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ABSTRACT 

 

This dissertation studies three important issues in Chinese financial markets. The 

interdependence structure and information transmission among Chinese cross-listed 

stocks in Shanghai, Hong Kong and New York is examined. Results indicate that the 

home bias hypothesis, which suggests the dominant role of home market in pricing 

information transmission, is strongly supported in contemporaneous time, modestly 

supported at the short horizon and not supported at the long horizon. The Shanghai 

market as the home market is highly exogenous at all horizons. Moreover, the Hong 

Kong market leads the New York market in contemporaneous time. 

Whether interest rates help to forecast stock returns in China is studied using the 

prequential approach. With respect to calibration (reliability), it is found that including 

interest rates in the model improves the model’s ability to issue realistic probability 

forecasts of stock returns – a model of stock returns that does not include interest rates as 

an explanatory variable is not as well calibrated as a model that does include interest 

rates in the stock returns equation. With regard to sorting (resolution), results suggest 

that the model that includes interest rates performs better in distinguishing stock returns 

that actually occur and stock returns that do not occur when compared to a model that 

does not include interest rates in the stock returns equation. Overall, the interest rates 

help in forecasting stock returns in China in terms of both calibration and sorting. 

Two factor analysis methods are investigated through forecasting Chinese 

interest rate based on a factor-augmented vector autoregression (FAVAR). Factors are 
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estimated from 288 Chinese security series to reflect the common forces that drive the 

movements and dynamics in the Chinese equity market. As a result, the factor estimation 

method by Lam and Yao outperforms the traditional principal components analysis 

(PCA) in terms of forecasting accuracy, especially at the short horizons.  
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CHAPTER I 

INTRODUCTION 

 

Rapid economic development and expanding financial openness in China bring 

forth many issues concerning financial aspects of this emerging market. Three of these 

issues are explored in this dissertation. 

In equity markets, there is an increasing trend of Chinese firms choosing to 

cross-list their stock in offshore markets, aiming to take advantage of overseas financing 

channels, lower capital cost and enhancement of corporate governance, as well as other 

considerations. Chapter II examines the information transmission among Chinese cross-

listed stocks in Shanghai, Hong Kong and New York. Much literature studying cross-

listed stocks indicate that the home market of the stocks’ underlying company will have 

dominant impacts on information transmission (Frijns et al., 2010, 2015; Grammig et al., 

2005; Hauser et al., 1998; Kim et al., 2000;). This is consistent with the home bias 

hypothesis, suggesting that cross-listed stocks are expected to be heavily traded in the 

home market, which is geographically proximate to the headquarters of the underlying 

firms. There are also some literature suggests that market quality may also influence a 

market’s contribution in price discovery of cross-listed stocks, besides the geographical 

proximity to the headquarters (Chen et al., 2010; Frijns et al., 2015). Therefore, for 

Chinese cross-listed stocks, whether the home market influence dominates and yields 

results supporting the home bias hypothesis or whether the inferior market quality of the 



2 

 

Shanghai market impeds its leading role in information transmission, leading to results 

against the home bias hypothesis is worth exploring.  

Ten Chinese cross-listed stocks are examined using vector error correction model 

(VECM). The recent advance in inductive causal graphs (Pearl, 1995, 2000; Spirtes et al., 

2000) are used to explore the contemporaneous causal pattern of price transmission for 

cross-listed stocks. Particularly, the recently developed linear non-Gaussian acyclic 

models (LiNGAM) algorithm (Shimizu, Hoyer et al., 2006) is applied. Compared to the 

commonly followed PC algorithm, LiNGAM algorithm is able to exploit the non-

Gaussian nature in data, to infer stronger contemporaneous causal relations. The 

contemporaneous structure generated by LiNGAM is used in forecast error variance 

decompositions, which is adopted to further explore the interdependence structure 

among the cross-listed stocks. The robustness of the estimated model is checked through 

forecasting exercises. The generated one-step-ahead out-of-sample forecasts are 

evaluated using both d-separation and root mean squared errors (RMSEs). 

Besides the equity market, the interest rate market in China has also experienced 

fast development.  A series of implementations have been carried out to improve the 

liberalization of interest rates in China. Many studies have investigated the contribution 

of interest rates in explaining the predictable movements of stock returns and indicate 

that short-term interest rates help in forecasting stock returns (Campbell, 1987, 1991; 

Fama and French, 1988b). One characteristic of this existing literature is that most 

studies conduct examinations based on in-sample tests of model fit. A further 

characteristic of this existing literature is that it focuses on developed economies such as 
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the U.S. market, rather than developing economies such as China. Motivated by these 

two characteristics, Chapter III examines whether interest rates improves the forecasts of 

stock returns in China by emphasizing the role of out-of-sample forecasts instead of in-

sample tests of model fit. 

The prequential analysis is used to study the issue from both calibration 

(reliability) and sorting (resolution) perspectives, following Bessler and Ruffley (2004). 

A VAR model on stock returns and interest rates and a univariate autoregressive (AR) 

model on each series are examined. If the VAR model outperforms the AR model for 

stock returns, it is concluded that interest rates help to predict stock returns. Both a 

bootstrap-like simulation method and a nonparametric kernel-based simulation method 

are used to generate the probability forecasts, which enables the robustness check of the 

results. Several data-driven methods combined with the arbitrary selection method are 

considered for settings of subintervals and events when evaluating probability forecasts. 

In terms of calibration, calibration plots and calibration tests are considered to examine 

whether including interest rates in the model helps to issue realistic forecasts of stock 

returns (be well-calibrated). In terms of sorting, the Brier score and its Yates partition 

are applied to assess whether incorporating interest rates in the model improves the 

model’s ability in distinguishing stock returns that actually obtain (occur)  from stock 

returns that do not obtain.  

Different from Chapter III, which uses the compiled index to represent the main 

information of Chinese equity market, Chapter IV studies two ways of factor estimation 

that can extract a few factors for representing the general movements and dynamics in 
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Chinese equity market. Considering the increasing availability of high-dimensional data 

sets consisting of thousands of economic and financial time series, the question of how 

to summarize the main variation contained in the high-dimensional data through just a 

few factors is of great interest and importance. Factor estimation is capable of achieving 

dimension reduction. In Chapter IV, we aim to compare the commonly followed factor 

estimation method of principal components analysis (PCA) with the new method 

developed by Lam and Yao (2012) through forecast performance evaluation.  

Specifically, a few factors are estimated from 288 return time series of Chinese 

equities. The first group of factors are estimated through PCA based on the number of 

factors selected by the method of Bai and Ng (2002). The second group of factors are 

estimated through the method by Lam and Yao (2012). These two groups of factors are 

fitted with Chinese interest rate in a factor-augmented vector autoregression (FAVAR) 

model respectively. Two sets of forecasts of interest rate are obtained accordingly and 

are evaluated through various statistical measures and tests of forecast accuracy. 

Chapter V summarizes the main results and findings of the above three chapters. 
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CHAPTER II 

INTERDEPENDENCE STRUCTURE OF CHINESE STOCKS CROSS-LISTED IN 

SHANGHAI, HONG KONG AND NEW YORK 

 

2.1. Introduction 

In recent years, China has experienced dramatic economic growth and openness. 

Equity markets in China have experienced rapid expansion since the 1990s. In fact, the 

two stock exchanges in mainland China, Shanghai Stock Exchange (SSE) and Shenzhen 

Stock Exchange (SZSE) were established in 1990 and 1991, respectively. As indicated 

by China Securities Regulatory Commission (CSRC), up to January 2016, the total 

market capitalization of SSE and SZSE has been 40393.6 billion Chinese yuan with 

2828 listing stocks.  

With the globalization of world financial markets, an increasing number of 

Chinese firms choose to cross-list in multiple stock markets. There are various 

advantages of cross-listing stocks in offshore markets (Karolyi, 2006; Roosenboom and 

Van Dijk, 2009; Su and Chong, 2007; Xu and Fung, 2002). First, cross-listing can take 

advantage of oversea financing channels and lower the capital raising cost by 

overcoming the investment barriers due to market segmentation. Second, companies can 

benefit from improved liquidity by cross-listing their stocks in more liquid equity 

markets. Third, cross-listing can strengthen corporate governance and enhance 

information quality because of higher level of information disclosure in offshore markets. 
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Other benefits of cross-listing include increasing global awareness, facilitating foreign 

mergers and acquisitions and so on. 

Cross-listed stocks refer to stocks of the same underlying company that are listed 

on multiple stock markets. Much literature indicates that although both home market 

factors and offshore market factors can influence the returns of cross-listed stocks, the 

home market of the stocks’ underlying company acts as the dominant market and plays a 

leading role in information transmission, since the underlying company is headquartered 

in the home market and most information concerning the company such as business 

activities and revenues is generated in the home market (Frijns et al., 2010, 2015; 

Grammig et al., 2005; Hauser et al., 1998; Kim et al., 2000; Lau and Diltz, 1994; Pascual 

et al., 2006). This is consistent with the home bias hypothesis. The hypothesis implies 

that home market will make the dominant contribution to price discovery and 

information transmission of cross-listed stocks, for cross-listed stocks are expected to be 

heavily traded in the home market, which is geographically proximate to the 

headquarters of the underlying companies, rather than the offshore market, which is 

geographically far away from the headquarters of the underlying companies (Chen et al., 

2010; Xu and Fung, 2002).1 

However, as suggested by Chen et al. (2010) and Frijns et al. (2015), besides the 

geographical proximity to the headquarters, aspects related to market quality may also 

                                                           
1 Home bias hypothesis highlights investors’ preference of investing close to home (French and Poterba, 

1991; Tesar and Werner, 1995). Focusing on domestic equity portfolios, Coval and Moskowitz (1999) 

indicate that within a country, asymmetric information may motivate investors’ preference of investing in 

companies with geographically proximate headquarters and lead them to strongly place weight on equities 

with locally headquartered firms rather than those with overseas headquartered firms.  
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affect a market’s role in price discovery of cross-listed stocks, implying it is possible for 

an offshore market with superior market quality to have overwhelming influence, instead 

of the home market. In fact, a significant part of literature that suggests the leading role 

of home market focuses on studying cross-listed stocks originating from developed 

economies with premium market quality. Will an emerging home market with lower 

level of market quality such as China tell the same story? To answer the question, this 

chapter examines the interdependence structure of Chinese stocks cross-listed in SSE 

(the home market), Hong Kong Stock Exchange (HKEx) and New York Stock Exchange 

(NYSE). HKEx and NYSE are the two most popular offshore markets for Chinese firms 

to cross-list in besides the mainland China.  

The stock market in mainland China has a series of possible insufficiencies and 

restrictions when compared to more developed stock markets like HKEx and NYSE. For 

instance, HKEx and NYSE have higher level of information disclosure and more 

advanced market mechanisms than SSE. The A-share market at SSE is dominated by 

individual investors lacking of investment expertise, while the other two markets contain 

a larger proportion of institutional investors. The A-shares issued at SSE are 

predominately traded by domestic investor. Nevertheless, HKEx and NYSE are open to 

both domestic and international investors (Tan et al., 2008; Wang and Jiang, 2004). Thus, 

the market quality of SSE is not as exceptional as that of HKEx and NYSE (Chen et al., 

2010). Frijns et al. (2015) suggest that better market quality may boost the incorporation 

of new information, improve the efficiency of information transmission and promote a 

market’s contribution in price discovery of cross-listed stocks. Therefore, whether the 
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inferior market quality of SSE will impede its leading role in information transmission 

and lead to results against the home bias hypothesis is worth exploring. Such study 

should allow comment on the efficiency of asset allocation (Xu and Fung, 2002).  

This paper contributes to the literature in several ways. First, most existing 

studies on Chinese cross-listed stocks focus on just two markets such as Shanghai and 

Hong Kong (Cai et al., 2011; Li et al., 2006; Wang and Jiang, 2004) or Hong Kong and 

New York (Su and Chong, 2007; Xu and Fung, 2002). We aim to fill the gap by 

expanding to a multi-market estimation and including all three markets.  

Second, this is the first paper to explore the contemporaneous causal pattern of 

price transmission for cross-listed stocks. Price dynamics across markets are often 

addressed through significance tests of coefficients in the lead-lag models of stock 

returns (Lau and Diltz, 1994; Wang and Jiang, 2004; Xu and Fung, 2002). In this paper, 

the recent advance in inductive causal graphs (Pearl, 1995, 2000; Spirtes et al., 2000) are 

used to examine the contemporaneous causal structure across markets for cross-listed 

stocks. 

Third, two machine learning algorithms are considered to generate the graphical 

representation of contemporaneous causality. In considerable literature, PC algorithm 

has been applied (Awokuse, 2006; Awokuse et al., 2009; Bessler and Yang, 2003; 

Bessler et al., 2011). Oftentimes, however, PC algorithm is not able to distinguish 

observationally equivalent structures due to its assumption of Gaussian distributed data, 

leading to undirected causal relations. In fact, non-Gaussian data is quite common in 

most empirical studies, especially those involve asset prices (Moneta et al., 2013). In this 
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paper, the recently developed linear non-Gaussian acyclic models (LiNGAM) algorithm 

(Shimizu, Hoyer et al., 2006) is applied, which is able to exploit the non-Gaussion nature 

in data to infer stronger contemporaneous causal relations.  

Fourth, a significant part of the cross-listed stock literature aims to explore each 

market’s contribution to the price discovery of cross-listed stocks. Two extensively used 

models are the information shares model of Hasbrouck (1995) and the permanent-

transitory model of Gonzalo and Granger (1995) (Frijns et al., 2010; Pascual et al., 2006; 

Su and Chong, 2007). Hasbrouck’s (1995) method considers correlated innovations and 

incorporates contemporaneous correlations in his metric. However, this method has 

several shortcomings in dealing with the contemporaneous correlations among variables. 

In this paper, we apply the forecast error variance decompositions based on vector error 

correction model (VECM) to explore each market’s role in price discovery. Several 

techniques are combined to address the shortcomings of Hasbrouck’s (1995) method. 

First, Hasbrouck (1995) adopts a commonly followed Choleski factorization, which is a 

lower triangular causal ordering, to contemporaneous correlations. This may cause 

problems such as unrealistic causal assumptions and misleading innovation accounting 

results (Bernanke, 1986; Sims, 1986; Swanson and Granger, 1997; Yang and Bessler, 

2004). Hence, we use a structural factorization, referred to as the “Bernanke ordering”, 

to allow for more general causal ordering (Bernanke, 1986; Sims, 1986). Second, the 

Choleski factorization depends on subjective analysis or prior economic theories to issue 

causal ordering. To minimize the subjective assumptions or prior knowledge, this paper 

applies the inductive causal graphs as a data-determined approach to model the 
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contemporaneous causal structure. This is consistent with the main idea of vector 

autoregression (VAR)-type models to rely on data and diminish a priori restrictions 

(Motena et al., 2013; Sims, 1980a). Third, instead of offering a unique measure of each 

market’s contribution in price discovery, Hasbrouck (1995) gives a range with upper and 

lower bounds, since the information share for a specific market will vary by its order in 

the Choleski factorization (Grammig and Peter, 2013). Lanne and Lütkepohl (2012) 

argue that a unique measure can be obtained through non-Gaussian innovations. Because 

of the LiNGAM algorithm, we are able to discover a unique contemporaneous causal 

ordering and obtain a unique set of forecast error variance decompositions by utilizing 

the non-Gaussian nature of the data. 

The fifth contribution is that the long-run relationship of cross-listed stocks is 

explored using the VECM and cointegration analysis. As suggested by Jorion and 

Schwartz (1986), the same long-run fundamental value will drive cross-listed stocks to 

generate the same risk-adjusted expected returns under perfect market integration. For a 

single stock traded in multiple markets, Hasbrouck (1995) also indicates that the stocks 

have a common implicit efficient price. Stock prices in different markets should be 

mutually linked and adjusted because of arbitrage. Therefore, prices of the cross-listed 

stocks ought to be cointegrated. The issue of cointegration has not been widely 

addressed in the existing literature of cross-listed stocks.  

The remainder of the paper is organized as follows. Section 2 is the literature 

review. Section 3 discusses the methodology of VECM and inductive causal graphs. 
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Section 4 describes the data. The empirical results are presented in Section 5. Section 6 

concludes the chapter.  

 

2.2. Literature Review 

One of the earliest papers on cross-listed stocks is that of Garbade and Silber 

(1979). They examine information transmission among multiple markets using dually-

traded assets and characterize the relations of these markets as dominant-satellite 

relations. They suggest that some markets have dominant influences on determining the 

returns of dually-listed stocks, while the other markets perform as satellite markets and 

exhibit very limited impacts on price adjustment.  

Focusing on cross listed stocks originating from developed markets, many 

studies highlight the importance of the home market in information transmission. 

Grammig et al. (2005) study three German stocks cross-listed in Frankfurt and New 

York. Focusing on only the overlapping trading hours, it is found that the home market 

accounts for most of the price discovery of cross-listed stocks. Kim et al. (2000) analyze 

the foreign securities traded in the US in the form of American Depository Receipts 

(ADRs). Although the prices of ADRs are influenced by both home market and US 

market factors, the home market factor explains more variations in the corresponding 

ADRs. Lieberman et al. (1999) examine Israeli stocks dually-listed in Israel and the U.S. 

It is suggested that the home market plays as a dominant market and has substantial 

influence on the pricing information transmission.  
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Some studies examine the Chinese cross-listed stocks. Wang and Jiang (2004) 

investigate the interrelations of Chinese stocks dually-listed as A-shares in mainland 

China and as H-shares in Hong Kong. As the home market of the selected Chinese 

stocks, the A-share market is highly exogenous and exclusively affected by home market 

factors. For H-share market, both home market factors and Hong Kong factors help 

explain the returns of associated stocks. Chelley-Steeley and Steeley (2012) explore 

Chinese cross-listed stocks in multiple exchanges. They also shed some light on the 

importance of A-share market in information transmission. In addition, they argue that 

the A-share market is relatively isolated without considerable exposure to other 

international markets. Chen et al. (2010) find that the home market plays a dominant role 

in both price discovery and volatility spillover for Chinese stocks cross-listed in 

mainland China and New York.  

 

2.3. Empirical Methodology  

2.3.1. Vector Error Correction Model (VECM) 

Existing literature has well discussed cointegration analysis and the VECM 

(Johansen, 1991; Johansen and Juselius, 1990, 1994). Here we offer a short description 

of a VECM on stock prices that are traded in three markets, Shanghai, Hong Kong and 

New York. A VECM with k-1 lags is presented as: 

∆𝑋𝑡 = 𝛱𝑋𝑡−1 + ∑ 𝛤𝑖𝛥𝑋𝑡−𝑖 + 𝜇 + 𝑒𝑡, (𝑡 = 1, … , 𝑇)                                                   

𝑘−1

𝑖=1

(1) 
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where 𝑋𝑡 is a (3×1) vector of price series at time t, 𝛥𝑋𝑡 is the first difference between 𝑋𝑡 

and 𝑋𝑡−1, 𝛱 and 𝛤𝑖 are (3×3) coefficient matrices, 𝜇 is a (3×1) vector of constants, and 

𝑒𝑡 is an iid (3×1) vector of innovations. Eq. (1) is derived from a levels VAR with k lags.  

The coefficient matrix 𝛱 can be factorized as 𝛱 = 𝛼𝛽′, where 𝛽 (3×𝑟) is the 

cointegrating vectors capturing the long-run dynamics and 𝛼 (3×𝑟) is the short-run 

response to the long-run relations. The rank of 𝛱 is r, the number of cointegrating 

vectors (𝑟 ≤ 3). Testing hypotheses on 𝛽 can be used to identify the long-run structure 

of market interdependence, and the short-run structure can be identified by hypothesis 

tests on 𝛼 and 𝛤𝑖 (Johansen, 1995; Johansen and Juselius, 1994). The contemporaneous 

structure can be identified through inductive causal graphs applied to observed 

innovations, 𝑒̂𝑡 (Pearl, 1995, 2000; Spirtes et al., 2000).  

Given the number of cointegrating vectors, further restriction tests are conducted 

on both 𝛽 and 𝛼. For 𝛽, the hypothesis test of exclusion is formulated as follows: 

ℋ1:  𝛽 = 𝐻𝜑                                                                                                                                   (2) 

The null hypothesis is that a particular series is excluded from the long-run equilibrium 

or the ith row of 𝛽 is all zero. The hypothesis test of weak exogeneity is performed on 𝛼 

to determine whether a particular series adjusts to the deviation from long-run 

equilibrium. The test hypothesis is as follows: 

ℋ2: 𝛼 = 𝛨𝜓                                                                                                                                    (3) 

The null hypothesis is that a particular series does not respond to the perturbation in the 

cointegrating space spanned by 𝛽 or the ith row of 𝛼 has all zero elements. 
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Further analysis of short-run structure involves the examination of Γ𝑖. However, 

the individual coefficients of the VECM are difficult to interpret, particularly the short-

run coefficients (Sims et al., 1990). Innovation accounting procedures are suggested as 

helpful to summarize the short-run dynamic structure (Lütkepohl and Reimers, 1992; 

Sims, 1980a; Swanson and Granger, 1997). Specifically, the VECM in Eq. (1) with k-1 

lags is converted to its corresponding levels VAR with k lags: 

𝑋𝑡 = (1 + Γ1 + Π)𝑋𝑡−1 − ∑(Γ𝑖 − Γ𝑖+1)𝑋𝑡−𝑖−1 − Γ𝑘−1𝑋𝑡−𝑘 + 𝜇 + 𝑒𝑡 (𝑡 = 1, … , 𝑇)

𝑘−2

𝑖=1

  (4) 

Based on the equivalent levels VAR representation (Eq. (4)) with restrictions on 𝛼 and 𝛽 

(summarized in Table 2.3 and Table 2.4), the forecast error variance decompositions is 

applied to study the share of each market in the variation of other markets.  

Here one critical problem involved is the way of treating contemporaneous 

correlations of innovations. The observed innovations 𝑒𝑡 in Eq. (4) is generally not 

orthogonal for there may be contemporaneous innovation correlations among variables. 

Fail to treat the non-orthogonal innovations may cause problems to accurately 

characterize the data dynamics (Sims, 1980). Thus, the non-orthogonal innovations 𝑒𝑡 

are transformed into orthogonal innovations 𝜐𝑡(3×1), which are the driving sources of 

variation in the data: 

𝐴𝑒𝑡 = 𝑣𝑡                                                                                                                                            (5) 

where 𝐴 is a (3×3) matrix of structural parameters. To set up the contemporaneous 

correlations of the variables, a common way is to use the Choleski factorization, which 

is a lower triangular causal ordering. However, Choleski factorization may cause 

problems such as unrealistic causal assumptions and misleading innovation accounting 
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results (Bernanke, 1986; Sims, 1986; Swanson and Granger, 1997; Yang and Bessler, 

2004). In this chapter, a structural factorization is applied to permit a more general 

causal ordering (Bernanke, 1986; Sims, 1986). Accordingly, matrix 𝐴 is a matrix with 

diagonal of ones rather than a matrix with lower triangular structure: 

𝐴 = [

1 𝑎12 𝑎13 
𝑎21 1 𝑎23 
𝑎31 𝑎32   1   

]                                                                                                                  (6) 

By pre-multiplying Eq. (4) by matrix A, Eq. (7) is obtained for the estimation of 

innovation accounting procedures: 

𝐴𝑋𝑡 = 𝐴(1 + Γ1 + Π)𝑋𝑡−1 − 𝐴 ∑(Γ𝑖 − Γ𝑖+1)𝑋𝑡−𝑖−1 − AΓ𝑘−1𝑋𝑡−𝑘

𝑘−2

𝑖=1

 

            +𝐴𝜇 + 𝐴𝑒𝑡  (𝑡 = 1, … , 𝑇)                                                                                                 (7) 

Instead of relying on subjective assumptions and prior economic theories, the 

contemporaneous structure is modeled by inductive causal graphs as a data-determined 

approach. LiNGAM algorithm is used to identify contemporaneous causal ordering and 

impose zero restrictions on matrix 𝐴. According to Doan (1992, pp. 8-10), if there is no 

combination of 𝑎𝑖𝑗 and 𝑎𝑗𝑖 (𝑖, 𝑗 = 1, … ,3) that are both nonzero, the matrix 𝐴 can be 

identified. Since the data in this chapter are non-Gaussian distributed, the 

contemporaneous structure is also uniquely identified under LiNGAM algorithm. As a 

result, a unique measure of each market’s contribution in price discovery can be 

summarized using forecast error variance decompositions.  
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2.3.2. Inductive Causal Graphs 

A directed graph is a graph summarizing the causal flows among a set of 

variables (Pearl, 2000). A more vivid description is a pipeline system transferring water, 

representing dependence and independence in information flows (Spirtes et al., 2000).  

The directed graph consists of vertices (variables), marks (symbols attached to 

the end of undirected edges), and ordered pairs (directed edges or arrows). Arrows 

exhibit the direction of information flow in directed graphs. If there are no edges 

connecting variable X and variable Y, the two variables are conditionally uncorrelated. 

An undirected edge as 𝑋 − 𝑌, indicates variable X and variable Y are conditionally 

correlated. However, whether X causes Y or vice versa could not be determined. If there 

is a directed edge connecting variable X and variable Y as 𝑋 → 𝑌, not only correlation 

but also causation could be inferred (variable X causes variable Y). 𝑋 ↔ 𝑌 describes a bi-

directed edge, indicating that there is an omitted variable which causes both X and Y. In 

this chapter, only directed acyclic graphs (DAGs) are considered to describe the 

contemporaneous causal relations among variables 

 

2.3.2.1. PC Algorithm  

Several machine learning algorithms of inductive causation have been developed. 

As the most widely used algorithm, PC algorithm (Spirtes et al., 2000) incorporates the 

notion of d-separation to direct causal flows. Starting with a complete undirected graph, 

PC algorithm searches causal flows based on conditional independence. The edges of the 

graph are then deleted sequentially if the correlation or conditional correlation of 
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variable pairs is zero. The significance of the estimated correlation or conditional 

correlation is tested using Fisher’s z statistic. If there are M variables, the procedure 

continues until the M-2 order conditional correlation is checked. For the remaining edges, 

the notion of d-separation (Pearl, 1995), also known as sepset, is used to determine 

causal directions. If the edges between two variables are removed conditioning on 

certain variables, these conditioning variables are called the sepset of the variables 

whose edge has been removed. Specifically, for the triples A − B − C, it is directed as 

A → B ← C is B is not in the sepset of A and C. If there is an directed edge as A → B, 

then the causal flow between B and C is B → C. If there is an directed edge as B ← C, 

then the causal relation between A and B is directed as A ← B. 

One type of causal relation is the causal chain (A → B → C). Another causal 

relation is the causal fork (A ← B → C). In both of these cases, A and C are 

unconditionally correlated and become uncorrelated or d-seperated after conditioning on 

B. For the inverted fork (A → B ← C), conditioning on B opens the causal flow between 

A and C.  

PC algorithm is based on the assumption that the variables are Gaussian 

distributed. Under this assumption, no higher-order moment structures are needed since 

second-order moments can provide required information of probability distribution and 

conditional correlation (Shimizu, Hoyer et al., 2006; Shimizu et al., 2012). However, it 

is possible for more than one graph to lead to the same joint probability distribution (e.g. 

𝐴 ← 𝐵 → 𝐶 and 𝐴 → 𝐵 → 𝐶). These observationally equivalent graphs cannot be 

distinguished by PC algorithm (Kwon and Bessler, 2011; Moneta et al., 2013; Pearl, 
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2000). In the graph, the indistinguishable structure is illustrated as undirected edge. PC 

algorithm also assumes “causal sufficiency”, that there is no omitted variable that causes 

two (or more) variables included in the analysis. Clearly, causal sufficiency can be 

violated. Results given below need to be conditioned on such violations.2 

 

2.3.2.2. Linear Non-Gaussian Acyclic Models (LiNGAM)  

Different from PC algorithm, the recently developed LiNGAM algorithm 

(Shimizu, Hoyer et al., 2006) takes advantage of the non-Gaussian nature of data, upon 

which higher-order statistics can be used to yield stronger causal identifications (Dodge 

and Rousson, 2001; Shimizu and Kano, 2008).   

As it is our purpose to apply LiNGAM and not to develop further algorithmic 

extensions, accordingly we offer a brief summary. Papers by Shimizu, Hoyer et al. (2006) 

and Moneta et al. (2013) can be consulted for details. LiNGAM algorithm is conducted 

by applying independent component analysis (ICA) (Hyvärinen et al., 2004; Jutten and 

Herault, 1991; Moneta et al., 2013) to estimate a matrix of mixing coefficients.  In the 

ICA model, the independent signals 𝑠𝑗(𝑗 = 1, … , 𝑚) are summed with coefficients 𝑎𝑖𝑗 to 

generate observed variables 𝑥𝑖(𝑖 = 1, … , 𝑚): 

𝑥 = 𝐴𝑠 = [

𝑎11 … 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑚

] [

𝑠1

⋮
𝑠𝑚

]                                                                                             (8)                                                                                            

                                                           
2 PC algorithm also assumes the “causal Markov condition”: the joint probability of the data can be 

factored into the product of conditional variables where the condition is taken with respect to each 

variable’s “causal parents”.  For exogenous variables, the marginal (unconditional) distribution applies. 

Finally, PC assumes “faithfulness”: if we observe a zero correlation between two variables, this zero arises 

because there is no causation between them and not because of cancellation of deeper parameters (see 

Spirtes et al. 2000 on these assumptions). 
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where x is the collection of observed variables, s is the collection of mutually 

independent components, and A is a matrix of mixing coefficients 𝑎𝑖𝑗(𝑖, 𝑗 = 1, … , 𝑚).  

In LiNGAM, each observed variable 𝑥𝑖  (𝑖 = 1, … , 𝑚) can be described as a 

linear function of the earlier variables and the disturbance 𝑒𝑖: 

𝑥𝑖 = ∑ 𝑏𝑖𝑗𝑥𝑗 + 𝑒𝑖

𝑘(𝑗)<𝑘(𝑖)

                                                                                                               (9) 

where 𝑒𝑖 is a mutually independent and non-Gaussian disturbance, 𝑏𝑖𝑗 represents the 

connection strength from 𝑥𝑗 to 𝑥𝑖, and 𝑘(𝑖) is the causal ordering of 𝑥𝑖 that can be 

illustrated by directed acyclic graphs. The matrix form of LiNGAM is generated as: 

𝑥 = 𝐵𝑥 + 𝑒                                                                                                                                   (10) 

where B stands for the matrix of connection strength. Solving for x will give Eq. (9): 

𝑥 = (𝐼 − 𝐵)−1𝑒 = 𝐴𝑒                                                                                                                (11) 

Generally, ICA-LiNGAM algorithm is used to estimate a separating matrix 𝑊 =

𝐴−1 = 𝐼 − 𝐵. After a series of permutation and normalization, a strictly lower triangular 

estimated matrix 𝐵̃ is obtained to generate the causal ordering. The correct mixing 

matrix can only be identified when data is non-Gaussian, since multiple different mixing 

matrices may yield the same covariance structure if the disturbances are Gaussian 

(Hyvärinen et al., 2004). Non-Gaussian data enables the use of higher-order moments to 

construct tests of model fit and determine causal directions (Moneta et al., 2013; 

Shimizu, Hoyer et al., 2006; Shimizu, Hyvärinen et al., 2006; Shimizu et al., 2012; 

Shimizu and Kano, 2008). The significance of the remaining edges is tested using Wald 
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test. A remaining edge will be pruned out if the corresponding estimated coefficient is 

insignificant under Wald test.  

LiNGAM algorithm is appropriate when at most one of the series is Gaussian 

distributed. The more non-Gaussian the data is, the more accurate the identified causal 

structure is (Shimizu and Kano, 2008). In this chapter, the innovations of all three series 

for each stock are non-Gaussian (evidence cited below). Therefore, LiNGAM algorithm 

is applied, aiming to identify stronger contemporaneous causal relations. LiNGAM, as 

PC, assumes causal sufficiency. Markov condition and faithfulness are not assumed.  

 

2.4. Data 

Up to January 2016, there are ten Chinese stocks cross-listed in Shanghai (A-

shares), Hong Kong and New York (Table 2.1). All these ten stocks are included in the 

estimation. Each stock is associated with three price series representing its prices in all 

three markets, yielding thirty price series in total. Daily closing prices are collected from 

Datastream database. As suggested by Bessler et al. (2011), converting prices in 

different local currencies into prices measured by the same base currency may increase 

exchange rate risk due to currency fluctuations and lead to confounding market 

interrelation results in contagion-type studies. Here all stock series are measured in their 

local currencies and are taken in natural logarithms to account for high volatility in data. 
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Table 2.1 Ten Chinses stocks cross-listed in Shanghai, Hong Kong and New York 
Stocks In-Sample Estimation Out-of-Sample Forecast 

Aluminum Corporation of China Ltd (ACC) 4/30/2007-9/19/2014 9/22/2014-2/6/2015 

China Eastern Airlines Co Ltd (CEA) 11/5/1997-9/19/2014 9/22/2014-2/6/2015 

China Life Insurance Co Ltd (CLI) 1/9/2007-9/19/2014 9/22/2014-2/6/2015 

China Petroleum & Chemical Co (CPC) 8/8/2001-9/19/2014 9/22/2014-2/6/2015 

China Southern Airlines Co Ltd (CSA) 7/25/2003-9/19/2014 9/22/2014-2/6/2015 

Guangshen Railway Co Ltd (GSR) 12/22/2006-9/19/2014 9/22/2014-2/6/2015 

Huaneng Power International Inc (HNP) 12/13/2001-9/19/2014 9/22/2014-2/6/2015 

PetroChina Co Ltd (PTC) 11/5/2007-9/19/2014 9/22/2014-2/6/2015 

Sinopec Shanghai Petrochemical Co (SSP)  11/8/1993-9/19/2014 9/22/2014-2/6/2015 

Yanzhou Coal Mining Co Ltd (YZC) 7/1/1998-9/19/2014 9/22/2014-2/6/2015 

 

 

2.5. Empirical Results 

2.5.1. Stationarity and Structural Breaks 

One important questions involved in the estimation of time series data is the 

stationarity of data. If the data are nonstationary, the usual ordinary least squares 

estimation of the autoregressive model may lead to spurious regression results (Granger 

and Newbold, 1974). The stationarity of each series is tested through the augmented 

Dickey-Fuller (ADF) test (Dickey and Fuller, 1979) and the Phillips–Perron test 

(Phillips and Perron, 1988). Except for the Shanghai series of PTC, which is stationary at 

levels, all other series are nonstationary at levels and stationary after first differencing 

(integrated of order one).  

Failure to account for the time-varying instability in stock market may yield 

unreliable results. Since the data in this chapter cover periods when markets did 

experience high volatility, Bai-Perron test (Bai and Perron, 2003) is performed to test the 
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potential structural breaks. In general, no breaks exist in most of the thirty series.3 In this 

chapter, each set of the three stock series fitted in a VECM is for the same company 

cross-listed in three different markets, suggesting that they tend to move together and to 

not be affected by structural changes. Therefore, it is indeed satisfying to find no breaks 

in general4. 

 

2.5.2. Cointegration and Order of Lags 

Further cointegration tests are performed to detect the potential cointegrating 

relations. Simply using stationary data achieved by first differencing may fail to capture 

the long-run information (Engle and Granger, 1987). Following the studies of Phillips 

(1996) and Wang and Bessler (2005), information criterion (Schwarz-loss and Hannan 

and Quinn-loss metrics) can be used to test the number of cointegrating vectors, the lag 

length in VAR representation and the inclusion of a constant in cointegrating space 

simultaneously. The model used for the simultaneous test is the equivalent levels VAR 

at various lag orders (1-10) and cointegration ranks (1-3). Since additional regressors 

may be over-penalized using the Schwarz-loss metric (Geweke and Meese, 1981), only 

results using Hannan and Quinn-loss metric are considered. Table 2.2 presents 

simultaneous test results for CEA. To save space, results of other firms are not shown 

and are available upon request. Accordingly, all ten stocks agree with one cointegration 

rank with the exception that two cointegration ranks are found for PTC. A constant 

                                                           
3 No breaks are found for seven out of the ten stocks. Breaks are found for two series of ACC, two series 

of PTC and one series of YZC respectively based on BIC information criteria. However, the breaks cannot 

be found when using LWZ information criteria. The volatile results provide stronger support of no breaks.  

4 To save space, the detailed results of unit root test, structural break test and the simultaneous test (in 

Section 2.5.2.) are not reported here in order to save space. But they are available on request. 
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should be included in the cointegrating space for all ten stocks. Different lag lengths are 

suggested for different stocks: 2 for ACC, 3 for CEA, 2 for CLI, 2 for CPC, 3 for CSA, 4 

for GSR, 3 for HNP, 2 for PTC, 4 for SSP and 4 for YZC. 

 

 

Table 2.2 Hannan and Quinn-loss metric on VECM for China Eastern Airlines Co Ltd 

(CEA)a 
    With a constantb     Without a constant   

  r<=1 r<=2 r<=3   r<=1 r<=2 r<=3 

lag=1c -21.800 -21.797 -21.796 
 

-21.798 -21.796 -21.796 

lag=2 -21.839 -21.837 -21.836 
 

-21.838 -21.836 -21.836 

lag=3 -21.846d -21.843 -21.842 
 

-21.844 -21.842 -21.842 

lag=4 -21.845 -21.842 -21.841 
 

-21.843 -21.841 -21.841 

lag=5 -21.842 -21.839 -21.838 
 

-21.84 -21.838 -21.838 

lag=6 -21.839 -21.836 -21.835 
 

-21.837 -21.835 -21.835 

lag=7 -21.835 -21.832 -21.831 
 

-21.833 -21.831 -21.831 

lag=8 -21.831 -21.829 -21.827 
 

-21.83 -21.828 -21.827 

lag=9 -21.827 -21.825 -21.823 
 

-21.825 -21.824 -21.823 

lag=10 -21.826 -21.823 -21.822   -21.824 -21.822 -21.822 

a Hannan and Quinn-loss metric is measured as HQ = log(det(Σ)) +(2.01)(m×k)
log (𝑙𝑜𝑔𝑇)

𝑇
, where Σ is the 

estimated error variance-covariance matrix, m is the number of equations, k is the number of regressors in 

each equation, T is the total number of observations on each series, 𝑑𝑒𝑡(Σ) is the determinant of estimated 

error variance-covariance matrix. 
b With(without) a constant means does(not) include a constant within the cointegrating vectors. 
c The lag indicates lag order for the levels vector autoregression (VAR) model. If there are m lags in the 

levels VAR, there will be (m-1) lags in the equivalent VECM. 
d The minimum loss metric. 

 

 

2.5.3. Identification of Long-Run Structure 

A series exploratory tests are performed to identify the long-run structure. First, 

tests of stationarity are performed to examine whether the cointegrating vector is caused 

since one of the three series for one stock is itself stationary or since there is a linear 

combination of two or three series (Consistent with the tests for non-stationarity 
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discussed above. Here the null hypothesis is stationarity). As a result, except for the 

Shanghai series of PTC, none of the remaining series is stationary by itself. 

 

2.5.3.1. Test of Exclusion 

Table 2.3 presents the results of exclusion tests. For CEA, CLI, CSA, HNP and 

PTC, the null hypothesis that one particular series is excluded from the cointegrating 

space is rejected for all three series. Therefore, for these stocks, the cointegrating vector 

arises because of a linear combination of prices in all three markets. For the other five 

stocks (ACC, CPC, GSR, SSP and YZC), we fail to reject the null hypothesis of 

exclusion in the Shanghai market, indicating that Shanghai is excluded from the long-run 

equilibrium. Perhaps, this suggests the Shanghai market is not efficient. For these stocks, 

accordingly, the series in Shanghai is associated with a zero coefficient in the 

cointegrating space.  
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Table 2.3 Tests of exclusiona 
Series chi-squared p-value Decision 

Aluminum Corporation of China Ltd (ACC) 

Shanghai 0.207 0.649 F 

Hong Kong 724.553 0.000 R 

New York 725.599 0.000 R 

China Eastern Airlines Co Ltd (CEA) 

Shanghai 4.343 0.037 R 

Hong Kong 582.173 0.000 R 

New York 582.177 0.000 R 

China Life Insurance Co Ltd (CLI) 

Shanghai 13.254 0.000 R 

Hong Kong 766.148 0.000 R 

New York 766.366 0.000 R 

China Petroleum & Chemical Co (CPC)  

Shanghai 2.110 0.146 F 

Hong Kong 1095.078 0.000 R 

New York 1095.046 0.000 R 

China Southern Airlines Co Ltd (CSA) 

Shanghai 7.280 0.007 R 

Hong Kong 490.114 0.000 R 

New York 490.114 0.000 R 

Guangshen Railway Co Ltd (GSR) 

Shanghai 2.479 0.115 F 

Hong Kong 250.383 0.000 R 

New York 250.859 0.000 R 

Huaneng Power International Inc (HNP) 

Shanghai 6.448 0.011 R 

Hong Kong 598.491 0.000 R 

New York 598.106 0.000 R 

PetroChina Co Ltd (PTC) 

Shanghai 13.636 0.001 R 

Hong Kong 764.981 0.000 R 

New York 764.592 0.000 R 

Sinopec Shanghai Petrochemical Co (SSP) 

Shanghai 0.802 0.370 F 

Hong Kong 557.392 0.000 R 

New York 556.734 0.000 R 

Yanzhou Coal Mining Co Ltd (YZC) 

Shanghai 0.619 0.432 F 

Hong Kong 406.761 0.000 R 

New York 406.616 0.000 R 
a The tests are performed based on one cointegrating vector (two cointegrating vectors for PTC). The null 

hypothesis is that the particular series is excluded from the long-run relations. If decision is “R”, it means 

we reject the null at 5% significance level. If decision is “F”, it means we fail to reject the null at 5% 

significance level. The test statistic is distributed chi-squared with one degree of freedom (two degrees of 

freedom for PTC). 

 

 



26 

 

2.5.3.2. Test of Weak Exogeneity 

The results of weak exogeneity tests are shown in Table 2.4. The null hypothesis 

is that a particular series does not respond to the disturbances in the long-run relations. 

For CLI, CPC, CSA, GSR, PTC and YZC, all the three series are rejected under null. For 

the other four stocks (ACC, CEA, HNP and SSP), each has one series that is weakly 

exogenous. Particularly, the Shanghai market is weakly exogenous for three stocks. One 

possible reason may be its ownership restriction hinders the information transmission 

from other offshore markets. For these weakly exogenous series, corresponding zero 

coefficients are imposed in the adjustment coefficients.  
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Table 2.4 Tests of weak exogeneitya 
Series chi-squared p-value Decision 

Aluminum Corporation of China Ltd (ACC) 

Shanghai 10.499 0.001 R 

Hong Kong 297.534 0.000 R 

New York 1.599 0.206 F 

China Eastern Airlines Co Ltd (CEA) 

Shanghai 3.751 0.053 F 

Hong Kong 24.725 0.000 R 

New York 128.493 0.000 R 

China Life Insurance Co Ltd (CLI) 

Shanghai 59.760 0.000 R 

Hong Kong 303.456 0.000 R 

New York 8.059 0.005 R 

China Petroleum & Chemical Co (CPC) 

Shanghai 15.452 0.000 R 

Hong Kong 303.833 0.000 R 

New York 28.310 0.000 R 

China Southern Airlines Co Ltd (CSA) 

Shanghai 5.386 0.020 R 

Hong Kong 91.234 0.000 R 

New York 14.400 0.000 R 

Guangshen Railway Co Ltd (GSR) 

Shanghai 5.803 0.016 R 

Hong Kong 74.008 0.000 R 

New York 6.218 0.013 R 

Huaneng Power International Inc (HNP) 

Shanghai 1.345 0.246 F 

Hong Kong 157.642 0.000 R 

New York 10.931 0.001 R 

PetroChina Co Ltd (PTC) 

Shanghai 54.478 0.000 R 

Hong Kong 365.179 0.000 R 

New York 11.997 0.002 R 

Sinopec Shanghai Petrochemical Co (SSP) 

Shanghai 1.081 0.299 F 

Hong Kong 82.976 0.000 R 

New York 36.797 0.000 R 

Yanzhou Coal Mining Co Ltd (YZC) 

Shanghai 4.590 0.032 R 

Hong Kong 49.496 0.000 R 

New York 41.852 0.000 R 
a The tests are performed based on one cointegrating vector (two cointegrating vectors for PTC). The null 

hypothesis is that the particular series does not respond to the perturbation in the long-run relations. If 

decision is “R”, it means we reject the null at 5% significance level. If decision is “F”, it means we fail to 

reject the null at 5% significance level. The test statistic is distributed chi-squared with one degree of 

freedom (two degrees of freedom for PTC). 
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2.5.4. Identification of Contemporaneous Structure 

2.5.4.1. Normality Test of Innovations 

Specific normality tests are conducted to check whether the innovations from 

VECM estimation are Gaussian distributed (Table 2.5). For test of skewness, six out of 

the thirty innovation series fail to reject the null of no skewness at 5% significance level, 

indicating potential symmetrical distribution for these series. However, all series show 

evidence of excess kurtosis. For both the Jarque-Bera test and the Kolmogorov Smimov 

test, the null hypothesis of normal distribution is strongly rejected for all stocks in all 

markets. Figure 2.1 displays the histograms and kernel density curves of the estimated 

innovations. Gaussian distributions with corresponding means and variances are overlaid 

on the same graphs. The graphs mirror quite well the results of normality tests. Thus, 

innovations from all thirty series are non-Gaussian, implying the appropriateness of 

using LiNGAM algorithm in this chapter. 
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Table 2.5 Normality tests of innovations 

 Series Skewness Test a  Kurtosis Test b 
Jarque-Bera 

Test c 

Kolmogorov 

Smirnov Test d 

Aluminum Corporation of China Ltd (ACC) 

Innovation_ Shanghai 0.133** 2.801*** 635.594*** 0.085*** 

Innovation_ Hong Kong 0.574*** 7.764*** 4946.193*** 0.079*** 

Innovation_ New York 0.470*** 4.202*** 1488.474*** 0.086*** 

China Eastern Airlines Co Ltd (CEA) 

Innovation_ Shanghai 0.156*** 3.565*** 2347.542*** 0.090*** 

Innovation_ Hong Kong 1.298*** 22.363*** 92897.912*** 0.084*** 

Innovation_ New York 0.803*** 9.521*** 17089.411*** 0.100*** 

China Life Insurance Co Ltd (CLI) 

Innovation_ Shanghai -0.045 2.812*** 662.010*** 0.071*** 

Innovation_ Hong Kong -0.684*** 10.227*** 8902.279*** 0.069*** 

Innovation_ New York 0.372*** 4.566*** 1789.859*** 0.074*** 

China Petroleum & Chemical Co (CPC) 

Innovation_ Shanghai 0.164*** 8.345*** 9942.213*** 0.091*** 

Innovation_ Hong Kong 0.015 5.342*** 4067.956*** 0.068*** 

Innovation_ New York 0.245*** 6.195*** 5504.364*** 0.084*** 

China Southern Airlines Co Ltd (CSA) 

Innovation_ Shanghai 0.023 2.697*** 881.723*** 0.078*** 

Innovation_ Hong Kong 0.612*** 8.117*** 8164.882*** 0.071*** 

Innovation_ New York 0.429*** 5.017*** 3139.012*** 0.072*** 

Guangshen Railway Co Ltd (GSR) 

Innovation_ Shanghai 0.183*** 4.097*** 1422.080*** 0.077*** 

Innovation_ Hong Kong 0.321*** 3.778*** 1234.166*** 0.063*** 

Innovation_ New York 0.094* 4.186*** 1475.639*** 0.069*** 

Huaneng Power International Inc (HNP) 

Innovation_ Shanghai 0.337*** 6.099*** 5221.890*** 0.078*** 

Innovation_ Hong Kong 0.075* 3.667*** 1867.901*** 0.062*** 

Innovation_ New York 0.137*** 4.717*** 3096.985*** 0.075*** 

PetroChina Co Ltd (PTC) 

Innovation_ Shanghai 0.234*** 5.548*** 2316.133*** 0.098*** 

Innovation_ Hong Kong -0.684*** 11.998*** 10894.230*** 0.064*** 

Innovation_ New York -0.132** 6.483*** 3144.975*** 0.081*** 

Sinopec Shanghai Petrochemical Co (SSP) 

Innovation_ Shanghai -0.712*** 46.714*** 495190.974*** 0.100*** 

Innovation_ Hong Kong 0.099*** 6.272*** 8928.225*** 0.074*** 

Innovation_ New York 0.382*** 4.660*** 5056.632*** 0.069*** 

Yanzhou Coal Mining Co Ltd (YZC) 

Innovation_ Shanghai 0.061 2.822*** 1405.569*** 0.073*** 

Innovation_ Hong Kong 0.283*** 4.439*** 3528.157*** 0.069*** 

Innovation_ New York 0.265*** 4.892*** 4266.624*** 0.078*** 

Notes: *, ** and *** denotes rejection of the null hypothesis at 10%, 5% and 1% significance levels. 
a The null hypothesis for skewness test is a particular series is not skewed (Sk=0). 
b The null hypothesis for kurtosis (excess) test is a particular series has no excess kurtosis (Ku=0). 
c The null hypothesis for Jarque-Bera test is a particular series is normal. 
d The null hypothesis for Kolmogorov Smirnov test is a particular series is normal. 
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                        Shanghai                                       Hong Kong                                    New York 
 

Aluminum Corporation of China Ltd (ACC) 

 
China Eastern Airlines Co Ltd (CEA)              

China Life Insurance Co Ltd (CLI) 

 
China Petroleum & Chemical Co (CPC)                    

China Southern Airlines Co Ltd (CSA)     

 
Figure 2.1 Histograms and kernel density curves of the innovationsa 

a The solid lines illustrate overlaid normal distributions with corresponding means and variances. The dash 

lines illustrate the kernel density curves. The choice of algorithm to calculate the bandwidth will affect the 

smoothness and closeness of the kernel density curves. Different bandwidths are used to generate kernel 

density curve for each series and the shape of the kernel density curve for each series is not sensitive to the 

selection of bandwidth in this chapter. The presenting kernel density curves are generated based on the 

method of Sheather & Jones (1991). 
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                        Shanghai                                       Hong Kong                                    New York 
 

Guangshen Railway Co Ltd (GSR)    

Huaneng Power International Inc (HNP)     

PetroChina Co Ltd (PTC) 

 
Sinopec Shanghai Petrochemical Co (SSP) 

Yanzhou Coal Mining Co Ltd (YZC)       

Figure 2.1 Continued 
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2.5.4.2. Graphical Representations 

Graphs generated using both PC and LiNGAM algorithms are presented in 

Figure 2.2. The restriction that the New York market cannot contemporaneously cause 

the Shanghai and Hong Kong Markets is imposed since the New York market opens 

after the other two markets are closed (Figure 2.3). For all ten stocks, LiNGAM 

algorithm yields stronger causal identifications comparing to PC algorithm. Specifically, 

the contemporaneous information flow between the Shanghai market and the Hong 

Kong market is undirected by PC algorithm for all stocks. However, LiNGAM algorithm 

is capable of sorting out the causal flow from the Shanghai market to the Hong Kong 

market (Appendix A). 
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                                  PC                                                                                         LiNGAM 
 

Aluminum Corporation of China Ltd (ACC) 

                                                                                          
China Eastern Airlines Co Ltd (CEA) 

                                      
China Life Insurance Co Ltd (CLI)            

                                                                                          
China Petroleum & Chemical Co (CPC) 

                                 
China Southern Airlines Co Ltd (CSA) 

                                 
Figure 2.2 Graphs on innovations from the estimated VECM on three price series for 

each stocka 
a The graphs are generated based on the restriction that the New York market cannot cause the Shanghai 

and Hong Kong markets, since the New York market opens after the other two markets are closed on the 

contemporaneous day. The significance level used in PC algorithm is 0.001 and the prune factor used in 

LiNGAM algorithm is 1.  
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Guangshen Railway Co Ltd (GSR) 

                                
Huaneng Power International Inc (HNP) 

                                  
PetroChina Co Ltd (PTC) 

                                  
Sinopec Shanghai Petrochemical Co (SSP) 

                                  
Yanzhou Coal Mining Co Ltd (YZC) 

                                     

Figure 2.2 Continued 



35 

 

 
Figure 2.3 Trading hours of the three stock markets 

 

 

According to the results from LiNGAM, there is a causal chain from the 

Shanghai market to the Hong Kong market and then to the New York market for all 

stocks, indicating the Shanghai market leads the Hong Kong market and the Hong Kong 

market causes the New York market in contemporaneous time. In terms of the market 

interdependence between Shanghai and New York, the Shanghai market plays a leading 

role for CEA, GSR and YZC. For the remaining seven stocks (ACC, CLI, CPC, CSA, 

HNP, PTC and SSP), there is still indirect information flow from the Shanghai market to 

the New York market mediated by the Hong Kong market.  

Overall, the Shanghai market, which acts as the home market for the ten stocks, 

plays a dominant role in contemporaneous information transmission. The home bias 

hypothesis is supported in contemporaneous structure in the ten firm equities studied 

here. This is consistent with the findings of previous literature that the prices of cross-

listed stocks will be highly determined by home market factors (Chen et al., 2010; 

Grammig et al., 2005; Kim et al., 2000; Lau and Diltz, 1994). For the underlying 
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companies of these ten stocks, they are headquartered in mainland China and most of 

their related information is originated from mainland China. Therefore, the Shanghai 

market becomes the main source of information flow. On the other hand, the Shanghai 

market is highly exogenous with no information inflows but just information outflows in 

contemporaneous time, which may be partially due to its trading exclusivity. The 

exogenous role of the Shanghai market is also found in Chelley-Steeley and Steeley 

(2012) and Wang and Jiang (2004). 

The Hong Kong market has remarkably more direct influence on the New York 

market, compared to the Shanghai market. Stronger market integration is also found 

between the two markets.6 One reason is that these stocks are issued as ADRs in the 

New York market based on the underlying stocks traded in the Hong Kong market. 

Another possible reason is that the higher degree of market openness and information 

transparency enhances the interaction between the two markets. 

 

2.5.5. Identification of Short-Run Structure 

Based on the contemporaneous causal structures identified through LiNGAM 

algorithm (Figure 2.2), forecast error variance decompositions are given in Table 2.6. 

Different horizons (steps ahead) are listed with 0 for contemporaneous time, 1 and 2 

days for the short horizon, and 40 days for the long horizon.  

 

                                                           
6 Eun and Shim (1989) suggest the pattern of correlation as an indicator of the degree of market integration. 

The contemporaneous innovation correlation between the Hong Kong and New York markets is around 

0.7 to 0.8 for all ten stocks. The contemporaneous correlations between the Shanghai and Hong Kong 

markets and between the Shanghai and New York markets are approximately 0.2 to 0.5 for all ten stocks.  
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Table 2.6 Forecast error variance decompositionsa, b      
Step Shanghai Hong Kong New York 

 
Shanghai Hong Kong New York 

 

Aluminum Corporation of China Ltd 

(ACC) 

 

China Eastern Airlines Co Ltd (CEA) 

Shanghai 

 
   

0 100.000 0.000 0.000 

 

100.000 0.000 0.000 

1 97.856 0.508 1.635 

 

99.418 0.239 0.342 

2 96.817 0.598 2.585 

 

99.021 0.516 0.463 

40 93.816 0.825 5.360 

 

98.542 1.330 0.128 

Hong Kong 

 
   

0 17.222 82.778 0.000 

 

8.065 91.935 0.000 

1 14.488 68.459 17.053 

 

8.870 89.370 1.759 

2 13.185 62.083 24.733 

 

9.318 87.991 2.691 

40 10.406 48.826 40.767 

 

10.335 85.098 4.567 

New York 

 
   

0 10.000 48.064 41.936 

 

6.656 54.175 39.169 

1 10.400 49.370 40.229 

 

7.396 65.081 27.522 

2 10.375 49.047 40.578 

 

8.000 69.122 22.878 

40 10.227 47.997 41.777 

 

10.016 83.343 6.641 

 
China Life Insurance Co Ltd (CLI) 

 

China Petroleum & Chemical Co (CPC) 

Shanghai 

 
   

0 100.000 0.000 0.000 

 

100.000 0.000 0.000 

1 96.465 0.015 3.519 

 

98.639 0.411 0.951 

2 95.214 0.052 4.734 

 

98.106 0.468 1.427 

40 92.516 0.166 7.318 

 

96.680 0.554 2.766 

Hong Kong 

 
   

0 27.879 72.121 0.000 

 

13.105 86.895 0.000 

1 24.997 60.609 14.394 

 

10.535 80.002 9.464 

2 23.975 55.338 20.687 

 

9.750 76.859 13.391 

40 21.423 44.897 33.680 

 

8.100 67.789 24.111 

New York 

 
   

0 15.598 40.352 44.050 

 

8.055 53.411 38.534 

1 18.304 41.896 39.800 

 

7.968 58.921 33.111 

2 19.102 42.554 38.344 

 

7.941 61.140 30.919 

40 20.699 44.288 35.013 
 

7.964 66.554 25.482 
a For the forecast error variance decompositions, a main problem is how to set up the contemporaneous 

correlation structure. Here, a structural factorization, instead of the Choleski factorization, is applied to 

allow for more general causal ordering. LiNGAM algorithm is used to provide a data-driven as well as a 

unique modeling of the contemporaneous innovation structure. Therefore, for all stocks, the forecast error 

variance decompositions are obtained based on the contemporaneous structures identified through 

LiNGAM as shown in Figure 2.2. 
b The sum of elements in each row may not equal to 1 due to rounding to three decimal places. 
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Table 2.6 Continued  
Step Shanghai Hong Kong New York 

 
Shanghai Hong Kong New York 

 

China Southern Airlines Co Ltd (CSA) 
 

Guangshen Railway Co Ltd (GSR) 

Shanghai 
    

0 100.000 0.000 0.000 
 

100.000 0.000 0.000 

1 98.710 0.559 0.730 
 

99.425 0.005 0.570 

2 97.861 0.883 1.256 
 

98.970 0.013 1.017 

40 96.293 1.305 2.403 
 

97.416 0.014 2.571 

Hong Kong 
    

0 15.055 84.945 0.000 
 

11.023 88.977 0.000 

1 15.717 80.308 3.976 
 

10.551 80.904 8.545 

2 16.856 77.296 5.847 
 

11.256 76.440 12.305 

40 16.647 67.544 15.810 
 

14.554 59.119 26.327 

New York 
    

0 10.346 58.378 31.276 
 

7.953 49.458 42.589 

1 12.172 63.433 24.395 
 

8.741 55.342 35.916 

2 13.532 64.921 21.547 
 

9.786 56.673 33.541 

40 16.037 66.653 17.310 
 

14.347 56.791 28.862 

 

Huaneng Power International Inc 

(HNP) 

 

PetroChina Co Ltd (PTC) 

Shanghai 

 
   

0 100.000 0.000 0.000 

 

100.000 0.000 0.000 

1 99.397 0.260 0.343 

 

95.847 0.148 4.005 

2 98.963 0.578 0.459 

 

94.868 0.174 4.958 

40 98.386 1.195 0.419 

 

94.940 0.373 4.687 

Hong Kong 

 
   

0 5.244 94.756 0.000 

 

12.888 87.112 0.000 

1 4.624 87.009 8.367 

 

9.474 71.664 18.863 

2 4.903 83.660 11.438 

 

8.382 65.021 26.597 

40 4.408 73.092 22.500 

 

4.480 54.922 40.598 

New York 

 
   

0 3.331 60.190 36.479 

 

6.868 46.422 46.710 

1 3.324 64.656 32.019 

 

6.923 50.617 42.459 

2 3.560 66.630 29.810 

 

6.733 51.124 42.143 

40 4.092 71.615 24.294 

 

4.364 53.851 41.786 
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Table 2.6 Continued  
Step Shanghai Hong Kong New York 

 
Shanghai Hong Kong New York 

 

Sinopec Shanghai Petrochemical Co 

(SSP) 

 

Yanzhou Coal Mining Co Ltd (YZC) 

Shanghai 

    0 100.000 0.000 0.000 

 

100.000 0.000 0.000 

1 99.907 0.046 0.047 

 

99.351 0.110 0.538 

2 99.895 0.036 0.069 

 

98.860 0.190 0.950 

40 99.904 0.077 0.019 

 

97.958 0.484 1.558 

Hong Kong 

    0 3.062 96.938 0.000 

 

5.664 94.336 0.000 

1 3.050 93.862 3.088 

 

6.214 90.217 3.569 

2 3.277 91.979 4.744 

 

6.727 88.292 4.981 

40 4.286 83.636 12.079 

 

7.065 82.268 10.667 

New York 

    0 1.980 62.662 35.358 

 

5.062 57.025 37.913 

1 2.445 70.028 27.527 

 

5.914 65.374 28.712 

2 2.830 73.296 23.874 

 

6.336 68.763 24.910 

40 4.247 81.241 14.512 
 

7.009 79.807 13.184 

 

 

The Shanghai market acts as an isolated island in terms of receiving information 

at all horizons for all stocks. In contemporaneous time, the variation in the Shanghai 

market is exclusively explained by its own innovations (100%). At both short and long 

horizons, the Hong Kong and New York markets together explain less than 5% of 

volatility in the Shanghai market for most stocks. The exogenous Shanghai market is 

consistent with our findings in Figure 2.2.  

In contemporaneous time, volatility in the Hong Kong market is substantially 

explained by innovations from the Shanghai market for most stocks (approximately 10% 

to 30%). At the short horizon, the Shanghai market still accounts for a non-trivial share 

of price movements in the Hong Kong market and is the most influential market other 

than Hong Kong for most stocks. However, when moving to the long horizon, the 

importance of the Shanghai market is taken over by the New York market. In particular, 
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at the 40-days-ahead horizon, price information from the New York market explains 

over 30% variation in the Hong Kong market for ACC, CLI and PTC, which is almost 

equivalent as Hong Kong’s own influence. The New York market, even if it is not the 

home market, apparently still plays a role in global information transmission. This is 

consistent with the literature suggesting New York as a global financial center and 

highlighting its impact on price movements in other markets (Arshanapalli and Doukas, 

1993; Bessler and Yang, 2003; Eun and Shim, 1989; Xu and Fung, 2002).  

The New York market is dominated by the Hong Kong market at both short and 

long horizons. For all stocks, the Hong Kong market explains more variations in the 

New York market than the New York market itself, accounting for almost more than 50% 

volatility in the New York market. The Shanghai market only has a modest contribution 

to the price movement in the New York market and its impact is much less relative to the 

Hong Kong market, especially at the long horizon.  

In sum, the importance of the home market, Shanghai, diminishes over time and 

its leading role (the home bias hypothesis) is only modestly supported at short horizon 

but not at long horizon. Rather, the Hong Kong and New York markets are observed 

with non-trivial and growing influences on each other along with the horizon. Consistent 

with the results found in Figure 2.2, the degree of market integration and market 

interdependence between Hong Kong and New York markets increases as the horizon 

increases (similar possible explanations can be found in Section 2.5.4.2).  
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2.5.6. Robustness Check: Forecasting Performance 

As a check of robustness, the estimated VECM is compared with a benchmark 

model, the autoregressive integrated moving average (ARIMA) model, through recursive 

forecasting performance. The model is re-estimated and the parameters are updated at 

each step as the model moves through the forecasting period. 

Following Bessler and Wang (2012), point forecasts from the VECM and 

ARIMA model are evaluated by the idea of d-separation. If one model dominates the 

other, the information flow from the less preferred model to the actual data will be 

blocked (d-separated) by the preferred model. Therefore, d-separation can serve as a 

criterion of model selection.  

Figure 2.4 shows the causal structures among the forecasts from the two models 

and the actual realization of stock prices. Take ACC as an example. For the Shanghai 

market, the information flow from ARIMA forecasts to the actual realization is blocked 

by VECM forecasts, indicating the VECM is able to capture all the useful information 

contained in the ARIMA model for the next-step actual data. For the Hong Kong and 

New York markets, neither model can dominate the other since both models show 

unblocked paths to the actual realization. As a result, we say VECM forecasts dominant 

ARIMA forecasts for stock ACC. Similar statement summarizing the superiority of 

VECM is also found in other seven stocks (CEA, CLI, CPC, CSA, HNP, PTC and SSP). 

ARIMA forecasts dominate VECM forecasts for only two out of the ten stocks (GSR 

and YZC). As a result, d-separation results imply the appropriateness of using the 

estimated VECM in general. 
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As a supplement to the d-separation evaluation, the adequacy of VECM is 

reaffirmed by testing point forecasts using root mean squared error (RMSE). The results 

are listed in Table 2.7. For each stock, if VECM forecasts have lower RMSE than 

ARIMA forecasts in at least two of the three markets, we say the VECM performs better 

than the ARIMA model in terms of forecasting for that particular stock. As a result, 

VECM forecasts dominate ARIMA forecasts for nine out of the ten stocks.7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
7 We consider results from a panel specification (Love and Zicchino, 2006) as an alternative to comment 

on aggregate behavior. Here we group stocks having the same contemporaneous innovation structures 

together. For firms having a complete directed graph on innovations (CEA, GSR and YZC): Shanghai → 

Hong Kong, Hong Kong → New York and Shanghai → New York, the panel VAR gives the same causal 

structure on innovations as shown in their individual models. However, for firms having no edge between 

Shanghai and New York in their individual results (ACC, CLI, CPC, CSA, HNP, PTC and SSP), the 

underlying causal structure on innovations from the panel VAR shows  an edge between Shanghai and 

New York in addition to the edges present in their individual models. Therefore, in this case, the panel 

aggregation does not conflate the underlying qualitative causal structures to a large extent. This 

“aggregation” issue is left for future study. 
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                        Shanghai                                       Hong Kong                                    New York 
 

Aluminum Corporation of China Ltd (ACC) 

 
China Eastern Airlines Co Ltd (CEA) 

 
China Life Insurance Co Ltd (CLI) 

 
China Petroleum & Chemical Co (CPC) 

 
China Southern Airlines Co Ltd (CSA) 

 

Figure 2.4 Graphs on actual realization and forecasts from the VECM and ARIMA 

model 
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Figure 2.4 Continued 
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Table 2.7 Root mean squared error  
Series VECM ARIMA   VECM ARIMA 

 

Aluminum Corporation of China Ltd 

(ACC) 

 

China Eastern Airlines Co Ltd (CEA) 

Shanghai 0.03205* 0.03231 

 

0.03753* 0.03781 

Hong Kong 0.02229* 0.02231 

 

0.02846* 0.02900 

New York 0.02468* 0.02494 

 

0.02932* 0.03060 

 
China Life Insurance Co Ltd (CLI) 

 

China Petroleum & Chemical Co (CPC) 

Shanghai 0.03947* 0.04122 

 

0.02602* 0.02611 

Hong Kong 0.01970* 0.02282 

 

0.01343* 0.01499 

New York 0.02357* 0.02372 

 

0.01694 0.01677* 

 
China Southern Airlines Co Ltd (CSA) 

 

Guangshen Railway Co Ltd (GSR) 

Shanghai 0.03421* 0.03469 

 

0.03212 0.03198* 

Hong Kong 0.02872* 0.02945 

 

0.02011 0.01959* 

New York 0.02900* 0.02920 

 

0.01871* 0.01887 

 

Huaneng Power International Inc 

(HNP) 

 

PetroChina Co Ltd (PTC) 

Shanghai 0.02792* 0.02840 

 

0.02966* 0.03007 

Hong Kong 0.02213* 0.02373 

 

0.01614* 0.01797 

New York 0.02549* 0.02554 
 

0.02010 0.01996* 

 

Sinopec Shanghai Petrochemical Co 

(SSP) 

 

Yanzhou Coal Mining Co Ltd (YZC) 

Shanghai 0.02502 0.02492* 
 

0.03529* 0.03536 

Hong Kong 0.02145* 0.02225 
 

0.02089 0.02037* 

New York 0.02236* 0.02267 
 

0.02225* 0.02341 

Notes: * indicates the smaller RMSE value between VECM and ARIMA. 

 

 

2.6. Conclusion 

This chapter aims to investigate the interdependence structure and information 

transmission among Chinese stocks cross-listed in Shanghai, Hong Kong and New York. 

Many studies examine cross-listed stocks originating from developed markets with high 

market quality and find results consistent with the home bias hypothesis, indicating that 

home market will play a leading role in information transmission of cross-listed stocks 

(Frijns et al., 2010; Kim et al., 2000; Lau and Diltz, 1994),. We want to explore whether 
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the home bias hypothesis still holds for Chinses cross-listed stocks considering China is 

an emerging market with inferior market quality.  

Several contributions of the chapter are summarized as follows. First, this chapter 

fills the gap of previous studies on Chinese cross-listed stocks by extending to a multi-

market analysis and including all three markets of Shanghai, Hong Kong and New York. 

Hong Kong and New York are the two most popular offshore stock markets for Chinese 

firms to cross-list in. Second, this is the first chapter to examine the contemporaneous 

causal structure of cross-listed stocks using inductive causal graphs. Third, by exploiting 

the non-Gaussian nature in data, the newly developed machine learning LiNGAM 

algorithm is capable of offering stronger contemporaneous causal relations that cannot 

be identified through the traditional PC algorithm. This is also a new attempt in the 

related area.  Fourth, short-run interdependence structure is examined through forecast 

error variance decompositions. Rather than using the Choleski factorization and 

determining causal ordering from subjective assumptions or prior economic theories, we 

obtain the forecast error variance decompositions based on contemporaneous structures 

identified through structural factorization and LiNGAM algorithm. LiNGAM algorithm 

is capable of providing a data-determined as well as a unique modeling of the 

contemporaneous structure, which facilitates a unique measure of each market’s 

contribution to price discovery. Fifth, VECM and cointegration analysis are used to 

explore the long-run relationship of cross-listed stocks. 

As the home market of the selected cross-listed stocks, the Shanghai market 

plays a dominant role in contemporaneous information transmission. As discovered by 
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LiNGAM logarithm, there are either direct or indirect information flows transmitting 

from the Shanghai market to both the Hong Kong and New York markets. The 

contemporaneous interdependence structure of cross-listed stocks has never been 

explored by previous literature. Nevertheless, in dynamic (lagged) time, the Shanghai 

market shows modest impact on other markets at the short horizon and fails to play a 

nontrivial role at a longer horizon. Instead, the Hong Kong and New York markets, 

which are suggested with superior level of market quality (Chen et al., 2010), tend to 

exhibit increasing influences on each other along with the horizon. Thus, the importance 

of the Shanghai market weakens as horizon increases. The home bias hypothesis is 

strongly supported for these Chinese cross-listed stocks in contemporaneous time, 

modestly supported at the short horizon and not supported at the long horizon. Perhaps, 

the potential deficiencies of the Shanghai market does not impede its leading role in 

contemporaneous information transmission, but retards its efficiency and information 

communication with other markets when moving to longer horizon.  

In addition, the Shanghai market is highly exogenous at all horizons. The 

variations of Shanghai-listed stock prices are predominantly explained by the shocks in 

their own innovations. The exogenous role of the Shanghai market is also backed 

through the tests of weak exogeneity (Table 2.4) and the market-pair scatter plots of 

innovations from the estimated VECM (Footnote 3). It seems that the ownership 

restriction of A-shares has blocked the Shanghai market from receiving outside 

information to some degree. Chelley-Steeley and Steeley (2012) and Wang and Jiang 
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(2004) also find evidence indicating the Shanghai market is exogenous in pricing 

information transmission.   

The Hong Kong market causes the New York market in contemporaneous time 

and shows substantial influence on the New York market at both short and long horizons. 

The market integration gets stronger between the Hong Kong and New York markets as 

the horizon increases, with a bidirectional impact. It is worth mentioning that, contrary 

to the highly exogenous Shanghai market, both the Hong Kong and New York markets 

have more exposure to other markets. One possible explanation for these results is that 

the stocks issued in the New York market are ADRs with underlying stocks traded in the 

Hong Kong market. Another possible explanation is that the market quality in the Hong 

Kong and New York markets is higher (i.e. higher degree of economic openness and 

market transparency), which improves the efficiency of information transmission 

between the two markets. 
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CHAPTER III 

STOCK RETURNS AND INTEREST RATES IN CHINA:  

THE PREQUENTIAL APPROACH 

 

3.1. Introduction 

Interest rates and term structure variables can serve as predictors of real 

economic activity such as output and consumption (Chen, 1991; Estrella and 

Hardouvelis, 1991; Harvey, 1988, 1989; Sims, 1980b). Stock returns are found to be 

positively related to various real economic activities and can be considered as indicators 

of expected future output (Fama, 1981; Patelis, 1997). Further interest rate related 

variables, which reflect underlying macroeconomic conditions, can help in forecasting 

stock returns (Campbell, 1991). 

The contribution of interest rates to the predictable movements of stock returns 

has been extensively discussed in the literature. By regressing expected common stock 

returns on the one-month treasury bill rate, Fama and Schwert (1977) find the estimated 

coefficient to be significantly negative. The significant negative relationship is also 

found between expected returns of common stock and the change of treasury bill rate, as 

a proxy of the change of expected inflation rate. Campbell (1987) forecasts excess 

returns of stock using predictors such as the one-month treasury bill rate and spreads 

between interest rates with different maturities. Based on the Wald tests of estimated 

coefficients and the 𝑅2 statistics of regression, it is suggested the short-term interest 

rates and the term structure of interest rates have modest but reliable power in explaining 
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excess stock returns. Campbell (1991) extends the analysis to a vector autoregressive 

(VAR) model and argues modest but statistically significant result that relative interest 

rates help to forecast stock returns. By comparing the 𝑅2 values generated from his VAR 

model with that from Fama and French (1988b)'s univariate autocorrelation model of 

stock returns, it is shown that multivariate model has stronger explanatory power. The 

promoting role of short-term interest rates in forecasting stock returns is also supported 

in other papers (Campbell and Ammer, 1993; Cutler et al., 1991; Fama and French, 1989; 

Hashemzadeh and Taylor, 1988).  

One characteristic of this literature is that most studies examine the influence of 

short-term interest rates on forecasting stock returns based on in-sample tests of model 

fit. A common method is to regress stock returns on potential forecasting variables such 

as interest rates and dividend and price ratio. The predictive capability of the forecasting 

variables is evaluated based on the significance tests of estimated coefficients and the 

marginal 𝑅2 statistics (Campbell and Shiller, 1988). However, as suggested by Stock and 

Watson (2001), the in-sample significance tests may fail to provide substantial 

information to identify stable predictors. They take advantage of out-of-sample forecasts 

to assess predictors of economic output and inflation. Granger (1980) also argues that 

causality should be examined based on out-of-sample forecasts rather than on in-sample 

tests of model fit.  

Another characteristic of this literature is that it focuses on developed economies 

such as the U.S. market. Very few studies have examined interest rates’ predictive role 

in stock returns in China. Different from the developed economies, interest rates in 
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China have been highly controlled and regulated by the central bank (the People’s Bank 

of China) (Porter and Xu, 2009). This may lead to inconsistent results of the interrelation 

between stock returns and interest rates, comparing to the literature listed above (Fang et 

al., 2016). However, China started the liberalization of interest rates by allowing the 

interbank offered rates to be determined on a market basis in 1996. Since 2013, the 

liberalization of interest rates in China has experienced momentous development by 

fully eliminating the regulations on loan rates and lifting the upper bound on deposit 

rates of financial institutions. In late 2015, the liberalization of interest rates mainly 

completed. Particularly, as an important implementation in interest rates liberalization, 

the Shanghai Interbank Offered Rate (Shibor) was introduced, which is targeted as the 

benchmark interest rate in Chinese monetary market. Now the Shibor has become one of 

the most market-based interest rates in China. It is expected that the market-based Shibor 

should well reflect the changes in macro-economy and improve the forecasts of asset 

prices. 

Motivated by these two characteristics, we explore whether interest rates help in 

predicting stock returns in China by emphasizing the role of out-of-sample forecasts 

instead of in-sample tests of model fit. Following Bessler and Ruffley (2004), 

prequential analysis is applied to study the issue from both calibration (reliability) and 

sorting (resolution) perspectives. A two variable VAR model on stock returns and 

interest rates and a univariate autoregressive (AR) model on each series are examined. If 

the VAR model outperforms the AR model for stock returns, then including interest 

rates improves the forecasts of stock returns.  
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This chapter contributes to the existing literature in several ways. First, this is the 

first attempt to use prequential analysis to study the role of interest rates in predicting 

stock returns in China. Prequential analysis refers to a system where probability 

forecasts for future observations are issued sequentially given a set of currently known 

data (Dawid, 1984, 1985). Suppose for a 𝑚×1 vector time series 𝑋𝑡, a sequence of 

observed data are 𝑥𝑡
′ = (𝑥1𝑡, … , 𝑥𝑚𝑡), 𝑡 = 1, … , 𝑇. At time T, a set of probability 

distributions 𝑃𝑇,ℎ = (𝑃𝑇+𝑗; 𝑗 = 1, … , ℎ) are assigned for unknown obervations 𝑋𝑇+𝑗, 𝑗 =

1, … , ℎ, based on the known observations 𝑥𝑡 , 𝑡 = 1, … , 𝑇. A ‘prequential forecasting 

system’ (PFS) is defined as a rule P, where a choice of 𝑃𝑇,ℎ is matched with each T value 

and each set of realized outcomes 𝑥𝑡, 𝑡 = 𝑇 + 1, … , 𝑇 + ℎ (Dawid, 1984).  

A PFS is judged based on its forecasting ability. Dawid (1984) introduces the 

prequential principal: a rule P can only be assessed through the sequence of its issued 

probabilities. Therefore, the sequence of out-of-sample predictive distributions and the 

subsequent actual realizations are evaluated to judge the ‘goodness’ of a PFS system. 

Such system is not assessed through prior considerations, such as goodness of model fit 

or agreement with economic theories. This principal echoes the instrumentalism idea of 

Friedman (1953) and the idea of Granger (1980) which asserts the role of out-of-sample 

forecasts in causality tests.  

The second contribution is that both a bootstrap-like simulation method and a 

nonparametric kernel-based simulation method are used in the generating process of 

probability forecasts. Third, most literature using prequential analysis classify 

subintervals and events based on arbitrary selection. In this chapter, several data-driven 
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methods, such as the rule of Sturges (1926) and the normal scale rule of Scott (1979), are 

considered for settings of subintervals and events when evaluating probability forecasts. 

Fourth, Yates’ (1988) idea of slope, as a symbol of a model’s sorting ability, is extended 

to a multiple-event case for the prequential analysis of continuous data. In addition, 

covariance graphs are presented to graphically illustrate the idea of slope. 

The organization of the chapter is as follows. Section 2 presents the methods 

used to evaluate the prequential forecasting system. Section 3 describes the empirical 

estimation procedures and data. The empirical results are discussed in Section 4 and 

Section 5 is the conclusion of the chapter.  

 

3.2. Assessment of Probability Forecasts 

3.2.1. Calibration 

Calibration is suggested as a measure of the adequacy of probabilities by 

Lichtenstein et al. (1982). Dawid (1984) proposes the calibration criterion to assess 

‘goodness’ of probability forecasts by comparing the issued probabilities for a sequence 

of future observations with their relative frequency. If the ex post relative frequency of 

all events which are issued with a probability of 𝑝∗, is in fact 𝑝∗, the PFS is treated as 

well-calibrated. For example, for a group of events, the occurrence probability of each 

event is issued as 0.6 by a model. If 60% of these events actually occur, the model is said 

to be well-calibrated at 60%. Calibration is similar to the relative frequency definition of 

probability. However, the latter idea looks at repeated events under identical conditions, 
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while the former idea requires no such conditions. Rather, it requires agreement of 

relative frequencies with ex ante probabilities.  

Dawid (1984) applies the probability integral transform to evaluate the adequacy 

of a PFS. For continuous quantities 𝑋𝑖,𝑡+ℎ with continuous distribution functions 𝐹𝑖,𝑡+ℎ, 

the random fractiles 𝑈𝑖,𝑡+ℎ = 𝐹𝑖,𝑡+ℎ(𝑋𝑖,𝑡+ℎ) are uniformly distributed random variables 

at [0,1]. For discrete quantities 𝑋𝑖,𝑡+ℎ, the random fractiles also follow uniform 

distribution with discontinuous functions. As a result, for both cases, if the PFS is well-

calibrated, the associated observed fractiles 𝑢𝑖,𝑡+ℎ = 𝐹𝑖,𝑡+ℎ(𝑥𝑖,𝑡+ℎ) should follow 

uniform distribution U[0,1] with cumulative distribution functions 𝐺(𝑢𝑖,𝑡+ℎ) = 𝑢𝑖,𝑡+ℎ.  

The same assessment idea can be achieved through the graphical representation 

of calibration. The calibration plot has been widely used in the analysis of subjective 

probabilities (Fischohoff et al., 1977; Lichtenstein et al., 1982). It graphs realized fractile 

(x-axis) against the relative frequency (y-axis). The fractile (quantile) is determined by 

fitting the actual outcome in the corresponding cumulative distribution function for a 

forecasting data point. It represents the realization under the estimated distribution.  For 

a PFS to be well-calibrated, its calibration plot should be an approximate 45-degree line. 

The deviation of calibration plot from the 45-degree line is the miscalibration of a PFS. 

The calibration plot is attained from the estimated cumulative distribution 

function, 𝐺̂(𝑈𝑖,𝑡+ℎ), which is referred to as the ‘calibration function’ (Bunn, 1984). A 

sequence of realized fractiles 𝑢𝑖,𝑡+ℎ = 𝐹𝑖,𝑡+ℎ(𝑥𝑖,𝑡+ℎ), 𝑡 = 1, … , 𝑇 are sorted in ascending 

order to formulate a T-element sequence: 𝑢𝑖,ℎ(1), … , 𝑢𝑖,ℎ(𝑇). The calibration function of 

these observed fractiles are calculated as follows: 
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𝐺̂[𝑢𝑖,ℎ(𝑗)] = (𝑗 𝑇⁄ ), 𝑗 = 1, … , 𝑇                                                                                              (12)                                             

The judgement of well-calibration based on calibration plot is somewhat 

subjective since there is no formal definition of how close a PFS should be to the 45-

degree line in order to be treated as well-calibrated. Dawid (1984) suggests a formal test 

of calibration. If there is a sequence of T ascending observed fractiles, the sequence can 

be mapped into a unit interval, which is exhausted into J nonoverlapping subintervals 

with length of 𝐿𝑗 (0 ≤ 𝐿 ≤ 1) for each subinterval j. If a PFS is well-calibrated (null 

hypothesis), it is expected that (𝑇 ∗ 𝐿𝑗) observed fractiles will fall into subinterval j for 

each j. The test can be constructed by comparing the actual number of realized fractiles 

in subinterval j, 𝑦𝑗, and the expected number of realized fractiles in subinterval j, 𝑇 ∗ 𝐿𝑗 . 

Eq. (13) is the goodness-of-fit statistic. 

𝜒2 = ∑ [(𝑦𝑗 − 𝑇 ∗ 𝐿𝑗)
2

𝑇 ∗ 𝐿𝑗⁄ ] ∼ 𝜒2(𝐽 − 1)                                                                 (13)𝐽
𝑗=1                                

The test statistic is compared to the chi-squared statistic with J-1 degrees of freedom. If 

it is larger than the chi-squared critical value, the null hypothesis of well-calibration is 

rejected. Kling and Bessler (1989) appear as the early users of these ideas in economics. 

 

3.2.2. Brier Score and Yates Partition 

Calibration focuses on the forecasting model’s reliability by checking the 

consistency of issued probability forecasts and the event relative frequency. Besides 

calibration, maximizing a model’s sorting ability in distinguishing events that occur 

from events that do not occur is also of interest (Murphy and Winkler, 1987). For this 

purpose, the mean probability score, also known as the Brier score (Brier, 1950) is 
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considered, which contains components representing both calibration (reliability) and 

sorting (resolution).  

The Brier score of a single event takes a quadratic form as 

𝑃𝑆̅̅̅̅ (𝑝, 𝑑) = 1 𝑇⁄ ∑ (𝑝𝑡 − 𝑑𝑡)2                                                                                              (14)𝑇
𝑡=1                                              

where t is the occasion index with 𝑡 = 1, … , 𝑇, 𝑝𝑡 is the issued probability forecast for 

occasion t, and 𝑑𝑡 is an indicator of occurrence at occasion t (𝑑𝑡 = 1, if the event occurs 

at occasion t; 𝑑𝑡 = 0, if the event does not occur at occasion t). The minimum value of 

Brier score is 0 when probability 1 is issued to all occasions for which the event actually 

occurs (𝑝𝑡 = 𝑑𝑡 = 1) and probability 0 is issued to all occasions for which the event 

does not occur (𝑝𝑡 = 𝑑𝑡 = 0). If the model issues probability 0 to occasions where the 

event actually occurs (𝑝𝑡 = 0, 𝑑𝑡 = 1) and issues probability 1 to occasions where the 

event turns out to not occur (𝑝𝑡 = 1, 𝑑𝑡 = 0), the Brier score finds its maximum value 

of 1. Hence, we expect the dominant model to have a smaller Brier score. 

Yates (1988) partitions the Brier score into various components for an in-depth 

evaluation of probability forecasts. His ‘covariance decomposition’ can be applied to 

both discrete and continuous probability forecasts (Bessler and Ruffley, 2004). The 

Yates partition is written as  

𝑃𝑆̅̅̅̅ (𝑝, 𝑑) = 𝑉𝑎𝑟(𝑑) + 𝑆𝑐𝑎𝑡(𝑝) + 𝑀𝑖𝑛𝑉𝑎𝑟(𝑝) + 𝐵𝑖𝑎𝑠2 − 2 ∗ 𝐶𝑜𝑣(𝑝, 𝑑)                     (15)           

𝑉𝑎𝑟(𝑑) is the variance of the occurrence indicator 𝑑𝑡 and describes what the base 

rate is for the target event to occur. Consequently, it reflects the variability beyond the 

forecasting model’s control in most cases. The formula of 𝑉𝑎𝑟(𝑑) is defined as  

𝑉𝑎𝑟(𝑑) = 𝑑̅(1 − 𝑑̅)                                                                                                                   (16)                                                   
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in which 𝑑̅ is the mean of occurrence indicator over T occasions given as 

𝑑̅ = 1 𝑇⁄ ∑ 𝑑𝑡                                                                                                                          (17)𝑇
𝑡=1                                                         

The term of Bias is calculated as 

𝐵𝑖𝑎𝑠 = 𝑝̅ − 𝑑̅                                                                                                                               (18)                                                           

where 

𝑝̅ = 1 𝑇⁄ ∑ 𝑝𝑡                                                                                                                          (19)𝑇
𝑡=1                                                       

𝐵𝑖𝑎𝑠 measures to which extent the issued probabilities are biased. Thus, the 𝐵𝑖𝑎𝑠2 

represents the overall calibration error no matter the error is positive or negative. 

The covariance of probabilistic forecast and occurrence indicator is calculated as  

𝐶𝑜𝑣(𝑝, 𝑑) = [𝑆𝑙𝑜𝑝𝑒(𝑝)][𝑉𝑎𝑟(𝑑)]                                                                                          (20)                                         

The 𝑆𝑙𝑜𝑝𝑒(𝑝) term is given as  

𝑆𝑙𝑜𝑝𝑒(𝑝) = 𝑝1̅̅̅ − 𝑝0̅̅ ̅                                                                                                                   (21)                                                  

in which  

𝑝1̅̅̅ = 1 𝑇1⁄ ∑ 𝑝1𝑡
𝑇1
𝑡=1                                                                                                                     (22)                                                   

𝑝0̅̅ ̅ = 1 𝑇0⁄ ∑ 𝑝0𝑡
𝑇0
𝑡=1                                                                                                                     (23)                                                   

𝑝1̅̅̅ is the mean of probabilities issued to the 𝑇1 occasions for which the event actually 

obtains.  𝑝0̅̅ ̅ is the mean of probabilities issued to the 𝑇0 occasions for which the event 

does not obtain. We have 𝑇 = 𝑇1 + 𝑇0. The term 𝑆𝑙𝑜𝑝𝑒(𝑝) is the difference between 𝑝1̅̅̅ 

and 𝑝0̅̅ ̅. It reaches its maximum value of 1 when perfect forecasts are made (𝑝𝑡 = 𝑑𝑡 = 1 

for the 𝑇1 occasions, 𝑝𝑡 = 𝑑𝑡 = 0 for the 𝑇0 occasions). The 𝐶𝑜𝑣(𝑝, 𝑑) term is the most 

essential element for evaluating probability forecasts in the sense that it reflects a 

model’s sorting ability because of 𝑆𝑙𝑜𝑝𝑒(𝑝). We want the forecasting model to generate 
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a large 𝐶𝑜𝑣(𝑝, 𝑑) value, by assigning high probabilities to occasions for which the event 

actually occurs and assigning low probabilities to occasions for which the event does not 

occur.  

The 𝑆𝑐𝑎𝑡(𝑝) is defined as 

𝑆𝑐𝑎𝑡(𝑝) = (1 𝑇⁄ )[𝑇1𝑉𝑎𝑟(𝑝1) + 𝑇0𝑉𝑎𝑟(𝑝0)]                                                                       (24)                             

where 

𝑉𝑎𝑟(𝑝1) = 1 𝑇1⁄ ∑ (𝑝1𝑡 − 𝑝1̅̅̅)2𝑇1
𝑡=1                                                                                           (25)                                       

𝑉𝑎𝑟(𝑝0) = 1 𝑇0⁄ ∑ (𝑝0𝑡 − 𝑝0̅̅ ̅)2𝑇0
𝑡=1                                                                                           (26)                                       

𝑉𝑎𝑟(𝑝1) is the variance of probabilities assigned to the 𝑇1 occasions where the event 

actually occurs and 𝑉𝑎𝑟(𝑝0) is the variance of probabilities assigned to the 𝑇0 occasions 

where the event does not occur. The term 𝑆𝑐𝑎𝑡(𝑝) reflects the total noise in a PFS that is 

extraneous to the occurrence of target event.  

𝑀𝑖𝑛𝑉𝑎𝑟(𝑝) is calculated as 

𝑀𝑖𝑛𝑉𝑎𝑟(𝑝) = 𝑉𝑎𝑟(𝑝) − 𝑆𝑐𝑎𝑡(𝑝)                                                                                          (27)                                      

where 𝑉𝑎𝑟(𝑝) is the forecast variance. 𝑀𝑖𝑛𝑉𝑎𝑟(𝑝) acts as the variance of effect 

variables, reflecting the minimum forecast variance that must be tolerated if the model 

makes its fundamental forecasts. 𝑆𝑐𝑎𝑡(𝑝) corresponds to the variance of errors. 

Overall, all components other than 𝑉𝑎𝑟(𝑑) in Brier score are controllable under 

the forecasting model. In order to gain a minimized Brier score, we want to minimize 

𝑀𝑖𝑛𝑉𝑎𝑟(𝑝), 𝑆𝑐𝑎𝑡(𝑝) and 𝐵𝑖𝑎𝑠2. However, the 𝐶𝑜𝑣(𝑝, 𝑑) term, which is of the most 

importance in probability forecasting, needs to be maximized.  
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The Brier score and Yates partition can be extended to multiple events. 

Following Murphy (1972), the multiple-event Brier score for an N-event case is defined 

as  

𝑃𝑆𝑁̅̅ ̅̅ ̅̅ (𝑝, 𝑑) = ∑ 𝑃𝑆̅̅̅̅ (𝑝, 𝑑)𝑛
𝑁
𝑛=1                                                                                                   (28)                                           

Therefore, the N-event Brier score is equal to the summation of the mean probability 

scores of all N events. The Yates partition for the N-event case is given by Yates (1988) 

as well: 

𝑃𝑆𝑁̅̅ ̅̅ ̅̅ (𝑝, 𝑑) = ∑ 𝑉𝑎𝑟(𝑑𝑛) + ∑ 𝑆𝑐𝑎𝑡(𝑝𝑛)𝑁
𝑛=1 + ∑ 𝑀𝑖𝑛𝑉𝑎𝑟(𝑝𝑛)𝑁

𝑛=1
𝑁
𝑛=1   

                         + ∑ (𝐵𝑖𝑎𝑠𝑛)2 − 2 ∑ 𝐶𝑜𝑣(𝑝𝑛, 𝑑𝑛)                                                       (29)𝑁
𝑛=1

𝑁
𝑛=1                                    

where the subscript n indexes one of the N events. 

 

3.3. Data and Empirical Estimation  

Here prequential analysis is used to study the relationship between stock returns 

and interest rates in China. The log return of stock is calculated using Shanghai Stock 

Exchange Composite Index (SSECI) and the interest rate is measured by the 3-month 

Shibor. Daily data from 2013 to 2015 are collected. Based on the augmented Dickey-

Fuller (ADF) test (Dickey and Fuller, 1979) and the Phillips–Perron test (Phillips and 

Perron, 1988), the stock return series is stationary while the interest rate series presents a 

unit root. After detrending daily interest rates through a first difference transformation, 

the series appear stationary. Thus, the following estimations are applied on stock returns 

and relative interest rates (the changes in interest rates). 
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The lag length is selected based on Schwarz Information Criterion for both VAR 

and AR models. As a result, the VAR model is generated as a first-order process. For the 

AR model of stock returns, zero lag is suggested, indicating that here the stock index fits 

in a random walk model. One lag is selected for the AR model of interest rates.  

The first half of the data set is used for tests of model specification (230 

observations). The remaining sample data are considered as the forecast period for 

generating one-step-ahead out-of-sample probability forecasts (229 observations).  

Following Fair (1986) and Kling and Bessler (1989), two aspects of uncertainty 

are considered to generate the cumulative distribution functions for each out-of-sample 

time point – uncertainty in estimated parameters and uncertainty in estimated innovation. 

We can take the VAR model as an example: 

𝑋𝑡 = 𝐴(𝐵)𝑡𝑋𝑡−1 + 𝑢𝑡                                                                                                                 (30)                                                

where 𝐴(𝐵)𝑡 is the parameter matrix of the model at time t. Given the estimated 

parameter matrix 𝐴̂(𝐵)𝑡 and its variance-covariance matrix 𝑉𝑡 = 𝑃𝑡𝑃𝑡
′, the elements of 

𝐴(𝐵)𝑡 are assumed to be normally distributed as 𝐴(𝐵)𝑡~𝑁(𝐴̂(𝐵)𝑡, 𝑉𝑡). The draws of the 

parameter matrix 𝐴(𝐵)𝑡
∗ can be attained through the random generations from the 

following equation: 

𝐴(𝐵)𝑡
∗ = 𝐴̂(𝐵)𝑡 + 𝑃𝑡𝑒𝑡                                                                                                               (31)                                                

where 𝑒𝑡 is a vector of draws from the standard normal distribution.8  

With respect to the simulation of innovation 𝑢𝑡+1
∗ , two methods are considered. 

The first is a bootstrap-like method to draw from the reshuffled historical innovations. 

                                                           
8 The actual program used is an updated version of the RATS program used in Kling and Bessler (1989). 
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The second is to simulate from the kernel distribution function of the historical 

innovations.9 As a nonparametric method, kernel estimation makes statistical inference 

on population of data based on a finite sample. It is able to estimate the probability 

density function of a random variable without prior assumption of its distribution. Here, 

𝑈𝑘 is a random variable of innovations for variable k (k=1 or 2 in our case) and 

(𝑢𝑘,1, … , 𝑢𝑘,𝑡) are the iid historical innovations at time t. The kernel estimator (Parzen, 

1962) for the density function of 𝑈𝑘 is  

𝑓ℎ̂(𝑢𝑘) = 1 𝑡⁄ ∑ 𝐾ℎ(𝑢𝑘 − 𝑢𝑘,𝑖) = 1 𝑡ℎ⁄ ∑ 𝐾(𝑢𝑘 − 𝑢𝑘,𝑖 ℎ⁄ )                                    (32)𝑡
𝑖=1

𝑡
𝑖=1                 

where 𝐾ℎ(𝑥) = 1 ℎ⁄ ∗ 𝐾(𝑥 ℎ⁄ ) is the kernel function and h is the bandwidth for data 

smoothing. Accordingly, the kernel estimator for the distribution function of 𝑈𝑘 is  

𝐹ℎ̂(𝑢𝑘) = ∫ 𝑓ℎ̂(𝑦)𝑑𝑦                                                                                                              (33)
𝑢𝑘

−∞
                                                 

The Altman and Leger (1995)'s plug-in method with an unbiased cross-validation is 

implemented to select bandwidth in kernel distribution estimation. Therefore, in the rest 

of the chapter, simulation 1 refers to the method where innovations are simulated from 

the reshuffled historical innovations, while simulation 2 refers to the method where 

innovations are simulated from the kernel distribution estimation of historical 

innovations.  

                                                           
9 The Portmanteau test by Box and Pierce (1970) and the modified Portmanteau test by Ljung and Box 

(1978) are used to examine the autocorrelation in the historical innovations. As a result, the historical 

innovations from the estimated VAR model of stock returns show no autocorrelation for 196 out of the 

229 forecasting dates. The historical innovations from the estimated AR model of stock returns show no 

autocorrelation for 197 out of the 229 forecasting dates. In terms of interest rate, historical innovations 

from both estimated models exhibit no autocorrelation for all 229 forecasting dates. 
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If the draws of parameter matrix and innovation are both repeated for 1000 times 

at each t, we can get 1000 one-step-ahead forecasts 𝑋𝑡+1
∗  at each t+1 as 

𝑋𝑡+1
∗ = 𝐴(𝐵)𝑡

∗𝑋𝑡 + 𝑢𝑡+1
∗                                                                                                             (34)                                              

For each forecast date t+1, the associated cumulative distribution function is estimated 

based on the 1000 simulated forecasts 𝑋𝑡+1
∗ . The forecasts are generated recursively in 

the sense that the model is re-estimated and the estimated parameter matrix and the 

historical innovations are updated as the model moves forward one data point at each 

out-of-sample time horizon. 

 

3.4. Empirical Results 

3.4.1. Results of Calibration  

Calibration plots from both the VAR and AR specifications using different 

simulation methods are presented in Figure 3.1.10 To evaluate whether the models are 

well-calibrated, we investigate the calibration plots visually to see how close they are to 

the 45-degree line. Both simulation methods generate very similar results. However, the 

plots from simulation 2 (Figure 3.1: Panel B) are closer to the 45-degree line compared 

to those from simulation 1 (Figure 3.1: Panel A) for each series and each model.  

For stock returns, plots of the VAR and AR models are in line with the 45-degree 

line with modest amount of deviation. The plots of the VAR model are closer to the 45-

                                                           
10 We also consider performance of probability forecasts from the ‘linear opinion pool’, as suggested by 

Stone (1961). For calibration plot and calibration test, we average the densities of the VAR and AR 

models at each forecasting time point. For Brier score and Yates partition in the following Section 4.2, 

probability forecasts are an average of the densities of the VAR and AR models in each event (mutually 

exclusive and exhaustive events) at each forecasting time point. The linear opinion pool probability 

forecasts do not improve the forecasting performance relative to the best model described below. 
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degree line relative to those of the AR model, indicating the probability forecasts from 

the VAR model are better calibrated. Both models show over confidence on their 

forecasts since their realized fractiles lie below the 45-degree line. In terms of interest 

rates, the first half of the observed fractiles shows larger deviation from the 45-degree 

line and appears not to be as well-calibrated as the second half for both models. Except 

the fractile range of 0.45 to 0.70, the plots of the VAR model tend to be closer to the 45-

degree line. 

In sum, consistent results in terms of model superiority are obtained under both 

simulations. The VAR model appears to outperform the AR model for stock returns, 

since its probability forecasts seem to have higher degree of well-calibration. For interest 

rates, it is difficult to tell the dominance between the two models. All these judgments, 

however, are obtained through visual inspection of the calibration plots, which may fail 

to draw objective conclusions on the performance of probabilistic forecasts. 
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Figure 3.1 Calibration plots on probability forecasts from simulation 1 (Panel A) and 

simulation 2 (Panel B). 
Notes:  

1) The solid line represents the plot of VAR model and the dash line represents the plot of AR model.  

2) In simulation 1, the innovations are simulated from the reshuffled historical innovations. In simulation 2, 

the innovations are simulated from the kernel distribution of the historical innovations.  

 

 

The chi-squared goodness of fit test is carried out as a formal test of calibration. 

For the calibration test, an unspecified issue is how many subintervals (J) to select. 
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Bessler et al. (2015) argue that the classification of subintervals should consider the 

subjective judgements of field experts. However, the choice of the number of 

subintervals in most prequential analysis studies is somewhat arbitrary. Following 

Bessler and Kling (1990), we select 10 subintervals.  

Referring to the extensive literature discussing the optimal number of bins (or 

optimal bin width) for a histogram, more data-based methods are considered to 

determine the optimal number of subintervals (bins) in this chapter. Sturges (1926) 

proposes one of the earliest rules to choose the number of bins for histogram (Scott, 

2015), which is given as 

𝑘̂ = 1 + 𝑙𝑜𝑔2(𝑛)                                                                                                                         (35)                                                    

where 𝑘̂ is the estimated bin number, 𝑙𝑜𝑔2 is to take logarithms at base 2, and 𝑛 is the 

size of sample data. Here the sample data refers to the observed data over the forecast 

period and 𝑛 equals to 229 which is the number of dates in forecast period. Sturges’s 

rule suggests 9 subintervals (bins) for both series, which supports our subjective 

selection of 10 subintervals.11  

The normal scale rule of Scott (1979), which is based on the asymptotic 

minimization of integrated mean squared error (IMSE), is also considered. First, the 

optimal bin width is calculated as: 

                                                           
11 We also consider the chi-squared goodness of fit test under 9 subintervals. In the following Section 4.2, 

Brier score and Yates partition are conducted under 9 events as well. The conclusions concerning whether 

interest rates help to forecast stock returns in China are the same to those obtained under 10 

subintervals/events. Therefore, the results corresponding to 9 subintervals/events are not reported to save 

space.  
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ℎ̂ = 3.49𝜎̂𝑛−
1

3                                                                                                                              (36)                                                  

in which ℎ̂ is the estimated bin width, 𝜎̂ is the estimated standard deviation of the sample 

data and 𝑛 is the sample size. The choices of sample data and n are the same to Eq. (35). 

The corresponding optimal number of bins is calculated as 

𝑘̂ = (𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎) ℎ̂⁄                                                                                                          (37)                                         

Accordingly, the optimal number of subintervals (bins) is 17 for stock return series and 

16 for interest rate series respectively. As a result, we conduct the calibration tests under 

two settings. In setting 1, 10 subintervals are used for both series. In setting 2, different 

numbers of subintervals are used for stock returns (J=17) and interest rates (J=16).12 

The results of calibration tests are given in Table 3.1. Under simulation 1, for 

both settings and both series, the null hypothesis of well-calibration cannot be rejected 

for forecasts from the VAR model, but is rejected for forecasts from the AR model. 

Under simulation 2, forecasts from both models are well-calibrated for both settings and 

both series. Particularly, simulation 2 generates smaller chi-squared statistics than 

simulation 1 in most cases. Therefore, simulation 2 which takes advantage of kernel 

distribution estimation leads to better calibration results. 

Regardless of the subinterval settings and simulation methods, the VAR model 

always has a smaller chi-squared test statistic than the AR model for both series. These 

                                                           
12 We consider the alternative to select number of subinterval based on the simulated data for the first 

forecasting date. For different models and simulation methods, Sturges’ rule agrees with 11 subintervals 

(bins) for both series, which is also closely consistent with our subjective selection of 10. As regards 

Scott’s normal scale rule, different subintervals (bins) numbers are selected for different models and 

simulation methods. For stock returns, 24 to 26 subintervals (bins) is suggested. For interest rates, the 

subintervals (bins) number ranges from 43 to 50. The advantage of selecting subinterval number based on 

the observed data over forecast period is to provide a consistent standard for assessment of probability 

forecasts, which will not vary by models or simulation methods. 
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results seem to characterize well the situation observed in calibration plots (Figure 3.1). 

For both series, the VAR model issues better probability forecasts, which are also well-

calibrated, relative to the AR model, implying that stock returns and short-term interest 

rates help to forecast each other.   

 

 

Table 3.1 Chi-squared goodness of fit tests for calibration 

 
Setting 1a   Setting 2b 

 
VAR AR   VAR AR 

Simulation 1c      

    Stock Returns 12.0568* 20.7031   19.7467* 27.1703 

    Interest Rates 16.0218* 25.4542   24.4149* 40.4847 

Simulation 2d 

 

    

 

  

    Stock Returns 12.1441* 14.3275*   12.6201* 22.1223* 

    Interest Rates 10.7817* 13.5764*   11.6987* 22.0393* 

Notes: * Indicates well-calibration. The null hypothesis is that the observed fractiles are well-calibrated. 

The null hypothesis is rejected if the calculated chi-squared statistic is larger than the 5% critical value. 
a In setting 1, the number of subintervals (J) is 10 for both stock return series and interest rate series. This 

results in 22.9 fractiles in each subinterval for both series. The corresponding test statistic is chi-squared 

distributed with 9 (J-1) degrees of freedom and the 5% critical value is 16.9190 for both series. 
b In setting 2, the number of subintervals (J) is 17 for stock return series and the number of subintervals (J) 

is 16 for interest rate series. This leads to 13.47 fractiles in each subinterval for stock return series and 

14.31 fractiles in each subinterval for interest rate series. For stock returns, the corresponding test statistic 

is chi-squared distributed with 16 (J-1) degrees of freedom and the 5% critical value is 26.2962. For 

interest rates, the corresponding test statistic is chi-squared distributed with 15 (J-1) degrees of freedom 

and the 5% critical value is 24.9958. 
c In Simulation 1, the innovation is simulated from the reshuffled historical innovations.  
d In simulation 2, the innovation is simulated from the kernel distribution of the historical innovations.  

 

 

3.4.2. Results of Brier Score and Yates Partition  

The Brier score and its decompositions are used to provide information of the 

model’s sorting ability. For each series, the multiple events are defined based on the 

histogram distribution of observed data over the forecast period. As in the case of the 

calibration tests discussed above, two settings of the number of events are considered. 
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Setting 1 has 10 events for both series and setting 2 includes 17 events for stock return 

series and 16 events for interest rate series.13  

The results of Brier score and Yates partition under each setting are shown in 

Table 3.2 (setting 1) and Table 3.3 (setting 2). In setting 1, forecasts from the VAR 

model have a smaller Brier score (Brier) than those from the AR model for both series 

and simulations, indicating that the VAR model outperforms the AR model on this 

measure. The dominance of the VAR model in terms of Brier score is also obtained in 

setting 2. 

For all cases, the VAR and AR models provide the same variance of indicator 

variable (Dvar). This is not a surprising result. Dvar stands for the forecasting factors 

that cannot be controlled by the models. Hence, the same Dvar is obtained regardless of 

forecasting models.  

The noise of forecast (Scat) measures how responsive the model is to the 

irrelevant information in forecasting. It is smaller for forecasts of stock returns from the 

AR model in both settings and simulations. For interest rates, however, the VAR model 

is superior on this measure in all cases. It is suggested that when forecasting stock 

returns, the VAR model contains more noise and performs worse at ignoring irrelevant 

information. While predicting interest rates, the VAR model is less responsive to 

extraneous information than the AR model.  

                                                           
13 For a specific setting and a specific series, the range of each bin in the histogram defines the range of 

each event, with the exception that the first and last events are extended to include infinity in both 

directions. 
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Except for the interest rates under setting 2, the minimum forecast variance 

(MinVar) that must be accepted is smaller for the AR model in all cases. The sum of 

Scat and MinVar is the variance of forecast. Thus, the results of Scat and MinVar show 

that the AR model has lower forecast variance for stock returns and the VAR model has 

lower forecast variance for interest rates under both settings and simulations. 

In terms of the squared absolute calibration error (Bias_squared), the preference 

of the two models varies by series. For stock returns, forecasts from the VAR model 

have less overall miscalibration, which is consistent with the results from calibration 

tests. For interest rates, however, forecasts from the AR model have lower overall 

miscalibration.  

As indicated by Yates (1988), covariance (2Cov) is at the heart of probability 

forecasting. We want a large 2Cov since it represents to what extent the model is capable 

of sorting events into subgroups such that events that occur are issued with high 

probabilities and events that do not occur are issued with low probabilities. For stock 

returns, the VAR model has a larger 2Cov than the AR model, indicating the VAR 

model is more responsive to information related to the occurrence of event when 

predicting stock returns.  This result is robust under different event settings and 

simulation methods. The dominance of the VAR model is particularly strong in the case 

of setting 1 and simulation 1, where the AR model presents a negative 2Cov, implying it 

makes poor forecasts by assigning low probabilities to events that actually obtain and 

high probabilities to events that do not obtain. The stronger sorting ability of the VAR 
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model is also found for interest rates in setting 1. In setting 2, however, the VAR model 

gives lower 2Cov for interest rates under both simulations.    

Scat and 2Cov reflect how responsive the model is to the irrelevant and relevant 

information, respectively. The VAR model gives two-sided results of these two 

measures for stock returns. It forecasts stock returns with both larger Scat and 2Cov in 

all cases. One possible reason is that when forecasting stock returns, the VAR model is 

better at capturing related information, at a cost of also incorporating more extraneous 

information. 

 

 

Table 3.2 Brier score and Yates partition (setting 1a) 

 
Stock Returns   Interest Rates 

 
VAR AR   VAR AR 

Simulation 1      

    Brier 0.649206* 0.657323   0.249891* 0.255579 

    Dvar 0.647432 0.647432 

 

0.350337 0.350337 

    Scat 0.003019 0.001165*  0.105328* 0.108148 

    MinVar 0.000018 0.000003* 

 

0.066206 0.063873* 

    Bias_squared 0.004833* 0.007211 

 

0.011021 0.008807* 

    2Cov 0.006096* -0.001512   0.283000* 0.275586 

Simulation 2 

  

  

      Brier 0.651469* 0.654364   0.249325* 0.251764 

    Dvar 0.647432 0.647432 

 

0.350337 0.350337 

    Scat 0.003249 0.001085*  0.104406* 0.106130 

    MinVar 0.000010 0.000001* 

 

0.066135 0.064790* 

    Bias_squared 0.005135* 0.006027 

 

0.011499 0.008964* 

    2Cov 0.004358* 0.000181   0.283052* 0.278457 

Notes: * Indicates the better-performed model for that particular measure. For Brier score (Brier) and the 

three Yates decomposition components (MinVar, Scat, Bias_square), a smaller value indicates better 

forecasting performance of the underlying model. For the covariance term (2Cov), a larger value indicates 

better forecasting performance of the underlying model. The magnitude of Dvar term is out of the model’s 

control. 
a 

In setting 1, the number of events is 10 for both stock return series and interest rate series.  
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Table 3.3 Brier score and Yates partition (setting 2 a) 

 
Stock Returns   Interest Rates 

 
VAR AR   VAR AR 

Simulation 1      

    Brier 0.783750* 0.784998   0.519846* 0.521098 

    Dvar 0.779543 0.779543 

 

0.622871 0.622871 

    Scat 0.003794 0.001198*  0.171461* 0.181579 

    MinVar 0.000021 0.000009* 

 

0.049432* 0.054100 

    Bias_squared 0.005210* 0.005751 

 

0.002826 0.002399* 

    2Cov 0.004818* 0.001503   0.326744 0.339851* 

Simulation 2 

  

  

      Brier 0.781528* 0.785890   0.514366* 0.519251 

    Dvar 0.779543 0.779543 

 

0.622871 0.622871 

    Scat 0.003625 0.001148*  0.164392* 0.175432 

    MinVar 0.000029 0.000006* 

 

0.048596* 0.052270 

    Bias_squared 0.005307* 0.005596 

 

0.003194 0.002328* 

    2Cov 0.006976* 0.000402   0.324688 0.333650* 

Notes: * Indicates the better-performed model for that particular measure. For Brier score (Brier) and the 

three Yates decomposition components (MinVar, Scat, Bias_square), a smaller value indicates better 

forecasting performance of the underlying model. For the covariance term (2Cov), a larger value indicates 

better forecasting performance of the underlying model. The magnitude of Dvar term is out of the model’s 

control. 
a 

In setting 2, the number of events is 17 for stock return series and the number of events is 16 for interest 

rate series.  

 

 

As a complementary to the 2Cov, the slope, which is the difference between 

mean probabilities issued to occasions where the event actually obtains and mean 

probabilities issued to occasions where the event does not obtain, is calculated based on 

Eq. (21). For an N-event case, we can get the slope by summarizing individual slopes of 

all events:  

𝑆𝑙𝑜𝑝𝑒𝑁(𝑝) = ∑ 𝑆𝑙𝑜𝑝𝑒(𝑝)𝑛
𝑁
𝑛=1 = ∑ (𝑝1̅̅̅ − 𝑝0̅̅ ̅)𝑛

𝑁
𝑛=1                                                               (38)                          

A larger value of 𝑆𝑙𝑜𝑝𝑒_𝑁(𝑝) is wanted as a sign of model’s stronger ability in 

distinguishing events that actually occur from events that do not occur. In Table 3.4, the 

results of multiple-event slope (Slope) reconfirm what we find under the measure of 

2Cov in Table 3.2 and Table 3.3. The Slope from the VAR model is much larger than 
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that from the AR model for stock returns under both settings and both simulations, 

indicating that including interest rates enhances model’s overall sorting ability when 

predicting stock returns. The 2Cov and Slope values associated with stock returns are 

much smaller than those of interest rates. This suggests interest rates are easier to 

forecast than stock returns, consistent with the finding in Bessler and Ruffley (2004).  

 

 

Table 3.4 Results of Slopea 
  Setting 1   Setting 2 

  VAR AR   VAR AR 

Simulation 1   
  

  
     Stock Returns 0.017502* -0.009945 

 

0.014064* 0.000740 

    Interest Rates 2.242403* 2.004940 

 

2.877623 3.102813* 

Simulation 2 

         Stock Returns 0.009970* -0.004636 

 

0.014309* -0.004510 

    Interest Rates 2.247070* 2.078880   2.826906 3.054535* 

Notes: * Indicates the model with stronger sorting ability.  
a The term of Slope is calculated based on Eq. (27): 𝑆𝑙𝑜𝑝𝑒_𝑁(𝑝) = ∑ 𝑆𝑙𝑜𝑝𝑒(𝑝)𝑛

𝑁
𝑛=1 = ∑ (𝑝1,𝑛̅̅ ̅̅ ̅ − 𝑝0,𝑛̅̅ ̅̅ ̅)𝑁

𝑛=1 , 

which is a summation of slopes for all events. For each single event, slope is the difference between mean 

probabilities issued to occasions where the event obtains and mean probabilities issued to occasions where 

the event does not obtain. The larger the Slope is, the stronger the underlying model’s overall sorting 

ability is. 

 

 

According to Yates (1988), for a single event, the slope can be statistically 

obtained as the slope from regressing issued probabilities on occurrence indicators. The 

covariance graphs are shown in Figure 3.2 as an illustration of Yates’ idea of single-

event slope. The x-axis represents occurrence indicators, with x=0 meaning the event 

does not occur and x=1 meaning the event actually occurs. The y-axis indicates the 

issued probabilities for all the occasions for a specific event. The dash line represents the 

regression of issued probabilities on occurrence indicators. The larger the slope of the 
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dash line is, the stronger the underlying model’s sorting ability is for the corresponding 

single event. 

 

 

VAR                                                              AR 

 
Figure 3.2 Covariance graphs of probability forecasts for the VAR and AR models. 
Notes:  

1) The dash line generates from the regression of issued probabilities on occurrence indicators. The solid 

45-degree line illustrate the situation when the model has perfect sorting ability (issuing 0 probabilities to 

occasions where the event does not occur and issuing 1 probabilities to occasions where the event does 

occur). The slope of the dash line represents the sorting ability of the estimated model for a single event. 

The larger the illustrated slope is, the stronger the model’s sorting ability is for that particular event. 

2) For each series and each setting, only one event is selected to present the covariance graphs in the 

consideration of simplicity. The selected event is the event that actually occurs for the most times under T 

occasions.  

3) Under each setting, the summation of the slopes for each event (Table 3.4) is used to evaluate the 

model’s overall sorting ability.   

4) Since the covariance graph results from simulation 1 and simulation 2 are very similar, only results 

using simulation 2 are illustrated here.  
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Figure 3.2 Continued 
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3.4.3. Overall Evaluations  

The objective of this chapter is to explore whether interest rates help to forecast 

stock returns through both calibration (reliability) perspective and sorting (resolution) 

perspective. We want the dominant model to be able to issue honest forecasts (be well-

calibrated) as well as make distinctions between events that obtain and events that do not 

obtain. Table 3.5 summarizes the models’ predictive performance based on chi-squared 

goodness of fit test (Chi-sq), Brier score (Brier), the covariance component (2Cov) and 

the overall slope (Slope).  

 

 

Table 3.5 Summarization of models’ predictive performance  
  Setting 1     Setting 2 

   Chi-sqa  Brierb  2Covc Sloped   Chi-sq Brier  2Cov Slope 

Simulation 1 
       

     Stock Returns Yese Yes Yes Yes 

 

Yes Yes Yes Yes 

    Interest Rates Yes Yes Yes Yes 
 

Yes Yes Nof No 

Simulation 2 
       

     Stock Returns Yes Yes Yes Yes 
 

Yes Yes Yes Yes 

    Interest Rates Yes Yes Yes Yes   Yes Yes No No 
a Chi-sq is the Chi-squared goodness of fit test statistics. 
b Brier is the Brier score. 
c 2Cov is the covariance component in the decompositions of Brier score. 
d Slope is the overall slope, obtained by summarizing slopes of all single events. 
e The label of ‘Yes’ indicates the VAR model outperforms the AR model for that particular measure. 
f The label of ‘No’ indicates the AR model outperforms the VAR model for that particular measure.  

 

 

For stock returns, the VAR model performs better than the AR model in terms of 

all four measures. The robustness of this result is confirmed under both settings and both 

simulations. The VAR model not only issues forecasts that are better calibrated but also 

has a stronger sorting ability. The clear dominance of the VAR model suggests that 
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incorporating interest rates helps in explaining the predictable pattern of stock returns in 

China. However, another point that cannot be overlooked is that our VAR model is still 

not particularly satisfying at forecasting stock returns, given the slight values of 2Cov 

and Slope in Table 3.2 – 3.4. According to Patelis (1997), interest rates can only partially 

contribute to the forecasting of stock returns. Other variables like various term structure 

of interest rates and dividend price ratio also have predictive power for stock returns 

(Campbell, 1987; Campbell and Shiller, 1988; Fama and French, 1988a; Lin et al., 2009). 

Therefore, more additional information should be incorporated when predicting stock 

returns. 

Focusing on interest rates, the VAR model is superior than the AR model at all 

cases. The only exception is in setting 2, where the VAR model exhibits weaker sorting 

ability than the AR model for both simulations. Thus, the inclusion of stock returns helps 

to generate better calibrated forecasts of interest rates. However, there are no consistent 

results concerning whether it improves the model’s performance in sorting. 

Although the 2Cov (Slope) measure tells a different story of model’ sorting 

ability for interest rates under different event settings, evaluations of stock return 

forecasts are robust to both settings as well as both simulation methods. Considering the 

core of this chapter is to study interest rates’ role in forecasting stock returns, we do not 

provide deep discussion of the varying results for interest rates equations. The sensitivity 

of probability forecasting results to event settings is an issue needs further exploration.  
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3.5. Conclusion 

This chapter aims to investigate whether interest rates help to explain the 

predictable movements of stock returns in China through prequential analysis. A two 

variable VAR model containing stock returns and interest rates and a univariate AR 

model on each series are estimated. For both model specifications, out-of-sample 

probability forecasts from two different simulation methods are assessed based on both 

calibration (reliability) and sorting (resolution) perspectives. Several data-driven 

methods are considered to select the number of subintervals and events when evaluating 

probability forecasts. We expect the dominant model to have the ability to generate 

honest probability forecasts (be well-calibrated) and distinguish between events that 

obtain and events that do not obtain. 

For stock returns, the results of calibration tests suggest that the VAR model 

provides probability forecasts that are better calibrated relative to those from the AR 

model, regardless of subinterval settings and simulation methods. Thus, including 

interest rates in the model improves the reliability of the forecasted stock returns. Brier 

score and its decompositions under Yates partition are considered to further examine the 

two models with respect to sorting. The key element among the various decomposed 

components is the covariance (slope) term. As a result, the VAR model outperforms the 

AR model in terms of Brier score and covariance (slope) measure under both event 

settings and both simulation methods. Therefore, interest rates help in forecasting stock 

returns in China from both calibration and sorting perspectives. The significant effect of 

interest rates on stock returns in China is also obtained in Li (2015) and Fang et al. 
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(2016). Since this chapter mainly focuses on exploring whether interest rates help to 

forecast stock returns, we only include interest rates in the VAR model. To improve the 

forecasts of stock returns, it is suggested that more other predictors should be considered 

as well. 

With respect to the interest rates, the VAR model shows better performance than 

the AR model in calibration, indicating stock returns help to generate realistic forecasts 

of interest rates (be well-calibrated). However, the results with regarding to models’ 

sorting ability are inconsistent under different event settings. Further research is 

suggested to study the influence of event classifications on evaluation of probability 

forecasts.  
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CHAPTER IV 

FACTOR ANALYSIS OF HIGH-DIMENSIONAL TIME SERIES: FORECAST 

EVALUATIONS BASED ON FACTOR-AUGMENTED VECTOR 

AUTOREGRESSION (FAVAR) APPROACH 

 

4.1. Introduction 

The development of information technology has led to increasing availability of 

high-dimensional data sets consist of thousands of economic and financial time series. 

One of the main problems in high-dimensional data analysis is the “curse of 

dimensionality”. For example, as the data dimensionality increases, the number of model 

parameters in parametric estimation may increase exponentially. For kernel estimation, 

when the dimensionality of the variable space rises, the estimator converges to its 

asymptotic distribution with an exponentially deteriorating rate (Li and Racine, 2007; 

Racine, 2008). In addition, the increase of dimensionality may cause problems such as 

expanding noise and complex computation (Fan et al., 2014). One way of achieving 

dimension-reduction is through the use of factor models, aiming to estimate a small 

number of factors capable of summarizing the main variation and common structure of 

the high-dimensional data.  

The theories of classical factor models are well discussed by Lawley and 

Maxwell (1971), including multiple issues such as the methods of factor estimation, the 

selection of number of factors and the interpretation of estimated factors. Geweke (1977) 
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and Sargent and Sims (1977) model the latent factors following a vector autoregression 

(VAR) process and extend the classical factor models to dynamic factor models.  

In order to obtain consistent estimation of factors, principle components method 

is used when the time series data has fixed cross-section dimension (N) and large time 

dimension (T); that is 𝑁 < 𝑇 (Lawley and Maxwell, 1971; Anderson, 1958, 1963). The 

method of asymptotic principal components is developed by Conner and Korajczyk 

(1986, 1988) to fit situations of fixed time dimension and large cross-section dimension 

(𝑁 > 𝑇). They provide asymptotic results of factor estimation in a classical factor model 

when 𝑁 → ∞. The method of asymptotic principal components is extended to dynamic 

factor models and demonstrated to provide consistent estimation of factors as well 

(Frorni and Reichlin, 1996; Forni et al., 2000, 2004, 2005).  

With respect to the estimation of the number of factors, an informal but common 

procedure is to determine the number of factors based on the screen plot, which graphs 

all eigenvalues of the covariance structure of examined data in a descending order. Some 

literature just use a presumed number of factors (Stock and Watson, 1989; Ghysels and 

Ng, 1998). Bai and Ng (2002) propose a formal procedure to consistently estimate the 

number of factors. Their proposed criteria are developed for data with both large cross-

section dimension and time dimension, and therefore are appropriate for many practical 

economic analyses.  

One type of applications of factor analysis is to obtain a small set of estimated 

factors and use these factors in forecasting. Stock and Watson (1998, 2002a, 2002b) 

compare the forecast performances of factor-augmented regression with some 
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benchmark models like univariate autoregression (AR) model, small vector 

autoregression (VAR) model and a leading indicator model. Based on an approximate 

dynamic factor model, the diffusion indexes (factors) are constructed from a large set of 

macroeconomic predictors using principal components method. The estimated factors 

are used to forecast a single macroeconomic time series. Their factor-augmented 

regression outperforms other models in terms of forecasting accuracy. It is indicated that 

factor-augmented regression may have improved forecast performance relative to other 

models incorporating no factors, since the factors are assumed to be able to capture the 

main useful information from a large panel of macroeconomic predictors. A similar 

result is found in Stock and Watson (1999), where a composite index (factor) 

representing aggregate activities is constructed from a large number of macroeconomic 

series and is employed to forecast inflation. It is shown that models including a single 

factor generate better forecasts than other forecasting models.  

Bernanke et al. (2005) extend the factor-augmented regression to a multivariate 

VAR framework by incorporating estimated factors into a standard VAR analysis. The 

factors are identified using both principal components method and Bayesian method. 

The VAR framework has obtained substantial popularity and it emphasizes to rely 

mainly on data rather than a priori restrictions (Motena et al., 2013; Sims, 1980a). An 

important limitation of the conventional VAR methodology is that it generally just fits a 

small set of variables no greater than eight, which may fail to cover sufficient 

information contained in the massive economic activities. The factor-augmented VAR 

(FAVAR) approach is developed to address this issue. The FAVAR preserves the 
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statistical efficiency of VAR estimation as having just a small number of variables. On 

the other hand, it also enables analysts to exploit the large amount of information 

summarized in a few factors.  

Following the approach of Bernanke et al. (2005), Monch (2008) studies the 

movement of short-term interest rate and highlights the role of FAVAR approach in 

improving forecasting accuracy. A subsequent literature has also discussed the merits of 

the FAVAR model for providing reasonable empirical results in macroeconomic 

analysis (Boivin et al., 2009; Forni and Gambetti, 2010). 

In this chapter, factors are estimated from 288 pricing time series of Chinese 

equities. According to the arbitrage pricing theory (APT) proposed by Ross (1976), a 

large number of asset returns could be modeled by a small number of factors. We 

attempt to search for a few factors reflecting the common forces that drive the 

movements and dynamics in the Chinese equity market.  

The main objective and key contribution of this chapter is that two 

methodologies of factor estimation are applied and the two methodologies are evaluated 

through forecast performances. The first methodology has been extensively used in 

existing literature. It is to estimate factors using principal components analysis (PCA) 

and determine the optimal number of factors by the method of Bai and Ng (2002), which 

is treated as the benchmark methodology. The second methodology, recently developed 

by Lam and Yao (2012), is to identify both common factors and serial correlated 

idiosyncratic components as factors. They also propose a two-step procedure to extract 

factors with different degrees of strength. To the best of our knowledge, the comparison 
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between the commonly followed PCA methodology and the newly developed 

methodology has rarely been discussed in the literature.  

In order to evaluate these two methodologies, the factors estimated through each 

methodology are employed to forecast a single macroeconomic time series. Particularly, 

the corresponding estimated factors are fitted with Shanghai Interbank Offered Rate 

(Shibor) in FAVAR models respectively. Forecasting exercises are performed based on 

both FAVAR models. The corresponding interest rate forecasts are evaluated through a 

variety of statistical measures and tests. Our purpose is to assess the ability of Lam and 

Yao (2012)’s method, which discovers both common factors and serially correlated 

idiosyncratic components, in providing reasonable forecasts of the Shibor. For 

convenience, the factors estimated through both methodologies will be called as PCA 

factors and LY factors respectively in the following chapter. The corresponding interest 

rate forecasts generated using PCA factors are referred to as PCA forecasts, and interest 

rate forecasts generated using LY factors are labelled as LY forecasts. 

The rest of the chapter is organized as follows. Section 2 introduces the empirical 

methodology of estimation. The data and a series of preliminary tests are discussed in 

Section 3. The empirical results including factor estimation and evaluation of forecast 

performances are presented in Section 4. Section 5 concludes the chapter.  
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4.2. Empirical Methodology 

Factor models have been discussed extensively in the literature (Lawley and 

Maxwell, 1971; Geweke, 1977; Pena and Box, 1987; Stock and Watson, 2006; Stock 

and Watson, 2011). The representation of a standard factor model is as follows: 

𝑋𝑡 = Λ𝐹𝑡 + 𝜀𝑡,    𝑡 = 1, 2, … , 𝑇                                                                                                 (39)                                                                                                                          

where 𝑋𝑡 is a 𝑁×1 vector of observed time series, 𝐹𝑡 is a 𝑟×1 vector of unobserved 

factors (r is the number of factors), Λ is a 𝑁×𝑟 unobserved factor loading matrix, and 𝜀𝑡 

is a 𝑁×1 vector of idiosyncratic disturbances. The observed time series are explained 

jointly by the common components  Λ𝐹𝑡 and the idiosyncratic disturbances.  

A factor model is aimed to achieve dimension-reduction by identifying a low-

dimensional vector (𝑟×1) of latent factors 𝐹𝑡 from a high-dimensional vector (𝑁×1) of 

observed data 𝑋𝑡. If r is much smaller than N, a dimension-reduction is realized 

effectively. The latent factors summarize the most useful information in the original data 

and can reflect underlying economic forces that cannot be described by just one or two 

specific variables but can be represented by a combination of multiple variables 

(Bernanke et al., 2005). For example, the factors can represent the major market 

fundamentals or the leading aggregate economic activities.  

 

4.2.1. Method of Principal Components  

The factor models can be estimated through the method of principal components 

or principal components analysis (PCA). According to Stock and Watson (2006), the 
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factor loading matrix Λ and the common factors 𝐹𝑡 are estimated by solving the 

minimization problem 

min
𝐹𝑡 ,Λ

  𝑇−1 ∑ (𝑋𝑡 − Λ𝐹𝑡)′(𝑋𝑡 − Λ𝐹𝑡)                                                                                   (40)𝑇
𝑡=1                                                                                              

subject to the constraint of Λ′Λ = 𝐼𝑟. This is equivalent to the following maximization 

problem with the same constraint 

max
Λ

Λ′Σ̂𝑋Λ                                                                                                                                   (41)                                                                                                                       

where Σ̂𝑋 =
1

𝑇
∑ 𝑋𝑡𝑋𝑡

′𝑇
𝑡=1  is the 𝑁×𝑁 covariance matrix of 𝑋𝑡. As a result, the columns of 

the estimated factor loading matrix Λ̂ are the r eigenvectors of  Σ̂𝑋 corresponding to its r 

largest eigenvalues. The common factors are estimated according to 𝐹𝑡̂ = Λ̂′𝑋𝑡. The 

resulting 𝐹𝑡̂ is referred to as PCA estimator of static factors. Practically, method of 

principal components can be performed though eigenvalue and eigenvector analysis 

based on the covariance or correlation structure of the high-dimensional data. It uses a 

few linear combinations of the original series to account for the major variations in the 

data. 

 

4.2.2. Factor Estimation by Lam and Yao (2012) 

According to Lam and Yao (2012), much of the previous literature on factor 

analysis focuses on identifying the common factors that can explain the dynamics in 

most of the original series. However, besides the strong common factors, there are also 

the idiosyncratic components, which may not generally explain most of the original 

series, but still account for variations in some of the original series. The exploration of 
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these weak idiosyncratic components are often neglected. They recently developed an 

eigenanalysis method to estimate both the common factors and the serially correlated 

idiosyncratic components. They emphasize the serial dependence in data and attempt to 

identify factors motivating the data dependence structure. Moreover, a two-step 

estimation procedure is introduced to estimate factors with different strength levels. 

Specifically, the factors are treated as strong factors and weak factors. 

The first-step is to estimate strong factors by conducting eigenanalysis on  

𝑀̂ = ∑ Σ̂𝑋(𝑘)Σ̂𝑋(𝑘)′                                                                                                             (42)
𝑘0
𝑘=1                                                                                                          

where 𝑀̂ is a 𝑁×𝑁 nonnegative definite matrix, k is the time lag, and Σ̂𝑋(𝑘) =

1

𝑇−𝑘
∑ 𝑋𝑡+𝑘𝑋𝑡

′𝑇−𝑘
𝑡=1  is the 𝑁×𝑁 sample autocovariance matrix of 𝑋𝑡 at nonzero time lag k. 

Since serial correlation deteriorates along with the increase of time lags, small 𝑘0 is 

suggested. Lam et al. (2011) conducted simulation analysis and indicated that both the 

estimation of factor loading matrix and the estimation of number of factors are not 

sensitive to the magnitude of 𝑘0. In this chapter, two different  𝑘0 (𝑘0 = 5 𝑎𝑛𝑑 𝑘0 = 2) 

are considered to discover the sensitivity of the choice of 𝑘0. 

The matrix 𝑀̂ is one of the improvements that distinguishes the method by Lam 

and Yao (2012) from the method of principal components. Instead of focusing on just 

contemporaneous variance-covariance structure Σ̂𝑋, this method is based on the 

autocovariance matrices at nonzero lags Σ̂𝑋(𝑘). The summation structure of 𝑀̂ is to 

account for accumulative information from different lags. The reason for using 

Σ̂𝑋(𝑘)Σ̂𝑋(𝑘)′ is to prevent the cancellation of information at different time lags. 
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Assume the estimated number of strong factors is known as 𝑟̂1, the estimated 

strong factor loading matrix Λ̂1 is constructed as the 𝑟̂1 eigenvectors corresponding to the 

𝑟̂1 largest eigenvalues of 𝑀̂.  

The second-step is to estimate weak factors. After obtaining Λ̂1 from the first-

step, the residuals denoted as 𝑋𝑡
∗ can be obtained by 

𝑋𝑡
∗ = 𝑋𝑡 − Λ̂1Λ̂1

′ 𝑋𝑡                                                                                                                      (43)                                                                                                                       

Based on 𝑋𝑡
∗, the similar summation structure as (4) could be established as follows 

𝑀̂∗ = ∑ Σ̂𝑋∗(𝑘)Σ̂𝑋∗(𝑘)′                                                                                                        (44)
𝑘0
𝑘=1                                                                                                           

where Σ̂𝑋∗(𝑘) is the 𝑁×𝑁 sample autocovariance matrix of 𝑋𝑡
∗ at time lag k. 

If the estimated number of weak factors is known as 𝑟̂2, we can get the estimated 

weak factor loading matrix Λ̃2 as the 𝑟̂2 orthonormal eigenvectors of 𝑀̂∗ corresponding 

to its 𝑟̂2 largest eigenvalues.  

Combining Λ̂1 and Λ̃2, the two-step estimated factor loading matrix is as 

Λ̃ = (Λ̂1, Λ̃2)                                                                                                                                 (45)                                                                                                                                       

The two-step estimated factors are then obtained through projecting Λ̃ on the original 

data as 

𝐹̂𝑡 = Λ̃′𝑋𝑡                                                                                                                                       (46)                                                                                                                                    

 

4.2.3. Estimation of the Number of Factors 

Bai and Ng (2002) propose some panel information criteria to consistently 

estimate the number of factors. By treating factors as random variables and factor 
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loadings as parameters, the problem of selecting number of factors resembles the 

problem of model selection. There is a trade-off between model fit and parsimony 

(Wang and Bessler, 2005). The model with more factors will exhibit improved model fit 

at the cost of less efficiency of model estimation. Therefore, it is of importance to select 

appropriate number of factors to maintain the balance between model fit and estimation 

efficiency.  

In this chapter, both IC and PC criteria with different penalty functions are 

considered. The number of factors which leads to the minimum value of the 

corresponding criteria is selected. The six panel information criteria are constructed as  

𝐼𝐶𝑝1(𝑟) = ln (𝑉(𝑟, 𝐹̂)) + 𝑟𝑔1(𝑁, 𝑇) = ln (𝑉(𝑟, 𝐹̂)) + 𝑟(
𝑁+𝑇

𝑁𝑇
)ln (

𝑁𝑇

𝑁+𝑇
),  

𝐼𝐶𝑝2(𝑟) = ln (𝑉(𝑟, 𝐹̂)) + 𝑟𝑔2(𝑁, 𝑇) = ln (𝑉(𝑟, 𝐹̂)) + 𝑟 (
𝑁+𝑇

𝑁𝑇
) ln𝐶𝑁𝑇

2 ,          

𝐼𝐶𝑝3(𝑟) = ln (𝑉(𝑟, 𝐹̂)) + 𝑟𝑔3(𝑁, 𝑇) = ln (𝑉(𝑟, 𝐹̂)) + 𝑟 (
ln𝐶𝑁𝑇

2

𝐶𝑁𝑇
2 ),      

𝑃𝐶𝑝1(𝑟) = 𝑉(𝑟, 𝐹̂) + 𝑟𝜎̂2𝑔1(𝑁, 𝑇) = 𝑉(𝑟, 𝐹̂) + 𝑟𝜎̂2 (
𝑁+𝑇

𝑁𝑇
) ln (

𝑁𝑇

𝑁+𝑇
),        

𝑃𝐶𝑝2(𝑟) = 𝑉(𝑟, 𝐹̂) + 𝑟𝜎̂2𝑔2(𝑁, 𝑇) = 𝑉(𝑟, 𝐹̂) + 𝑟𝜎̂2 (
𝑁+𝑇

𝑁𝑇
) ln𝐶𝑁𝑇

2 ,              

𝑃𝐶𝑝3(𝑟) = 𝑉(𝑟, 𝐹̂) + 𝑟𝜎̂2𝑔3(𝑁, 𝑇) = 𝑉(𝑟, 𝐹̂) + 𝑟𝜎̂2(
ln𝐶𝑁𝑇

2

𝐶𝑁𝑇
2 )                                            (47)                                                       

where 𝑉(r,𝐹̂ )=
1

𝑇
∑ (𝑋𝑡 − Λ′𝐹̂𝑡)

2𝑇
𝑡=1  is the scaled sum of squared residuals when there 

are r factors, 𝜎̂2 = 𝑉(𝑟𝑚𝑎𝑥, 𝐹̂𝑚𝑎𝑥) is estimated at the upper bound 𝑟 = 𝑟𝑚𝑎𝑥
14, and 

𝐶𝑁𝑇
2 = min(𝑁, 𝑇) selects the smaller dimension of original time series. 𝑔𝑖(𝑁, 𝑇), i = 1, 2 

                                                           
14 Following Bai and Ng (2002), 8 ∗ 𝑖𝑛𝑡[(𝑚𝑖𝑛 {𝑁, 𝑇}/100)1/4] is used as a rule to choose 𝑟𝑚𝑎𝑥 , which is 

similar as the rule suggested by Schwert (2002). 



89 

 

and 3, stands for the different formulations of penalty functions which varies along the 

changes of both N and T. The penalty functions find their minimum values at certain rate 

indicating that the selected model is neither over-fitted nor under-fitted.   

Another method of estimating the number of factors is suggested by Lam and 

Yao (2012), denoted as the ratio-based estimator of r. The basic idea is to find a cut-off 

value 𝑟̂ so that the subsequent eigenvalues are considerably smaller than the 𝑟̂th 

eigenvalue when ordering all eigenvalues from the largest to the smallest. The ratio-

based estimator is defined as follows 

𝑟̂ = argmin
1≤𝑖≤𝑅

𝜆̂𝑖+1/𝜆̂𝑖                                                                                                                    (48)                                                                                                                      

where 𝜆̂𝑖 are the eigenvalues of structures as (42) or (44) and are sorted in descending 

order. Following Lam and Yao (2002), the choice of R is determined by 𝑅 = 𝑁/2.  

 

4.2.4. Factor-Augmented Vector Autoregression (FAVAR) Model 

Following Bernanke et al. (2005), the FAVAR model is given by 

[
𝐹𝑡

𝑌𝑡
] = Φ(𝐿) [

𝐹𝑡−1

𝑌𝑡−1
] + 𝑢𝑡                                                                                                            (49)                                                                                                                

where 𝐹𝑡 is the vector of unobserved factors, 𝑌𝑡 represents the vector of observable series, 

Φ(L) is a conformable lag polynomial with finite order p, and 𝑢𝑡 is the error term. 

Equation (11) describes the joint dynamics of 𝐹𝑡 and 𝑌𝑡. If the coefficients of factor 

terms in 𝑌𝑡 equation are not all zero, then equation (11) represents the FAVAR. 

Otherwise, it becomes a standard VAR of 𝑌𝑡. In this chapter, 𝑌𝑡 only includes one 

variable, which is the interest rate (Shibor).   
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Since the factors 𝐹𝑡 are unobserved, equation (49) cannot be estimated directly. 

Instead, we need to estimate 𝐹𝑡 based on equation (39). After obtaining the estimated 

factors 𝐹𝑡̂, 𝐹𝑡 can be substituted by 𝐹𝑡̂ and equation (49) can be estimated through 

standard VAR approach. 

 

4.3. Data Description 

The factor estimation is applied to the major securities in Chinese equity market 

with the expectation that the extracted factors will summarize the main information of 

market dynamics. The securities selected in this chapter are the 300 securities used to 

develop the CSI 300 index by China Securities Index Company (CSI). All of the 300 

securities are selected from the two stock exchanges in mainland China (Shanghai Stock 

Exchange (SSE) and Shenzhen Stock Exchange (SZSE)). They are actively traded and 

account for approximately 60 percent of the total market capitalization of the two 

exchanges. The 300 securities cover all 10 sector classifications, as given by the Global 

Industry Classification Standard (GICS) developed by MSCI and Standard & Poor’s. 

The 10 sectors are Energy, Financials, Industrials, Materials, Utilities, Consumer 

Discretionary, Consumer Staples, Health Care, Information Technology, and Telecom 

Services. The 300 securities are believed to well represent the general dynamics and 

movements in Chinese equity market. The interest rate used in this chapter is the Shibor, 

which is targeted to be the potential benchmark interest rate in China (Gang, 2009). 
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Daily closing prices of the selected securities are obtained from the Datastream 

database and the overnight Shibor is collected from its official website15. Due to data 

availability issue, 288 out of the 300 securities are used in our study for further 

estimation. The time period of the original data is from Jun 11, 2012 to May 11, 2015, 

yielding 761 time observations. 

A series of data transformations are applied to the data before performing factor 

estimation. First, the 288 security series are transformed to logarithms. For interest rate, 

no logarithm transformation is applied since it is already in percentage (Stock and 

Watson, 2002b). Second, the stationarity of the data series are examined through two 

unit root tests (the augmented Dickey-Fuller (ADF) test by Dickey and Fuller (1979) and 

the Phillips–Perron test by Phillips and Perron (1988)). All the security series are 

nonstationary in level, while the interest rate is stationary in level. Accordingly, the 288 

security series are transformed through first differencing and the resulting series are all 

stationary at significance level of 1%. Third, following Stock and Watson (2002a, 2002b, 

2005), the security series are standardized to have sample mean zero and sample 

variance one after the first two steps of transformation.  

 

4.4. Empirical Results 

4.4.1. Optimal Number of Factors by Bai and Ng (2002)  

For the first methodology, six criteria developed by Bai and Ng (2002) are used 

to select the optimal number of factors. Corresponding results are shown in Table 4.1. 

                                                           
15 The overnight Shibor is collected from http://www.shibor.org/shibor/web/html/index_e.html. 
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Consistent with many previous studies, no consistent results concerning the optimal 

number of factors are suggested by different criteria. Criteria 𝐼𝐶𝑝1, 𝐼𝐶𝑝2 and 𝑃𝐶𝑝2 all 

agree with 5 factors, 𝑃𝐶𝑝1 indicates 6 factors and 𝐼𝐶𝑝3 and 𝑃𝐶𝑝3 suggest 8 factors. 

Comparing to the PC criteria, the three types of IC information criteria have the 

advantage of not depending on the choice of 𝑟𝑚𝑎𝑥. According to Bai and Ng (2002), their 

simulation results suggest that all the six criteria could provide precise estimates of the 

number of factors when 𝑚𝑖𝑛 {𝑁, 𝑇} is 40 or larger. Particularly, criteria 𝐼𝐶𝑝1, 𝐼𝐶𝑝2, 𝑃𝐶𝑝1 

and 𝑃𝐶𝑝2 perform better than other criteria in Bai and Ng’s work. Therefore, the optimal 

number of factors is selected as 5 using criteria 𝐼𝐶𝑝1 and 𝐼𝐶𝑝2 in this chapter.  

The relative importance of the factors are explained by the proportion and 

cumulative proportion of factors in Table 4.2. The first factor plays a leading role since it 

accounts for 29.97% of the total variability in data, which is much larger than the 

contribution of other factors in explaining the data variations. The remaining factors 

after the 5th factor have very limited contributions. The cumulative proportion of the 

total variance in data explained by the first 5 factors is 43.83%, which supports the 

choice of optimal number of factors as 5. 

 

 

 

 

 

 



93 

 

Table 4.1 Optimal number of factors 
Number of 

Factors 𝐼𝐶𝑝1 𝐼𝐶𝑝2 𝐼𝐶𝑝3 𝑃𝐶𝑝1 𝑃𝐶𝑝2 𝑃𝐶𝑝3 

1 -0.3319 -0.3304 -0.3379 0.7128 0.7136 0.7097 

2 -0.4111 -0.4080 -0.4229 0.6566 0.6582 0.6504 

3 -0.4368 -0.4322 -0.4545 0.6385 0.6409 0.6292 

4 -0.4447 -0.4386 -0.4684 0.6322 0.6354 0.6198 

5 -0.4502a -0.4425 a -0.4798 0.6278 0.6319 a 0.6124 

6 -0.4500 -0.4407 -0.4854 0.6272 a 0.6320 0.6086 

7 -0.4481 -0.4373 -0.4895 0.6277 0.6334 0.6061 

8 -0.4437 -0.4314 -0.4910 a 0.6299 0.6364 0.6052 a 

Notes: 𝐼𝐶𝑝𝑖 and 𝑃𝐶𝑝𝑖 refer to the six information criteria in (9) estimated with different penalty function 

𝑔𝑖(𝑁, 𝑇). The 𝑟𝑚𝑎𝑥  is calculated according to 𝑟𝑚𝑎𝑥 = 8 ∗ 𝑖𝑛𝑡[(𝑚𝑖𝑛 {𝑁, 𝑇}/100)1/4]  = 8 in this chapter.  
a The optimal number of factors. 

 

 

Table 4.2 Proportion and cumulative proportion of factors 
Number of Factors Proportion of Factors Cumulative Proportion of Factors 

1 0.2997 0.2997 

2 0.0696 0.3693 

3 0.0315 0.4008 

4 0.0197 0.4206 

5 0.0177 0.4383 

6 0.0140 0.4523 

7 0.0128 0.4652 

8 0.0112 0.4764 

Notes: The proportion of factors is calculated based on 𝑃𝐹𝑖 =
𝜆𝑖

𝜆1+⋯+𝜆288
, and the cumulative proportion of 

factors is calculated based on 𝐶𝑃𝐹𝑖 =
𝜆1+⋯+𝜆𝑖

𝜆1+⋯+𝜆288
, where 𝜆𝑖 is the ith largest eigenvalue and i=1, …, 288. 

 

 

4.4.2. Estimation of Factors by the Method of Principal Components 

Based on the results from Table 4.1, 5 factors are estimated using the method of 

principal components. To better interpret the factors, simple linear regressions of each 

security series on each factor are performed following Stock and Watson (2002b). As a 

result, there are 1440 (288 ∗ 5) simple regressions and the 𝑅2 values of each regression 

are studied. For each factor, bar charts are plotted with the 𝑅2 values as y-axis and the 
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288 securities as x-axis (The 288 securities are classified into 10 sectors following the 

GICS and ordered according to the ordering listed in the Appendix B). Therefore, each 

bar chart illustrates each factor’s capability in explaining the variations of the 288 

securities.  

Figure 4.1 shows the 𝑅2 values associated with each of the 5 factors estimated by 

the method of principal components. The first PCA factor captures fluctuations of most 

securities across all sectors with high 𝑅2 values, indicating that the first factor may 

represent the general movement of the stock market. Accordingly, the first factor can be 

treated as a market factor. The other four PCA factors are more like sector factors, 

focusing on explaining the variations in several sectors. The second PCA factor has 

relatively stronger explaining power in sectors of Financials, Consumer Discretionary, 

Health Care, Telecom Services and Information Technology. The third PCA factor loads 

more on Financials, Industrials and Materials sectors, with relatively higher 𝑅2 values 

comparing to other sectors. The fourth PCA factor reflects more variations in Energy, 

Financials, Materials and Utilities sectors. The fifth PCA factor focuses on sectors of 

Consumer Staples and Health Care.  
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PCA Factor 1 

 
PCA Factor 2 

 
PCA Factor 3 

 
PCA Factor 4 

 
PCA Factor 5  

 
Figure 4.1 𝑅2 values for 5 PCA factors a 
a The labels in x-axis stand for the sectors. “EN” denotes Energy sector, “FI” denotes Financials sector, 

“IN” denotes Industrials sector, “MA” denotes Materials sector, “CD” denotes Consumer Discretionary 

sector, “CS” denotes Consumer Staples sector, “UT” denotes Utilities sector, “HC” denotes Health Care 

sector, “IT” denotes Information Technology sector, and “TS” denotes Telecom Services sector. 
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4.4.3. Optimal Number of Factors by Lam and Yao (2012) (𝑘0 = 5) 

Following Lam and Yao (2012), 𝑘0 = 5 is chose to estimate 𝑀̂. The estimated 

eigenvalues of 𝑀̂ are calculated in order to form the ratio-based estimator. The results 

are illustrated in Figure 4.2 (Panel A). There is a remarkable decrease of the eigenvalue 

from i=1 to i=2. The remaining eigenvalues, especially those at i>=8, are all quite small 

with approximately the same size. The ratio-based estimator for the number of strong 

factors are plotted in Figure 4.2 (Panel B). According to equation (10), the ratio-based 

estimator in Figure 4.2 (Panel B) is minimized at i=1, indicating the sharpest decrease in 

proportion when moving from the first eigenvalue to the second eigenvalue. Thus, the 

optimal number of strong factor is 1.  Since the ratio-based estimator gets to its second 

U-shape at i=3, there may be several weak factors that need to be explored from the 

idiosyncratic components. 

 

 

 
Figure 4.2 Plot of the estimated eigenvalues of 𝑀̂ (Panel A) and plot of the ratio-based 

estimator of the number of strong factors (Panel B) (𝑘0 = 5)a. 
a Only the first 60 eigenvalues and ratio-based estimators are plotted respectively, where 𝜆̂𝑖 denotes the ith 

largest estimated eigenvalue, 𝑖 = 1, … , 60. 
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After removing the one strong factor, the eigenanalysis is conducted on 𝑀̂∗ to 

obtain the corresponding estimated eigenvalues and the ratio-based estimator for the 

number of weak factors. The results are plotted in Figure 4.3 (Panel A) and Figure 4.3 

(Panel B) respectively. The eigenvalue of 𝑀̂∗ decreases strongly to around 10 when i=3. 

The following eigenvalues all diminish at a slight rate and have a relatively small size. In 

Figure 4.3 (Panel B), the ratio-based estimator based on 𝑀̂∗ is minimized at i=2, 

implying there are 2 weak factors.  

 

 

 
Figure 4.3 Plot of the estimated eigenvalues of 𝑀̂∗ (Panel A) and plot of the ratio-based 

estimator of the number of weak factors (Panel B) (𝑘0 = 5)a. 
a Only the first 60 eigenvalues and ratio-based estimators are plotted respectively, where 𝜆̂𝑖 denotes the ith 

largest estimated eigenvalue, 𝑖 = 1, … , 60.. 

 

 

 

When 𝑘0 = 5, 1 strong factor and 2 weak factors are found through the two-step 

procedure, leading to 3 factors in total. The first eigenvector of 𝑀̂, corresponds to its 



98 

 

largest eigenvalue and the first two eigenvectors of 𝑀̂∗, correspond to its two largest 

eigenvalues, are combined to form the factor loading matrix Λ̃.  

 

4.4.4. Estimation of Factors by Lam and Yao (2012) (𝑘0 = 5) 

Based on the estimated factor loading matrix Λ̃, the 3 LY factors under 𝑘0 = 5 

are estimated through equation (8). The bar plots of 𝑅2 values for the 3 LY factors are 

presented as Figure 4.4. The first LY factor (𝑘0 = 5) tends to be a market factor 

associated with high 𝑅2 values for all sectors. The second LY factor (𝑘0 = 5) has 

relatively high 𝑅2 values in sectors of Industrials, Consumer Discretionary, Consumer 

Staples, Health Care, Information Technology and Telecom Services. The third LY 

factor (𝑘0 = 5) explains more variations in sectors of Energy, Industrials, Materials and 

Utilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

LY Factor 1 (𝑘0 = 5) 

 
LY Factor 2 (𝑘0 = 5) 

 
LY Factor 3 (𝑘0 = 5) 

 
Figure 4.4 𝑅2 values for 3 LY factors (𝑘0 = 5)a 
a The labels in x-axis stand for the sectors. “EN” denotes Energy sector, “FI” denotes Financials sector, 

“IN” denotes Industrials sector, “MA” denotes Materials sector, “CD” denotes Consumer Discretionary 

sector, “CS” denotes Consumer Staples sector, “UT” denotes Utilities sector, “HC” denotes Health Care 

sector, “IT” denotes Information Technology sector, and “TS” denotes Telecom Services sector. 

 

 

4.4.5. Optimal Number of Factors by Lam and Yao (2012) (𝑘0 = 2) 

One of the motivations of Lam and Yao (2012)’s method is to explore factors 

promoting the serial dependence of the data. This may provide some guidance of the 

choice of 𝑘0. Although the simulation results by Lam et al. (2011) suggest that 

estimations of factor loading matrix and number of factors are insensitive to the choice 



100 

 

of 𝑘0, we still want to examine whether there is a  different value of 𝑘0 driven by the 

substantial serial dependence in data. To detect the autocorrelation of the data, all the 

288 time series are fitted into autoregressive integrated moving average (ARIMA) model. 

The results using both BIC and AIC criteria are shown in Table 4.3. Based on BIC, 278 

out of 288 series exhibit up to 2 autoregression (AR) orders. When using AIC, 262 out 

of 288 series show up to 2 AR order. The results indicate that all series show no serial 

correlations or low order serial correlations (no more than 5). As a result, we also 

perform the method by Lam and Yao (2012) using 𝑘0 = 2 since most of the serial 

correlations in the data could be captured at AR order of 2. 

 

 

Table 4.3 Summary of selection of AR order on univariate representation on each series 
AR order BIC AIC 

0 239 175 

1 23 36 

2 16 51 

3 2 14 

4 7 9 

5 1 3 

 

 

Under 𝑘0 = 2, the estimated eigenvalues of 𝑀̂ and the ratio-based estimator for 

the number of strong factors are plotted in Figure 4.5 (Panel A) and Figure 4.5 (Panel B). 

According to Figure 4.5 (Panel B), 1 strong factor is selected since the ratio-based 

estimator is minimized at i=1. 
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Figure 4.5 Plot of the estimated eigenvalues of 𝑀̂ (Panel A) and plot of the ratio-based 

estimator of the number of strong factors (Panel B) (𝑘0 = 2)a. 

a Only the first 60 eigenvalues and ratio-based estimators are plotted respectively, where 𝜆̂𝑖 denotes the ith 

largest estimated eigenvalue, 𝑖 = 1, … , 60. 

 

 

After finding 1 strong factor, we continue to examine the number of weak factors. 

Figure 4.6 (Panel A and Panel B) exhibit the results of estimated eigenvalues of 𝑀̂∗and 

the ratio-based estimator for the number of weak factors. In Figure 4.6 (Panel B), the 

ratio-based estimator based on 𝑀̂∗ is minimized at i=1, indicating 1 weak factor under 

𝑘0 = 2. 
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Figure 4.6 Plot of the estimated eigenvalues of 𝑀̂∗ (Panel A) and plot of the ratio-based 

estimator of the number of weak factors (Panel B) (𝑘0 = 2)a. 

a Only the first 60 eigenvalues and ratio-based estimators are plotted respectively, where 𝜆̂𝑖 denotes the ith 

largest estimated eigenvalue, 𝑖 = 1, … , 60. 
 

 

In sum, when 𝑘0 = 2, there are 1 strong factor and 1 weak factor, leading to 2 

factors in total. Inconsistent to the findings of Lam et al. (2011) and Lam and Yao 

(2012), the estimation of the number of factors is sensitive to the choice of 𝑘0 in our  

case. 

 

4.4.6. Estimation of Factors by Lam and Yao (2012) (𝑘0 = 2) 

Under 𝑘0 = 2, the 2 LY factors are estimated through equation (8). Figure 4.7 

presents the bar plots of 𝑅2 values for each of the 2 LY factors. The LY factor 1  

(𝑘0 = 2) is a market factor with high 𝑅2 values in all sectors. The second LY factor 

(𝑘0 = 2) loads more on sectors of Financials, Consumer Discretionary, Health Care and 

Information Technology. 
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LY Factor 1 (𝑘0 = 2) 

 
LY Factor 2 (𝑘0 = 2) 

 
Figure 4.7 𝑅2 values for 2 LY factors (𝑘0 = 2)a 
a The labels in x-axis stand for the sectors. “EN” denotes Energy sector, “FI” denotes Financials sector, 

“IN” denotes Industrials sector, “MA” denotes Materials sector, “CD” denotes Consumer Discretionary 

sector, “CS” denotes Consumer Staples sector, “UT” denotes Utilities sector, “HC” denotes Health Care 

sector, “IT” denotes Information Technology sector, and “TS” denotes Telecom Services sector. 

 

 

4.4.7. FAVAR and Evaluation of Forecast Performances16 

The PCA factors and LY factors are fitted with interest rate in FAVAR models 

respectively. The first FAVAR model includes 6 variables (1 interest rate variable plus 5 

PCA factors), the second FAVAR model has 4 variables (1 interest rate variable plus 3 

LY factors under 𝑘0 = 5), and the third FAVAR model has 3 variables (1 interest rate 

variable plus 2 LY factors under 𝑘0 = 2). Schwarz-loss and Hannan and Quinn-loss 

metrics are used to determine the number of lag length. Optimal lag length of 1 is 

                                                           
16 The economic returns from forecasting have been highlighted in many studies (Granger and Newbold, 

1973; Granger, 1992; Brandt and Bessler, 1983). A set of forecasting techniques, such as using various 

forecasting models, considering non-linear models with a switching regime and applying disaggregated 

data are expected to provide merits of economic analysis. 
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selected for all models. For each FAVAR model, out of sample forecasts of interest rate 

are recursively generated for one-, two-, three-, five-, ten- and fifteen-step-ahead 

horizons. As a result, there are 100 one-step-ahead forecasts, 99 two-step-ahead 

forecasts, 98 three-step-ahead forecasts, 96 five-step-ahead forecasts, 91 ten-step-ahead 

forecasts, and 86 fifteen-step-ahead forecasts. 

 

4.4.7.1 Statistical Measures of Forecast Performances 

A variety of statistical measures are applied in this chapter to evaluate forecast 

accuracy. The root mean squared error (RMSE) measures the average value of forecast 

error using a quadratic scoring rule. The mean absolute error (MAE) is equal to the 

average absolute value of forecast error. The mean absolute percentage error (MAPE) 

calculates the average absolute percentage of forecast error in actual value. RMSE is a 

commonly used measure of forecast accuracy. Comparing to RMSE, MAE is less 

sensitive to outliers and MAPE does not rely on the scale of the data (Hyndman and 

Koehler, 2006). 

The results of the three statistic measures for PCA forecasts and LY forecasts 

under 𝑘0 = 5 are listed in Table 4.4. Forecasts using LY factors (𝑘0 = 5) exhibit smaller 

RMSE for the one- to three-step-ahead forecasts. If measuring in MAE, the LY forecasts 

(𝑘0 = 5) is more accurate than PCA forecasts at all horizons except for fifteen-step-

ahead horizon. With respect to MAPE, forecasts using LY factors (𝑘0 = 5) exhibit lower 

value for all horizons except ten- and fifteen-step-ahead horizons. Overall, LY factors 
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under 𝑘0 = 5 forecast interest rate better than PCA factors, especially at the short 

horizons (one, two and three steps).  

 

 

Table 4.4 Results of statistical measures for PCA forecasts and LY forecasts (𝑘0 = 5)17 

 

RMSE 

  

MAE 

  

MAPE 

 

Steps PCA 

LY 

(𝑘0 = 5) 

 

PCA 

LY 

(𝑘0 = 5) 

 

PCA 

LY 

(𝑘0 = 5) 

One 0.1142 0.1034 a 

 

0.0881 0.0787 a 

 

3.6676 3.3826 a 

Two 0.1875 0.1819 a 

 

0.1455 0.1400 a 

 

6.2848 6.1017 a 

Three 0.2508 0.2482 a 

 

0.1975 0.1938 a 

 

8.5928 8.4962 a 

Five 0.3520 a 0.3530 

 

0.2766 0.2746 a 

 

12.2618 12.2416 a 

Ten 0.5234 a 0.5252 

 

0.4077 0.4072 a 

 

18.6358 a 18.6443 

Fifteen 0.6199 a 0.6214  0.4828 a 0.4840  22.3892 a 22.4442 

Notes: RMSE = √
1

𝑇
∑ (𝑥𝑡 − 𝑥𝑡

𝑓
)2𝑇

𝑡=1 , MAE =
1

𝑇
∑ |𝑥𝑡 − 𝑥𝑡

𝑓
|𝑇

𝑡=1  MAPE =
100

𝑇
∑ |

𝑥𝑡−𝑥𝑡
𝑓

𝑥𝑡
|𝑇

𝑡=1 , where 𝑥𝑡 is the 

actual value of interest rate, 𝑥𝑡
𝑓
 is the forecasted value of interest rate. All the MAPE values are in 

percentage units. 
a
 The smaller statistical measure. 

 

 

In order to further explore whether the choice of 𝑘0 will affect the prediction 

ability of the estimated LY factors, the LY factors estimated under 𝑘0 = 2 are also 

compared with PCA factors using the three statistical measures (Table 4.5). LY factors 

under 𝑘0 = 2 have the same prediction ability as LY factors under 𝑘0 = 5 when 

comparing to PCA factors. For example, LY forecasts (𝑘0 = 2) have lower RMSE than 

PCA forecast for one-, two- and three-step-ahead horizons. In terms of MAE, LY 

forecasts (𝑘0 = 2) perform better than PCA forecasts at all steps except fifteen steps. 

                                                           
17 The three statistical measures are also calculated for forecasts generated from a random walk model of 

interest rate. Accordingly, the forecasts from the random walk model outperform both PCA and LY 

forecasts for one, two, three, five and ten steps. For the fifteen-step-ahead horizon, the two groups of 

factor forecasts perform better than the forecasts from the random walk. The same results are also obtained 

as using 𝑘0 = 2. 
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However, when focusing on only LY forecasts under 𝑘0 = 2 and LY forecasts under 

𝑘0 = 5, we find that the former have lower value than the latter for all three statistical 

measures and for most of the horizons. This corresponds with findings of prior research 

that complex models usually forecast not as well as simple models (Armstrong, 1984; 

Brandt and Bessler, 1984; Zellner, 2001). The FAVAR model fitted with the 5 LY 

factors under 𝑘0 = 5 is more complicated than that fitted with just 2 LY factors since it 

contains more regressors. 

 

 

Table 4.5 Results of statistical measures for PCA forecasts and LY forecasts (𝑘0 = 2) 

 

RMSE 

  

MAE 

  

MAPE 

 

Steps PCA 

LY 

(𝑘0 = 2) 

 

PCA 

LY 

(𝑘0 = 2) 

 

PCA 

LY 

(𝑘0 = 2) 

One 0.1142 0.1026 a 

 

0.0881 0.0783 a 

 

3.6676 3.3625 a 

Two 0.1875 0.1814 a 

 

0.1455 0.1398 a 

 

6.2848 6.0905 a 

Three 0.2508 0.2477 a 

 

0.1975 0.1936 a 

 

8.5928 8.4865 a 

Five 0.3520 a 0.3528 

 

0.2766 0.2748 a 

 

12.2618 12.2439 a 

Ten 0.5234 a 0.5250 

 

0.4077 0.4071 a 

 

18.6358 a 18.6391 

Fifteen 0.6199 a 0.6213 

 

0.4828 a 0.4840 

 

22.3892 a 22.4427 

Notes: RMSE = √
1

𝑇
∑ (𝑥𝑡 − 𝑥𝑡

𝑓
)2𝑇

𝑡=1 , MAE =
1

𝑇
∑ |𝑥𝑡 − 𝑥𝑡

𝑓
|𝑇

𝑡=1  MAPE =
100

𝑇
∑ |

𝑥𝑡−𝑥𝑡
𝑓

𝑥𝑡
|𝑇

𝑡=1 , where 𝑥𝑡  is the 

actual value of interest rate, 𝑥𝑡
𝑓

 is the forecasted value of interest rate. All the MAPE values are in 

percentage units. 
a The smaller statistical measure. 

 

 

Therefore, it is shown that the forecast performance of LY factors relative to 

PCA factors is not sensitive to the choice of 𝑘0. However, the choice of 𝑘0 may 

influence the prediction ability of different groups of LY factors. In our case, 𝑘0 = 2 

yeilds more accurate LY forecasts than 𝑘0 = 5. Since the focus of this chapter is to make 
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comparison between PCA factors and LY factors, we won’t pay too much attention to 

the within-group differences of LY factors under different values of 𝑘0. In addition, the 

result that LY factors have higher prediction accuracy than PCA factors at the short 

horizons is consistent with the findings in Lam et al. (2011), which only focuses on one-

step-ahead forecasts. In this chapter, the long-run out-of-sample forecasts are examined 

as well and it is indicated that PCA factors show better forecast performances than LY 

factors mostly at the long horizons in terms of the three statistical measures. One 

possible explanation for the better performance of LY forecasts only at the short 

horizons is that the autocorrelations in our data series are of short order (Table 4.3) and 

the method by Lam and Yao (2012) is able to capture the serial correlations in the data. 

 

4.4.7.2 DM Equality Test 

The DM equality test developed by Diebold and Mariano (2012) is used to test 

forecast accuracy. If the forecast errors generated from PCA factors and LY factors are 

denoted as 𝑒𝑃𝐶𝐴,𝑡 and 𝑒𝐿𝑌,𝑡, the forecast accuracy could be measured by certain loss 

functions 𝑔(𝑒𝑃𝐶𝐴,𝑡) and 𝑔(𝑒𝐿𝑌,𝑡). Typically, the loss functions can take the form of 

squared error loss as equation (50) or the absolute error loss as equation (51). In this 

chapter, the loss functions are calculated based on squared error loss. 

𝑔(𝑒𝑃𝐶𝐴,𝑡) = 𝑒𝑃𝐶𝐴,𝑡
2 ,     𝑔(𝑒𝐿𝑌,𝑡) = 𝑒𝐿𝑌,𝑡

2                                                                                    (50)                                                                                 

𝑔(𝑒𝑃𝐶𝐴,𝑡) = |𝑒𝑃𝐶𝐴,𝑡|,     𝑔(𝑒𝐿𝑌,𝑡) = |𝑒𝐿𝑌,𝑡|                                                                             (51)                                                                             

The null hypothesis of DM equality test is  

𝐻0: 𝐸[𝑑𝑡] = 0                                                                                                                               (52)                                                                                                                             
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where 𝑑𝑡 = 𝑔(𝑒𝑃𝐶𝐴,𝑡) − 𝑔(𝑒𝐿𝑌,𝑡). The null hypothesis means the forecasts errors using 

PCA factors and LY factors are not statistically different. The test statistics of DM test is  

DM =
𝑑̅

(𝑉𝑑̅/𝑇)1/2                                                                                                                             (53)                                                                                                                            

where 𝑑̅ =
1

𝑇
∑ 𝑑𝑡

𝑇
𝑡=1  is the sample mean of 𝑑𝑡, and 𝑉̂𝑑̅ is the sample variance of √𝑇𝑑̅. 𝑉𝑑̅ 

can be represented as𝑉𝑑̅ = 𝛾0 + 2 ∑ 𝛾𝑘
∞
𝑘=1 , where 𝛾𝑘 = 𝑐𝑜𝑣(𝑑𝑡, 𝑑𝑡−𝑘) is the kth 

autocovariance of 𝑑𝑡. It is shown that under the null hypothesis, 

𝐷𝑀            ~
𝐴𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐 𝑁(0,1)                                                                                                                 (54)                                                                                                                                         

and we estimate 𝑉̂𝑑̅ by 𝑉̂𝑑̅ = 𝛾0 + 2 ∑ 𝛾𝑘
∞
𝑙=1 .                                                                                                                                 

The results of DM equality test for PCA forecasts and LY forecasts (𝑘0 = 5) are 

listed in Table 4.6. Two alternatives of the test are considered. For alternative 1, the null 

hypothesis of equality is rejected at 5% significance level for one-step-ahead forecasts. 

Thus, the forecast accuracy of one-step-ahead forecasts using PCA factors and LY 

factors (𝑘0 = 5) are different. However, for other steps, the two sets of forecasts are not 

statistically different. In order to further check which factors yield higher forecast 

accuracy, alternative 2 is applied. Alternative 2 indicates that LY forecasts (𝑘0 = 5) 

have higher predictive accuracy. As a result, for one-step-ahead forecasts, the null 

hypothesis is rejected at 1% significance level and for two-step-ahead forecasts, the null 

hypothesis is rejected at 10% significance level. Thus, LY factors (𝑘0 = 5) outperform 

PCA factors in forecasting for the first two steps. The same test is performed for PCA 

forecasts and LY forecasts (𝑘0 = 2) as well (Table 4.7).  The rejection results are exactly 
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the same for each alternative and each horizon when using the two different sets of LY 

forecasts (𝑘0 = 5 and 𝑘0 = 2). 

 

 

Table 4.6 DM equality test (𝑘0 = 5) 

 

Alternative 1a  Alternative 2b 

Steps DM statistics P-value  DM statistics P-value 

One 2.3713 0.0197**  2.3713 0.0098*** 

Two 1.4103 0.1616  1.4103 0.0808* 

Three 0.7909 0.4309  0.7909 0.2155 

Five -0.2942 0.7692  -0.2942 0.6154 

Ten -1.2202 0.2256  -1.2202 0.8872 

Fifteen -1.0727 0.2864  -1.0727 0.8568 

Notes: *, ** and *** denotes rejection of the null hypothesis at 10%, 5% and 1% significance levels. 
a Alternative hypothesis 1 is forecasts using PCA factors and LY factors (𝑘0 = 5) have different levels of 

accuracy. 
b Alternative hypothesis 2 is forecasts using LY factors (𝑘0 = 5) are more accurate than forecasts using 

PCA factors. 
 

 

Table 4.7 DM equality test (𝑘0 = 2) 

 

Alternative 1a  Alternative 2b 

Steps DM statistics P-value  DM statistics P-value 

One 2.5202 0.0133**  2.5202 0.0067*** 

Two 1.5531 0.1236  1.5531 0.0618* 

Three 0.9779 0.3305  0.9779 0.1653 

Five -0.2408 0.8103  -0.2408 0.5949 

Ten -1.5342 0.1285  -1.5342 0.9358 

Fifteen -1.1873 0.2384  -1.1873 0.8808 

Notes: *, ** and *** denotes rejection of the null hypothesis at 10%, 5% and 1% significance levels. 
a Alternative hypothesis 1 is forecasts using PCA factors and LY factors (𝑘0 = 2) have different levels of 

accuracy. 
b Alternative hypothesis 2 is forecasts using LY factors (𝑘0 = 2) are more accurate than forecasts using 

PCA factors. 
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4.4.7.3 Forecast Encompassing Test 

The encompassing test proposed by Chong and Hendry (1986) is also employed 

to evaluate the forecast accuracy. In this chapter, the test is performed based on the OLS 

regressions as follows 

𝑒𝑃𝐶𝐴,𝑡 = 𝜆1(𝑒𝑃𝐶𝐴,𝑡 − 𝑒𝐿𝑌,𝑡) + 𝜀𝑡                                                                                              (55)                                                                                                            

𝑒𝐿𝑌,𝑡 = 𝜆2(𝑒𝐿𝑌,𝑡 − 𝑒𝑃𝐶𝐴,𝑡) + 𝜇𝑡                                                                                                (56)                                                                                                  

where 𝜀𝑡 and 𝜇𝑡 are the composite forecast errors. The first regression (17) is to test 

whether PCA factors encompass LY factors in terms of forecasting. The null hypothesis 

is 𝜆1 = 0. If one cannot reject this hypothesis, then forecasts using PCA factors 

encompass those using LY factors, suggesting that LY forecasts do not capture useful 

information absent in PCA forecasts. Similarly, the second regression (18) is to test 

whether forecasts generated from LY factors encompass those from PCA factors. If 𝜆2 =

0 in equation (18) (null hypothesis), then LY forecasts encompass PCA forecasts since 

no additional useful information missing from LY forecasts is captured by PCA 

forecasts.  

Table 4.8 shows the results of encompassing test between PCA forecasts and LY 

forecasts (𝑘0 = 5) and Table 4.9 presents encompassing test results of PCA forecasts 

and LY forecasts (𝑘0 = 2). The rejection results are the same regardless of the choice of 

𝑘0. For one- and two-step-ahead forecasts, the null of 𝜆1 = 0 is rejected at 1% and 5% 

significance levels for both sets of LY forecasts (𝑘0 = 5 and 𝑘0 = 2). Therefore, PCA 

forecasts does not encompass LY forecasts for these two horizons. However, the null of 

𝜆2 = 0 fails to be rejected at all horizons, indicating LY forecasts do encompass PCA 
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forecasts. For three-, five-, ten and fifteen-step-ahead horizons, both PCA and LY 

forecasts can encompass each other, indicating that neither includes useful information 

absent from the other. Thus, for these horizons, neither forecasts dominate the other. But 

for one- and two-step-ahead horizons, LY forecasts encompass PCA forecasts.  

 

 

Table 4.8 Encompassing test (𝑘0 = 5) 

  Dependent variable: 𝑒𝑃𝐶𝐴,𝑡  Dependent variable: 𝑒𝐿𝑌,𝑡 

Steps 𝜆1 P-value  𝜆2 P-value 

One 1.2526 5.77e-06***  -0.2526 0.3360 

Two 1.2946 0.0132**  -0.2946 0.5670 

Three 1.1499 0.1480  -0.1499 0.8500 

Five 0.0017 0.9990  0.9983 0.4730 

Ten -3.3400 0.3480  4.3400 0.2230 

Fifteen -10.3570 0.1510  11.3570 0.116 

 

 

Table 4.9 Encompassing test (𝑘0 = 2) 

  Dependent variable: 𝑒𝑃𝐶𝐴,𝑡  Dependent variable: 𝑒𝐿𝑌,𝑡 

Steps 𝜆1 P-value  𝜆2 P-value 

One 1.3051 2.18e-06***  -0.3051  0.2420 

Two 1.3997 0.0081**  -0.3997 0.4420 

Three 1.2940 0.1100  -0.2938 0.7150 

Five 0.1056 0.9410  0.8944 0.5290 

Ten -3.0440 0.4020  4.0440 0.2660 

Fifteen -9.8830 0.1810  10.8830 0.1410 

 

 

4.5. Conclusion 

The objective of this chapter is to empirically examine the newly developed 

factor analysis approach by Lam and Yao (2012). Factor analysis is an effective way of 

dimension-reduction. It attempts to find a small number of factors capable of 



112 

 

summarizing the main useful information contained in a large number of data series. The 

conventional and popular methods in factor analysis are the method of principal 

components and the method by Bai and Ng (2002). The former is extensively used for 

estimating factors and the latter is usually applied to determine the optimal number of 

factors. In this chapter, these two methods are formed as a benchmark methodology to 

be compared with the methodology by Lam and Yao (2012).  

Under these two methodologies, 288 price series of Chinese equities are 

employed to extract factors. The factors obtained through each methodology are 

respectively fitted with interest rate variable (Shibor) in FAVAR models to generate 

forecasts of interest rate. The resulting different sets of interest rate forecasts are 

evaluated in terms of forecasting ability. 

In this chapter, different lags of autocorrelation (𝑘0) are used when estimating the 

LY factors using Lam and Yao (2012)’s method. It is found that the forecast 

performances of LY factors relative to PCA factors are not sensitive to the choice of 𝑘0. 

In sum, LY factors outperform PCA factors in terms of forecasting accuracy, especially 

at the short horizons. More specifically, LY forecasts exhibit smaller RMSE, MAPE and 

MAE statistics for at least one-, two- and three-step-ahead horizons. In DM equality tests, 

LY factors provide more accurate forecasts than PCA factors for one and two steps. 

Encompassing tests indicate that LY forecasts encompass PCA forecasts for the first two 

steps.  However, for the long horizons, LY forecasts have very limited predominance 

comparing to PCA forecasts.  
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For the future research, a more formal way of selecting 𝑘0 may need to be 

explored since the choice of 𝑘0 may influence the performances of factors estimated by 

Lam and Yao (2012)’s methodology. In this chapter, different values of 𝑘0 lead to 

different results of number of factors. Although the prediction ability of LY factors 

relative to PCA factors is not sensitive to the choice of 𝑘0 in our case, different sets of 

LY factors (𝑘0 = 5 and 𝑘0 = 2) do exhibit different forecast performances.  
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CHAPTER V 

CONCLUSIONS 

 

This dissertation studies three major issues related to Chinese financial markets: 

(1) the interdependence structure and information transmission among Chinese stocks 

cross-listed in Shanghai, Hong Kong and New York; (2) the prequential analysis of 

stock returns and interest rates in China; (3) forecast performance evaluation of two 

factor estimation methods based on FAVAR model.  

In Chapter II, ten Chinese stocks cross-listed in Shanghai, Hong Kong and New 

York are examined using VECM and inductive causal graphs. To study the 

contemporaneous causal structure among these Chinese cross-listed stocks, both PC 

algorithm and LiNGAM algorithm are applied. Due to the non-Gaussianity of the data, 

LiNGAM algorithm yields stronger causal identifications comparing to PC algorithm. 

According to the results from LiNGAM algorithm, the Shanghai market transmits 

information flows to both the Hong Kong and New York markets, either directly or 

indirectly. In contemporaneous time, the Shanghai market, as the home market, plays a 

dominant role in information transmission. Facilitated by the LiNGAM generated 

contemporaneous causal structure, forecast error variance decomposition is used to study 

the short-run interdependence of these cross-listed stocks. It is found that in dynamic 

(lagged) time, the Shanghai market shows modest influence on other markets at the short 

horizon and fails to have leading impacts at a longer horizon. Therefore, the importance 

of the Shanghai market weakens as horizon increases. For these Chinese cross-listed 
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stocks, the home bias hypothesis, which indicates the leading role of the home market in 

information transmission of cross-listed stocks, is strongly supported in 

contemporaneous time, modestly supported at the short horizon and not supported at the 

long horizon. 

In addition, the Shanghai market is highly exogenous at all horizons, perhaps due 

to its participation restriction in trading. The Shanghai market acts like an isolated island 

in terms of receiving information from other markets. The Hong Kong market causes the 

New York market in contemporaneous time and shows substantial influence on the New 

York market at both short and long horizons. The market integration and market 

interdependence gets stronger between the Hong Kong and New York markets as the 

horizon lengthens. 

In Chapter III, the prequential analysis is applied to study whether interest rates 

in China help to forecast the stock returns. Both a bootstrap-like simulation method and 

a nonparametric kernel-based simulation method are used in the generating process of 

probability forecasts. Besides arbitrary selection, several data-driven methods are also 

considered for settings of subintervals and events when evaluating probability forecasts. 

With respect to calibration (reliability), including interest rates in the model improves 

the reliability of the forecasted stock returns. In terms of sorting (resolution), considering 

interest rates in the model enhances the model’s ability to distinguish stock returns that 

actually occur and stock returns that do not occur. Therefore, interest rates help to 

forecast stock returns in China from both calibration and sorting perspectives. These 

results are robust under both simulation methods and both subinterval settings. 
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In Chapter IV, the traditional factor estimation method of PCA, accompanied by 

the method of Bai and Ng (2002), is compared with the newly developed method by 

Lam and Yao (2012). According to Bai and Ng (2002), 5 factors are selected from 288 

pricing series of Chinese equities. The Lam and Yao (2012)’s method selects 1 strong 

factor and 2 weak factors with autocorrelation lag of 5, and 1 strong factor and 1 weak 

factor under autocorrelation lag of 2. The corresponding estimated factors are fitted with 

Chinese interest rate in a FAVAR to generate forecasts of interest rate with different 

horizons (one-, two-, three-, five-, ten- and fifteen-step-ahead horizons). Statistical 

measures like root mean squared error (RMSE), mean absolute error (MAE) and mean 

absolute percentage error (MAPE), and statistical tests such as the DM equality test 

developed by Diebold and Mariano (2012) and the encompassing test proposed by 

Chong and Hendry (1986) are used to evaluate the performance of the forecasted interest 

rate under different factor estimation methods. Overall, the factors estimated by Lam and 

Yao (2012)’s method, regardless of the selection of autocorrelation lag, outperforms 

factors estimated through PCA in terms of forecasting accuracy, especially at the short 

horizons. However, for the long horizons, the factors by Lam and Yao (2012) have very 

limited predominance compared to the factors by PCA. 

Further research is needed to address some of the limitations and problems in 

each chapter. In Chapter II, the estimation is based on daily closing prices of three equity 

markets. However, since the Hong Kong market closes one hour after the Shanghai 

market, the identification of contemporaneous structure between these two markets using 

daily data may be confounded. For a more in-depth exploration, high-frequency intraday 



117 

 

data (e.g. data with five-minute spread) should be used to examine the contemporaneous 

interdependence structure between the Shanghai and Hong Kong markets. 

In Chapter III, only short-term interest rate variable is included in the VAR 

model for the major objective of the Chapter is to investigate whether interest rates help 

to forecasting stock returns in China. However, the VAR model shows limited sorting 

ability. Following the suggestions by previous literature, more variables, such as the 

price dividend ratio, different term structures of interest rates and aggregate returns on 

other important stock exchanges such as the NYSE, should be incorporated in the model 

to improve the forecasts of stock returns. 

In Chapter IV, both forecasts using PCA method and Lam and Yao (2012)'s 

method only outperform the forecasts of the random walk at the long horizon. Thus, the 

long-term forecast performance of these two factor estimation methods needs to be 

further investigated. 
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APPENDIX A 

 

 

 

LiNGAM is applied in this chapter to help specify a linear relationship with 

causal interpretations between innovations from an estimated VECM. Scatter plots on 

these innovations for CSA are given as Figure A-1. Others are not reported to save space.  

 
Figure A-1 Scatter plots on innovations for CSA 

 

The plots in Shanghai versus Hong Kong and Shanghai versus New York show 

the linear relationship, while plausible, are less strong, relative to the Hong Kong versus 

New York innovations. 𝑅2 from innovations in Hong Kong regressed on innovations in 

Shanghai is 0.151; for innovations in New York regressed on innovations in Shanghai, 

the 𝑅2 is 0.118 and for New York innovations regressed on Hong Kong innovations, the 

𝑅2 is 0.686. 
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APPENDIX B 

 

Sector Symbol Company Exchange 

Energy 

   1 000937 Jizhong Energy Resources Co Ltd Shenzhen 

2 000983 Shanxi Xishan Coal And Electricity Power Co Ltd Shenzhen 

3 002353 Yantai Jereh Oilfield Services Group Co Ltd Shenzhen 

4 600028 China Petroleum & Chemical Corporation Shanghai 

5 600157 Wintime Energy Co Ltd Shanghai 

6 600188 Yanzhou Coal Mining Co Ltd Shanghai 

7 600256 Guanghui Energy Co Ltd Shanghai 

8 600348 Yang Quan Coal Industry (Group) Co., Ltd Shanghai 

9 600395 Guizhou Panjiang Refined Coal Co Ltd Shanghai 

10 600583 Offshore Oil Engineering Co Ltd Shanghai 

11 600688 Sinopec Shanghai Petrochemical Co Ltd Shanghai 

12 601088 China Shenhua Energy Co Ltd Shanghai 

13 601699 Shanxi Lu'an Environmental Energy Development Co Ltd Shanghai 

14 601808 China Oilfield Services Limited Shanghai 

15 601857 PetroChina Co Ltd Shanghai 

16 601898 China Coal Energy Co Ltd Shanghai 

Financials 

  17 000001 Ping An Bank Co., Ltd. Shenzhen 

18 000002 China Vanke Co Ltd Shenzhen 

19 000402 Financial Street Holding Co Ltd Shenzhen 

20 000686 Northeast Securities Co Ltd Shenzhen 

21 000728 Guoyuan Securities Company Limited Shenzhen 

22 000750 Sealand Securities Co., Ltd. Shenzhen 

23 000776 GF Securities Co., Ltd. Shenzhen 

24 000783 Changjiang Securities Company Limited Shenzhen 

25 002142 Bank of Ningbo Co Ltd Shenzhen 

26 002146 Risesun Real Estate Development Co Ltd Shenzhen 

27 002500 Shanxi Securities Co Ltd Shenzhen 

28 002673 Western Securities Co Ltd Shenzhen 

29 600000 Shanghai Pudong Development Bank Co Ltd Shanghai 

30 600015 Hua Xia Bank Co Ltd Shanghai 

31 600016 China Minsheng Banking Corp Ltd Shanghai 

32 600030 CITIC Securities Co Ltd Shanghai 

33 600036 China Merchants Bank Co Ltd Shanghai 

34 600048 Poly Real Estate Group Co Ltd Shanghai 
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Sector Symbol Company Exchange 

35 600109 Sinolink Securities Co. Ltd. Shanghai 

36 600208 Xinhu Zhongbao Co Ltd Shanghai 

37 600340 China Fortune Land Development Co., Ltd. Shanghai 

38 600369 Southwest Securities Co Ltd Shanghai 

39 600383 Gemdale Corporation Shanghai 

40 600663 Shanghai Lujiazui Finance and Trade Zone Development Co Ltd Shanghai 

41 600705 AVIC Capital Co Ltd Shanghai 

42 600837 Haitong Securities Company Limited Shanghai 

43 600999 China Merchants Securities Co Ltd Shanghai 

44 601009 Bank of Nanjing Co Ltd Shanghai 

45 601166 Industrial Bank Shanghai 

46 601169 Bank of Beijing Co Ltd Shanghai 

47 601288 Agricultural Bank of China Co Ltd Shanghai 

48 601318 Ping An Insurance (Group) Company of China Ltd Shanghai 

49 601328 Bank of Communications Co LTD Shanghai 

50 601336 New China Life Insurance Co Ltd Shanghai 

51 601377 Industrial Securities Co Ltd Shanghai 

52 601398 Industrial and Commercial Bank of China Ltd Shanghai 

53 601555 Soochow Securities Co Ltd Shanghai 

54 601601 China Pacific Insurance (Group) Co Ltd Shanghai 

55 601628 China Life Insurance Company Limited Shanghai 

56 601688 Huatai Securities Co Ltd Shanghai 

57 601818 China Everbright Bank Co Ltd Shanghai 

58 601901 Founder Securities Co Ltd Shanghai 

59 601939 China Construction Bank Shanghai 

60 601988 Bank of China Ltd Shanghai 

61 601998 China Citic Bank Corporation Limited Shanghai 

Industrials 

  62 000009 China Baoan Group Co.,Ltd. Shenzhen 

63 000039 China International Marine Containers (Group) Co Ltd Shenzhen 

64 000157 Zoomlion Heavy Industry Science & Technology Co Ltd Shenzhen 

65 000338 Wei Chai Power Co Ltd Shenzhen 

66 000400 XJ Electric Co Ltd Shenzhen 

67 000425 XCMG Construction Machinery Co Ltd Shenzhen 

68 000768 Avic Aircraft Co.,Ltd. Shenzhen 

69 000826 Sound Environmental Resources Co Ltd Shenzhen 

70 002051 China CAMC Engineering Co Ltd Shenzhen 

71 002081 Suzhou Gold Mantis Construction Decoration Co Ltd Shenzhen 

72 002202 Xinjiang Goldwind Science & Technology Co Ltd Shenzhen 
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Sector Symbol Company Exchange 

73 002310 Beijing Orient Landscape Co Ltd Shenzhen 

74 002375 Zhejiang Yasha Decoration Co Ltd Shenzhen 

75 300024 Siasun Robot & Automation Co Ltd Shenzhen 

76 300070 Beijing Originwater Technology Co Ltd Shenzhen 

77 300124 Shenzhen Inovance Technology Co Ltd Shenzhen 

78 600009 Shanghai International Airport Co Ltd Shanghai 

79 600018 Shanghai International Port (Group) Co Ltd Shanghai 

80 600029 China Southern Airlines Co Ltd Shanghai 

81 600031 Sany Heavy Industry Co Ltd Shanghai 

82 600038 AVIC Helicopter Co.,Ltd. Shanghai 

83 600058 Minmetals Development Co Ltd Shanghai 

84 600068 China Gezhouba Group Co Ltd Shanghai 

85 600089 TBEA Co Ltd Shanghai 

86 600115 China Eastern Airlines Corp Ltd Shanghai 

87 600118 China Spacesat Co Ltd Shanghai 

88 600150 China CSSC Holdings Limited Shanghai 

89 600153 Xiamen C&D Inc Shanghai 

90 600170 Shanghai Construction Co Ltd Shanghai 

91 600221 Hainan Airlines Co Ltd Shanghai 

92 600316 Jiangxi Hongdu Aviation Industry Co Ltd Shanghai 

93 600372 China Avic Electronics Co.,Ltd. Shanghai 

94 600406 NARI Technology Co., Ltd. Shanghai 

95 600648 Shanghai Wai Gaoqiao Free Trade Zone Development Co Ltd Shanghai 

96 600739 Liaoning Cheng Da Co Ltd Shanghai 

97 600783 Luxin Venture Capital Group Co.,Ltd. Shanghai 

98 600875 Dongfang Electric Corporation Limited Shanghai 

99 600880 Chengdu B-ray Media Co Ltd Shanghai 

100 600893 AVIC Aviation Engine Corporation PLC Shanghai 

101 601006 Daqin Railway Co Ltd Shanghai 

102 601018 Ningbo Port Co Ltd Shanghai 

103 601111 Air China Ltd Shanghai 

104 601117 China National Chemical Engineering Co Ltd Shanghai 

105 601179 China XD Electric Co Ltd Shanghai 

106 601186 China Railway Construction Co Ltd Shanghai 

107 601333 Guangshen Railway Company Limited Shanghai 

108 601390 China Railway Group Limited Shanghai 

109 601618 Metallurgical Corporation of China Co Ltd Shanghai 

110 601668 China State Construction Engineering Co Ltd Shanghai 

111 601669 Power Construction Corporation of China,Ltd Shanghai 
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Sector Symbol Company Exchange 

112 601727 Shanghai Electric Group Co Ltd Shanghai 

113 601766 CSR Co Ltd Shanghai 

114 601800 China Communications Construction Company Limited Shanghai 

115 601866 China Shipping Container Lines Co Ltd Shanghai 

116 601989 China Shipbuilding Industry Co Ltd Shanghai 

Materials 

  117 000060 Shenzhen Zhongjin Lingnan Nonfemet Co Ltd Shenzhen 

118 000401 Tangshan Jidong Cement Co Ltd Shenzhen 

119 000629 Pangang Group Vanadium Titanium & Resources Co., Ltd. Shenzhen 

120 000630 Tongling Nonferrous Metals Group Co. Ltd Shenzhen 

121 000709 Hebei Iron & Steel Co., Ltd Shenzhen 

122 000778 Xinxing Ductile Iron Pipes Co Ltd Shenzhen 

123 000792 Qinghai Salt Lake Industry Co Ltd Shenzhen 

124 000825 Shanxi Taigang Stainless Steel Co Ltd Shenzhen 

125 000831 China Minmetals Rare Earth Co., Ltd. Shenzhen 

126 000878 Yunnan Copper Co Ltd Shenzhen 

127 000898 Angang Steel Co Ltd Shenzhen 

128 000960 Yunnan Tin Co Ltd Shenzhen 

129 002450 Jiangsu Kangde Xin Composite Material Co.,Ltd. Shenzhen 

130 002470 Kingenta Ecological Engineering Group Co., Ltd Shenzhen 

131 600010 Inner Mongolia Baotou Steel Union Co Ltd Shanghai 

132 600019 Baoshan Iron &Steel Co Ltd Shanghai 

133 600143 Kingfa Sci&Tech Co Ltd Shanghai 

134 600277 Inner Mongolia Yili Energy Company Limited Shanghai 

135 600309 Wanhua Chemical Group Co., Ltd. Shanghai 

136 600352 Zhejiang Longsheng Group Co Ltd Shanghai 

137 600362 Jiangxi Copper Co Ltd Shanghai 

138 600489 Zhongjin Gold Co Ltd Shanghai 

139 600497 Yunnan Chihong Zinc&Germanium Co Ltd Shanghai 

140 600516 Fangda Carbon New Material Co.,Ltd Shanghai 

141 600547 Shandong Gold-Mining Co Ltd Shanghai 

142 600549 Xiamen Tungsten Co Ltd Shanghai 

143 600585 Anhui Conch Cement Co Ltd Shanghai 

144 601168 Western Mining Co Ltd Shanghai 

145 601216 Inner Mongolia Junzheng Energy & Chemical Industry Co Ltd Shanghai 

146 601600 Aluminum Corporation of China Limited Shanghai 

147 601899 Zijin Mining Group Co Ltd Shanghai 

148 601958 Jinduicheng Molybdenum Co Ltd Shanghai 

149 601992 BBMG Corporation Shanghai 



140 

 

Sector Symbol Company Exchange 

150 600111 China Northern Rare Earth (Group) High-Tech Co.,Ltd Shanghai 

Consumer Discretionary 

 151 000069 Shenzhen Overseas Chinese Town Co Ltd Shenzhen 

152 000100 TCL Corporation Shenzhen 

153 000156 Wasu Media Holding Co Ltd Shenzhen 

154 000559 Wanxiang Qianchao Co Ltd Shenzhen 

155 000581 Weifu High-Technology Group Co Ltd Shenzhen 

156 000625 Chongqing Changan Automobile Co Ltd Shenzhen 

157 000651 Gree Electric Appliances,Inc. of Zhuhai Shenzhen 

158 000793 Huawen Media Investment Corp Shenzhen 

159 000800 FAW Car Co Ltd Shenzhen 

160 000839 CITIC Guoan Information Industry Co Ltd Shenzhen 

161 000917 Hunan TV & Broadcast Intermediary Co Ltd Shenzhen 

162 002024 Suning Commerce Group Co Ltd Shenzhen 

163 002292 Guangdong Alpha Animation and Culture Co Ltd Shenzhen 

164 002344 Haining China Leather Market Co Ltd Shenzhen 

165 002400 Guangdong Advertising Co Ltd Shenzhen 

166 002429 Shenzhen MTC Co Ltd Shenzhen 

167 002594 BYD Co Ltd Shenzhen 

168 300027 Huayi Brothers Media Co Ltd Shenzhen 

169 300058 BlueFocus Communication Group Co Ltd Shenzhen 

170 300133 Zhejiang Huace Film & TV Co Ltd Shenzhen 

171 300251 Beijing Enlight Media Co Ltd Shenzhen 

172 600060 Hisense Electric Co Ltd Shanghai 

173 600066 Zhengzhou Yutong Bus Co Ltd Shanghai 

174 600104 SAIC Motor Co Ltd Shanghai 

175 600166 Beiqi Foton Motor Co Ltd Shanghai 

176 600177 Youngor Group Co Ltd Shanghai 

177 600373 Chinese Universe Publishing And Media Co Ltd Shanghai 

178 600398 Heilan Home Co.,Ltd Shanghai 

179 600415 Zhejiang China Commodities City Group Co Ltd Shanghai 

180 600633 Zhe Jiang Daily Media Group Co.,Ltd Shanghai 

181 600637 BesTV New Media Co., Ltd. Shanghai 

182 600655 Shanghai Yuyuan Tourist Mart Co Ltd Shanghai 

183 600660 Fuyao Glass Industry Group Co.,Ltd Shanghai 

184 600690 Qingdao Haier Co Ltd Shanghai 

185 600741 HUAYU Automotive Systems Company Limited Shanghai 

186 600839 Sichuan Changhong Electric Co Ltd Shanghai 

187 601098 China South Publishing & Media Group Co Ltd Shanghai 
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Sector Symbol Company Exchange 

188 601118 China Hainan Rubber Industry Group Co Ltd Shanghai 

189 601258 Pangda Automobile Trade Co Ltd Shanghai 

190 601633 Great Wall Motor Co Ltd Shanghai 

191 601888 China International Travel Service Co Ltd Shanghai 

192 601928 Jiangsu Phoenix Publishing & Media Co Ltd Shanghai 

193 601929 Jishi Media Co Ltd Shanghai 

Consumer Staples 

  194 000061 Shenzhen Agricultural Products Co Ltd Shenzhen 

195 000568 Luzhou Lao Jiao Co Ltd Shenzhen 

196 000729 Beijing Yanjing Brewery Co Ltd Shenzhen 

197 000858 Wuliangye Yibin Co Ltd Shenzhen 

198 000869 Yantai Changyu Pioneer Wine Co Ltd Shenzhen 

199 000876 New Hope Liuhe Co Ltd Shenzhen 

200 000895 Henan Shuanghui Investment & Development Co Ltd Shenzhen 

201 000963 Huadong Medicine Co Ltd Shenzhen 

202 002304 Jiangsu Yanghe Brewery Joint-Stock Co Ltd Shenzhen 

203 002385 Beijing Dabeinong Technology Group Co Ltd Shenzhen 

204 002570 Beingmate Baby & Child Food Co., Ltd. Shenzhen 

205 300146 By-Health Co Ltd Shenzhen 

206 600108 Gansu Yasheng Industrial (Group) Co Ltd Shanghai 

207 600315 Shanghai Jahwa United Co Ltd Shanghai 

208 600518 Kangmei Pharmaceutical Co Ltd Shanghai 

209 600519 Kweichow Moutai Co Ltd Shanghai 

210 600597 Bright Dairy & Food Co Ltd Shanghai 

211 600600 Tsingtao Brewery Co Ltd Shanghai 

212 600809 Shanxi Xinghuacun Fen Wine Factory Co Ltd Shanghai 

213 600827 Shanghai Bailian Group Co.,Ltd. Shanghai 

214 600873 Meihua Holdings Group Co., Ltd Shanghai 

215 600887 Inner Mongolia Yili Industrial Group Co Ltd Shanghai 

216 600998 Jointown Pharmaceutical Group Co Ltd Shanghai 

217 601607 Shanghai Pharmaceuticals Holding Co.,Ltd Shanghai 

218 601933 Yonghui Superstores Co Ltd Shanghai 

Utilities 

   219 000027 Shenzhen Energy Group Co Ltd Shenzhen 

220 000598 Chengdu Xingrong Investment Co Ltd Shenzhen 

221 000883 Hubei Energy Group Co Ltd Shenzhen 

222 600008 Beijing Capital Co Ltd Shanghai 

223 600011 Huaneng Power International Inc Shanghai 

224 600027 Huadian Power International Corporation Ltd Shanghai 
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Sector Symbol Company Exchange 

225 600578 Beijing Jingneng Power Co Ltd Shanghai 

226 600642 Shenergy Co Ltd Shanghai 

227 600674 Sichuan Chuantou Energy Co Ltd Shanghai 

228 600795 GD Power Development Co Ltd Shanghai 

229 600863 Inner Mongolia Mengdian Huaneng Thermal Power Corp Ltd Shanghai 

230 600886 SDIC Power Holdings Co.,Ltd. Shanghai 

231 600900 China Yangtze Power Co Ltd Shanghai 

232 601158 Chongqing Water Group Co Ltd Shanghai 

Health Care 

  233 000423 Shandong Dong-Ee Jiao Co Ltd Shenzhen 

234 000538 Yunnan Baiyao Group Co., Ltd. Shenzhen 

235 000623 Jilin Aodong Pharmaceutical Group Co., Ltd. Shenzhen 

236 000999 China Resources Sanjiu Medical & Pharmaceutical Co Ltd Shenzhen 

237 002001 Zhejiang NHU Co Ltd Shenzhen 

238 002007 Hualan Biological Engineering INC Shenzhen 

239 002038 Beijing SL Pharmaceutical Co Ltd Shenzhen 

240 002252 Shanghai RAAS Blood Products Co Ltd Shenzhen 

241 002294 Shenzhen Salubris Pharmaceuticals Co Ltd Shenzhen 

242 002399 Shenzhen Hepalink Pharmaceutical Co Ltd Shenzhen 

243 002422 Sichuan Kelun Pharmaceutical Co Ltd Shenzhen 

244 002603 Shijiazhuang Yiling Pharmaceutical Co Ltd Shenzhen 

245 002653 Xizang Haisco Pharmaceutical Group CO., LTD Shenzhen 

246 300015 Aier Eye Hospital Group Co Ltd Shenzhen 

247 600079 Humanwell Healthcare (Group) Co., Ltd. Shanghai 

248 600085 Beijing Tongrentang Co Ltd Shanghai 

249 600196 Shanghai Fosun Pharmaceutical (Group) Co Ltd Shanghai 

250 600252 Guangxi Wuzhou Zhongheng Group Co Ltd Shanghai 

251 600267 Zhejiang Hisun Pharmaceutical Co Ltd Shanghai 

252 600276 Jiangsu Hengrui Medicine Co Ltd Shanghai 

253 600332 Guangzhou Baiyunshan Pharmaceutical Holdings Co Ltd Shanghai 

254 600436 Zhangzhou Pientzehuang Pharmaceutical Co Ltd Shanghai 

255 600535 Tasly Pharmaceutical Group Co Ltd Shanghai 

256 600664 Harbin Pharmaceutical Group Co Ltd Shanghai 

257 600867 Tonghua Dongbao Pharmaceutical Co.,Ltd. Shanghai 

Information Technology 

 258 000413 Dongxu Optoelectronic Technology Co., Ltd. Shenzhen 

259 000503 Searainbow Holding Corp Shenzhen 

260 000536 CPT Technology (Group) Co Ltd Shenzhen 

261 000725 BOE Technology Group Co Ltd Shenzhen 
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Sector Symbol Company Exchange 

262 000970 Beijing Zhong Ke San Huan High-Tech Co Ltd Shenzhen 

263 002008 Han's Laser Technology Industry Group Co., Ltd. Shenzhen 

264 002065 DHC Software Co.,Ltd. Shenzhen 

265 002129 Tianjin Zhonghuan Semiconductor Co., Ltd. Shenzhen 

266 002153 Beijing Shiji Information Technology Co Ltd Shenzhen 

267 002230 Iflytek Co.,Ltd. Shenzhen 

268 002236 Zhejiang Dahua Technology Co Ltd Shenzhen 

269 002241 GoerTek Inc Shenzhen 

270 002410 Glodon Software Co Ltd Shenzhen 

271 002415 Hangzhou Hikvision Digital Technology Co Ltd Shenzhen 

272 002456 Shenzhen O-film Tech Co Ltd Shenzhen 

273 002475 Luxshare Precision Industry Co., Ltd. Shenzhen 

274 300017 Wangsu Science and Technology Co.,Ltd. Shenzhen 

275 600100 Tsinghua Tongfang Co Ltd Shanghai 

276 600271 Aisino Co.,Ltd Shanghai 

277 600570 Hundsun Technologies Inc. Shanghai 

278 600588 Yonyou Network Technology Co., Ltd. Shanghai 

279 600703 Sanan Optoelectronics Co.,Ltd Shanghai 

280 600718 Neusoft Corporation Shanghai 

281 600804 Dr. Peng Telecom&Media Group Co Ltd Shanghai 

282 601231 Universal Scientific Industrial (Shanghai) Co.,Ltd. Shanghai 

283 603000 People.cn CO.,LTD Shanghai 

Telecom Services 

  284 000063 ZTE Corporation Shenzhen 

285 002465 Guangzhou Haige Communications Group Incorporated Company Shenzhen 

286 600050 China United Network Communications Co Ltd Shanghai 

287 600485 Beijing Xinwei Telecom Technology Group Co., Ltd. Shanghai 

288 600498 Fiberhome Telecommunication Technologies Co Ltd Shanghai 

 


