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ABSTRACT 

 

This study proposes a probabilistic decision-making support model (“Green 

Tree”), created in Microsoft Excel, to assist operators of marginal assets in prioritizing 

well workover decisions. Such a tool can help operators of legacy, low volume oil and 

gas assets to maximize their asset value by allocating capital towards the best well 

workover options to achieve equitable production increases. The framework for this 

model was constructed by following interventions taken in a marginal oil field in the 

Permian Basin from the time it was acquired in 2013 through 2016. The Green Tree 

decision model quantifies historic uncertainty in outcomes and uses the probabilistic 

present values of all interventions to display the optimum path value in a decision tree. 

Relatively few inputs are needed for the decision tree to show an optimum intervention 

path. These inputs include historic production data for the field, service costs for each 

wellbore workover, anticipated production increase from each workover, and expected 

probabilities for each intervention based off of the operator’s historical results. Once the 

inputs have been entered, the user is able to manually adjust the projected commodity 

prices and see the corresponding changes in the optimum path value. The Green Tree is 

applied to the permian basin asset to identify the optimum sequence of interventions, 

revealing the risk adjusted upside to the base case PV10 for the field calculated in the 

workbook. A summation of the expected monetary values (EMVs) from several 

interventions can be used to estimate the total upside value to the asset owner. The tool 

developed here may benefit marginal well producers in evaluating asset value when 
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looking at an acquisition or divestiture. Lastly, posterior probabilities can be used in this 

model as the results of actual workovers in the field are examined, adjusting the tree in 

real time to account for any changes in the outcome of probabilities or production 

responses. 
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1. INTRODUCTION 

 

Since the early days of the commercial oil and gas industry, operators have 

deliberated on best practices for extending well life by selecting the optimal intervention 

to prolong profitability in marginally economic wellbores. Many oil and gas operators 

across the U.S. hold assets that are sub-economic and are regularly forced to evaluate the 

options of spending CAPEX on wellbore interventions to improve production, plugging 

underperforming wellbores, or divesting the assets. While all operators approach these 

decisions with a desire to maximize profitability, few companies take a systematic 

methodology towards risk adjusted decision making.  

Many definitions exist for marginal and stripper wells as nearly every company 

or government agency that uses these terms has their own definition. Three main groups 

exist that each use different definitions for marginal and stripper wills: (1) the Interstate 

Oil and Gas Compact Commission (IOGCC), (2) the U.S. Energy Information Agency 

(EIA), and (3) the definitions found in much of the published literature on marginal 

assets. The IOGCC, which is a multi-state quasi government group that advocates for 

maximizing domestic oil and gas production, defines a marginal well “as a well that 

requires a higher product price to be worth producing, due to either low production rates 

and/or high production costs” (IOGCC, 2015, p. 3). This means that each oil or gas well 

has a breakeven product price, which once the price falls below this threshold, the 

wellbore is considered marginal. (1) In order to simplify the determination of a marginal 

well, the IOGCC considers any oil well with 10 bbls of oil per day or less or any gas 
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well with 60 Mcf per day or less to be considered as marginal or stripper status  

(IOGCC, 2015, p. 2). (2) The EIA defines a stripper or marginal well as “an oil well 

producing no more than 15 barrels of oil equivalent per day over a 12 month period or a 

gas well producing no more than 90,000 cubic feet per day over a 12-month period” 

(EIA, 2016). Thus EIA statistics on marginal wells will include a greater number of 

wells than the IOGCC due to their more inclusive definition. (3) Lastly, many 

publications on marginal assets primarily reference offshore fields when referring to 

marginal assets and provide a variety of definitions. These definitions will not be 

discussed at length as the focus of this paper is onshore U.S. marginal assets.  

A key task of the IOGCC is to champion the preservation of America’s marginal 

oil and gas wells; one means by which they seek to do this is by publishing a bi-yearly 

report compiling the impact of marginal wells across the United States. The IOGCC 

2015 Report on marginal wells estimates that marginal wells have produced 2.85 billion 

barrels of oil and 19.9 Mcf of natural gas over the past ten years, adding over $300 

billion in production value to the U.S. economy (p. 5). In 2015, these marginal wells 

contributed 8.5% of total oil production and 7.0% of total natural gas production in the 

U.S. (IOGCC, 2015, p. 23). Thus marginal oil and gas assets hold large quantities of 

recoverable reserves and tremendous value, so ensuring their profitable production 

should not only be a top priority for all operators, but also for the energy security of the 

United States. With low commodity prices projected by the EIA to continue over the 

next few years, many of these marginal assets could be prematurely plugged and 

abandoned, leaving significant volumes of recoverable hydrocarbons forever trapped 
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(EIA, 2016). The EIA projects that worldwide demand for oil and gas will grow by 1.4% 

per year over the next forty years, leading to a continued price recovery as demand 

outpaces supply (EIA, 2016). A demand driven price recovery could in turn push many 

wells considered marginal today back into the profitable category for many years to 

come. It is more important than ever for marginal well operators to make informed 

operating decisions that seek to grow reserves in a profitable way. 

While marginal wells play a significant role in the U.S. energy production 

landscape, very little published material exists to assist marginal well operators in 

seeking clarity on intervention decisions. Several conference papers published through 

SPE in 2005 address specific operating issues related to marginal or stripper wells and 

many other papers have been published addressing topics such as dewatering stripper 

gas wells, calculating reserves in stripper fields, and preserving reserves life in stripper 

wells. Yet none of these papers provide a mention of addressing uncertainty or 

projecting the economic value for possible operating interventions. 

This report seeks to begin a dialogue amongst marginal well operators seeking to 

maximize the value of their assets by proposing a simple, but powerful decision making 

tool for evaluating intervention selection as well as the upside value of any future 

intervention, all of which are risk adjusted based on historical probabilities. This 

template is validated by use of a case study from a marginal field in the Permian basin. 

This decision tree template, known as “Green Tree”, has been created for use in legacy 

oil fields to aid operators in selecting the optimal field intervention and for determining 

the right value to place on future interventions in the field when considering an 
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acquisition or divestiture. Once interventions have been completed, the Green Tree can 

also be used to apply posterior probabilities as well as determine the value of the other 

non-optimal branches.   

The case study in this report uses actual field data from a marginal oil field in the 

Permian basin. According to the EIA, the Permian basin held an estimated 722 million 

barrels of proved reserves in 2013 and contributed to nearly 15 percent of total U.S. 

production (EIA, 2015). This mammoth basin is one of the oldest and largest areas in the 

U.S. for petroleum production. It holds several prolific production intervals and 

continues to see an abundance of drilling activity nearly 100 years after the first 

commercial well. The marginal field used as a case study in this report is called the 

South Cowden field and it is located in the Grayburg reservoir on the eastern edge of the 

central basin platform. Several field interventions have been implemented successfully 

in this field, and were used to aid in the development of the Green Tree. While the 

interventions selected in this field were selected before the development of this decision 

making framework, the economics and interventions have been placed into the tree in 

order to showcase the effectiveness of this tool. This case study reveals the significant 

economic gains that can be obtained by investors from the right marginal assets if proper 

interventions are selected.  
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2. FRAMING THE PROBLEM AND METHODOLOGY OF SOLUTION 

        

Low volume marginal wells make up nearly 70% of the active wellbores in the 

U.S., and are owned by companies as large as multinational oil conglomerates and as 

small as independent operators who operate as few as ten wells (IOGCC, 2015). These 

marginal wells play a significant role in the U.S. energy production landscape and many 

papers have been published addressing nearly every aspect of marginal well production. 

While these reports address many of the specific operating challenges to profitably 

managing marginal wells, no known research to date has addressed quantifying 

uncertainty, selecting optimal workover options and assigning proper upside value 

through use of a decision tree. It is also important for the reader to understand the 

principles of a decision tree, and how a decision tree is applied to the issues addressed in 

this report. 

2.1 Previous Research on Marginal Well Operation 

Numerous high-quality research reports and industry discussions involving the 

operation of marginal (and stripper) wells have been published dating back to the 1930s. 

The vast majority of this published material on marginal assets focuses on a single 

aspect of marginal well production, with no known published material covering 

improved decision making in marginal oil fields.  The closest paper to this topic came 

out in a 2005 SPE conference paper from MacDonald, Frantz, Covatch, Zagorski, and 

Forgione titled “A Rapid and Efficient Method To Identify Underperforming Stripper 

Gas and Oil Wells”. This paper sought to answer and assist stripper well operators in 
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maximizing production from low-productivity wells by developing a software to identify 

remediation potential in stripper wells. The development of this software was a joint 

effort between Schlumberger and the DOE, and the software they developed was called 

Stripper Well Analysis Remediation Methodology or SWARM. Underperforming wells 

were identified in the software if their average production rates were less than a 

specified radius of wells around the selected well. While this software proved successful 

at identifying underperforming wells, it required historic production data for each 

individual well in the field and it did not aid the operator in determining which 

intervention should be selected or in seeing the effect each intervention will have on 

overall NPV under varying commodity prices. 

A number of papers focused specifically on stripper gas wells, such as: Reeves 

and Walsh’s 2003 paper, “Selection and Treatment of Stripper Gas Wells For Production 

Enhancement, Mocane-Laverne Field, Oklahoma”, Gaskill’s 2005 paper on “Stripper 

Gas-Well Production Optimization and Reserve Retention”, and James, Huck, and 

Knobloch’s 2001 paper titled “Low Cost Methodologies to Analyze and Correct 

Abnormal Production Decline In Stripper Gas Wells”. Each of these papers provided 

real field data to support their suggested techniques for improving the production and 

profitability of stripper gas wells, primarily focusing on the issue of de-watering low 

volume gas wells.  These papers represent only a small sampling of the many papers 

relating to production techniques in low volume gas wells. While this research does 

address specific issues common to marginal gas wells, it does not provide suggestions 
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for quantifying the historic uncertainty when selecting interventions or for assigning an 

economic value to each well workover. 

Other published material has focused on reserves relating to marginal assets, 

such as the Lefkovits and Matthews 1958 paper titled: “Application of Decline Curves to 

Gravity-Drainage Reservoirs in the Stripper Stage” and their 1956 paper titled “Gravity 

Drainage Performance of Depletion-Type Reservoirs in the Stripper Stage”. Their 1956 

paper focuses on gas reservoirs with such low pressure that gravity is the primary 

driving force during production, while their 1958 paper sought to apply previously 

developed curves for a hyperbolic decline in a homogenous gravity-drainage reservoir to 

similar fields in the stripper stage of production. Gitman, Watson, and Johnson, also 

came out with a paper titled: “Near-Wellbore Damage Remediation in Stripper Wells” in 

2005 that used full scale reservoir models developed in CMG software to determine the 

most efficient manner to enhance oil recovery in stripper wells by reducing wellbore 

damage. They determined that the most effective method to increase cumulative 

production was not through near wellbore damage remediation, but through re-

pressurization of the reservoir.  

There appears to have a been a concentrated focus within SPE to focus on 

stripper wells in the year 2005, as a great number of conference papers on stripper wells 

were published for SPE in 2005. These papers include “Beating the Marginal Well 

Performance in a Mature Field: San Francisco Field in Colombia” by  Suarez, Gaviria, 

Pavas, and Frorup, 2005, “Investigation of New Tool to Unload Liquids from Stripper-

Gas Wells” by Ali, Scott, and Fehn, 2005, “Economic Sand Control and Stimulation 
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Strategy for Marginal Wells with Limited Reserves” by Morrison & Smith, 2005, and 

many more. Few, if any, papers covering stripper or marginal production have been 

published since 2005, as much of the research focus has now turned to unconventional 

activities.   

Several organizations exist to promote the continued study and development of 

stripper wells, such as the Interstate Oil and Gas Compact Commission, the National 

Stripper Well Association, and the Stripper Well Consortium. As previously mentioned 

in this report, the IOGCC was chartered by congress in 1935 with the goals of helping 

states to maximize domestic oil and natural gas production, minimize the waste of 

irreplaceable natural resources, and protect human and environmental health (IOGCC, 

2015). Their primary role today is to unite the governors of their member states to lobby 

congress with a unified voice supporting the preservation and development of oil and gas 

assets. The National Stripper Well Association began in 1934, and also serves primarily 

as a lobbying organization on behalf of the small stripper well operators. The National 

Stripper Well Association does hold annual meetings for its industry members as well as 

have state chapters that promote collaboration and lobbying on a more local scale. The 

Stripper Well Consortium was established with the help of the DOE and Pennsylvania 

State University in 2000 to help “develop and demonstrate technologies that will 

improve the production performance of stripper wells” (Covatch & Morrison, 2005). 

This organization proved fruitful in drawing industry participation for many years by 

helping to develop and support new technologies for marginal well operators, but has 

suffered at the hands low commodity prices and fell dormant in 2014. While these 
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organizations are a helpful tool for promoting collaboration and raising awareness for 

marginal well operators, there are no known organizations supporting a dialogue 

amongst these operators with a focus on profitable production practices.  

The existing literature and industry organizations appear void of proposals for 

enhanced decision making in marginal fields with reduced uncertainty. There do not 

appear to be any studies providing techniques for assigning upside value in a potential 

acquisition or divestiture of a marginal field, or for altering upside assumptions after 

results from interventions have been achieved using Bayesian analysis.  

2.2 Generic Decision Tree Overview 

       Decision trees are often used when a problem contains a large number of 

interrelated elements, making the problem appear very complicated and thus reducing a 

decisions maker’s ability to link outcomes to a given decision (Mian, 2011, p. 167). A 

decision trees seeks to provide a lucid visual structure for any complicated problem, thus 

easing the ability to convey complicated information to others in a clean and precise 

manner (Mian, 2011, p. 167). The optimal path in a tree is a determined by the highest 

Expected Monetary Value or “EMV” of each outcome. The EMV most commonly used, 

is calculated by weighing the NPV of a certain outcome by its given probability (Mian, 

2011, p. 132). Each possible outcome has its own EMV, which is discounted as it moves 

to the left through progressive chance and decision nodes until it reaches the primary 

branches on the tree. The optimal path for each tree is chosen by starting with the 

primary branches on the left side of the tree and progressively moving to the right by 

choosing the branch with the highest EMV until a branch has been exhausted and an 
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option chosen. An example of a basic decision tree built to display a “Drill or Don’t 

Drill” decision can be found in Figure 1 below.   

 

 

Figure 1. Example Decision Tree 

 

 

This simple example shows the NPV for a producer as $250 and for a Dry Hole as -$50. 

The PrecisionTree software then calculates the EMV by multiplying each NPV by its 

probability of occurring (50%) and sums the results, yielding an EMV of $100. Since the 

EMV is a positive value and greater than the $0 provided by the “Don’t Drill” option, 

the PrecisionTree software marks the “Drill” option as the optimal path. The spreadsheet 

created to analyze marginal fields used Microsoft Excel 2013, as well as the Excel plug-

in PrecisionTree7, to build and operate the decision tree and all of its inputs. 

2.3 Marginal Well Application 

       The decision tree and accompany spreadsheet created for this report can serve 

two main purposes for an operator. First, it will aid an operator of a recently acquired 

marginal oil and gas field in making informed intervention decisions by applying 

probabilities and NPVs to each possible intervention. A “best estimate” probability for 
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each intervention is determined from a combination of historical success and the user’s 

experience, the results of which are input into the spreadsheet in order to calculate the 

probability of each possible chance node on the tree. A base case NPV for the field is 

calculated using a decline curve fit to historical production data in the spreadsheet, and 

then the expected increase in NPV for each intervention is added (or subtracted) from 

this base case value to provide a field level NPV value for each possible outcome. The 

tree will then calculate the EMV of each branch and direct the operator towards the 

optimum path showing the preferred intervention with the highest EMV that should first 

be pursued by the company. Since operators are not limited to pursuing a single 

intervention at one time, this template tree can be used to determine secondary, tertiary, 

and so on, preferred interventions by eliminating the values from the optimal 

intervention and allowing the tree to calculate a new optimum path with the highest 

EMV. After a certain intervention has been executed, the Bayesian knowledge obtained 

from the outcome can be used to create an updated decision tree with reduced 

uncertainty. This process of dynamic updates can continue until all available options are 

exhausted and the operator begins to weigh the value of divesting the field. Each 

dynamic update added to the decision tree will either increase or decrease the EMV for 

the upside value of the bid decision. It is then the operator’s responsibility to keep 

accurate records of the costs and results from all interventions conducted in any operated 

field in order to aid the operator in predicting more accurate probabilities as it enters new 

fields in the future. This historical data can be used when evaluating a potential 

acquisition as well as a field where interventions are already taking place.  
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       The second purpose of this decision tree template is to aid an operator in 

assigning proper “upside” value to a bid price for a marginal oil and gas field. As 

previously discussed, the operator can use knowledge gained during due diligence in the 

field as well as previous operating knowledge from other fields to assign probabilities 

and NPVs to each possible intervention in the tree (the number and type of possible 

interventions can be manually adjusted by the operator for a specific field). The bidding 

operator can then chose to aggregate the EMVs from each intervention, apply a chosen 

discount to this value, and use it a bid price. The upside NPV is added to the base case 

NPV which is also determined as the first step in the spreadsheet by use of a decline 

curve to project 40 years of production data. All economic inputs and operating expenses 

can be applied to the forecasted production in order to provide an accurate economic 

forecast for this field.  

       A sensitivity analysis to commodity price can be performed in the tree for the 

base case reserves estimate as well as for each intervention, enabling the user to analyze 

the optimal intervention for each commodity price scenario. The predicted cumulative 

oil recovery per well as a result of these workovers as well as service costs can be 

adjusted for any intervention. Optimum paths are likely to shift based upon the EMV 

impact of oil and gas price scenarios, service costs, and predicted oil or gas recovery 

from each intervention. 
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3. CURRENT STATE OF THE SOUTH COWDEN FIELD 

 

       When an operator assesses a potential acquisition, the value of the remaining 

reserves as well as any potential upside or gains from expense reductions will be 

evaluated. The potential acquirer will also look for pertinent reservoir data and 

information on the field history in order to determine the primary reservoir 

characteristics that could lend themselves to successful wellbore workovers. The better 

the operator can understand the reservoir the better production and exploitation 

engineering the firm can provide. The South Cowden Field in the Permian basin was a 

neglected legacy asset belonging to a large operator who sold it to the current operator in 

late 2013. From the offset, the current operator sought to understand the reservoir and 

the production history of the field in order to determine wellbore interventions with the 

lowest amount of risk and greatest amount of production increase.  Over the three years 

since the field was purchased, significant economic gains have been achieved through 

various capital expenditures on field interventions. The interventions made over the last 

three years in this field serve as the basis for the ensuing decision tree model and all 

costs and probabilities used in section 4 come from best estimates in this field. 

3.1 Geologic Setting and Field History 

       The South Cowden oil field, located on the eastern edge of the central platform in 

the Permian Basin, contains three actively producing formations: the Grayburg, the 

Canyon, and the Ellenburger.  Company files show that the Grayburg, which is the 

primary producing interval and will be the focus of this report, was first discovered in 
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the late 1930s and commercial production began in 1941. Figure 2 shows the location of 

the South Cowden field on the eastern edge of the central basin platform in Ector 

County.  

 

 

Figure 2. Map of South Cowden Field (source: www.shaleexperts.com) 

 

 

 

       The stratigraphic column for the Permian basin can be seen in Figure 3 below, 

with boxes highlighting the productive formations in the South Cowden field. While 

other reservoirs have been productive in the past in this field, the only reservoirs under 

production today are the Grayburg, Canyon, and Ellenburger (highlighted in Figure 3).  
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Figure 3. Permian Stratigraphic Unit (source: www.shaleexperts.com) 

 

 

The Permian basin is known for its prolific production of hydrocarbons from a multitude 

of different producing horizons depending on a well’s location in the basin. As Figure 3 

shows, the Delaware basin, Midland basin, and Eastern shelf, contain many of the same 

productive intervals as the central basin platform, but geologic properties in each of 

these zones changes significantly across the basin. A 1982 Railroad Commission report 
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provides many of the basic reservoir properties for the portion of the Grayburg located 

on the central basin platform, which can be found in Table 1 below.  

 

Reservoir Depth: 4050 ft 

Average Effective Porosity: 6.0% 

Average Horizontal Permeability: 2.0 mD 

Average Net Pay: 65 ft 

Oil Gravity: 35 API 

Original Reservoir Pressure: 1760 psi 

Productive Acres in Reservoir: 21,600 acres 

Original Drive Mechanism: Solution Gas 

Table 1. Grayburg Reservoir Properties 

 

 

 

       Geologic reports owned by the company show that the Grayburg carbonate strata 

was deposited in open to restricted platforms on the eastern edge of the central basin 

platform and the primary reservoir facies are dolomitized carbonates with severe 

heterogeneity. Combinations of structural and stratigraphic trapping mechanisms hold 

the hydrocarbons in place, with the reservoir dipping to the south and to the east. While 

solution gas was the drive mechanism during primary production, well files show that 

reservoir pressure declined rapidly and many wells were placed on artificial lift only 

months after being drilled. Many of the initial wells drilled in the 1940s in this tight, low 

pressure reservoir were stimulated in the open hole with use of nitroglycerin, often 
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called “barefoot completions”. Initial 24hr production rates varied from 46 – 960 BOPD 

in response to these stimulations. These wells were originally drilled on 40 acre spacing, 

but later in the 1950s and 1960s wells were downsized to 20 acre spacing. (Several wells 

were drilled on 10 acre spacing in the 1980s but were not economic). The 1982 Railroad 

Commission report estimates that 9,640,000 bbls of oil were recovered during primary 

production.   

       Due to low permeability and a lack of reservoir pressure, waterflooding was 

initiated in the field in 1955 when a five spot design was created. More injection wells 

were added throughout the 1960s, leading to a production peak in early 1968. Historic 

production for the field was gathered from public data on the Texas Railroad 

Commission website, which began gathering data for the unitized field in 1955 (see 

Figure 4). Production before this time was reported on a well by well basis and only a 

handful of these wells have full production histories dating back to when they were 

drilled. 
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Figure 4. Historic Production for S. Cowden (Grayburg) 

 

 

 

       While a production response to the waterflood was seen in the field, the severe 

heterogeneity in the reservoir lead to inconsistent results. Response by well varied from 

none, to an arrest in decline, to an increase of over 100 BOPD in one well. Nearly all 

parts of the field saw the effects of the waterflood except for the NW corner of the lease. 

In the late 1970s and early 1980s the waterflood pattern was redesigned to an alternating 

line drive which saw a limited production increase in response to this change. At its peak 

in the 1980s, the Grayburg had over 100 producing oil wells in the field and nearly 60 

water injection wells, many of these wells have since been plugged or temporarily 

abandoned due to wellbore integrity issues or being uneconomic.  

       Since its initial development in the 1940s, the South Cowden field has been 

owned by many operators who continued to develop the field through infill drilling and 
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waterflood implementation. The current operator purchased the field in late 2013 when 

the Grayburg was producing ~110bbls/day of oil from ~40 active oil wells, with minimal 

associated gas. Figure 5 below shows the lease outline as well as the locations of the 

active producers and injectors in the field as of 2016. About 85% of these wells are 

considered stripper wells due to their low production volumes of less than 10 bbls of oil 

per day. Over the past three years, the operator has sought to cut operating expenses and 

exploit the reservoir with minimum capital deployed. 
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Figure 5. Lease Map and Active Wells for S. Cowden Field 

 

 

3.2 Past Interventions 

       In its efforts to determine the best methods to increase production and grow 

reserves in the field, the current operator conducted an extensive review of well files, 

searching for successful past interventions. This review alerted the operator to past 

success in the hydraulic fracturing of wells that had previously been hydraulically 

fractured, or “re-fracing”. The potential for this intervention to be successful was further 
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confirmed by the fact that several injector wells had been converted into economic 

producers, confirming the heterogeneities present in this tight reservoir. The operator 

also analyzed the effects and expense of the chemical treatments, as well as many other 

factors to determine the best way to lower lease operating expenses (LOE).  

       While the Green Tree model did not exist at this time interventions were pursued 

in this field, the operator has successfully completed many interventions over the past 

three years, including: LOE Reductions, Refracs, Adding Compression, Behind Pipe 

Exploitation, and Infill Drilling. Apart from a thorough review of well files, the operator 

also build a geologic model of the field in order to better understand the reservoir. This 

model was built primarily using wellbore logs and core data from wellfiles using Petra 

Software. The operator also gathered reservoir information from public sources such as 

the Society of Petroleum Engineers (SPE) and the American Association of Petroleum 

Geologists (AAPG).  An example of a Grayburg structure map that was built using Petra 

software can be found in Figure 6 below.  



 

22 

 

 
Figure 6. Grayburg Structure Map Over Lease Outline 

 

 

This map, and many others were used to assist the operator in making the optimal 

intervention decision. A brief review of each of the interventions conducted in the field 

over the past three years can be found in the subsections below. 
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3.2.1 LOE Reductions 

       The operator experienced significant success in reducing routine lease operating 

expenses in this field during its first four years of ownership. The operator targeted four 

main areas of operating expenses: contract labor, surface equipment maintenance, 

chemical treatments, and workover rig expenses. The results in each of these categories 

can be found in the bullet points below.  

- 70% reduction in contract labor from 2013 to 2015 

- 40% reduction in surface equipment maintenance from 2013 to 2015 

- 40% reduction in chemical treatment from 2013 to 2015 

- 30% reduction in workover rig expenses from 2013 to 2015 

Figure 7 also shows the percentage reduction in LOE from 2012 through 2016 as the 

operator achieved a 50% decrease in routine LOE over a four year period.  

 

 

 
Figure 7. Percentage Reduction in LOE Since Acquisition 
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3.2.2 Reservoir Stimulation 

       As previously discussed, a review of the well files showed that implementing a 

second or third hydraulic fracture on a single wellbore, or “re-fracturing” wells had 

proven successful in the past. Thus the company decided to explore this option, along 

with what they had learned about the reservoir. Since the Grayburg had very low 

permeability and a high degree of heterogeneities, the company decided to employ a 

hydraulic fracture design that mimicked many of the designs used for unconventional 

wells. After a study was completed to select the optimal location in the reservoir as well 

as confirm wellbore integrity, the company began executing this new fracturing design 

in late 2015. A total of eight wells were fractured or re-fractured over a six month period 

and the results ranged from an initial production increase of 7 BOPD to over 100 BOPD. 

Due to a relatively low service cost to fracture these wells, all eight have proven 

economic and added reserves to the books of the operator. The results from these wells 

are used in the Green Tree model to calculate the risk adjusted value of continuing to re-

fracture wells in this field. 

3.2.3 Behind Pipe Potential 

       Many productive formations that are in the area of the S. Cowden field were 

evaluated by the engineering and geologic staff of the company to determine if any 

behind pipe potential existed in the wellbores. A review of the logs and reservoir 

properties, as well as a review of the well files cast doubt on the opportunity for behind 

pipe potential. Several pervious operators had perforated other zones with very little 

success. A review of well logs also showed the severe heterogeneities that exist in the 
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field in the field, and discouraged the operations team from trying to complete a new 

formation. The only successful recompletion to date was in a wellbore that had been 

producing out of the Canyon, but due to low production the company plugged off the 

canyon and perforated and fractured the Grayburg. This well was one of the eight wells 

hydraulically fractured by the company with positive results. Opportunities to continue 

to convert Canyon wells into Grayburg wells still remain in the field and are under 

evaluation by the company. While no “new” formations exist to be tapped in existing 

wellbores, it is quite common for marginal well operators to perforate new zones in 

existing wellbores in order to grow reserves. Thus this section is important for the 

decision tree template to be a helpful tool to other marginal well operators.  

3.2.4 Surface Equipment 

       Perhaps the simplest intervention, surface equipment upgrades can provide cost 

effective interventions that generate significant returns. The operator of the S. Cowden 

field watches fluid levels in wellbores very closely and makes adjustments to artificial 

lift in order to move the maximum amount of fluid possible out of each wellbore. 

Installing a larger pump is a relatively inexpensive intervention that has lead to 

meaningful increases in production with a payout of only a few months. Apart from 

adjustments in artificial lift, the operator has also installed a compressor to pull down the 

gas pressure in the annulus between the tubing and casing on several of the wells. These 

wells were often experiencing a pressure buildup in the annulus that was suppressing the 

reservoir’s ability to flow fluids into the wellbore. Once the compressor was installed, 

the operator saw an immediate increase in production as the wells were producing a 
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greater volume of fluid that resulted in more oil production. Many marginal well 

operators implement similar practices with surface equipment, and thus including this 

option in the model could prove helpful to other operators. 

3.2.5 Infill Drilling 

       Infill drilling is often considered in legacy fields where an operator has found an 

unexploited area of the reservoir or has discovered a new productive horizon. Infill 

drilling is being considered in several areas of the S. Cowden field where the operator 

believes the Grayburg has not been penetrated. While no infill drilling has taken place to 

date, the current operator has created a plan for the infill drilling of four wells and has 

received bids from drilling contractors. The projected economics and production for 

infill drilling have been used in the model, as they are thought to be common for many 

other marginal well operators. 
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4. THE GREEN TREE MODEL 

 

       The following subsections will take a step by step walk through of the decision 

tree spreadsheet, or Green Tree, built to analyze marginal oil fields. A flow chart 

summarizing the first four steps can be found in Figure 8 below. All data used in the 

spreadsheet for this example came from the South Cowden field and represent best 

estimates for each possible input. The structure of the tree and the five interventions 

chosen reflect the intervention options previously discussed in section 3 in the South 

Cowden field, but also were chosen as likely options for any marginal oil field. The 

advantage of building this model in a spreadsheet without the use of visual basic 

programming is that all inputs and structures can be easily adjusted to fit needed 

variances or changes for other marginal oil fields. 

 

 

Figure 8. Flow Diagram for Green Tree Model, Part 1 
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4.1 Decline Curve Analysis 

The first two sheets in the workbook calculate the existing reserves of the asset 

being evaluated in order to develop a base case NPV. The very first sheet, titled “1-

DCA_Regression,” uses historical production from either a single well or a group of 

wells and fits a decline curve to the historical data by the least squares fitting method, 

with the aid of the solver function in excel. The user has the option to choose between 

using “Value Diff Squared” or “Percentage of Actual” for the residual type from a drop 

down list, as well as a choice for the objective function between “Monthly Residuals”, 

“Cum Residuals”, or “Both (Avg Monthly & Cum)”. Once these options have been 

selected and the user has input reasonable estimates for Qi, Di, and b, the user will use 

the solver function in excel to calculate the minimum value for the sum of the objective 

function column by altering the Qi, Di, and b (see Figure 9). Once the optimal Qi, Di, 

and b values have been selected by the solver, a monthly production rate will be 

calculated from the regression and plotted as a decline curve over the historical 

production data on a graph (see Figure 10). This cumulative production data for the field 

is also plotted on the right axis of this graph in Figure 10. 
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Figure 9. Layout for Decline Curve Analysis 

 

 

 

 

Figure 10. Decline Curve and Projections, S. Cowden Field 

 

 

      The Qi, Di, and b values calculated by the solver to create the decline curve 

automatically flow through to the second sheet in the workbook in order to forecast 
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production, this second sheet is titled “2-DCA_Forecast”. These values are used to 

extend the decline curve on the same trajectory to forecast production for forty years into 

the future. The sheet gives the user the option to set a minimum decline rate either at the 

end of historical data or once the projected yearly decline rate drops below this value 

(see Figure 11). Forecasted production data also shows up as the dotted line on the graph 

in Figure 10 for monthly production and cumulative production.   

 

 

Figure 11. DCA Forecast Sheet 

 

 

 

       As can be seen in Figure 9, it was determined that the optimal point to begin 

using historical data to build a decline curve for South Cowden was when production in 

the field peaked in 1968. Several challenges were faced when constructing this decline 
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curve, which may or may not apply to other marginal fields applied to this model. First, 

very limited historical production was available for individual wells in this field as it was 

unitized for a waterflood in the 1950s and production has been reported on a unit basis 

since that time. Secondly, there was limited knowledge of historical interventions taken 

in the field before the current operator acquired the field in 2013, thus it was quite 

difficult to discern the causes for production spikes and drops. Lastly, the number of 

active wells reported in field over time was also unverified and appeared inaccurate at 

several points in time. Ideally, a decline curve would be built on a well by well basis in 

the field, the reserves of which could be amassed to determine field reserves or a general 

type curve could be developed for the field to be used in this model. Since neither of 

those options were possible with this field, the decline curve used monthly lease 

production for the field. To verify these results, the monthly lease production was 

divided by the total number of active wells in the field and a decline curve was created, 

which yielded very similar results to the monthly lease production used. Since the results 

were quite close, and the reported number of historically active wells in the field was 

suspect, the total monthly lease production was used for this analysis.  

4.2 Eco Inputs/Price Scenarios/Valuation 

       The forty years of projected production data from the decline curve flow through 

to the fourth sheet in this workbook titled “4-Eco_Details”. A sophisticated economic 

analysis, including a changing product price, operating expenses, capital expenses, taxes, 

ownership structure and payout arrangement, gas shrinkage, and basis differentials is 

applied to the forecasted monthly production in this sheet. Since the primary product 
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produced in the S. Cowden field is oil, the decline curve built a forecast based off of 

historic oil production. Gas production rates in this field track nearly identically in line 

with oil production, so a simple ratio was calculated using historic production that was 

input into the Eco_Details sheet to create a gas production forecast. This Eco_Details 

sheet draws all of its economic inputs from the third sheet in the workbook, titled “3-

Eco_Inputs” (see Figure 12). With this information, the Eco_Details sheet is able to 

calculate a plethora of economic information such as present value at various discount 

factors, internal rate of return, payout, field life, reserves, and much more which are 

summarized on the fifth tab “5-Eco_Summary” (see Figure 14).    
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Figure 12. Economic Inputs Page 

 

 

All inputs seen in Figure 12 are best estimates used for the South Cowden field to 

calculate the base case PV10 value, from which all additions to NPV from field 

interventions are added. The economics sheet allows the user to input starting prices for 

oil, gas, and NGLs, and then select a target price for each commodity to reach within 

five years. Each commodity has a drop down list of three possible price targets from 

which to choose, but if the user would like to change these targets or add more options 

this can easily be done in excel. An oil price forecast reaching $100/bbl after five years 
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and a gas price reaching $7/MMbtu after five years were used for the base case (see 

Figure 13). These values will be varied to create a sensitivity analysis later in section 5.  

 

 

Figure 13. Model Price Forecasts 

 

 

All inputs used in the Eco_Inputs sheet contribute to the calculations for each of 

the five interventions analyzed in this model. Each intervention has its own Eco_Details 

sheet which calculates the reserves and PV10 value by pulling its economic inputs and 

price scenarios from the Eco_Inputs sheet. Thus making a change to commodity price or 

any other economic input will automatically be applied to the economic projections for 

each intervention. A further explanation for each intervention can be found in the 

subsections of 4.3 in this report.  
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Figure 14. Eco. Summary for Base Case Reserves 

 

 

4.3 Interventions 

 Five intervention options are provided in this model based off what was used in 

the South Cowden field. While these five interventions will prove applicable for many 

marginal oil fields, the user has the ability to edit, add, or subtract from this list with 

relatively little effort in excel. In the sub-sections below the inputs and set-up for each 

intervention in the model are explained. A flow diagram showing a step by step process 

for determining the optimal intervention in the model can be found below in Figure 15. 
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Figure 15. Flow Diagram for Green Tree Model, Part 2 

 

 

4.3.1 LOE Reduction 

 The first sheet after the decision tree is titled “A-LOE,” which is the location for 

all LOE related probabilities and forecasts that feed into the decision tree (see Figure 

16).  
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Figure 16. LOE Reduction Input Sheet 

 

 

All cells highlighted in blue should be adjusted by the user to match expected 

results for the field being analyzed. The first box on the left, titled “Historical LOE 

Reductions”, is set up for the user to input LOE reduction results from previous fields. 

Once these values are placed in the sheet, it automatically transfers the percentage of 

“large”, “small”, and “no” LOE reductions to the decision tree. Next, the user inputs 

expected values for a large and a small LOE reduction over five years. The user will 

base this information after past results in similar fields and will be able to view the 

changes in monthly LOE in the table to the far right as well as the graph placed below 

the tables. Both the large and small percent reductions are applied to copies of the 
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Eco_Details sheet which pulls its inputs from the Eco_Inputs sheet. This way, a PV10 

value can be calculated for both the large and small LOE reductions that can be directly 

compared to the base case PV10 since all other inputs are identical. The increase in 

PV10 from both large and small LOE reductions can be seen on this sheet and are 

directly tied into the decision tree. A snapshot of this part of the tree can be seen below 

in Figure 17.  

 

 

Figure 17. LOE Reductions Branch of Decision Tree 

 

 

4.3.2 Reservoir Stimulation 

 The second intervention addressed in the model is reservoir stimulation, which in 

this case focuses on hydraulic fracturing or acidizing selected wellbores. Similar to the 

LOE reductions sheet, this sheet calculates probabilities based on the historical results of 

the operator in similar fields. Each of these calculated probabilities (highlighted in bold 

font) are tied directly into the decision tree (see Figure 18).  
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Figure 18. Reservoir Stimulation Probability Inputs 

 

 

Next, the user inputs the estimated cost of a hydraulic fracture job for a single 

well or an acid stimulation for a single well (see Figure 19). Estimated production 

increases per well as a result of the stimulation must also be estimated by the user, 

accompanied by alternative projections for cases if the wells underperform or 

outperform the provided projections. Lastly, the user must estimate how many wells per 

year are stimulated under each possible scenario. This will vary greatly based off the 

total number of well in the field, the amount of capital the company is willing to spend 

on stimulation, and the risk tolerance of the company among other factors. A PV10 for 

each type of stimulation as well as each possible outcome is then calculated based off of 

these inputs. The capital costs and production increases (or decreases) are applied to a 

copy of the Eco_Details sheet, so that all other inputs will match the base case apart 
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from the effect of the stimulation. The PV10 results (highlighted in bold font) for each 

case and scenario are tied directly into the decision tree and used by the tree to calculate 

the EMV.  

 

 
Figure 19. Reservoir Stimulation Price and Production Projections 

 

 

Figure 20 shows the production changes for both the fracture and acidize scenarios for 

all three of the possible outcomes, plus the base case production if no interventions are 

completed. The model is designed to increase production for each intervention on a 
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yearly basis for a period of five years; this is why each of the production increases in 

Figure 20 appears to increase in set increments and not in a smooth fashion. While actual 

production changes would occur on a monthly basis, the resulting economics from 

monthly over yearly are not significant, thus the simplified yearly approach was used in 

this model.  

 

 

 

Figure 20. Graphs of Production for Reservoir Stimulation Scenarios 

 

 

 Each of the inputted values and probabilities used for fracturing and acidizing 

flows through to the decision tree tab on the spreadsheet, calculating an EMV for each 

possible outcome. A screenshot of the reservoir stimulation branch of the decision tree 

and its accompanying EMVs can be found in Figure 21 below. The decision tree holds a 

branch for each of the five inputs, directing the user towards the branch with the highest 

intervention EMV.  
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Figure 21. Reservoir Stimulation Decision Tree Branch 

 

 

4.3.3 Behind Pipe 

 Behind pipe potential for the S. Cowden field involves perforating a previously 

unproduced zone in an existing wellbore with the option to stimulate via hydraulic 

fracture after the perforation is complete. The organization and structure of this sheet is 

nearly identical to the previous sheet for reservoir stimulation, and all calculated values 

(highlighted in bold) flow to the decision tree. The first table, “Historical Success of 

Behind Pipe Potential in Marginal Fields”, allows the user to track previous success with 

behind pipe potential to determine the likelihood of having success in the field under 

evaluation (see Figure 22). Next, the chance of having wellbores suitable for perforation 

is calculated as well as the outcomes of past results as can be seen in Figure 22.  
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Figure 22. Behind Pipe Probability Inputs 

 

 

These input boxes are followed by cost inputs, and estimates for each of the future 

production outcomes (match, outperform, underperform) and their associated well count 

(see Figure 23). This sheet is set up with the same structure and flows to the decision 

tree in the same way as the previously discussed intervention of reservoir stimulation. 
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Figure 23. Behind Pipe Costs and Production Projections 

 

 

This sheet also populates a graph that shows the effect on monthly oil production during 

the five year period the intervention is implement. Each of the outputs for match, 

outperform, and underperform, can be compared to the base case production curve for 

each of the behind pipe scenarios (see Figure 24). 
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Figure 24. Graphs of Production for Behind Pipe Interventions 

 

 

4.3.4 Surface Equipment 

The inputs page for surface equipment contains five possible intervention 

options: upgrade pump type, upgrade pump size, speed up/lengthen stroke, add wellhead 

compression, or add backside compression. The first three options fall under the 

category of “Artificial Lift Upgrades”, and the latter two are considered “Compression 

Upgrades”.  While this model calculates the optimal path by selecting only one 

intervention at a time, it is possible for an operator to implement many of these 

interventions simultaneously. The organization of this sheet follows the structure of the 

previously discussed interventions, as probabilities for each possible outcome are first 

calculated from the operator’s historical results, then inputs for cost, production 

projections, and well counts are inserted. All probabilities and PV10 values calculated in 

the sheet and highlighted in bold font flow directly into the decision tree.  

Because three main intervention options exist for artificial lift upgrades and two 

options exist for compression upgrades, the inputs were split into two different sections 

on the same sheet.  
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Figure 25. Surface Equipment Probabilities, Artificial Lift 

 

 

The left half of the sheet addresses the probabilities of success for surface equipment and 

the probabilities of success for artificial lift upgrades (see Figure 25). Directly below 

these probabilities calculations are the inputs for prices and production increases for 

each of three types of artificial lift upgrades (see Figure 26). As a reminder to the reader, 

all cells highlighted blue are inputs for the user, while all numbers in bold are the 

calculations that flow through to the decision tree.  
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Figure 26. Surface Equipment Price and Production Projections, Artificial Lift 

 

 

This sheet also has graphs that update in real time to show the expected production 

increases for each type of artificial lift upgrade and each possible outcome within each 

type (see Figure 27). 

 
 

 
Figure 27. Surface Equipment Production Graphs, Artificial Lift 
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The right part of the sheet contains the input cells for compression upgrades. The top 

half, Figure 28, shows the input cells for probability calculations for compression. 

 

 

Figure 28. Surface Equipment Probabilities, Compression 

 

 

 

The bottom half of the sheet, Figure 29, shows the price and projected production 

increases for each type of compression. This is followed by Figure 30, which graphically 

shows the production changes for each outcome of each type of productio upgrades.  
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Figure 29. Surface Equipment Costs and Production Projections, Compression 

 

 

 

Figure 30.  Surface Equipment Production Graphs, Compression 
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Lastly, screenshots of the decision tree branches for both types of surface equipment 

upgrades can be in Figure 31 and Figure 32 below. There is one branch for the surface 

equipment intervention that is split into two parts, artificial lift (Figure 31) and 

compression (Figure 32).  

 

 

 
 

Figure 31. Surface Equipment Decision Tree, Artificial Lift 
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Figure 32. Surface Equipment Decision Tree, Compression 

 

 

4.3.5 Infill Drilling 

 The fifth intervention covered in this model is the prospect for infill drilling in a 

marginal oil field. While this prospect might be the least likely intervention in a marginal 

oil field as it has the highest capital cost and it is likely that an infill drilling campaign 

has already been conducted in a legacy field, it also has the potential to provide the 

largest production increase. Historic success from similar fields is used as an input to 

calculate the probability of success in the field under study. Then costs, production 

projections, and well counts are selected by the user for the spreadsheet to calculate the 

PV10 of each possible infill drilling outcome (match projections, outperform 

projections, underperform projections, or dry hole) in a similar manner to the previous 

four interventions. The top of the sheet covers the probability inputs for the historic 

success of infill drilling in marginal fields as well as the chances for wellbore candidates 

and results from past fields (see Figure 33).  



 

52 

 

 

Figure 33. Infill Drilling Probabilities 

 

 

 

Below the probabilities are the cost and production projections for each of the possible 

outcomes of infill drilling (see Figure 34). All cells highlighted in blue are input cells, 

while all numbers in bold are the results that flow through to the decision tree.  
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Figure 34. Infill Drilling Costs and Production Projections 

 

 

This table is followed by a graph that shows the production increases for each possible 

outcome as compared to the base case production curve (see Figure 35). 

 

 

Figure 35. Infill Drilling Production Graph 
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Figure 36 shows the fifth and final branch on the decision tree that covers all possible 

outcomes for infill drilling.  

 

 

Figure 36. Infill Drilling Decision Tree 
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5. RESULTS 

 

 The results of the Green Tree model for the South Cowden field are generated 

from the inputs shown in the preceding Section 4, which uses best estimates for costs, 

probabilities, and production responses from the S. Cowden field. Results vary greatly 

depending upon commodity price scenarios as well as many of the intervention inputs, 

all of which will be discussed in the following sections. 

5.1 Sensitivity Analysis 

Perhaps the most important user input in the Green Tree model is the starting 

commodity price and accompanying price forecasts. As previously discussed, any 

starting price can be input for oil, gas, and NGLs, and there are currently three different 

price forecasts for each commodity to choose from. These pricing scenarios will not only 

affect the base case value of the field, but will also affect the commodity prices applied 

to the production forecasts for each intervention (as discussed in Section 4). In order to 

show these effects, a sensitivity analysis to commodity price was conducted with three 

different starting prices for oil and gas, with each of the three projected commodity 

prices being applied to the three price scenarios (see Figure 37), resulting in a total of 

nine price scenarios. While the model allows the user to use any possible pricing 

scenario, these nine scenarios were chosen to display a concise view of the effects of 

commodity prices on the model results.  
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Figure 37. Commodity Price Projections Used 

 

 

All nine price scenarios as well as projected outcome generated by the model can be 

found in Table 2 below. As designed, the optimal intervention varies based upon which 

base price and future price scenario is selected. 

 

 

Table 2. Optimal Intervention Results for Each Price Scenario 

 

 

The first outputs column shows the PV10 value of reserves that is generated by the 

decline curve and the economic inputs the user has selected (see Figure 12). This is 

called the “base case” PV10 because this is the most conservative value for the field as it 
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assumes no interventions are implemented. The second outputs column on Table 2 

shows the optimal intervention selected by the decision tree based off of the highest 

EMV value. The third outputs column displays the total EMV value of the field with the 

optimal intervention, and the last column shows the total field EMV minus the base case 

EMV, thus showing the upside EMV provided by the optimal intervention. 

A sensitivity analysis for the Base Case PV10 values can be seen in Figure 38, 

which shows the effect on the base case PV10 value for each starting price at all of the 

five year price targets. This graph shows the fairly linear effects of starting price and 

price forecasts on the value of this field.  

 

 

Figure 38. PV10 Results for Various Starting Oil Prices 

 

 

The cumulative total cash flow under each of the five intervention scenarios can be seen 

in Figure 39. This table shows that cash flows for many of the interventions overlap for 
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the first few years, but by the third or fourth year they each begin to differentiate 

themselves.   

 

 

Figure 39. Cumulative Cash Flow Projections for Each Intervention ($45-$100) 

 

 

The sharp changes in cumulative cash flow values during the first few years for Infill 

Drilling are due to the large expense of drilling a new well. Also, while the cumulative 

cash flow lines for each intervention appear to form a similar shape, the line for LOE 

does not match the others as it appears to be fairly linear. LOE reductions are calculated 

as a percent reduction in OPEX, while all other interventions use short term increases in 

production to counter their capital expenditure. Effects of this calculation method for 

LOE Reduction can also be seen in Figure 40.  EMVs for all interventions except for 

LOE increase in a linear fashion as starting oil price increases in this graph.  
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Figure 40. EMV for Each Intervention for All Starting Prices ($75/bbl Target) 

 

The bend in the LOE curve is due the effects of the percentage decrease in OPEX over 

time. While all other interventions involve spending CAPEX to achieve a set increase in 

production per well, LOE Reductions only affects operating expenses on a percentage 

basis. 

5.2 Prioritizing Interventions 

It should be noted that LOE Reduction is the optimal intervention for the higher 

price forecasts of $100/bbl and $125/bbl, as seen in Table 2. Since the model does not 

weigh the cost of capital for each intervention but only the outcome’s effect on total 

EMV, it does not properly categorize LOE Reductions. It is a reasonable assumption that 

all operators will be working to reduce LOE, regardless of intervention activity, as LOE 

reduction requires no capital deployment. An example of this decrease in monthly OPEX 

over a five year period for a “Large” LOE Reduction (see Figure 16) can be seen below 
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in Figure 41. This data uses a $45/bbl starting price for oil and a $100/bbl oil price 

forecast after five years. A simple percentage reduction in OPEX for each of the first 

five years the field is owned is applied at the beginning of each year.   

 

 

Figure 41. "Large" Monthly LOE Reduction Forecast 

 

Figure 42 shows the cumulative CAPEX spent for each intervention over the 

forecasted 40 year period. The results shown in this chart are also from the “match” 

category of projected results, as seen for each intervention in Section 4 (each 

intervention has a projected production increase that “matches” projections, 

“underperforms” projections, and “outperforms” projections). The commodity price used 

for each intervention in this graph is a starting oil price of $45/bbl and a $100/bbl 

forecast after 5 years, as previously used.  
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Figure 42. Cumulative Capital Deployed For Each Intervention 

 

 

Infill drilling is by far the most expensive intervention, while making changes to surface 

equipment, such as pump size upgrades, is the least expensive option. The stair step 

manner in which CAPEX increases on the graph is due to the number of well 

implementations scheduled for each year on the inputs tab for each intervention.  

The primary purpose of including LOE Reductions as an intervention is in 

helping an operator evaluate the chances and value of LOE reductions on a potential 

acquisition. Due to these facts, a second table was generated (Table 3) that showed the 

optimal intervention at each pricing scenario, but did not include LOE Reductions, thus 

the second best option was selected when LOE Reductions was the optimal intervention.  
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Table 3. Intervention Results Without LOE 

 

 

Once LOE Reductions have been replaced by the intervention with the second highest 

EMV, Reservoir Stimulation (Frac) replaces LOE for the $100/bbl forecast and Surface 

Equipment (upgrade pump size) replaces LOE for the $125/bbl forecast. These results 

reveal that the optimal intervention has a stronger correlation to the price forecast than to 

the starting commodity price. This is confirmed in Table 4 below as the results from the 

$45/bbl, $55/bbl, and $65/bbl starting oil prices all match this table as they all have the 

same results for each price forecast. The changes in optimal intervention that occur at 

each of the three forecasted oil prices are shown in this table and they hold the same 

order regardless of the starting oil price.  

 

 

Table 4. Intervention Priority (Left Column) Based on Price Scenarios 
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EMV totals for each intervention at each of the nine price scenarios can be found in 

Table 5Table 5. Total EMV Results for All Interventions, from which Table 4 was 

created. The EMVs for the top three interventions can be seen to be very close, while the 

last two choices of Behind Pipe Potential and Infill Drilling lag significantly behind the 

first three choices. The optimal intervention choice is shown with red text and the 

secondary choice is shown in blue text. With this text coloring the reader can observe 

that the same optimal intervention pattern is followed for each of the three starting oil 

prices. 

 

 

Table 5. Total EMV Results for All Interventions 
 

 

All EMVs used in this table come from the decision tree and provide the user a clear 

order for interventions in the field. The primary reason the behind pipe and infill drilling 

interventions find themselves as the last intervention choices is their high cost, 

accompanied by a production forecast that is only slightly greater than that for Reservoir 

Stimulation or Surface Equipment upgrades. Meaning that an operator would only 

pursue these interventions if they have already exhausted all opportunities for reservoir 

stimulation and surface equipment upgrades, or if they forecast significantly greater 
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production increases from each of these interventions. Otherwise, it appears that the 

returns for Infill Drilling and Behind Pipe Potential fall significantly behind Reservoir 

Stimulation and Surface Equipment Upgrades.  

5.3 Multiple Options Selected to Calculate Acquisition Price 

If an operator were to use this model to evaluate an acquisition, they could 

accumulate EMVs for multiple interventions to determine a realistic total upside value. 

While the results would be greatly reliant upon the operator’s discretion in summation of 

these EMVs, this tool can add significant value for this purpose. In order to show an 

example of this, Table 6 has been prepared.  

 

 

Table 6. Upside Valuation for Acquisition 

 

 

All values in this table were calculated for a starting oil price of $55/bbl and a five year 

target of $100/bbl. At the top of the table is the base case PV10 value for this price 

scenario as can be found in Table 3 above. The column titled “Total EMV” shows the 

EMV for the entire field calculated by the model for each intervention, also found in 
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Table 5 above. The next column to the right titled, “Intervention EMV” shows the total 

EMV for each intervention minus the base case PV10 value, to provide the upside value 

of each intervention. Under this pricing scenario, Behind Pipe and Infill Drilling 

interventions actually lose money for the company, while the other three interventions 

add value to the field. For this reason, the last column shows the upside EMVs which are 

positive, eliminating those with negative values. These positive upside EMVs are 

summed in the “Total Upside” line, and then an additional discount factor of 15% is 

applied by the company to produce a total adjusted upside value of $6,105,341. This 

value will then be added to the base case PV10, for a total field value of $10,645,905. 

This shows a simple and easy way for a company to use this model to determine an 

adequate acquisition price that includes risk adjusted upside from successful 

interventions. As previously stated, many operators will develop different methods of 

calculating this, as they may use a different discount factor, or may adjust the 

intervention inputs so that all possible interventions result in positive additions to base 

case PV10 values.  

5.4 Effect of Posterior Probabilities 

It is also possible for a company to update the probabilities and projections used 

for each intervention in real time as they receive results from the field. As probabilities, 

prices, and production forecasts are adjusted, this will have an effect on the optimal 

intervention determined by the decision tree as well as the EMV upside assigned to each 

intervention. The model is created to be updated in real time as interventions are 

conducted, with the goal of refining the projections to ensure greater accuracy over time.  
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Depending on the size of the field, the operator will have a limited number of 

wellbores in which to conduct workovers. Thus, once wellbore options for the optimal 

intervention have been exhausted, the operator can place a zero value for that 

intervention in the inputs page so that the tree will then select the next optimal 

intervention. Once opportunities for the second intervention have been exhausted, then 

the third will be implemented, and so on and so forth until no more interventions remain 

and the company must consider divesting the field.  

5.5 Divestment Decisions 

When seeking to optimize a portfolio of marginal fields, an operator will seek to 

determine the optimal time for a divestment decision. While many timing factors are 

outside of an operator’s control, such as commodity prices, the success of offset 

operations, and current market conditions, there are several aspects of divestment timing 

that the operator can control. The Green Tree model can help an operator evaluate 

optimal divestment timing by determining remaining recoverable reserves in the field, 

remaining EMV from interventions, and determine a divestment price that will meet the 

operator’s IRR threshold. Once the operator has determined the desired IRR for a given 

marginal field, the Green Tree model can be updated periodically to determine if the IRR 

threshold has been achieved. The operator will need to use historic production 

performance in the field along with an estimated divestment price provided by updating 

the Green Tree model in order to determine if their IRR hurdle rate has been met. 

Updating the model will follow the same pattern as explained in section 4, first a decline 

curve will be built that provides a base case PV10 value, then the operator will update 
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each intervention inputs tab with the most current field data and results. If some 

interventions have been exhausted, the user will input a zero value for EMV, while other 

interventions can be updated based upon remaining wellbore options for that 

intervention. For example, in the S. Cowden field six wells have been re-fractured to 

date, but ten wellbore candidates remain for re-fracturing, thus the results from the first 

six wells would be used to calculate the expected production increases and probabilities, 

while the remaining ten wells would be used to calculate remaining EMV upside for the 

re-fracturing intervention. This process will continue for all the remaining interventions 

in the field, including the percent reduction in LOE achieved to date. The user could then 

sum all positive intervention EMVs remaining in the field with the base case PV10 value 

to determine an adequate divestment price, as seen in Section 5.3, in order to determine 

if the IRR threshold has been met. Discretion would then be used by the operator to 

determine optimal divestment timing, contingent upon expected returns from the 

remaining interventions. The operator will either determine that possible upside in the 

field remains an attractive investment and continue to pursue interventions, or that the 

current divestment price is more attractive than continuing to pursue interventions and 

will look to sell the field.  
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6. DISCUSSION 

 

6.1 Green Tree Strengths 

 The Green Tree Model has the potential to be used for a myriad of upstream field 

development applications relating to decision making about property acquisition and 

divestment, as well as intervention evaluation in legacy oil fields. Many of the smaller 

companies who operate these legacy assets currently use fairly unsophisticated means to 

evaluate property upside value and production enhancement options in potential 

acquisitions. Most companies will depend on the previous experience of their engineers 

to determine possible upside options when evaluating an acquisitions. The engineer will 

hold a brief discussion with the current operator and/or those representing the seller, as 

well as conduct a quick review of the provided sale data, which often includes reserves 

information and a few wellbore files. Using this limited knowledge, the engineer will 

then estimate costs and projected returns for each intervention, and often using a 

petroleum economics software such as Landmark’s Aries, to show the effect on total 

field reserves. At times, evaluations for small assets are even less technical than this 

approach, as operators will use back of the envelope calculations that are based on an 

operator’s guess for each intervention’s success. Thus, one of the greatest values the 

Green Tree model provides is to clearly show the risk adjusted values for each 

intervention and provide the operator a quick and concise way to make decisions that 

otherwise would be far too complicated for a simple mental math analysis. Because this 

model uses an iterative process to give better clarity on the value and probability of 
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success for each intervention, it will help the operator to develop a systematic decision 

making process that provides the most accurate projections possible. The strength of this 

model is its simplicity and adaptability, as all calculations are straightforward and its 

design in Microsoft Excel allows it to be easily adapted to fit any legacy oil field. 

6.2 Implementation Requirements and Future Work 

It is essential that companies who plan to use the Green Tree model create a data 

bank of past results in order to improve the probabilities and production projections used 

in this model. While its structure is basic, opportunities for future improvement exist, 

such as adding price projection options that increase exponentially over a period greater 

than five years. Each company will hold a unique view of commodity price forecasts, 

and thus they should be able to adjust the model to accurately match their forecasts. The 

model could also be improved by implementing the CAPEX and production increases 

from interventions on a monthly basis, as opposed to a year basis. The period of their 

effect on the field value could be extended to last longer than five years. Perhaps a more 

significant change to the model could come in considering re-structuring the tree so that 

LOE is considered to be a continuous improvement and not a onetime intervention 

option. As we learned in the results, it is not accurate to ever have LOE selected as the 

primary intervention since it requires no capital to complete and all operators will 

continually be focused on LOE reduction. Also, LOE reductions are calculated 

differently than the other four interventions as LOE reductions only affect OPEX on a 

percentage reduction basis. The primary purpose of including LOE Reductions in the 

model is to help provide a reasonable expectation for an operator of possible reductions 
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to LOE based on past success in similar fields. This comes into play largely when an 

operator is evaluating an acquisition. 

6.3 Comparison With Other Methods to Assess Asset Value 

 Many different techniques exist to determine the value of an oil and gas property. 

In the “Economic Evaluation of Oil and Gas Properties Handbook”, published by the 

U.S. Bureau of Land Management, two primary methods are used when valuing an oil 

and gas properties: (1) comparable sales approach and (2) the income approach. The 

comparable sales approach uses the sales price valuation of a comparable property to 

place a value on the asset being evaluated (BLM, 2015). An example of this would be a 

per acre lease price or a per barrel purchase price for a property with proved reserves. 

While this approach is valuable and commonly used, the Green Tree model does not use 

any comparable sales information in its valuation. The income approach typically uses a 

discounted cash flow model to determine the present value of the projected cash flows 

from the asset (BLM, 2015). Companies will often create a discounted cash flow model 

for an asset based upon its proved reserves and then compare this value to the valuation 

for other comparable assets, thus using a combination of both valuation methods.  

Other, more simplistic methods exist, such as “the 3x rule”, which multiplies an 

asset’s 12 month cash flow by three, in order to determine a fair market value (BDO, 

2011). This is one of the oldest and simplest methods for valuing oil and gas properties, 

as is often used by CPAs and attorneys to value estates and gift tax returns (BDO, 2011). 

While this method is simple, it has proven to grossly under estimate the value of oil and 

gas assets compared to their actual selling prices (BDO, 2011). This method neglects all 
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geologic data, historic production, comparable sales prices, and upside value in an asset, 

and cannot provide the seller any confidence. An operator must spend the effort and 

expense to accurately assess the value of a property through engineering analysis and 

comparable sales prices from other assets. Many of the recent advances in reserves and 

economics software has made this method of valuation largely obsolete and thus it is not 

recommended.  

 While the aforementioned combination of the income approach and the 

comparable sales approach are the most commonly used for valuation of oil and gas 

properties, marginal properties differentiate themselves in several ways. First, marginal 

properties are highly sensitive to commodity prices and operating conditions. They 

typically operate on older equipment that is much more likely to fail than newer 

equipment, and at such low production volumes even a few days of lost production can 

make the wells uneconomic. Secondly, marginal properties are very sensitive to wellbore 

interventions targeting increased production, which, if successful, can lead to a doubling 

of a wells daily production. The discounted cash flows (DCF) method relies on an 

engineer generating a decline curve that forecasts production for the asset, preferably on 

a well by well basis. This method works well in areas currently under development 

where a reliable type curve is available and/or the wells are in the early part of their 

decline. These wells will follow a predictable and steady decline, with very few expected 

interferences. Marginal wells on the other hand typically have a fairly flat decline and 

their future production is highly dependent upon which interventions are implemented. 
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Thus, it is crucial for a marginal well operators to properly assess the risk adjusted 

upside of interventions.  

For these reasons the Green Tree model provides a different approach to 

valuation for marginal assets than for assets that are earlier in their development 

lifecycle. A commonly used framework does not exist for determining a PV10 value 

along with a risk adjusted value for upside interventions in marginal oil fields, thus the 

Green Tree model was created to fill this gap. Operators who frequently purchase and 

sell marginal assets will typically use their past experience and intuition to place an 

upside valuation on a marginal property. While this approach is useful, it does not 

account for the risk of each intervention based on historic operating data as done by the 

Green Tree model. It also does not have a clear and concise summary of the value of 

each intervention with a decision tree that automatically directs the operator towards the 

intervention with the highest calculated EMV. The Green Tree model does not suggest 

an entirely new way of approaching these assets, but does provide a much more 

accurate, clear, and concise valuation and decision making tool for marginal assets. 
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7. CONCLUSIONS AND RECOMMENDATIONS

The Green Tree model is designed to help operators of marginal assets maximize 

their asset value by allocating their capital towards the best well workover options, 

prioritizing field intervention decisions, and placing an accurate value on the acquisition 

or divestiture of an asset. Marginal wells hold tremendous value as they have produced 

2.85 billion barrels of oil and 19.9 Mcf of natural gas over the past ten years, adding 

over $300 billion in production value to the U.S. economy (IOGCC, 2015). While they 

made up nearly 8% of total U.S. oil and gas production in 2015, they are frequently 

neglected by operators, leading to a noted absence of new work seeking to improve the 

operation and valuation of these assets (IOGCC, 2015). This model was structured after 

a marginal field in the Permian basin and uses the inputs from five separate field 

interventions to determine the optimal intervention path as well as a total asset value. It 

relies heavily upon user inputs for probabilities and projected production increases from 

each of the interventions. After the model was completed, it was tested and validated 

with field data from the same Permian field used to build its structure. Assuming 

accuracy of input data, the results showed that it is possible to use a decision tree to 

determine the optimal intervention at any point in time for a marginal oil field. The 

decision tree will show the intervention with the highest EMV, directing the operator to 

pursue this intervention until all wellbore candidates are exhausted and then moving to 

the intervention with the second highest EMV. While it is likely that an operator will 

pursue multiple interventions simultaneously, this tree helps place likely outcome values 
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on each one in order to help operators make better decisions. The results also showed 

that operators can lose significant value if they are not properly assessing the upside 

value in an acquisition or divestment decision. The model cannot only be used to create 

an acquisition price, based on the PV10 base case value along with a summation of the 

upside EMVs, but can also be used to analyze optimal divestment timing in a field once 

an IRR hurdle rate has been met. Lastly, the results revealed that LOE Reductions 

should be treated as a continuous improvement in the field and thus should not be 

selected as the optimal intervention. Whenever LOE Reduction has the highest EMV 

then the intervention with the second highest EMV should be chosen. LOE Reduction is 

also unique in that it requires no capital to implement and the model calculates its effect 

on cash flows based as a percentage reduction in OPEX, as opposed to a set increase in 

per well production for the other four interventions. 

As previously mentioned there are three primary decisions the model can be used 

for: (1) Acquisition price, (2) Value and timing of field interventions, and (3) divestment 

timing and expected minimum sales price. The results section used the S. Cowden data 

to verify that the model can produce accurate estimates for each of these three 

decisions/valuations. While the model does aid operators in evaluating each of these 

decisions, improvements to the model can still be made. More advanced price forecasts 

as well as inputs that affect cash flow on monthly instead of a yearly basis would help 

provide more accurate results. It would also help if the tool automatically assumed LOE 

reductions were taking place and thus selected an optimal intervention without LOE 

reductions being considered as an option. Lastly, the model does not account for market 
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conditions when evaluating an acquisition or divestment, thus the user must factor many 

other outside factors when making a decision apart from the decisions suggested by the 

model. 

Operators with large data banks of historical results of wellbore workovers in 

marginal oil fields will greatly increase their ability to generate an accurate forecast from 

this model. Successful use of the Green Tree model is dependent on the quality of the 

inputs provided by the user. Small changes to probabilities or production responses to 

interventions will lead to large changes in the EMV for each intervention, so an operator 

must insure that he is using the most accurate input data possible. It is also important for 

a user to apply an adequate discount factor or any acquisition price created from a 

summation of intervention EMVs. Lastly, the operator should always run a sensitivity 

analysis to price for the given asset as commodity price has proven to be very 

unpredictable. This sensitivity analysis will aid an operator in determining the required 

range of product prices required to make an acquisition profitable. 
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APPENDIX 

Stripper Well Data 

According to EIA data, the United States has been the world’s largest producer 

of oil and gas since 2012 when it took the top spot from Russia (see Figure 43). 

Figure 43. Estimated Petroleum and Natural Gas Production in Selected Countries 

A significant energy boom has occurred in the U.S. over the past ten years, in large part 

due to the widespread development of unconventional resources. This boom has 

decreased dependence on oil imports and reversed the decade’s long downward trend in 

domestic oil and gas production. This boom has also dampened the impact of marginal 

wells as they accounted for 17% of total oil and gas production in 2008, but only 10% of 
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has dropped over the last ten years, these wells continue to play a significant role in the 

hydrocarbon production of the U.S. 

It is important to note that the EIA defines a stripper or marginal well as “an oil 

well producing no more than 15 barrels of oil equivalent per day over a 12 month period 

or a gas well producing no more than 90,000 cubic feet per day over a 12-month period” 

(EIA, 2015).  This differs slightly from the definition of a marginal well provided by the 

IOGCC, which defines a marginal oil was as producing equal to or less than 10 bbls of 

oil per day on a monthly average. Thus, the EIA statistics for stripper wells will include 

a greater number of oil and gas wells than the IOGCC figures for marginal wells. It is 

also important to note that the IOGCC does not use the terms “marginal” and “stripper” 

synonymously. A stripper well, is “an oil well whose maximum daily average oil 

production does not exceed 10bbls per day during any consecutive 12 month period” 

(IOGCC, 2015, p. 3). The IOGCC 2015 Marginal Well Reports states that 69.1% of all 

operated oil wells and 75.9% of all operated gas wells were labeled marginal in 2015, 

resulting in 72.2% of all operated wells in the U.S. claiming marginal status. EIA data 

also shows that stripper wells have grown significantly over the past ten years, 

particularly in the number of stripper natural gas wells. Based on these trends, as well as 

the increased drilling of unconventional wells, it is anticipated that the number of wells 

listed as marginal and/or stripper will continue to increase in the future. (Figure 44 and 

Figure 45 come from EIA data for stripper wells.) 

total production in 2015 (EIA, 2015). While the production share from marginal wells 
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Figure 44. Historic U.S. Well Count for Stripper Oil Wells 

 

 

 
Figure 45. Historic U.S. Well Count of Stripper Gas Wells 

 

 

The IOGCC 2015 Marginal Well Report also estimates that marginal wells have 

produced 2.85 billion barrels of oil and 19.9 billion MCF of natural gas over the past ten 

years, contributing over $300 billion to the economy for their production. Total 

production from these marginal assets accounted for 8.5% of oil production and 7.0% of 

gas production in 2015, which is down significantly from a peak in 2008 (IOGCC, 

2015). Total hydrocarbon production from marginal wells has increased over the past 10 

years, but their share of total production has been diminished due to the prolific 

production from unconventional wells (see Figure 46 and Figure 47). 
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Figure 46. Historic U.S. Oil Production from Stripper and Non-Stripper Wells 

 

 

 
Figure 47. Historic U.S. Gas Production from Stripper and Non-Stripper Wells 

 

 

Prematurely plugging and abandoning these marginal assets during a dip in commodity 

prices would be a grave mistake as they have proven to hold immense value over long 

periods of time. Not only do many of these wells hold meaningful quantities of 

recoverable reserves, some of which are yet to be exploited through wellbore 

interventions, but they also hold valuable infrastructure for the future development of 

new formations and/or unconventional activity (IOGCC, 2015). Many of these 
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overlooked assets could hold major economic value for the current operators or for a 

company looking to acquire and exploit such assets. 




