECMC (1) ECMC (3) SMC ECMC (1) ECMC (3)

12,000 2.77% 0.10% 0.28% 1.50 1280 145

100,000 0.98% 0.03% 0.06% 1.43 1270 422
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Table 5.7: Comparison of sample standard deviations for the two material problem.
Number of ECMC batches is indicated in parenthesis.

‖s‖a,rel FOM

hists./step SMC ECMC (1) ECMC (3) SMC ECMC (1) ECMC (3)

30,000 5.35% 0.002953% 0.011% 0.46 1.51×106 1.04× 104

100,000 2.85% 0.001474% 0.0033% 0.49 1.80×106 3.59× 104

5.6 Pre-heated Marshak Wave Problem and Adaptive Mesh Refinement

Finally, to demonstrate the potential of ECMC with adaptive space-angle mesh

refinement, we compare results for a modified Marshak wave problem. The problem

parameters are chosen such that the LDFE trial space can accurately represent the

solution (i.e., the intensity is slowly varying in space). Mesh refinement is of minimal

use in the previous problems due to most of the unresolvable error existing at the

wavefronts, caused by the large cross sections. The modified problem has the same

material properties and left boundary source as the Marshak wave problem in Sec-

tion 5.2. However, the initial equilibrium temperature and right boundary condition

are raised to 0.03 keV. The higher initial temperature reduces the initial cross section

and increases the strength of the emission source within cells. The LDFE mesh can

now sufficiently resolve the solution and lumping is not required by the LO solution.

The simulation end time is 0.5 sh with a constant time step of ∆t = 0.001 sh.

The result from HOLO-ECMC with three batches and IMC are compared in

Fig. 5.3. It was found that 100 x cells was sufficient to resolve the solution spatially.

There is slightly more noise in IMC past the wavefront due to the increased emission

source. Additionally, the cross section is thin enough that some photon energy is

able to reach the right boundary, in front of the wavefront.
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A comparison of the variances for this problem, for the various HO solvers, is given

in Table 5.8. The FOM values are normalized to the case of HOLO-SMC with 12,000

histories per time step. The final row of the table is for an ECMC simulation with

adaptive mesh refinement (AMR); the AMR case used a total of nine batches, with

a refinement occurring at the end of the third and sixth batches, for every time step.

The initial number of histories was adjusted so that the average number of histories

per time step is near 100,000; on average 99,881 histories per time step were used. All

ECMC meshes used 4 equally-spaced µ cells initially. The improvement in variance

by ECMC compared to SMC is not as significant as for other problems. The FOM

is highest for the case of ECMC with adaptive refinement. When the solution can

be resolved, the adaptive algorithm allows for a higher convergence rate of statistical

variance. It is noted that the consistency terms and LO solution are still computed

over the fixed, coarser mesh. However, in general, the refined mesh can produce

higher accuracy in consistency terms that is not being measured by the FOM.

Table 5.8: Comparison of sample statistics for the pre-heated marshak wave problem
for 100 x cells. Number of ECMC batches is indicated in parenthesis.

‖s‖a,rel FOM
hists./step SMC ECMC (1) ECMC (3) SMC ECMC (1) ECMC (3)

12,000 0.86% 0.13% 0.24% 1 41 13
100,000 0.16% 0.042% 0.08% 3.32 52 15

99,881 (AMR) – 0.038% – 61

5.7 Accuracy in the Equilibrium Diffusion Limit

As discussed in Sec. 3.4, we must ensure our method preserves the equilibrium

diffusion limit (EDL). We have produced an EDL test problem by adjusting material

properties to produce a strongly diffusive domain. This EDL problem has constant
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Figure 5.3: Comparison of radiation temperatures for the pre-heated Marshak wave
problem for 100 x cells at t = 0.5 sh.

cross sections with σa = 1000 cm−1, σs = 10 cm−1, ρcv = 6.8784 × 10−3 jk keV−1

cm−3. The initial temperature is 0.01 keV and the domain width is 0.1 cm. The

simulation end time is 5 sh, and the step-size increases 5% per time step from ∆t =

0.001 sh to a maximum ∆t = 0.01. In all simulations, 4 µ cells and 3 batches of 4,000

histories were used for the single HO solve, for each time step. We compare HOLO

results with a LDFE discretization and a step discretization of the LO equations.

The step discretization, with a flat representation over each cell, is known to be

inaccurate in the EDL for SN equations. The step discretization is implemented

with the step closure discussed in Sec. 3.6.2 for all cells.

The accuracy in the equilibrium diffusion limit is compared for the two spatial

discretizations, for different mesh sizes, in Fig. 5.4. Visually, the LDFE spatial

discretization has converged spatially, where both 20 and 200 cells produce the same

location of the wave front. However, the step discretization artificially propagates the
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energy forward, even for the 200 cells case; the inaccuracy is greater than what would

be expected from truncation error. The step discretization will only be accurate if the

mesh cells are on the order of a mean free path, which is very large for this problem.

Although not plotted, the material temperature overlays the radiation temperature

for the LDFE solution, in equilibrium with the radiation, as expected.
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Figure 5.4: Comparison of Tr for a problem in the equilibrium diffusion limit, with
step and LDFE discretizations of the LO equations.

5.8 Accuracy of HO Spatial Closure

To investigate the utility of the face closures we compare to the LD spatial clo-

sure for two test problems. We are interested in the accuracy of the solution and

consistency between the HO and LO solutions, particularly for coarser meshes, based

on the metrics in Sec. 5.1. For error computations, the reference solution is based on

a fine spatial mesh and L2 norms are computed with quadrature over the fine mesh.
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Cell-averaged quantities are found by spatially averaging the fine mesh solution over

each coarse spatial cell. Twenty independent simulations were performed for each

metric.

5.8.1 Smooth Problem

For this problem, the radiation and material energies are initially in equilibrium

at 0.01 keV. An isotropic incident intensity of 0.05 keV is applied at x = 0; the

incident intensity on the right boundary is 0.05 keV. The material properties are

ρ = 1 g cm−3, cv = 0.2 jks/keV-g, and σa = 10 cm−1. The simulation end time is 0.5

sh. The time step size increases by 10% each time step until the maximum step size

of 0.01 sh is reached, beginning from ∆t = 0.001 sh. This problem is intended to

have less steep gradients in the intensity by having constant constant cross sections,

a smaller boundary source, and diffusive problem parameters. The problem has a

smaller optical thickness than other problems tested so that the face-based solutions

can be efficiently estimated, but the small cv value makes the solution relatively

diffusive. This problem did not require the lumped relation to produce positive

solutions. However, when projecting from a refined mesh back to the coarse mesh,

it was necessary to rotate the solution to be positive for certain cells and time steps.

All simulations of this problem used 585,900 histories divided over 9 ECMC

batches; beginning from 30,000 histories and 10 µ cells, 30% of cells were adaptively

refined every third batch, and the number of histories was increased to keep the

average number of histories per cell constant. We have performed two outer HOLO

iterations over each time step for all cases; it was found that additional iterations

did not increase consistency, because of the magnitude of statistical noise. Relative

convergence of HOLO iterations was below 10−3 for two iterations for all cases.

Fig. 5.5 compares cell-averaged radiation temperatures for various spatial closures
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at coarse mesh sizes and a fine-mesh solution. The HO spatial closures curve is for

the scaled-slope closure given by Eq. (3.36). There was visually no difference in the

results between the scaled-averaged, scaled-slope, or LD closure. A step closure in

all cells was inaccurate for this problem.

Table 5.9 gives the different error metrics for different spatial closures and num-

bers of cells. The reference solution for all calculations was the average of 10 simula-

tions with Nc = 500 spatial cells. In all cases, the HO spatial closure produces higher

accuracy in the L2 norms and greater consistency between the solvers. However,

there is not an improvement in accuracy of the cell-averaged intensities. Neglecting

noise, the LDFE representation can be third order accurate for the ‖e‖a,rel norm

and second-order accurate in the L2 norm [14]. The additional statistical noise and

issues discussed in Sec. 5.8.1.1 prevent the MC spatial integration from increasing

accuracy spatially over the LDFE discretized LO equations. It is noted that, overall,

there is very low statistical noise in each of these solutions due to the ECMC method

and relatively high number of histories; at lower history counts, the gains of the HO

spatial closure will degrade and stability becomes an issue.
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Figure 5.5: Comparison of solutions for smooth problem with different spatial clo-
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Table 5.9: Comparison of error metrics, reported as percentages, averaged over 20
simulations of smooth problem. The absolute standard deviation for each value is
reported in parenthesis. Reference solution uses 500 cells.

Spatial Closure ‖e‖2 ‖e‖a,rel ‖φHO − φLO‖2,rel

Nc = 20 cells

LDFE 6.60% (0.17%) 2.80% (5.7e-03%) 2.90% (8.1e-03%)

HO: Scaled Slope 6.10% (2.9e-03%) 3.50% (5.8e-03%) 0.021% (8.6e-03%)

HO: Scaled Average 6.10% (2.7e-03%) 3.50% (5.0e-03%) 0.023% (1.1e-02%)

Nc = 50 cells

LDFE 1.60% (7.9e-04%) 0.59% (3.8e-03%) 0.76% (4.8e-03%)

HO: Scaled Slope 1.40% (1.5e-03%) 0.67% (3.2e-03%) 0.012% (4.0e-03%)

HO: Scaled Average 1.40% (1.5e-3% ) 0.67% (3.1e-03%) 0.013% (3.9e-03%)

Nc = 100 cells

LDFE 0.53% (2.1e-03%) 0.15% (2.5e-03%) 0.30% (9.7e-03%)

HO: Scaled Slope 0.45% (1.5e-03%) 0.16% (4.6e-03%) 0.012% (4.8e-03%)

HO: Scaled Average 0.45% (1.4e-03%) 0.16% (4.7e-03%) 0.012% (3.6e-03%)

5.8.1.1 Issues with the Spatial Closure for HO Solver

There were several observed issues with the ECMC method that cause the LO

solution to not exactly preserve the zeroth and first moments of the HO solution,

even for a linear transport problem. It is noted that the LO solution remains strictly

conservative, and that it is not necessary for the HO solution to be conservative to

produce accurate closures. With ECMC, global and particularly local energy balance

are generally not preserved by the LDFE representation of the intensity. The HO

balance equation is not satisfied exactly and the closure relation is no longer exact

for the zeroth moment of the LO equation. However, ECMC will preserve balance
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to the order of the iterative error and statistical noise. For standard MC, there are

source biasing techniques (e.g., systematic sampling) that exactly preserve the local

zeroth moment of the source and thus satisfy local balance [16, 18]). Even with

standard MC, for the HOLO method with the LDFE trial space as formulated, we

have to reconstruct the bilinear moment of x and µ when computing consistency

terms, so the LO equation will not preserve the first moment of the HO solution2.

One final inconsistency is caused by the analog treatment of absorption for particles

below the weight cutoff (e.g., see Sec. 4.4). This results in a discrepancy between

σacφ
HO
i and the actual amount of energy removed from a cell during MC transport,

due to statistical noise in the path-length estimators for φHOi . Thus, the discrete

local balance equation over each cell is not exactly preserved by φHOi .

5.8.2 Two Material Problem

The HO spatial closures were applied to solution of the two material problem

detailed in Sec. 5.3. For these results, a small time step size of 0.001 sh was used,

with a simulation end time of 2 sh. The scaled-slope closure was found to not stably

converge, even for 2 batches of 106 histories. The scale-average closure allowed for

convergence, with the lumped representation discussed in Sec. 3.6.4, but tempera-

tures were driven below the floor (and at times negative) leading to an inaccurate

solution. Fig. 5.6 depicts cell-averaged results at the end of the simulation.

The inaccuracies result from the outflow being driving negative in cells near the

wave front with steep gradients. The cause is an inconsistency between the lumped

LO moment equations and the fixups for the HO solution in negative cells. In cells

with a negative intensity, the HO solution was forced positive by scaling the first

2It was verified that with standard MC, systematic sampling, no analog sampling, and a closure
that is only a function of the zeroth moment, the LO solution exactly reproduces the HO moments,
for a linear problem.
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moments, and the face solution is strictly positive. However, the relation betweens

these moments does not ensure a positive outflow in the LO equation because the

HO and LO first moment equations do not agree.
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Figure 5.6: Inacurracies for HO spatial closure applied to solution of the two material
problem.

5.9 Preservation of the Discrete Maximum Principle

To numerically demonstrate that our method preserves the discrete MP, as dis-

cussed in Sec. 1.3.1, we have simulated problems similar to those in [21]. We produce

a problem with tightly coupled equations, by decreasing cv and increasing σa, which

results in MP violations for IMC at various fixed time step sizes. The spatial and

temporal discretization determine the occurrence of MP violations for IMC. In par-

ticular, if time steps are too large or spatial mesh cells are too small, IMC will

demonstrate MP violations [21]. Here, we have kept the spatial mesh size fixed and

increased the time step size to produce MP violations. The material specifications
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are σa = σa,0T
−3 cm−1, σa,0 = 4 cm−1 keV3, σs = 0 cm−1, ρcv = 0.0081181 jks keV−1

cm−3. The domain width is 2.0 cm with Nc = 150 uniform spatial mesh cells. The

radiation and material energies are initially in equilibrium at 0.01 keV, before an

isotropic boundary source of 1 keV is applied at the left boundary at t = 0. The

simulation end time is t = 0.1 sh.

The material and radiation temperature are plotted for an IMC simulation with

∆t = 0.025 sh in Figure 5.7. Figure 5.8 depicts the material temperature for various

time step sizes and the fixed mesh size of 150 cells. All IMC simulations used 100,000

histories per time step. As demonstrated in Fig. 5.7, the material temperature ex-

ceeds the specified boundary temperature and is artificially hotter than the radiation

temperature. This artificial “temperature spike” also leads to a slower propagation of

the wave [21]. As shown in Fig. 5.8, as larger time-step sizes are taken the nonphys-

ical results worsen with the material temperature exceeding the radiation boundary

temperature. It is noted that although the final solution for ∆t = 0.0001 sh obeys

the MP, during the first few time steps the temperature spikes are present.

The simulations are repeated with the same specifications for the HOLO method.

All HOLO simulations used a fixed mesh of 8 µ cells by 150 x cells, 3 batches per

time step, and 6,000 histories per batch. A single HO solve is performed per time

step, and the LO relative convergence tolerance is 10−6. The lumping closure is used

for the radiation terms in all spatial cells and any negativities in the HO solution

are scaled to the floor value as discussed in Sec. 4.2.3. For these simulations, it was

necessary to use the damped Newton’s method discussed in Sec. 3.3 to converge the

solutions [36]. A fixed damping parameter with a factor of 0.5 was found to stably

converge for all time-step sizes that were simulated.

As seen in Fig. 5.9, the HOLO solution does not violate the maximum princi-

ple; the temperature is bounded from above by the radiation boundary condition.
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Figure 5.7: Tr and Tm for maximum principle violation problem with IMC and
∆t = 0.001 sh.
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Figure 5.8: Tm for maximum principle violation problem with IMC for various time
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Table 5.10 demonstrates the LO Newton iteration counts for the HOLO method.

For reference, a solution with ∆t = 10−5 sh is given, which required no damping to

converge. The damped iterations require more iterations to converge. However, it

is necessary to converge the nonlinear iterations to produce physically meaningful

solutions to this problem. The advantage of the HOLO method is that there is no

additional cost for the HO solution when the damped method is used.
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Figure 5.9: Tm for maximum principle violation problem with HOLO method for
various time step sizes. The HOLO solution preserves the discrete maximum princi-
ple.
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Table 5.10: Comparison of LO Newton iterations for HOLO solution to MP problem
and different time step sizes. For ∆t = 10−5 sh, no damping was used; for all other
cases a damping factor of 0.5 was used.

∆t (sh) Newton Iters. / LO Solve
10−5 3.5
10−4 21.0
10−3 28.5

2.5× 10−3 29.7
10−2 46.3
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6. ACCELERATED ITERATIVE SOLUTION TO THE LO EQUATIONS

The fully-discrete, S2-like LO equations cannot be directly inverted easily in

higher spatial dimensions. To demonstrate a possible path forward in higher di-

mensions, we have investigated the use of a standard source iteration scheme [11]

to invert the scattering terms in the linearized LO equations during each Newton

iteration. As material properties become more diffusive (e.g., cv is small and σa is

large), the effective scattering cross sections becomes large. This results in a spectral

radius of source iterations that approaches unity [14]. These regimes are typical in

TRT simulations, so an acceleration method for iterative solutions is critical. We

have accelerated the source iterations with a nearly-consistent diffusion synthetic

acceleration (DSA) method known as WLA [41, 42]. We have also recast the DSA

method as a preconditioner to an iterative Krylov solution [43] of the LO equations.

Generally, Krylov methods mitigate acceleration losses due to inconsistencies in the

acceleration method. In higher dimensions, the use of a Krylov method is necessary

for effective acceleration for nearly-consistent acceleration methods in problems with

mixed optical thicknesses [43], e.g., typical radiative transfer problems. Also, apply-

ing the preconditioned-Krylov approach allows for the use of spatially lumped DSA

equations as a preconditioner, with the LO equations using an LD or HO spatial

closure.

The remainder of this chapter is structured as follows: The source iteration solu-

tion to the LO equations is detailed. Then, the equations for the WLA DSA method

are derived and the acceleration algorithm is given. The DSA method is then re-

cast as a preconditoner to a GMRES solution of the scattering iteration equations.

Finally, convergence results are compared for several test problems.

88



6.1 Source Iteration Solution to the Linearized LO Equations

The time-discrete LO equations, after linearization, can be solved with a source

iteration method [11, 43, 44]. In the source iteration process the scattering source

is lagged, which uncouples unknowns between the two half ranges. This produces a

lower-triangular system where the spatial unknowns can be solved for sequentially

along the two directions of flow via a standard sweeping procedure [11, 14]. Beginning

at the left boundary, the positive unknowns can be determined for each cell from

i = 1, . . . , Nc; because the inflow to the i-th cell is defined from the previous cell or

boundary condition, a local system of equations can be solved for the 〈φ〉+L,i and 〈φ〉+R,i

unknowns. The negative direction unknowns are determined similarly, starting from

the right boundary and proceeding towards the left. The newly computed half-range

intensities can then be used to estimate the scattering source for the next iteration.

This process is repeated until convergence.

The source iteration process can be written in operator notation as

Mψl+1 =
1

2
Sψl +Q, (6.1)

where M is the LO streaming and removal operator (i.e., the left-hand side of

Eqs. (3.18)–(3.21) without the scattering terms included), ψ is a vector of the half-

range FE moment unknowns, and the vector Q contains the fixed source terms

resulting from the linearized emission source and previous time step moments, for

each equation. For the i-th element and the L equation, for both half-ranges, the

source terms are

(Q)±i,L =
hi〈φ〉±,nL

c∆t
+

1

2
hifiσa,iac〈(T n)4〉L,i, (6.2)
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the scattering operator terms are

(Sψl)±i,L = hi (σa,i(1− fi) + σs,i)
(
〈φl〉+,n+1

i,L + 〈φl〉−,n+1
i,L

)
, (6.3)

and the streaming and removal terms, for the LD spatial closure, are

(Mψl+1)±i,L = −2µn+1,+
i−1/2

(
2〈φl+1〉n+1,+

R,i−1 − 〈φ
l+1〉n+1,+

L,i−1

)
+ {µ}n+1,+

L,i 〈φl+1〉n+1,+
L,i

+ {µ}n+1,+
R,i 〈φl+1〉n+1,+

R,i +

(
σn+1
t,i +

1

c∆t

)
hi〈φl+1〉n+1,+

L,i (6.4)

where all consistency terms are known from the HO solver. Equivalent expressions

are defined for the R moment equations and boundary conditions, forming a fully

defined set of equations. The process of sweeping is denoted as M−1.

The scattering inversion must be performed within each Newton iteration. Thus,

for the m-th Newton step, the source iteration process is defined as

1. Evaluate effective scattering and absorption cross sections with the tempera-

tures from the current Newton step, i.e., {Tmi : i = 1, 2, . . . , Nc}.

2. Compute new scattering source 1
2
Sψl.

3. Perform sweeps to calculate ψl+1 = M−1Sψl + M−1Q

4. If ‖ψl+1 − ψl‖2 < tolerance ‖ψl+1‖2, move to next Newton step. Else, repeat

steps 2–4.

6.2 Linear Diffusion Synthetic Acceleration

A form of DSA referred to as the WLA method is used to accelerate the source

iterations [41, 42]. Between each sweep, an error equation for the scattering iterations

is solved with an approximate angular discretization of the transport equation. The
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estimated error is used to correct the zeroth moment of the intensity unknowns. In

operator notation, the DSA equations for a single iteration are

Mψl+1/2 =
1

2
Sψl +Q (6.5)

Dδφl+1/2 = S(ψl+1/2 − ψl) (6.6)

ψl+1 = ψl+1/2 +
1

2
δφl+1/2, (6.7)

where δφ represents the error in the mean intensity unknowns. The operator D

represents a diffusion-like approximation to the transport equation. The DSA equa-

tions contain a standard finite-difference diffusion discretization that can be more

efficiently inverted than the S2-like equations that are being accelerated (particu-

larly in higher spatial dimensions), but will accurately resolve the slowly-converging,

diffusive error modes.

It is important for the spatial discretization of Eq. (6.6) to be closely related to the

discretization of the LO equations for the acceleration to be effective and stable [45].

The WLA method first solves a spatially-continuous discretization of the diffusion

equation for the error at faces {xi+1/2 : i = 0, 1, . . . , Nc}. The error on the faces is

then mapped onto the volumetric moment errors via a LD discretization of the P1

equations [41]. The LD mapping resolves issues that would occur in optically-thick

cells, and the continuous diffusion equation is accurate in the EDL where acceleration

is important [45].

The continuous diffusion equation and mapping equations for the WLA method

are derived in Appendix C. To allow for the use of lumped or standard LD in the

DSA equations, we introduce the factor θ, with θ = 1/3 for standard LD, and θ = 1

for lumped LD. With suppression of the time indices, the diffusion equation for the
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face at xi+1/2 is

(
σa,i+1hi+1

4
(1− θ)− Di+1

hi+1

)
δφi+3/2

+

(
Di+1

hi+1

+
Di

hi
+

(
1 + θ

2

)[
σa,i+1hi+1

2
+
σa,ihi

2

])
δφi+1/2

+

(
σa,ihi

4
(1− θ)− Di

hi

)
δφi−1/2 =

hi+1

2
〈q〉L,i+1 +

hi
2
〈q〉R,i . (6.8)

The source in Eq. (6.8) is the residual for a given scattering iteration [43, 11]

〈q〉L/R,i = σs,i
(
〈φl+1/2〉L/R,i − 〈φl〉L/R,i

)
. (6.9)

It is noted that there is no need to define the source differently for the lumped or

standard LD DSA equations, because the source is in terms of moments, which are

provided by the LO unknowns.

The LO iteratre exactly satisfies the inflow boundary conditions, therefore a vac-

uum boundary condition is applied to the diffusion error equations. Application of

Eq. (C.10) gives the left boundary condition:

(
1

2
+ σa,1h1

1 + θ

4
− D1

h1

)
δφ1/2 +

(
σa,1h1

1− θ
4
− D1

h1

)
δφ3/2 =

h1

2
〈q〉L,1 (6.10)

The boundary condition for the right-most face is

(
1

2
+ σa,IhI

1 + θ

4
− DI

hI

)
δφI+1/2 +

(
σa,IhI

1− θ
4
− DI

hI

)
δφI−1/2 =

hI
2
〈q〉R,I (6.11)

where I is the index of the right-most cell.

The system of equations formed from Eqs. (6.10), (6.11), and (6.8) is symmetric

and has a matrix bandwidth of 3, compared to the bandwidth of 7 of the LO equa-
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tions. The system is solved directly with a banded matrix solver. Then, Eq. (C.23)–

(C.26) are solved in each cell to map the face errors onto an LD representation over

the interior. It is noted that unlike fully consistent DSA equations, the WLA-DSA

algorithm does not preserve particle balance to round off. This is because the map-

ping procedure uses an approximate inflow to each cell, which is inconsistent with the

partial outflows from adjacent cells. Thus, overall, our algorithm will only conserve

energy to the order of scattering iteration convergence.

Because we are interested in the time-dependent solution, we need to update the

solution for the half-range intensities, rather than just the zeroth moment. We do

not accelerate the first moment of the angular intensity, as the solution for ∆J is

inaccurate due to the approximations introduced. The LD edge values for the error

must be mapped onto the corresponding spatial moments. The updated half-range

moments for each cell, as derived in the appendix, using the lumping notation is

〈ψ〉±,l+1
L = 〈ψ〉±,l+1/2

L +
1

2

[
1 + θ

4
δφ

l+1/2
L +

1− θ
4

δφ
l+1/2
R

]
(6.12)

〈ψ〉±,l+1
R = 〈ψ〉±,l+1/2

L +
1

2

[
1− θ

4
δφ

l+1/2
L +

1 + θ

4
δφ

l+1/2
R

]
. (6.13)

6.2.1 The WLA-DSA Accelerated Source Iteration Algorithm

We define the process of solving the diffusion like equations and mapping the

error unknowns back onto the moment equations as the operator D−1. The source

iteration with linear DSA procedure, for the m-th Newton iteration, is

1. Evaluate effective scattering and absorption cross sections with the tempera-

tures from the current Newton step, i.e., {Tmi : i = 1, 2, . . . , Nc}.

2. Compute new scattering source Sψl.

93



3. Perform sweeps to calculate ψl+1/2 = M−1Sψl + M−1Q

4. Perform DSA iteration to solve δφl+1/2 = D−1S(ψl+1/2 − ψl)

• Solve continuous DSA equations, i.e., Eqs. (6.8), (6.11), and (6.8), for

{δφl+1/2
i+1/2 : i = 0, 1, . . . , Nc}.

• Map the continuous error onto the moment errors, via Eq. (C.23)–(C.26).

5. Add correction to the moment unknowns via Eq. (6.12) and (6.13) to produce

ψl+1 = ψl+1/2 + 1
2
δφl+1/2

6. If ‖ψl+1 − ψl‖2 < tolerance ‖ψl+1‖2, then exit. Else, repeat steps 2–6.

6.3 GMRES Solution to the LO Equations

The source iteration procedure can be recast as an iterative solution to a matrix

equation. Using operator notation, we manipulate the moment equations to form a

matrix equation: (
I−M−1S

)
ψ = M−1Q, (6.14)

where I is an identity matrix. The GMRES method is used to approximate the

solution to the above linear system. The GMRES method is an iterative Krylov

solution method for asymmetric, sparse matrix equations. Approximate solution

to the above equation is formed by producing the l-th Krylov vector ψl, where ψl

minimizes the norm of the residual for Eq. (6.14) and is a member of the l-th ortho-

normalized Krylov subspace [46]. To form the Krylov subspace in each iteration,

the matrix operator, i.e., the left-hand side of Eq. (6.14), is applied to the previous

Krylov vector. Rather than building the full matrix system, we apply the operation

of S and M−1 as detailed in Sec. (6.1) to apply (I−M−1S) to the generated Krylov

vectors.
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The GMRES method will generally converge faster than the source iteration pro-

cedure [43]. However, as the system becomes scattering dominated, convergence will

degrade. To improve the convergence rate, we precondition the GMRES system with

a solution of the WLA-DSA equations. The goal of preconditioning is to efficiently

apply an operator to the equation that will approximate the inverse of the matrix

operator. Left preconditioning [46] was applied to the above system. In matrix form,

we write the preconditioned GMRES equations as

(
I + D−1S

) (
I−M−1S

)
ψ =

(
I + D−1S

)
M−1Q. (6.15)

The operation of (I + D−1S)
−1

is equivalent to the DSA procedure where the scat-

tering residual is simply Sψl and the correction is directly added to the passed in

Krylov vector.

The open-source library mgmres was modified to implement the matrix-free ver-

sion of the GMRES procedure. The infrastructure from the source iteration with

DSA procedure is reused to provide the operation of (I + D−1S) (I−M−1S) applied

to the Krylov vectors returned from the GMRES solver. The preconditioned-GMRES

algorithm is

1. Evaluate effective scattering and absorption cross sections with the tempera-

tures from the current Newton step, i.e., {Tmi : i = 1, 2, . . . , Nc}.

2. Initialize Krylov vector as ψ0 = 0.

3. Form source vector b with sweep: b = M−1Q.

4. Apply left-preconditioner operator to b, so b← (I + D−1S) M−1Q

5. Apply sweep and subtraction to Krylov vector: ψl+1/2 = (I−M−1)ψl.
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6. Perform DSA iteration to determine ψl+1/2 ← (I + D−1S)ψl+1/2

7. Apply GMRES step to b and ψl+1/2 to generate next Krylov vector ψl+1.

8. If the norm of the residual for ψl+1 is below tolerance, then exit. Else, repeat

steps 5–7.

The convergence tolerance is relative to the initial residual of the first iteration with

non-zero ψ. To perform GMRES without preconditioning, steps 3 and 6 are removed.

6.4 Computational Results

We have tested the iterative solution methods for three test problems and compare

the average number of scattering iterations to converge. For each simulation, three

batches of 10,000 particles are ran for the single HO solve per time step, and 200

spatial cells were used. The average number of source iterations per Newton step is

recorded, as well as the total number of Newton iterations per time step (there are

two LO solves per time step). The initial guess for the effective scattering source

is set to zero at the beginning of each LO solve. All scattering iterations have a

relative convergence of 10−10. For all DSA simulations, we have used the lumped

spatial representation for the DSA equations.

The first test problem is the two material problem in Sec 5.3. The time step is

increased linearly by 15% each time step from ∆t = 0.001 sh to reach a maximum

time step size of 0.01 sh. The large time step sizes increases the magnitude of the

effective scattering cross section. Table 6.1 gives iteration counts for each method:

unaccelerated source iteration (SI), source iteration with DSA (SI-DSA), unacceler-

ated GMRES (GMRES), and GMRES with DSA preconditioning (GMRES-DSA).

As demonstrated, DSA improves the convergence of the source iteration method.

The preconditioned GMRES was more efficient than standard GMRES.
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The second test problem is a modification of the two material problem. The

problem specifications are the same as before except for modifications to the cross

sections for x > 0.5 cm; in the right half of the domain, the parameters are σa =

20, 000 cm−1, σs = 500 cm−1. This problem is highly diffusive and nonlinear. The

Newton method required damping with a damping factor of 0.6 to stably converge.

Table 6.2 gives the iteration counts. Overall, the damping increases the number of

Newton steps, as expected. For this problem, acceleration is much more critical,

reducing the number of scattering iterations by a factor of 100.

For the final test problem, we test the equilibrium diffusion limit problem from

Sec. 5.7. The problem was tested with standard LD and lumping-equivalent LD

spatial closures, with the DSA using the lumped representation in both cases. Ta-

ble. 6.3 compares scattering iterations for the EDL problem. There was minimal

degradation observed for the diffusion limit problem due to the difference in spa-

tial discretizations. This is likely because both lumped LD and LD representations

produce accurate solutions in the EDL.
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Table 6.1: Scattering source iterations for the two material problem. Simulation
end time is 1 sh.

Method Sweeps/Newton Iter. Newton Iters./Time Step
SI 247.0 19.4

SI-DSA 10.1 19.3
GMRES 14.1 19.4

GMRES-DSA 8.7 19.3

Table 6.2: Scattering source iterations for the modified, diffusive two material prob-
lem. Simulation end time is 2 sh.

Method Sweeps/Newton Step Newton Iters./Time Step
SI 1037 25.2

SI-DSA 10.9 25.1
GMRES 12.6 25.1

GMRES-DSA 7.0 25.2

Table 6.3: Scattering source iterations for the equilibrium diffusion limit problem.
Simulation end time is 3 sh.

LD LO Equations
Method Sweeps/Newton Step Newton Steps/LO Solve

SI 357.4 8.4
SI-DSA 21.9 8.4
GMRES 37.5 8.4

GMRES-DSA 14.3 8.4
Lumped LO Equations

SI 359.8 8.2
SI-DSA 14.6 8.2
GMRES 38.3 8.2

GMRES-DSA 10.8 8.2
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7. RESOLVING ISSUES WITH NEGATIVE INTENSITIES FOR ECMC

The linear-discontinuous (LD) spatial closure with upwinding is not strictly posi-

tive. In particular, for optically thick cells with a steep intensity gradient, the linear

representation of the intensity can become negative at the edge of the cells. A com-

mon example in 1D is for the Marshak Wave problem where negative intensities in

the representation occurs at the foot of the radiation wave front. These negativi-

ties are not physical and typically propagate to adjacent cells through the streaming

term. In thick regions of TRT problems, reasonably fine spatial cells can still be

on the order of millions of mean free paths; negativities with an LD representation

are unavoidable in practice for such cells, and mesh refinement is of minimal use.

The LDFE representation of the intensity for the HO solver is prone to additional

negativities near µ = 0 where the intensity often cannot be accurately represented

by a linear projection in angle. These negativities near µ = 0 can occur for modest

optical thicknesses and in multiple adjacent cells, caused in part by the previous

intensity source term which has a strong gradient in µ.

In the remainder of this chapter, we present different fixup methods applied to

the HO solver. Methods are then compared for statistical efficiency and accuracy for

test problems. Ideally the fixup should be applied in a manner that the solutions in

such cells are as consistent as possible between the HO and LO equations. However,

even if the HO fixup was applied consistently to the LO next nonlinear LO solve, this

would be based on a lagged HO problem so there is no guarantee of positivity for the

new LO solution. Additionally, the LO solver must preserve energy conservation,

whereas the HO solver is primarily used for angular shape parameters and is not

conservative. Thus, because of the difference in solution methods of the two system,
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independent fixups have been developed.

7.1 Calculating a Positive LDFE Representation

For the HO solver, in cells near the radiation wavefront, the LDFE trial space

results in negative values in Ĩn+1(x, µ), similar to the LO solver. In general, in such

cells where the trial space cannot accurately represent the solution, error stagna-

tion will rapidly occur. At the end of any particular batch, a LDFE projection of

the intensity Ĩ(x, µ) has been determined. This projection is based on a statistical

estimate of the moments of the intensity, based on the truncated representation of

sources. Although the statistically estimated moments are physically accurate, when

these moments are projected onto a linear space the representation becomes negative,

over some portion of certain elements’ domains. Because the residual formulation

in ECMC allows for negative weight particles to occur, there is not a strict require-

ment to fixup the cells. However, in cells where Ĩn+1(x, µ) crosses zero, the angular

consistency terms are not guaranteed to lie in the appropriate half-space, potentially

introducing instabilities.

The first moments can easily be modified, rotating the linear representation for

the intensity about the average, to produce a positive representation Ĩpos at the end

of a batch. We produce a positive representation Ĩpos over a cell by scaling the

first moment in x and µ uniformly. The process of modifying the first moments to

produce a positive solution is under defined, so there is not a unique way to enforce

positivity. This choice is not an emphasis of this research, so we have applied the

simple approach of scaling the slopes such that the ratio Ix/Iµ for each modified cell

is unchanged. After an ECMC batch, we detect cells where the linear representation

produces a value below the floor. The modified representation for the ij-th cell in
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such cells is

Ĩpos = Ia + C

[
2

hx
Ix(x− xi) +

2

hµ
Iµ(µ− µj)

]
, (x, µ) ∈ Dij, (7.1)

noting that the average has not been modified. The constant C is calculated as

C =
Ia − Imin

|Ix|+ |Iµ|
(7.2)

for values where Ia > Imin, where Imin is the isotropic intensity corresponding to

equilibrium with the floor temperature. When Ia is below the floor, it is set to

the floor value and Ix and Iµ set to zero. It is been noted that in application the

difference between Ia and Imin can be on the order of numerical roundoff for double

precision variables.

7.2 Artificial Source Method for Negativities in the HO Intensity

The moments of the modified positive solution Ĩpos will not necessarily satisfy the

residual equation as accurately as the original solution, which leads to rapid error

stagnation. Additionally, the next MC batch based on the residual source from Ĩpos

can produce negative cell averages in down stream cells. Thus, we have devised

a method to modify the transport equation such that Ĩpos will locally satisfy the

residual equation more accurately. We do this in such a manner that the modified

source will lead to the solution converging towards a solution with the same zeroth

moment, but with a first moment in x and µ that are modified. This does not

guarantee exponential convergence of the solution, because convergence is still limited

by the overall accuracy of the trial space and statistics within a batch. However,

now the error will not stagnate as rapidly and the solution will converge towards the

positive representation Ĩpos.
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To mitigate stagnation and improve efficiency, we can add an artificial source

δ̃m+1(x, µ) to the HO transport equation. This source is estimated iteratively as

δ̃(x, µ)(m+1) = L(Ĩn+1,(m) − Ĩn+1,(m)
pos ),

where Ĩ
n+1,(m)
pos is the modified positive solution, for all cells that required modifica-

tion. The source δ̃ is added to all later batches. If necessary, we can add an additional

source in later batches where negative values occur once more. The residual for the

modified transport problem will have the same residual magnitude as the original Ĩ,

which will have lower magnitude than the modified solution which does not have the

MC estimated first moments (this is only true for the first application of the modified

source). Care must be taken to modify the source on the interior and exterior of the

cell, particularly when the solutions in adjacent cells has been modified. The source

δ̃ lies in the same functional space as the residual and can thus use the existing code

infrastructure to compute the source. This will also make this approach straight

forward to extend to higher dimensions and adaptively refined meshes.

To provide insight into the choice of this source, consider the modified transport

problem that will be solved with ECMC, where the fixup has been applied at batch

m:

LIn+1 = q + L(Ĩn+1,(m) − Ĩn+1,(m)
pos ) (7.3)

Application of L−1 to both sides of the equation produces

In+1 = L−1q + (Ĩn+1,(m) − Ĩn+1,(m)
pos ). (7.4)

Because Ĩ and Ĩpos have the same zeroth moment, we have not modified the zeroth

moment of the solution overall, in the limit of an infinite number of histories. Monte
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Carlo transport is used to estimate L−1, thus we are estimating the solution to a

transport problem that has a modified first moment in the LDFE projection but

preserves the zeroth moment of the original solution. The estimate of the modifica-

tion to the first moments of the solution has statistical noise, and thus may under- or

over-predict the necessary change in the solution. We make the conservative choice

of preserving δ across batches, and adding an additional source only when negative

values occur again.

7.3 Computational Results

We will apply several different fixup approaches based on the above discussion.

The first method, labeled as “S2 fixup” is the simplified fixup used to generate some of

the results in Chapter 5: we detect if the consistency terms lie in the appropriate half

space at the end of the HO solve, an indication that the intensity was negative within

that cell. If the terms are non-physical, then they are replaced with the corresponding

S2-equivalent value. At the end of each time step the solution is rotated positive for

the next time step. The second method, labeled as “Rotate Every Batch” rotates

the solution above the floor value as needed at the end of every batch, as described

in Sec. 7.1. The method “Rotate Last Batch” only applies the fixup at the end of

the final batch, allowing negative intensities in earlier batches. The final approach

is labeled “Artificial Source” and is described in the previous section. The artificial

source is not saved between time steps.

7.3.1 Analytic Fixed Source Problem

We first test the fixup methods for an analytic fixed-source, pure-absorber trans-

port problem. It is difficult to generate an analytic answer to non-trivial TRT prob-

lems, so we apply the fixups to a fixed-source problem with similar characteristics

to the two material problem in Sec. 5.3 that produces negative solutions for Ĩ(x, µ).
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The general isotropic source is proportional to σa, so the 1D transport equation to

be solved is

µ
∂I(x, µ)

∂x
+ σaI(x, µ) =

q0σa(x)

2
. (7.5)

The form of the source simulates a floor equilibrium distribution and ensures that

φ−(x) is a constant throughout the domain with appropriate boundary conditions.

For this problem, the domain width is 1.0 cm and σs = 0 throughout. The

absorption cross section is defined as σa = 0.2 cm−1 for 0 ≤ x < 0.5 cm and

σa = 1000 cm−1 for 0.5 < x ≤ 1.0 cm. The analytic solution for the mean intensity,

as derived in App. B.2, is

φ(x) = Iinc E2 [τ(x)] +
q0

2
(2− E2 [τ(x)]) , (7.6)

where Iinc = 1000 cm−2 str−1 is the incident intensity at the left boundary and

q0 = 0.5 cm−2 s−1; The equilibrium solution which is used as the floor in the applied

fixups is Imin = 0.5 cm−2 s−1 str−1.

The problem was simulated with the HOLO algorithm with four batches of

100,000 histories, with no HO fixup. For the LO solver, the lumped LD spatial

closure is used in all cells. For the single HO solve, the solution is initialized to

Ĩ(x, µ) = q0/2. A plot of the HO representation for the intensity1 is given in Fig. 7.1a

from the end of the HO solve. Figure 7.1b depicts the solution for all cells in which

Ĩ(x, µ) is below Imin, for some portion of that cell’s domain, using a smaller scale for

visual clarity. As expected, near µ = 0 and near the interface of the thick material

the LDFE projection is driven negative and cannot accurately represent the solution.

The various fixup methods were tested on this problem for different numbers of

1The triangular structure and different shades of color in the plots are only artifacts of the
plotting software, and do not indicate any gradient.
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Table 7.1: Comparison of accuracy in cell-averaged φ(x) value for fixed source
problem and various number of histories per batch.

Fixup Method ‖eLO‖a,rel ‖eHO‖a,rel FOM
4 batchs, Nb = 104 histories per batch

Artificial Source 1.354% (0.07%) 1.657% (0.10%) 0.43
S2 Fixup 1.135% (0.04%) 1.335% (0.05%) 0.68

Rotate every Batch 0.883% (0.04%) 1.036% (0.05%) 1.09
Rotate Last Batch 1.100% (0.04%) 1.335% (0.05%) 0.72

4 batchs, Nb = 105 histories per batch
Artificial Source 0.261% (0.01%) 0.304% (0.01%) 1.34

S2 Fixup 0.268% (0.01%) 0.302% (0.01%) 1.29
Rotate every Batch 0.232% (0.01%) 0.265% (0.01%) 1.76
Rotate Last Batch 0.267% (0.01%) 0.302% (0.01%) 1.30

4 batchs, Nb = 106 histories per batch
Artificial Source 0.081% (0.002%) 0.097% (0.002%) 1.47

S2 fixup 0.083% (0.002%) 0.094% (0.003%) 1.38
Rotate every Batch 0.072% (0.002%) 0.082% (0.003%) 1.84
Rotate Last Batch 0.083% (0.002%) 0.094% (0.003%) 1.39

simulated histories. The L2 norm of the error in cell-averaged mean intensities ‖e‖a,rel

was computed using Eq. (5.8) for both the HO and LO solutions, averaged over 100

simulations. Table 7.1 compares the errors and FOM values. The absolute sample

standard deviation follows each value in parenthesis as appropriate. Generally, the

artificial source fixup did not improve accuracy or statistics for this problem, and

the other fixups show similar performance. In some cases the artificial source led

to additional negative values in down-stream space-angle cells in later batches. It is

noted that for this problem that although some negative intensities occur, for the S2

fixup angular consistency terms were non-physical in only a few cases.

7.3.2 Radiative Transfer Problems

We now test each of the fixups to the Marshak wave problem and two material

problem from Secs. 5.2 and 5.3. For both problems, ∆t is linearly increased from
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Figure 7.1: LDFE projection of angular intensity Ĩ(x, µ) for the fixed-source problem.
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0.001 sh to a maximum step size of ∆tmax = 0.01 sh, the lumped representation is

used for the LO solver in all cells, and the single HO solve has three uniform batches

of histories per time step.

For the two material problem, the simulation end time is 2 sh. Table 7.2 compares

sample statistics for cell-averaged solutions from the final time step for the two

material problem and different numbers of histories per time step. The statistics

were generated with 20 independent simulations, for each case. For this problem,

there is a slight improvement in statistics with the artificial source approach. A plot

of the radiation temperature for the final LO solution is given in Fig. 7.2 for each of

the fixups and a reference solution. Each plotted solution is for a single simulation

with 120, 000 histories per time step. Visually there is agreement between all of the

fixup methods.

Table 7.2: Comparison of sample statistics for different HO fixup methods applied
to the two material problem. Simulation end time is t = 2 sh.

Fixup Method ‖s‖a,rel FOM

30, 000 histories per time step
Artificial Source 0.020% 1.65

S2 fixup 0.022% 1.37
Rotate Last Batch 0.021% 1.45

Rotate Every Batch 0.025% 1.00
120, 000 histories per time step

Artificial Source 0.0049% 6.77
S2 fixup 0.0055% 5.29

Rotate Last Batch 0.0061% 4.33
Rotate Every Batch 0.0066% 3.67

The process is repeated for the Marshak wave problem with a simulation end

time of t = 5 sh. Table 7.3 compares sample statistics, and Fig. 7.3 compares LO

107



Method FOM ‖s‖a,rel
18, 000 histories per time step

Artificial Source 0.238% 0.89
S2 fixup 0.232% 0.93

Rotate Last Batch 0.248% 0.81
Rotate Every Batch 0.224% 1.00

100, 000 histories per time step
Artificial Source 0.050% 3.62

S2 fixup 0.047% 4.04
Rotate Last Batch 0.052% 3.31

Rotate Every Batch 0.049% 3.70

Table 7.3: Comparison of sample statistics for different HO fixup methods and the
Marshak wave problem. Simulation end time is t = 5 sh.

radiation temperatures for the case of 100, 000 histories per time step. For this

problem, the artificial source method is less statistically efficient. Visually there is

a slight dispersion in one cell for the artificial source method. This is caused by

the artificial source method introducing extra slope into the solution. The zeroth

moment of the intensity can be affected for a finite number of histories. In this

case, the extra volumetric source is being sampled and leading to artificial energy

propagation down stream. Generally, although locally the stagnation of the residual

is being reduced by the added source, there is potential for down stream cells to be

affected by under-sampling, decreasing the overall efficiency and accuracy.
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Figure 7.2: Comparison of cell-averaged radiation temperatures for two material
problem and various fixup methods.
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Figure 7.3: Comparison of cell-averaged radiation temperatures for Marshak wave
problem and various fixup methods.
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8. RESIDUAL MONTE CARLO TREATMENT OF THE TIME VARIABLE

In this chapter, we have modified the time-discrete HOLO method to include

higher-accuracy MC treatment of the time variable for the radiation unknowns in

the TRT equations. A potential application where this accuracy is important is

stellar atmosphere calculations. The ECMC algorithm is modified to include the

time variable, allowing for residual MC integration of the time variable. The LO

equations are closed in time consistently using a parametric closure derived from the

HO equations. The goal is to improve efficiency compared to IMC, while improving

the accuracy compared to the time-discrete HOLO algorithm. It is noted that no

adaptive refinement in time is performed, so maintaining exponential convergence

may not be possible. However, we still expect the residual MC formulation of the

ECMC method to show improvement in efficiency over standard MC.

In the remainder of this chapter, modifications to the HOLO algorithm to include

higher time accuracy are detailed. First, the inclusion of the time variable into the

ECMC trial space is given, along with modifications to the HO algorithm. The

process of sampling, tracking, and tallying particle histories in time can be found

in literature[18, 7, 12, 37], but sufficient details are provided in this chapter. Then,

a new temporal closure for the LO equations is given. Finally, results for the new

algorithm are compared to IMC and the time-discrete HOLO method for accuracy

and statistical efficiency.

8.1 Modifications to the HO Solver

Inclusion of the time variable t in the trial space used by ECMC allows for no

discretization of the transport operator L. The transport operator, applied to the
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continuous intensity I, becomes

LI(x, µ, t) =
1

c

∂I(x, µ, t)

∂t
+ µ

∂I(x, µ, t)

∂x
+ σtI(x, µ, t) (8.1)

The emission source is still treated with a BE discretization, which is similar to

the approximation made in IMC. Overall, the accuracy in the time variable will

be limited by the BE discretized temperature terms, particularly in optically thick

regions. However, accuracy in thin regions can be significantly improved.

With this definition of L and the temperature discretization, the ECMC algorithm

specified in Sec. 4.2 is applied, without further modification. However, the residual

source and trial-space representation now include t. Each batch is still estimating

the error in the current projection estimate Ĩ(x, µ, t), but sampling and tallying of

the time variable are included in the MC inversion of the L operator.

8.1.1 Step Doubly-Discontinuous Trial Space in Time

It is necessary to define a new trial space that includes the time variable to explic-

itly evaluate the residual. The time variable trial space has a similar representation

to the LDD spatial representation in Sec. 3.6.3, but the solution is a constant value

over the interior of the time step. This step, doubly-discontinuous (SDD) trial space

is defined as

Ĩ(x, µ, t) =


Ĩn(x, µ) t = tn

I(x, µ) t ∈ (tn, tn+1)

Ĩn+1(x, µ) t = tn+1

(8.2)

where we have used I to denote the time-averaged LDFE projection in x and µ of

the intensity over the interior of the time step; the beginning and end of time step

projections are denoted Ĩn and Ĩn+1, respectively. An illustration of t for the SDD

trial space, over the n-th time step, is depicted in Fig. 8.1. There is a projection
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error incurred by using the LDFE projection to represent the intensity between time

steps. However, with sufficient noise reduction and mesh resolution, this should be

an acceptable error compared to potentially large statistical noise of standard MC.

t

tn tn+1

IHO(x, µ)

Ĩn+1
HO (x, µ)

Figure 8.1: Step doubly-discontinuous representation of t for the HO solution.

The SDD trial space provides a projection for all the desired unknowns to ex-

actly reproduce the time-integrated moment equations, i.e., a projection of the time-

averaged, end of time step, and previous time step intensities; temporally, these are

the only unknowns that appear in equations that have been integrated over a time

step to produce a balance statement. Another benefit of this trial space is it allows

for infrastructure for computing the residual from the time-discrete case to be used

directly. This trial space has one major drawback: only particle histories that reach

tn+1 contribute to the estimation of ε̃n+1, within a batch. This can be undesirable

in optically thick problems. Additionally, the step representation over the interior

of the time step may be inaccurate, leading to a reduction in statistical efficiency of

the ECMC method.
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8.1.2 Residual Source Definition and Sampling

The residual is defined as r = q − LĨ(x, µ, t), where

q =
1

2

(
σaac(T

n+1
LO )4(x) + σsφLO

)
(8.3)

is constant in time and provided by the LO solver. We have assumed a constant

reconstruction for the scattering source in time. Evaluation of the residual with

Eq. (8.2) for I produces a uniform source in time, as well as a δ-function source at

the beginning and end of the time step. We write the residual source in terms of

three components:

r(x, µ, t) = r(x, µ)+ rn(x, µ)δ+(t− tn)+ rn+1(x, µ)δ−(t− tn+1), t ∈ [tn, tn+1] (8.4)

We will look at each component individually. The first residual term is a constant

in time with representation

r(x, µ) = q − µ∂I(x, µ)

∂x
− σtI(x, µ) (8.5)

Evaluation of the above function produces both face and interior volumetric compo-

nents (as in the time discrete case), respectively labeled rface and rint. To sample x

and µ from the face and volume distributions, the same rejection procedure is used

as for the time-discrete case. The time variable is then sampled uniformly over the

time step, i.e., t = tn + η∆t, where η is a uniform random variable with support

(0, 1).
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The second source has definition

rn(x, µ) = −1

c

∂I(x, µ)

∂t

∣∣∣∣
t=tn

= −1

c

(
I(x, µ)− Ĩn(x, µ)

)
(8.6)

This source is a LDFE space and angle volumetric source. The rejection sampling

procedure is used to sample x and µ. All particles sampled from this source begin

tracking with t = tn.

The final source term is

rn+1(x, µ) = −1

c

∂I(x, µ)

∂t

∣∣∣∣
t=tn+1

= −1

c

(
Ĩn+1(x, µ)− I(x, µ)

)
. (8.7)

The source rn+1 can be treated using the same analytic treatment as the outflow

face source in the LDD trial space, as discussed in Sec. 4.5 and derived in App. B.1.

The source at the end of the time step is never sampled, because its contribution

to In+1 can be analytically computed. To treat the sources this way, the solution

for Ĩn+1(x, µ) is initialized to the value of I(x, µ) before a batch of particles begins.

Then, error particles that reach the end of the time step, referred to as “census”

particles, contribute a standard score to the projection Ĩn+1(x, µ).

With these definitions, it is thus only necessary to sample from two sources.

We apply the systematic-sampling algorithm described in Sec. 4.3 to determine the

number of histories within each cell. The number of histories sampled from each

space-angle element is proportional to the magnitude of the residual within that cell,

and a minimum number of histories is sampled from cells with a non-zero residual.

Then, composite-rejection sampling is used to sampled from the appropriate source.

The algorithm for each sample, from x-µ element ij, is

1. Sample two random numbers η1, η2 ∼ U(0, 1)
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2. If η1 < ‖rnij‖1/(‖rnij‖1 + ‖rij‖1):

(a) Sample (x, µ) from rnij volumetric source using rejection sampling

(b) Set t = tn

3. Else, sample from rij source:

(a) Sample t uniformly over (tn, tn+1).

(b) If η2 < ‖rij,face‖1/‖rij‖1:

• Sample (x, µ) from rij,face face source using rejection

(c) Else:

• Sample (x, µ) from rij,int volumetric source using rejection

where all L1 norms are over x-µ domain of element ij. All L1 integrals can be

analytically evaluated using the same numerics as in the time-discrete case because

each residual component is either a volumetric or face component.

8.1.3 Importance Sampling on Interior of Time Step

As an attempt to reduce variance in the estimate of ε̃n+1(x, µ), importance sam-

pling can be applied to sampling of t for r(x, µ). For particles sampled from r(x, µ),

we modify the conditional PDF for sampling a particle start time. The goal is to

ensure that some histories reach the end of the time step. In order to do this, we

sample from a modified PDF such that a fraction psurv of particles sampled from

r(x, µ) are born with t ∈ (tsurv, tn+1). We define tsurv = tn+1 −M/(cσt), where M is

the desired number of MFP of travel the particle will undergo from the end of the

time step (e.g., 2 or 3). The weights of particles sampled from this distribution must

be modified to prevent biasing of the solution. The importance sampling only affects

step 3a of the algorithm in the previous section.
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The new PDF to be sampled from is

f ∗(t) =


1− psurv
tsurv − tn 0 < t < tsurv

psurv
tn+1 − tsurv tsurv ≤ t < tn+1

0 elsewhere

(8.8)

The actual PDF is f(t) = 1/∆t, for t ∈ (tn, tn+1). Thus, using the standard proce-

dure for importance sampling[16], the starting time tstart is sampled from f ∗(t), and

then particle weights are multiplied by the factor f(tstart)/f
∗(tstart). This procedure

is not perfect in that if a particle is moving from an optically thin to an optically

thick region, it is not guaranteed to reach census. Additionally, the large variance in

the starting weights of particles could increase the variance.

8.1.4 Tracking and Tallying in Time

Because our LO equations will be integrated over the time step, we only need to

perform MC tracking for t ∈ [tn, tn+1]. The initial time for the particle is sampled as

described in the previous section. In inverting the L operator, particles are tracked

until they reach the end of the time step. Path lengths are sampled or the weight is

exponentially attenuated as before (e.g., Sec. 4.4). As a particle travels from position

xo to xf , with direction µ, the time is updated as

tf = t0 +
|xf − xo|

cµ
(8.9)

where c is the speed of light. For analog path-length sampling, if tf > tn+1 then tf is

adjusted to tn+1, and the path length is adjusted accordingly. For continuous weight

deposition, particles are only tracked until they reach tn+1. A proof that this process

of tracking particles is a MC solution to an integral equation that is exactly inverse

117



to the L operator is detailed in literature [37, 16].

Tallies must be adjusted to account for the averaging over the time step, and

to compute the intensity at the end of time step. To produce the time-averaged

representation I(x, µ), requires estimators for the average, x, and µ moments of the

error, e.g.,

εx,ij =
1

∆t

6

hjhi

tn+1∫
tn

dt

xi+1/2∫
xi−1/2

dx

µj+1/2∫
µj−1/2

dµ

(
x− xj
hi

)
ε(x, µ, t) (8.10)

with a similar definition for the average and µ moments. The estimators are defined

as

ε̂x,ij =
1

Nhist

6

∆thi

Nhist∑
n=1

sn
hihj

wj (xc − xi) , (8.11)

where the magnitude of the weights produce the L1 integral over all phase space, i.e.,

N∑
n=1

wn = ‖r(x, µ, t)‖1 ≡
tn+1∫
tn

dt

X∫
0

dx

1∫
−1

dµ |r(x, µ, t)|. (8.12)

Here, xc is the center of the n-th path length, X is the width of the domain, and sn

is the path length for the n-th path length in the x-µ cell. As in the time-discrete

case, in the simulation we normalize weights to unity and multiply tally results by

the L1 norm of the residual, and tallies are modified to account for continuous weight

deposition.

Moments of In+1(x, µ) must be estimated to produce a projection of the intensity

at the end of the time step. For example, the x moment for the ij-th cell of the error

at the end of time step is

εn+1
x,ij =

6

hihj

∫∫
Dij

(
x− xi
hi

)
ε(x, µ, tn+1)dxdµ (8.13)

118



The estimators for these moments are a generalization of the census tallies used

in IMC [18, 12]. These tallies estimate moments based on the point-wise spatial

distribution of particles at a particular time. They are based on the definition of

the intensity as I(x, µ, t) = chνN(x, µ, t) given in Eq. (1.1), similar to collision

estimators [16, 17]. The census estimator for the x moment is

ε̂n+1
x,ij =

1

Nhist

6

hjh2
i

Nhist∑
n=1

cwj (xn − xi) , (8.14)

where xn is the location of the n-th particle that has reached the end of the time

step. Similar tallies are defined for the other space-angle moments. These tallies

can be exceptionally noisy because only particles that reach the end of the time step

contribute.

8.2 Closing the LO Equations in Time

The closure of the LO equations must be modified to account for inconsistencies in

the time-discretization of the two solvers. Previous work has enforced consistency in

time by adding a local artificial source to the time-discretized LO equations in each

cell [3]. This source was approximated based on the difference between the exact

HO integral of the time derivative and the approximate representation in the LO

equations. The advantage of this form is that the LO solver exclusively deals in time-

averaged unknowns for the radiation terms in the equations. We will alternatively

use a parametric closure in the time variable, similar to the spatial closures discussed

in Sec. 3.6.

After applying a parametric closure, the time-integrated LO equations can be

written exclusively in terms of time-averaged unknowns. Once the time-averaged

unknowns have been calculated, the time closures can be used to convert the time-
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averaged unknowns to end-of-time-step values, for the next time step.

8.2.1 Derivation of Time-Averaged Moment Equations

The time-continuous radiation equations are integrated in space and angle the

same as in the time-discrete case. The equation resulting from application of the L

and + moment operators is

1

c

∂

∂t
hi〈 I(x, µ, t) 〉+L − 2

(
µI(xi−1/2, µ, t)

)+
+ 〈µI(x, µ, t)〉+L,i + 〈µI(x, µ, t)〉+R,i

+ σt,ihi〈φ(x, t)〉+L,i −
σs,ihi

2

(
〈φ+(x, t)〉L,i + 〈φ−(x, t)〉L,i

)
=
hi
2
〈σaacT 4(x)〉L,i (8.15)

This equation is then integrated over the time step, and the emission source is ap-

proximated with a BE discretization. The manipulations in Sec. 3.1.4 are performed

on the streaming term to form angular consistency terms, but the weighting fluxes

are now time-averaged values. Thus, the angular consistency terms are evaluated

with I(x, µ). The final moment equation is

〈φ〉+,n+1
L,i − 〈φ〉+,nL,i

c∆t
− 2µ+

i−1/2φ
+

i−1/2 + {µ}
+

L,i〈φ〉
+
L,i + {µ}

+

R,i〈φ〉
+
R,i + σn+1

t,i hi〈φ〉n+1,+
L,i

− σs,ihi
2

(
〈φ〉+L,i + 〈φ〉−L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i, (8.16)

where over-barred quantities are averaged over the time step. The L and + consis-

tency term is

{µ}
+

L,i ≡

2

hi∆t

tn+1∫
tn

1∫
0

xi+1/2∫
xi−1/2

µ bL,i(x)I(x, µ, t)dxdµdt

2

hi∆t

tn+1∫
tn

1∫
0

xi+1/2∫
xi−1/2

bL,i(x)I(x, µ, t)dxdµdt

. (8.17)
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For the material energy equations, the BE approximation is used for the tem-

perature terms, but the radiation energy deposition is a time-averaged valued. As

before, it is necessary to introduce the LDFE representation for T (x) and T 4(x).

The new temperature equation is

ρicv,i
∆t

[(
2

3
TL,i +

1

3
TR,i

)n+1

−
(

2

3
TL,i +

1

3
TR,i

)n]
+ σn+1

a,i

(
〈φ〉+L,i + 〈φ〉−L,i

)
= σn+1

a,i ac

(
2

3
T 4
L,i +

1

3
T 4
R,i

)n+1

, (8.18)

where cross sections remain implicit. Analogous equations can be derived for µ < 0

and the R moment.

The only approximation introduced up to this point is the BE and LDFE spatial

representation for temperature terms. As before, we will use a LDFE closure to

eliminate the face terms from the radiation moment equations. The angular consis-

tency terms are evaluated with the previous time-averaged HO solution (based on

the linearity of the integral operators), e.g.,

{µ}
+

L,i '

2

hi

1∫
0

xi+1/2∫
xi−1/2

µ bL,i(x)IHO(x, µ)dxdµ

2

hi

1∫
0

xi+1/2∫
xi−1/2

bL,i(x)IHO(x, µ)dxdµ

. (8.19)

8.2.2 Parametric Time Closure

The end of time-step radiation unknowns, e.g., 〈φ〉n+1
L,i , must be eliminated from

the system. A different closure relations is required for the time variable than for

the spatial variable because the HO solver does not estimate the first moment in the
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time variable. The following closure is a modified diamond relation:

In+1 = 2γnI − In (8.20)

where γn is the closure factor and I is the time-averaged intensity. A modified BE

discretization can also be used:

In+1 = γnI (8.21)

The chosen closure relation must be used to eliminate the unknowns at tn+1

from each of the LO moment equations, with the values from the previous time step

taken as a known quantity. Thus, it is necessary to have a closure relation for each

moment and half range, producing four closure parameters per spatial cell. The

closure relations for the L moment and the modified diamond relation are

〈φ〉±,n+1
L,i = 2γn,±L,i 〈φ〉

±
L,i − 〈φ〉

±,n
L,i (8.22)

with equivalent definitions for the R moment. Substitution of the above equation

into Eq. (8.16), with the LDFE spatial closure, produces

2hi
c∆t

[
γn,+L,i 〈φ〉

+,n+1
L − 〈φ〉+,nL

]
− 2µ+

i−1/2

[
2〈φ〉+R,i−1 − 〈φ〉

+
L,i−1

]
+ {µ}

+

L,i〈φ〉
+
L,i + {µ}

+

R,i〈φ〉
+
R,i + σn+1

t,i hi〈φ〉+L,i −
σs,ihi

2

(
〈φ〉+L,i + 〈φ〉−L,i

)
=
hi
2
〈σn+1

a acT n+1,4〉L,i, (8.23)

The other moment equations are analogously defined. The value of γn,+L,i , γn,+R,i ,

γn,−L,i , and γn,−R,i can be computed by substituting the trial-space representation of

IHO(x, µ, t) into Eq. (8.22) and its analogs.
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8.3 Computational Results

The HOLO method with high-order time closure was tested for several represen-

tative problems. Throughout this section, for the HOLO method, results that use

the backward Euler discretization are indicated with HOLO-BE, and results with the

MC-based time closure are indicated with HOLO-TC, where applicable. For sim-

plicity, all HOLO results have used the lumped-relation in the LO radiation moment

equations to preserve positivity. We will compare sample statistics and accuracy

against IMC simulations.

8.3.1 Near-Void Problem

For the first problem, the material properties are uniform throughout a 2.0 cm

wide domain with ρcv = 0.01374 Jks cm−3 keV−1, σa = 10−6 cm−1, and σs = 0 cm−1.

The material and radiation are initially in equilibrium at a temperature of 0.01 keV.

An isotropic incident intensity with Tr = 0.150 keV is applied at x = 0 for t > 0;

the incident intensity on the right boundary is 0.01 keV. The simulation end time is

0.003 sh.
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Figure 8.2: Comparison of radiation energy densities of IMC and HOLO method
for the HO time closure and a BE discretization.

A comparison of the cell-averaged radiation energy densities Er for IMC and the

HOLO method with the diamond-like HO time closure are depicted in Fig. 8.2, both

for the time-averaged solutions and end-of time step values, from the final time step.

The end of time step value for the HOLO method with a BE discretization is also

depicted. For the HOLO results, three ECMC batches were performed with a total

of 3× 106 histories per time step and the IMC results were generated with 12× 106

histories per time step; all IMC results in this section used ∆t = 0.001 sh. The

minimum number of histories for any sampled space-angle cell, Nmin in Eq. (4.18),

is 20 for all HOLO simulations. The spatial meshes had 100 spatial cells and both

HOLO results used 20 µ cells. The MC treatment of the time variable and the

closure of the LO equations allow the LO results to correctly reconstruct the wave-

front location of IMC, whereas the BE discretization artificially propagates energy.

Although not plotted, the results were visually equivalent for either the diamond-
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like or implicit-like closures in this problem. This is because the problem is nearly

linear due to the small cross sections, so the HO moments are reproduced accurately,

independent of the chosen closure equation.

A comparison of the same results depicted as radiation temperatures is given

in Fig. 8.3. By plotting proportional to the fourth-root of the radiation energy

density, the noise at low magnitudes past the wave-front are more apparent in the 3

batches and ∆t = 0.001 case. This noise is small relative to the scale of Er, but it

demonstrates a deficiency of the trial space. The step representation over the time

step leads to particles sampled near the wave-front with a time near tn that travel

into the equilibrium region. This is not a bias but rather an under-sampling of the

phase space; if sufficient histories were performed there would be negative particles

that canceled out this error. The ECMC iterations can lead to negative averages in

the HO solution out front of the wave front. In such cells, the average was set to

the floor value and slopes to zero. This effect is significantly reduced when a smaller

time step is taken, although the projection error is increased.

For the case of a single batch, there is less noise past the wavefront because

the choice of In(x, µ) as an initial guess for In+1(x, µ) prevents most particles from

traveling past what the physical transport should allow. The discrepancy between

the IMC and the single batch HOLO solution near the foot of the wave is a result of

the spatial discrepancy between the LDFE HO projection and the lumped LD LO

equations; this dispersion is not present in the HO solution. This discrepancy can

also lead to some negativities in the LD edge values of φn+1(x), which are set to the

floor value for the next time step.
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Figure 8.3: Comparison of radiation temperatures of IMC and the HOLO method
for different time step sizes and numbers of batches, for the near-void problem.
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Figure 8.4: Comparison of radiation energy densities for the HOLO method with
different numbers of µ cells, for the near-void problem; ∆t = 0.001 sh.

Figure. 8.4 compares radiation energy densities for various numbers of µ cells.

At coarser mesh sizes, the imprinting of the mesh is visible in the location of the

wave-front. This is a result of the projection onto the space-angle mesh between

time steps. As the mesh is refined, the solution converges towards the IMC solution.

Smaller time step sizes can increase the mesh imprinting because the projection

onto the trial space happens more often. However, it is important to note that this

problem is a limiting case; the mesh imprinting will be reduced as σa is increased

and absorption-emission events smooth the angular intensity across each time step.

8.3.2 Optically Thin Problem

We modify the previous problem by increasing the absorption cross section to

0.2 cm−1; all other problem parameters are the same. Radiation temperatures at

the end of the last time step are compared for IMC, HOLO-TC, and HOLO-BE in
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Fig. 8.5. The HOLO-TC and HOLO-BE results were generated with 30 µ cells, and

all spatial meshes used 100 cells. All results used 3× 106 histories per time step. At

smaller time step sizes, the effects of mesh imprinting are visually apparent in the

HOLO-TC results, leading to more dispersion near the wave-front. There is good

agreement between the HOLO-TC results and IMC, except some dispersion near the

wavefront. As in the previous problem, the HOLO-BE results are very inaccurate at

capturing the wavefront location. IMC demonstrates substantial statistical noise in

the equilibrium region.
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Figure 8.5: Comparison of radiation temperatures of IMC and the HOLO method
for different time step sizes and numbers of batches, for optically thin problem.

The accuracy of the HOLO-TC and IMC method were compared against a refer-

ence IMC solution. Because the material is loosely coupled in this problem we expect

IMC to be accurate with sufficient particle histories. The reference solution is the
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average of 20 IMC simulations of 20 × 106 histories, each with ∆t = 10−4 sh. The

estimated value of ‖s‖a,rel for the reference solution is 0.025%. The discrete norm

of the error in cell-averaged mean intensities ‖e‖a,rel is computed using Eq. (5.8) for

φn+1 from the last time step, averaged over 20 simulations. Sample statistics for

cell-averaged φn+1 were also computed using the FOM from Eq. (5.3).

Table. 8.1 compares computed values of ‖e‖a,rel and FOM for the census radiation

energy densities, for the case of ∆t = 0.0005 sh. HOLO results were generated for

the case of 1 and 2 batches, with the same total number of histories per time step,

where the number of batches is indicated in parenthesis. The standard deviation of

each estimate of ‖e‖a,rel follows each value in parenthesis. At low particle counts,

the HOLO-TC method demonstrates substantial noise. A plot of the inaccuracies for

the case of 30,000 histories and a single batch is given in Fig. 8.6. As demonstrated,

statistical noise in the estimate of Ĩn+1 introduce instabilities into the LO result. This

is due to the trial space representation of the census particles at the end of the time

step being poorly estimated. For the 2 batch case, there is less error in the estimate

of Ĩn+1(x, µ) because only the deviation from the first batch estimate of I(x, µ) is

estimated with MC. At higher history counts there is an increase in efficiency, however

the IMC method is more accurate overall due to the projection error between time

steps. For reference, statistics were measured for the HOLO-BE method with two

batches of 150,000 histories per time step, producing ‖e‖a,rel = 10.5% and FOM =

3100, demonstrating substantial inaccuracy but improved efficiency.

Table 8.2 compares results for ∆t = 0.0001 sh. The results were generated for

two different mesh sizes, but ‖ea,rel‖ is computed using the same 100 spatial cell

reference solution in both cases. All FOM values are relative to IMC with 100 x

cells and 30,000 histories. At the coarser mesh size, the HOLO-TC method has a

factor of 95 higher FOM, indicating much-improved statistical efficiency. However,
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Figure 8.6: Comparison of T n+1
r for 30,000 histories per time step. The HOLO-TC

result has insufficient histories to accurately estimate end of time step unknowns.

the projection error limits accuracy to around 1.5%. At the finer mesh size, the

HOLO-TC method remains more efficient (as long as the batch size is sufficient)

and produces higher accuracy than the IMC results. For reference, statistics were

measured for the HOLO-BE method with two batches of 150,000 histories per time

step. The HOLO-BE results produced ‖e‖a,rel = 3.7% and FOM = 4700 for the

coarse mesh, and ‖e‖a,rel = 3.6 and FOM = 9600 for the fine mesh. The accuracy of

the HOLO-BE method is limited by the time integration accuracy.
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Table 8.1: Comparison of accuracy and FOM for the end of time step radiation
energy densities, of the last time step, for the optically thin problem and ∆t =
5× 10−4 sh. Simulation end time is t = 0.003 sh.

‖e‖a,rel FOM

hists./step IMC HOLO-TC (1) HOLO-TC (2) IMC HOLO-TC(1) HOLO-TC(2)

30,000 3.0% (0.08%) 17.3% (0.5%) 4.99% (0.2%) 1.00 0.03 0.31

300,000 1.0% (0.02%) 1.1% (0.02%) 1.13% (0.02%) 0.93 1.38 1.65

1,000,000 0.5% (0.01%) 0.92% (0.01%) 0.96% (0.01%) 1.10 3.42 2.0

Table 8.2: Comparison of accuracy and FOM for the end of time step radiation
energy densities, of the last time step, for the optically thin problem and ∆t =
1 × 10−4 sh. The reference results are all for 100 x cells. Simulation end time is
t = 0.003 sh.

‖e‖a,rel FOM

hists./step IMC HOLO-TC (1) IMC HOLO-TC(1)

Results for 100 x cells; HOLO-TC has 30 µ cells

30,000 2.98% (0.09%) 1.49% (0.02%) 1.00 42.0

300,000 0.96% (0.02%) 1.45% (< 0.01%) 0.98 94.5

1,000,000 0.49% (0.01%) 1.45% (< 0.01%) 1.11 94.9

Results for 200 x cells; HOLO-TC has 60 µ cells

30,000 2.93% (0.1%) 14.00% (0.4%) 0.49 0.05

300,000 0.99% (0.03%) 0.37% (< 0.01%) 0.45 6.98

1,000,000 0.49% (0.01%) 0.18% (< 0.01%) 0.50 40.04
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8.3.3 Marshak Wave Problem

It is important to demonstrate that the time closures are stable in a mix of

optically thick and optically thin regions, and that the ECMC method is still efficient

in such problems. Simulations were performed for the Marshak wave problem defined

in Sec. 5.2. The time step size is linearly increased from 0.001 sh to a maximum step

of 0.01 sh over the first 10 time steps; the last time step is adjusted to reach the

desired simulation end time. It was found for this problem that it was necessary to

use more than one batch for the HOLO-TC algorithm to stably converge, for the

same reasons inaccuracies were demonstrated in the previous section.
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Figure 8.7: Comparison of HOLO-TC, HOLO-BE, and IMC methods for the Mar-
shak Wave problem, with 106 histories per time step.

Figure 8.7 compares the accuracy of IMC, HOLO-TC, and HOLO-BE. These re-

sults were generated using the implicit-like time closure. The solutions are plotted at

t = 3 sh, with 106 histories per time step for all simulations. As demonstrated, there
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is good agreement among the results. It is noted that this problem can be accurately

modeled with the Backward Euler time discretization, but the MC time closure ap-

pears to be stable even in the mix of optically thick and thin regions. Table 8.3

compares sample statistics for IMC, the HOLO-TC method with the implicit-like

and diamond-like closures, and the HOLO-BE method. As demonstrated, at the

lower history count (300,000), the HOLO-TC algorithm demonstrates a greater vari-

ance than IMC, but is more efficient at the higher batch size. The HOLO-BE method

is significantly more efficient for comparable accuracy in this problem with a very

optically thick region.

Table 8.3: Comparison of sample statistics for the end of time step radiation energy
densities, of the last time step, for the Marshak wave problem and maximum time
step of 0.01 sh. Simulation end time is t = 3.0 sh.

‖s‖a,rel FOM

hists./step IMC HOLO-TC (2) HOLO-BE (2) IMC HOLO-TC (2) HOLO-BE (2)

HOLO-TC using Implicit-Like Closure

300,000 2.25% 3.42% 0.30% 1.00 0.43 2050

1,000,000 1.27% 0.31% 0.17% 0.94 15.95 1806

HOLO-TC using Diamond-Like Closure

300,000 – 3.53% – – 0.41 –

1,000,000 – 0.37% – – 10.94 –

8.3.3.1 Importance Sampling on Interior of the Time Step

The importance sampling algorithm detailed in Sec. 8.1.3 was investigated for

the Marshak wave problem. In particular, various values of psurv with a fixed value

of 2 MFP of survival distance were investigated. Sample statistics were measured
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for the HOLO-TC algorithm and the case of two batches of 100,000 histories per

time step, with a max time step size of 0.01 sh. The importance sampling algorithm

was found to generally increase the variance for this problem. This is likely caused

by the fact that when no importance sampling is used, in the very thick cells essen-

tially no particles reach the census. In such cells, because the ECMC algorithm is

estimating the difference between the first batch’s estimate of I(x, µ) and Ĩn+1(x, µ),

it just accepts I(x, µ) as In+1(x, µ). The initialization of the solution to the first

batches estimate of I(x, µ) is sufficient to produce visually accurate results because

the problem is evolving slowly, although this a biased result due to under-sampling of

the phase space. When importance sampling is used, then more particles reach the

census, increasing variance overall. If too many particles are sampled near the end of

the time step, then the variance of the time-averaged solution increases, decreasing

accuracy over all.

Table 8.4: Comparison of sample statistics using importance sampling on the interior
of the time step, for the Marshak Wave problem. Simulation end time is t = 1.0 sh
and max ∆t is 0.01 sh.

psurv FOM

No Bias 1

0.05 0.001

0.1 0.005

0.25 0.179

0.5 0.003
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9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

We have implemented and tested a new HOLO algorithm for 1D, grey TRT

problems. The HO solver utilizes ECMC, and the LO system is based on half-range

angular moments and LDFE spatial moments. Overall, the LO solver can accurately

and efficiently resolve the solution in diffusive regions, while the HO transport solver

provides the accuracy of a full transport treatment where necessary. Our HOLO

method produces accurate solutions for Marshak wave test problems that are in

agreement with IMC. Unlike IMC, our method requires no effective scattering events

to be included in the MC simulation, which limits the run time of particle tracking,

while adding the cost of a LO Newton solver. The LDFE spatial representation

mitigates issues with teleportation error, producing results with spatial accuracy that

is better than IMC with source tilting at coarser meshes. The LDFE discretization of

the LO system and material temperature was also shown to preserve the equilibrium

diffusion limit. The efficiency of the LO system allows for nonlinearities in the system

to be resolved with Newton iterations. The fully nonlinear system with an implicit

discretization prevents maximum principle violations. Even though damping of the

Newton iterations was required for convergence to prevent violations, an advantage

of the HOLO method is that there is no additional cost for the HO solution when

the damped method is used. Typically, the HO solver will be the most expensive

portion of the algorithm. We have also implemented iterative solution methods to

the LO equations using the GMRES and standard source iteration approaches. A

nearly-consistent DSA method was able to significantly reduce the number of required

scattering iterations for the source iteration approach.
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The ECMC algorithm was shown to be more statistically efficient than standard

MC as a HO solver for TRT problems. The residual formulation with an initial

guess based on the previous radiation intensity results in efficient reduction of sta-

tistical error. Overall, the ECMC algorithm is more effective than standard MC in

the HOLO context where it is necessary to accurately estimate the angular intensity

globally to produce consistency terms in each spatial cell. The systematic source

sampling algorithm distributes particles to regions of the problem where the solu-

tion varies greatly over the time step. For problems where the LDFE space-angle

trial space can reasonably approximate the solution, mesh refinement allows for ex-

ponential convergence and improved FOM values. In problems with optically thick

regions and strong solution gradients, the residual formulation of ECMC can still

improve efficiency throughout the domain. Once a maximum refinement level has

been achieved and the error has stagnated, the final batch of particle histories can

be extended to increase statistical accuracy in the final estimate of the error, but

at the standard MC convergence rate. Fixups for the HO solver based on rotating

negative solutions to produce a positive solution were investigated. With a positive

representation of the intensity, the LO solutions were found to be stable and accu-

rate for the problems tested. The addition of an artificial source was found to be

inaccurate, due to the effects it had on the solution in down stream cells. Generally,

local modifications to the residual are ineffective due to the effect on other regions of

the problem. However, at least for the problems tested, even with rapid stagnation

the residual formulation of ECMC leads to high statistical efficiency.

The linear doubly-discontinuous (LDD) trial space was introduced to estimate the

HO solution at faces, allowing for a parametric spatial closure of the LO equations.

For problems where the LD trial space can reasonably resolve the solution, a HO

spatial closure was able to increase discrete consistency between the HO and LO
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solutions and improve accuracy in the L2 norm. The accuracy for cell-averaged

mean intensities was not improved due to the additional statistical noise in the face

tallies and inaccuracies in the HO moment equations for the ECMC solver because

of the residual formulation. In problems where the solution is not resolved by the

LD representation, the inconsistencies in the first moment for the HO solver and

the lumped LD LO equations make the spatial closure ineffective and unstable. In

higher dimensions, preserving the spatial accuracy of the HO solution method may

demonstrate a greater accuracy than 1D where the LD spatial closure is third-order

accuracy in the averages. However, the closure is fundamentally limited in accuracy

in diffusive problems because of the requirement of a linear closure for T (x) and

T 4(x).

We have also demonstrated the ability to extend the HOLO algorithm to con-

tinuous treatment of the time variable for radiation terms. The SDD trial space in

the time variable allows for the transport operator to be inverted continuously in the

ECMC algorithm. This improves accuracy for the radiation energy density in opti-

cally thin region compared to a full BE discretization. The parametric LO closure

preserves the accuracy of the HO treatment in the LO moments, with comparable

accuracy for a diamond-like and implicit-like closure. A particular benefit of the

time closure is that I
HO

is most different from IHO,n+1 in problems that are optically

thin. In such problems, the problem is relatively linear, so the closure can However,

in optically thick problems, inaccuracies in the SDD for estimating In+1
HO leads to an

increase in the required number of histories for convergence. In thick problems, the

diamond-like closure can introduce instabilities because of the initial solve in a time

step using CN and statistical noise.
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9.2 Future Work

For the HO solver, extension to higher dimensions is a great task. The main hurdle

to overcome is infrastructure. In particular, the greatest difficulty is a FE, functional

representation in all phase space variables and the ability to track on such a FE mesh;

for 2D grey problems this is a four-dimensional FE space. This required technology

is fundamentally different than the approach in most SN methods. Recently, locally-

adaptive angular quadratures, based on quadrilateral finite-elements in angle, have

been developed [47]. The underlying basis functions of the quadrature sets could be

used for the angular trial space, but the quadratures are far from being the mature

technology needed for our method.

Another difficult issue for our algorithm is when the solution cannot be accurately

represented by the trial space, e.g., in optically thick cells where the solution is driven

negative. The ability to represent the solution accurately in rapidly varying regions

of the problem will be key for generalization of this method to higher dimensions.

In higher dimensions, there will likely be more regions that are difficult to resolve

due to strong spatial gradients resulting from shadowing effects in mixed optically

thick and thin regions. The artificial source approach was not generally affective, but

presents one possible approach to mitigate stagnation. However, a more desirable

method is one that ensures the closure in the LO system is consistent with the HO

representation for the solution in such regions. The HO spatial closure was ineffective

in difficult problems primarily because of inconsistencies in the first moment between

the HO and LO equations.

It is necessary to introduce a fixup method that corrects the first moment equa-

tion in the HO solution and LO solution consistently, but will not affect energy

conservation of the LO equations. A fundamental problem with the lumping rela-
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tion for the LO solution is that the linear reconstruction of the emission source does

reproduce the first moment determined by the LO moment equations. Additionally,

the first moments of the intensity and outflows as estimated with ECMC are not

consistent with the corresponding lumped LO moment equations. This inconsis-

tency produces instabilities when the HO spatial closure was introduced. A strictly

positive trial space representation is likely necessary, although this may be difficult

to extend to higher dimensions and introduces additional computational complexity.

A straight-forward approach would be to apply slope limiters to the temperature and

LD representation of the intensity in the HO and LO equations, although this may

lead to artificial diffusivity of the solution on coarser meshes and convergence issues.

To extend to higher dimensions, our LDFE representation may require the use

of a higher-degree spatial representation for the LO system to achieve the diffusion

limit. Further asymptotic analysis on the method will be applied before implementa-

tion. It may be necessary to use a different LO system (e.g., the non-linear diffusion

acceleration approach in [1]), if the S2-like equations become too inefficient or dif-

ficult to implement in higher dimensions. Although accelerated iterative solution

technique with DSA was demonstrated. Alternatively, a variable Eddington Tensor

approach may provide more stability in rapidly variable regions of the problem while

still allowing for a consistent, LDFE solution that is efficiently solvable. Addition-

ally, future studies should investigate the stability of the S2-like LO closures more

rigorously using a linear Fourier stability analysis.

The HO treatment of the time variable could be improved by replacing the SSD

trial space with an LDFE representation in the time variable. The linear represen-

tation should produce less statistical noise in the end of time step intensity because

all particle tracks contribute to the slope for each element, rather than just those

that reach the end of the time step. However, this trial space would produce a pro-
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jection error for the end of time step intensity based on a linear extrapolation. The

linear representation in time would also produce a more accurate reconstruction of

the scattering source temporally.

However, a linear representation in t requires the sampling algorithm to be sig-

nificantly modified because the L1 integrals for computing the residual magnitude

are now significantly complicated by the tri-linear function. In particular, the in-

tegrals over the interior of the phase-space element when the residual crosses zero

can no longer be analytically evaluated. It may be necessary to incorporate impor-

tance sampling or potentially Markov Chain MC to sample this function [16]. One

potential path forward is to use an importance sampling method for determining

the number of particle histories in each x-µ-t element, where the sampling func-

tion f ∗(x, µ, t) is a PDF for the residual resulting from a step representation of the

solution. The magnitude of the step representation of the residual can be exactly

integrated with quadrature to form the PDF. In such an approach, the magnitude

of the true residual source is being approximated with MC through particle weights,

e.g., w(x, µ, t) = r(x, µ, t)/f ∗(x, µ, t) (this is similar to the method referred to as self-

normalizing importance sampling). Because ECMC is not conservative anyways, the

statistical error in the magnitude of the residual should be acceptable for most prob-

lems. The goal of such an approach is that the step residual will be sufficiently close

to the true residual, with sufficient mesh resolution, to be more statistically efficient

than a simpler approach, e.g., sampling from a uniform function over all phase-space.

Quadrature approximation to the L1 norms of the residual may be more efficient in

some problems. It remains to be seen if this sampling method makes the LD treat-

ment more statistically efficient than the SDD trial space. However, testing the

sampling methodology would be useful for extensions to higher dimensions which

will require a similar treatment.
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APPENDIX A

DERIVATIONS AND RELATIONS FOR THE LO SYSTEM

A.1 Useful Moment Relations for LO Equations

It is useful for derivation and solution of the LO equations to define several

relations between various spatial moments. The following relations are derived for

φ(x), but they can be applied to the moments of general functions. The cell-averaged

φ(x) can be eliminated in terms of the L and R moments using the definition bL,i(x)+

bR,i(x) = 1 as follows:

φi =
1

hi

xi+1/2∫
xi−1/2

1 φ(x)dx (A.1)

=
1

hi

 xi+1/2∫
xi−1/2

bL,i(x)φ(x)dx+

xi+1/2∫
xi−1/2

bR,i(x)φ(x)dx

 (A.2)

=
1

2
(〈φ〉L,i + 〈φ〉R,i) . (A.3)

A similar relation between the first moment and the L and R moments is

φx,i =
3

2
(〈φ〉R,i − 〈φ〉L,i) . (A.4)

The above relations can be inverted to derived a relation for the L and R moments

in terms of the slope and average moments. These moment expressions are defined

purely in terms of integrals, and are independent of the chosen spatial representation.

Once a linear relation on the interior has been assumed, there are useful spatial

closures that can be derived. The standard linear interpolatory expansion, for the
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positive half-range, is restated here:

φ+(x) = φ+
L,ibL,i(x) + φ+

R,ibR,i(x), xi−1/2 < x ≤ xi+1/2. (A.5)

This representation is substituted into the FE basis moment definitions given by

Eq. (3.3) and Eq. (3.4) and the integrals evaluated. The resulting expressions produce

a relation between the edge values and the outflow from a cell, i.e.,

φ+
i,R = 2〈φ〉+R,i − 〈φ〉

+
L,i (A.6)

and

φ+
i,L = 2〈φ〉+L,i − 〈φ〉

+
R,i. (A.7)

As in the standard LDFE discretization with upwinding (for µ > 0) we make the

approximations φ+
i+1/2 = φ+

i,R and φ+
i−1/2 = φ+

i−1,R. Substitution of the above ex-

pressions into the LO equations produce equations exclusively in terms of moment

unknowns. The solution to these equations produces a linear representation over

each cell that is equivalent to those of a standard LDFE Galerkin discretization [33].

To eliminate the LO unknowns in a manner that produces the same moments as

a lumped LDFE Galerkin discretization, the following expression can be used for the

outflow from a cell

φ+
i+1/2 = φ+

i +
φ+
x,i

3
, (A.8)

which in terms of the FE moments is equivalent to φ+
i+1/2 = 〈φ〉+R,i. Inserting this

expression into the radiation moment equations, with the same definition for the

linear representation over the interior of φ+
i+1/2(x) = φL,ibL,i(x) + φR,ibR,i(x), will

produce an equivalent set of unknowns as a linear discontinuous method with matrix
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lumping for the radiation terms. The temperature equation and emission source

must be independently lumped with an analogous defintion of the edge values to

Eq. (A.8). This relation preserves the average within a cell but does not correctly

reproduce the first moment.

A.2 Hybrid Picard-Newton Method for the LO Equations

This section briefly derives the equations for the Picard-Newton method solution

to the nonlinear LO equations, with the LDFE representation of the temperatures,

based on the approach in [14]. The Picard iterations are necessary because material

properties are lagged within each Newton Steps, neglecting that portion of the Ja-

cobian. Because we have only considered problems with constant densities and heat

capacities, the linearization described below is in terms of temperature T rather than

material internal energy, for simplicity. However, the linearization can be formed in

terms of internal energy to apply this method to a general equation of state.

To formulate the linear equations for each Newton step, the Planckian source is

linearized in the material and radiation equations (Eq. (2.2) & Eq. (2.1)). Application

of the first order Taylor expansion in time to the implicit emission source σaac(T
n+1)4,

about some temperature T ∗ at some time t∗ ∈ [tn, tn+1], yields

σn+1
a acT 4,n+1 ' σ∗aac

[
T ∗4 + (T n+1 − T ∗)4T ∗3

]
, (A.9)

where σ∗a ≡ σa(T
∗). Substitution of this expression into Eq. (2.2) yields

ρcv

(
T n+1 − T n

∆t

)
= σ∗aφ

n+1 − σ∗aac
[
T ∗4 + (T n+1 − T ∗)4T ∗3

]
. (A.10)
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Algebraic manipulation of this equation yields an expression for T n+1 − T ∗:

(
T n+1 − T ∗

)
=

σ∗a∆t

ρcv
[φn+1 − acT ∗4] + (T n − T ∗)

1 + σ∗aac∆t
4T ∗3
ρcv

.

This expression is substituted back into Eq. (A.9) to form an explicit approximation

for the emission source at tn+1 as

σaacT
4,n+1 ' σ∗a(1− f ∗)φn+1 + f ∗σ∗aacT

4,n + ρcv
1− f ∗

∆t
(T n − T ∗) (A.11)

where f ∗ = [1 + σ∗ac∆t4aT
∗3/(ρcv)]

−1 is often referred to as the Fleck factor [7].

Next, the above equation is spatially discretized. Application of the L spatial

moment yields

〈σ∗aacT 4,n+1〉L,i = σ∗ai(1− f ∗i )〈φn+1〉L,i + f ∗i σ
∗
aiac

(
2

3
T 4,n
L,i +

1

3
T 4,n
R,i

)
ρicvi

1− f ∗i
∆t

[
2

3

(
T nL,i − T ∗L,i

)
+

1

3

(
T nR,i − T ∗R,i

)]
, (A.12)

where T 4,n and T n have been assumed LD and f ∗ is assumed constant over a cell,

i.e., f ∗i ≡ f(T ∗i ). The error introduced by a constant f ∗ approaches zero as the

non-linearity is converged because T ∗ approaches T n+1. Based on an estimate for

T ∗, Eq. (A.12) is an expression for the Planckian emission source in the radiation

moment equations with an additional effective scattering source. A similar expression

can be derived for 〈σa,iacT 4〉R and the right moment equations. The expressions for

the emission source is substituted into the discrete radiation moment equations,

(Eq. (3.18)–(3.21)) to produce a linear system of equations for the new radiation

intensity moments (upon closure of the moment equations).
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Once the linear equations have been solved for new radiation moments, new

temperature unknowns can be estimated. To conserve energy, the same linearization

and discretizations used to solve the radiation equation must be used in the material

energy equation. Substitution of Eq. (A.12) into the material energy L moment

equation, i.e., Eq. (3.22), ultimately yields

2

3
T n+1
L,i +

1

3
T n+1
R,i =

f ∗i σ
∗
ai∆t

ρcv

[
〈φn+1〉L,i − ac

(
2

3
T 4,n
L,i +

1

3
T 4,n
R,i

)]
+

(1− f ∗i )

(
2

3
T ∗L,i +

1

3
T ∗R,i

)
+ f

(
2

3
T nL,i +

1

3
T nR,i

)
(A.13)

A similar expression is produced for the R moment equation. This produces a local

matrix equation to solve for new TL,i and TR,i unknowns.

Based on these equations, iterations on the value of the T ∗ and FE unknowns for

φn+1 and T n+1 can be performed to converge the nonlinearities of the system. The

algorithm for solving the LO equations, with iteration index m, is defined as

1. Initialize T ∗,m unknowns using T n or the last estimate of T n+1 from previous

LO solve.

2. Build the LO system based on the effective scattering (1 − f ∗,l) and emission

terms evaluated using T ∗,m.

3. Solve the linearized LO system to produce a new estimate φn+1,m+1.

4. Estimate a new T n+1,m+1 with energy update equation, e.g., Eq. (A.13).

5. T ∗,m+1 ← T n+1,m and φn+1,m ← φn+1,m+1.

6. Repeat 2-5 until (T n+1,m)4 and φn+1,m are converged.
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Convergence is based on the relative L2 spatial norm of the change in φn+1,m and the

emission source σaac (T n+1,m)
4
.

A.2.1 Damped Newton Iterations

The algorithm in the previous section can be modified to improve the stability

of convergence by including a fixed damping factor ξ. In this work, the Newton’s

method is formulated to directly estimate the final solution each step, rather that

in terms of the change in the solution between steps. Thus, an intermediate solve

based on the algorithm in the previous section is performed, followed by a damped

update of the unknowns. The damped Newton’s method algorithm is as follows:

1. Choose a damping factor ξ ∈ (0, 1).

2. Initialize T ∗,m unknowns using T n or the last estimate of T n+1 from previous

LO solve.

3. Build the LO system based on the effective scattering (1− f ∗,m) and emission

terms evaluated using T ∗,m.

4. Solve the linearized LO system to produce an estimate φn+1,m+1/2.

5. Evaluate a new estimate of T n+1,m+1/2 with energy update equations, e.g.,

Eq. (A.13).

6. Compute new temperatures and intensities as

φn+1,m+1 = φn+1,m + ξ
(
φn+1,m+1/2 − φn+1,m

)
T n+1,m+1 = T n+1,m + ξ

(
T n+1,m+1/2 − T n+1,m

)
.

7. T ∗,m+1 ← T n+1,m and φn+1,m ← φn+1,m+1.
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8. Repeat 2-5 until (T n+1,m)4 and φn+1,m are converged.
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APPENDIX B

DERIVATIONS FOR HIGH-ORDER SOLVER

B.1 Analytic Error Contribution for LDD Trial Space

In this section, the treatment of the outflow discontinuity residual source and error

tallying is detailed. Define the additional error contribution from the face sources at

xi+1/2 as δε(m). We have chosen to tally the contribution from these sources with MC

everywhere except for at xi+1/2. Thus, we need to solve for δε(m) at each face xi+1/2

and add that contribution to the tallies ε(xi+1/2, µ), which include the contribution

from all other sources. The transport equation satisfied by δε(m), for positive µ and

effective total cross section σ̂t, is

µ
∂δε(m)

∂x
+ σ̂tδε

(m) = rface(x
−
i+1/2)δ−(x− xi+1/2) + rface(x

+
i+1/2)δ+(x− xi+1/2) (B.1)

This equation is integrated from xi+1/2 − α to xi+1/2 to produce

µδε(m)(xi+1/2, µ)− µδε(m)(xi+1/2 − α, µ) +

0∫
xi+1/2−α

σ̂tδε
(m)dx

= rface(x
−
i+1/2) +

0∫
xi+1/2−α

rface(x
+
i+1/2)δ+(x− xi+1/2)dx. (B.2)

The integral on the right side of the equation is zero because δ+(x − xi+1/2) is zero

for (−∞, xi+1/2]. The limit of the above equation is taken as α→ 0, i.e.,
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lim
α→0

µδε(m)(xi+1/2, µ)− µδε(m)(xi+1/2 − α, µ) +

0∫
xi+1/2−α

σ̂tδε
(m)dx


= lim

α→0
rface(x

−
i+1/2) (B.3)

The integral goes to zero because δε(m) is smooth on the interior of the cell, and

µδε(m)(xi+1/2 − α, µ) goes to zero because there is no source upstream of x−i+1/2.

Thus, the final solution is

δε(m)(xi+1/2, µ) =
rface(x

−
i+1/2)

µ
= Ĩ(m)(x−i+1/2, µ)− Ĩ(m)(xi+1/2, µ). (B.4)

The update equation for I(xi+1/2, µ) is thus

Ĩ(m+1)(xi+1/2, µ) = Ĩ(m)(xi+1/2, µ) + ε(m)(xi+1/2, µ) + δε(m)(xi+1/2, µ) (B.5)

= Ĩ(m)(x−i+1/2, µ) + ε(m)(xi+1/2, µ). (B.6)

B.2 Analytic Answer for Fixed Source Problem

In this section we model a fixed-source, pure-absorber neutral particle transport

calculation with a known analytic answer and spatial moments of the mean intensity

that can be evaluated semi-analytically. For a general isotropic source q(x), the 1D

transport equation to be solved is

µ
∂I

∂x
+ σaI(x, µ) =

q(x)

2
(B.7)

A problem is designed to imitate the two-material problem in Sec. 5.3 for the purpose

of testing the fix-up for the HO solver in Chapter 7. Thus, the domain has two

different constant cross sections and a small isotropic source throughout the domain.
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The boundary conditions are I(0, µ) = Iinc for µ > 0 and I(X,µ) = q(X)
2σa

for µ < 0,

where x = X is the right boundary. For positive directions, this first order differential

equation is solved using an integration factor exp(τ(x)/µ) where τ(x) =
∫ x

0
σa(x

′)dx′.

The solution of Eq. (B.7) for the positive half-range intensity is

I(x, µ) = Iince
−τ(x)/µ +

∫ x

0

q(x′)

2µ
exp

(
τ(x′)− τ(x)

µ

)
dx′, µ > 0. (B.8)

Integration of this result over the positive half range of µ gives

φ+(x) = Iinc E2 [τ(x)] +
1

2

∫ x

0

q(x′) E1 [τ(x)− τ(x′)] dx′, (B.9)

where the linearity of τ(x) has been used to simplify the argument of the E1 function.

The internal volumetric source is now defined as q(x) = q0σa(x), where q0 is a

constant. This definition simulates a floor equilibrium distribution and ensures that

φ−(x) is a constant throughout the domain. This source definition is substituted

into Eq. (B.9) with the following general relation [48]

E1(y) = −d E2(y)

dy
(B.10)

to yield a perfect derivative inside the integral. The resulting solution is

φ+(x) = Iinc E2 [τ(x)] +
q0

2
(1− E2 [τ(x)]) . (B.11)

The solution for the negative half range is

φ−(x) =
q(x)

2σa
=
q0

2
(B.12)
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Combination of the above two equations gives the solution for the mean intensity:

φ(x) = Iinc E2 [τ(x)] +
q0

2
(2− E2 [τ(x)]) . (B.13)

This expression can be integrated over any spatial cell, via high-precision quadrature,

to accurately approximate moments of the mean intensity.
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APPENDIX C

DERIVATION OF THE WLA-DSA EQUATIONS

In this section, we derive the discretized diffusion equation and LD mapping

equations that are used in the WLA-DSA equations. To simplify notation, we derive

the equations from a generic transport equation (rather than the error equations)

with isotropic scattering and source q0, i.e.,

µ
∂I

∂x
+ σtI =

σs
2

(φ(x) + q0) . (C.1)

C.1 Forming a Continuous Diffusion Equation

First, a continuous spatial discretization of a diffusion equation is derived. The

mean intensity φ will ultimately be assumed continuous at faces to produce a stan-

dard three-point finite-difference diffusion discretization. The zeroth and first µ

moment of Eq. (C.1) produce the P1 equations [11, 42], i.e.,

∂J

∂x
+ σaφ = q0 (C.2)

σtJ +
1

3

∂φ

∂x
= 0. (C.3)

The spatial finite element moments (defined by Eq. (3.3) and (3.4)) are taken of the

above equations. The mean intensity is assumed linear on the interior of the cell,

i.e., φ(x) = φLbL(x) + φRbR(x), for x ∈ (xi−1/2, xi+1/2). Taking the left moment,

evaluating integrals, and rearranging yields

Ji − Ji−1/2 +
σa,ihi

2

(
2

3
φL,i +

1

3
φR,i

)
=
hi
2
〈q〉L,i , (C.4)
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where Ji is the average of the flux J over the cell. The moments of q are not simplified

to be compatible with the error equations which are in terms of moments. For the

R moment

Ji+1/2 − Ji +
σa,ihi

2

(
1

3
φL,i +

2

3
φR,i

)
=
hi
2
〈q〉R,i . (C.5)

The equation for the L moment is evaluated for cell i+1 and added to the R moment

equation evaluated at i. The flux J is assumed continuous at i+ 1/2 to eliminate

the face fluxes from the equations. The sum of the two equations becomes

Ji+1 − Ji +
σa,i+1hi+1

2

(
2

3
φL,i+1 +

1

3
φR,i+1

)
+
σa,ihi

2

(
1

3
φL,i +

2

3
φR,i

)
=

h

2
(〈q〉L,i+1 + 〈q〉R,i) . (C.6)

The mean intensity is approximated as continuous at each face, i.e., φL,i+1 = φR,i ≡

φi+1/2. Adding the L and R moments of Eq. (C.3) together, with the continuous

approximation for φi+1/2, produces a discrete Fick’s law equation [49]

Ji = −Di

φi+1/2 − φi−1/2

hi
, (C.7)

where Di = 1/(3σt,i). Substitution of Eq. (C.7) into Eq. (C.6) and rearranging yields

the following discrete diffusion equation:

(
σa,i+1hi+1

6
− Di+1

hi+1

)
φi+3/2 +

(
Di+1

hi+1

+
Di

hi
+
σa,i+1hi+1

3
+
σa,ihi

3

)
φi+1/2

+

(
σa,ihi

6
− Di

hi

)
φi−1/2 =

hi+1

2
〈q〉L,i+1 +

hi
2
〈q〉R,i . (C.8)

To allow for the use of lumped or standard LD in these equations, we introduce the

factor θ, with θ = 1/3 for standard LD, and θ = 1 for lumped LD. The diffusion
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equation becomes

(
σa,i+1hi+1

4
(1− θ)− Di+1

hi+1

)
φi+3/2+

(
Di+1

hi+1

+
Di

hi
+

(
1 + θ

2

)[
σa,i+1hi+1

2
+
σa,ihi

2

])
φi+1/2

+

(
σa,ihi

4
(1− θ)− Di

hi

)
φi−1/2 =

hi+1

2
〈q〉L,i+1 +

hi
2
〈q〉R,i . (C.9)

Summation over all cells forms a system of equations for φ at each face.

C.1.1 Diffusion Boundary Conditions

The upwinding in the LO system exactly satisfies the inflow boundary conditions,

therefore a vacuum boundary condition is applied to the diffusion error equations.

The equation for the left moment at the first cell is given by

J1 − J1/2 +
σa,ihi

2

(
1 + θ

2
φL,i +

1− θ
2

φR,i

)
=
hi
2
〈q〉L,i , (C.10)

The Marshak boundary condition for the vacuum inflow at face x1/2 is given as

J+
1/2 = 0 =

φ1/2

4
+
J1/2

2
, (C.11)

which can be solved for J1/2. Substitution of the above equation and Eq. (C.7) into

Eq. (C.10) gives

(
1

2
+ σa,1h1

1 + θ

4
− D1

h1

)
φ1/2 +

(
σa,1h1

1− θ
4
− D1

h1

)
φ3/2 =

hi
2
〈q〉L,1 (C.12)

A similar expression can be derived for the right-most cell.

C.2 Mapping Solution onto LD Unknowns

Solution of the continuous diffusion equation will provide an approximation to

φ on faces, denoted as φCi+1/2. We now need to map the face solution onto the LD
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representation of φ. To do this, first we take the L and R finite element moments of

the P1 equations. A LDFE dependence is assumed on the interior of the cell for J

and φ. Taking moments of Eq. (C.2) and simplifying yields

Ji+1/2 −
JL,i + JR,i

2
+
σa,ihi

2

(
1

3
φL,i +

2

3
φR,i

)
=
hi
2
〈q〉R,i (C.13)

JL,i + JR,i
2

− Ji−1/2 +
σa,ihi

2

(
2

3
φL,i +

1

3
φR,i

)
=
hi
2
〈q〉L,i (C.14)

The moment equations for Eq. (C.3) are

1

3

(
φi+1/2 −

φi,L + φi,R
2

)
+
σt,ihi

2

(
1

3
JL,i +

2

3
JR,i

)
= 0 (C.15)

1

3

(
φi,L + φi,R

2
− φi−1/2

)
+
σt,ihi

2

(
2

3
JL,i +

1

3
JR,i

)
= 0 (C.16)

The face terms Ji±1/2 and φi±1/2 need to be eliminated from the system. First,

the scalar intensity is assumed to be the value provided by the continuous diffusion

solution at each face, i.e., φi±1/2 = φCi±1/2. Then, the fluxes are decomposed into

half-range values to decouple the equations between cells. At xi+1/2, the flux is

composed as Ji+1/2 = J+
i+1/2 + J−i+1/2, noting that in this notation the half-range

fluxes are J±i+1/2 = ±
∫ ±1

0
µI(xi+1/2, µ)dµ1. We approximate the incoming fluxes,

e.g., J−i+1/2, based on φCi+1/2 and a P1 approximation. The P1 approximation provides

the following relation [42]

φ = 2(J+ − J−). (C.17)

At xi+1/2, the above expression is solved for the incoming current J−i+1/2. The total

1Typically, the half-range fluxes are defined with integrals weighted with |µ|, but this notation
would not be consistent with our definition of the half-range consistency terms.
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current becomes

Ji+1/2 = J+
i+1/2 − J

−
i+1/2 = 2J+

i+1/2 −
φCi+1/2

2
, (C.18)

In the positive direction, at the right face, the values of φ and J are based on the

LD representation within the cell at that face, i.e., φR,i and JR,i. The standard P1

approximation for the half-range fluxes is used[49], i.e.,

J± =
γφ

2
± J

2
, (C.19)

where γ accounts for the difference between the LO parameters and the true P1

approximation. Thus, for the right face and positive half-range,

J+
i+1/2 =

γ

2
φi,R +

Ji,R
2

(C.20)

A similar expression can be derived for xi−1/2. The total fluxes at each face are thus

Ji+1/2 = γφi,R + Ji,R −
φCi+1/2

2
(C.21)

Ji−1/2 =
φCi−1/2

2
− γφi,L + Ji,L (C.22)

Substitution of these results back into the LD balance equations and introduction of

the lumping notation yields the final equations

(
γφi,R + Ji,R −

φCi+1/2

2

)
− JL,i + JR,i

2
+
σa,ihi

2

(
(1− θ)

2
φL,i +

(1 + θ)

2
φR,i

)
=
hi
2
〈q〉R,i

(C.23)
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JL,i + JR,i
2

−

(
φCi−1/2

2
− γφi,L + Ji,L

)
+
σa,ihi

2

(
(1 + θ)

2
φL,i +

(1− θ)
2

φR,i

)
=
hi
2
〈q〉L,i

(C.24)

1

3

(
φCi+1/2 −

φi,L + φi,R
2

)
+
σt,ihi

2

(
(1− θ)

2
JL,i +

(1 + θ)

2
JR,i

)
= 0

(C.25)

1

3

(
φi,L + φi,R

2
− φCi−1/2

)
+
σt,ihi

2

(
(1 + θ)

2
JL,i +

(1− θ)
2

JR,i

)
= 0.

(C.26)

The above equations are completely local to each cell and fully defined, including

cells on the boundary. For simplicity, we just take γ = 1/2 for all results. The system

can be solved for the desired unknowns φi,L, φi,R, Ji,L, and Ji,R, which represent the

mapping of φCi+1/2 onto the LD representation for φ±(x).
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