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ABSTRACT 

Modern wireless applications require access to ultra-wide instantaneous RF 

bandwidths to provide frequency agility and multi-band RF processing. Wireless 

communications, radar and electronic warfare are examples of applications that will 

benefit from wideband multi-function transceivers. The role of the front-end filtering 

is critical in order for the multi-function transceiver to achieve adequate RF 

performance. Integrated electric filters are unable to achieve the required frequency 

selectivity and tuning range mainly due to low Q of on-chip inductors. This renders 

a complete integrated solution impractical. Normally, high frequency and high 

selectivity filters are achieved with off-chip bulky SAW filters. 

The limitation of electrical filters has motivated the employment of RF photonic 

receivers. The main issue with photonics is the cost but in recent times the 

emergence of silicon photonics has enabled the potential of RF photonics receivers 

to be implemented at a low cost. The use of photonics gives access to devices that can 

achieve really high Q and high integration at high frequencies. 

At the heart of the photonic receiver is the Mach-Zehnder modulator (MZM). It 

modulates the received signal from the antenna to the optical carrier. The major 

issue with the MZM is: it is non-linear and wideband. The MZM is placed before the 

photonic filter and right after the antennae so interferers received with the desired 

RF signal generate intermodulation products at the output of the MZM. The 

intermodulation products can be very close to the desired RF signal so they cannot 

be filtered out by the photonic filter and may corrupt the desired RF signal. To curtail 

the effects of the MZM non-linearity, linearization schemes are implemented to 

reduce the amplitude of the intermodulation products generated when the MZM 

receives interferers. 
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This thesis work focuses on two main issues, Firstly, analysis of the 

intermodulation products generated by the MZM when a two tone RF signal is 

applied. Secondly, a literature review is done to examine the existing linearization 

schemes. Based on the predistortion linearization scheme, a new fifth-order 

predistortion is proposed. The proposed fifth-order predistortion is fabricated in GP 

65nm TSMC CMOS process. The proposed fifth-order linearization achieves high IM3 

suppression~ 20dB at high modulation index ~49.7% with 49.2mW of power 

consumed. 
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1 INTRODUCTION 

Modern wireless applications require access to ultra-wide instantaneous RF 

bandwidths to provide frequency agility and multi-band RF processing. Wireless 

communications, radar and electronic warfare are examples of applications that will 

benefit from wideband multi-function transceivers. For these receivers to have 

adequate RF-performance, the role of the front-end filtering is critical.  The ability of 

the front-end filter to perform rapid dynamic filtering and interferer cancellation will 

be essential for the effective use of the ultra-wide band [1], [2].It is challenging for 

traditional active or passive filters to achieve such level of frequency selectivity, 

tuning range and speed without trading of size, weight and power target of radio 

systems. Existing high frequency integrated or on-chip front-end filtering solutions 

cannot achieve high selectivity and wide tuning requirements necessary for tunable 

receivers with wide instantaneous bandwidth due to low/moderate on-chip 

inductor Q factors. Also as these filters are active in nature their linearity is limited. 

For high selectivity at high frequency off-chip surface acoustic wave (SAW) filters are 

used which does not provide a complete integrated chip solution. 

The limitations of the electrical filters motivates the employment of RF photonic 

receivers. RF photonic receivers has the advantage of using RF photonic filters. 

Advancement of silicon photonics has enable the potential of the RF photonic 

receivers to be implemented in the size, weight and power requirements of radio 

systems with small form factors[3]–[5]. Silicon photonic filters can achieve 

Q~200,000 and high integration at high frequencies[6] . 
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Figure 1.1: Basic silicon photonic RF front-end (RF analog optical link) 

At the heart of the RF photonic receiver is the photonic modulator (typically a 

Mach-Zehnder modulator (MZM)). The MZM modulates the received RF signal from 

the antenna to the optical carrier and the resulting RF modulated carrier is applied 

to the filter. The characteristics of the MZM presents a major issue to the RF photonic 

front-end. The MZM is wideband and inherently nonlinear especially when a large 

signal is applied to it. The MZM as seen in Fig.1.1 is just after the antennae and right 

before the photonic filter. In a situation where large blockers are received together 

with the desired RF signal, they are first applied to the MZM and cannot be filtered 

out.  The blockers can push the MZM to its non-linear region and generate in-band 

interferers which cannot be filtered by the RF photonic filter resulting in the desired 

RF signal getting corrupted. This prompts the need for linearization of the MZM. This 

thesis exams the non-linearity in the MZM and does comparative analysis of existing 

linearization schemes for the MZM. A proposed linearization of the MZM that 
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achieves high IM3 suppression~ 20dB at high modulation index ~49.7% is proposed 

and discussed. 

1.1 Organization 

In order to understand the non-linearity in the Mach-Zehnder modulator, a 

proper background in the MZM structure, how it modulates the RF signal onto the 

optical carrier is important. Chapter II presents a brief overview of existing optical 

modulators. MZM structure and operation are described. Detailed analysis of the 

non-linearity of the MZM is presented. Also covered in the chapter are state of the art 

works in the linearization of the MZM which include both optical and electrical 

solutions. The merits and demerits of the state of the art works are also discussed. 

Chapter III presents the proposed linearization system for the MZM. The 

individual blocks making the linearizer is discussed. Simulation and experimental 

results are also presented.  

Finally, In Chapter IV a summary of the conclusion of this work is presented. 
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2 BACKGROUND 

The RF analog optical link is composed of a laser source, optical modulator, 

optical fiber and a photodetector. There are two main approaches of modulating the 

optical carrier with the RF signals: direct modulation (Fig.2.1) and external 

modulation (Fig.2.2).  Direct modulation involves the modulation signal directly 

changing the intensity of the laser output. However for external modulation, the laser 

operates at a constant optical power (CW) and the intensity modulation of the optical 

carrier is done through a separate device. Although direct modulation is simple in 

design and low cost, external modulation is more advantageous. External modulation 

reduces chirp-unwanted wavelength modulation, allows high speed operation and 

large extinction ratio[7], [8] . 

Fiber

RF Input

PD

RF output

Laser diode

Figure 2.1: Direct modulation 

Optical

Carrier

Modulator

Fiber

RF Input

Fiber

PD

RF output

Laser

Figure 2.2: External modulation 
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2.1 Optical Link Components 

2.1.1  Optical Modulators 

Optical modulators are the heart of the photonic link. They are devices that can 

alter the parameters of a light source such as amplitude or phase. They modulate the 

optical carrier with the RF signal. Optical modulators can be grouped into two: direct 

modulators and external modulators. Direct modulators as the name implies are 

used for direct modulation. An example is the VCSEL. The external modulator is used 

for external modulation and examples are EAM, DCM, RRM and MZM. 

2.1.1.1  Vertical Cavity Surface Emitting Laser (VCSEL) 

A VCSEL is a semiconductor laser that emits light perpendicular to the wafer 

surface, Fig.2.3. VCSEL are more readily available at short wavelength(0.85𝜇𝑚) 

[9]where fiber loss is appreciably high. The optical power, 𝑃𝑜 and the bias current, I 

are related by: 

𝑃𝑜 = 𝜂(𝐼 − 𝐼𝑡ℎ) (2.1) 

where 𝜂 is the slope efficiency and 𝐼𝑡ℎ is the threshold current. The bandwidth of the 

VCSEL is directly proportional to the square root of the bias current[10]. VCSELS 

have the following advantages: they are smaller devices which results in smaller 

operating current and they can make 2-D arrays. However, they are used for direct 

modulations so they introduce chirp. In addition, they have sporadic spontaneous 

emissions which results in amplitude and phase noise at the output light. This is 

referred to as relative intensity noise (RIN). 
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Figure 2.3: VCSEL .Reprinted from[11] 

2.1.1.2 Electro-absorption Modulator (EAM) 

EAMs are made up of an active semiconductor region sandwich between a p and 

n- doped layer. They work on the principle known as Franz-keldysh effect[9]. When 

the voltage applied is zero the EAM is transparent to the laser wavelength but when 

a sufficient voltage is applied across the p-n layers it becomes opaque and absorbs 

the wavelength. As the voltage keeps on increasing, there will be a value of voltage 

where all the wavelength will ideally get absorb. This voltage is referred to as the 

switching voltage of the EAM.  It is normally between 1.5V to 4V[12], [13].The 

transfer function between the voltage dependent absorption,  Δ𝛼(𝑣𝑀)  and the 

optical power passing through the modulator, 𝑝𝐴,𝑂 is given by [14] as: 

𝑃𝐴,𝑂 = 𝑇𝐹𝐹𝑃𝐼𝑒
−Γ𝐿Δ𝛼(𝑣𝑀) (2.2) 

where Γ is the optical confinement factor, 𝑇𝐹𝐹  is the loss, 𝑃𝐼  is the input optical power 

and L is the waveguide length. 
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EAMs are advantageous because they are small in size. In addition, they can be 

monolithically integrated on the same substrate with a CW DFB laser which results 

in a compact design and low coupling loses between the two components. The 

problem associated with EAM is: it introduces some chirp. Although the chirp 

introduced by an EAM is not as large as the one introduced by direct modulation 

(VCSEL), it may still be significant depending on the application. The EAM’s chirp is 

generated because the electric field applied modulates both the absorption 

characteristics and the refractive index of the EAM [9]. Another issue with EAM is the 

Franz-keldysh effect is very weak in silicon so EAM is not used if the photonic link 

should be of silicon. 

2.1.1.3  Directional Coupler Modulator (DCM) 

The DCM consist of two waveguides place next to each other with electrodes 

alongside them. The arrangement is then fabricated on an electro-optic material such 

as lithium niobate, Fig.2.4. The DCM works on the operation of evanescent coupling. 

The spacing between the two waveguide is such that when no voltage is applied, all 

the optical power in one of the incident waveguides ideally transfers to the other 

waveguide output. When the voltage applied to the electrode is increased the electric 

field changes the refractive index which in turn changes the coupling length such that 

some of the optical power stays in the incident waveguide to the output. At 

sufficiently high voltage called the switching voltage, all the optical power will ideally 

stay in the incident waveguide to the output. The transfer function between the 

electrode voltage,𝑣𝑀 and the optical output, 𝑝𝐷,0 is given in [15] as: 

𝑝𝐷,𝑂 = 𝑇𝐹𝐹𝑃𝐼

𝑠𝑖𝑛2 (
𝜋
2
√1 + 3 (

𝑣𝑀
𝑉𝑠)

2

)

√1 + 3 (
𝑣𝑀
𝑉𝑠)

2
(2.3) 
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 where 𝑃𝐼  is the input optical power, 𝑇𝐹𝐹 is the insertion loss and  𝑉𝑆 is the switching 

voltage. 

DCMs are sensitive to fabrication errors. This is because the coupling strength 

can be very sensitive to the coupling spacing. To get the exact coupling spacing 

during fabrication is challenging because of the size of the coupling spacing (tens of 

nm). 

          

 

      Figure 2.4: DCM Reprinted from[11] 

2.1.1.4 Ring Resonator Modulator (RRM) 

A ring resonator is a loop structure constructed from a waveguide. In order to be 

used for optical modulation, it is coupled to a straight waveguide as shown in Fig.2.5. 

In some applications, the straight waveguide is more than one .RRMs are refractive 

devices with high quality factor. When the optical source is applied to the input port, 

part of the optical source travels through to the output port and part of it is coupled 

into the ring. The transmission power 𝑃𝑡1 at the output of the waveguide is given as 

[16] 

 

𝑃𝑡1 =
𝛼2 + |𝑡|2 − 2𝛼|𝑡|𝑐𝑜𝑠(𝜃 + 𝜓𝑡)

1 + 𝛼2|𝑡|2 − 2𝛼|𝑡|𝑐𝑜𝑠(𝜃 + 𝜓𝑡)
 (2.4) 
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where 𝛼  is the loss coefficient of the ring, |𝑡| represents the coupling losses and 𝜓𝑡the 

phase of the coupler. The amount of the optical source coupled into the ring is 

controlled by altering the refractive index of the ring waveguide. The refractive index 

of the ring waveguide is altered by the electrical signal applied to it. At a certain 

electrical signal level resonance occurs and more of the optical source get coupled 

into the ring and the amount transmitted greatly reduces. At resonance, (𝜃 + 𝜓𝑡) =

2𝜋𝑚, where m is an integer, the transmission power reduces to: [16] 

 

𝑃𝑡1 =
(𝛼 − |𝑡|)2

(1 − 𝛼|𝑡|)2
 (2.5) 

 

When the internal loss is equal to the coupling loss that is 𝛼 = |𝑡| the transmitted 

power becomes zero at resonance. RRMs are able to support multiple resonances 

which are spaced at wavelength intervals called free spectral range (FSR). The ring 

resonator modulator has a relatively small size (ring diameter< 25𝜇𝑚) that makes 

it really attractive. In addition, it can be used to implement add and drop filters which 

are very useful in applications such as dense wavelength division 

modulation(DWDM) The main issue of the RRM is its high sensitivity to wavelength. 
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Figure 2.5: Schematic layout of RRM. Reprinted from[17] 

2.1.1.5 Mach-Zehnder Modulator 

The Mach-Zehnder modulator (MZM) works on the principle that when an 

electrode is placed on a material like lithium niobate, the electric field generated by 

the electrode when a voltage is applied to it alters the index of refraction of the 

lithium niobate. The phase of an optical wave passing through it is thus altered. The 

MZM is made up of optical waveguide with electrode placed alongside it. A typical 

layout of an MZM is shown in Fig.2.6.The waveguides all propagate a single spatial 

optical mode [11]. A CW laser is applied at the input. The CW laser as it passes 

through the MZM is split equally and it is applied to two arms which are normally of 

the same length and have their output recombining to feed the output of the 

modulator. When the voltage applied to the electrode is zero, the light in both paths 

will ideally travel at the same speed and then recombine in phase at the output of the 

MZM as shown in Fig.2.7 (a). Maximum optical power is transmitted through the 

modulator under this condition. When a voltage is applied, an electric field is 

generated which is perpendicular to the waveguide thus altering the refractive index 
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in the two arms. The voltage applied to the center electrode causes the index of 

refraction to increase in one arm and decrease in the other arm because the electro-

optic effect is field direction dependent with respect to the propagation axes [11]. 

The change of index of refraction results in a relative phase shift between the light in 

the two arms when they combine, Fig.2.7 (b). The combination of the out of phase 

beam turns to generate higher modes but because the wave guide is single mode 

these high modes are lost to the surrounding substrate through scattering. Therefore 

as the voltage increases, the intensity in the output decreases. At a sufficiently high 

voltage the phase difference of the light in the two arms become exactly 180°. Ideally 

under this condition the light at the output of the MZM will be zero. Increasing the 

voltage further will begin to bring the light in the two paths in phase. As a result, the 

MZM transfer function between the voltage applied to the electrodes and the output 

optical power is periodic in nature. The MZM transmission as a function of applied 

voltage (V) is given by[18]:  

 
𝑃𝑚,𝑜𝑢𝑡(𝜆) =

𝑇𝐹𝐹𝑃𝑖𝑛
2

[1 + 𝑐𝑜𝑠 (
𝜋𝑉

𝑉𝜋(𝜆)
+ 𝜑𝑏(𝜆))] 

 
(2.6) 

 

where 𝑃𝑚,𝑜𝑢𝑡the output is optical power, 𝑃𝑖𝑛 is the input laser power, 𝑇𝐹𝐹  represents 

the insertion loss. A typical value is 3dB to 5dB for lithium niobate MZM.  𝑉𝜋 is the 

voltage required to induce a 180° phase shift between the two arms and 𝜑𝑏 is the 

modulator phase bias. 𝜑𝑏 is a function of the wavelength and it is given as[18] : 

 
𝜑𝑏 = 2𝜋

Δ𝑛𝐿

𝜆
+ 𝜋

𝑣𝑀
𝑉𝜋

 (2.7) 

 

where Δ𝑛𝐿 the internal length is mismatch between the two arms (𝑛1𝐿1 − 𝑛2𝐿2), 𝜆 is 

the optical wavelength in a vacuum and 𝑣𝑀  is the external applied voltage.  𝑉𝜋 is 
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VRF

 

Figure 2.6: Layout of MZM. Reprinted from[11] 

 

 

an important parameter of the MZM. It determines the modulation efficiency.  𝑉𝜋 is 

set by the physical structure of the MZM. It is given as [18]: 

 
𝑉𝜋 (λ) =

𝜆𝑑

2Γ(𝜆)𝑛3(𝜆)𝑟(𝜆)𝐿𝑚
 (2.8) 

 

(b) Reprinted from[11] 

(a) Reprinted from[11] 

Figure 2.7: (a), (b) MZM with 0 and  𝜋 phase shift respectively 
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where d is electrode separation; 𝐿𝑚 electrode length, Γ(𝜆) confinement factor 𝑛(𝜆) 

is the index of refraction and 𝑟(𝜆) is the electro optic coefficient. 

The bias voltage 𝑣𝑀 is chosen such that the MZM is biased at the point where it is 

most linear. This point is normally referred to as the quadrature point (Fig.2.8). It is 

important to bias the MZM at this point especially when the MZM is used in an RF 

(analog) communication. For the MZM to be bias at this point requires: 

 

𝜙𝑏 =
(2𝑘 + 1)𝜋

2
, 𝑘 = 0,1,2,… (2.9) 

 

From (2.7),Δ𝑛𝐿 is very small so can be neglected. (2.7) becomes: 

 
𝜑𝑏 ≈ 𝜋

𝑣𝑀
𝑉𝜋

 (2.10) 

 

From (2.9) and (2.10) the bias voltage required for the MZM to be bias at the 

quadrature point is given as: 

 
𝑣𝑀 ≈

(2𝑘 + 1)

2
𝑉𝜋 , 𝑘 = 0,1,2… (2.11) 

 

 
𝐹𝑜𝑟 𝑘 = 0, 𝑣𝑚 ≈

𝑉𝜋
2

 (2.12) 

 

Another important parameter of the MZM when used in RF application is the 1-

dB compression point. 1-dB compression point of the MZM is the RF signal level at 

which the gain of the MZM will deviate from its ideal (small signal) value by 1dB. The 

1-dB compression point is important because it gives a measure of the input RF 

signal level beyond which the signal generated at the output of the MZM will begin 

to see significant distortion. The 1-dB compression point in terms of peak voltage is 

given as [19]: 
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Quadrature
  point

 

Figure 2.8: MZM transfer function 

 

𝑣1−𝑑𝐵 ≈
𝑉𝜋
𝜋

 

 

(2.13) 

 

 

Next is to look at the frequency response of MZM. The MZM’s frequency response 

is independent of the bias voltage and it is characterize by the ratio of the optical 

transit time past the electrodes relative to the modulation period of the maximum 

modulation frequency. At relatively low modulation frequencies, the modulation 

signal is essentially constant during the optical transit time. This is because the 

optical transit time is much shorter than the modulation frequency. Under such 

condition the electrode can be treated as a lumped capacitance and the 3dB corner 

frequency is set by the lumped electrode capacitance and the 50ohm matching 

resistance. Typical electrode capacitance of lithium niobate modulator is 0.5pF per 

mm of electrode length [11]. There exist a trade of between the sensitivity of the 

MZM (𝑉𝜋) and its bandwidth. For larger bandwidth the length of the MZM should be 
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small which according to (2.8) means large 𝑉𝜋. When the period of maximum 

modulation frequency is high enough compared to the optical transit time, lumped 

element electrodes are less effective because the modulation voltage is not constant 

during the optical transit time. Travelling wave electrodes are used under such 

condition. Travelling wave electrodes are designed such that the RF propagation 

delay along the travelling wave electrode matches the optical propagation velocity 

in the waveguide. This is referred to as the velocity matched condition. Travelling 

wave electrode MZM can achieve GHz of bandwidth with moderate sensitivity. 

The main disadvantage of the MZM is it has a large footprint (~104𝜇𝑚2) and poor 

power efficiency but it is  less sensitive to wavelength and has less mismatch due to 

fabrication because of  the large footprint. 

 

Figure 2.9: Frequency response of a MZM. Reprinted from[20]    

2.1.2 Photodetector (PD) 

The output of the optical modulation is an intensity modulated optical wave. To 

recover the electrical signal from the optical carrier requires the use of a 

photodetector. A photodetector (PD) is a device that performs electrical to optical 

conversion. The current generated by a PD from an incident light is given as [9]: 
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 𝐼 = 𝑃 ∙ 𝑅 (2.14) 

 

where P is optical power of incident light, I is the current and R is the responsivity of 

the PD. The responsivity of the PD is the amount of photocurrent produced per watt 

of input optical power[21] .The responsivity of a PD is also given as [9]: 

 
𝑅 = 𝜂 ∙

𝜆𝑞

ℎ𝑐
 (2.15) 

 

where h is the Planck constant, c is the speed of light in a vacuum, 𝜆 is the 

wavelength, 𝜂 is the quantum efficiency and q is the charge of an electron. 

The most common PD is the p-i-n photodetector or photodiode. A p-i-n PD has an 

intrinsic (undoped or lightly doped) semiconductor material sandwich between a p 

and n doped material. The p and n are reversed bias so that an electric drift field is 

generated in the intrinsic material. When light falls on the intrinsic layer, the photons 

create electron-hole pairs which become separated by the electric drift field. As a 

result photonic current flows through the terminals. The thickness of the intrinsic 

layer (Fig.2.3 (a)) poses a trade of between speed and the percentage of photons that 

create electron-hole pairs (quantum efficiency). Thicker i-layer means high quantum 

efficiency but less speed and vice versa. Modern waveguide p-i-n PD (Fig.2.3 (b)) 

breaks this trade off by illuminating the i-layer horizontally from the side and the 

electric field is orthogonally formed. This approach allows the quantum efficiency to 

be controlled by the horizontal dimension whiles the speed is controlled by the 

vertical dimension. High speed p-i-n PD mostly uses this approach. Recent years have 

seen the development of other device structures that have a potential for high 

bandwidth and responsivity such as metal-semiconductor -metal (MSM) diodes [21]. 
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(a)Reprinted from[11] 

 

 

(b)Reprinted from[22] 

Figure 2.10: Photodetectors (a) P-i-n (b) Waveguide p-i-n 

2.2 Mach-Zehnder Modulator Non-linearities 

The MZM transfer function given in (2.6) is non-linear so generates significant 

harmonics and intermodulation products especially as the electrical signal applied 

to it gets larger. The nonlinearity generated from the MZM is at least ideally 

independent of the frequency [23]. 

Firstly look at the amplitude of the harmonics when a single tone RF signal (𝑉𝑅𝐹) 

is applied to the RF terminal of the MZM.  Assuming the RF signal applied is: 
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𝑉𝑅𝐹 = 𝐴𝑠𝑖𝑛(𝜔𝑡 + 𝜃)           (2.16) 

 

Inserting (2.16) into (2.6) and with further manipulations generates: 

 

 

𝑃𝑚,𝑜𝑢𝑡 =
𝑇𝐹𝐹𝑃𝑖𝑛
2

(1 + 𝑐𝑜𝑠𝜑𝑏 cos (
𝜋𝐴

𝑉𝜋
𝑠𝑖𝑛(𝜔𝑡 + 𝜃))

− 𝑠𝑖𝑛𝜑𝑏𝑠𝑖𝑛 (
𝜋𝐴

𝑉𝜋
𝑠𝑖𝑛(𝜔𝑡 + 𝜃))) 

(2.17) 

 

Using Bessel function   trigonometric identities given by [24] in (2.16) gives: 

 

 

       𝑃𝑚,𝑜𝑢𝑡 =
𝑇𝐹𝐹𝑃𝑖𝑛
2

(1 + 𝑐𝑜𝑠𝜑𝑏𝐽0 (
𝜋𝐴

𝑉𝜋
)

+ 2∑𝐽2𝑙 (
𝜋𝐴

𝑉𝜋
) 𝑐𝑜𝑠𝜑𝑏

∞

𝑙=1

𝑐𝑜𝑠(2𝑙(𝜔𝑡 + 𝜃))

− 2∑𝐽2𝑙−1 (
𝜋𝐴

𝑉𝜋
) 𝑠𝑖𝑛𝜑𝑏

∞

𝑙=1

𝑠𝑖𝑛((2𝑙 − 1)(𝜔𝑡 + 𝜃))) 

(2.18) 

 

From (2.18) we can observe that when 𝜑𝑏 =
𝜋

2
 , the amplitude of all the even order 

terms will go to zero. Likewise, when   𝜑𝑏 = 0 𝑜𝑟 𝜋 the amplitude of the odd order 

component will go to zero and only the even order terms will exist. The harmonics 

are not very critical when the MZM is used in a system that operates over less than 

an octave bandwidth as they can be removed by filtering. 
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A very important non-linearity consideration of a MZM especially when it is used 

in an RF application is the intermodulation products generated when a two tone 

signal is applied to the RF port of the MZM. The intermodulation products generated 

especially the third-order intermodulation can be really close to the desired signal 

frequency depending on the frequency of the two tones and as such it is impossible 

to filter out. It therefore has the potential of corrupting the desired signal. Assuming 

two tone input RF signal of the same amplitude  𝑉𝑅𝐹,1 = 𝐴𝑠𝑖𝑛(𝜔1𝑡 + 𝜃1)   and  𝑉𝑅𝐹,2 =

𝐴𝑠𝑖𝑛(𝜔2𝑡 + 𝜃2)   are applied to the RF terminal of the MZM modulator. All the 

spectral component at the output of the MZM is given by [25] as: 

 

 

             𝑃𝑚,𝑜𝑢𝑡 = 
𝑇𝐹𝐹𝑃𝑖𝑛
2

(1 + 𝐽0
2(𝑧)𝑐𝑜𝑠𝜑𝑏

+ 2𝑐𝑜𝑠𝜑𝑏∑∑(±1)𝑛𝐽𝑛

+∞

𝑚=0

(𝑧)𝐽𝑚(𝑧) cos(𝑛(𝜔1𝑡 + 𝜃1)

+∞

𝑛=0

±𝑚(𝜔2𝑡 + 𝜃2))

− 2𝑠𝑖𝑛𝜑𝑏∑∑(±1)𝑛+1𝐽𝑛

+∞

𝑚=0

(𝑧)𝐽𝑚(𝑧)sin (𝑛(𝜔1𝑡 + 𝜃1)

+∞

𝑛=0

±𝑚(𝜔2𝑡 + 𝜃2))      ) 

(2.19) 

 

where 𝐽𝑛 represent the first kind of Bessel of the nth other and 𝑧 =
𝜋𝐴

𝑉𝜋
 . The first 

double summation has the condition that 𝑛 +𝑚 ≥ 2 (𝑒𝑣𝑒𝑛) and the other 𝑛 + 𝑚 ≥

1 (𝑜𝑑𝑑). The amplitude of the fundamental component can be express by [25]: 

 
−2 ∙

𝑇𝐹𝐹𝑃𝑖𝑛
2

𝐽1(𝑧)𝐽0(𝑧)𝑠𝑖𝑛𝜑𝑏 (2.20) 
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The amplitude of the second-order intermodulation products is also given as [25]: 

 
±2 ∙

𝑇𝐹𝐹𝑃𝑖𝑛
2

𝐽1
2(𝑧)𝑐𝑜𝑠𝜑𝑏 (2.21) 

 

 Finally, the third-order intermodulation products can be expressed as [25]: 

 

−2 ∙
𝑇𝐹𝐹𝑃𝑖𝑛
2

𝐽2(𝑧)𝐽1(𝑧)𝑠𝑖𝑛𝜑𝑏 

 

(2.22) 

 

 

From the above equations it can be concluded that the amplitude of the second order 

intermodulation products reduces to zero when 𝜑𝑏 =
𝜋

2
 . It can also be seen that the 

relative third order intermodulation which is define as the ratio between the 

amplitude of the third order intermodulation and the amplitude of the fundamental 

does not change with  𝜑𝑏. 

2.3 Mach-Zehnder Modulator Linearization 

Several techniques for linearization of the MZM has been reported in literature. 

There are two main approaches: optical linearization solution and electrical 

linearization solution. 

2.3.1 Optical Solution 

The optical linearization solution entails using the MZM in different configurations 

to make it more linear. 

2.3.1.1 Series MZM 

[26]–[28]uses a structure which consist of two standard (MZM) connected in 

series. The RF input power is split between the two modulators such that the second 

MZM has modulation depth r compared to the first MZM. 
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Figure 2.11: Series Mach-Zehnder modulator. Reprinted from[28] 

To reduce the third order intermodulation of the series MZM structure requires 

the reduction of the cubic terms of the transfer function. For two MZM’s in series, the 

cubic term is generated from the cubic term of the individual MZM’s and the product 

of the linear terms of one MZM and the quadratic term of the other. The DC bias of 

𝜑1 𝑎𝑛𝑑 𝜑2 of the first and second MZM respectively and r are chosen such that the 

cubic product term cancels the cubic term of the individual MZM while the linear 

terms from the individual modulators add up. When the cubic nonlinearity cancels 

out, the linearity of the cascaded structure now becomes limited by the fifth order 

nonlinearity. If an extremely linear structure is required an additional MZM can be 

cascaded to cancel the fifth order nonlinearities[29]. The series MZM is a relative 

simpler approach to reducing the third order intermodulation but it requires a lot of 

footprint. In addition, there is an optical power penalty generated by this structure 

because of the extra optical loss generated by the second MZM (3-6dB). This can be 

reduced to ~0.5dB by integrating both MZMs on the same chip. Another 

disadvantage of this approach is for the cubic cancellation to work correctly, the 

electrical signals applied to the two modulators must be in phase that is the electrical 

signal applied to the second modulator must arrive the same time as the light from 

the first modulator that was modulated by the same signal. This is difficult to achieve 
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at higher frequencies where the period of the electrical signal is comparable to the 

optical transit time 

2.3.1.2 Dual Polarization Technique  

[30], [31] uses an MZM that support both single TE and TM modes and has 

unequal electro-optic sensitivity to both. A polarizer is placed between the MZM and 

the optical source and it is used to adjust the relative amounts of TE and TM input 

optical power. The total output power is the sum of both modes.  

The third order intermodulation of each mode is given as in (2.12). If 𝑧 ≪ 1 then 

it can be approximated as [31]: 

 
−1

16
𝑇𝐹𝐹𝑃𝑖𝑛(𝑧)

3𝑠𝑖𝑛(𝜑𝑏) + higher-order terms (2.23) 

 

 

Figure 2.12: MZM with dual polarization. Reprinted from[31] 

 

 𝑧𝑇𝐸 = 𝛾𝑧𝑇𝑀 (2.24) 

 

The dc bias voltage of the both modes and the input polarizer power can be 

adjusted such that the third order intermodulation from the individual modes cancel 

each other when they two modes sum up to form the total output. [31] finds the 
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optimum condition for the cancellation of the third order intermodulation terms to 

be: 

 
𝜑𝑏

𝑇𝑀 = −
𝜋

2
   𝑎𝑛𝑑 𝜑𝑏

𝑇𝐸 =
𝜋

2
 (2.25) 

 

 
𝑃𝑖𝑛

𝑇𝑀 = 𝛾3𝑃𝑖𝑛
𝑇𝐸 (2.26) 

 

The disadvantage of this approach is that most of the input power is now TM 

polarized which results in a reduction in the sensitivity at the fundamental frequency 

by approximately a factor of 𝛾 compared with using only TE mode. 𝛾 ~ 3 in lithium 

niobate modulators [31].The reduction in the sensitivity translates to an optical 

power penalty. 

2.3.1.3 Dual Parallel MZM 

[32]–[34] uses two MZM connected in parallel fed with different optical power. 

The incoming optical power is split between the two MZMs. The MZMs are driven to 

different modulation depths.  The RF power and optical power are split in such a 

manner that the MZM with less RF signal carriers the maximum portion of the optical 

power and vice versa. The two optical outputs can be combined optically using a 

waveguide or incoherently as shown in Fig.2.13 by combining the electrical outputs 

of two separate detectors. The MZM driven to less modulation depth generates less 

distortion whiles the MZM driven to a relatively higher depth generates more 

distortion. The bias points of the MZMs are chosen such that the modulations are out 

of phase. If proper splitting ratio of both the RF and optical power is chosen, the 

distortion terms cancel out while the main signal does not cancel out completely. The 

proper splitting ratio can be determine using the same idea from [31] as the two 

approaches are similar. The disadvantages of the dual parallel MZM are the optical 
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power penalty generated, large footprint and it requires two drivers to drive the 

modulator which translate to increase in electrical power.  

 

 

Figure 2.13: Dual parallel MZM. Reprinted from[32] 

2.3.1.4 Ultra-linear External Modulator 

[35] proposed a new modification to the MZM to increase its linearity. The 

structure is similar to a typical MZM but with a phase modulator and a ring resonator 

of coupling coefficient 𝛾  connected in series on one arm of the arm. The RF signal is 

split in the ratio F: 1-F and then applied to the electrode of the phase modulator and 

the ring resonator modulator respectively. The structure is biased at the quadrature 

point so that the even order nonlinearities will ideally be zero.  The ring resonator 

modulator is not operated at resonance. The ring resonator provides the necessary 

phase correction without affecting the magnitude. An optimum value is set for the RF 

signal split ratio and the ring resonator coefficient that results in the cancellation of 

the third order terms and even possibly the fifth order terms in the Bessel expansion 

of the entire system transfer function thus rendering the system linear .The 

advantages of this structure are it requires relatively less footprint and relatively 

lower loss. The disadvantage is it requires an extra component to split the RF signal 
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to the appropriate ratio. The RF splitters are problematic especially as the frequency 

of operations becomes larger. 

 

 

Figure 2.14: An ultra-linear MZM. Reprinted from[35] 

2.3.1.5 Ring Assisted Mach-Zehnder Interferometer (RAMZI) 

[36], [37] proposed a modulator which consist of a MZI with one or two ring 

resonators on both arms. The RF signal is fed to the electrodes of the ring resonators 

in a push-pull fashion. The modulator is operated at the quadrature point which 

means a quarter delay period exist between the two arms. The effective optical 

length of each ring resonator is chosen such that it is  an odd number multiple of the 

half operating wavelength in order for them to operate in the off resonate state. The 

output intensity of the RAMZI as a function of the refractive index change inside the 

ring resonator is given in [36] as: 

 

𝐼𝑜𝑢𝑡 =
1

2
𝐼𝑖𝑛(1 + sin (𝜙𝐴(Δ𝑛) − 𝜙𝐵(Δ𝑛)) (2.27) 
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𝐼𝑜𝑢𝑡 =

1

2
𝐼𝑖𝑛 (1 + (𝜙𝐴(Δ𝑛) − 𝜙𝐵(Δ𝑛) −

1

6
(𝜙𝐴(Δ𝑛) − 𝜙𝐵(Δ𝑛))

3

+⋯) 
(2.28) 

 

where 𝜙𝐴 and 𝜙𝐵  are the phase delay introduced by the ring resonator in the upper 

and lower arm respectively. To make the structure more linear requires the 

cancellation of the cubic term. The condition that this occurs is given in [36] as: 

 

 

((
1 − 𝜌𝐴
1 + 𝜌𝐴

)𝐶𝐴 − (
1 − 𝜌𝐵
1 + 𝜌𝐵

) 𝐶𝐵)

3

= 2(
(1 − 𝜌𝐴)

(1 + 𝜌𝐴)3
𝐶𝐴
3 −

(1 − 𝜌𝐴)

(1 + 𝜌𝐴)3
𝐶𝐴
3) 

(2.29) 

 

where 𝐶𝐴 and 𝐶𝐵 are the circumference of the upper and lower ring resonator 

respectively and 𝜌𝐴 and 𝜌𝐵 are the through-path ratio of the upper and lower ring 

resonator. A good feature of the RAMZI is that the ring resonator should operate in 

an off resonant state. Because of this, it can tolerate ring loss and other imperfection 

which occur in the ring during fabrication. In addition, since the rings are driven in a 

push-pull fashion they can be driven by a single fully differential driver which 

reduces the complexity of the driver circuit. The main disadvantage of the RAMZI is 

the tradeoff between the modulation efficiency and the bandwidth. For good 

modulation index efficiency requires the use of rings with long length. As travelling 

wave driving electrode cannot be used in the ring arrangement, the bandwidth is 

limited severely when rings with long length are used [36]. Using GaAs–GaAls grown 

on a (111) substrate would help break the tradeoff but such an approach is 

expensive. The RAMZI in general has a bandwidth almost half of the standard MZI 

modulator [36]. 
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Figure 2.15: RAMZI.Reprinted from[36] 

2.3.1.6 Dual Wavelength Technique 

[38] as shown in Fig.2.16 uses a commercially available MZM with a single dc bias 

electrode and a single travelling wave RF electrode. The MZM is used to modulate 

two wavelengths of light simultaneously. At the output of the MZM is a wavelength-

division multiplexer (WDM) that routes the two modulated wavelength to two 

separate detectors. The output of the detectors are combined in an RF hybrid 

coupler. Linearization of the MZM is achieved by choosing a dc-bias point such that 

the even order distortion at both wavelengths is zero and setting the ratio of the 

current of the detectors to the cube of the ratio of the switching voltages of the MZM 

at the two wavelengths. The advantages are the linearization can be done using 

commercially available components and an electronic circuit can be used to 

adaptively control the detector current ratio in unpredictable environmental 

conditions. The main disadvantage are: it requires a really high dc bias voltage 

(~+18V) for the even order distortion in both wavelengths to be close to zero and it 

requires two laser sources and several other component which makes the approach 

expensive . 
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Figure 2.16: Dual wavelength technique. Reprinted from[38] 

2.3.2 Electrical Solution 

The electrical solution entails aiding the MZM with electrical circuits so that the 

overall system will be more linear. There are two main approaches reported in 

literature: feedforward and predistortion linearization.  

2.3.2.1 Feedforward Linearization 

Another approach to dealing with the intermodulation generated as a result of 

the non-linear transfer function of the MZM is using feedforward [39], [40] . The 

feedforward linearization is a two-loop architecture. The RF signal is used to 

modulate the MZM and part of the output is coupled out and converted back to an 

electrical signal using and optical to electrical converter (O/E).  An example of an O/E 

is a photodetector. Part of the input RF signal is passed through an amplitude and 

phase adjustment block. The output of the O/E block is added to the output of the 

amplitude and phase adjustment block. When the output of the amplitude and phase 

adjustment block is set to the right amplitude and right phase (anti-phase to the 

output of the O/E block), the summation produces only the intermodulation term. 

The output of the summation is also passed through an amplitude and phase 



 

29 
 

 

adjustment block and then modulates an optical carrier using another MZM. The 

output of the MZM is coupled back to the output of the main MZM. With the proper 

phase and amplitude settings, the signal coupled back will ideally cancel the 

intermodulation terms generated by the main MZM and the resulting amplitude will 

be perfectly linear. The feedforward linearization is attractive because prior 

knowledge of the input is not required and  the same architecture  will not only work 

for an MZM but will also easily work for any of the optical modulators mentioned in 

the previous section with very little or no change at all. The main disadvantages is: it 

requires two lasers and several other components. This makes the feedforward 

linearization complex and expensive.  In addition, for proper performance the 

circuits in the feedforward paths have stringent linearity requirements and the 

approach has stronger sensitivity to amplitude and phase balancing. 

 

 

Figure 2.17: Feedforward linearization. Reprinted from[39] 

2.3.2.2 Predistortion Linearization 

The predistortion is the more common of the two reported in literature because 

it is relatively less complex, cheaper to implement and  it requires less optical 

components compared to the feedforward linearization. In predistortion 

linearization the input RF signal is preconditioned such that when applied to the 

MZM, makes the output of the MZM more linear. The general idea behind the 
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predistortion is that a transfer function exist that can be placed between the RF 

signal and the MZM that will make the overall system linear. Ideally the optimum 

transfer function is an arcsine as the MZM has a cosine transfer characteristics. 

Traditionally arcsine circuits have been realized using diodes and bipolar 

transistors. They take advantage of the exponential transfer characteristics of these 

devices[41]–[43]. The use of bipolar transistors are expensive and bars system 

integration. Complementary metal-oxide semiconductor (CMOS) technology circuit 

is more attractive but it is very hard to build circuits to achieve ideal arcsine transfer 

function. 

[44] leverages the square characteristics of long channel cmos transistors to 

build a circuit with an arcsine characteristics. The response of the circuit is a 

polynomial whose coefficients matches the Taylor series expansion of an arcsine up 

to the fifth order. As fifth order polynomial Taylor series expansion of an arcsine is 

just an approximation of an arcsine, it has a limitation to the amount of linearization 

that it can be achieved especially when the input signal gets larger. Despite the fact 

that it is not an ideal arcsine implementation, it was able to achieve significant 

linearization up to about 49.6% modulation index. The core of the arcsine circuit is 

shown in Fig.2.18. The output current of a clipping transconductance amplifier 

(inner pair) is subtracted from that of a linear amplifier (outer pair) and the resulting 

differential current can be expressed   in terms of the input differential voltage as a 

polynomial. By choosing the appropriate transistor sizes, the coefficients of the 

polynomial up to the fifth order will be able to match that of the Taylor series 

expansion of an arcsine. A PMOS current mirror is used to combine two arcsine 

circuit which is followed by a transimpedance amplifier (TIA) to convert the current 

to voltage (Fig.2.19). The output of the TIA is the followed by a buffer which drives 

the PA that drives the MZM. 
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Figure 2.18: The arcsine core. Reprinted from[44] 

 

Figure 2.19: Fully balanced arcsine circuit. Reprinted from[44] 

[45] implemented a third-order polynomial (Fig.2.20). The implementation is 

done having three paths: main path, second-order path and third-order path in 

parallel. The output of the paths are summed together to generate the third-order 

polynomial. The second-order path and the third-order path each has a variable gain 

amplifier (VGA) that can be adjusted independently. This allows the third-order 

polynomial coefficients to be changed independently. The square function is 

achieved by connecting the drain and source of two NMOS transistors together. The 

joined drains are connected through a resistor to the supply.  The cubic function is 

generated using the same circuit shown in Fig.2.18 but in this case the sizing of the 

transistors are done such that the differential current out is directly proportional to 

the cube of the differential input voltage.   A time delay is placed in the main path 

such that the main path matches in phase with the second-order and third-order 

paths. The predistortion circuit implemented is versatile in the sense that it can be 
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used to linearize several other non-linear optical devices like DFB laser etc. This 

feature makes it attractive. The phase adjustment block which is implemented using 

a fifth-order polyphase filter helps it to achieve this versatility. With the phase 

adjustment block, it is able to linearize for both static nonlinearity that is nonlinearity 

common to MZM and dynamic nonlinearity (frequency dependent nonlinearities). 

The polyphase filter is made up of resistors and capacitors so consumes a lot of area 

and the predistortion circuit only implements third-order polynomial so it is not able 

to achieve good linearization as the signal amplitudes get bigger. These are the main 

drawbacks of the implementation. 

 

 

Figure 2.20: Third-order predistortion block diagram. Reprinted from[45] 
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3 PROPOSED SOLUTION 

3.1 Concept of Proposed Solution 

The proposed predistortion is a fifth-order predistortion. Like [45] the 

polynomials are chosen not to depict the Taylor  series polynomial of an arcsine but 

rather to force the  intermodulation products to zero. To highlight  the advantage of 

the fifth-order polynomial implemented compared to the third-order polynomial 

implemented in [45], we will first look at the third-order predistortion. The third-

order predistortion is shown in Fig.3.1. Assuming the MZM is perfectly biased at the 

quadrature point, then there is no need for the squaring path in the third-order 

predistortion thus the omission. Also for ease of explanation, the MZM transfer 

function from the RF input to the optical output is approximated as a polynomial. 

When two tone RF signal is applied to the predistortion, it goes through the linear 

path and the cubing path. The sum of signals from the linear path and the cubing path 

of the predistortion enters the MZM and it travels through the linear path, cubing 

path and raised-to-the fifth path. The output of the linear path of the MZM can be 

decomposed into two: output due to the linear path of the predistortion and output 

due to the cubing path of the predistortion. The output of the cubing and raised-to-

the fifth path of the MZM can also be decomposed into two: output due to the signal 

through the linear path of the predistortion and output due to a product of the linear 

path and cubing path of the predistortion.  The final output of the MZM is the sum of 

the various decompositions.  The decompositions contain both third-order and fifth-

order intermodulation products. The third-order predistortion has only one control 

variable so can only be optimized for either a very low (ideally zero) third-order 

intermodulation products or a very low (ideally zero) fifth-order intermodulation 

products as depicted in Fig.3.1. This limit the amount of third-order and fifth-order 

intermodulation products suppression that the third-order predistortion can 

achieve as the signal amplitude of the two tones increases. It can be observed that if 
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an extra control variable existed then optimization could be done for both third-

order and fifth-order intermodulation product suppression. 
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Figure 3.1: Operation of third-order predistortion 

The fifth-order predistortion (Fig.3.2) has an additional parallel path that performs 

a raised-to-fifth function. When two tone RF signal is applied to the predistortion, it 

goes through the linear path, the cubing path and the raised-to-the fifth path. The 

sum of signals from the linear path, the cubing path and raised-to-the fifth of the 

predistortion enters the MZM and it travels through the linear path, cubing path and 

raised-to-the fifth path. The output of the linear path of the MZM can now be 

decomposed into three: output due to the linear path of the predistortion, output due 

to the cubing path of the predistortion and output due to the raised-to-the fifth path 

of the predistortion. The output of the cubing and raised-to-the fifth path of the MZM 

can also be decomposed into three: output due to the signal through the linear path 

of the predistortion, output due to a product of the linear path and cubing path of the 

predistortion and output due to a product of the linear path and raised-to-the fifth 

path of the predistortion. The final output of the MZM is the sum of the various 
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decompositions.  The introduction of the raised-to-the fifth path gives an extra 

control variable such that both the third-order and fifth-order intermodulation 

products can be minimized (ideally zero). 

As the two tone signal goes through the cubic and raised-to-the fifth path of the 

MZM, the finite delay of the blocks introduce a delay/phase shift (Fig.3.3) to the 

signal at their output. The signal through the linear path of the predistortion has no 

delay as it goes through no element. The delay mismatch causes the intermodulation 

products to be out of phase such that even if the right coefficients are set for the 

predistortion polynomial, the intermodulation products do not cancel out at the 

output of MZM (Fig.3.3). This is corrected by placing the time delay in the linear path 

of the MZM so that delay of the paths can be matched. With the delay matched the 

coefficients can be chosen such that the intermodulation products cancel out at the 

output of the MZM (Fig.3.4). 
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Figure 3.2: Operation of the fifth-order predistortion 
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Figure 3.3: Effects of finite delay of predistortion elements 
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Figure 3.4: Compensation of finite delay 

       Fig.3.5 and Fig.3.6 shows the comparison between the proposed solution and the 

two existing predistortion approaches. The results were obtained by constructing 

ideal models for the various predistortion techniques and using the ideal MZM 
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transfer function. The ideal predistortion models contain perfect cubing and raised-

to-the fifth paths with no delay. It can be see that the at low modulation index, the 

proposed solution performs similarly to the fifth-order arcsine approximation 

predistortion but as the modulation index increases proposed solution achieved 

(~10-16dB) better performance than the fifth-order arcsine approximation 

predistortion and the third-order predistortion with IM5 optimized. At really high 

modulation index (< 58%) the proposed solution achieves ~5dB better. Although the 

third-order predistortion with IM3 optimized has a better IM3 than the proposed 

solution, the IM5 of the third-order predistortion with IM3 optimized is less than the 

IM3 so it’s limited by IM5 and not IM3. If the IM5 is compared to the IM3 of the 

proposed solution it is seen that the proposed solution ~10-16dB better at 

moderately high modulation index (43% < and <53%). 

 

 

Figure 3.5: IM3 vs modulation index for different predistortion 
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Figure 3.6: IM5 vs modulation depth for different predistortion 

3.2 Circuit Implementation 

A fifth-order predistortion  system block diagram is shown in Fig.3.7. It has three 

parallel paths: main path, cubic path and the raised to the fifth path. The outputs of 

the paths are summed together using a current mode summer whose outputs drive 

a buffer which then drives an external power amplifier. The cubic and raised-to-the 

-fifth paths each have a variable gain block  preceding it which generates the 

coefficients of the fifth-order polynomial. This arrangement is done to increase the 

gain tunability of the variable gain blocks. For the main path to add in phase with the 

cubic and raised-to-the-fifth block, an analog gm-c  time delay block is added to the 

main path. The gm-c time delay block is made tunable to account for process and 

temperature variation. The gain tunability is achieved through variation of the 

capacitance . 
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Figure 3.7: System block diagram of fifth-order predistortion               

3.2.1 Analog Time Delay 

An ideal time delay block has transfer function given as 𝐻(𝑠) = 𝑒−𝑠𝜏 . The phase 

is linearly related to the frequency.Implementation of the ideal delay block is not 

possible.Several IC compatible circuits to approximate a time delay exist in 

literature, examples are: Transmission lines[46], [47], LC delay lines[48], switched 

capacitor delay circuits[49] and gm-C all-pass filters[50]. At low-GHz 

frequecies(~2GHz) which is the operation of the fifth-order predistortion, 

transmission lines and LC delay lines in CMOS are impractical due to the low quality 

factor and size of inductors, and  the loss  of the transmission lines  [50]. The switch 

capacitor on the other hand are too slow for low-GHz applications. A pseudo-

differential version of the analog time delay of [50] is implemented because of its 

minimum area requirement and simplicity(Fig.3.8). A pseudo differential version is 

implemented instead of a fully differential version in order to be able to have enough 

headroom to design  M1 to have high overdrive without going into the triode region. 

This is done to achieve good linearity for the delay block which is important for the 
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proper performance of the predistortion circuitry.The circuit transfer function 

implements  a first-order allpass filter . The transfer function of a first-order allpass 

filter is given as : 

 

𝐻(𝑠) =
1 − 𝑠 (

𝜏
2)

1 + 𝑠 (
𝜏
2)

 (3.1) 

  

It can be rewritten as a combination of a lowpass and a DC gain of one as shown 

below: 

 

𝐻(𝑠) =
2

1 + 𝑠 (
𝜏
2)
− 1 (3.2) 

 

(3.2) represents the basis of the implementation of the all-pass filter shown in 

Fig.3.6.  The lowpass filter is implemented through M1, M4, M5 and M3 and the DC 

gain of -1 is implemented through M2 and M3. The ideal transfer function of Fig.3.9 

is given as: 

 

𝐻(𝑠) =
1 − 𝑠

𝐶
𝑔𝑚4

1 + 𝑠
𝐶
𝑔𝑚4

 (3.3) 

 

where the delay is given as: 

 

𝜏 ≈
2𝐶

𝑔𝑚4
 𝑎𝑛𝑑 𝐶

= 𝐵0𝐶0 + 𝐵1𝐶1 + 𝐵2𝐶2 𝑤ℎ𝑒𝑟𝑒 𝐵0,1,2 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1 
(3.4) 

The delay is varied by varying C by setting 𝐵0,1,2 𝑡𝑜 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. To get constant 

delay over a wider frequency band places a limitation on the amount of delay that 

can be implemented[51]. To generate a large delay over a wider frequency band 
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requires cascading a number of the all-pass filter shown in Fig.3.8. In this work two 

of the all-pass filters were cascaded to generate the amount of delay required. 
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Figure 3.8: All-pass delay cell 

Considering the non-idealities of the delay cell as shown in Fig.3.9, the transfer 

function is given by [50] as: 

 

𝐻(𝑠) =
1 −

2
𝑔𝑚𝑛

(𝑔𝑑𝑠𝑛 + 𝑔𝑑𝑠𝑝)

1 +
2
𝑔𝑚𝑝

(𝑔𝑑𝑠𝑛 + 𝑔𝑑𝑠𝑝)
∙
1 −

𝑠𝐶
𝑔𝑚𝑛

1 +
𝑠𝐶
𝑔𝑚𝑛

∙
1

1 +
𝑠𝐶𝐿
𝑔𝑚𝑝

 (3.5) 

 

 
𝐹𝑜𝑟 𝑔𝑚𝑛 ≫ 2(𝑔𝑑𝑠𝑛 + 𝑔𝑑𝑠𝑝) (3.6) 

 

 
𝑎𝑛𝑑  𝑔𝑚𝑝 ≫ 2(𝑔𝑑𝑠𝑛 + 𝑔𝑑𝑠𝑝) (3.7) 

 

where  𝑔𝑚𝑝 and 𝑔𝑑𝑠𝑝 are the transconductance and output conductance of M1, M2 

and M3 in saturation, 𝑔𝑚𝑛 and 𝑔𝑑𝑠𝑛   are those of M4 and 2𝑔𝑚𝑛 and 2𝑔𝑑𝑠𝑛 of M5. C now 

includes the parasitic capacitances 𝐶𝑔𝑠,𝑀4, 𝐶𝑔𝑠,𝑀5, 𝐶𝑑𝑏,𝑀4. CL is sum of the next stage 

input capacitance(𝐶𝑔𝑠,𝑀1 + 𝐶𝑔𝑠,𝑀2) and 𝐶𝑔𝑠,𝑀3 𝑎𝑛𝑑 𝐶𝑑𝑏,𝑀3.It can be seen from (3.5) 

that the DC gain is not unity and there is an additional pole. This pole can be viewed 

as one-third of the unity current gain frequency (ft) of the CMOS process. Which will 
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be around tenths of GHz in the TSMC 65nm GP process so the effect of the pole can 

be neglected for the operating frequency of the implemented delay cell. The non-

unity DC gain is compensated by sizing M5 as 2(1+𝛼)Wn and M2  as (1+ 𝛼)Wp which 

will increase the DC gain by (1+ 𝛼). This will cause the output common mode to move 

down. For higher 𝛼 values a current source PMOS sized as 𝛼𝑊𝑝 can be connected in 

parallel to M2 and M3. This will steer some of the current from M3 and reduce the 

reduction of the output common mode.Fig.3.10 shows the response of the 

implemented delay. It has a group delay variation of ~6ps and gain variation of 0.5dB 

over 500MHz bandwidth. This is enough for the predistortion system implemented. 
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Figure 3.9: Block diagram of delay cell with non-idealities 
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3.2.2 Summer 

The summer consist of three differential pairs with their outputs connected to a 

resistor, Fig.3.11. The differential pairs convert the signal voltages of the three paths 

to current and sum them on a resistor. The signal from the main path is large so in 

order not to distort it the differential pair of the main path is source degenerated. 

The output voltage of the summer is given in (3.8). 

 𝑉𝑜𝑢𝑡(𝑠)

≈

(

 
 
 
(

𝑔𝑚1,2
1 + 𝑔𝑚1,2𝑅𝑠

)𝑉𝑖𝑛(𝑠) + 𝑔𝑚3,4(𝑉𝑖𝑛(𝑠))
3 + 𝑔𝑚5,6(𝑉𝑖𝑛(𝑠))

5

𝑔𝑑𝑠1,2 + 𝑔𝑑𝑠3,4 + 𝑔𝑑𝑠4,5 + 𝑔𝐷

1 +
𝑠𝐶𝑝𝑎𝑟

𝑔𝑑𝑠1,2 + 𝑔𝑑𝑠3,4 + 𝑔𝑑𝑠4,5 + 𝑔𝐷
)

 
 
 

 
(3.8) 

 

For the predistortion circuit (Fig.3.7) performance not degraded requires that 

the individual circuits block have good linearity. For simplicity we will assume the 

nonlinearities generated from the differential pairs are independent of each other. 

Firstly, we will look at the nonlinearities generated from the non-degenerated pair 

(M3,4 and M5,6). The differential current generated by the differential pairs is given 

as: 

 

𝑉𝑜𝑢𝑡𝑑𝑖𝑓𝑓 ≈ (
1

2
𝜇𝑛𝐶𝑜𝑥

𝑊

𝐿
𝑉𝑖𝑛 √

4𝐼𝑠𝑠

𝜇𝑛𝐶𝑜𝑥
𝑊
𝐿

− 𝑉𝑖𝑛
2  )𝑅𝐷 (3.9) 

 

Using taylor series coefficients 𝑉𝑜𝑢𝑡𝑑𝑖𝑓𝑓 can be written as: 

 𝑉𝑜𝑢𝑡𝑑𝑖𝑓𝑓 = 𝛼1𝑉𝑖𝑛 + 𝛼2(𝑉𝑖𝑛)
2 + 𝛼3(𝑉𝑖𝑛)

3 (3.10) 

 

where : 

 𝛼1 = 𝑔𝑚3,4,5,6𝑅𝐷 (3.11) 
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Figure 3.11: Schematic of current summer 

 𝛼2 = 0 (3.12) 

 

 

𝛼3 = −
(𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿 )

2

𝑅𝐷

8𝑔𝑚3,4,5,6
 (3.13) 

 

The AIIP3 which represents the input amplitude at which the amplitude of the 

fundamental at the output is equal to the amplitude of the third-order 

intermodulation at the output is given as: 

 

𝐴𝐼𝐼𝑃3 = √
4

3
|
𝛼1
𝛼3
| = √6(𝑉𝐺𝑆0 − 𝑉𝑇𝐻) (3.14) 

 

where (𝑉𝐺𝑆0 − 𝑉𝑇𝐻) is the overdrive voltage of each transistor in equilibrium.  As the 

signal amplitude gets larger the difference between the third-order intermodulation 

product and the fundamental amplitude at the output gets smaller. To increase the 

range of inputs at which the amplitude of the fundamental is far greater than that of 

the intermodulation requires the input pairs to have large overdrive. In the 

technology used to design the predistortion circuit, the supply voltage is 1.2V so the 

amount of overdrive that can be given to a transistor is limited. The output of the 

cubic and raised to the fifth order path have small signal amplitudes so even with 
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overdrive of ~ 150mV the differential pairs are able to achieve the amount of 

linearity required such that the performance of the predistortion is not degraded  

much. For the main path where the signal amplitude is large, the amount of overdrive 

needed to achieve the linearity requirement is hard to generate with 1.2V supply. A 

source degenerated differential amplifier is used. Using the same analysis as before , 

the AIIP3 of a source degenerated differential pair is given as[52]: 

 

𝐴𝐼𝐼𝑃3 = √
2𝑔𝑚

3𝑅𝑠

(1 + 𝑔𝑚𝑅𝑠)
2

1
2 𝜇𝑛𝐶𝑜𝑥

𝑊
𝐿

 (3.15) 

 

with the source degenerated resistor, the AIIP3 can be increased by increasing the 

degeneration resistor value. As the resistor value increases the transconductance 

/gain decreases. The source degenerated differential pair provides excellent 

linearity for large input signal amplitude but consumes more power to be able to 

generate the same gain as the non-degenerated differential pair.Fig.3.12 shows the 

DC gain of the summer which  ideally should be 3V/V because each differential pair 

is designed to have a gain of 1.The DC gain achieved (3.4V/V) is slightly above the 

expected and has a -3dB of ~5GHz. 

 

Figure 3.12: Gain of the current summer 
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3.2.3 Cube Generator 

Several cube generators exist in the literature which have been used traditionally 

for the predistortion of power amplifiers (PA). Many of the earlier works made use 

of the non-linear impedance characteristics of back–to-back diodes[53]–[55]. Also 

an active using bipolar junction transistor with higher cubing gain[56]. These are not 

attractive as they are difficult to implement in CMOS process. CMOS cube generator 

has also been demonstrated in[45], [57].These cube generator heavily reduces the 

IM3 output signal as they take advantage of the relatively weak third-order Taylor 

series coefficient of the MOSFET. The cube generator Fig.3.13 is based on that  

presented in [58]. Unlike[58] the circuit shown in Fig.3.13 is a true cube generator 

not a cubic-term generator. The cubing circuit uses multiple non-linear operation to 

generate the cubing function (Fig.3.14). The first nonlinear operation performed is 

the squaring of the input signal which is done by a simple MOS squaring circuit in the 

lower left-bottom corner of the cube generator (Fig.3.13). The squaring circuit 

consist of two NMOS with their sources tied to ground and the drains connected 

together. The connected drains are then connected via a resistor to the 
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Figure 3.13: Schematic of cube generator 
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Figure 3.14: Block diagram of the operation of the cube generator 

supply. The gate of the two NMOS are driven differentially. The total current flowing 

into the resistor is the sum of the current of the NMOS transistors. The current 

generated by NMOS with input Vin+ and bias voltage Vbias assuming square law 

transistor is given by: 

 

𝐼𝐷1 =
1

2
𝜇𝑛𝐶𝑜𝑥 (

𝑊

𝐿
)
1

(𝑉𝑖𝑛+ + 𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑡ℎ)
2 (3.16) 

 

             

𝐼𝐷1 = 𝐾1𝑉𝑖𝑛+
2 + 2𝐾1(𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑡ℎ)𝑉𝑖𝑛+ + (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑡ℎ)

2 (3.17) 

 

 

where   𝐾1 =
1

2
𝜇𝑛𝐶𝑜𝑥 (

𝑊

𝐿
)
1
 (3.18) 

 

Likewise the current generated by the NMOS with input Vin- and bias voltage Vbias is 

given as: 

 
𝐼𝐷2 = 𝐾1𝑉𝑖𝑛−

2 + 2𝐾1(𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑡ℎ)𝑉𝑖𝑛− + (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑡ℎ)
2 (3.19) 

 

               
But  𝑉𝑖𝑛+ = −𝑉𝑖𝑛− (3.20) 

(   )𝟐 Vin Vout
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The total current flowing through the resistor (ID) which as mentioned earlier is the 

sum of the current of the two NMOS transistor will be given as: 

 
𝐼𝐷 = 2𝐾1𝑉𝑖𝑛+

2 + 2(𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑡ℎ)
2 (3.21) 

 

For the linear part of the current of the transistors to cancel out (3.17) and (3.19) 

requires proper matching of the transistors during layout.  The output of the 

squaring circuit is single-ended so it is followed by a single-ended to differential 

converter to recast the signal differential. The squaring circuit directly passes the 

common mode signal so the negative input of the single-ended to differential 

converter is connected to a dummy squaring circuit. The gate terminal of the dummy 

squaring branch is tired together so the circuit only passes the common-mode. With 

that in place the common mode passed by the squaring circuit is rejected by the 

common rejection ratio of the single-ended to differential converter. The squared of 

the input signal and the input signal are multiplied together using a gilbert cell 

multiplier to generate the cube of the input signal.  Assuming perfect symmetry 

between the M2’s and M3’s, the differential input voltage (Vin) and the differential 

output voltage (Vout) of Fig.3.13 are related by: 

 

𝑉𝑜𝑢𝑡 ≈ (
𝑔𝑚2
𝑔𝑚3

√2𝛽5𝛽4 𝐾1𝑅1)𝑅𝐷𝑉𝑖𝑛
3 (3.22) 

 

 

where   𝛽5 = 𝜇𝑝𝐶𝑜𝑥 (
𝑊

𝐿
)
5
 (3.23) 
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and   𝛽4 = 𝜇𝑝𝐶𝑜𝑥 (
𝑊

𝐿
)
4

 (3.24) 

 

M2 and M3 sees a squared of the input signal and a gain version of the square of the 

input signal respectively. As the amplitude of the input signal is less than one , the 

squared and a gain version of the squared of the input signal are small signal so does 

not limit the linearity of the cube generator. The linearity of the cube generator is 

limited by M4s and M1s as they see the input signal which can be large at high 

modulation index. M1s have their source connected to ground so have enough 

overdrive so does not limit the linearity much as compared to M4.The linearity of the 

cube generator is therefore increased by increasing the overdrive voltage of M4 and 

M1. Fig.3.15 shows the output characteristics of the implemented cube generator 

compared to an ideal cube generator with a gain. At low input signal the 

implemented cube generator matches the ideal cube generator. But as the input 

voltage get larger >200mV the implemented cube generator circuit deviates from the 

ideal cube generator. So there is a limitation to the input amplitude at which a true 

cubing function can be realized. 

 

Figure 3.15: Output characteristics of the cube generator 
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3.2.4 Raised- To- The Fifth Generator 

The block diagram and schematic of the raised-to-the fifth generator is shown in 

Fig.3.17 and 3.16 respectively. The raised to the fifth operation is achieved by 

utilizing multiple non-linear operation. Firstly, the circuit at the top part of Fig.3.16 

(enclosed by the red shape) is used to obtain the square of the input signal. The 

configuration of M7 and R7 generates the square of the input. The output of the 

squaring circuit is single ended so the configuration of M9 and M10 converts it to 

differential. At D+ and D- a differential square of the input signal is obtained.  The 

circuit at the bottom of Fig3.16 (enclosed by the blue shape) is the same as the cube 

generator shown in Fig.3.13. It generates a differential cube of the input at C+ and C-

.The gilbert cell multiplier (circuit enclosed by the green shape) is used to multiple 

the square of the input and the cube of the input to generate a raised- to- the fifth of 

the input. The differential input voltage (Vin) and the differential output voltage (Vout) 

of Fig.3.16 are related by: 

 

𝑉𝑜𝑢𝑡 ≈ √2𝛽11𝛽12 (
𝑔𝑚2
𝑔𝑚3

√2𝛽5𝛽4 𝐾1𝑅1)𝑅𝐷 (
𝑔𝑚9
𝑔𝑚10

 𝐾7𝑅7)𝑅𝑚𝑉𝑖𝑛

5

 (3.25) 

 

 

where   𝛽𝑛 = 𝜇𝑝𝐶𝑜𝑥 (
𝑊

𝐿
)
𝑛
 for 𝑛 = 4,5,11 and 12 (3.26) 

 

The gilbert cell multiplier (circuit enclosed by the green shape) sees the square and 

cubic of the input signal which are small signals so doesn’t limit the linearity of the 

raised-to-the fifth generator by much. The gilbert cell multiplier in the cube 

generating part as talked about earlier has its M4 transistors seeing the input signal 

which can be considerable large at high modulation index and as such limit the 

linearity of the raised-to-the fifth generator. The M4 transistors of the gilbert cell 

multiplier are sized with large overdrives to improve the linearity of the circuit. 
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Figure 3.16: Schematic of raised-to-the fifth generator 

 

Figure 3.17: Block diagram showing the operation of the circuit. 
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Figure 3.18: Output characteristics of raised-to-the fifth generator 

Fig.3.18 shows the output characteristics of the implemented raised-to-the fifth 

generator compared to an ideal raised-to-the fifth generator with a gain. At low input 

signal the implemented raised-to-the fifth generator matches the ideal raised-to-the 

fifth generator. But as the input voltage get larger >230mV the implemented raised-

to-the fifth generator circuit deviates from the ideal. There is a limitation to the input 

amplitude at which a true raised-to-the fifth function can be realized. 

3.2.5 Variable Gain Amplifier (VGA) 

The variable gain amplifier is shown in Fig.3.19. It consist of two differential pairs 

M1, M2 and M3, M4 which are cross-coupled. The linearity of the VGA is improved by 

source degeneration of the differential pairs. The resistor is connected across the 

source of the differential such that if the differential pairs are perfectly matched and 

the tail currents which are split into two transistors (M7, M8 and M9, M10) are also 

perfectly matched then no dc current will flow through the resistors (2RS). In 

addition (2RS) does not consume any headroom which is important for a technology 

node with 1.2V supply. The resistors RD under ideal conditions, sets the gain of the 

circuit. The RDs have one of its terminals connected to each other and the gates of M5 

and M6 whiles the other terminals are connected to the drain of M1, M5 and M4 and 
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M6. The advantage of this configuration is that assuming perfect matching between 

M5 and M6, RD will carry no dc current and as such consumes no headroom. As a 

result, relatively large resistor size and relative large current can flow through the 

differential pair to achieve large gain without compromising headroom. In addition 

RD provides common mode feedback for the VGA. When the common mode voltage 

at the drain of M1, M5 or M4, M6 start to fall/rise RD senses the voltage and pull-

down/pull-up the gate voltage of M5 and M6 to restore the common-mode. As the 

VGA is going to drive an ac-coupling network it requires a low output impedance and 

that is provide by M11, M13 and M14, M12 which forms a buffer. The voltage gain of the 

VGA is given as: 

 𝐺𝑎𝑖𝑛

=

((
𝑔𝑚1,2

1 + 𝑔𝑚1,2𝑅𝑠
) − (

𝑔𝑚3,4
1 + 𝑔𝑚3,4𝑅𝑠

))

𝑔𝑜5,6 + 𝑔𝑜1,4 + 𝑔𝑜2,3 + 𝑔𝐷
(

𝑔𝑚13,14
𝑔𝑚13,14 + 𝑔𝑜13,14 + 𝑔𝑜11,12

) 

 

(3.27) 

 

The extra differential pair M17 and M18 is used to varying the gain of the VGA. When 

a differential voltage (Vctrl+ - Vctrl-) is applied to the gates of M17 and M18 it changes the 

current flowing through the M1,2 and M3,4 by changing the voltage at A and B. Which 

changes their transconductance and thus the gain. Because of the source 

degeneration the gain tuning range achieved is relatively small and that is the trade 

of for using the source degeneration. This  is issue is addressed by placing the VGA 

before the cube generator and raised-to-the fifth generator (Fig.3.7) which increases 

the tuning range by 3X and 5X respectively.  Fig.3.20 shows how the voltage gain of 

the VGA varies with the control voltage. A gain range of (0.8~2) is achieved. 
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Figure 3.19: Variable gain amplifier 

 

Figure 3.20: Gain vs vctrl                            
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3.2.6 Buffer 
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Vout-Vout+

CparCpar

M2M1

RDRD
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Figure 3.21: Schematic of buffer 

 A buffer (Fig.3.21) is needed at the output of the summer as the predistortion IC 

is supposed to drive an off-chip power amplifier via a 50ohm impedance trace. The 

resistance of the differential amplifiers are sized as 50ohm to provide 50ohm on-chip 

termination. As mentioned earlier, the resistor Rs is used to increase the linearity of 

the buffer so that it does not degrade the performance of the predistortion circuit. 

The voltage gain of the buffer is given as: 

 

𝐺𝑎𝑖𝑛(𝑠) ≈

(

 
 
 
(

𝑔𝑚1,2
1 + 𝑔𝑚1,2𝑅𝑠

)

𝑔𝑑𝑠1,2 + 𝑔𝐷

1 +
𝑠𝐶𝑝𝑎𝑟

𝑔𝑑𝑠1,2 + 𝑔𝐷
)

 
 
 

 (3.28) 

 

Fig.3.22 is the voltage gain of the buffer. Ideally it should be 0.5V/V. A gain slightly 

above the target is achieved. 
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Figure 3.22: Voltage gain of the 50ohm buffer 

3.3 Results 

The proposed fifth-order predistortion circuit was designed and fabricated in GP 

TSMC 65nm CMOS technology. Fig.3.23 and 3.24 show the full chip layout of the 

predistortion circuit (including power supply decaps and metal fillings) and chip 

micrograph respectively. The chip occupies an area of 1.040mm X 1.040mm.  

 

Figure 3.23: Full chip layout of the proposed predistortion 
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Figure 3.24: Chip micrograph of the proposed predistortion 

3.3.1 Simulation Results 

It can be seen in Fig.3.25 and 3.26 that without predistortion the IM3 was 

31.65dBc but with predistortion it increased to 57.59dBc which means the 

predistortion introduced ~26dB improvement at 49.7% modulation depth with 

10MHz bandwidth. At bandwidth of 100MHz and 200MHz the IM3 are 48.57dB and 

43.65dB respectively, Fig.3.28 and Fig.3.30 resulting in ~21dB and ~16dB 

improvement for 100MHz and 200MHz bandwidth respectively. Fig.3.31 shows the 

improvement of IM3 with modulation depth. The improvement decreases with 

increasing modulation index. 
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Figure 3.25: MZM output without predistortion (1GHz & 1.01GHz inputs) 

 

Figure 3.26: MZM output with predistortion (1GHz & 1.01GHz inputs) 
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Figure 3.27: MZM output without predistortion (1GHz & 1.1GHz inputs) 
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Figure 3.28: MZM output with predistortion (1GHz & 1.1GHz inputs) 
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Figure 3.29: MZM output without predistortion (1GHz & 1.2GHz inputs) 
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Figure 3.30: MZM output with predistortion (1GHz & 1.2GHz inputs) 
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Figure 3.31: IM3 versus modulation depth 

3.3.2  Experimental Results 

To test the fabricated chip, two measurement are performed. Firstly, a two tone 

sine wave is applied to the chip and the output of the chip is saved using a real time 

scope. The saved output is passed through an ideal power amplifier model and a 

MZM matlab model and FFT is performed on the output of the MZM matlab model to 

see the frequency content. The MZM matlab model is obtained by performing 

measurement on an actual MZM module. The chip achieved 17.9dB, 23dB and 22dB 

for modulation depths of 40.25%, 44.5% and 49.7% respectively (Fig.3.33, Fig.3.35 

and Fig.3.37). Secondly, the output of the chip is applied to the an external power 

amplifier and the output of the power amplifier is saved using a real time scope and 

then applied to the matlab MZM model. The chip achieved 12.8dB, 18dB and 20.2dB 

for modulation depths of 40.25%, 44.5% and 49.7% respectively (Fig.3.39, Fig.3.41 

and Fig.3.43). The degradation is due to power amplifier nonlinearities. Fig.3.44 

shows the summary of the experimental results 
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Figure 3.32: MZM output without predistortion @40.25% modulation depth 
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Figure 3.33: MZM output with predistortion @40.25% modulation depth 
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Figure 3.34: MZM output without predistortion @44.5% modulation depth 
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Figure 3.35: MZM output with predistortion @44.5% modulation depth 
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Figure 3.36: MZM output without predistortion @49.7% modulation depth 
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Figure 3.37: MZM output with predistortion @49.7% modulation depth 
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Figure 3.38: MZM output without predistortion @40.25% modulation depth 
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Figure 3.39: MZM output with predistortion @40.25% modulation depth 
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Figure 3.40: MZM output without predistortion @44.5% modulation depth 
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Figure 3.41: MZM output with predistortion @44.5% modulation depth 
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Figure 3.42: MZM output without predistortion @49.7% modulation depth 
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Figure 3.43: MZM output with predistortion @49.7% modulation depth 
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Figure 3.44: IM3 versus modulation depth 

3.4   Comparison of Results 

Table 1 compares the performance of the proposed fifth-order predistortion with 

two other electrical predistortion published works. The proposed work was able to 

achieve better improvement in IM3 compared to the other two works published. 

Table 1: Table of Comparison 

Reference [44] [45] This work 
Tech(𝜇𝑚) 0.6 0.18 0.065 

Predistortion Type 5th 3rd 5th 

IDD(mA) N/A 90 41 

Center Frequency(GHz) 1 0.28 1 

Modulation Depth(%) 49.6 40 49.7 

IM3(dBc)@ 10MHz BW 17 
21 
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4 CONCLUSION 

A fifth-order predistortion linearization of MZM has been presented that is able 

to achieved good IM3 suppression at high modulation depth. The polynomial 

coefficient of the predistortion can be independently controlled to obtain optimized 

suppression of both the IM3 and IM5. 

The concept of the proposed solution is presented in section 3.1 and the circuit 

implementation and design is discussed in section 3.2. Prior to the proposed work 

different schemes of linearization of the MZM has also been discussed. 

The proposed solution was design and fabricated in GP 65nm TSMC CMOS 

process and it achieves 20dB improvement in IM3 at 49.7% modulation index with 

49.2mW of power consumed. This is the highest reported in the literature. 
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