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ABSTRACT

Photon-limited imaging is a core tool for the acquisition of precise quantitative data

in a wide range of scientific endeavors, where parameters of an experiment are estimated.

An important example is single molecule fluorescence microscopy, a relatively new optical

microscopy technique that allows the detection of individual molecules such as proteins

in a cellular context. One of the central aspects of such photon-limited imaging systems

concerns the lowest possible variance with which an unknown parameter, e.g. the location

of an object, can be estimated. The Cramér–Rao Lower Bound (CRLB) on the variance

of unbiased estimators is widely used to assess the performance limits of imaging systems.

However, the current approach for the calculation of the CRLB relies on an analytical

expression for the image of the object. This can pose practical challenges since it is typically

difficult to find appropriate analytical models for the images of general objects. Here, we

instead develop an approach that directly uses an experimentally collected image set to

calculate the CRLB for the location of a general object. In this approach, we fit splines,

i.e. smoothly connected piecewise polynomials, to the experimentally acquired image set

to provide a continuous model of the object, which can then be used for the calculation of

the CRLB. Due to its practical importance, we investigated in detail the application of the

proposed approach in single molecule microscopy.

Another contribution of this dissertation is the development of techniques based on the

CRLB for the design of plane spacing for Multifocal Plane Microscopy (MUM). MUM is a

3D imaging modality that allows the study of subcellular dynamics in 3D at high temporal

and spatial resolution by simultaneously imaging distinct planes within the specimen. An

important question in MUM experiments is how the number of focal planes and their

spacings should be chosen to achieve the best possible localization accuracy. Here, we report

spacing scenarios that yield an appropriate 3D localization accuracy. We investigated the
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effect of the number of focal planes on the 3D localization accuracy. Additionally, we

introduced a software package for designing the plane spacings for a MUM setup.
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2D Two-Dimensional
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1. INTRODUCTION∗

1.1 The importance of fluorescence microscopy

Optical microscopy has a long history going back several centuries during which it was

a key technique for the discovery of biological processes [1]. The basic optical principles

have not changed, but what has changed in the instrumentation in recent decades is the

availability of highly sensitive detectors, computer control and powerful laser-based light

sources [2,3]. With these improvements in instrumentation came the possibility to analyze

the acquired microscopy data using advanced signal and image processing techniques (see

e.g. [4, 5]). Equally important, however, are the major advances in molecular biology and

physical chemistry that have drastically improved the available technology for the labeling

of cellular specimens [6–8].

These technological developments coincided with a time when the revolution in molec-

ular biology has demanded powerful exploratory tools for the investigation of molecular

processes in cells [2, 8]. For example, through genomic analyses, biologists have identified

a large array of proteins, such as growth factor receptors, that are known to play a role in

cancer. Standard techniques in molecular biology and biophysics, e.g. X-ray crystallogra-

phy, allow the study of these proteins to a very high level of detail. However, to investigate

their biological functions, it is important that these proteins are studied in their cellular

context.

Fluorescence microscopy is the imaging technique of choice for the study of molecular

processes within cells due to its ability to detect specifically labeled proteins, receptors,

molecules or structures [3,8,9]. There are, however, two aspects of fluorescence microscopy

that limit its power. The first aspect is the spatial resolution of optical microscopy, which

is a measure of the ability to distinguish two closely spaced point-like objects [10]. While

∗Part of this chapter is reprinted with minor modifications, with permission from “Quantitative aspects
of single molecule microscopy: information-theoretic analysis of single-molecule data” by R. J. Ober, A.
Tahmasbi, S. Ram, Z. Lin, and E. S. Ward, 2015. IEEE Signal Process. Mag., vol. 32, no. 1, pp. 58-69,
Copyright 2015 by IEEE.
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molecular interactions occur on the low nanometer scale, classical resolution criteria predict

a resolution limit in the range of several hundred nanometers [10–12]. The second aspect is

the sensitivity of the technique. A fluorescent molecule emits only a limited number of pho-

tons [2,13]. This fact, together with the limited resolution of an optical microscope, implies

that in classical fluorescence microscopy only relatively large accumulations of fluorescent

molecules are detected. These detection limitations of classical fluorescence microscopy and

in particular their associated averaging effects stand in the way of examining the molecular

processes and structures at the level of individual molecules, i.e. precisely at the level that

is required to study these phenomena in their full detail.

1.2 Single molecule fluorescence microscopy

Single molecule (fluorescence) microscopy is a technique that promises to overcome

the deficiencies of classical fluorescence microscopy by allowing the detection of individual

molecules rather than larger accumulations of molecules [2,13]. Single molecule microscopy

goes back to the work by W. E. Moerner and L. Kador published in 1989 [14], followed

by that of M. Orrit and J. Bernard published in 1990 [15]. Amongst the many stages of

development, we mention a few. In 1991, the image of a single molecule was recorded for the

first time [16]. In 2003, single molecule microscopy played a crucial role in the measurement

of the step size that the molecular motor myosin V takes in moving along an actin in an

in vitro model [17]. This was based on being able to estimate the location of the myosin

V molecule within 1.5 nm [17]. The Green Fluorescent Protein (GFP) brought about

a major breakthrough in fluorescent microscopy of proteins in living cells as the protein

of interest can be genetically tagged by the GFP gene [6, 7]. The first single molecule

experiments in live cells using a GFP tag were reported in [18,19]. In a series of papers, it

was recognized that the classical resolution criteria do not apply and distances well below

those criteria can be measured using single molecule microscopy [11, 20, 21]. One of the

key observations was that resolution is significantly improved if the molecules to be imaged

are not excited at the same time [22]. Various photophysical processes were investigated

such as blinking [21], photobleaching [20], and photoswitching [23]. This knowledge was
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exploited in [23–25] when it was recognized that various fluorophores can be stochastically

excited which allows only a small number of the total fluorophores present in a sample

to be imaged at any time point. This led to the development of localization based super-

resolution microscopy techniques [23–25]. The development of techniques continues at a

significant rate with the introduction of new approaches and refinements of existing ones.

To put the significance of single molecule microscopy in context, we next discuss the

principles behind two of the most important single molecule experiments. The first one,

a single molecule tracking experiment, aims at obtaining the trajectories of individual

molecules as they move in a cell [4, 5, 26–28]. The second one, a localization based super-

resolution experiment aims to provide an image with a resolution well beyond what is

achievable by classical methods [21,23–25].

1.2.1 Tracking single molecules

The movement of molecules such as receptors and proteins in cells is crucial for the

functioning of the cells [17, 26]. Despite the importance of these processes much remains

unknown. Therefore, tracking experiments, i.e. experiments that record such dynamic

behavior over time, are of particular importance [4]. In order to obtain the most detailed

analysis, it is essential to carry out these experiments in live cells at the single molecule

level (see Fig. 1.1).

Such single molecule tracking experiments, however, are not without significant chal-

lenges. Foremost amongst them is the need to be able to image isolated single molecules

[4, 26] (see Fig. 1.1(a)). This can often be achieved with sparse labeling. Another signifi-

cant problem is the photobleaching of many of the conventional fluorescent labels, which

means that a fluorophore will only emit a certain, typically randomly distributed, number

of photons before it ceases to emit photons [6, 7]. The phenomenon in effect limits the

length of time for which the track of a single molecule can be followed.

In designing a single molecule tracking experiment a number of important trade-offs

need to be made, in particular, regarding the frame rate of the acquisition and the asso-

ciated exposure time for each of the images. High frame rates and corresponding short

3



Figure 1.1: Single molecule tracking. (a) A sequence of images acquired at different time
points are first segmented into multiple Regions of Interest (ROIs) each containing an iso-
lated single molecule. (b) In the single molecule localization step, a Point Spread Function
(PSF) model such as the Airy profile or a bivariate Gaussian distribution is fitted to each
ROI to estimate the location of the single molecule with sub-pixel precision. This provides
a set of coordinates of single molecules. (c) The set of coordinates together with their cor-
responding time points are then analyzed by a trajectory linking algorithm. In this way,
the trajectory of each single molecule can be determined (a sample trajectory is shown).
Size bars are 1 µm. Reprinted with permission from [1].

exposure times allow for better sampling of the dynamics of the single molecule. Reducing

the exposure time, however, decreases the number of photons that are detected during

the exposure interval and thereby, as will be shown later, will reduce the accuracy with

which the parameters can be estimated that are associated with the trajectory [13,26,28].

Increasing the excitation light power could be used to increase the number of emitted pho-

tons per exposure. However, this will reduce the lengths of trajectories that can be imaged

due to photobleaching. In addition, subjecting a cellular sample to excitation light that is

too powerful might damage the living cell that is being imaged.

1.2.2 Localization-based superresolution microscopy

The second prototype experiment involves the imaging of fixed, i.e. dead, cells to

obtain very high resolution information concerning subcellular structures. In a classical

fluorescence microscopy experiment, all fluorophores are simultaneously excited and imaged

with one single exposure. As explained earlier, with densely spaced fluorophores, the result
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Figure 1.2: Localization based super-resolution microscopy. (a) The schematic shows a
subcellular structure (a microtubule network) that is uniformly labeled with specific fluo-
rophores. (b) In conventional imaging, all of the fluorophores in the sample are simultane-
ously excited. Due to the resolution limit of fluorescence microscope, the resulting widefield
image is poorly resolved and fails to reveal the underlying structure in the sample. (c) In
localization based super-resolution microscopy, the imaging conditions facilitate activation
of random subsets of fluorophores that are typically spatially well separated. These flu-
orophores are then localized with sub-pixel precision and their coordinates are then used
to create a super-resolution image of the sample. (d) The resulting super-resolution image
provides fine structural information of the sample that is not accessible through a widefield
image. (e) Comparison of a practical widefield image and a super-resolution image. In
panel (e), the size bar is 2 µm. In all other panels, size bars are 300 nm. Reprinted with
permission from [1].

is that the individual fluorophores cannot be distinguished in the acquired image (see e.g.

Fig. 1.2(a) and (b)). The idea that underlies localization based super-resolution microscopy

is to image the sample a large number of times, but in each of the images that make up

the full acquisition set, only a small and sparse subset of the fluorophores is imaged (see

Fig. 1.2(c)) [23, 24]. Through a particular choice of fluorescent labels, appropriate sample

preparation and laser excitation, such sparse, random activation can in fact be achieved.

The resulting images each are designed such that the positions of the sparsely located single

molecules can be accurately determined. For each of the typically thousands of images, the

locations of the single molecules are estimated [24, 25]. The final image is then assembled

from the location estimates of the single molecules in each of the images (see Fig. 1.2(d)).

Different techniques are available to produce these sparse subsets of fluorophores. These

5



are primarily based on the exploitation of new insights into the photophysics of fluo-

rophores [20–22], whereby powerful excitation light sources can be used to stochastically

excite subsets of fluorophores, put them in non-emitting states, or photobleach them. De-

pending on the specific mechanisms and fluorophores, these techniques are known as Photo-

Activated Localization Microscopy (PALM), Stochastic Optical Reconstruction Microscopy

(STORM), direct STORM, etc. [23–25].

1.3 Challenges in single molecule microscopy

Photon-limited imaging techniques, such as single molecule microscopy, place stringent

demands on experimental and algorithmic tools due to the low signal levels and the presence

of significant extraneous noise sources. Consequently, this has necessitated the use of

advanced statistical signal and image processing techniques for the design and analysis of

photon-limited imaging experiments. In this section, we provide an overview of a number

of challenges in photon-limited imaging. While we mainly focus on the single molecule

microscopy application, a number of these challenges are generally encountered in photon-

limited imaging.

As we showed earlier, both the single molecule tracking and the localization based

super-resolution experiments depend on the accurate determination of the locations of

the imaged single molecules [4, 28, 29]. As such, a central question in single molecule

microscopy concerns the best possible accuracy, in terms of standard deviation, with which

the location of an object can be estimated [13]. The best possible localization accuracy is

typically obtained using the Cramér–Rao Lower Bound (CRLB) [1, 30]. Theoretical lower

bounds on the accuracy of estimates, such as the CRLB, are very useful in assessing the

quantitative performance of systems as they can predict how well a system performs an

estimation task without specifying a particular estimator [1,30]. This feature has rendered

the CRLB a reliable measure of accuracy that helps to optimize the design of single molecule

microscopy experiments [1, 2, 30, 31].

The use of the CRLB in designing microscopy experiments, however, poses technical

challenges in practice which have yet to be addressed. Importantly, the calculation of the
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CRLB to date relied on an analytical expression for the image of the object, which we refer

to as the image function [26,30,32]. In practice, this can be problematic owing to the fact

that often no accurate analytical image function is available [33,34]. Even if an appropriate

analytical model is available for the image function, the lack of knowledge about the precise

values of imaging parameters might also impose difficulties in the calculation of the CRLB,

as analytical image functions are typically functions of the imaging parameters [35]. This

problem will be addressed by developing a new methodology for determining the CRLB

directly from experimentally acquired image sets [34].

As mentioned earlier, high accuracy 3D tracking of single molecules, e.g. proteins, in

live cells holds the promise to provide novel insights into subcellular processes, which oth-

erwise cannot be gained through traditional experimental approaches [5,26]. For instance,

in [32], 3D single molecule tracking of transferrin molecules over a 10-micrometer depth

revealed rapid intercellular transferrin transport at live epithelial cell barriers. The study

of such intracellular transport pathways is not only fundamental to understanding tissue

homeostasis but is also of importance for targeted drug delivery across cellular barriers

at specific body sites, such as the brain that is impermeable to blood-borne substances.

To capture the full 3D dynamics of single molecules, it is necessary to accurately estimate

their 3D locations over a large depth at high temporal resolution. This can typically be

achieved through a 3D single molecule imaging modality, such as Multifocal Plane Mi-

croscopy (MUM). MUM allows the 3D tracking of single molecules at high spatial and

temporal resolution by simultaneously imaging different focal planes within the sample

(see Fig. 1.3) [31, 36].

Designing MUM experiments, however, also poses technical challenges in practice which

have yet to be addressed. The accuracy with which the 3D locations of the single molecules

imaged using MUM can be estimated depends on the number of focal planes and their

spacings [31, 37]. Therefore, it is of importance to determine the appropriate number

of focal planes and their spacing to achieve the best possible 3D localization accuracy.

To address this problem, by making use of the CRLB, we analyze the best theoretically

7



Figure 1.3: The schematic diagram of a P-plane MUM setup. The emitted photons form
the sample are collected by the objective lens and are then split among different paths.
The light in each path is focused onto a detector which is slightly shifted with respect to
the detector associated with the standard infinity-corrected (i.e. design) focal plane.

possible 3D localization accuracy for a MUM setup along the z-axis and develop analytical

and software tools to facilitate the plane spacing design process [31, 37].

1.4 Overview of the dissertation

This dissertation is organized as follows. In the next chapter, we develop a new method-

ology for determining the CRLB directly from experimentally acquired image sets, as op-

posed to analytical image functions. As will be shown later, a continuously differentiable

representation of the experimental image set is necessary to obtain the derivatives which

are required for the calculation of the CRLB. To achieve such a continuously differentiable

model, we will fit splines, i.e. smoothly connected piecewise polynomials, to the experi-

mentally acquired image set [38]. As such, the next chapter also explores splines and their

properties, and describes how splines can help in finding the best possible localization

accuracy given a practical imaging setup.
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In Chapter 3, we direct our attention to the design of MUM experiments. We pro-

pose approaches based on the CRLB to investigate the number of focal planes and their

spacings which provide the best possible localization accuracy along the z-axis. We report

spacing scenarios called strong coupling and weak coupling which yield an appropriate 3D

localization accuracy. We further examine the effect of imaging parameters, such as the

numerical aperture of the objective lens, magnification, photon count, emission wavelength

and extraneous noise on the spacing scenarios. In addition, we introduce a new software

package that provides a user-friendly framework to find appropriate plane spacings for a

MUM setup. These developments should assist in optimizing MUM experiments.

Chapter 4 presents the concluding remarks.
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2. DETERMINATION OF LOCALIZATION ACCURACY BASED ON

EXPERIMENTALLY ACQUIRED IMAGE SETS∗

2.1 Introduction

Fluorescence microscopy, a light microscopy technique that enables the detection of

specifically-labeled objects, is extensively used to study subcellular structures, proteins

and dynamics [1, 26, 39, 40]. An important question in fluorescence microscopy concerns

the best possible accuracy, in terms of standard deviation, with which an object of interest

can be localized. This is particularly important for applications such as localization-based

superresolution microscopy in which the spatial resolution is closely related to the local-

ization accuracy [1, 40]. This problem has been addressed by introducing the Practical

Localization Accuracy Measure (PLAM) [13, 31, 41]. The PLAM provides a lower bound

on the accuracy with which an unknown parameter, e.g. the location of a subcellular object

or a single molecule, can be estimated when imaged using a pixelated detector [13,41]. The

PLAM is calculated using a well-established statistical tool, the Cramér-Rao lower bound,

that is, the inverse of the Fisher information [42, 43]. The latter represents the amount

of information the data provides about an unknown parameter [42]. Lower bounds on

the accuracy of estimates are useful in assessing the quantitative performance of systems

as they can predict how well a system can perform an estimation task without specify-

ing a particular estimator [12, 13, 42]. This feature has turned the PLAM into a reliable

measure of accuracy that helps to optimize the design of fluorescence microscopy experi-

ments [1, 12, 29,44–47].

However, the calculation of the PLAM to date relied on an analytical expression for

the image of the object, which we refer to as the image function [10, 12, 13]. In practice,

this can be problematic owing to the fact that often no accurate analytical image function

∗Reprinted with minor modifications, with permission from “Determination of localization accuracy
based on experimentally acquired image sets: applications to single molecule microscopy” by A. Tahmasbi,
E. S. Ward, and R. J. Ober, 2015. Opt. Express, vol. 23, no. 6, pp. 7630-7652, Copyright 2015 by Optical
Society of America.
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is available [10, 33, 48]. Even if an appropriate analytical model is available for the image

function, the lack of knowledge about the precise values of imaging parameters might also

impose difficulties in the calculation of the PLAM, as analytical image functions are typi-

cally strongly tied to the parameters of the imaging setup [12,26]. For instance, as shown

in [35], the experimentally achievable value for the numerical aperture of an objective lens

might considerably differ from its nominal value, especially for a high numerical aperture

objective lens.

Here, we address the above concerns by developing a new approach that directly makes

use of an experimental image set to calculate the PLAM for a general object. A contin-

uously differentiable representation of the experimental image set is necessary to obtain

certain derivatives that are required for the calculation of the PLAM. To achieve such a

continuously differentiable model we fit splines, i.e. smoothly connected piecewise poly-

nomials, to the experimentally collected image set [38, 49–51]. We use splines since they

are well-established in image processing [38,49,52] and have a number of useful properties.

Importantly, their derivatives can be obtained analytically [49]. Our proposed method only

requires the experimental image set and provides the best possible accuracy with which a

general subcellular object can be localized [53]. Knowledge of imaging parameters such as

the numerical aperture of the objective lens and the refractive index of the immersion oil

is not required as these parameters are already encoded in the experimental image set.

Single molecule microscopy is a well-known application of fluorescence microscopy which

allows the detection of individual molecules [13, 39, 40]. Due to its practical importance,

we study the application of our approach to single molecule microscopy in more detail.

In this case, the object of interest is a single molecule which is typically modeled as a

point source [13,40] and, as such, the acquired image set pertains to an experimental PSF.

An experimental PSF is a (3D) PSF obtained by (z-stack) imaging a point source, e.g. a

bead [54–57]. We verify our approach using simulations in the presence of extraneous noise

sources and give practical examples. We also give non-point source examples.

Although in this study we focus on fluorescence microscopy applications, our proposed
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approach is generally applicable to imaging problems, and can therefore also be utilized in

other applications, e.g. astronomy.

2.2 Materials and methods

2.2.1 Acquisition of the experimental PSF

A bead sample was prepared using 0.1 µm TetraspeckTM beads (Life Technologies

Corporation, Grand Island, NY) as described in [58]. The imaging of the beads was carried

out using a Zeiss Axiovert 200 inverted microscope with a Zeiss Plan-apochromat 63x, NA

1.45 oil immersion objective lens (Carl Zeiss, Oberkochen, Germany) at a refractive index

of 1.515. The measurement of the 3D PSF was performed by z-stack imaging with a Piezo

Flexure Objective Scanner (Physik Instrumente, Karlsruhe, Germany) with a step size of 25

nm. The sample was illuminated by a laser with a wavelength of 488 nm (Toptica Photonics,

Munich, Germany) and the emission light (at a wavelength of 650 nm) was passed through

a quad-band filter set (Semrock, Inc., Rochester, NY). An Electron Multiplying Charge

Coupled Device (EMCCD) camera iXon DU897-BV (Andor Technologies, South Windsor,

CT) with conventional readout and a pixel size of 16 µm × 16 µm was used to acquire the

data.

2.2.2 Acquisition of the lysosome images

A human prostate carcinoma epithelial cell line, 22Rv1, was obtained from the ATCC

(Manassas, VA) and was maintained in RPMI-1640 (Lonza, Basel, Switzerland) supple-

mented with 10 % FCS (HyClone Laboratories, Inc., Logan, UT). For imaging studies,

the culture medium was replaced with phenol-red free RPMI-1640 (Invitrogen, Carlsbad,

CA) supplemented with 10 % FCS (HyClone Laboratories, Inc.). The 22Rv1 cells were

transfected with expression plasmids encoding LAMP-1 with C-terminally linked Red Flu-

orescent Protein (mRFP; [59]) using an Amaxa NucleofectorTM (Lonza) instrument and

program X-001. 36 hours following transfection, the cells were imaged as live cells using a

Zeiss Axio Observer A1 inverted microscope with a Zeiss Plan-apochromat 100x, NA 1.4

oil immersion objective lens (Carl Zeiss) at a refractive index of 1.515. The sample was

13



illuminated by a 543 nm laser (Opto Engine LLC, Midvale, UT). A Charge Coupled Device

(CCD) camera Orca ER (Hamamatsu, Bridgewater, NJ) with a pixel size of 6.45 µm ×

6.45 µm was used to acquire the data.

2.2.3 Computations and software

All of the computations were carried out in a custom-written software package de-

veloped in the MATLAB environment (The MathWorks Inc., Natick, MA). This tool is

capable of calculating the Fisher information matrix and the PLAM for both 2D and 3D

experimental image sets.

2.3 Theory

2.3.1 Fisher information matrix and problem formulation

In this section, we briefly explain the theory for determining the best possible local-

ization accuracy in single molecule microscopy. For a 3D localization problem, we de-

note the location of the object of interest in the object space by the parameter vector

θ := (x0, y0, z0) ∈ Θ, where Θ ⊆ R
3, is an open parameter space. For a 2D localization

problem, the location parameter vector is obviously reduced to θ := (x0, y0) ∈ Θ ⊆ R
2.

The best possible accuracy with which the location of the object can be estimated, observ-

ing its pixelated image, is given by the PLAM [13,31,41]. The PLAM is determined using

the CRLB [12,13]. According to the Cramér-Rao inequality [42,43], the covariance matrix

of any unbiased estimator θ̂ of a parameter vector θ ∈ Θ is always greater than or equal

to the inverse Fisher Information Matrix (FIM), i.e.

cov(θ̂) ≥ I
−1(θ).

The main diagonal elements of the inverse FIM provide lower bounds on the variance of the

estimates of the unknown parameters, whereas we are interested in the estimation accuracy

in terms of the standard deviation. Hence, the PLAM vector is defined as the element-wise

square root of the main diagonal entries of the inverse FIM [31,41].

14



We next express the FIM for the single molecule microscopy problem. Let {C1, . . . ,

CKpix

}
be a pixelated detector, where Ck ⊆ R

2 denotes the area occupied by the kth pixel

and Kpix is the total number of pixels. The pixels are assumed to be disjoint. It has been

shown that the photon counts detected by the pixels of the detector due to the object

of interest are the realizations of independent Poisson random variables with expected

values [13, 43]

µθ(k) =
N

M2

∫

Ck

qz0

(
x

M
− x0,

y

M
− y0

)

dr, k = 1, . . . ,Kpix, (2.1)

where r := (x, y) ∈ R
2, N is the expected number of photons that impact the infinite

detector plane (i.e. R
2) due to the object, M is the lateral magnification of the objective

lens and qz0 is the image function [12, 13]. The image function is a bivariate probability

density function (pdf) that describes the image of a stationary object on the detector plane

at unit lateral magnification when it is located on the optical axis at position z0 ∈ R [1,12].

The image function for a 2D localization problem is simply given by setting z0 = 0. In

case that the object of interest is a point source, the image function is identical to the

PSF of the optical system. For example, considering the standard Born and Wolf 3D PSF

model [10], the image function is given by [26]

qz0(x, y) = A

∣
∣
∣
∣
∣

∫ 1

0
J0

(
2πna

λ
ρ
√

x2 + y2

)

e
j

πn2
az0

λnoil
ρ2

ρdρ

∣
∣
∣
∣
∣

2

, (x, y) ∈ R
2, (2.2)

where A is a normalization constant, noil denotes the refractive index of the immersion

medium, e.g. oil, and J0 is the zeroth order Bessel function of the first kind [10].

It has been shown that in the presence of extraneous noise, the expression of the FIM

is given by [12,13]

I(θ) =

Kpix∑

k=1

α(k)

vθ(k)

(
∂vθ(k)

∂θ

)T ∂vθ(k)

∂θ
, θ ∈ Θ, (2.3)

where vθ(k) := µθ(k) + bk with bk, k = 1, . . . ,Kpix, denoting the photon count due to the
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background signal at pixel Ck. If the parameter vector is independent of the background

level bk, we have ∂vθ(k)/∂θ = ∂µθ(k)/∂θ for k = 1, . . . ,Kpix. The term α(k), k =

1, . . . ,Kpix, is known as the noise coefficient that depends on the extraneous noise sources

and the detector type. In the absence of readout noise, α(k) = 1 for all k = 1, . . . ,Kpix [13].

In the presence of readout noise and when using a CCD camera or a Complementary Metal

Oxide Semiconductor (CMOS) detector the noise coefficient is given by [12]

α(k) : = vθ(k)












e−vθ(k)

√
2πσk

∫

R




∑

∞

l=1
vl−1

θ
(k)

(l−1)! e

−(z−l−ηk)2

2σ2
k





2

∑
∞

l=0
vl

θ
(k)

l! e

−(z−l−ηk)2

2σ2
k

dz − 1












, k = 1, . . . ,Kpix,

where ηk and σ2
k denote the mean and the variance of the readout noise at pixel Ck,

respectively. The expression of the noise coefficient in the presence of readout noise and

stochastic signal amplification, i.e. when using an EMCCD camera, can be found in [60].

Supposing that the object of interest is a point source and that an analytical expression

is available for the PSF (e.g. the Airy profile [10] or a bivariate Gaussian profile [48]

assuming a 2D case, and the Born and Wolf model [10], i.e. Eq. (2.2), assuming a 3D

case), Eq. (2.3) can be used to calculate the PLAM for a single molecule microscopy

experiment. However, as mentioned earlier, the lack of appropriate analytical models for

PSFs and the lack of knowledge about the precise values of imaging parameters often cause

major problems in the calculation of the PLAM. Additionally, it is often important to

calculate the PLAM for a general experimental object as opposed to a point source. To

overcome these problems, we propose an alternative approach by directly making use of an

experimental image set for the calculation of the PLAM.

Other approaches are reported in the literature to address the model mismatch issue.

For instance, in [61] a phase-retrieved pupil function was used to generate a more accurate

model for the PSF of the optical system. This more accurate PSF model was then used

for the calculation of the PLAM. In [62], a similar approach was used to model engineered
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PSFs. Such techniques, however, are limited to point-like objects and depend on a variety

of imaging parameters, such as the numerical aperture of the objective lens (see e.g. [61]).

2.3.2 Experimental image sets and experimental PSFs

In this section, we develop notation for an experimental image set which will be useful

for our later discussions. A 3D experimental image set is a set of pixelated images of

an object acquired at different defocus levels [55, 56], which are corrupted by extraneous

noise sources, such as background and readout noise, during the measurement process [13].

In addition, due to the stochastic nature of light, the acquired images are also inherently

stochastic [12,43]. Let zp ∈ R, p = 1, . . . ,Kstk, denote the defocus level in the object space,

where Kstk is the total number of levels. We define an acquired 3D experimental image set

as a realization {hk,p ∈ R | k = 1, . . . ,Kpix, p = 1, . . . ,Kstk} of an array of independent

random variables {Hk,p | k = 1, . . . ,Kpix, p = 1, . . . ,Kstk} distributed as

Hk,p ∼Poisson
(
N c

M2

∫

Ck

qz0,zp

(
x

M
− x0,

y

M
− y0

)

dxdy + bc
k,p

)

∗ N (0, σ2,c
k ), (2.4)

where N c > 0 is the expected photon count, ∗ denotes the convolution operator, bc
k,p ≥ 0 is

the background level at pixel Ck, k = 1, . . . ,Kpix, at defocus level zp, p = 1, . . . ,Kstk, and

N (0, σ2,c
k ) denotes a zero-mean Gaussian distribution with variance σ2,c

k associated with

the readout noise. If the microscope system is spatially-invariant along the z-axis, we have

qz0,zp := qzp−z0 . The above notation can also be used for a 2D localization problem simply

by assuming Kstk = 1 and zp = z0. In this case, the experimental image set contains only a

single image of the object. If the object of interest is a point source, the experimental image

set pertains to an experimental PSF which can be collected by imaging a bead sample (see

Section 2.2.1).

After acquiring an experimental image set, e.g. an experimental PSF, the next step is

to estimate the image function qz0 . Once we estimate the image function, we can substitute

it into Eq. (2.1) to obtain an analytical expression for µθ(k), k = 1, . . . ,Kpix, which can

then be used to analytically calculate the partial derivatives required in the FIM equation
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Figure 2.1: A plot of the symmetrical B-splines. Symmetrical B-splines of degree d for
d = 0, 1, 2, 3, with unit element spacing, lead to nearest neighborhood, linear, quadratic
and cubic interpolation of the experimental image set, respectively. The vertical dotted
lines show the pixel boundaries and the B-splines are located at the center of pixel 3.
Reprinted with permission from [34].

(i.e. Eq. (2.3)). This will be the topic of subsequent sections.

2.3.3 Piecewise polynomial fitting

Splines are piecewise polynomials with pieces that are smoothly connected together [49].

They have been extensively used in multidimensional data fitting (e.g. surface fitting)

and interpolation problems due to their useful properties [38, 50]. One of the important

characteristics of a spline is that it can be represented in the form of a linear combination of

basis functions known as B-splines [38]. B-splines have a number of important properties,

namely affine invariance, local support and positivity [51], which make them of interest for

our application. We therefore take advantage of splines to estimate the image function.

In particular, we next explain how to fit a volume spline to a 3D experimental image set.

Fitting a surface spline to a 2D experimental image set is a special case of the 3D fitting

by simply setting Kstk = 1 and zp = z0.

Denote by ∆x > 0, and ∆y > 0, the physical pixel size in the image space in the x

and y directions, respectively. Let ∆x0 := ∆x/M , and ∆y0 := ∆y/M , be the effective

pixel size in the object space in the x and y directions, respectively, where M is the lateral

magnification of the microscope optics. Let ∆z0 > 0 be the step size in the z-direction in
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the object space. A volume spline of degree d ∈ N0 with element spacing (∆x0,∆y0,∆z0)

in the object space is given by [51]

sd
a(x, y, z) : =

Krow∑

m=1

Kcol∑

n=1

Kstk∑

p=1

am,n,pβ
d
(

x

∆x0
− n

)

βd
(

y

∆y0
−m

)

βd
(

z

∆z0
− p

)

, (2.5)

where (x, y, z) ∈ R
3, {am,n,p | m = 1, . . . ,Krow, n = 1, . . . ,Kcol, p = 1, . . . ,Kstk} are

called the B-spline coefficients, Krow and Kcol denote the number of rows and columns of

the image, respectively, such that Krow × Kcol = Kpix, Kstk denotes the total number of

defocus levels, and βd denotes the symmetrical B-spline of degree d given by (see Fig. 2.1)

βd(x) : =
d+1∑

i=0

(−1)i

d!

(

d+ 1

i

)(

x+
d+ 1

2
− i

)d

u

(

x+
d+ 1

2
− i

)

, x ∈ R, (2.6)

where

u(x) =







1, x ≥ 0

0, x < 0
.

Given the noisy measurements hk,p at pixels Ck, k = 1, . . . ,Kpix, and at defocus levels

zp, p = 1, . . . ,Kstk, our problem is to find a volume spline sd
a(x, y, z) for (x, y, z) ∈ R

3,

such that

∫

Ck

sd
a

(
x

M
− x0,

y

M
− y0, zp − z0

)

dxdy ≈ hk,p − bc
k,p, k = 1, . . . ,Kpix, p = 1, . . . ,Kstk,

(2.7)

where bc
k,p denotes the background level at pixel Ck and at defocus level zp, and is assumed

to be known or can be estimated [26]. It is important to note that the above problem

is an interpolation problem with the exception that, for each defocus level zp, the data

points are calculated by integrating the continuous surface spline over the pixels instead of

evaluating it at the centers of the pixels/intervals (see e.g. [38,52]). This integral sampling

is the appropriate way of modeling the photon detection process in fluorescence microscopy
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[12,13,43]. Our problem is, in fact, to find a set of B-spline coefficients that minimizes the

cost function

Kpix∑

k=1

Kstk∑

p=1

∣
∣
∣
∣

∫

Ck

sd
a

(
x

M
− x0,

y

M
− y0, zp − z0

)

dxdy − (hk,p − bc
k,p)

∣
∣
∣
∣

2

.

To introduce a concise matrix notation for the above cost function we define

h :=
(

h1,1 − bc
1,1, . . . , hKpix,1 − bc

Kpix,1, h1,2 − bc
1,2, . . . , hKpix,Kstk

− bc
Kpix,Kstk

)T
∈ R

K ,

and

a := (a1,1,1, . . . , aKrow,1,1, a1,2,1, . . . , aKrow,Kcol,1, a1,1,2, . . . , aKrow,Kcol,Kstk
)T ∈ R

K ,

where K := Kpix ×Kstk is the total number of data points. We also define S ∈ R
K×K such

that

Sk+(i−1)Kpix,m+(n−1)Krow+(p−1)Kpix
=

∫

Ck

βd
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

drβd
(
zi − z0

∆z0
− p

)

, k = 1, . . . ,Kpix,

i, p = 1, . . . ,Kstk, m = 1, . . . ,Krow, n = 1, . . . ,Kcol,

where r = (x, y) ∈ R
2. Using this matrix notation the cost function is given by

ǫ(a) : = ‖h − Sa‖2 , a ∈ R
K , (2.8)

where ‖ · ‖ denotes the Euclidean (ℓ2) norm.

Minimizing the cost function in Eq. (2.8) leads to an exact spline fit for the experimen-

tal image set (i.e. zero error for the cost function). However, in practice and as described

in Section 2.3.2, experimental image sets are inherently stochastic and are typically cor-

rupted by extraneous noise. As such, an exact spline fit does not necessarily provide the
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best continuous approximation. Hence, we regularize the optimization problem using an

additional term that intends to suppress the noise [38, 52]

φd
l (a) : =

∫

R3
‖Dlsd

a(x, y, z)‖2dxdydz, a ∈ R
K , d ∈ N0, l ≤ d, (2.9)

where D
l is the vector of all possible partial derivatives of order l. For instance, for l = 1

we have

φd
1(a) =

∫

R
3





(

∂sd
a(x, y, z)

∂x

)2

+

(

∂sd
a(x, y, z)

∂y

)2

+

(

∂sd
a(x, y, z)

∂z

)2


 dxdydz, a ∈ R
K .

We next express the regularization cost function, i.e. Eq. (2.9), in terms of the ex-

pansion of the B-spline coefficients. This will help to introduce a matrix notation for the

regularization term. Substituting Eq. (2.5) into Eq. (2.9) yields

φd
l (a) =

∫

R3
‖Dlsd

a(x, y, z)‖2dxdydz =
∑

q1+q2+q3=l

(

l

q1, q2, q3

)∫

R
3

(

∂lsd
a(x, y, z)

∂xq1∂yq2∂zq3

)2

dxdydz

=
∑

q1+q2+q3=l

(

l

q1, q2, q3

)∫

R
3

(

∂l

∂xq1∂yq2∂zq3

∑

m,n,p

am,n,p

× βd
(

x

∆x0
− n

)

βd
(

y

∆y0
−m

)

βd
(

z

∆z0
− p

))2

dxdydz

=
∑

q1+q2+q3=l

(

l

q1, q2, q3

)∫

R
3

(
∑

m,n,p

am,n,p

× ∂q1

∂xq1
βd
(

x

∆x0
− n

)
∂q2

∂yq2
βd
(

y

∆y0
−m

)
∂q3

∂zq3
βd
(

z

∆z0
− p

))2

dxdydz,

for a ∈ R
K , where

∑

m,n,p :=
∑Krow

m=1

∑Kcol
n=1

∑Kstk
p=1 . With a little manipulation, it follows

φd
l (a) =

∑

q1+q2+q3=l

(

l

q1, q2, q3

)∫

R
3

(
∑

m,n,p

am,n,p
∂q1

∂xq1
βd
(

x

∆x0
− n

)
∂q2

∂yq2
βd
(

y

∆y0
−m

)
∂q3

∂zq3
βd
(

z

∆z0
− p

))

×



∑

m′,n′,p′

am′,n′,p′

∂q1

∂xq1
βd
(

x

∆x0
− n′

)
∂q2

∂yq2
βd
(

y

∆y0
−m′

)
∂q3

∂zq3
βd
(

z

∆z0
− p′

)


 dxdydz.
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Rearranging the above equation, it follows

φd
l (a) =

Krow∑

m,m′=1

Kcol∑

n,n′=1

Kstk∑

p,p′=1

am,n,pam′,n′,p′

×
∑

q1+q2+q3=l

(

l

q1, q2, q3

)

Bq1

∆x0
(n, n′)Bq2

∆y0
(m,m′)Bq3

∆z0
(p, p′), a ∈ R

K ,

(2.10)

where

Bq
∆(n, n′) : =

∫

R

∂q

∂tq
βd
(
t

∆
− n

)
∂q

∂tq
βd
(
t

∆
− n′

)

dt, n, n′ ∈ N, q = 1, . . . , l, ∆ > 0.

We now define B ∈ R
K×K such that for m,m′ = 1, . . . ,Krow, n, n

′ = 1, . . . ,Kcol, p, p
′ =

1, . . . ,Kstk,

B(p−1)Kpix+(n−1)Krow+m,(p′−1)Kpix+(n′−1)Krow+m′ =

∑

q1+q2+q3=l

(

l

q1, q2, q3

)

Bq1

∆x0
(n, n′)Bq2

∆y0
(m,m′)Bq3

∆z0
(p, p′).

Using this notation, Eq. (2.10) can be expressed in matrix form as follows (see also [52])

φ(a) = a
T
Ba, a ∈ R

K ,

where for conciseness the superscript d and subscript l are dropped.

To estimate the B-spline coefficients in the presence of stochasticity and noise, by

making use of the matrix notation introduced above, we solve the following optimization

problem

â = argmin
a∈RK

(ǫ(a) + γφ(a)) = argmin
a∈RK

(

‖h − Sa‖2 + γaT
Ba

)

, (2.11)

which is a regularized least-squares problem [38, 49]. The first term measures the error

between the data and the model in the least squares sense whereas the second term imposes

a smoothness constraint on the solution. The regularization (smoothing) factor γ ≥ 0
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controls the trade-off between fidelity to the data and the smoothness of the estimate.

Using vector differentiation [52], it is easy to verify that the minimizer to Eq. (2.11) is

given by the solution of the following equation

(

S
T
S + γB

)

â = S
T
h, (2.12)

which can be solved efficiently using Gaussian elimination or singular value decomposition.

We note that the solution of the above equation can be derived given a specific choice

of the smoothing factor γ, the derivative order l and the B-spline degree d. The smoothing

factor can be chosen based on a priori information, e.g. the variance of the measurement

noise. By setting γ = 0, the optimization problem in Eq. (2.11) reduces to a standard

least squares problem [38]. The typical choice for the derivative order in modern statistics

literature is l = 2, although other orders can also be easily used [50]. Given the order

of derivatives, an appropriate degree for the B-splines can be chosen as d = 2l − 1 [38].

The rationale for this choice is Schoenberg’s work [51] in which it is demonstrated for a

1D problem that the solution that minimizes the error in Eq. (2.11) is a spline of degree

d = 2l − 1 with simple knots at the data points and some natural end conditions. For

instance, cubic spline interpolation (i.e. using a spline of degree d = 3) is the appropriate

choice when using the derivatives of order l = 2.

2.3.4 Calculation of the Fisher information matrix

Once we estimate the B-spline coefficients â through Eq. (2.12), we can substitute

them into Eq. (2.5) and find the spline fit to the experimental image set h. This volume

fit ŝd
a after normalization can be used to obtain an estimate of the image function. For
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conciseness, define
∑

m,n,p :=
∑Krow

m=1

∑Kcol
n=1

∑Kstk
p=1 . We define the normalization factor

C(z0) : =

∫

R2
ŝd

a(x, y, z0)dr

=
∑

m,n,p

âm,n,p

∫

R
2
βd
(

x

∆x0
− n

)

βd
(

y

∆y0
−m

)

drβd
(
z0

∆z0
− p

)

= ∆x0∆y0

∑

m,n,p

âm,n,pβ
d
(
z0

∆z0
− p

)

, z0 ∈ R, (2.13)

where r = (x, y) ∈ R
2 and we applied the B-spline property

∫

R β
d(x)dx = 1 for d ∈ N0 (see

Appendix A for details). The estimated image function is given by

q̂z0(x, y) :=
ŝd

a(x, y, z0)

C(z0)
=
∑

m,n,p

ãz0
m,n,pβ

d
(

x

∆x0
− n

)

βd
(

y

∆y0
−m

)

βd
(
z0

∆z0
− p

)

,

where (x, y) ∈ R
2, and ãz0

m,n,p := âm,n,p/C(z0), m = 1, . . . ,Krow, n = 1, . . . ,Kcol, p =

1, . . . ,Kstk, are termed the normalized B-spline coefficients.

We now have an estimate of the image function that can be used to calculate the PLAM.

Substituting the estimated image function into Eq. (2.1), for k = 1, . . . ,Kpix, we have

µθ(k) ≈ N

M2

∫

Ck

q̂z0

(
x

M
− x0,

y

M
− y0

)

dr

=
N

M2

∑

m,n,p

ãz0
m,n,p

∫

Ck

βd
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

drβd
(
z0

∆z0
− p

)

.

(2.14)

It is important to note that, assuming that the pixel size, the magnification and the location

of the object are unchanged, the integral in the above expression is constant and therefore

it can be precalculated once and used in different experiments.

The next step is to calculate the partial derivatives of µθ(k) w.r.t. the unknown pa-

rameters. An interesting feature of B-splines is that their first derivatives can be obtained
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analytically through the following expression [49]

∂βd(x)

∂x
= βd−1(x+

1

2
) − βd−1(x− 1

2
), x ∈ R, d ∈ N. (2.15)

Using this identity and taking the partial derivatives of both sides of Eq. (2.14) w.r.t. x0

for k = 1, . . . ,Kpix, we have (for details see Appendix B)

∂µθ(k)

∂x0
≈ −N
M2

Krow∑

m=1

Kcol+1
∑

n=1

Kstk∑

p=1

ãz0
m,n,p − ãz0

m,n−1,p

∆x0
βd
(
z0

∆z0
− p

)

×
∫

Ck

βd−1
( x

M − x0

∆x0
− n+

1

2

)

βd

(
y

M − y0

∆y0
−m

)

dr,

where r = (x, y) ∈ R
2 and we assumed ãz0

m,0,p = ãz0
m,Kcol+1,p = 0, m = 1, . . . ,Krow, p =

1, . . . ,Kstk. Similarly, we can obtain the partial derivatives w.r.t. y0 for k = 1, . . . ,Kpix,

as follows

∂µθ(k)

∂y0
≈ −N
M2

Krow+1∑

m=1

Kcol∑

n=1

Kstk∑

p=1

ãz0
m,n,p − ãz0

m−1,n,p

∆y0
βd
(
z0

∆z0
− p

)

×
∫

Ck

βd
( x

M − x0

∆x0
− n

)

βd−1

(
y

M − y0

∆y0
−m+

1

2

)

dr,

where ãz0
0,n,p = ãz0

Krow+1,n,p = 0, for all n = 1, . . . ,Kcol, and p = 1, . . . ,Kstk. We can also

derive the partial derivatives w.r.t. z0 for k = 1, . . . ,Kpix, as follows (see Appendix B)

∂µθ(k)

∂z0
≈ N

M2

Krow∑

m=1

Kcol∑

n=1

Kstk+1
∑

p=1

ãz0
m,n,p − ãz0

m,n,p−1

∆z0
βd−1

(
z0

∆z0
− p+

1

2

)

×
∫

Ck

βd
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

dr − µθ(k)ξ(z0), (2.16)

where ãz0
m,n,0 = ãz0

m,n,Kstk+1 = 0, for all m = 1, . . . ,Krow, and n = 1, . . . ,Kcol, and for

z0 ∈ R,

ξ(z0) :=
1

C(z0)

∂C(z0)

∂z0
=

∆x0∆y0

∆z0

Krow∑

m=1

Kcol∑

n=1

Kstk+1
∑

p=1

(ãz0
m,n,p − ãz0

m,n,p−1)βd−1
(
z0

∆z0
− p+

1

2

)

.
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We now have estimates of the partial derivatives of µθ(k), k = 1, . . . ,Kpix, w.r.t. the

parameter vector of interest. This allows to determine the PLAM for a fluorescence mi-

croscopy setup directly from an experimental image set.

2.3.5 Limit of the accuracy for estimating other parameters

In the previous section, we were primarily concerned with the calculation of the best

possible localization accuracy directly from an experimental image set. However, using

the general statistical framework described in Section 2.3.1 we can also calculate the best

possible accuracy with which other parameters can be estimated, such as the photon count

and the background level. To this end, we simply define an extended parameter vector

θ := (x0, y0, z0, N, b) ∈ Θ ⊆ R
5, where b := bk, k = 1, . . . ,Kpix, denotes the constant

background level. Since the photon count is independent of the estimated image function,

from Eq. (2.14) it is straightforward to verify that

∂vθ(k)

∂N
=

∂

∂N
(µθ(k) + b) =

µθ(k)

N
, k = 1, . . . ,Kpix.

Similarly, for the background level we have

∂vθ(k)

∂b
=

∂

∂b
(µθ(k) + b) = 1, k = 1, . . . ,Kpix.

By substituting the above equations into Eq. (2.3), we can obtain the best possible accuracy

for estimating the photon count and the background level.

2.4 Results and discussion

2.4.1 Verification of the approach in the absence of noise

We have developed an approach for the calculation of the best possible accuracy with

which a general object can be localized, i.e. the PLAM, directly from 2D and 3D exper-

imental image sets. We defer to Sections 2.4.4 and 2.4.5 examples concerning the PLAM

for general experimental objects. Here we primarily focus on point-like objects (e.g. a

single molecule) and, as such, the experimental image set pertains to an experimental
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Figure 2.2: Verification of the approach in idealized imaging conditions for a 2D PSF. (a)
The image of a point source simulated using the Airy profile for a 100x, NA 1.4 objective
lens with an emission wavelength of 690 nm. (b) An experimental PSF simulated using
the model image in (a) in the absence of stochasticity and noise. The pixel size and the
detector size are 7 µm × 7 µm and 21 × 21 pixels, respectively. (c) The bicubic spline fit of
the simulated experimental PSF in (b). (d) The line profiles that pass through the peaks
of the analytical PSF and the spline fit, and the error between the line profiles. (e) The
deduced experimental x0-PLAM and its corresponding analytical PLAM as a function of
the effective pixel size in the object space (the results for y0-PLAM are similar due to the
radial symmetry of the PSF and are omitted). The absolute difference error is also shown.
For the calculation of the PLAM, we assumed a background level of b = 10 photons/pixel
and a photon count of N = 500 photons. Reprinted with permission from [34].

PSF. We refer to the PLAM deduced from an experimental PSF using the aforementioned

approach as the experimental PLAM, whereas the PLAM calculated from an analytical

PSF is referred to as the analytical PLAM. We further refer to the limit of the localization

accuracy for the x, y and z coordinates of the single molecule as x0-PLAM, y0-PLAM and

z0-PLAM, respectively. For a 2D PSF, the z0-PLAM is not relevant. It is important to

verify the performance of the developed approach in terms of the deviation of the exper-

imental PLAM from the analytical PLAM for a simulated experimental PSF in idealized

imaging conditions. We dedicate this section to this verification.

In particular, we assume idealized imaging conditions where the experimental PSF is
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devoid of stochasticity, due to the photon statistics, and extraneous noise, such as Poisson-

distributed background noise and Gaussian-distributed readout noise. Considering these

conditions, we simulate 2D and 3D experimental PSFs using analytical PSFs, such as the

Airy PSF model and the Born and Wolf PSF model, respectively [10]. We then calculate

the experimental PLAM using the proposed approach given the simulated experimental

PSFs. We investigate the performance of our approach by comparing the results in two

different steps. The first step concerns the comparison of the image profiles of the spline fit

to the simulated experimental PSF and its associated analytical model. The second step

compares the deduced experimental PLAM with its corresponding analytical PLAM.

We first study a 2D case. Figs. 2.2(a) and 2.2(b) show the simulated model image of

an in-focus point source, i.e. the Airy profile [10], which is used as the 2D analytical PSF

model, and the simulated 2D experimental PSF using this model, respectively. A bicubic

spline is then fit to the simulated experimental PSF (see Fig. 2.2(c)). A Comparison

of the cross sections of the fit and the analytical PSF suggests that in idealized imaging

conditions the spline fit provides an appropriate estimate of the image function (see Fig.

2.2(d), the (absolute difference) error is consistently less than 4×10−14 photons/pixel). We

next compare the deduced experimental PLAM with its corresponding analytical PLAM.

In idealized imaging conditions, altering the effective pixel size, i.e. the physical pixel

size divided by the lateral magnification, can potentially vary the deduced PLAM since

it changes the spatial sampling of the PSF. Therefore, we calculate the experimental and

analytical PLAMs as functions of the effective pixel size in Fig. 2.2(e). For effective pixel

sizes ranging from 0.05 µm to 0.2 µm, the experimental x0-PLAM is very close to the

analytical x0-PLAM. For this range the absolute difference error is consistently below 0.6

nm (i.e. the relative error is below 7 %). However, as the effective pixel size increases

beyond 0.2 µm, the experimental x0-PLAM deviates from the analytical x0-PLAM. For

example, the relative error for the effective pixel size of 0.25 µm is approximately 35 %.

This result is not surprising considering the fact that a large effective pixel size implies

a coarser spatial sampling of the analytical PSF which, in turn, leads to a less accurate
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Figure 2.3: Verification of the approach in idealized imaging conditions for a 3D PSF. (a),
(b) xy- (at z0 = 0.8 µm) and xz-projections of an experimental PSF simulated using the
Born and Wolf 3D PSF model for a 100x, NA 1.4 objective lens and an emission wavelength
of 690 nm in the absence of stochasticity and noise. The refractive index of the immersion oil
noil is set to 1.515. The pixel size, the z-step size and the detector size are 13 µm × 13 µm,
50 nm and 13 × 13 pixels, respectively. (c), (d) xy and xz projections of the cubic volume
spline fit of the simulated experimental PSF. (e) The error between the analytical PSF
and the spline fit evaluated at the pixels and at the z-steps. (f) The deduced experimental
x0-PLAM and its corresponding analytical PLAM as a function of the z0 position of the
single molecule in the object space (the results for y0-PLAM are similar and are omitted).
The error is also shown. (g) The deduced experimental z0-PLAM and its corresponding
analytical PLAM as a function of z0, and the error between them. For the calculation of
the PLAM, we assumed a background level of b = 10 photons/pixel and a photon count of
N = 500 photons. Reprinted with permission from [34].

spline fit. We note that effective pixel sizes beyond 0.2 µm, however, are rare in practice.

For the verification of the 3D case, an experimental PSF is simulated using the Born and

Wolf analytical 3D PSF model [10] (see Figs. 2.3(a) and 2.3(b) for xy- and xz-projections).

A cubic volume spline is then fit to the simulated 3D experimental PSF (see Figs. 2.3(c)

and 2.3(d) for xy and xz projections). The negligible error between the spline fit and

the analytical PSF, evaluated at the pixels and at the z-steps, suggests that in idealized
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imaging conditions the spline fit provides an accurate estimate of the image function (see

Fig. 2.3(e) for the xz projection of the error, where the absolute error is consistently less

than 10−12 photons/pixel/z-step). We next compare the deduced experimental PLAM with

its corresponding analytical PLAM as a function of the z0 position of the single molecule on

the optical axis. This is of significant practical importance as it allows us to verify whether

the deduced experimental PLAM remains valid as the single molecule moves along the

z-axis. Fig. 2.3(f) shows the deduced experimental x0-PLAM, its corresponding analytical

x0-PLAM and the absolute deviation error over the z-range of [0, 1] µm (since the PLAMs

are axially symmetric, the results for the z-range of [-1, 0] µm are omitted). The error is

consistently smaller than 0.9 nm over the z-range of [-1, 1] µm and the average percentage

error over this range is approximately 2 %. Similar results are observed for the deduced

experimental z0-PLAM (see Fig. 2.3(g)), where the error is consistently smaller than 4.3 %

over the z-range of [-1, 1] µm, with an average of 3.9 %. We would like to note that these

results are for a pixel size of 13 µm × 13 µm and that the error can be further decreased

by decreasing the pixel size.

2.4.2 Effects of stochasticity and noise in the experimental PSF on the deduced PLAM

In practice, experimental PSFs are inherently stochastic, due to the Poisson distribution

of the collected photons, and are typically corrupted by extraneous noise [13,54,56]. Hence,

in this section we investigate the effects of stochasticity and noise in the experimental PSF

on the deduced experimental PLAM. Figs. 2.4(a), 2.4(a’) and 2.4(b), 2.4(b’) show an out

of focus xy-projection of the Born and Wolf 3D PSF model [10], and the corresponding

xy-projection of a simulated 3D experimental PSF using this model, respectively. For the

simulation of the experimental PSF, we considered both the stochasticity of the signal

and the extraneous noise sources. As mentioned earlier, in the presence of noise, an exact

spline fit is not appropriate. Therefore, we fit a volume cubic smoothing spline, with a

small smoothing factor γ = 0.01, to the simulated experimental PSF (see Figs. 2.4(c) and

2.4(c’)). Comparing the error between the simulated experimental PSF and the analytical

PSF model (Fig. 2.4(d)) and between the spline fit and the analytical PSF model (Fig.
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Figure 2.4: The performance of the approach in the presence of stochasticity and noise.
(a), (a’) An xy-projection (at z0 = 0.9 µm) of the Born and Wolf 3D PSF model for a
100x, NA 1.4 objective lens and an emission wavelength of 690 nm. The refractive index
of the immersion oil noil is set to 1.515. (b), (b’) The corresponding xy-projection of the
experimental PSF simulated using the model in panels (a) and (a’) in the presence of
stochasticity and noise, where the standard deviation σc is 10 e−/pixel and the photon
count N c is 10000 photons. The pixel size, the z-step size and the detector size are the
same as those in Fig. 2.3. (c), (c’) The xy-projection of the cubic volume spline fit of the
simulated experimental PSF, where the smoothing factor γ is set to 0.01. (d), (d’) The
error between xy-projections of the analytical PSF model and the simulated experimental
PSF (i.e. data) and between the analytical PSF model and the spline fit, respectively,
evaluated at the pixels. (e), (f) The deduced experimental x0-PLAM and z0-PLAM and
their corresponding analytical PLAMs as functions of the z0 position of the single molecule
in the object space. The errors are also shown. For the calculation of the PLAM, we
assumed a background level of b = 10 photons/pixel and a photon count of N = 500
photons. Reprinted with permission from [34].

2.4(d’)), evaluated at the pixels, suggests that the smoothing spline fitting can suppress the

stochasticity and noise (the error range is reduced from [-2, 2] photons/pixel in Fig. 2.4(d)

to [-1, 1] photon/pixel in Fig. 2.4(d’)). This can also be obviously observed in Fig. 2.4(c’),

which shows a similar pattern to Fig. 2.4(a’).

Fig. 2.4(e) shows the deduced experimental x0-PLAM, its corresponding analytical
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Figure 2.5: The effect of the B-spline degree and the smoothing factor on the error between
analytical and experimental PLAMs in the presence of noise. (a), (b) The root mean square
percentage error (see Eq. (2.17) for the definition) between the experimental and analytical
PLAMs as functions of the standard deviation σc of the readout noise and background level
bc, respectively, for different B-spline degrees d. (c), (d) The same for different smoothing
factors γ. In (a) and (b) the smoothing factor is set to 0.01 and in (c) and (d), the
B-spline degree is set to 3. Each data point is the average of the errors for x0-PLAM,
y0-PLAM and z0-PLAM calculated over a z-range of [0.2, 0.9] µm. For the calculation of
the PLAMs, we assumed a background level of b = 10 photons/pixel and a photon count
of N = 500 photons. Other parameters are the same as those used in Fig. 2.4. Reprinted
with permission from [34].

x0-PLAM and the absolute deviation error over the z-range of [0, 0.8] µm. Although we

assumed a significant amount of readout noise (σc = 10 e−/pixel), the error is relatively

small over the z-range of [0, 0.8] µm. Specifically, it is consistently smaller than 1.03 nm

over this range (i.e. the average error is 3.2 %). Similar results are observed for the deduced

experimental z0-PLAM in the presence of noise (the average error over the z-range of [0,

0.8] µm is 11.7 %, see Fig. 2.4(f)).

However, the error between the experimental and analytical PLAMs is a function of

the noise level, the B-spline degree and the smoothing factor. We next investigate this

important dependence. For this purpose, we define the Root Mean Square Percentage
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Error (RMSPE) as follows

RMSPE := 100 ×
(

1

3P

P∑

i=1

(
x0-PLAME(zi) − x0-PLAMA(zi)

x0-PLAMA(zi)

)2

+

(
y0-PLAME(zi) − y0-PLAMA(zi)

y0-PLAMA(zi)

)2

+

(
z0-PLAME(zi) − z0-PLAMA(zi)

z0-PLAMA(zi)

)2
)1/2

,

(2.17)

where PLAME and PLAMA denote the experimental and analytical PLAMs, respectively,

and zi ∈ [0.2, 0.9] µm, for i = 1, . . . , P . This integral error proves to be useful for studying

the dependence of the experimental PLAM on the noise level, since it combines the errors

in x0-, y0- and z0-PLAMs in a single measure. This error is plotted in Figs. 2.5(a) and

2.5(b) as a function of the standard deviation of the readout noise and the background

level, respectively, for different B-spline degrees. Not surprisingly, the error is on average

monotonically increasing with the noise level regardless of the degree of the B-spline. At

small noise levels, high B-spline degrees yield smaller errors than small B-spline degrees

whereas this is reversed at high noise levels. For instance, the error levels for the B-splines

of degree d = 1 and degree d = 7 are 11.2 % and 9.3 %, respectively, when the standard

deviation of the readout noise is σc = 0 e−/pixel (see Fig. 2.5(a)). On the other hand, at

σc = 12 e−/pixel, the aforementioned error levels change to 12 % and 13.82 %, respectively.

Importantly, for noise levels that are typically observed in practice, i.e. readout noise with

standard deviations 0 to 12 e−/pixel and background levels 0 to 200 photons/pixel, a B-

spline of degree 3 appears to provide the smallest amount of error. Specifically, for a cubic

B-spline the error remains in the range of 8 % to 11 % for the mentioned noise levels (see

Figs. 2.5(a) and 2.5(b)).

Figs. 2.5(c) and 2.5(d) show the error as a function of the standard deviation of the

readout noise and the background level, respectively, for different smoothing factors. When

the smoothing factor is zero, the error significantly increases with increasing noise level

(e.g. it increases from 15 % to 35 % as the background level increases from 0 to 200

photons/pixel). As we increase the smoothing factor (e.g. to 0.001), the numerical values
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of the error decrease and the error becomes less dependent to the changes in the noise

level. A relatively small smoothing factor of 0.01, for example, yields a relatively robust

curve to the noise (with this smoothing factor, the error increases only from 8.9 % to 14.3

% as the background level increases from 0 to 200 photons/pixel). On the other hand,

a large smoothing factor (e.g. γ = 1) leads to an over-smoothed spline fit. The loss of

information due to over-smoothing, in turn, results in a large error (see Figs. 2.5(c) and

2.5(d)). Consequently, a relatively small smoothing factor (e.g. 0.005 to 0.05) can be an

appropriate choice for typical noise levels in practice.

2.4.3 Experimental PSF example

In this section, we provide an example to investigate the performance of the proposed

approach in practice. In particular, we collect the 3D experimental PSF of a microscopy

setup using the procedure described in Section 2.2.1. We have deliberately used a setup

with an aberrated PSF as it is a good example to illustrate the practical performance of

the proposed approach. Figs. 2.6(a) and 2.6(b) show the yz- and xy-projections of the

acquired experimental PSF, respectively. To suppress the stochasticity and noise in the

collected experimental PSF, based on the analyses reported in the previous section, we fit

a volume smoothing spline of appropriate degree and smoothing factor to the experimental

PSF. The yz- and xy-projections of the smoothing spline fit are shown in Figs. 2.6(a’) and

2.6(b’), respectively, where we see a substantial suppression of the extraneous noise.

We further calculate the experimental x0-PLAM and z0-PLAM along the z-axis, which

are shown in Figs. 2.6(c) and 2.6(d), respectively (the experimental y0-PLAM is analogous

to x0-PLAM and is not shown). The experimental x0-PLAM has smaller numerical values

at or close to the plane of focus and increases as the particle moves away. This is an

expected result for typical 3D PSFs (e.g. the Born and Wolf PSF) [26]. A subtle point

in the behavior of the experimental x0-PLAM is that it is not symmetric w.r.t. the plane

of focus. For example, the numerical value of the x0-PLAM is 30 nm at z0 = −0.6 µm,

whereas it is approximately 26 nm at z0 = 0.6 µm. This is not surprising since any

mismatch between the refractive indices of the sample and immersion medium contributes
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Figure 2.6: A practical example. (a), (b) The yz-projection and the xy-projection (at
z0 = 2.6 µm) of a deliberately aberrated experimentally collected PSF from a practical
microscopy setup, respectively, where the ROI size is 33 × 33 pixels (for information
regarding other parameters see Section 2.2.1). (a’), (b’) The corresponding yz- and xy-
projections of the cubic volume spline fit with a smoothing factor of γ = 0.01, which is
evaluated on a finer grid (color scale bars are in photons). The vertical dashed lines show the
location of the plane of focus and the size bars are 1.5 µm (panels (a) and (a’) are stretched
in the z-direction for better visualization while their scale in the y-direction is the same as
panels (b) and (b’)). The estimated photon count and background level of the bead sample
are approximately N c = 4500 photons and bc = 16 photons/pixel, respectively. (c), (d) The
experimental x0-PLAM and z0-PLAM, respectively, along the z-axis (the reported results
are the average of the results for multiple beads). For the calculation of the experimental
PLAMs we assumedN = 500 photons and b= 10 photons/pixel. Reprinted with permission
from [34].

to an axially asymmetric PSF [33].

Additionally, the experimental z0-PLAM is large near or at the focal plane, e.g. it is

144 nm at the focal plane, and decreases as the point source moves away from the focal

plane (see Fig. 2.6(d)). The large numerical value of the experimental z0-PLAM at the

focal plane is sometimes referred to as the depth discrimination problem and is expected

(see e.g. [26]). The axial asymmetry of the z0-PLAM can also be explained by the axial

asymmetry of the PSF caused by the mismatch between the refractive indices of the sample

and immersion oil [33].
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Figure 2.7: The experimental PLAM for a spherical shell. (a) The xy-projection at z0 =
0 µm, (b) the yz-projection (z0 ∈ [-0.1, 2.2] µm) and (c) the xy-projection at z0 = 1.8 µm
of the simulated 3D image set of a spherical shell with internal and external radii of 1.5
µm and 1.8 µm, respectively, where the ROI size is 49 × 49 pixels. The image set was
obtained by convolving the simulated object with the Born and Wolf 3D PSF model. We
considered Poisson statistics, background and readout noise, where the standard deviation
σc is 4 e−/pixel, the background level bc is 10 photons/pixel and the photon count N c is
60000 photons. We assumed a 100x, NA 1.4 objective lens with noil = 1.515. The pixel
size, the z-step size and the emission wavelength are 13 µm × 13 µm, 50 nm and 690
nm, respectively. (a’), (b’) and (c’) The corresponding xy-, yz- and xy-projections of the
cubic volume spline fit with a smoothing factor of γ = 0.015, which is evaluated on a finer
grid (color scale bars are in photons). The focal plane is located at 0 µm and the size
bars are 1 µm (panels (b) and (b’) are stretched in the z-direction for better visualization
while their scale in the y-direction is the same as panel (a)). (d), (e) The experimental
x0-PLAM (y0-PLAM) and z0-PLAM, respectively, along the z-axis. For the calculation of
the experimental PLAMs, we assumed a background level of b = 20 photons/pixel and a
photon count of N = 5000 photons. Reprinted with permission from [34].

2.4.4 Spherical shell example

As mentioned earlier, the proposed approach allows the calculation of the PLAM for

general experimental objects. This section provides an example for the calculation of the

experimental PLAM for such general objects. In particular, we simulated the 3D image

set for a spherical shell by convolving the simulated 3D object with the 3D PSF of the

optical system which was assumed to be the Born and Wolf model, and by considering the

stochasticity due to Poisson statistics and extraneous noise sources (see Figs. 2.7(a)–2.7(c)).

We then fit a volume smoothing spline to the experimental image set (see Figs. 2.7(a’)–
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2.7(c’)). We supposed that at z0 = 0 the equator of the spherical shell is in focus and

calculated the experimental PLAM for this 3D object as it moves along the z-axis.

As shown in see Fig. 2.7(d), the experimental x0- and y0-PLAM are small when the

object is in focus and increase as the object moves away from the plane of focus. This is an

expected result and is analogous to the behavior of the x0- and y0-PLAM for a point source.

Interestingly, the experimental z0-PLAM is large when the object is at or near the plane

of focus which implies that the z0-position of the object cannot be estimated accurately

(see Fig. 2.7(e)). This behavior is analogous to the depth discrimination problem for point

sources [26]. For instance, the experimental z0-PLAM is 108 nm when the object is 150

nm away from the plane of focus. This is mainly due to the fact that the image profiles of

slices of a spherical shell near its equator appear similar (e.g. Fig. 2.7(a’)). By increasing

the z0, the experimental z0-PLAM reduces significantly. For example, at z0 = 700 nm,

the experimental z0-PLAM is 54 nm. Further increasing the z0, gradually worsens the

experimental z0-PLAM. The reason for this behavior is that at very large z0-positions, the

image profiles of the object become spread out over many pixels and, as such, the photon

count per pixel will be negligible compared to the noise level.

2.4.5 Experimental non-point source example

Following the previous section, we now provide an experimental example for the calcu-

lation of the PLAM for non-point-like objects. Specifically, we imaged lysosomal compart-

ments in live cells as described in Section 2.2.2 (see Fig. 2.8(a)). Figs. 2.8(b) and 2.8(c)

show two individual lysosomal compartments. We fitted surface smoothing splines to these

images (see Figs. 2.8(b’) and 2.8(c’)) and calculated the experimental PLAM. Using the

proposed algorithm, the experimental PLAM can be calculated for any arbitrary photon

count and noise level. Here we assumed a background level of 20 photons/pixel and a

photon count of 5000 photons. The results are shown in Fig. 2.8(d). For instance, for the

lysosome shown in Fig. 2.8(b) the experimental x0- and y0-PLAMs are 11.52 nm and 12.86

nm, respectively.
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Figure 2.8: The experimental PLAM for lysosomes. (a) The image of a 22Rv1 cell trans-
fected with mRFP-LAMP-1 which was acquired as described in Section 2.2.2. (b) and (c)
The images of two individual lysosomal compartments marked by arrows in panel (a). All
of the imaging parameters are reported in Section 2.2.2. (b’) and (c’) The corresponding
cubic surface spline fit of the lysosomes with a smoothing factor of γ = 0.01, which is
evaluated on a finer grid (color scale bars are in photons). The size bar in panel (a) is 3.8
µm and other size bars are 0.645 µm. (d) The experimental x0-PLAM and y0-PLAM for
the lysosomes. For the calculation of the experimental PLAMs, we assumed a background
level of b = 20 photons/pixel and a photon count of N = 5000 photons. Reprinted with
permission from [34].
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3. DESIGNING THE FOCAL PLANE SPACING FOR MULTIFOCAL PLANE

MICROSCOPY∗

3.1 Introduction

The development of MUM in the recent past has made it possible to track the 3D

dynamics in live cells at high temporal and spatial resolution by simultaneously imaging

different focal planes within the sample [36,61,63–67]. MUM overcomes the depth discrim-

ination problem of conventional single plane microscopy and thereby allows high accuracy

localization of subcellular structures and single molecules along the z-axis [44, 64, 68, 69].

MUM has been used to study different biological problems [26, 32, 70, 71]. For instance,

in [70] MUM is used to understand the effect of tubulovesicular transport carriers on intra-

cellular trafficking pathways within 3D cellular environments. Furthermore, in [32] MUM

is utilized to study the 3D dynamics of single molecules in live epithelial cells.

One of the important questions in the design of MUM experiments concerns selecting

the appropriate spacings between the focal planes. Varying the plane spacing changes

the image profiles of the object of interest (e.g. a point source) at the focal planes. An

implication of changes in the image profiles is that the accuracy for localizing the object

as it moves along the z-axis will be affected [26]. Another implication is that the object

of interest may become difficult to detect in the acquired image. For instance, the image

profile at a focal plane far from the object of interest will be diffusely spread out, making

the object both difficult to localize and difficult to detect with respect to that focal plane.

As a consequence, for a given MUM setup the choice of the plane spacing determines

whether a point source can be localized with a consistent level of accuracy, and whether it

can be continuously detected by the imaging system, as it moves along the z-axis.

In addition to the plane spacing, selecting the appropriate number of focal planes to

∗Reprinted with minor modifications, with permission from “Designing the focal plane spacing for mul-
tifocal plane microscopy” by A. Tahmasbi, S. Ram, J. Chao, A. V. Abraham, F. W. Tang, E. S. Ward, and
R. J. Ober, 2014. Opt. Express, vol. 22, no. 14, pp. 16706-16721, Copyright 2014 by Optical Society of
America.
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cover a sample of a certain thickness is also of importance in the design of MUM exper-

iments. Different authors have used different numbers of planes to cover their desired

viewing and tracking depth, i.e. a range along the z-axis over which the particle is de-

tectable by the imaging system. For instance, in [71] a 4-plane MUM setup, covering a 2

µm depth, is utilized to study the dynamics of tubulovesicular transport containers. In [32]

a 4-plane MUM setup providing a 10 µm viewing and tracking depth is used to study the

3D single molecule dynamics in live epithelial cells. More recently, in [72] a 9-plane MUM

setup is developed that provides a viewing and tracking depth of 2.25 – 18 µm. Increas-

ing the number of focal planes can enhance the viewing and tracking depth. However, in

fluorescence microscopy experiments, regardless of the number of focal planes, a specific

number of photons is collected from the sample per acquisition. This fixed number of

photons is then split among multiple focal planes. Hence, each plane detects fewer photons

when the number of planes is increased. A poorer localization accuracy might therefore be

obtained when using a large number of planes. This is due to the fact that decreasing the

number of detected photons at each focal plane worsens the localization accuracy of the

MUM setup [13,26].

In this paper, we address the above concerns by investigating the PLAM for a MUM

setup. The PLAM provides the best possible accuracy (standard deviation) with which an

isolated single molecule can be localized, and it is calculated using the Fisher Information

Matrix [13, 41, 73]. The latter represents the amount of information the data provides

about an unknown parameter [42]. For our analysis, we consider two design requirements

that are typically encountered while setting up MUM experiments. The first requirement

is to achieve a relatively constant PLAM along the z-axis such that the 3D location of a

subcellular structure or single molecule can be estimated with the same level of accuracy

across the viewing and tracking depth. The second requirement is to allow for a relatively

large viewing and tracking depth across the sample in order to cover the z-range over which

the cellular process of interest occurs. Taking into account these design considerations, we

provide guidelines to set up appropriate MUM experiments for different applications. Aside
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from the number of planes and their spacings, a variety of other imaging parameters such

as photon count, system magnification and the numerical aperture of the objective lens also

influence the PLAM. Here, we also examine the effect of these parameters on the plane

spacing.

In practice, the calculation of the PLAM is computationally expensive. Thus, without

appropriate software determining the appropriate number of focal planes and their spacing

can be a complicated and time consuming procedure. We therefore also introduce a new

software module called MUMDesignTool that calculates and plots the PLAM along the

z-axis and provides a user-friendly framework for finding the appropriate number of planes

and plane spacings for a MUM setup. The results of the paper can be reproduced using

the MUMDesignTool.

3.2 Simulations

The results of this paper are calculated using a new software module, the MUMDesign-

Tool, developed in the MATLAB environment (The MathWorks Inc., Natick, MA). The

software is available at http://www.wardoberlab.com/ and its detailed description can be

found in Section 3.4.8. Using this software we model an isolated single molecule that is

imaged by a pixelated detector in the presence of background and readout noise [13]. A

Poisson process models the background effect and a Gaussian process models the readout

noise of the detector. The pixel dimensions are 13 µm × 13 µm. We assume the PSF is

given by the Born and Wolf model [10]. The emission wavelength is assumed to be the

same for all focal planes. The refractive index noil of the immersion oil is 1.515. The tube

length L of the microscope is 160 mm. The remaining parameters are given below each

figure.

3.3 Theory

3.3.1 Behavior of the PLAM and the Fisher information matrix for a MUM setup

In this section, we briefly review the concepts concerning the PLAM and define several

terms which are necessary for our later discussions. For all of our analysis we assume that
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a single molecule is modeled as a point source. We denote the best possible localization

accuracy that can be achieved for estimating the x, y and z coordinates of the single

molecule by x0-PLAM, y0-PLAM and z0-PLAM (axial-PLAM), respectively. The PLAMs

are calculated using the well-known CRLB [42,74], which is specified in terms of the inverse

of the FIM. The FIM represents the amount of information the data provides about an

unknown parameter of interest which in the current case pertains to the 3D location of

the single molecule [42, 43]. We refer to the amount of information about the x, y and

z coordinates of the single molecule as x0-FIM, y0-FIM and z0-FIM (axial-FIM). Large

numerical values of x0-FIM, y0-FIM and axial-FIM, which correspond to small values of

x0-PLAM, y0-PLAM and axial-PLAM, respectively, specify a better localization accuracy.

The FIM and therefore the PLAM depend on a variety of imaging parameters such as

the numerical aperture of the objective lens, the magnification, the emission wavelength,

the photon count and the z-position of the point source. The behavior of the PLAM

as a function of the mentioned parameters can be explained through the mathematical

expression of the FIM. This paper is primarily devoted to the investigation of the effect of

these parameters on the PLAM, in the context of MUM, with an emphasis on the effect of

the z-position of the point source with respect to the focal planes.

Here, we express the FIM for a MUM setup for a general single molecule microscopy

experiment. Let Θ ⊆ R
3 be an open parameter space and let θ = (x0, y0, z0) ∈ Θ be the

vector of unknown parameters representing the 3D location of a single molecule in the object

space with respect to the design focal plane, i.e. the standard infinity-corrected focal plane

in conventional single plane microscopy. Consider a pixelated detector
{

C1, . . . , CKpix

}

which consists of Kpix pixels, where Ck ⊆ R
2, k = 1, . . . ,Kpix, denotes the area occupied

by the kth pixel. Assume that the pixels are disjoint. Suppose that we have Kpln focal

planes where the first plane is equivalent to the design focal plane. It has been shown

that the photon counts detected by the pixels of the nth plane due to a single molecule

axially located at z0 are realizations of independent Poisson random variables with expected
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values [13, 43]

µθ,n(k) := Nnµ̃θ,n(k) =
Nn

M2
n

∫

Ck,n

qz0−∆z1n

(
x

Mn
− x0,

y

Mn
− y0

)

dxdy,

θ ∈ Θ ⊆ R
3, n = 1, . . . ,Kpln, k = 1, . . . ,Kpix,

where Nn is the expected number of detected photons on the nth infinite detector plane

(i.e. R
2) due to the single molecule such that

∑Kpln

n=1 Nn = Ntot, with Ntot denoting the

total number of detected photons due to the single molecule on an arbitrarily positioned

infinite detector plane (i.e. R
2). Note that Ntot is independent of the number of focal

planes. The term Ck,n denotes the kth pixel at the nth focal plane. In addition, Mn is the

lateral magnification at the nth focal plane, ∆z1n is the distance between the design focal

plane and the nth focal plane in the object space (with ∆z11 = 0) and qz0 is the image

function [13,26].

The image function describes the image of a stationary single molecule on the detector

at unit lateral magnification when the single molecule is located on the z-axis in the object

space. Here, we assume that the image function is given by the Born and Wolf 3D PSF (for

more information see [10,26]). Moreover, it has been previously shown, under geometrical

optics, that the lateral magnification for a focal plane that is shifted by a distance of ∆z1n

from the design focal plane is given by [75]

Mn : = M(∆z1n) = M1

L− LM2
1 ∆z1n

noilL+M2
1 ∆z1n

L
, n = 1, . . . ,Kpln, ∆z1n ∈ R,

where noil is the refractive index of the immersion oil and L is the tube length of the

microscope.

For a practical microscopy setup where the acquired data is corrupted by extraneous

noise sources, the expression of the FIM for the parameter-vector θ at the nth focal plane
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is given by [13,43,60]

In(θ) =

Kpix∑

k=1

ψn(k)

νθ,n(k)

(
∂µθ,n(k)

∂θ

)T ∂µθ,n(k)

∂θ
, θ ∈ Θ, n = 1, . . . ,Kpln, (3.1)

where νθ,n(k) = µθ,n(k) + bk,n with bk,n, k = 1, . . . ,Kpix, n = 1, . . . ,Kpln, denoting the

photon count due to the background noise at pixel Ck and plane n. The term ψn(k) is

the so-called noise coefficient that depends on the type of detector [60]. In the absence

of readout noise, ψn(k) = 1 for all k = 1, . . . ,Kpix, n = 1, . . . ,Kpln [13]. In the presence

of readout noise and when using CCD and CMOS detectors, the noise coefficient is given

by [13]

ψn(k) = νθ,n(k) ×














e−νθ,n(k)

√
2πσk,n
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,

where ηk,n and σ2
k,n denote the mean and the variance of the readout noise, respectively,

for k = 1, . . . ,Kpix and n = 1, . . . ,Kpln. The expression of the noise coefficient in the

presence of stochastic signal amplification and readout noise, i.e. when using an EMCCD

detector, is omitted for brevity but can be found in [60].

Since the data acquisition in each focal plane is independent of the data acquisition

in the other planes, the FIM of a MUM setup is the sum of the FIMs of the individual

planes [26] and we have

IMUM (θ) = I1(θ) + I2(θ) + · · · + IKpln
(θ), θ = (x0, y0, z0) ∈ Θ. (3.2)

For the current 3D localization problem, the FIM I(θ) for any given focal plane or for the

MUM setup is a 3 × 3 matrix. The main diagonal elements of this 3 × 3 matrix provide

information about the x, y and z coordinates of the single molecule and we refer to them as
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the x0-FIM, y0-FIM and z0-FIM (axial-FIM), respectively. According to the Cramér-Rao

inequality [74], the covariance matrix of any unbiased estimator θ̂ of an unknown parameter

θ is always greater than or equal to the inverse FIM, i.e. cov(θ̂) ≥ I
−1(θ) [13,42]. Therefore,

the square roots of the main diagonal elements of the inverse FIM provide lower bounds

for the accuracy (standard deviation) with which the x, y and z coordinates of the single

molecule can be estimated. We denote these lower bounds by x0-PLAM, y0-PLAM and

z0-PLAM (axial-PLAM), respectively. It is important to note that the PLAM has been

previously validated by comparing it with the standard deviation of the estimated locations

of single molecules in actual microscopy experiments (see e.g. [26]).
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Figure 3.1: The behavior of the axial-FIM and the axial-PLAM for conventional microscopy
and MUM. (a) The axial-FIM and (b) the axial-PLAM for a 2-plane MUM setup and two
conventional single plane setups (Plane 1 and Plane 2) as a function of the z-position of
the point source. The zero, local maxima and shoulders of the axial-FIM of Plane 1, and
the depth discrimination problem can be seen in panels (a) and (b), respectively. The
results are calculated for a 100x, NA 1.3 objective lens. The plane spacing (∆z12) is 0.5
µm, the photon count is 250 photons/plane and the emission wavelength is 520 nm. The
background level is 1 photon/pixel/plane and the standard deviation of the readout noise
is 2 e−/pixel. The ROI size is 11 × 11 pixels. Reprinted with permission from [31].

Fig. 3.1(a) shows the axial-FIM for a conventional single plane microscopy setup with

a standard infinity-corrected (i.e. design) focal plane as a function of the z-position of

the point source (“Plane 1”). For ease of reference, we denote this and its corresponding

axial-PLAM by axial-FIM1 and axial-PLAM1, respectively. As can be seen, the axial-FIM1

is zero when the object is at the focal plane, implying that the data does not provide any
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information about the z-location of the point source; we refer to this spot as the zero of

the axial-FIM1. A consequence of the zero of the axial-FIM1 is the depth discrimination

problem, implying that there is a high uncertainty in estimating the z-position of the

point source when it is located near the focal plane [64, 73]. This problem is illustrated

in Fig. 3.1(b) (“Plane 1”), which shows the axial-PLAM1 increases without bound as the

point source approaches Plane 1.

By moving the point source away from the focal plane the axial-FIM1 increases and

at some z-position the axial-FIM1 reaches a peak which we refer to as the local maximum

of the axial-FIM1. Further moving the point source away from the focal plane gradually

decreases the axial-FIM1 and at some z-position the axial-FIM1 has a bump which we

refer to as the shoulder of the axial-FIM1. The described behavior of the axial-FIM1 is

symmetric with respect to the z-position of the focal plane due to the axial symmetry of

the Born and Wolf 3D PSF, which has been used to calculate the FIM [10].

Fig. 3.1(b) also shows the axial-PLAM for a 2-plane MUM setup along the z-axis.

For brevity, we refer to this and its corresponding axial-FIM as axial-PLAMMUM and

axial-FIMMUM , respectively. As can be seen, the axial-PLAMMUM is relatively constant

along the z-axis including at the focal planes when compared to the axial-PLAM for a

conventional (single-plane) microscope (i.e. “Plane 1”). This implies that MUM overcomes

the depth discrimination problem of conventional microscopy and allows high accuracy z-

localization. This is due to the fact that the axial-FIMMUM is the sum of the axial-FIMs

of the individual planes (i.e. axial-FIM1 and axial-FIM2) because of the independence of

data acquisition at each focal plane (see Fig. 3.1(a)) [26,64]. Hence, the axial-FIMMUM is

nonzero for a range of z-positions including at the focal planes.

3.3.2 Graphical interpretation of the design of plane spacing for a MUM setup

We now give a graphical interpretation for the design of the focal plane spacing for a

MUM setup. Our design objective is to obtain an appropriate level of the axial-PLAM

for the MUM system. Due to the fact that the PLAMMUM is specified in terms of the

inverse of the FIMMUM , minimizing the axial-PLAMMUM is closely related to maximizing
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the axial-FIMMUM . We carry out the main steps of the focal plane spacing design by

investigating the axial-FIM as this will prove to be a very convenient criterion due to two

important properties of the axial-FIM. First, as pointed out earlier, the axial-FIMMUM is

the sum of the axial-FIMs for the planes that make up the MUM system (see also Appendix

C). It is this additive property of the axial-FIMs that makes it very convenient to define

the focal plane spacing problem in terms of the axial-FIMs rather than directly through the

axial-PLAMs. Hence, as shown in Fig. 3.1(a), the axial-FIMMUM curve along the z-axis

is obtained by adding the axial-FIM curves of the individual focal planes (i.e. axial-FIM1

and axial-FIM2 for the 2-plane configuration of Fig. 3.1). The second property of the

axial-FIM which we need is that, to a good approximation, the graphs of axial-FIMs of the

different focal planes are simply translated versions of the graph of the axial-FIM for the

design focal plane along the z-axis (see Fig. 3.1(a)). We should note that this property is

based on the assumption that different focal planes have similar experimental conditions,

e.g. the photon count and extraneous noise, as would be the case if identical detectors are

used and the emission light is equally split amongst the detectors for the different planes.

This second property in particular implies that changing the position of a focal plane with

respect to the other planes amounts to a corresponding translation of the graph of the

axial-FIM.

These two properties immediately provide the basis for a graphical interpretation of

the design process for focal plane spacing. The design process can therefore be thought

of as shifting the graphs of the axial-FIMs such that their sum, i.e. the axial-FIM of the

MUM configuration, has the desired values for the range of z-positions for the point source

that are of interest. Building on the idea of shifting and adding the similar FIMs for the

different focal planes, in Appendix C we develop a fast approach for the calculation of the

FIMMUM that also accounts for focal planes with different photon counts.
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Figure 3.2: The effect of plane spacing on the axial-PLAM and the axial-FIM for a MUM
setup. The left-hand (right-hand) side plots show the axial-PLAM (axial-FIM) for a 2-
plane MUM setup as a function of the z-position of the point source. The figure also shows
the axial-FIMs and axial-PLAMs of focal planes 1 and 2. The plane spacings (∆z12) are
0.1, 0.5, 1 and 3 µm from top to bottom. (c) and (d) show the strong coupling spacing
whereas (e) and (f) show the weak coupling spacing. (f’) shows the shoulder of the axial-
FIM1 more clearly. The results are calculated for a 100x, NA 1.3 oil immersion objective
lens where the photon count is 250 photons/plane and the emission wavelength is 520 nm.
The background level is 1 photon/pixel/plane and the standard deviation of the readout
noise is 2 e−/pixel. The ROI size is 11 × 11 pixels. Reprinted with permission from [31].

3.4 Results

3.4.1 Strong and weak coupling spacings: constant z-localization accuracy

An important requirement in the design of MUM experiments is to achieve a constant

axial-PLAMMUM along the z-axis as it allows estimating the axial location of an object

with a constant level of accuracy across the viewing and tracking depth. Here, as a first step
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we investigate the influence of different plane spacings on the axial-PLAMMUM assuming

that the number of focal planes is two. In the subsequent sections, we will study MUM

setups with more than two focal planes. The behavior of the axial-PLAM of a 2-plane

MUM setup for different plane spacings is illustrated in the left-hand side plots of Fig. 3.2,

where it is shown that altering the plane spacing changes the flatness of the curve. When

the plane spacing is small (∆z12 = 0.1 µm), there is a significant variation in the axial-

PLAMMUM value between the focal planes, i.e. the axial-PLAMMUM varies from 22 nm

to 110 nm over the z-range of [-0.6, 1.1] µm (see Fig. 3.2(a)).

By increasing the plane spacing, the axial-PLAMMUM becomes more constant along the

z-axis and a certain spacing (∆z12 = 0.5 µm) yields a relatively flat curve (see Fig. 3.2(c)).

For this spacing, the axial-PLAMMUM varies from 28 nm to 31 nm over the same z-range

of [-0.6, 1.1] µm. This relatively constant axial-PLAMMUM is achieved when the local

maximum of the axial-FIM of the second plane (axial-FIM2) falls on the zero of the axial-

FIM of the first plane (axial-FIM1), as shown in Fig. 3.2(d). We refer to this spacing as the

strong coupling spacing. Further increasing the plane spacing worsens the flatness of the

curve (see Fig. 3.2(e)). Hence, we set the largest acceptable plane spacing to be the case

where the shoulder of the axial-FIM2 overlaps with the zero of the axial-FIM1, which can

be seen in Figs. 3.2(f) and 3.2(f’). We refer to this spacing as the weak coupling spacing.

For this spacing, the axial-PLAMMUM varies from 23 nm to 54 nm over the z-range of

[-0.6, 1.1] µm, as can be seen in Fig. 3.2(e) (note that the variation also remains unchanged

over the larger z-range of [-1, 2] µm).

A very large plane spacing (∆z12 = 3 µm) results in significant variations in the curve,

with large axial-PLAMMUM values both between the focal planes and at the focal planes,

i.e. the axial-PLAMMUM varies from 31 nm to 381 nm over the z-range of [-0.6, 1.1]

µm (see Fig. 3.2(g)). The latter is due to the fact that the axial-FIMs of two distantly

spaced focal planes make small contributions to the axial-FIMMUM at the focal planes (see

Fig. 3.2(h)). Hence, the axial-PLAMMUM at each focal plane is large. In other words, two

distantly spaced focal planes are similar to two separate conventional microscopy setups.
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3.4.2 Lateral-PLAM and constant x- and y-localization accuracy along the z-axis

Aside from a constant z-localization accuracy, achieving constant x- and y-localization

accuracy is also of importance in the context of 3D tracking. Here, we analyze the behavior

of the x0-PLAM and y0-PLAM for a MUM setup along the z-axis. For this purpose, we

define the lateral-PLAM as the square root of the sum of (x0-PLAMMUM )2 and (y0-

PLAMMUM )2. The lateral-PLAM quantifies the best possible accuracy for the lateral

localization of a particle. A large value for the lateral-PLAM at a certain z-position implies

a poor lateral localization accuracy at that z-position.
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Figure 3.3: The behavior of the lateral-PLAM. The left and middle columns show the
axial-PLAM and the lateral-PLAM, respectively, for a 2-plane MUM setup as a function of
the z-position of the point source. The plane spacings (∆z12) are 0.1, 0.5, 1 and 3 µm from
top to bottom. The right column shows the mesh plots of the simulated images of point
sources located at z-positions shown by the red circles on the design plane. The simulation
parameters are identical to those used in Fig. 3.2. Reprinted with permission from [31].
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Fig. 3.3 shows the axial-PLAM and the corresponding lateral-PLAM for a 2-plane

MUM setup for different plane spacings. All imaging conditions are the same as those used

for Fig. 3.2. When the focal planes are located close to one another (∆z12 = 0.1 µm),

the lateral-PLAM varies from 7.3 nm to 32.6 nm over the z-range of [-0.3, 0.8] µm (see

Fig. 3.3(b)). Adjusting the plane spacing based on the strong coupling spacing (Fig. 3.3(c))

and the weak coupling spacing (Fig. 3.3(e)) provides relatively constant lateral-PLAMs.

More specifically, for the strong coupling spacing the lateral-PLAM varies from 9.2 nm to

13.7 nm over the z-range of [-0.3, 0.8] µm (Fig. 3.3(d)), whereas for the weak coupling

spacing it varies from 10.1 nm to 19 nm over the same z-range (Fig. 3.3(f)). For a large

plane spacing (∆z12 = 3 µm), the lateral-PLAM varies significantly, i.e. from 10.3 nm to

45.1 nm, over the same z-range (see Fig. 3.3(h)) which implies that the lateral location of

the particle cannot be estimated with a constant level of accuracy.

3.4.3 Large viewing depth for qualitative imaging applications

In the previous sections, we analyzed the effect of plane spacing on the 3D localization

accuracy of a point source along the z-axis and discussed spacing scenarios for quantita-

tive 3D tracking using MUM. In some imaging applications, however, the objective is the

qualitative 3D visualization of events. An example of such applications is the trafficking

of receptors from sorting endosomes to the plasma membrane [71]. A key requirement in

such cases is that the particle/structure is continuously detectable in the acquired data as

it moves within the sample. Here, by making use of the lateral-PLAM, we investigate how

the plane spacing affects the visual identifiability of a particle in a MUM setup.

By definition, a large value of the lateral-PLAM predicts poor lateral localization ac-

curacy, which can also be interpreted as high uncertainty in visually detecting the par-

ticle in the acquired image. Fig. 3.3 (middle panels) shows the behavior of the lateral-

PLAM for different plane spacings for a 2-plane MUM setup. For a small plane spacing

(∆z12 = 0.1 µm), the numerical value of the lateral-PLAM at the midpoint between the

focal planes is relatively small, i.e. 7.3 nm. Correspondingly, the point source can be clearly

visually identified in a MUM image as shown in the mesh plot (Fig. 3.3(b’), where only the
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image from the first focal plane is shown). As the plane spacing increases, the numerical

value of the lateral-PLAM varies significantly such that at a certain plane spacing the point

source becomes barely detectable in the image. For example, for a plane spacing of 1 µm

that corresponds to the weak coupling spacing, the lateral-PLAM for a point source at

z = 0.5 µm is 19 nm and at this position the particle is marginally visible in the image

(see Fig. 3.3(f’)). For larger plane spacings the particle can no longer be identified in the

image (Fig. 3.3(h’)). This is due to the fact that as the plane spacing increases, for certain

z-positions (especially near the midpoint between the focal planes), the distance between

the particle and each focal plane becomes so large that the particle is significantly out of

focus and is therefore undetectable in the image.

Thus, from the above discussion we see that the weak coupling scenario provides a

guideline for adjusting the plane spacing to achieve a large viewing range and helps in

designing MUM setups, for example, to observe a particular cellular process that occurs

over a large z-range.

3.4.4 Effects of numerical aperture, magnification and emission wavelength on the

spacing scenarios

The FIM of a MUM setup depends on a second group of parameters such as the

numerical aperture, magnification and emission wavelength. Therefore, in this section we

investigate how these factors affect the plane spacings. We first study the effect of numerical

aperture. Fig. 3.4(a) shows the effect of changing the numerical aperture on the strong

and weak coupling spacings, where we observe an inverse dependence of the spacings on

the numerical aperture assuming that all other parameters remain the same. For instance,

the strong coupling spacing increases from ∆zsc = 0.35 µm to ∆zsc = 0.75 µm (i.e. a 114%

elongation) when the numerical aperture decreases from 1.4 to 0.95. This implies that a low

NA objective supports relatively constant 3D localization accuracy over a larger viewing

and tracking depth than a high NA objective. This result is not surprising considering

the fact that given a low NA objective, the PSF has a broader profile in the xz-plane

and/or the yz-plane. The broader profile leads to a stretched axial-FIM along the z-axis
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Figure 3.4: The effect of changing imaging parameters on the spacing scenarios. A plot
of the strong coupling spacing (∆zsc) and weak coupling spacing (∆zwc) versus (a) the
numerical aperture na, (b) magnification M and (c) emission wavelength λ. (d), (e) and
(f) show the axial-PLAM for a 2-plane MUM setup as a function of the z-position of the
point source for different numerical apertures, magnifications and emission wavelengths,
respectively. In (d), (e) and (f), the plane spacings are adjusted based on the strong
coupling scenario. The photon count is 250 photons/plane. The ROI size is 32 × 32 pixels.
The magnification is 100, the emission wavelength is 520 nm and the numerical aperture
is 1.4. The background level and the standard deviation of the readout noise are 2.5
photons/pixel/plane and 8 e−/pixel, respectively. Reprinted with permission from [31].

for each focal plane and thereby it is expected that a low NA objective leads to a more

constant axial-PLAMMUM along the z-axis. However, the numerical value of the axial-

PLAMMUM for the low NA objective along the z-axis is typically higher than that of a

high NA objective (Fig. 3.4(d)). For example, for a 1.1 NA objective, the axial-PLAMMUM

varies from 85 nm to 93 nm over the z-range of [-0.8, 0.8] µm. Over the same z-range,

the numerical value of the axial-PLAMMUM for a 1.4 NA objective varies from 45 nm

to 77 nm. This is also an expected result given the fact that use of a low NA objective

yields a broader image profile in the xy-plane, which translates to a poorer localization

accuracy. We note that an analogous behavior is also observed for the weak coupling

spacing (not shown). The high numerical value of the axial-PLAMMUM for the 0.95 NA
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objective can be reduced in part by collecting more photons from the sample due to the

inverse dependence of the PLAM on the photon count. Thus, an immediate implication

of this result is that depending on the requirements for the viewing and tracking depth

and the desired level of 3D localization accuracy, it is necessary to make a careful choice

of experimental parameters (e.g. numerical aperture of the objective lens) and imaging

conditions (photon count/signal from the sample).

We next examine the effect of magnification on the spacing scenarios. Analogous to the

behavior with respect to the numerical aperture, the strong and weak coupling spacings

increase with decreasing values of magnification assuming all other parameters are the same

(Fig. 3.4(b)). More specifically, as the magnification decreases from 150x to 40x the strong

coupling spacing increases from 0.35 µm to 0.68 µm. However, as shown in Fig. 3.4(e),

the behavior of the axial-PLAMMUM as a function of z-position for different magnification

values exhibit a distinct behavior. As the magnification increases from 40x to 63x, the

numerical value of the axial-PLAMMUM for a z-range of [-0.8, 0.8] µm varies from 60

nm to 81 nm, and from 49 nm to 59 nm, respectively. This implies that with increasing

magnification values, one can expect relatively constant z-localization accuracy over a

certain z-range. However, this behavior is true only up to a certain point. For instance, for

a magnification of 150x the axial-PLAMMUM value exhibits greater variation, i.e. from 59

nm to 108 nm over the z-range of [-0.8, 0.8] µm when compared to a 100x magnification

for which the axial-PLAMMUM varies from 46 nm to 77 nm over the same z-range. This

is due to the fact that at very high magnifications, the image of the point source is spread

out over such a large number of pixels that the number of photons detected from the point

source at each pixel becomes relatively small compared to the readout noise. This results

in the observed variation in the axial-PLAMMUM , which depends not only on the total

number of detected photons but also on the spatial distribution of the detected photons

over the pixels [26, 71].

We last study the behavior of the spacing scenarios as a function of the emission wave-

length. Increasing the emission wavelength increases the strong and weak coupling spacings
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(see Fig. 3.4(c)). As a consequence, a fluorophore with a large emission wavelength can

provide a relatively constant level of accuracy across a larger viewing and tracking depth

(see Fig. 3.4(f)). Similar to the discussion regarding the numerical aperture, the PSF given

a large emission wavelength has a broader profile in the xz-plane (or yz-plane) and thereby

one would expect a large emission wavelength to yield a more constant axial-PLAMMUM

along the z-axis.

3.4.5 Effects of photon count and extraneous noise on the spacing scenarios

We next investigate the dependence of the strong and weak coupling spacings on the

photon count and readout noise. In the presence of extraneous noise, altering the photon

count changes the strong and weak coupling spacings (see Fig. 3.5(a)) as it alters the local

maxima and shoulders of the axial-FIMs of the individual focal planes. More specifically,

increasing the photon count from 100 photons to 8000 photons increases the strong cou-

pling spacing from 0.34 µm to 0.44 µm (i.e. a 29% elongation). In addition, decreasing

the readout noise also increases the strong and weak coupling spacings (see Fig. 3.5(b)).

For example, reducing the standard deviation of the readout noise from 10 e−/pixel to

1 e−/pixel increases the strong coupling spacing from 0.36 µm to 0.46 µm (i.e. a 28%

enhancement). The effect of background noise on the strong and weak coupling spacings

is similar to the effect of readout noise and hence is omitted for brevity.

It is important to note that the effect of changing the photon count and extraneous noise

on the strong and weak coupling spacings is not significant when compared to the effect

of magnification, numerical aperture and emission wavelength. An intuitive explanation of

this behavior is as follows. In the absence of extraneous noise, changing the photon count

only scales the FIM (due to the linear dependence of the FIM on the photon count) and

therefore does not change the locations of the local maxima and shoulders of the axial-FIM

(for details see Eq. (3.1)). In the presence of extraneous noise, however, there is a nonlinear

dependence of the FIM on the photon count. This nonlinear dependence, in addition to

scaling the FIM, causes the observed slight change in the positions of the local maxima

and shoulders of the axial-FIM.
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Figure 3.5: The effect of photon count and extraneous noise on the spacing scenarios. A
plot of the strong coupling spacing (∆zsc) and weak coupling spacing (∆zwc) as a function
of (a) the photon count (N) and (b) the standard deviation of the readout noise (σ). The
ROI size is 32×32 pixels. The magnification is 100, the emission wavelength is 520 nm and
the numerical aperture is 1.4. In (a), the background level and the standard deviation of the
readout noise are 2.5 photons/pixel and 8 e−/pixel, respectively. In (b), the photon count
and the background level are 500 photons and 0 photons/pixel, respectively. Reprinted
with permission from [31].

3.4.6 Spacing scenarios for MUM setups with more than two focal planes

In the previous sections, we described scenarios for adjusting the plane spacing for a

2-plane MUM setup that provide a relatively constant 3D localization accuracy along the

z-axis. We next extend the spacing scenarios to MUM setups with more than two focal

planes. The strong coupling spacing is obtained when the focal planes are positioned in

such a way that the local maximum of the axial-FIM of a given plane overlaps with the zero

of the axial-FIM of the adjacent plane. Figs. 3.6(a) and 3.6(b) show the axial-PLAM and

the lateral-PLAM, respectively, for a 4-plane MUM setup with planes adjusted based on

the strong coupling spacing. For the given set of imaging conditions, the axial-PLAMMUM

and the lateral-PLAM vary from 23 nm to 30 nm and from 9.8 nm to 13 nm, respectively,

over the z-range of [-0.2, 1.5] µm. This implies that the extension of the strong coupling

spacing provides a relatively constant 3D localization accuracy along the z-axis.

The weak coupling spacing can be defined in an analogous way, i.e. the shoulder of the

axial-FIM of one plane is selected to overlap with the zero of the axial-FIM of the adjacent

plane. Figs. 3.6(c) and 3.6(d) show that the axial-PLAMMUM and the lateral-PLAM for
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Figure 3.6: The strong and weak coupling spacings for a 4-plane MUM setup. (a) The
axial-PLAM and (b) the lateral-PLAM as a function of the z-position of the point source
for the strong coupling spacing for a 4-plane MUM setup. The planes are placed at 0,
0.45, 0.9 and 1.35 µm. (c) and (d) show the same for the weak coupling spacing for a
4-plane MUM setup where the planes are located at 0, 1, 2 and 3 µm. The magnification
is 100, the numerical aperture is 1.3, the photon count is 250 photons/plane and the ROI
size is 11 × 11 pixels. The emission wavelength is 520 nm. The background level and
the standard deviation of the readout noise are 20 photons/pixel/plane and 3 e−/pixel,
respectively. Reprinted with permission from [31].

the extension of the weak coupling spacing are relatively constant along the z-axis as well.

More specifically, the axial-PLAMMUM and the lateral-PLAM vary from 26 nm to 68 nm

and from 11.6 nm to 22 nm, respectively, over the larger z-range of [-0.4, 3.4] µm.

3.4.7 Increasing the number of focal planes within a specific z-range does not necessarily

enhance the localization accuracy along the z-axis

An important question in the design of MUM experiments concerns the appropriate

number of focal planes that are required to cover a sample of a certain thickness. To

address this concern, we next study the effect of changing the number of focal planes on

the 3D localization accuracy of a MUM setup along the z-axis. Fig. 3.7(a) shows the axial-

PLAM for MUM setups with 2 to 8 focal planes over the range of [-1, 1] µm, where the

planes are placed based on the strong coupling spacing. We assume that the total photon

count is fixed and is split equally among the focal planes. The axial-PLAM of the 2-plane
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setup has relatively small numerical values along the z-axis (see Fig. 3.7(a)). However, the

values vary significantly (i.e, they vary from 34 nm to 67 nm over the z-range of [-1, 1]

µm). By increasing the number of planes from 2 to 3, the numerical values of the axial-

PLAMMUM increase while the curve becomes more flat (i.e. the axial-PLAMMUM varies

from 37 nm to 56 nm over the same z-range).
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Figure 3.7: The effect of changing the number of focal planes on the 3D localization
accuracy. (a) The axial-PLAM and (b) the lateral-PLAM for a MUM setup with different
numbers of focal planes over a range of [-1, 1] µm. The magnification is 100, the numerical
aperture is 1.3 and the ROI size is 11 × 11 pixels. The emission wavelength is 520 nm.
The focal planes are located based on the strong coupling spacing. The total photon count
is 1000 photons and is split equally among the focal planes. The background level and
the standard deviation of the readout noise are 25 photons/pixel/plane and 8 e−/pixel,
respectively. Reprinted with permission from [31].

Further increasing the number of focal planes, e.g. to 5 or 8, yields more flat axial-

PLAMMUM curves along the z-axis. For instance, for an 8-plane setup the axial-PLAM

values vary from 81 nm to 86 nm over the same z-range. However, the numerical value of

the axial-PLAM for a MUM setup with a large number of planes is consistently greater

than that for a MUM setup with a small number of planes. A consistently large axial-

PLAMMUM value implies a poor localization accuracy along the z-axis. Fig. 3.7(b) shows

that the effect of changing the number of focal planes on the lateral-PLAM is analogous

to its effect on the axial-PLAMMUM .

An important implication of this behavior is that one can achieve a relatively constant
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3D localization accuracy across the viewing and tracking depth by increasing the number

of focal planes. However, as the number of focal planes increases, the numerical values

of the localization accuracy become consistently large along the z-axis. The reason for

this behavior is that by placing a large number of focal planes, the emitted light from the

point source is split among the different planes such that the number of photons detected

from the point source at each plane becomes relatively small when compared to the readout

noise. This results in large numerical values in the axial-PLAMMUM and the lateral-PLAM

which depend on the total number of detected photons per plane [26].

3.4.8 MUMDesignTool

To facilitate and speed up the tedious and time-consuming process of designing the

focal plane spacing for a MUM setup, we developed a new software module, the MUMDe-

signTool1 [31], which is incorporated with the recent release of our previously developed

FandPLimitTool2 [41]. The MUMDesignTool is developed in the MATLAB environment

based on an object-oriented programming methodology and provides a user-friendly graph-

ical user interface (see Fig. 3.8). Powered by two main working modes termed the rapid

mode (noise-free) and the precise mode (corrupted by background, stochastic signal am-

plification and readout noise), the MUMDesignTool is capable of computing and plotting

the 3D localization accuracy for MUM setups with up to 10 focal planes. The rapid mode

allows the fast calculation of the 3D localization accuracy for a MUM setup by represent-

ing the FIM of the MUM setup in terms of the unit photon count FIM (uFIM) of the

design focal plane (see Appendix C). This fast calculation is possible by assuming that

the magnification is constant at different focal planes and that the data is devoid of ex-

traneous noise sources. As a result, the rapid mode provides the ability to change the

plane spacing, the number of focal planes and the photon count percentages in real-time,

and to simultaneously visualize the FIM and PLAM. On the other hand, the precise mode

of the MUMDesignTool calculates the 3D localization accuracy without considering the

1The software package is available at http://www.wardoberlab.com/software/mumdesigntool/.
2For more information visit http://www.wardoberlab.com/software/fandplimittool/.
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assumptions made in the rapid mode (i.e. this mode directly computes Eq. (3.2)).

In addition, the MUMDesignTool is capable of exporting the results and acquisition

parameters as image and text files, respectively. An approach to designing the plane spacing

using this package is to first use the rapid mode to interactively change the plane spacing

and the number of planes and visualize the behavior of the PLAM. This helps to find a

candidate for one of the introduced spacing scenarios. The next step is then to run the

precise mode with the extraneous noise parameters, and the spacings found in the rapid

mode to ensure that the designed spacings are appropriate in the presence of noise.

Figure 3.8: The graphical user interface of the MUMDesignTool. The left and right pan-
els show the configure settings and the rapid mode windows of the MUMDesignTool.
Reprinted with permission from [37].
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4. CONCLUSIONS

In this dissertation, we studied the performance limits of single molecule fluorescence

microscopy in two and three dimensions. Our main contribution was twofold. First, we

proposed an approach to determining the limit of the accuracy with which a general sub-

cellular object, imaged using a fluorescence microscope, can be localized directly from an

experimental image set. This technique, unlike traditional methods, does not rely on an

analytical expression for the image of the object and therefore avoids potential model and

parameter mismatch issues. The proposed technique is based on B-splines due to their

important properties such as affine invariance, local support and positivity. We studied

in detail a special case where the object of interest is a point source and, as such, the

experimental image set pertains to an experimental PSF. We verified our approach using

simulations and reported practical and non-point source examples. These developments can

help to optimize the design of fluorescence microscopy experiments in practical conditions

and in the presence of optical aberrations.

Second, we explored the problems encountered when designing MUM experiments. To

address such problems, we developed techniques based on the Fisher information matrix for

the appropriate selection of the number of focal planes and their spacings for a MUM setup.

We further reported spacing scenarios called strong coupling and weak coupling which yield

an appropriate 3D localization accuracy along the z-axis. This is of practical importance

since it helps to estimate the locations of subcellular objects with a uniform level of accuracy

across the specimen. To gain a better understanding of the effect of imaging conditions on

the plane spacings, we investigated the effect of numerical aperture, magnification, photon

count, emission wavelength and extraneous noise on the developed spacing scenarios. In

addition, we studied the effect of changing the number of focal planes on the 3D localization

accuracy and explored how this can help to design imaging experiments for covering thick

samples. We also introduced a software package, the MUMDesignTool, to find appropriate
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plane spacings for a MUM setup. These developments should assist in optimizing 3D single

molecule fluorescence microscopy experiments.
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APPENDIX A

INTEGRAL OF B-SPLINES OVER THE REAL LINE

Let βd(x), x ∈ R be the B-spline function of degree d ∈ N0 and let ∆x0 > 0. We aim

to show,

∫

R

βd
(

x

∆x0
− n

)

dx = ∆x0

∫

R

βd (v) dv = ∆x0, n = 1, . . . ,Kcol,

where v := x/∆x0 − n and, therefore, dx = ∆x0dv.

Obviously, the above equality holds if
∫

R β
d(x)dx = 1 for d ∈ N0. We next prove this by

induction. As a base case assume d = 0, then from the definition of the B-spline function

(see Eq. (2.6)) we have

∫

R

β0(x)dx =

∫

R

1∑

j=0

(−1)j

1!

(

1

j

)(

x+
1

2
− j

)0

u

(

x+
1

2
− j

)

dx

=

∫

R

u

(

x+
1

2

)

− u

(

x− 1

2

)

dx =

∫ 1
2

−
1
2

dx = 1.

For the induction step, let k ∈ N0 and suppose
∫

R β
k(x)dx = 1 is true. Denote by ∗ the

convolution operator. Then

∫

R

βk+1(x)dx =

∫

R

βk(x) ∗ β0(x)dx =

∫

R

βk(x)dx×
∫

R

β0(x)dx = 1 × 1 = 1,

where we used the recursive formula of B-splines [49,51] and applied the general result that

the integral of the convolution of two integrable functions on the entire space is obtained

as the product of their integrals. We then used the induction hypothesis and the result of

the base case. Thus,
∫

R β
d(x)dx = 1 holds for d = k + 1, and the proof of the induction

step is complete.
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APPENDIX B

DERIVATION OF THE PARTIAL DERIVATIVES

In this section, we derive the expressions for the partial derivatives of µθ(k), k =

1, . . . ,Kpix, w.r.t. the unknown parameters. Taking the partial derivatives of both sides of

Eq. (2.14) w.r.t. x0, we have

∂µθ(k)

∂x0
≈ ∂

∂x0

N

M2

∫

Ck

∑

m,n,p

ãz0
m,n,pβ

d
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

βd
(
z0

∆z0
− p

)

dr

=
N

M2

∫

Ck

∑

m,n,p

ãz0
m,n,p

∂βd
( x

M
−x0

∆x0
− n

)

∂x0
βd

(
y

M − y0

∆y0
−m

)

βd
(
z0

∆z0
− p

)

dr

=
−N

M2∆x0

Kstk∑

p=1

βd
(
z0

∆z0
− p

)∫

Ck

Krow∑

m=1

βd

(
y

M − y0

∆y0
−m

)

×

Kcol∑

n=1

ãz0
m,n,p

(

βd−1(
x
M − x0

∆x0
− n+

1

2
) − βd−1(

x
M − x0

∆x0
− n− 1

2
)

)

︸ ︷︷ ︸

T 1

dr, (B.1)

where r = (x, y) ∈ R
2 and the last equation was derived by making use of Eq. (2.15).

For conciseness, define u := ( x
M − x0)/∆x0. The term T1 in the above expression can be

simplified as

T1 =
Kcol∑

n=1

ãz0
m,n,pβ

d−1
(

u− n+
1

2

)

︸ ︷︷ ︸

A

−
Kcol∑

n=1

ãz0
m,n,pβ

d−1
(

u− n− 1

2

)

︸ ︷︷ ︸

B

, (B.2)

where assuming that ãm,Kcol+1,p = 0, m = 1, . . . ,Krow, p = 1, . . . ,Kstk,

A =
Kcol∑

n=1

ãz0
m,n,pβ

d−1
(

u− n+
1

2

)

=
Kcol+1
∑

n=1

ãz0
m,n,pβ

d−1
(

u− n+
1

2

)

. (B.3)
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In addition, by defining j = n+ 1 we have

B =
Kcol+1
∑

j=2

ãz0
m,j−1,pβ

d−1
(

u− (j − 1) − 1

2

)

=
Kcol+1
∑

j=1

ãz0
m,j−1,pβ

d−1
(

u− j +
1

2

)

, (B.4)

where the last identity is true assuming that ãm,0,p = 0, m = 1, . . . ,Krow, p = 1, . . . ,Kstk.

Substituting (B.3) and (B.4) into (B.2) it follows

T1 =
Kcol+1
∑

n=1

(

ãz0
m,n,p − ãz0

m,n−1,p

)

βd−1
(

u− n+
1

2

)

.

By substituting the above expression into Eq. (B.1), for k = 1, . . . ,Kpix, we finally have

∂µθ(k)

∂x0
≈ −N
M2

Krow∑

m=1

Kcol+1
∑

n=1

Kstk∑

p=1

ãz0
m,n,p − ãz0

m,n−1,p

∆x0
βd
(
z0

∆z0
− p

)

×
∫

Ck

βd−1
( x

M − x0

∆x0
− n+

1

2

)

βd

(
y

M − y0

∆y0
−m

)

dr,

where r = (x, y) ∈ R
2, ãz0

m,0,p = ãz0
m,Kcol+1,p = 0, for all m = 1, . . . ,Krow, and p =

1, . . . ,Kstk. The partial derivative w.r.t. y0 can be derived in the same way.

For the derivation of the partial derivative of µθ w.r.t. z0, we note that the normalization

constant C is also a function of the z0. Taking the partial derivatives of both sides of Eq.

(2.14) w.r.t. z0 ∈ R, we have

∂µθ(k)

∂z0
≈ ∂

∂z0

N
M2

∫

Ck
ŝd

a

(
x
M − x0,

y
M − y0, z0

)
dr

C(z0)

= Gθ(k) − 1

C2(z0)

∂C(z0)

∂z0

N
∫

Ck
ŝd

a

(
x
M − x0,

y
M − y0, z0

)
dr

M2

= Gθ(k) − 1

C(z0)

∂C(z0)

∂z0
µθ(k), (B.5)

for k = 1, . . . ,Kpix, where

Gθ(k) : =
N

M2C(z0)

∫

Ck

∂

∂z0
ŝd

a

(
x

M
− x0,

y

M
− y0, z0

)

dr, k = 1, . . . ,Kpix.
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The above expression can be simplified as follows

Gθ(k) =
N

M2C(z0)

∫

Ck

∑

m,n,p

âm,n,pβ
d
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

×
∂βd

(
z0

∆z0
− p

)

∂z0
dr

=
N

M2C(z0)∆z0

∫

Ck

Krow∑

m=1

Kcol∑

n=1

βd
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

dr

×
Kstk∑

p=1

âm,n,p

(

βd−1(
z0

∆z0
− p+

1

2
) − βd−1(

z0

∆z0
− p− 1

2
)

)

︸ ︷︷ ︸

T 2

, (B.6)

where the last equation was derived by making use of Eq. (2.15). Assuming âm,n,0 =

âm,n,Kstk+1 = 0, m = 1, . . . ,Krow, n = 1, . . . ,Kcol, it is straightforward to verify that

T2 =
Kstk+1
∑

p=1

(âm,n,p − âm,n,p−1)βd−1
(
z0

∆z0
− p+

1

2

)

. (B.7)

By substituting the above expression into Eq. (B.6), for k = 1, . . . ,Kpix, we have

Gθ(k) =
N

M2

Krow∑

m=1

Kcol∑

n=1

Kstk+1
∑

p=1

ãz0
m,n,p − ãz0

m,n,p−1

∆z0
βd−1

(
z0

∆z0
− p+

1

2

)

×
∫

Ck

βd
( x

M − x0

∆x0
− n

)

βd

(
y

M − y0

∆y0
−m

)

dr, (B.8)

where r = (x, y) ∈ R
2, ãz0

m,n,0 = ãz0
m,n,Kstk+1 = 0, for all m = 1, . . . ,Krow, and n =

1, . . . ,Kcol.

By making use of Eq. (2.13), the second term on the right-hand side of Eq. (B.5) can
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be simplified as follows

1

C(z0)

∂C(z0)

∂z0
=

∆x0∆y0

C(z0)

∑

m,n,p

âm,n,p
∂

∂z0
βd
(
z0

∆z0
− p

)

= ∆x0∆y0

∑

m,n,p

ãz0
m,n,p

∂

∂z0
βd
(
z0

∆z0
− p

)

=
∆x0∆y0

∆z0

Krow∑

m=1

Kcol∑

n=1

Kstk∑

p=1

ãz0
m,n,p

(

βd−1(
z0

∆z0
− p+

1

2
) − βd−1(

z0

∆z0
− p− 1

2
)

)

=
∆x0∆y0

∆z0

Krow∑

m=1

Kcol∑

n=1

Kstk+1
∑

p=1

(ãz0
m,n,p − ãz0

m,n,p−1)βd−1
(
z0

∆z0
− p+

1

2

)

,

where z0 ∈ R and we made use of Eq. (2.15) and assumed ãz0
m,n,0 = ãz0

m,n,Kstk+1 = 0, for all

m = 1, . . . ,Krow, and n = 1, . . . ,Kcol. The last identity was derived in a similar way as Eq.

(B.7). The result follows immediately by substituting Eq. (B.8) and the above equation

into Eq. (B.5).
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APPENDIX C

APPROXIMATE BUT FAST CALCULATION OF THE FIM

In Section 3.3.2, we discussed a graphical interpretation for the design of the focal

plane spacing for a MUM system. Building on the same idea and by making additional

assumptions, here we develop an approach for the fast calculation of the FIM for a MUM

setup. We also discuss the additional assumptions and the resulting properties of the FIM

that are exploited for the design process. This fast approach is also used in the rapid mode

of the MUMDesignTool. In this mode of the software, the design process can be carried

out graphically in real-time as it avoids the often very time-consuming calculations of the

full computations.

From Eq. (2.1) we have µθ,n(k) = Nnµ̃θ,n(k). Assuming that the data is devoid of

extraneous noise sources, νθ,n(k) = µθ,n(k) and ψn(k) = 1 for k = 1, . . . ,Kpix, n =

1, . . . ,Kpln. This assumption will prove to be useful for the fast calculation of the FIM for

focal planes with different expected number of detected photons. Hence, from Eq. (3.1) it

follows

In(θ) =

Kpix∑

k=1

1

Nnµ̃θ,n(k)

(
∂ (Nnµ̃θ,n(k))

∂θ

)T ∂ (Nnµ̃θ,n(k))

∂θ

= Nn

Kpix∑

k=1

1

µ̃θ,n(k)

(
∂µ̃θ,n(k)

∂θ

)T ∂µ̃θ,n(k)

∂θ
:= NnĨn(θ), θ ∈ Θ, n = 1, . . . ,Kpln.

We refer to Ĩn(θ) = Ĩn(x0, y0, z0), θ = (x0, y0, z0) ∈ Θ as the uFIM of the nth plane which is

a function of Mn and ∆z1n, n = 1, . . . ,Kpln. We now assume that the lateral magnification

is the same for all focal planes, i.e. we suppose Mn = M1 for all n = 2, . . . ,Kpln. Using this

assumption it follows that Ĩn(θ) = Ĩn(x0, y0, z0) = Ĩ1(x0, y0, z0 − ∆z1n), n = 2, . . . ,Kpln.
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Combining this result with Eq. (3.2), we define the fast FIMMUM as

ĨMUM (θ) : = N1Ĩ1(x0, y0, z0) +N2Ĩ1(x0, y0, z0 − ∆z12) + . . .

+NKpln
Ĩ1(x0, y0, z0 − ∆z1Kpln

), θ = (x0, y0, z0) ∈ Θ,

which is a weighted sum of the uFIM of the design focal plane evaluated at different z-

positions. The above equation implies that, in this approximation setting, obtaining the

FIM for a MUM setup for a range of z-positions only requires one calculation that is the

uFIM of the design focal plane (i.e. Ĩ1) for the range of z-positions. On the other hand,

from Eq. (3.2) obtaining the FIM for a MUM setup for the same range of z-positions using

the precise approach requires Kpln ×a calculations, where Kpln calculations are needed for

the FIMs of the individual planes (i.e. I1, . . . , IKpln
) and a is the number of configurations

to be tried when varying the plane spacing.

As a consequence, the rapid mode of the MUMDesignTool, which uses the above ap-

proximate approach, can significantly speed up the design procedure for the plane spacing

for a MUM setup that is otherwise very time consuming using the precise method. How-

ever, it is important to note that the PLAM obtained using the rapid mode is valid under

the assumptions that the observed data is devoid of extraneous noise and that the lateral

magnification is the same for all focal planes. In a practical situation where the data is

corrupted by extraneous noise, we recommend verifying the results of the fast calculations

by performing the precise calculations (which correspond to the noisy case). The precise

mode of the MUMDesignTool is capable of calculating the FIM and PLAM for a MUM

setup in the presence of extraneous noise sources such as background, stochastic signal am-

plification and readout using the general expression given by Eq. (3.2). For this purpose,

the FIM for each focal plane is calculated separately using Eq. (3.1).

If there is a significant discrepancy between the results of the rapid mode and the results

of the precise mode, the plane spacing designed using the rapid mode (i.e. the candidate

spacing) should be fine tuned. The fine tuning can be performed by slightly increasing
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and/or decreasing the candidate spacing and then rerunning the precise mode. The results

of the precise mode for these slightly different spacings can then be compared to find the

desired spacing (e.g. the spacing that provides the flattest axial-PLAM curve).
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