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ABSTRACT

Regionally Enhanced Global (REG) Data Assimilation (DA) is a method of global data

assimilation in which high-resolution information from a single or multiple Limited Area

Model (LAM) domains is blended with the global model information to create a regionally

enhanced analysis of the global atmospheric state. This approach has been demonstrated to

benefit both local and global model forecasts in idealized studies but has never been tested

on operational numerical weather prediction models. This study investigates the limited

area model forecast performance of an implementation of the REG DA approach on the

operational 4D-Var data assimilation system, global model, and limited area model of the

U.S. Navy. This implementation is called REG 4D-Var. The results of analysis-forecast

experiments with the system show that the approach leads to small, but statistically signif-

icant overall forecast improvements and large and significant forecast improvements for

Hurricane Sandy.
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1. INTRODUCTION

Over the past few decades, two fundamental types of operational numerical weather

prediction models have evolved: global models, which cover the entire globe, and limited

area models (LAMs), which cover only part of it. Given finite computational resources,

there are limitations of the spatiotemporal resolution at which a model can be feasibly

used. LAMs, with their more targeted area of interest, are typically operated at higher

resolutions than their global counterparts, but inherently rely on information from a global

model for the atmospheric state outside the LAM domain.

Historically, the interactions between the global and the concurrent LAM forecasts,

have been limited to the global model providing boundary conditions to the higher resolu-

tion LAM forecasts. An opportunity exists, however, to introduce additional interactions

between the global model and the limited area models through a data assimilation (DA)

system that provides both the global model and the LAM with initial conditions.

Yoon et al. (2012) compared the traditional data assimilation strategy, which prepares

the global initial condition and the LAM initial conditions independently, with an inte-

grated data assimilation strategy, using an idealized Lorenz model of the atmosphere. The

integrated approach led to lower root-mean-square errors (RMSE) for both the global anal-

yses (18%) and forecasts (15%) and the LAM analyses (6%) and forecasts (5%). A similar

idealized comparison study was performed by Kretschmer et al. (2015), who employed the

Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007) to analyze a com-

posite state that included all state vector components from a global model and multiple

LAMs. The composite state provided both the global model and the LAMs with initial

conditions. The technique led to significant analysis and forecast improvements for both

the global model and the LAMs compared to the analyses and forecasts that were pro-
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duced by using initial conditions obtained by the conventional independent data analysis

approach.

Our research is motivated by the highly promising results of the idealized data assim-

ilation studies. We carry out experiments with an operational global model and LAM.

Our approach for the integration of the data assimilation process is similar to the compos-

ite state method of Kretschmer et al. (2015): short-term forecast states obtained by the

global and limited area model are linearly combined to produce a blended estimate of the

atmospheric state, which is then used to compute the predicted value of the observations

in the data assimilation. The background estimate of the global state is updated by as-

similating observations by the global data assimilation system, using the innovations (the

difference between the observations and their predicted values) computed with the help

of the blended state. The resulting global analysis provides both the global and limited

area model with initial conditions after interpolation to match the global and limited area

model representation of the atmospheric fields. We call this DA approach the Region-

ally Enhanced Global (REG) DA. The evaluation of the impact of REG DA on the global

model forecast performance was the subject of an earlier study (Herrera, 2016). The focus

of the present thesis is on the evaluation of the impact on the LAM forecast performance.

The thesis is organized as follows. Section 2 describes the general formulation of REG

DA for a 4D-Var DA scheme, which we call REG 4D-Var, and our particular implemen-

tation on the operational models and data assimilation system of the U.S. Navy. Section

3 describes the design of the analysis-forecast experiment and introduces the verification

scores used for the evaluation of the experiments. Section 4 discusses the results of the

experiments, and section 5 provides the conclusions.
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2. REG 4D-VAR

2.1 Formulation

2.1.1 4D-Var

REG DA is independent of the particular method of data assimilation used (e.g., 3D-

Var, 4D-Var, or EnKF). Because we use the operational DA system of the U.S. Navy, which

is 4D-Var, we introduce REG DA assuming the availability of a global 4D-Var system. We

call this particular implementation of the REG DA concept REG 4D-Var.

Today’s data assimilation systems use a sequential algorithm to obtain the analysis.

The analysis xa(t0) at analysis time t0 is obtained by

xa
g(t0) = xb

g(t0) + δxa
g(t0), (2.1)

where the xb
g(t0) background estimate of the state is a short term forecast valid at t0, and

δxa
g(t0) is the analysis increment. The 4D-Var analysis increment δxa

g is the δxg(t0) = δxa
g

minimizer of the cost function (e.g. Szunyogh, 2014)

J [δxg(t0)] = [δxg(t0)]
T (Pb)−1δxg(t0)+

N∑
j=0

[δyo(tj) + Hg(tj)Mg(t0, tj)δxg(t0)]
T×

R−1tj
[δyo(tj) + Hg(tj)Mg(t0, tj)δxg(t0)] ,

(2.2)

where Pb is the background error covariance matrix, Hg(tj) is the linearization of the

observation function hg [xg(tj)] about xb
g(tj), Mg(t0, tj)δxg(t0) represents the tangent-

linear model (TLM) integration, R is the observational error covariance matrix, and tj, j =

0, ..., N, are the times at which observations are available within the assimilation time
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window. In Eq. (2.2), the expression within the square brackets of the second term may

also be written as

yo(tj)− hg [xg(tj)] = δyo(tj) + Hg(tj)Mg(t0, tj)δxg(t0), (2.3)

where

δyo(tj) = yo(tj)− hg

[
xb
g(tj)

]
(2.4)

is the innovation, and because Hg(tj) is the linearization of hg

[
xb
g(tj)

]
about xb

g (tj),

hg [xg(tj)] ≈ hg

[
xb
g(tj)

]
+ Hg(tj)δxg(tj). (2.5)

2.1.2 Regional Enhancement of the Background

To enhance the background estimate of the global state by incorporating higher reso-

lution information from a LAM, the observation function hg, operating on the global state

xg, is replaced by he, which operates on the regionally enhanced, blended state xe, defined

by

xe = (1− α)L(xg) + αx`. (2.6)

Here, L is the linear operator that maps the lower resolution global model state xg to

the higher resolution LAM representation of the state, x` is the state vector of the LAM

interpolated onto the global grid, and α ≤ 1 is the blending coefficient. At locations where

no limited area model information is available, the related components of x` are zero. In

the cost function, the term described by Eq. (2.3) is replaced by

yo(tj)− he [xe(tj)] = δey
o(tj) + He(tj)Me(t0, tj)δxe, (2.7)
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where

δey
o(tj) = yo(tj)− he

[
xb
e(tj)

]
, (2.8)

and He(tj) is the linearization of he [xe(tj)] about xb
e(tj), that is,

he [xe(tj)] ≈ he

[
xb
e(tj)

]
+ He(tj)δxe(tj), (2.9)

where

δxe(tj) = xe(tj)− xb
e(tj)

= (1− α)L
[
xg(tj)− xb

g(tj)
]

+ α
[
x`(tj)− xb

`(tj)
]
.

(2.10)

Introducing the notation

δx`(tj) = x`(tj)− xb
`(tj), (2.11)

Eq. (2.10) can be rewritten as

δxe(tj) = (1− α)Lδxg(tj) + αδx`(tj). (2.12)

After decomposing Me(t0, tj) into Mg(t0, tj) and M`(t0, tj), the latter being the lineariza-

tion of the limited area dynamics about the nonlinear trajectory xb
`(tj), Eq. (2.12) can be

written as

δxe(tj) = (1− α)LMg(t0, tj)δxg(t0) + αM`(t0, tj)δx`(t0). (2.13)

Because the right-hand side of eq. (2.13) is a linear mapping of δxe(t0), Eq. (2.13) can

also be written as

δxe(tj) = Me(t0, tj)δxe(t0), (2.14)
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where Me(t0, tj) is the operator that represents the linear mapping of the regionally en-

hanced state. REG 4D-Var can therefore be implemented by replacing Mg(t0, tj)δxg by

the right-hand side of Eq. (2.13), and Hg by He in the cost function. The cost function

becomes

J [δxg(t0)] = [δxg(t0)]
T (Pb)−1δxg(t0)+

N∑
j=0

[δey
o(tj) + He(tj)Me(t0, tj)δxe(t0)]

T×

R−1tj
[δey

o(tj) + He(tj)Me(t0, tj)δxe(t0)] ,

(2.15)

where the observation term of the cost function depends on the control variable δxg, as

δxe(t0) is a function of δxg (Eq. 2.13). Once δxa
g has been obtained by the minimization

of the cost function, the global analysis xa
g can be calculated using Eq. (2.1).

2.1.3 The Limited Area Analysis

There are a number of potential approaches to generate a LAM analysis xa
` based on

the information provided by the global analysis increment δxa
g . For instance, it could be

computed by

xa
` = xb

` + A(δxa
g) (2.16)

that is, by adding the global analysis increment after its interpolation to the LAM grid

(A) to the LAM shorter forecast. In our study, we test the simplest possible approach of

interpolating the global analysis xa
g onto the LAM grid, that is,

xa
` = A

(
xa
g

)
(2.17)

The difference between our approach and the standard approach of the operational numer-

ical weather prediction centers for the generation of LAM initial conditions, in which the
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limited area analysis is obtained by an interpolation of their global analysis to the LAM

grid, is that our global analysis uses some LAM forecast information in addition to the

global forecast information. We note that the general advantages of obtaining a LAM

analysis by interpolation of a global analysis are that

1. the limited area analysis of the large scale flow is properly informed about the large

scale flow outside of the lateral boundary conditions, and

2. the limited area analysis can benefit from the assimilation of the satellite radiance

observations, which require global estimates of the flow dependent parameters of

the observation bias correction terms.

2.2 The Models

In our study, we use the global model NAVGEM (Navy Global Environmental Model)

(Hogan et al., 1991) and the LAM COAMPS (Coupled Ocean/Atmosphere Mesoscale Pre-

diction System) (Hodur, 1997). Both of these models are used for operational numerical

weather prediction at the United States Navy. NAVGEM is a spectral model, which is

operationally run at horizontal resolution T425. COAMPS is a finite-difference model,

which is run at varying resolutions in many limited area domains across the globe. Given

the extensive modeling framework and finite computational resources available to us, it

is imperative to run these models at resolutions that are coarser than those used in oper-

ations. We run NAVGEM at a spectral horizontal resolution of T119, and COAMPS at

32km, using the default operational parameterization schemes.

2.3 Implementation on the Operational Forecast System of the U.S. Navy

In our implementation of REG 4D-Var, NAVGEM provides the global state xg and

COAMPS the local state x` in three unconnected LAM domains (Fig. B.1). The back-

ground xb
g is a 6-hour NAVGEM forecast. The short-term model forecasts that are blended
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at the times and locations of the observations in the 6-hour observation window centered

at the analysis time are based on 9-hour integrations of NAVGEM and COAMPS.

The interpolation L(xg) in Eq. 2.6 is done in two steps. In the first step, a T319 spectral

representation of each NAVGEM field is created by assigning a zero value to each spectral

coefficient associated with a wave number between T119 and the T319. In the second step,

the new T319 field is transformed onto a higher (about 42-km) resolution Gaussian grid

using an inverse spherical harmonic transformation.

The COAMPS fields must also undergo interpolation onto the global high-resolution

Gaussian grid before blending. The first step of the horizontal interpolation process is to

use a 9-point smoothing function,

Fi,j =

i+1
j+1∑

i′=i−1
j′=j−1

ai′,j′fi′,j′ (2.18)

where ai′,j′ is a distance-weighted function, whose role is to reduce aliasing in the horizon-

tal interpolation. A nearest neighbor interpolation completes the horizontal interpolation

of the COAMPS fields to the high-resolution Gaussian grid. Vertical interpolation is also

required: COAMPS fields, which lie on height-based sigma surfaces, are linearly mapped

onto the pressure-based sigma surfaces of NAVGEM, using a hydrostatic surface pressure

correction to account for differences between the NAVGEM and COAMPS topography.

COAMPS fields are not interpolated to NAVGEM grid points that fall below ground in

COAMPS. This approach does not lead to artificial discontinuities in the analyzed fields,

because the interpolated COAMPS fields are used only in the computation of the innova-

tions, and there are no observations at altitudes that fall below the ground in reality. (The

higher resolution COAMPS orography is more similar to the true orography than the lower

resolution NAVGEM orography.)
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With both NAVGEM and COAMPS interpolated to the high-resolution Gaussian grid,

the blending is applied according to Eq. (2.6). To ensure a smooth transition of the fields

at the lateral boundaries of the LAM domains, the blending coefficient α is tapered to

zero linearly over the 15 grid points closest to each lateral boundary. Figure (B.1) shows

the values of the blending coefficient for the case when its value in the interior of the

LAM domains is α = 1. To avoid introducing artificial vertical discontinuities near the

top of the COAMPS model atmosphere, which is significantly lower than the top of the

NAVGEM model atmosphere, a vertical mask is applied, linearly decreasing the weight

of the COAMPS fields in the blended state between 500 mb and 100 mb (above which no

COAMPS model information is used).

The global and LAM analysis is then calculated as outlined in section 2.1 using NAVDAS-

AR, the operational 4D-Var system of the U.S. Navy. Similar to all other operational

4D-Var systems (e.g. Szunyogh, 2014), NAVDAS-AR uses a dual resolution to search for

the minimizer of the cost function. In particular, the operationally implemented system

integrates the TLM at horizontal resolution T119, which is much lower than the T425 res-

olution of the full nonlinear model integrations. In our experiments, the TLM is used at

the T119 resolution of the full nonlinear model integrations.
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3. EXPERIMENT DESIGN

3.1 The Analysis-Forecast Experiments

The goal of this project is to assess the impact of REG 4D-Var on the COAMPS fore-

casts. Our hypothesis is that by providing a global analysis that is regionally enhanced by

higher-resolution LAM information, the analyzed global model state will be pushed to-

ward the true model attractor, which will lead to improved short-term forecasts. Because

these short-term global model forecasts are also used in the preparation of the LAM initial

conditions, we expect them to also lead to improved LAM forecasts. We will investigate

whether the results of the analysis-forecast experiments confirm or reject this expectation.

We carry out analysis-forecast experiments in five different configurations of the data

assimilation system. Each experiment consists of 124 six-hour data assimilation cycles –

from 0000 UTC 1 October, 2012 through 1800 UTC 31 October, 2012 – and a 72-hour

COAMPS forecast is started from each 0000 UTC and 1200 UTC analysis. COAMPS

analysis and forecast error statistics are computed over the resulting sample of sixty-two

forecasts.

The five configurations of the data assimilation system are as follows:

Experiment 1: Control. This experiment is designed to resemble the present standard data

assimilation approach in which no limited area model information is used in the prepara-

tion of the global analysis. The linearized model integrations are carried out at a reduced

resolution, T47.

Experiment 2: ‘Blend Skip’ Control. This experiment is designed to yield a more realistic

comparison for our blended experiments. In this experiment, the TLM integrations are

carried out at the same T119 resolution as in the experiments that use blending, but no

blending is performed (α = 0). The results of this experiment are also affected by the
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same interpolation errors as the blending experiments.

Experiment 3: 30% blend. In this experiment, the blending coefficient is α = 0.3; that is,

the weight of the COAMPS field in the interior of the LAM domains is 30%.

Experiment 4: 50% blend. The same as Experiment 3, except that α = 0.5.

Experiment 5: 100% blend. The same as Experiment 3 and 4, except that α = 1.0.

For every model cycle and experiment, COAMPS information is output at standard

pressure levels with 12-hour increments (from analysis time to forecast lead time 72 hr.).

The air temperature, geopotential height, zonal wind, and meridional wind forecasts are

assessed at each vertical level and forecast lead time.

The three LAM domains (Fig. B.1) are selected to provide a strong representation

of the diverse surface boundary conditions, orography, and flow patterns of the globe:

one domain is placed in the Atlantic hurricane basin to assess the benefits that REG 4D-

Var may bring to tropical cyclone forecasting, another is placed in the exit region of the

extratropical Pacific storm track, while the last one is over Europe, a region of complex

orography.

3.2 Verification Techniques

3.2.1 ECMWF Analyses

The first verification data set used to assess COAMPS forecast accuracy is comprised

of global European Center for Medium-Range Weather Forecasts (ECMWF) model analy-

ses. In this data set, verification data is available for all variables, vertical levels, and times

output by COAMPS, with a 0.5x0.5 degree resolution. Given the resolution discrepancy

between the native COAMPS output and the available ECMWF analyses, all COAMPS

fields undergo a cubic spline interpolation to the resolution of the ECMWF analyses be-

fore the computation of the error statistics. A mask is applied after interpolation to miti-

gate any artificial interpolation errors along the borders of each domain. Finally, all zonal
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(u) and meridional (v) wind fields undergo a transformation from the COAMPS Lambert

conformal projection to the true, earth-relative coordinates.

The square error is computed for each grid point of each COAMPS forecast, then two

types of RMSE averages are calculated. The first type, given by

εi =

√√√√ 1

T

T∑
t=1

(xf
ti − xv

ti)
2, (3.1)

calculates the mean over the full sample of forecasts (T=62) at each grid point (i) and

forecast lead time (t). In Eq. (3.1), xf
t represents a COAMPS forecast field, and xv

t is the

ECMWF verification data for that field. The second type of RMSE average, given by

ε =

√√√√ 1

NT

T∑
t=1

N∑
i=1

(xf
ti − xv

ti)
2, (3.2)

calculates the mean over both the forecasts and the N grid points of a verification domain.

The systematic error (bias) is also calculated for the COAMPS forecasts. Similar to

the RMSE, it is obtained by averaging either for each grid point:

εi =
1

T

T∑
t=1

(xf
t − xv

t ) (3.3)

or for the entire forecast domain:

ε =
1

NT

T∑
t=1

N∑
i=1

(xf
ti − xv

ti). (3.4)

Standard Deviation is the third error diagnostic computed, which is calculated at each

point by subtracting the square of the bias from the square of the RMSE (the MSE), then

taking the square root of the result. Temporal and spatiotemporal averages are computed
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in the same way as the RMSE and the bias.

3.2.2 RAOB Data

The second verification data set used is comprised of in-situ radiosonde observations

(RAOB) within the COAMPS domains. Spatiotemporally averaged RMSE, bias, and

standard deviation values are calculated the same way as in the verification against the

ECMWF analyses. COAMPS fields are bilinearly interpolated to each RAOB location.

3.2.3 Composite Domain

In addition to calculating verification statistics for each individual COAMPS domain, a

composite domain is also created to calculate verification statistics that measure the overall

LAM performance over the three LAM domains. In the verification against ECMWF

analyses, this aggregation is performed by assigning equal weight to the data at each grid

point in the three domains. In the verification against RAOB, each composite error value

is computed as a weighted average of the individual domain errors by

εcomposite =
1

T

T∑
t=1

3∑
d=1

(wdtεdt), (3.5)

where wdt is the portion of the number of RAOBs that falls into domain d at verification

time t, and εdt is the related error measure.

3.2.4 Statistical Significance

Two-tailed t tests, as outlined in Wilks (2011), are performed to compare the time

series of the error measures based on spatial averaging for the blended experiments and

the blend skip experiment. The temporal correlations between the errors are accounted for

by computing the effective sample size n′ as

n′ = T · 1− ρ
1 + ρ

, (3.6)
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where ρ is the lag-1 autocorrelation coefficient. A test statistic (z) is then computed by

z = ((εblend − εbskip)− µblend−bskip)/(
sblend−bskip√

n′
), (3.7)

where εblend− εbskip are the pair of RMSE for a blended experiment and blend skip experi-

ment, respectively, and µ is the hypothesized population mean (µ = 0 when testing against

a null hypothesis), and sblend−bskip is the standard deviation of the difference εblend− εbskip

for the sample of forecasts. Finally, the test statistic is converted to a confidence interval

Φ by,

Φ = 1− 2w(z), (3.8)

where w(z) is found from a table of left-tail cumulative probabilities for the standard

Gaussian distribution [Table B.1 in (Wilks, 2011)]. The two-multiplier is added to account

for the two-tailed probability. A blend experiment error is determined to be significantly

different from the blend skip experiment error when Φ ≥ 0.95, which corresponds to a

confidence interval of 95%.
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4. RESULTS

The results will be presented in three sections. The first section will assess the perfor-

mance of the blend experiments for four commonly scrutinized atmospheric fields: 500 mb

geopotential height, 250 mb wind, 850 mb temperature, and 1000 mb wind. The second

section will examine the vertical distribution of blending impacts, and the third section

will examine the forecast performance of REG 4D-Var for active tropical cyclones.

4.1 Impact on Four Selected Fields

4.1.1 500 mb Geopotential Height

We first show results for the 500 mb geopotential height. Table (A.1) gives a compre-

hensive summary of model performance for this field. RMSE averaged over the compos-

ite domain is shown for all experiments and forecast lead times, with green and orange

shading used to mark a statistically significant improvement and degradation, respectively,

relative to the blend skip control analysis-forecast experiment. The most notable results

shown in the table are the following. First, the original control experiment – executed at

the operational TLM resolution – performs significantly worse than all other experiments.

This result will also hold for the other investigated fields. The magnitude of improvement

in the blend skip experiment compared to the analyses and forecasts of this control ex-

periment is generally higher than the improvements in the blended experiments compared

to the blend skip experiment. Second, the 50% blend yields the best model performance

among all experiments. Statistically significant improvements are found in the 50% blend

experiment for the 12 to 60 hour forecast lead times, when the ECMWF analyses are used

for verification, and for the 24 and 60 hour forecast lead times, when the RAOB data are

used for verification. Finally, errors for the blended experiments are initially higher than

those of the blend skip experiment, but quickly become smaller as these forecasts progress.
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This is true even when the analysis of a blended experiment is significantly less accurate

than that of the blend skip experiment; for instance, for the 100% blend experiment when

the verification is done against the ECMWF analyses. This trend is also evident in Figure

(B.2), which is a graphical illustration of Table (A.1). In this figure, the results for the

poorly performing control experiment are not shown, while the averaged RMSE for the

30, 50, and 100% experiments is plotted relative to the RMSE of the blend skip experi-

ment. The left panel shows the verification results against the ECMWF analyses, while the

right panel shows the verification results against RAOB. As previously discussed for Table

(A.1), the 50% experiment shows the most consistent improvements among the blended

experiments. In addition, the advantage of the blended experiments gradually increases as

the lead time increases, though the verification results against RAOB show a drop in the

improvement after 60 hours. Both verification approaches indicate a sharp reduction of

the analysis accuracy when blending is increased to 100%.

Figure (B.3) is a map of the time-averaged RMSE relative to the time-averaged RMSE

of the blend skip experiment. The analysis (top), and the 24 h (middle) and 48 h (bottom)

lead time results are shown, for the verification against the ECMWF analyses. At anal-

ysis time, when the analyses of the 50% blend experiment have an overall higher error

than the analyses of the blend skip experiment, considerable degradations occur across

the Canadian Pacific coast and the northwestern edge of the CONUS domain. These er-

ror degradations almost completely disappear after the first 24 hours of model integration

(see middle panel). RMSE reduction is found across the Pacific storm track along the

southern coast of Alaska, as well as in the Atlantic hurricane basin and across much of

the European domain. At a 48 hour lead time, the improvements become even stronger,

covering broad areas across all three domains with only isolated pockets of weak degra-

dations. Figure (B.4) is the same in format as Figure (B.3), but it shows results for the

100% rather than the 50% blend experiment. At analysis time (top), the patterns of im-
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provements and degradations are very similar to those in the 50% blend experiment, but

their magnitude is even larger: strong degradation is observed along the Pacific coast and

western CONUS domain, and the improvements across Alaska and the Atlantic hurricane

basin are also accentuated. In addition, the area covered by degradations is larger than the

area of improvements.

4.1.2 250 mb Wind

Table (A.2) shows a summary of the RMSE for the composite 250 mb wind field, with

the format of Table (A.1). Wind is broken down into u and v components for the ECMWF

verification, while total wind magnitude is used for the RAOB verification. Similar to the

500 mb geopotential height field, RMSE for the blended experiments is initially higher

than that for the blend skip experiment, especially for the 100% blend experiment, but

becomes smaller with increasing forecast time. Another similarity to the results for the

500 mb geopotential height is that the 50% blend experiment is the best performing ex-

periment. This experiment produced statistically significant improvement relative to the

blend skip experiment for four of the seven investigated lead times for the RAOB verifica-

tion. It also produced the lowest overall RMSE. Table (A.3) presents the same results as

Table (A.2), but in a different format: it shows the forecast error reduction for the different

experiments relative to the blend skip experiment, ∆%, as a percentage of the error for the

blend skip experiment, that is,

∆% =
εblendskip − εexp

εblendskip
∗ 100 (4.1)

The relatively large negative values for the control experiment indicate that the analyses

and forecasts of the control experiment are much less accurate than those of the blend skip

experiment. That is, running the TLM at resolution T119 rather than T47 greatly reduces

the limited area analyses and forecast errors for the 250 mb wind. Compared to this large
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error reduction, the magnitude of the forecast error reductions brought about by blending

is small.

In comparison to the results for the 500 mb geopotential height field, the spatial distri-

bution of the patterns of forecast improvements and degradations is much less structured.

For example, Figure (B.5), which displays the spatial distribution of the forecast improve-

ments and degradations for the 50% blend experiment at the 72 h lead time relative to

the blend skip experiment, shows spotty areas of strong improvement, along with isolated

areas of considerable degradation. While the spatiotemporally averaged RMSE improve-

ment of the 250 mb zonal wind forecasts of the 50% blend experiment are statistically

significant, this improvement comes from improvements at the smaller scales as opposed

to the broad cohesive regions of improvement observed for the 500 mb geopotential height.

This result is not unexpected, as the spatial variability of the 250 mb wind field is higher

than the spatial variability of the 500 mb geopotential height field. (Recall that under the

assumption of geostrophic balance, the two horizontal components of the wind vector are

proportional to the first spatial derivatives of the geopotential height.)

4.1.3 850 mb Temperature

A summary of the verification results for the 850 mb temperature is shown in Table

(A.4). In stark contrast to the results for both the 500 mb geopotential height and the

250 mb wind, the greatest improvements relative to the blend skip experiment are found at

analysis time. In addition, these improvements diminish rather than increase with increas-

ing forecast lead time. This behavior is found for the verification results against both the

ECMWF analyses and the RAOB data. Statistically significant improvement is found only

at analysis and the shortest forecast lead times. (The longest lasting statistically significant

improvement is for 36 hours for the 50% blend experiment.) To explore the origins of this

behavior, we further investigate the error statistics for the individual COAMPS domains
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(Table A.5 and B.6). While there is a clear and broad positive impact of blending at anal-

ysis time, especially in the Northeast Pacific domain, the positive forecast impact quickly

turns into a generally neutral impact in all model domains. This process is the fastest in

the European domain and the slowest in the Northeast Pacific domain. Interestingly, the

positive forecast impact in the latter domain lasts the longest for the 100% blend exper-

iment, the experiment whose forecast performance was the poorest among the blended

experiments for the other forecast variables investigated so far. The profound qualitative

differences between the forecast effects of REG 4D-Var for the temperature, and for the

geopotential height and the wind, suggest that they are the results of two different mecha-

nisms that are both affected by the blending approach.

4.1.4 1000 mb Wind

The behavior of the verification statistics for the 1000 mb wind (Table A.6, and Figures

B.7, B.8, and B.9) is very similar to that for 850 mb temperature: the large initial advantage

of the blended experiments over the blend skip experiment quickly dissipates as forecast

time increases, despite the initial improvements being spread more broadly across all three

domains. Forecast improvements in the 100% blend experiment decreased in a shorter

time than in the 30% blend and 50% blend experiment.

4.2 Vertical Structure of the Forecast Impact

Of the four atmospheric state variables for which we have discussed the verification

results, two (850 mb temperature and 1000 mb wind) are lower tropospheric variables,

one (500 mb height) is a mid-tropospheric variable, and one (250 mb wind) is an upper

tropospheric variable. For the two lower tropospheric variables, forecast improvements

due to blending were observed at analysis and the short forecast times. For the other two

variables, improvements were observed at later times. As it turns out, this behavior of

the verification statistics is part of a general trend: improvements occur at the low atmo-

19



spheric levels at the analysis and early lead times, propagating to the higher atmospheric

levels as lead time increases. We observed this phenomena for all variables for which

forecast skill was assessed, but it was most pronounced for temperature and wind. Tables

(A.7) and (A.8) provide illustration of this behavior for air temperature. At analysis time

(Table A.7), the vast majority of the statistically significant improvements is found at the

low levels, while some statistically significant degradation, especially for the verification

against ECMWF analyses, is found at the upper levels. In contrast, at the 60 h forecast

lead time (Table A.8) fewer statistically significant results are found, but they are all sig-

nificant improvements at 200 mb. The signal is even stronger for the composite average

wind fields at the analysis time (Table A.9). Broad statistically significant improvements

are found for the 30% and 50% blend experiment from 1000 mb through 700 mb, while

significant degradations occur immediately above that layer, especially for the verification

against the ECMWF analyses; by the 60 h forecast lead time (Table A.10), all signifi-

cant improvement shift to the higher atmospheric levels, with no significant improvement

below 500 mb.

The smaller analysis improvements above 500 mb are not completely unexpected, be-

cause as explained earlier, the weight of the COAMPS blended fields used in REG DA

decreases linearly from 500 mb to the top of the COAMPS model atmosphere. Yet, it is

surprising to see the very small, but statistically significant analysis degradations above

500 mb (Tables A.7 and A.9). To help understand where and why this analysis degrada-

tion occurs, Figure (B.10) shows a decomposition of the 200 mb mean square temperature

analysis error differences for the 100% blend experiment into two components: square

bias and variance. This decomposition can help distinguish between the contributions of

the systemic and transient errors to the MSE, as MSE = V ariance+Bias2. Examining

the spatial distribution of MSE (top), broad areas of error degradation are found across the

Northeast Pacific domain, with a particularly high degradation over the complex terrain
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along the Pacific Rim. The MSE changes are quite neutral across the CONUS domain,

with a band of small improvement stretching over the Rocky Mountains, a result also seen

above mountainous European terrain. Degradations in the European domain are concen-

trated near bodies of water, including the Eastern Atlantic Ocean, and the Mediterranean,

Black, and Caspian Seas. Improvements and degradations in the squared bias closely

match the pattern and magnitude of MSE. The distribution of the variance fluctuations, on

the other hand, does not have quite as clear of a relation to the MSE distribution as the

square bias distribution. While the values are broadly negative, indicating degradations,

and certainly contribute to error degradation in areas such as the Alaskan Panhandle, the

connection between the two distributions is not striking. The results of the decomposition

suggest that the differences between the accuracy of the analysis fields are predominantly

due to differences in the bias. Interestingly, blending reduces the bias over topography,

while blending increases the bias over the waters of the Northeast Pacific and European

domains. A further examination of the bias (Figure B.11) suggests that the increase of bias

above water is due to an increase of a warm bias present in both experiments, while the

bias reduction over topography is due to reducing a warm bias in the blend skip.

Figure (B.12) shows the same error decomposition as Figure (B.10) but for the 60 h

forecast lead time (note that the scale in the color bar is doubled compared to the range

in the analysis decomposition). The MSE difference distribution (top) now has little re-

lation to physical geography. The square bias differences (middle) are much smaller in

magnitude compared to the MSE differences, and are no longer predisposed to occur over

bodies of water. The changes in the MSE are clearly driven by changes in the variance of

the error. Thus the results suggest that the early degradations due to blending are replaced

by improvements at the later forecast times, as reductions in the magnitude of the transient

errors start to dominate over the changes in the systematic errors.
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4.3 Forecasts Effects in the Atlantic Hurricane Basin

One aspect of model performance that is very important to the operational community

is the performance predicting tropical cyclones. To assess this performance, our attention

will focus on the CONUS domain, where hurricanes Sandy and Rafael passed through the

western Atlantic during the time-frame of our experiments.

4.3.1 1000 mb Geopotential Height

Figure (B.13) shows the 1000 mb geopotential height RMSE at analysis time. The top-

left panel shows the RMSE for the blend skip control, while the remaining three plots show

the RMSE relative to the blend skip RMSE for the 30, 50, and 100% blend experiment,

respectively. In examining the first plot, two significant sources of error are apparent. The

first, over the high terrain of the Rocky Mountains, is likely due to differences between

the ways the post-processing of the COAMPS and ECMWF forecast systems extrapolate

the analysis fields to obtain the 1000 mb geopotential height field when it lies beneath the

surface of the earth. The second, and more important area, is in the Atlantic basin. Two

separate error tracks can clearly be seen, where hurricane intensity and/or location analyses

differed from the ECMWF analyses. The three panels that show the error for the blended

experiments relative to the error for the blend skip experiment indicate stark analysis error

reductions along the path of Hurricane Sandy. This error reduction is most pronounced

in the area where Sandy made landfall, near Delaware Bay. In that area, strong analysis

improvement (up to 25 meters in the time averaged RMSE map) is observed for all three

blended experiments. Interestingly, a higher blending weight leads to a larger reduction

of the spatiotemporally averaged RMSE, with the 100% blend showing the most robust

improvement in the analysis of Hurricane Sandy. However, the magnitude of the degra-

dations elsewhere also increases as the blending weight increases, which has a potentially

negative effect on forecast accuracy at later lead times.
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Figure (B.14) shows the forecast improvements at the 12 h lead time in the format

of Figure (B.13). Broadly similar patterns are seen in the blend skip RMSE as at analy-

sis time, with an overall slightly increasing RMSE. The magnitude of the improvements

due to blending decreases considerably, though strong areas of improvement remain along

the path of Hurricane Sandy. The 30% blend experiment shows the largest improvements

and the smallest degradations, but the 50% blend experiment is the only experiment for

which the spatiotemporal RMSE average (not shown) shows statistically significant im-

provements over the forecasts of the blend skip experiment. The forecasts of the 100%

blend experiment are improved the most for Hurricane Rafael (northeast corner of the do-

main), but are considerably degraded in southern Texas and near the mid-Atlantic coast.

Figure (B.15) shows results for 48 h forecast lead time in the format of Figures (B.13

and B.14). While RMSE for the blend skip experiment is considerably higher than for

the shorter lead times, the hurricane error tracks are still visible. The region of strongest

improvement is further to the south than before, indicating that the two-day forecasts from

the blended analyses more accurately predict Hurricane Sandy’s evolution northeastward

away from the Bahamas before its turn to the northwest. The 100% blend continues to

have the strongest improvement along Hurricane Sandy’s path, but suffers from stronger

regions of degradation for Hurricane Rafael, as well as broader degradations along the

eastern seaboard. No experiment has a statistically significant improvement after averag-

ing across across both time and space.

Figure (B.16) shows the verification results for forecast lead time 72 h. The magni-

tude of the blend skip RMSE for the blend skip experiment is higher than before, but the

error patterns remain the same, with higher errors in the northwestern domain and around

the tropical cyclone tracks in the Atlantic. RMSE reduction due to blending is now ap-

parent for all three blending experiments along Hurricane Sandy’s path. As was the case

at the shorter lead times, the 100% blend yields the strongest, most pronounced area of
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improvement for Hurricane Sandy, but has the lowest accuracy for Hurricane Rafael along

the northeast corner of the domain, and also may have predicted a landfall near South

Carolina that did not verify. The 50% blend, although anomalously falling as the worst ex-

periment of the three blends, shows strong improvement in geopotential height error along

Hurricane Sandy’s path, including a region off the Northeast coast. Finally, the 30% blend

leads to the least degradation across the CONUS, while it retains a strong improvement in

the 3-day forecast of Hurricane Sandy.

4.3.2 1000 mb Wind

The near surface wind is another important field to analyze when examining tropical

cyclone performance. Figure (B.17) shows RMSE for the blend skip control experiment

(left) and the blend skip relative RMSE for the 50% blend (right) at the analysis time

(top), at the 36 h forecast lead time (middle), and at the 72 h forecast lead time (bottom).

At analysis time, the magnitude of the RMSE is substantial for the blend skip control

experiment in areas of elevated topography, but as for the geopotential height, this is not

a cause for operational concern, as the 1000 mb surface is beneath the ground. A smaller

but more intriguing area of elevated RMSE appears along the paths of Hurricanes Sandy

and Rafael. For the 50% blend experiment, areas of broad improvement are found across

the Atlantic Ocean, in particular the region off the eastern Florida coast where the RMSE

is high for the blend skip experiment. Smaller magnitude improvements are also observed

over the continental U.S., although isolated small degradations also occur.

At the 36 h forecast lead time, higher RMSE remains across the Great Lakes, and

along the two tropical cyclone storm tracks in the Atlantic. Interestingly, the forecasts of

the blended experiment show very inconsequential improvement across the domain, with

an overall small, non-significant degradation occurring when RMSE is spatiotemporally

averaged.
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At the longest forecast lead time (bottom), RMSE increases considerably, particularly

over water where the wind magnitude is higher. A clear pattern of higher RMSE along the

paths of Sandy and Rafael remain evident. Highly pronounced RMSE improvement due

to blending is found along Hurricane Sandy’s track northeast of the Bahamas – indicating

that the blended experiment predicts the tropical system with greater accuracy than the

blend skip experiment. Blending has little effect on the accuracy of the wind forecasts for

Hurricane Rafael. Outside the Western Atlantic, the changes in RMSE are very minor, and

the spatiotemporal average of the RMSE reduction is not significant.
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5. CONCLUSIONS

REG 4D-Var, and REG DA in general, is an operationally feasible method for the

integration of the global and limited area data assimilation processes. We implemented the

approach on the operational numerical weather prediction system of the U.S. Navy, and

carried out a series of analysis-forecast experiments to find a near optimal configuration

of the resulting REG 4D-Var system. The assessment of the quality of the global model

forecasts from these experiments was the subject of an earlier study (Herrera, 2016). The

focus of the present thesis was on the investigation of the effect of REG 4D-Var on the

LAM forecast performance.

Our results suggest that REG 4D-Var has a positive impact on the limited area forecast

accuracy. While the spatiotemporally averaged improvements are generally small, less

than 1%, they are statistically significant for a several forecast variables. Isolated statis-

tically significant short-lived error degradations were also observed, predominantly in the

upper troposphere at the analysis time. In addition, large, statistically significant analysis

improvements were found for Hurricane Sandy. The magnitude of these improvements

decreased between lead times 12 h and 36 h, but increased again from the 48 h lead time.
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Composite	500	mb	Geopotential	Height	RMSE	(m) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	vs	ECMWF 9.841 12.077 15.504 20.184 25.579 31.620 38.378
Control	vs	RAOB 11.253 13.327 16.138 19.933 23.947 27.980 31.734
Blend	Skip	vs	ECMWF 9.270 11.397 14.947 19.475 24.900 30.773 36.994
Blend	Skip	vs	RAOB 10.896 12.753 15.598 19.404 23.272 27.433 30.912
30%	Blend	vs	ECMWF 9.287 11.355 14.855 19.362 24.737 30.610 36.764
30%	Blend	vs	RAOB 10.933 12.718 15.520 19.327 23.190 27.296 30.889
50%	Blend	vs	ECMWF 9.343 11.324 14.815 19.328 24.689 30.584 36.793
50%	Blend	vs	RAOB 10.953 12.679 15.483 19.302 23.131 27.219 30.864
100%	Blend	vs	ECMWF 9.657 11.384 14.844 19.394 24.747 30.643 36.864
100%	Blend	vs	RAOB 11.096 12.655 15.463 19.301 23.167 27.301 30.931

Table A.1: Spatiotemporally averaged RMSE (m) of the 500 mb geopotential height fore-
casts for all five experiments and all forecast lead times. Bold text and shading indicates
the difference between the experiment and the blend skip error is statistically significant.
Green shading indicates a statistically significant error improvement, while orange shading
indicates a statistically significant error degradation.

Composite	250	mb	Wind	RMSE	(ms-1) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	U-Wind	vs	ECMWF 3.091 3.961 4.902 5.832 6.795 7.768 8.855
Control	V-Wind	vs	ECMWF 2.832 3.786 4.821 5.850 6.925 7.956 9.170
Control	Wind	vs	RAOB 3.538 4.232 5.042 5.898 6.771 7.609 8.544
Blend	Skip	U-Wind	vs	ECMWF 2.868 3.766 4.703 5.639 6.574 7.603 8.640
Blend	Skip	V-Wind	vs	ECMWF 2.551 3.550 4.604 5.593 6.621 7.660 8.864
Blend	Skip	Wind	vs	RAOB 3.189 4.008 4.882 5.717 6.560 7.474 8.334
30%	Blend	U-Wind	vs	ECMWF 2.868 3.766 4.704 5.639 6.562 7.587 8.604
30%	Blend	V-Wind	vs	ECMWF 2.552 3.541 4.597 5.583 6.579 7.627 8.833
30%	Blend	Wind	vs	RAOB 3.182 3.995 4.868 5.710 6.525 7.421 8.303
50%	Blend	U-Wind	vs	ECMWF 2.872 3.771 4.705 5.641 6.561 7.578 8.589
50%	Blend	V-Wind	vs	ECMWF 2.556 3.544 4.598 5.584 6.576 7.622 8.840
50%	Blend	Wind	vs	RAOB 3.179 3.992 4.856 5.710 6.516 7.407 8.274
100%	Blend	U-Wind	vs	ECMWF 2.886 3.788 4.715 5.644 6.553 7.573 8.580
100%	Blend	V-Wind	vs	ECMWF 2.572 3.560 4.605 5.587 6.568 7.622 8.828
100%	Blend	Wind	vs	RAOB 3.176 3.995 4.842 5.718 6.523 7.404 8.289

Table A.2: Same as Table (A.1) but for 250 mb wind. RMSE units are ms−1.

Composite	250mb	Wind	%	Relative	RMSE Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	U-Wind	vs	ECMWF -7.77% -5.17% -4.22% -3.43% -3.37% -2.17% -2.48%
Control	V-Wind	vs	ECMWF -11.04% -6.64% -4.72% -4.60% -4.60% -3.87% -3.45%
Control	Wind	vs	RAOB -10.96% -5.61% -3.29% -3.17% -3.21% -1.82% -2.52%
30%	Blend	U-Wind	vs	ECMWF -0.02% -0.01% -0.02% 0.00% 0.18% 0.21% 0.41%
30%	Blend	V-Wind	vs	ECMWF -0.05% 0.25% 0.13% 0.18% 0.63% 0.43% 0.35%
30%	Blend	Wind	vs	RAOB 0.21% 0.31% 0.28% 0.12% 0.54% 0.70% 0.38%
50%	Blend	U-Wind	vs	ECMWF -0.14% -0.14% -0.04% -0.03% 0.19% 0.32% 0.59%
50%	Blend	V-Wind	vs	ECMWF -0.21% 0.16% 0.12% 0.16% 0.67% 0.50% 0.27%
50%	Blend	Wind	vs	RAOB 0.31% 0.39% 0.53% 0.12% 0.68% 0.89% 0.73%
100%	Blend	U-Wind	vs	ECMWF -0.65% -0.57% -0.25% -0.09% 0.32% 0.39% 0.70%
100%	Blend	V-Wind	vs	ECMWF -0.82% -0.28% -0.04% 0.10% 0.79% 0.49% 0.40%
100%	Blend	Wind	vs	RAOB 0.39% 0.30% 0.81% -0.02% 0.56% 0.93% 0.55%

Table A.3: Same as Table (A.2) but values shown are the % change of RMSE between the
given experiment and the blend skip experiment. Positive values indicate improvement
over the blend skip, negative values indicate degradation.
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Composite	850	mb	Temperature	RMSE	(K) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	vs	ECMWF 1.328 1.486 1.675 1.895 2.109 2.316 2.529
Control	vs	RAOB 1.386 1.521 1.721 1.973 2.210 2.462 2.698
Blend	Skip	vs	ECMWF 1.277 1.437 1.630 1.853 2.073 2.282 2.485
Blend	Skip	vs	RAOB 1.307 1.481 1.688 1.933 2.173 2.413 2.640
30%	Blend	vs	ECMWF 1.248 1.425 1.625 1.850 2.071 2.279 2.481
30%	Blend	vs	RAOB 1.289 1.474 1.684 1.936 2.174 2.412 2.633
50%	Blend	vs	ECMWF 1.235 1.421 1.623 1.847 2.069 2.279 2.480
50%	Blend	vs	RAOB 1.279 1.470 1.682 1.937 2.174 2.410 2.630
100%	Blend	vs	ECMWF 1.233 1.426 1.629 1.850 2.069 2.281 2.480
100%	Blend	vs	RAOB 1.279 1.472 1.687 1.943 2.177 2.418 2.641

Table A.4: Same as Table (A.1) but for 850 mb temperature. RMSE units are K.

CONUS	850	mb	Temperature	RMSE	(K) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	vs	ECMWF 1.198 1.499 1.680 1.838 1.988 2.139 2.276
Control	vs	RAOB 1.460 1.636 1.827 2.035 2.232 2.430 2.594
Blend	Skip	vs	ECMWF 1.127 1.449 1.638 1.802 1.948 2.106 2.242
Blend	Skip	vs	RAOB 1.365 1.587 1.798 1.997 2.180 2.372 2.544
30%	Blend	vs	ECMWF 1.109 1.441 1.638 1.801 1.946 2.097 2.225
30%	Blend	vs	RAOB 1.336 1.576 1.787 1.998 2.179 2.370 2.520
50%	Blend	vs	ECMWF 1.103 1.438 1.642 1.803 1.947 2.100 2.230
50%	Blend	vs	RAOB 1.324 1.569 1.788 2.000 2.181 2.373 2.519
100%	Blend	vs	ECMWF 1.125 1.451 1.653 1.809 1.953 2.102 2.236
100%	Blend	vs	RAOB 1.331 1.573 1.787 2.001 2.186 2.388 2.525

Europe	850	mb	Temperature	RMSE	(K) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	vs	ECMWF 1.141 1.272 1.530 1.829 2.105 2.368 2.624
Control	vs	RAOB 1.275 1.352 1.566 1.875 2.169 2.475 2.773
Blend	Skip	vs	ECMWF 1.116 1.238 1.498 1.792 2.075 2.331 2.572
Blend	Skip	vs	RAOB 1.213 1.320 1.531 1.831 2.135 2.425 2.703
30%	Blend	vs	ECMWF 1.106 1.237 1.498 1.793 2.076 2.332 2.574
30%	Blend	vs	RAOB 1.209 1.321 1.533 1.835 2.137 2.426 2.706
50%	Blend	vs	ECMWF 1.099 1.238 1.497 1.790 2.074 2.331 2.577
50%	Blend	vs	RAOB 1.203 1.320 1.531 1.838 2.140 2.421 2.704
100%	Blend	vs	ECMWF 1.106 1.261 1.517 1.803 2.081 2.340 2.579
100%	Blend	vs	RAOB 1.198 1.329 1.545 1.851 2.144 2.430 2.719

NE	Pacific	850	mb	Temperature	RMSE	(K) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	vs	ECMWF 1.596 1.698 1.829 2.010 2.197 2.375 2.587
Control	vs	RAOB 1.666 1.940 2.109 2.227 2.326 2.494 2.656
Blend	Skip	vs	ECMWF 1.532 1.634 1.768 1.958 2.156 2.344 2.546
Blend	Skip	vs	RAOB 1.562 1.897 2.075 2.209 2.318 2.474 2.625
30%	Blend	vs	ECMWF 1.480 1.611 1.755 1.950 2.150 2.342 2.541
30%	Blend	vs	RAOB 1.513 1.864 2.058 2.204 2.317 2.470 2.624
50%	Blend	vs	ECMWF 1.456 1.599 1.747 1.943 2.147 2.338 2.533
50%	Blend	vs	RAOB 1.489 1.850 2.051 2.196 2.308 2.460 2.608
100%	Blend	vs	ECMWF 1.435 1.583 1.736 1.934 2.133 2.334 2.527
100%	Blend	vs	RAOB 1.494 1.817 2.039 2.183 2.299 2.451 2.616

Table A.5: Same as Table (A.4) but spatiotemporal RMSE averages are taken over each
individual COAMPS domain.
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Composite	1000	mb	Wind	RMSE	(ms-1) Analysis Tau	12 Tau	24 Tau	36 Tau	48 Tau	60 Tau	72
Control	U-Wind	vs	ECMWF 2.574 2.217 2.449 2.773 3.057 3.335 3.619
Control	V-Wind	vs	ECMWF 2.559 2.125 2.373 2.660 2.938 3.227 3.539
Control	Wind	vs	RAOB 2.750 2.348 2.415 2.534 2.640 2.776 2.865
Blend	Skip	U-Wind	vs	ECMWF 2.546 2.139 2.393 2.707 2.997 3.258 3.546
Blend	Skip	V-Wind	vs	ECMWF 2.528 2.050 2.309 2.590 2.879 3.172 3.476
Blend	Skip	Wind	vs	RAOB 2.662 2.334 2.396 2.522 2.608 2.748 2.844
30%	Blend	U-Wind	vs	ECMWF 2.452 2.124 2.388 2.706 2.996 3.251 3.534
30%	Blend	V-Wind	vs	ECMWF 2.426 2.038 2.305 2.588 2.873 3.169 3.471
30%	Blend	Wind	vs	RAOB 2.558 2.333 2.397 2.532 2.623 2.739 2.839
50%	Blend	U-Wind	vs	ECMWF 2.412 2.119 2.386 2.705 3.000 3.249 3.527
50%	Blend	V-Wind	vs	ECMWF 2.384 2.033 2.306 2.589 2.880 3.174 3.473
50%	Blend	Wind	vs	RAOB 2.519 2.330 2.399 2.529 2.623 2.748 2.857
100%	Blend	U-Wind	vs	ECMWF 2.451 2.121 2.392 2.714 3.009 3.259 3.528
100%	Blend	V-Wind	vs	ECMWF 2.401 2.041 2.316 2.600 2.882 3.182 3.476
100%	Blend	Wind	vs	RAOB 2.521 2.338 2.409 2.551 2.631 2.756 2.848

Table A.6: Same as Table (A.1) but for 1000 mb wind. RMSE units are ms−1.

Composite	0hr	Temperature	RMSE	(K) Control Blend	Skip 30%	Blend 50%	Blend 100%	Blend
200	mb	vs	ECMWF 1.072 1.036 1.044 1.051 1.076
200	mb	vs	RAOB 1.233 1.182 1.182 1.183 1.190
250	mb	vs	ECMWF 0.896 0.809 0.812 0.816 0.834
250	mb	vs	RAOB 1.104 1.028 1.025 1.024 1.028
300	mb	vs	ECMWF 0.780 0.707 0.707 0.708 0.719
300	mb	vs	RAOB 0.972 0.907 0.905 0.904 0.904
500	mb	vs	ECMWF 0.793 0.729 0.727 0.728 0.743
500	mb	vs	RAOB 0.871 0.800 0.799 0.800 0.808
700	mb	vs	ECMWF 0.876 0.839 0.832 0.830 0.845
700	mb	vs	RAOB 0.999 0.921 0.914 0.909 0.915
850	mb	vs	ECMWF 1.328 1.277 1.248 1.235 1.233
850	mb	vs	RAOB 1.386 1.307 1.289 1.279 1.279
925	mb	vs	ECMWF 1.498 1.481 1.462 1.438 1.414
925	mb	vs	RAOB 1.563 1.533 1.524 1.498 1.470
1000	mb	vs	ECMWF 1.599 1.742 1.657 1.597 1.583
1000	mb	vs	RAOB 1.953 2.168 2.106 2.022 1.926

Table A.7: Spatiotemporally averaged RMSE (K) of air temperature at the analysis time
for all experiments and isobaric levels. Bold text and shading are used to indicate the
value is statistically significant relative to the blend skip experiment. Green shading indi-
cates a statistically significant improvement, while orange shading indicates a statistically
significant degradation.
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Composite	60hr	Temperature	RMSE	(K) Control Blend	Skip 30%	Blend 50%	Blend 100%	Blend
200mb	vs	ECMWF 2.428 2.383 2.373 2.370 2.369
200mb	vs	RAOB 2.469 2.423 2.412 2.409 2.406
250mb	vs	ECMWF 2.206 2.182 2.174 2.175 2.176
250mb	vs	RAOB 2.157 2.124 2.122 2.122 2.122
300mb	vs	ECMWF 1.915 1.864 1.860 1.858 1.858
300mb	vs	RAOB 1.835 1.790 1.782 1.782 1.789
500mb	vs	ECMWF 1.924 1.867 1.862 1.862 1.864
500mb	vs	RAOB 1.857 1.788 1.782 1.781 1.786
700mb	vs	ECMWF 1.843 1.800 1.796 1.794 1.802
700mb	vs	RAOB 1.931 1.888 1.881 1.877 1.887
850mb	vs	ECMWF 2.316 2.282 2.279 2.279 2.281
850mb	vs	RAOB 2.462 2.413 2.412 2.410 2.418
925mb	vs	ECMWF 2.516 2.490 2.486 2.486 2.485
925mb	vs	RAOB 2.740 2.723 2.715 2.716 2.716
1000mb	vs	ECMWF 2.704 2.682 2.680 2.679 2.677
1000mb	vs	RAOB 2.798 2.808 2.802 2.795 2.792

Table A.8: Same as Table (A.7) but for a 60-hour forecast lead time.

Composite	0hr	Wind	RMSE	(ms-1) Control Blend	Skip 30%	Blend 50%	Blend 100%	Blend
200	mb	U-Wind	vs	ECMWF 2.620 2.479 2.479 2.481 2.488
200	mb	V-Wind	vs	ECMWF 2.507 2.352 2.351 2.351 2.357
200	mb	Wind	vs	RAOB 3.206 3.006 3.005 3.006 3.006
250	mb	U-Wind	vs	ECMWF 3.091 2.868 2.868 2.872 2.886
250	mb	V-Wind	vs	ECMWF 2.832 2.551 2.552 2.556 2.572
250	mb	Wind	vs	RAOB 3.538 3.189 3.182 3.179 3.176
300	mb	U-Wind	vs	ECMWF 3.441 3.174 3.182 3.189 3.216
300	mb	V-Wind	vs	ECMWF 3.126 2.775 2.781 2.786 2.809
300	mb	Wind	vs	RAOB 3.794 3.368 3.365 3.364 3.369
500	mb	U-Wind	vs	ECMWF 2.691 2.493 2.497 2.503 2.542
500	mb	V-Wind	vs	ECMWF 2.501 2.267 2.265 2.269 2.303
500	mb	Wind	vs	RAOB 2.909 2.608 2.608 2.611 2.629
700	mb	U-Wind	vs	ECMWF 2.358 2.214 2.205 2.203 2.232
700	mb	V-Wind	vs	ECMWF 2.245 2.089 2.073 2.068 2.091
700	mb	Wind	vs	RAOB 2.876 2.617 2.605 2.601 2.602
850	mb	U-Wind	vs	ECMWF 2.411 2.319 2.294 2.281 2.287
850	mb	V-Wind	vs	ECMWF 2.274 2.143 2.113 2.101 2.113
850	mb	Wind	vs	RAOB 3.158 2.911 2.882 2.869 2.855
925	mb	U-Wind	vs	ECMWF 2.481 2.388 2.336 2.320 2.370
925	mb	V-Wind	vs	ECMWF 2.367 2.249 2.197 2.183 2.247
925	mb	Wind	vs	RAOB 3.077 2.791 2.704 2.667 2.652
1000	mb	U-Wind	vs	ECMWF 2.574 2.546 2.452 2.412 2.451
1000	mb	V-Wind	vs	ECMWF 2.559 2.528 2.426 2.384 2.401
1000	mb	Wind	vs	RAOB 2.750 2.662 2.558 2.519 2.521

Table A.9: Same as Table (A.7) but for wind. RMSE units are ms−1.
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Composite	60hr	Wind	RMSE	(ms-1) Control Blend	Skip 30%	Blend 50%	Blend 100%	Blend
200	mb	U-Wind	vs	ECMWF 6.337 6.212 6.191 6.196 6.194
200	mb	V-Wind	vs	ECMWF 6.649 6.442 6.410 6.422 6.423
200	mb	Wind	vs	RAOB 6.315 6.245 6.212 6.211 6.190
250	mb	U-Wind	vs	ECMWF 7.768 7.603 7.587 7.578 7.573
250	mb	V-Wind	vs	ECMWF 7.956 7.660 7.627 7.622 7.622
250	mb	Wind	vs	RAOB 7.609 7.474 7.421 7.407 7.404
300	mb	U-Wind	vs	ECMWF 8.107 7.933 7.902 7.884 7.892
300	mb	V-Wind	vs	ECMWF 8.123 7.823 7.784 7.775 7.776
300	mb	Wind	vs	RAOB 7.736 7.585 7.554 7.538 7.570
500	mb	U-Wind	vs	ECMWF 5.440 5.303 5.279 5.277 5.279
500	mb	V-Wind	vs	ECMWF 5.364 5.175 5.156 5.159 5.168
500	mb	Wind	vs	RAOB 5.251 5.112 5.089 5.091 5.101
700	mb	U-Wind	vs	ECMWF 4.336 4.231 4.217 4.215 4.220
700	mb	V-Wind	vs	ECMWF 4.274 4.196 4.183 4.189 4.198
700	mb	Wind	vs	RAOB 4.380 4.306 4.293 4.308 4.305
850	mb	U-Wind	vs	ECMWF 4.248 4.141 4.130 4.127 4.132
850	mb	V-Wind	vs	ECMWF 4.180 4.114 4.103 4.112 4.122
850	mb	Wind	vs	RAOB 4.341 4.268 4.255 4.258 4.241
925	mb	U-Wind	vs	ECMWF 4.306 4.188 4.181 4.173 4.183
925	mb	V-Wind	vs	ECMWF 4.242 4.151 4.142 4.153 4.160
925	mb	Wind	vs	RAOB 4.144 4.098 4.083 4.077 4.063
1000	mb	U-Wind	vs	ECMWF 3.335 3.258 3.251 3.249 3.259
1000	mb	V-Wind	vs	ECMWF 3.227 3.172 3.169 3.174 3.182
1000	mb	Wind	vs	RAOB 2.776 2.748 2.739 2.748 2.756

Table A.10: Same as Table (A.7) but for wind at a 60-hour forecast lead time. RMSE units
are ms−1.
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Figure B.1: Illustration of the three COAMPS domains. Color shades show the blending
coefficients for the 100% blend experiment.

Figure B.2: Spatiotemporally averaged RMSE (m) of the 30, 50, and 100% blends relative
to the blend skip for 500 mb geopotential height. Positive values indicate the blend has a
lower RMSE than the blend skip (i.e. error improvement).
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Figure B.3: Temporally averaged RMSE (m) for the 50% blend relative to the blend skip
at all interpolated COAMPS grid points against the ECMWF analysis verification. The
500 mb geopotential height field is shown for the analysis time (top), 24 h lead time (mid-
dle), and 48 h lead time (bottom). Positive values (red) indicate improvement for the 50%
blend relative to the blend skip, negative values (blue) indicate degradation. Maximum,
mean, and minimum plot values are plotted in the caption beneath each plot.
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Figure B.4: Same as Figure (B.3) but for the 100% blend relative to the blend skip.
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Figure B.5: Temporally averaged RMSE (ms−1) for the 50% blend relative to the blend
skip at all interpolated COAMPS grid points against ECMWF analysis verification.
250 mb zonal wind (top) and meridional wind (bottom) are shown at a 72 h forecast lead
time. Positive values (red) indicate improvement for the 50% experiment relative to the
blend skip, negative values (blue) indicate degradation. Maximum, mean, and minimum
plot values are plotted in the caption beneath each plot.
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Figure B.6: Temporally averaged RMSE (K) for the 50% blend relative to the blend skip at
all interpolated COAMPS grid points against ECMWF analysis verification. The 850mb
temperature field is shown at the analysis time (top), 36 h lead time (middle), and 72 h
lead time (bottom). Positive values (red) indicate improvement for the 50% experiment
relative to the blend skip, negative values (blue) indicate degradation. Maximum, mean,
and minimum plot values are plotted in the caption beneath each plot.
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Figure B.7: Spatiotemporally averaged RMSE (ms−1) of the 30, 50, and 100% experi-
ments relative to the blend skip experiment for 1000 mb wind. RMSE differences for
zonal wind against the ECMWF are shown at the top-left, meridional wind against the
ECMWF at the top-right, and wind magnitude against RAOB in the bottom-center. Posi-
tive values indicate the blend improved relative to the blend skip, negative values indicate
degredation.

40



Figure B.8: Same as Figure (B.5) but for 1000 mb at analysis time.

Figure B.9: Same as Figure (B.5) but for 1000 mb at forecast lead time 48.
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Figure B.10: Temporally averaged error difference decomposition of the 200 mb tem-
perature analysis field into in mean square error (MSE, top), bias squared (middle), and
variance (bottom) at all interpolated COAMPS grid points against ECMWF analysis ver-
ification. All units are in K2. Positive values (red) indicate improvement for the 100%
experiment relative to the blend skip, negative values (blue) indicate degradation. Maxi-
mum, mean, and minimum plot values are plotted in the caption beneath each plot.
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Figure B.11: Temporally averaged bias for the blend skip control (top) and 100% blend
(bottom) at all interpolated COAMPS grid points against ECMWF analysis verification.
All units are K. Positive values (red) indicate a warm bias, negative values (blue) indicate
a cold bias. Maximum, mean, and minimum plot values are plotted in the caption beneath
each plot.
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Figure B.12: Same as Figure (B.10) but for a 60 h forecast lead time. Note the scale in the
color bar is expanded from that of the analysis figure.
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Figure B.13: Temporally averaged RMSE (m) of the 1000 mb Geopotential Height at
analysis on the CONUS domain. RMSE of the blend skip experiment is shown in the
top-left, while RMSE relative to the blend skip is shown for the 30% (top-right), 50%
(bottom-left), and 100% (bottom-right) experiments. For the blend skip relative RMSE
plots, positive values (red) indicate improvement for the blend experiment relative to the
blend skip, negative values (blue) indicate degradation. Maximum, mean, and minimum
plot values are plotted in the caption beneath each plot.
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Figure B.14: Same as Figure (B.13) but for a 12 h forecast lead time.

46



Figure B.15: Same as Figure (B.13) but for a 48 h forecast lead time.
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Figure B.16: Same as Figure (B.13) but for a 72 h forecast lead time.
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Figure B.17: Temporally averaged RMSE (ms−1) of the 1000 mb zonal wind at analysis
time on the CONUS domain. RMSE of the blend skip experiment is shown on the left,
while RMSE of the 50% blend relative to the blend skip is shown on the right. For blend
skip relative RMSE plots (right), positive values (red) indicate improvement for the blend
experiment relative to the blend skip, while negative values (blue) indicate degredation.
Maximum, mean, and minimum plot values are plotted in the caption beneath each plot.
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