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ABSTRACT 

 

This thesis describes research regarding the trapping of water waves through hydro-

elastic interaction with bottom-mounted cylinder arrays in shallow water. A modal 

decomposition and superposition approach has been applied to the calculation of the 

hydro-elastic response of arrays of deformable cylinders exposed to incident long waves. 

The cylinder array is considered as an effective medium, and the theory associated with 

the Fabry-Pérot Interferometer is applied. Therefore, the refraction index within the array 

and the transmittance and reflectance by the array can be determined. Equations of motion 

for a single deformable cylinder are derived from the theory of vibration for thin shells, 

and added mass, radiation damping and stiffness matrices are defined. Analytical solutions 

for the response of a single deformable cylinder are calculated and compared with the 

numerical results from WAMIT. The results show a good agreement. Transmission and 

reflection coefficients for rigid cylinder arrays have been calculated based on effective 

medium theory and found to match those determined from WAMIT. The final step of the 

research involves investigating the hydro-elastic response of deformable cylinder arrays 

exposed to incident waves. Wave interactions of arrays of elastic cylinders that can expand 

and contract radially are simulated using WAMIT, and the associated wave fields within 

and outside the array are analyzed and discussed. 

The main objective of this research is to investigate whether significant “wave 

trapping” can occur when waves encounter elastic cylinders arranged in periodic or 

random arrays. If the insertion loss calculated in the case of flexible cylinder arrays is 

significant, one may conclude that in shallow water those arrays could attenuate incident 

long waves of certain frequencies. The research is motivated by analogous theories of 

wave trapping that can occur when acoustic waves encounter bubbly media, such as 

breaking water waves. Furthermore, such arrangement of pulsating cylinders may lead to 
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novel ways of extracting wave energy through hydro-mechanical coupling with suitable 

devices.  
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1. INTRODUCTION 

 

The interaction between water waves and arrays of bottom-mounted cylinders has 

become more important and much work has been done in this field. Most of the interest is 

stimulated by the fact that the wave effect on cylindrical supporting columns of oil 

platforms plays an important role in engineering design. It is known that when incident 

waves of certain frequencies encounter finite periodic linear arrays or circular arrays of 

cylinders, resonant interactions may occur, which leads to a near-trapping of water waves 

(Evans and Porter, 1997). In particular, pure wave trapping exists for the case of infinite 

linear arrays.  

The scope of this research is limited to wave interactions with large periodic arrays 

of bottom-mounted deformable cylinders. In the long wavelength limit, periodic arrays of 

rigid cylinders can behave like an effective medium during wave transmission and 

reflection processes (Hu and Chan, 2005). The effective depth and a renormalized 

gravitational constant inside the medium can be different from outside. Hu and Chan (2005) 

investigated this phenomenon and derived the analytic formulas for those effective 

parameters, which are proved to be very useful in analyzing wave refraction, reflection, 

and transmission processes. The Fabry-Pérot effect is invoked in Hu and Chan’s (2005) 

theory to describe modal reflection transmission by a cylinder array. Therefore, the theory 

associated with the Fabry-Pérot Interferometer, which is an optical device, has been used 

in this study to account for multiple reflections and transmissions, and the reflectance and 

transmittance of the entire array can be determined. In addition, for the array of finite 

length, the far ends of the arrays may exert a so-called “tip effect” on the wave field. The 

effect can cause a distortion of the wave crests and troughs near the tips, while the middle 

area of the array is less affected and can be called the “shadow zone”. The “tip effect” is 

of special importance in analyzing the wave interactions with large cylinder arrays. By 
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investigating the “tip effect” we can understand how the intensities of reflection and 

transmission vary in different parts of the wave domain, especially in the area close to and 

far from the tip. It also reveals that for cylinder arrays of different lengths, the wave field 

responds differently when the wave propagates through the tip. 

In the field of acoustics, it is well-studied that acoustic pulses can be trapped when 

the waves are transmitted by a system of random bubbly water. As a result, air bubbles in 

water have been used for the mitigation of underwater acoustic noise that is in the low 

frequency range (Lee et al., 2011). The trapping of pulses will occur regardless of the 

configuration of randomly spaced bubbles, but the degree of trapping is highly sensitive 

to the frequencies of incident acoustic signals (Wang and Ye, 2001).  

The motivation of this thesis is to investigate the analogous theories of trapping and 

localization of acoustic waves and water waves. If the presence of air bubbles could cause 

the attenuation of acoustic pulses, one can expect a similar effect in the case of deformable 

cylinders and water waves. Elastic cylinders can function as air bubbles in the water, and 

the deformation of the cylinders may be simulated from the theory for the vibration of thin 

shells with proper choice of boundary conditions. Because of the trapping and reflecting 

of waves, elastic cylinder arrays can be used in designing coastal protection structures, 

such as offshore breakwaters. Arrays of elastic cylinders may also be used to improve the 

efficiency of wave energy extraction devices.   

 

1.1. Research Objectives 

The research plan is organized around three main research objectives:  

 Investigate the interaction between incident long waves and arrays of bottom-

mounted rigid cylinders using the effective medium approach to validate the setup of the 

WAMIT model. 

 For purposes of verifying the setup of the WAMIT model, formulate analytical 
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solutions of the hydro-elastic response of a single deformable cylinder exposed to incident 

waves using the modal superposition and decomposition approach.  

 Investigate the interaction between incident long waves and arrays of bottom-

mounted deformable cylinders to quantify the insertion loss.  

The research work can be divided into three phases that correspond to the above three 

objectives, respectively.  

 

1.1.1. Arrays of bottom-mounted rigid cylinders 

For the first phase of an array of rigid cylinders, WAMIT is used to generate the 

detailed wave fields on either side and within rectangular arrays of rigid cylinders. The 

reflection and transmission coefficients associated with the wave fields are identified 

using least-squares minimization, specifically using the pseudo-inverse method. The 

identified reflection and transmission coefficients from the WAMIT results are compared 

with the result calculated by the effective medium approach. 

 

1.1.2. One single deformable cylinder 

Generalized modes corresponding to deformations of the cylinder's surface will be 

formulated. WAMIT's Fortran subroutine code is then modified to incorporate the 

generalized modes into the hydro-elastic analysis. Equations of motion for a single 

deformable cylinder are developed and expressed from the Donnell-Mushtari theory of 

vibration for thin shells, and mass and stiffness matrices are defined. Those equations are 

formulated in matrix form consistent with the generalized modes. Using the analytical 

expressions for the diffraction and radiation potentials, the expressions for added mass, 

radiation damping, and exciting force can be formulated. The next steps include 

comparing the analytical solutions with numerical results from WAMIT. Those solutions 

are also validated with the results for the vibration of a fluid-filled cylinder in air. Material 
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properties are selected to set the “breathing” mode natural period of the cylinder at the 

lower end of studied wave periods.  

 

1.1.3. Arrays of bottom-mounted deformable cylinders 

Upon successful completion of the second phase, the last part of the research is 

conducted. Hydro-elastic analysis of periodic arrays of deformable cylinders exposed to 

incident long waves are performed using WAMIT. Then the reflection and transmission 

process of the array is described analytically with the same approach applied in the case 

of arrays of rigid cylinders. Finally, surface elevations are plotted and the relation between 

radiation and scattering problems is verified by Newman’s (1975) procedure. 

Observations are made to study the degree to which the wave amplitudes may be 

attenuated, and hence to determine whether the trapping of waves is achieved.  

 

1.2. Literature Review 

The scattering of water waves by bottom-mounted cylinder arrays has been studied 

previously by many researchers in the field. For example, Evans and Porter (1997) 

examined the trapping of waves when waves interact with several different arrangements 

of bottom-mounted rigid cylinders, including a circular arrangement, finite linear arrays, 

and infinite periodic arrays.  

Using an effective water medium approach, Hu and Chan (2005) demonstrated that 

long water waves propagate through an array of bottom-mounted cylinders as if it is a 

uniform medium with an effective depth and gravitational constant. They defined an 

effective refractive index which can be used with the Snell refractive law to model the 

reflection and refraction of long waves encountering the array. 

In the field of acoustics, the effects of air bubbles in water are well known. Junger 

and Cole (1980) investigated sound propagation in bubble swarms. They analyzed a 
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system that contains a force-excited, extended plate radiating acoustic waves through an 

air bubble swarm into the ambient liquid. A formulation of the Insertion Loss (IL) for 

various frequency ranges was then given by comparing the difference of far-field pressures 

with and without the bubble swarm.  

Commander and Prosperetti (1989) reviewed a model of the propagation of pressure 

waves in bubbly liquids which was proposed by Van Wijngaarden (1968). They validated 

the model using experimental data of linear acoustic wave propagation and attenuation in 

bubbly liquids. Moreover, as a step toward the application of Commander and 

Prosperetti’s theory, Lee et al. (2011) conducted an experiment that showed that large 

tethered encapsulated bubbles could be used for the attenuation of low frequency under 

water noise, which further validated Commander and Prosperetti’s model experimentally. 

Leissa (1973) organized and discussed the main theories associated with the vibration 

of shells in a NASA report. One of those theories, the Donnell-Mushtari theory, will be 

used in the derivation of the equations of motion in the present study. Dean and Dalrymple 

(1991) gave an analytical solution for the radiation potential of different types of 

cylindrical wavemakers that satisfy different boundary conditions. In the present research 

of hydro-elastic response of a deformable cylinder, the expression for the velocity 

potential of the pulsating wavemaker in Dean and Dalrymple’s theory will be used.  

Newman (1994) developed a general methodology for modeling hydro-elastic wave-

body interactions by specifying generalized modal shape functions in addition to 

conventional six rigid-body modes. The analysis of three-dimensional wave radiation and 

diffraction by rigid bodies can thereby be extended to deformable bodies. Similar 

procedures will be applied in the derivation of the added mass, radiation damping, 

hydrostatic stiffness, and wave exciting force for the pulsating cylinder.  

The analytical models for the hydro-elastic response of a single cylinder can be 

verified through comparison with results from other studies. Goncalves and Ramos (1996) 
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investigated the dynamic behavior of cylindrical tanks that are partially filled with liquid. 

Koga and Tsushima (1990) gave a method to calculate the natural frequency of the 

breathing vibration of thin shells partially filled with liquids.  

 

1.3. Organization of Thesis 

This thesis is organized in a section-subsection format.  

Section 1 provides an introduction and background information of this thesis, a 

review of the literature, the research objectives, and the organization of this thesis.  

Section 2 discusses the effective medium approach used in the analysis of wave 

interactions with arrays of rigid cylinders. The theory associated with Fabry-Pérot 

interferometry is also introduced in the calculation of transmittance and reflectance of the 

arrays. Data output from WAMIT is presented and compared with the results generated 

from the effective medium approach. Moreover, this section includes an analysis of the 

so-called “tip effect” which can be seen at the ends of the arrays. 

Section 3 gives the analysis of the hydro-elastic response of vertical deformable 

cylinders exposed to incident waves. This section develops the analytical model for the 

cylinder considered, and then gives a brief introduction of the software WAMIT used in 

the project. Next, the numerical data is discussed, and the model selection process is 

outlined. 

Section 4 presents the cases of regular arrays of deformable cylinders. The methods 

and approaches discussed in Section 2 and Section 3 are combined and applied to the 

analysis of wave interactions with elastic cylinder arrays. Numerical results from WAMIT 

will be presented and discussed. 

Section 5 consists of a summary and conclusions of the research. Suggestions for 

possible future work related to this research will also be included in this section.  
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2. ARRAYS OF BOTTOM-MOUNTED RIGID CYLINDERS 

 

In this section, the effective medium approach developed by Hu and Chan (2005) and 

the effect of the Fabry-Pérot interferometer will be introduced. An integration of the 

theories will lead to the analytical formulation for the reflectance and the transmittance of 

an array of rigid cylinders with the presence of multiple reflections inside the array. The 

pseudo-inverse method used to provide the reflectance and transmittance from WAMIT's 

output of surface elevation will be also presented.  

A number of cases of regular arrays of uniformly spaced rigid cylinder are 

implemented in WAMIT. In the first step of validating the refractive index, WAMIT has 

been exercised for cases with five different filling ratios. Then a set of cylinder arrays with 

the same filling ratio but different lengths are studied in order to find the relationship 

between the effective width of the array and the diffraction coefficients. Once the 

reflectance and transmittance associated with WAMIT’s calculation are determined, they 

will be compared with the theoretical results derived from the effective medium approach 

and the theory of the Fabry-Pérot interferometer.  

In order to investigate the so-called “tip effect” which can be observed at the ends of 

cylinder arrays, five different arrays of cylinders are studied and proper grid points are 

chosen to calculate the surface elevation for the wave field diffracted by the arrays. The 

purpose is to find the correlation between the intensity of the “tip effect” and the lengths 

of arrays. Furthermore, a separate case of 11 by 80 cylinders is executed for four different 

incident wave periods. 

For those cases mentioned above, WAMIT’s high-order method has been used to 

define the geometry of the cylinder. The body surface is defined by patches, and the 

number of patches specified in the Geometric Definition File (GDF) is set to be the same 
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as the number of cylinders in each case. The arrays are considered as one single body with 

two planes of symmetries in the X and Y directions.  

 

2.1. Effective Medium Approach 

For long waves, a periodic bottom-mounted cylinder array can be treated as an 

effective medium which has an effective gravitational constant 𝑔𝑒, effective wavenumber 

𝑘𝑒 and an effective water depth ℎ𝑒 inside the medium. Those parameters depend on the 

filling ratio 𝑓𝑠 of the cylinders which can be defined as (Hu and Chan, 2005): 

 𝑓𝑠 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑒𝑑𝑖𝑢𝑚
 (2.1) 

For a square water column with surface area of 𝑎2, which is pierced by a circular 

cylinder with radius 𝑟, the filling ratio 𝑓𝑠  of this effective medium is 
𝜋𝑟2

𝑎2
. The effective 

medium can also be defined as a circular water column with surface area of 𝜋𝑟𝑒
2. The 

filling ratio is independent of the total number of cylinders used for calculation. For an 

array of N identical cylinders, the value of the filling ratio will be the same as that of one 

single cylinder: 

 𝑓𝑠 =
𝑁𝜋𝑟2

𝑁𝑎2
=
𝜋𝑟2

𝑎2
 (2.2) 

 

 

Figure 2.1. Water column pierced by a vertical rigid cylinder. Zone II is the effective medium.  



9 
 

Consider a circular water column with radius 𝑅 = 𝑎/√𝜋 pierced by a rigid circular 

cylinder with radius r. The system forms an effective medium with effective gravitational 

constant 𝑔𝑒 , effective wavenumber 𝑘𝑒  and an effective water depth ℎ𝑒 . A schematic 

diagram of the effective medium is presented in Figure 2.1. Zone I is the outside water 

zone and zone II is defined as the effective medium. In zone I, 𝛼𝑚  and 𝛽𝑚  are the 

amplitudes of the incident and scattered waves, respectively, while in zone II 𝛾𝑚 and 𝜇𝑚 

are respectively the amplitudes of the incident and scattered waves. For harmonic water 

waves of frequency 𝜔, the vertical displacement of the water surface is governed by the 

two-dimensional Helmholtz equations: 

 (𝛻2 + 𝑘2)𝜂 = 0 (2.3) 

where k is the wave number which can be obtained from the dispersion relation: 

 𝜔2 = 𝑔𝑘𝑡𝑎𝑛ℎ(𝑘ℎ) (2.4) 

Assuming the water depth is shallow, the above equation can be simplified as: 

 𝜔2 = 𝑔ℎ𝑘2 (2.5) 

Substituting equation (2.5) into equation (2.3), the Helmholtz equation becomes: 

 𝛻(ℎ𝛻𝜂) +
𝜔2

𝑔
𝜂 = 0 (2.6) 

In cylindrical coordinates (𝜌, 𝜙), the solutions of equation (2.6) in zone I can be 

written as a linear combination of first kind Bessel functions and Hankel functions： 

 𝜂I = ∑[𝛼𝑚𝐽𝑚(𝑘𝜌) + 𝛽𝑚𝐻𝑚(𝑘𝜌)]

∞

𝑚=0

𝑒𝑖𝑚𝜙 (2.7) 

Similarly, the solution in zone II can be written as: 

 𝜂II = ∑[𝛾𝑚𝐽𝑚(𝑘𝑒𝜌) + 𝜇𝑚𝐻𝑚(𝑘𝑒𝜌)]

∞

𝑚=0

𝑒𝑖𝑚𝜙 (2.8) 
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 The first kind Bessel function 𝐽𝑚 represents the incident waves, while the Hankel 

function 𝐻𝑚 represents the scattering waves. At the surface of the cylinder, the boundary 

condition implies no flow through the cylinder wall: 

 
𝜕𝜂

𝜕𝑛⃗ 
= 0 (2.9) 

where 𝑛⃗  is the direction of the normal to the surface wall. In cylindrical coordinates, the 

boundary condition takes the form of 
𝜕𝜂

𝜕𝜌
= 0. The continuities of 𝜂 and h

𝜕𝜂

𝜕𝜌
 at 𝜌 = 𝑅 

imply: 

 𝜂I(𝑅) = 𝜂II(𝑅) (2.10) 

 h
𝜕𝜂I(𝑅)

𝜕𝜌
= h𝑒

𝜕𝜂II(𝑅)

𝜕𝜌
 (2.11) 

Expanding equation (2.10) and equation (2.11) using the analytical representations 

of 𝜂I and 𝜂II: 

 

−hk𝐽𝑚(𝑘𝑒𝑅)[𝐻𝑚
′ (𝑘𝑒𝑅)𝐽𝑚

′ (𝑘𝑟) − 𝐽𝑚
′ (𝑘𝑅)𝐻𝑚

′ (𝑘𝑟)]

+ h𝑒𝑘𝑒𝐽𝑚
′ (𝑘𝑒𝑅)[𝐽𝑚

′ (𝑘𝑟)𝐻𝑚(𝑘𝑅)

− 𝐻𝑚
′ (𝑘𝑟)𝐽𝑚(𝑘𝑅)] = 0 

(2.12) 

Assuming the wave is long enough (𝑘𝑎 ≪ 1), the above equation can be simplified as: 

 ℎ𝑒𝑘𝑒
2 − (1 − 𝑓𝑠)ℎ𝑘

2 = 0  when m = 0 (2.13) 

 ℎ𝑒 − ℎ
1 − 𝑓𝑠

𝑚

1 + 𝑓𝑠
𝑚 = 0  when m ≥ 1 (2.14) 

From the dispersion relationship in shallow water, the expressions for the 

wavenumbers in zone I and zone II can be determined as: 

 𝑘𝑒 =
𝜔

√𝑔𝑒ℎ𝑒
 (2.15) 

 𝑘 =
𝜔

√𝑔ℎ
 (2.16) 
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Substituting equation (2.15) into the non-reflection conditions for m=0 and m=1 gives 

the analytical expressions for 𝑔𝑒 and ℎ𝑒, respectively: 

 𝑔𝑒 =
1

1 − 𝑓𝑠
𝑔 (2.17) 

 ℎ𝑒 =
1 − 𝑓𝑠
1 + 𝑓𝑠

ℎ (2.18) 

Combining equations (2.15) through equation (2.18), the wavenumber inside the 

effective medium can be obtained as: 

 𝑘𝑒 = 𝑛𝑒𝑘 (2.19) 

where 𝑛𝑒 = √1 + 𝑓𝑠 is the effective index of the medium. It can be used to determine 

the refractive angle using Snell’s Law: 

 𝑠𝑖𝑛𝜃 = 𝑛𝑒𝑠𝑖𝑛𝜑 (2.20) 

Using the continuities of 𝜂 and h
𝜕𝜂

𝜕𝜌
 at 𝜌 = 𝑅, the amplitude reflection coefficient 

and the amplitude transmission coefficient can be obtained as: 

 𝑟𝑎 =

𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜑
1 − 𝑓𝑠
√1 + 𝑓𝑠

𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜑
1 − 𝑓𝑠
√1 + 𝑓𝑠

 (2.21) 

 
𝑡𝑎 =

2𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜑
1 − 𝑓𝑠
√1 + 𝑓𝑠

 
(2.22) 

These expressions will be used to determine the transmission and reflection 

intensities of the arrays, and further compared with those determined from WAMIT. 

Moreover, the Brewster angle, which leads to non-reflection, is given as: 

 𝜃0 = 𝑎𝑟𝑐𝑐𝑜𝑠
1 − 𝑓𝑠
2

 (2.23) 
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By using the effective medium approach, one can determine the transmission and 

reflection coefficients of the array and further describe the refraction process analytically 

(Hu and Chan, 2005).  

 

2.2. Fabry–Pérot Interferometer 

In optics, a Fabry–Pérot interferometer is typically made of a transparent plate with 

two reflecting surfaces, or two parallel highly reflecting mirrors. Its transmission spectrum 

as a function of wavelength exhibits peaks of large transmission corresponding to 

resonances of the etalon. From the theory of the Fabry–Pérot interferometer, one can 

determine the reflectance and transmittance of cylinder arrays, and then the amplitudes of 

reflected and transmitted waves.  

 

 

Figure 2.2. Multiple reflections and transmissions inside a Fabry-Pérot interferometer. 
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The system considered is shown in Figure 2.2. The Fabry–Pérot interferometer has 

two reflecting surfaces. The transmittance T and reflectance R of the device can be written 

as follow: 

 𝑇 = 𝑡𝑎
2 (2.24) 

 𝑅 = 𝑟𝑎
2 (2.25) 

The conservation of energy requires T+R=1.The incident beam of unit amplitude 

propagates from the left and meets the first boundary with an angle 𝜃. A part of the beam 

is reflected and the other part is transmitted into the interferometer. When the transmitted 

beam hits the second plate, part of it is transmitted and becomes the first beam on the right. 

The other part of the incident beam is reflected twice at the boundaries, and then 

transmitted through the interface on the right. At each reflection, the amplitude of the beam 

is reduced by √𝑇, while the transmission through the boundary causes the amplitude to 

reduce by √𝑅.  

It can be seen from the figure that the phase lag between 𝑡0 and the incident beam 

is 𝑒𝑖𝑘𝑒𝑙𝑒 . Therefore, the transmitted beam at point b is: 

 𝑡0 = 𝑇𝑒
𝑖𝑘𝑒𝑙𝑒  (2.26) 

Because the second transmitted beam 𝑡1 has met the second plate three times, the 

phase lag between 𝑡1 and the incident beam is 𝑒3𝑖𝑘𝑒𝑙𝑒−𝑖𝑘0𝑙0 . Hence, 𝑡1  can be 

represented as follows: 

 𝑡1 = 𝑡𝑟
2𝑡(𝑒3𝑖𝑘𝑒𝑙𝑒−𝑖𝑘0𝑙0) = 𝑇𝑅(𝑒3𝑖𝑘𝑒𝑙𝑒−𝑖𝑘0𝑙0) (2.27) 

The total phase difference between 𝑡0 and 𝑡1 is: 

 𝛿 = 3𝑘𝑒𝑙𝑒 − 𝑘0𝑙0 − 𝑘𝑒𝑙𝑒 = 2𝑘𝑒𝑙𝑒 − 𝑘0𝑙0 (2.28) 

More generally, the 𝑛𝑡ℎ transmitted beam can be written as: 
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 𝑡𝑛 = 𝑇𝑅
𝑛𝑒𝑖𝑛𝛿 (2.29) 

Using the Snell’s Law (𝑠𝑖𝑛𝜃 = 𝑛𝑒𝑠𝑖𝑛𝜑), the phase difference can be rewritten as: 

 𝛿 = 2𝑘𝑒𝑙𝑒 − 𝑘0𝑙0 = 2𝑘𝑒𝑙𝑐𝑜𝑠𝜑 (2.30) 

The total transmitted amplitude is the sum of all individual beams' amplitudes: 

 𝐴𝑡 =∑𝑡𝑛

∞

𝑛=0

= 𝑇∑(𝑅𝑒𝑖δ)𝑛
∞

𝑛=0

=
𝑇

1 − 𝑅𝑒𝑖𝛿
 (2.31) 

The intensity of the transmitted beam will be just 𝐴𝑡 times its complex conjugate: 

 𝑇𝑒 = 𝐴𝑡𝐴𝑡
∗ =

(1 − 𝑅)2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝛿
 (2.32) 

Therefore, the transmitted wave amplitude can be written as: 

 𝑎𝑡 = √𝑇𝑒 =
(1 − 𝑅)

√1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝛿
 (2.33) 

 

The reflected intensity is: 

 𝑅𝑒 = 1 −
(1 − 𝑅)2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝛿
 (2.34) 

and the reflected wave amplitude is determined as: 

 𝑎𝑟 = √𝑅𝑒 = √1 −
(1 − 𝑅)2

1 + 𝑅2 − 2𝑅𝑐𝑜𝑠𝛿
 (2.35) 

Equation (2.33) and (2.35) will be used to predict the theoretical values of the 

transmitted and reflected wave amplitudes, and to compare with the results determined 

from WAMIT’s numerical output.  

 

2.3. Parameter Estimation using Pseudo-inverse Method 

The pseudo-inverse of an arbitrary matrix is a generalization of the inverse matrix, 

which can be used to estimate the values of parameters for a statistical model to make the 
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agreement of the model and data reach maximum. The pseudo-inverse method is applied 

in this research to determine the reflection and transmission coefficients of the wave field 

from WAMIT’s numerical results of wave elevation. The pseudo-inverse can be expressed 

from the singular value decomposition (SVD) of a 𝑚×𝑛 matrix A: 

 𝐴 = 𝑈 (
𝑆 0
0 0

)𝑉 (2.36) 

where 𝑈  and 𝑉  are orthogonal matrices, and 𝑆  is a diagonal matrix containing the 

singular values of A. The pseudo-inverse of A can be defined as: 

 𝐴+ = 𝑉 (𝑆
−1 0
0 0

)𝑈𝑇 (2.37) 

If 𝑟𝑎𝑛𝑘(𝐴) = 𝑛 ≤ 𝑚, then we have the following expression: 

 𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇 (2.38) 

The solution to the least-squares problem min
𝑥
‖𝐴𝑥 − 𝐵‖2 can be expressed as: 

 𝑥 = 𝐴+𝐵 (2.39) 

The data set from WAMIT can be decomposed as: 

 𝐵𝑖 = 𝐴𝑖𝑗𝑋𝑗 + 𝑒𝑖 (2.40) 

where 𝐵𝑖 corresponds to the wave elevation data set from WAMIT, 𝑒𝑖 is the error, and 

𝐴𝑖𝑗𝑋𝑗 is the theoretical linear wave elevation. Equation (2.40) can be written in matrix 

notation: 

 {𝐵} = [𝐴]{𝑋} + {𝑒} (2.41) 

Using the pseudo-inverse method and applying equations (2.38) and (2.39), {𝑋} is 

solved as: 

 {𝑋} = ([𝐴]𝑇[𝐴])−1[𝐴]𝑇{𝐵} (2.42) 

The above equation will be used in the calculation of the unknowns in the studied 

wave domain, which can be decomposed into three zones shown in Figure 2.3. Zone 1 
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contains the incident wave and the reflected wave from the first edge of the effective 

medium. Zone 2 is the array of cylinders and the effective medium zone, which contains 

both the reflected wave from the second edge and the transmitted wave from the first edge. 

Zone 3 only contains the transmitted wave from the second edge.  

 

 

 
Figure 2.3. Decomposition of the studied wave domain. 
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Zone 1 & Zone 3: 

There are two waves in Zone 1: the incident wave and the reflected wave. The 

amplitude 𝑃𝑟1 and phase 𝜀𝑟1 of the reflected wave are the unknowns and need to be 

determined. Therefore, the surface wave elevation in zone 1 can be expressed as: 

 𝐵𝑖 = cos(𝑘𝜉𝑖) + 𝑃𝑟1 cos(𝑘𝜉𝑖
′ + 𝜀𝑟1) (2.43) 

where 

 𝜉𝑖 = 𝑥𝑖𝑐𝑜𝑠𝜃 − 𝑦𝑖𝑠𝑖𝑛𝜃 (2.44) 

 𝜉𝑖
′ = 𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖𝑠𝑖𝑛𝜃 (2.45) 

Using decomposition for the cosines: 

 
 𝐵𝑖

′ = 𝐵𝑖 − cos(𝑘𝜉𝑖) 

   = 𝑃𝑟1 cos(𝑘𝜉𝑖
′) cos(𝜀𝑟1) − 𝑃𝑟1 sin(𝑘𝜉𝑖

′) sin(𝜀𝑟1) 
(2.46) 

which can be rewritten in term of matrices: 

 [

𝐵1
′

𝐵2
′

⋮
𝐵𝑛
′

] = [

cos(𝑘𝜉1
′)

cos(𝑘𝜉2
′)
 sin(𝑘𝜉1

′)

 sin(𝑘𝜉2
′)

⋮      ⋮
cos(𝑘𝜉𝑛

′ )  sin(𝑘𝜉𝑛
′ )

] [
𝑋1
𝑋2
] (2.47) 

with 

 𝑋1 = 𝑃𝑟1 cos(𝜀𝑟1) (2.48) 

 𝑋2 = −𝑃𝑟1 sin(𝜀𝑟1) (2.49) 

We can apply the pseudo-inverse method to find the least-squares solution. {X} can be 

determined by substituting [

cos(𝑘𝜉1
′)

cos(𝑘𝜉2
′)
 sin(𝑘𝜉1

′)

 sin(𝑘𝜉2
′)

⋮      ⋮
cos(𝑘𝜉𝑛

′ )  sin(𝑘𝜉𝑛
′ )

] for [A] in equation (2.42). Once {X} 

is solved, the results of 𝑃𝑟1 and 𝜀𝑟1 can be determined as: 

 𝑃𝑟1 = √𝑋1
2 + 𝑋2

2 (2.50) 
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 𝜀𝑟1 = arctan (
−𝑋2
𝑋1

) (2.51) 

There is only the transmitted wave in Zone 3, and the MLE can be set up in a similar 

way as in Zone 1. The unknowns are the amplitude of the transmitted wave 𝑃𝑡3 and its 

phase 𝜀𝑡3. Applying the pseudo-inverse method in this zone, we have 

 𝐵𝑖 = 𝑃𝑡3 cos(𝑘𝜉𝑖
′ + 𝜀𝑡3) (2.52) 

which can be expressed as 

 [

𝐵1
𝐵2
⋮
𝐵𝑛

] = [

cos(𝑘𝜉1
′)

cos(𝑘𝜉2
′)
   sin(𝑘𝜉1

′)

   sin(𝑘𝜉2
′)

⋮       ⋮ 
cos(𝑘𝜉𝑛

′ )    sin(𝑘𝜉𝑛
′ )

] [
𝑋1
𝑋2
] (2.53) 

Again, {X} will be solved using equation (2.42). Hence, the desired amplitude 𝑃𝑡3 

and the phase 𝜀𝑡3 of the transmitted wave can be determined from: 

 𝑋1 = 𝑃𝑡3 cos(𝜀𝑡3) (2.54) 

 𝑋2 = −𝑃𝑡3 sin(𝜀𝑡3) (2.55) 

 𝑃𝑡3 = √𝑋1
2 + 𝑋2

2 (2.56) 

 𝜀𝑡3 = arctan (
−𝑋2
𝑋1

) (2.57) 

Zone 2: 

The effective medium domain contains two waves, which are the transmitted wave 

and the reflected wave from the second edge of the array. There are six unknowns inside 

this domain, which are the effective wavenumber 𝑘𝑒, the phase lag 𝜑 induced by the 

reflection and transmission process, the amplitude of the transmitted wave 𝑃𝑡2 , the 

amplitude of the reflected wave 𝑃𝑟2, the phase of the transmitted wave 𝜀𝑡2, and the phase 

of the reflected wave 𝜀𝑟2. Both the transmitted wave and reflected waves contribute to the 

total surface wave elevation. Therefore, the pseudo-inverse method can be set up as:  
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 𝐵𝑖 = 𝑃𝑡2 cos(𝑘𝑒𝜉𝑖 + 𝜀𝑡2) + 𝑃𝑟2 cos(𝑘𝑒𝜉𝑖
′ + 𝜀𝑟2) (2.58) 

where 

 𝜉𝑖 = 𝑥𝑖𝑐𝑜𝑠𝜃 − 𝑦𝑖𝑠𝑖𝑛𝜃 (2.59) 

𝜉𝑖
′ = 𝑥𝑖𝑐𝑜𝑠𝜃 + 𝑦𝑖𝑠𝑖𝑛𝜃 

Using the decomposition for the cosines, and writing the equation in term of matrices: 

 [

𝐵1
𝐵2
⋮
𝐵𝑛

] = [

cos(𝑘𝑒𝜉1) sin(𝑘𝑒𝜉1)

cos(𝑘𝑒𝜉2) sin(𝑘𝑒𝜉2)
  cos(𝑘𝑒𝜉1

′)

  cos(𝑘𝑒𝜉2
′)
  sin(𝑘𝑒𝜉1

′)

  sin(𝑘𝑒𝜉2
′)

⋮         ⋮          ⋮         ⋮
cos(𝑘𝑒𝜉𝑛) sin(𝑘𝑒𝜉𝑛) cos(𝑘𝑒𝜉𝑛

′ )  sin(𝑘𝑒𝜉𝑛
′ )

] [

𝑋1
𝑋2
𝑋3
𝑋4

] (2.60) 

where 

 𝑋1 = 𝑃𝑡2 cos(𝜀𝑡2) (2.61) 

 𝑋2 = −𝑃𝑡2 sin(𝜀𝑡2) (2.62) 

 𝑋3 = 𝑃𝑟2 cos(𝜀𝑟2) (2.63) 

 𝑋4 = −𝑃𝑟2 sin(𝜀𝑟2) (2.64) 

{X} can be determined in a similar way as in Zone 1 and Zone 3. The unknowns can 

thereby be determined: 

 𝑃𝑡2 = √𝑋1
2 + 𝑋2

2 (2.65) 

 𝑃𝑟2 = √𝑋3
2 + 𝑋4

2 (2.66) 

 𝜀𝑡2 = arctan (
−𝑋2
𝑋1

) (2.67) 

 𝜀𝑟2 = arctan (
−𝑋4
𝑋3

) (2.68) 
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2.4. Modal Superposition Analysis 

The idea of modal decomposition and superposition is a powerful method to obtain 

the solution of free vibration problems. The method is to use free vibration mode shapes 

to uncouple the equations of motion, which could be further solved independently. Once 

the solutions are found, the original equation will be solved by a superposition of 

individual solutions. In this study, we first apply a modal superposition approach in the 

calculation of the hydro-elastic response of one single elastic cylinder exposed to incident 

long waves. Then the same approach may be used in the case of periodic and randomly 

spaced deformable cylinder arrays.  

 

2.5. WAMIT 

WAMIT is a radiation/diffraction panel program for analyzing wave interactions with 

vessels and offshore structures. It has two subprograms, POTEN and FORCE, that are run 

sequentially. The POTEN program solves for the radiation and diffraction velocity 

potentials, while FORCE solves for the hydrodynamic coefficients, motions, and forces 

of the first and second order. The intermediate output file from POTEN is the P2F file. 

Normally the input files of WAMIT include the configuration files, the Geometric Data 

File (GDF) that defines the geometry of the body, the Force Control File (FRC) that 

describes dynamic parameters, and the Potential Control File (POT) that is used to input 

parameters to POTEN. Figure 2.4 represents the flow chart of WAMIT. 
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Figure 2.4. Flow chart of WAMIT 

 

2.5.1. Low-order method and high-order method 

WAMIT offers two methods, the low-order method and the high-order method, to 

describe the body geometry. In the low-order method, the body is represented by a set of 

flat quadrilateral panels. The Cartesian coordinates of of the vertices of each panel are 

specified in the Geometric Data File (GDF), and hence the geometry of the body can be 

determined. The velocity potential is evaluated by piecewise constant values on each panel. 

In the high-order method, the body geometry can be discretized by panels, B-spline 

approximations, Multisurf geometry models, and explicit analytical models. The velocity 

potential is represented by B-splines in a continuous manner, which is different from the 

low order method. If the desired analytical expression for the geometry is not included in 

the options given by WAMIT’s analytical models, user can modify the GEOMXACT 

subroutine to define specific geometries. The high-order method provides more accurate 

solutions with the same number of unknowns.  

The high-order method has been used in this project. The body surface of the cylinder 

arrays is defined by patches where the Cartesian coordinates of the points on each patch 

are defined by mapping functions. The advantage of this method is that for one patch, the 

surface is smooth with continuous coordinates and slope. 

 

POTE

N 

FORC

E 

pot.pot 

gdf.gdf 
cfg.cfg 

frc.frc 

cfg.cfg pot.p2f 

 

frc.out 
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2.5.2. Single and multiple bodies 

WAMIT includes the capability to analyze multiple bodies which interact 

hydrodynamically and mechanically. Each of the bodies can oscillate independently with 

up to six degrees of freedom, while additional generalized body modes can be specified. 

In the present research, a multiple body analysis is applied in the case of diffraction by 

arrays of deformable cylinders. Each elastic cylinder of the array has been modeled as one 

single body that oscillates independently. For the case of diffraction by an array of rigid 

circular cylinders, the entire array was considered as a single body with X = 0 and Y = 0 

planes of symmetry. 

 

2.5.3. Generalized body modes 

WAMIT’s capability of analyzing generalized modes of body motion was used in 

this research to describe the structural deformations of the cylinders. These modes extend 

beyond the conventional six degrees of rigid-body translation and rotation. Each 

generalized mode is defined by specifying the normal velocity in the form: 

 𝜑⃗ 𝑗𝑛 = 𝑛⃗ 𝑗 = 𝑢𝑗𝑛𝑥 + 𝑣𝑗𝑛𝑦 + 𝑤𝑗𝑛𝑧 (2.69) 

To incorporate the generalized modes into WAMIT, the Subroutine NEWMODES 

has been modified according to the deformations of the thin shell.  

 

2.6. Validation of the Definition of the Refractive Index 

The first step is to verify WAMIT’s calculation of the refractive index before 

analyzing the refraction process. Six cases of uniformly spaced rigid cylinders exposed to 

an incident wave of 20s period are studied in this subsection, and the distances between 

the cylinders are set to be different (30m, 25m, 20m, 15m, 12m and 10m), which 

correspond to six different filling ratios of 0.0645, 0.0929, 0.1452, 0.2582, 0.4034, and 

0.5809, respectively. The free surface elevation can be found in WAMIT’s numerical .6p 
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output file. For each case, the pseudo-inverse method is applied to find the wavenumber 

inside the cylinder array. Then, the relation 𝑛𝑒 =
𝑘𝑒

𝑘
 is used to determine the refractive 

indexes. In Figure 2.5, the theoretical value of 𝑛𝑒 is determined from the relation 𝑛𝑒 =

√1 + 𝑓𝑠  in Hu and Chan’s (2005) theory. According to the result from WAMIT, the 

refractive indexes match the theoretical curve of 𝑛𝑒. Thus, the refractive index is validated. 

For the cases where filling ratio are 0.1452 and 0.0929, the refractive indexes determined 

from WAMIT’s result are slightly smaller than the theoretical value, while in the cases of 

0.5809 and 0.4034 filling ratios the WAMIT’s results are larger than the values on the 

curve.  

 

 

Figure 2.5. Refractive index ne as a function of the filling ratio fs of the arrays 
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2.7. Transmittance and Reflectance of Arrays of Uniformly Spaced Rigid Cylinders 

Once the theoretical definition of the refractive index is verified, the next step is to 

determine the reflection and transmission coefficients for the arrays using WAMIT’s 

numerical output. The pseudo-inverse method has been used in this study, and the theory 

associated with the Fabry-Pérot Interferometer is applied in order to find the intensities of 

reflection and transmission of the arrays. The incident wave period is 20s. Nine different 

arrays of rigid cylinders are studied. For each of those cases, a line of field points close to 

the x-axis are chosen to calculate the coefficients. The position of the line is shown in 

Figure 2.6. Equations (2.33) and (2.35) is used to calculate amplitude reflection coefficient 

and the amplitude transmission coefficient, while 𝜃 and 𝜑 are set to be zero since we 

are only considering an incident wave of zero degree.  

 

 

 

Figure 2.6. Position of the line of field points chosen to calculate the reflection and transmission 

coefficients.  
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With the coefficients calculated, one can determine the transmittance and reflectance 

of the arrays. Figure 2.7 shows a good agreement between the results from WAMIT and 

the coefficients predicted by Hu and Chan’s (2005) theory. Therefore, the WAMIT setup 

and the pseudo-inverse method are proved to be successful. For any given array of 

cylinders, the reflection and transmission coefficients of the array can be determined by 

using pseudo-inverse method to process WAMIT’s surface elevation output.  

 

 

Figure 2.7. Transmittance and reflectance of waves as a function of the effective width of the arrays. 

 

Note that these coefficients are identified from the data on a line of field points that 

are very close to the x-axis (i.e. the plane of symmetry), which indicates the so-called “tip 

effect” is not affecting the values of the coefficients determined by the pseudo-inverse 
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method. If we use field points that are close to the tip to calculate the parameters, the 

results will not be the same. Table 2.1 shows the reflection and transmission coefficients 

of the 7 by 126 array identified using field points that are affected by the “tip effect”. We 

can see that the coefficients determined from those field points are different. The first row 

of data in this table is generated from the “least affected” field points and is used for the 

comparison with WAMIT’s results in Figure 2.7. As the distance from x-axis increases, 

the “tip effect” exerted on the surface elevations of the field points becomes stronger. For 

some lines of field points, the transmission coefficients are even greater than 1, which 

indicates the “tip effect” causes the wave amplitude on the transmitted wave side to be 

larger than the incident wave. This is one of the reasons why the “tip effect” needs to be 

considered in the study of wave interactions with large cylinder arrays. Details about the 

effect will be discussed in the next subsection.  

 

Table 2.1 Reflection and transmission coefficients of the 7 by 126 array calculated from surface 

elevations on six straight lines of field points parallel to the x-axis.  

Distance from x-axis Reflection coefficient Transmission coefficient 

2m 0.2357 0.9697 

378.5m 0.2617 1.0062 

755m 0.2615 0.9190 

1131.5m 0.2942 1.0380 

1508m 0.2217 1.0596 

1884.5m 0.2681 0.9619 
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2.8. Tip Effect of Arrays of Uniformly Spaced Rigid Cylinders 

The cases completed for this subsection are five different arrays of uniformly spaced 

rigid cylinders which are shown in Table 2.2. While the total number of cylinders of those 

cases is roughly the same (880, 882, 882, 882 and 880, respectively), the arrangements of 

the cylinders are different in order to analyze the relationship between the so-called “tip 

effect” and the length of array. The spacing between adjacent cylinders in all five cases is 

15m.  

 

Table 2.2 Arrangements of the rigid cylinder arrays 

 Columns Rows Total Length 

Case A 5 176 880 2632.5m 

Case B 6 147 882 2197.5m 

Case C 7 126 882 1882.5m 

Case D 9 98 882 1462.5m 

Case E 11 80 880 1192.5m 

 

The input parameters of WAMIT for the arrays are listed in Table 2.3. In this 

subsection the wave condition stays the same for all those five cases. Only zero incident 

wave angle is considered in the study. For each array, a set of wave field points with proper 

length and width is chosen in order to include the tip effect. The distances between 

adjacent points in both X-direction and Y-direction are set to be 10m.  

 

 

 

 

 



28 
 

 

Table 2.3 Input parameters for WAMIT in the cases of rigid cylinder arrays. 

Parameter Value 

Water depth, h 10.5m 

Wave period, T 20s 

Wavenumber of incident wave, k 0.0315m-1 

Incident wave angle, 𝜽 0 

Incident wave amplitude, A 1 

Radius of cylinder, R 4.3m 

Draft of cylinder, d 10.5m 

Spacing between cylinders, a 15m 

Distance between field points, p 10m 

Filling ratio, fs 0.2582 

Gravitational acceleration, g 9.81m/s2 

 

Surface elevations associated with the five different arrays of rigid cylinders were 

generated by WAMIT. Linear interpolation was applied and the resolution was increased 

by four times, which leads to smoother images. The results are plotted from Figure 2.8 to 

Figure 2.12. One can observe that at the top end of each array, the wave field is more 

interfered than that at the bottom of the image. If we consider the x-axis as a mirror and 

add a mirror image of the wave field at the opposite side of the x-axis, we can find that 

when the incident wave encounters an array of long rigid cylinders, it is more diffracted 

at the far ends than at the central part of the array. 

Moreover, the intensity of this so-called “tip effect” is affected by the effective length 

of the array, and hence the arrangement of the rigid cylinders. As the length of the array 
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increases, the intensity of the tip effect becomes weaker, and the “shadow” zone that is 

not affected by the tip effect becomes larger. On one hand, for the case of 5 by 176 array, 

when the length of the array reaches 2632.5m, the wave field near the top end of the array 

appears to be almost the same as the incident wave coming from the left. This could have 

been anticipated as the total length of this cylinder array is the largest among all the cases, 

which causes the weakest tip effect under the same wave condition. On the other hand, in 

Figure 2.12, the tip effect for the case of 11 by 80 array is much easier to observe, as we 

can see an obvious distortion of the wave crests and troughs near the tip.  

 

Figure 2.8. Wave surface elevation for the 5 by 176 array with an incident wave period T=20s. 
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Figure 2.9. Wave surface elevation for the 6 by 147 array with an incident wave period T=20s. 

 

Figure 2.10. Wave surface elevation for the 7 by 126 array with an incident wave period T=20s. 
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Figure 2.11. Wave surface elevation for the 9 by 98 array with an incident wave period T=20s. 

 

 

Figure 2.12. Wave surface elevation for the 11 by 80 array with an incident wave period T=20s.  
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2.9. Anomaly Detection of Uniformly Spaced Rigid Cylinder Arrays 

To further study the intensity of the “tip effect”, and to better reveal the effects at the 

ends, anomaly analysis is conducted for the five cases studied in Subsection 2.8. The plots 

are created by subtracting the incident wave from WAMIT’s output of the refracted wave 

field. The results are presented from Figure 2.13 to Figure 2.17. As we can see in the plots, 

the variation of surface elevation on the incident wave side is much stronger than the 

transmitted wave side. In Figure 2.13, it can also be seen that some nodes exist on both 

the incident wave side and the transmitted wave side of the plots due to the interference 

of incident and reflected waves. 

The effect is easy to identify at the top ends of the arrays. If we look at the transmitted 

wave side, we can see that the variation of wave surface elevation at the tips is stronger 

than that in the “shadow” area near the x-axis. Moreover, this difference of wave 

amplitude varies as the array length changes. In Figure 2.13, as the wave passes the longest 

cylinder array, similar variations of surface elevation can be seen in both the wave field 

close to the plane of symmetry and the area at the tips. However, this is not the case for 

the shortest array in Figure 2.17, where the change of wave amplitude at the top end is 

much greater than that in the area close to the plane of symmetry. This result supports the 

previous conclusion that as the length of the array increases, a weaker tip effect can be 

observed. 
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Figure 2.13. Anomaly for the 5 by 176 array with an incident wave period T=20s.  

 

 
Figure 2.14. Anomaly for the 6 by 147 array with an incident wave period T=20s.  
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Figure 2.15. Anomaly for the 7 by 126 array with an incident wave period T=20s.  
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Figure 2.16. Anomaly for the 9 by 98 array with an incident wave period T=20s.  

 

 

Figure 2.17. Anomaly for the 11 by 80 array with an incident wave period T=20s.  
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In addition, the case of 11 by 80 cylinders is run for four different incident wave 

periods (20s, 16s, 12s, 8s). Comparing Figures 2.17-2.23 we can see that when the same 

array of cylinders is exposed to shorter incident waves, the tip effect tends to be weaker 

and the “shadow” zone that is not affect by the effect becomes larger.  

 
Figure 2.18. Surface elevation for the 11 by 80 array with an incident wave period T=16s. 

 
Figure 2.19. Anomaly for the 11 by 80 array with an incident wave period T=16s. 
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Figure 2.20. Surface elevation for the 11 by 80 array with an incident wave period T=12s. 

 

 

Figure 2.21. Anomaly for the 11 by 80 array with an incident wave period T=12s. 
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Figure 2.22. Surface elevation for the 11 by 80 array with an incident wave period T=8s. 
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Figure 2.23. Anomaly for the 11 by 80 array with an incident wave period T=8s. 

 

In addition, for the case C which corresponds to a 7 by 126 cylinder array, wave 

surface elevations on six straight lines that are parallel to the x-axis are selected from the 

wave domain and plotted in Figure 2.24 in order to further analyze the “tip effect”. The 

wave condition is the same as in Table 2.3. The y-axis coordinates (distance from the x-
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axis) of the six lines are provided in Table 2.4. It can be easily seen that on the incident 

wave side, the wave amplitude is much larger than that on the transmitted wave side.  

Moreover, the transmitted wave can be clearly identified in the plot for line A as this 

line is close to the plane of symmetry. However, the wave surface elevations on the 

transmitted wave side in lines B, C, D, E and F are strongly affected by the “tip effect”, 

which causes the wave patterns to be erratic. Therefore, it is not possible to identify the 

transmitted wave component using the surface elevation data on those five lines. Note that 

the erratic transmitted wave pattern occurs starting from line B, which indicates for a 

cylinder array of 1882.5m in length, the “tip effect” starts to disturb the transmitted wave 

at least from the position where the distance from the plane of symmetry is 378.5m.  

 

Table 2.4 Distances between six parallel lines and the x-axis. 

 Line A Line B Line C Line D Line E Line F 

Distance  2m 378.5m 755m 1131.5m 1508m 1884.5m 
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Figure 2.24. Wave surface elevation on six straight lines that are parallel to x-axis. 
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3. HYDRO-ELASTIC ANALYSIS OF CYLINDER ARRAYS 

 

Starting from this section, bottom-mounted deformable vertical cylinders that are 

pulsating in the water will be studied in stead of rigid cylinders as in the previous sections. 

Deformable cylinders are treated as thin shells clamped at both top and bottom. The modal 

superposition approach is applied to enable calculation of the hydro-elastic response of 

one single elastic cylinder exposed to incident waves of length much larger than the 

cylinder radius. WAMIT is used in the hydro-elastic analysis of the elastic cylinder, 

employing its generalized modes and higher order boundary element capabilities. 

The equations of motion for a single deformable cylinder are derived from the theory 

of vibration for thin shells, and added mass, radiation damping and stiffness matrices are 

defined. Those analytical expressions are in matrix form consistent with the generalized 

modes formulation within WAMIT. Then a design exercise is performed to select realistic 

material properties and cylinder dimensions so that the breathing mode natural frequency 

is within the range of wave frequencies. WAMIT’s Fortran subroutine for generalized 

modes is then modified to incorporate the generalized body modes for the pulsating 

cylinder. To verify the implementation of the Fortran subroutines, WAMIT’s numerical 

results for a single pulsating cylinder are compared with the exact analytical solution. 

 

3.1. Theoretical Background 

3.1.1. Equations of motion for a cylindrical shell 

The system considered is a closed vertical circular cylindrical shell of radius R and 

length L with shear diaphragms (cover plates) at the top and bottom. Radial displacements 

are impossible at the top and bottom. A thin shell is a body bounded by two curved 

surfaces. The thickness h of the shell is much smaller than the radius or length of the 
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cylinder. The cylinder is bottom mounted in water of depth L and exposed to incident 

monochromatic gravity waves.  

The following assumptions were made by Love (1892) in the classic theory of small 

displacements of thin shells. These assumptions are universally accepted in thin shell 

theories, including Donnell and Mushtari’s theory which will be used in this study. 

 The thickness of the shell is small compared to the other dimensions of the shell 

(radius and length). 

 strains and displacements are sufficiently small to neglect second order effects in the 

strain displacement relations; 

 the transverse normal stress is small compared with the other normal stress 

components and may be neglected; 

 normals to the un-deformed middle surface remain straight and normal to the 

deformed middle surface and suffer no extension. 

Figure 3.1 represents the single deformable cylinder considered in this section. A 

body-fixed (X, Y, Z) Cartesian coordinate system has its origin at the center of the top 

surface of the cylinder, with Z vertically upward. The radius R corresponds to the middle 

surface of the shell and the deformations of the shell membrane are measured by tracking 

the local displacements of the middle surface. With θ as the azimuthal coordinate and t as 

time, the local displacements U(z, θ, t), V(z, θ, t), and W(z, θ, t) are in the vertical, 

circumferential and radial directions, respectively.  
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Figure 3.1. Displacements in the vertical, circumferential and radial directions. 

 

Donnell-Mushtari’s theory for vibration of thin cylindrical shells is applied in the 

hydro-elastic analysis of deformable cylinders, which is documented in the NASA report 

by Leissa (1973). According to this theory, the equations of motion for forced vibrations 

of the shell may be expressed as:  

 

𝜌𝑠ℎ
𝜕2𝑈

𝜕𝑡2
−

𝐸ℎ

(1 − 𝜈2)

𝜕2𝑈

𝜕𝑧2
−

𝐸ℎ(1 − 𝜈)

2𝑅2(1 − 𝜈2)

𝜕2𝑈

𝜕𝜃2

−
𝐸ℎ(1 + 𝜈)

2𝑅(1 − 𝜈2)

𝜕2𝑉

𝜕𝑧𝜕𝜃
− 

𝐸ℎ𝜈

𝑅(1 − 𝜈2)

𝜕𝑊

𝜕𝑧
= 𝑓𝑧 

 

 

(3.1)  
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−
𝐸ℎ(1 + 𝜈)

2𝑅(1 − 𝜈2)

𝜕2𝑈

𝜕𝑧𝜕𝜃
+ 𝜌𝑠ℎ

𝜕2𝑉

𝜕𝑡2
−
𝐸ℎ(1 − 𝜈)

2(1 − 𝜈2)

𝜕2𝑉

𝜕𝑧2

−
𝐸ℎ

𝑅2(1 − 𝜈2)

𝜕2𝑉

𝜕𝜃2
−

𝐸ℎ

𝑅2(1 − 𝜈2)

𝜕𝑊

𝜕𝜃
= 𝑓𝜃 

 

 

(3.2)  

 

𝐸ℎ𝜈

𝑅(1 − 𝜈2)

𝜕𝑈

𝜕𝑧
+ 

𝐸ℎ

𝑅2(1 − 𝜈2)

𝜕𝑉

𝜕𝜃
+ 𝜌𝑠ℎ

𝜕2𝑊

𝜕𝑡2

+
𝐸ℎ3

12(1 − 𝜈2)

𝜕4𝑊

𝜕𝑧4
+

𝐸ℎ3

6𝑅2(1 − 𝜈2)

𝜕4𝑊

𝜕𝑧2𝜕𝜃2

+
𝐸ℎ3

12𝑅4(1 − 𝜈2)

𝜕4𝑊

𝜕𝜃4
+ 

𝐸ℎ

𝑅2(1 − 𝜈2)
 𝑊

= 𝑓𝑟 

 

 

(3.3)  

where 𝜈 is Poisson's coefficient, 𝐸 is Young's modulus, 𝜌𝑠 is the mass density of the 

shell material, 𝑓𝑟 is the distributed normal force (external pressure), and 𝑓𝑧 and 𝑓𝜃 are 

the distributed shear forces in the vertical and azimuthal directions, respectively. 

The equations of motion may be written in matrix form as 

 [ℒ]{𝑢} = {𝑓} (3.1) 

with  

 {𝑢} = [
𝑈
𝑉
𝑊
] (3.2) 

 [ℒ] = [

ℒ11 ℒ12 ℒ13
ℒ21 ℒ22 ℒ23
ℒ31 ℒ32 ℒ33

] (3.3) 

 {𝑓} = [

𝑓𝑧
𝑓𝜃
𝑓𝑟

] (3.4) 

 

where {𝑢} is the displacement vector and U, V, and W are the body displacements in the 

vertical, tangential, and radial directions, respectively. The elements of [ℒ] are: 

 ℒ11 =  𝜌𝑠ℎ
𝜕2

𝜕𝑡2
−

𝐸ℎ

(1 − 𝜈2)

𝜕2

𝜕𝑧2
−

𝐸ℎ(1 − 𝜈)

2𝑅2(1 − 𝜈2)

𝜕2

𝜕𝜃2
 (3.5) 
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 ℒ12 = ℒ21 = −
𝐸ℎ(1 + 𝜈)

2𝑅(1 − 𝜈2)

𝜕2

𝜕𝑧𝜕𝜃
 (3.6) 

 

 ℒ13 = −ℒ31 = −
𝐸ℎ𝜈

𝑅(1 − 𝜈2)

𝜕

𝜕𝑧
 (3.7) 

 

 ℒ22 = 𝜌𝑠ℎ
𝜕2

𝜕𝑡2
−
𝐸ℎ(1 − 𝜈)

2(1 − 𝜈2)

𝜕2

𝜕𝑧2
−

𝐸ℎ

𝑅2(1 − 𝜈2)

𝜕2

𝜕𝜃2
 (3.8) 

 

 ℒ23 = −ℒ32 = −
𝐸ℎ

𝑅2(1 − 𝜈2)

𝜕

𝜕𝜃
 (3.9) 

 

 ℒ33 = 𝜌𝑠ℎ
𝜕2

𝜕𝑡2
+

𝐸ℎ𝜇

𝑅2(1 − 𝜈2)
∇4 +

𝐸ℎ

𝑅2(1 − 𝜈2)
 (3.10) 

 

 

with  𝜇 =
ℎ2

12𝑅2
≪ 1 and 

 ∇4= ∇2∇2= [𝑅2
𝜕2

𝜕𝑧2
+
𝜕2

𝜕𝜃2
 ]

2

 (3.11) 

 

3.1.2. Boundary conditions 

Because there are no radial or circumferential displacements at the top and bottom of 

the cylinder, the following boundary conditions have to be satisfied: 

 𝑉(0, 𝜃, 𝑡) = 𝑉(L, 𝜃, 𝑡) = 𝑊(0, 𝜃, 𝑡) = 𝑊(L, 𝜃, 𝑡) = 0 (3.12) 
 

 
𝜕𝑈(0, 𝜃, 𝑡)

𝜕𝑧
+ 

𝜈

𝑅

𝜕𝑉(0, 𝜃, 𝑡)

𝜕𝜃
+ 

𝜈

𝑅
 𝑊(0, 𝜃, 𝑡) = 0 (3.13) 

 

 
𝜕𝑈(𝐿, 𝜃, 𝑡)

𝜕𝑧
+ 

𝜈

𝑅

𝜕𝑉(𝐿, 𝜃, 𝑡)

𝜕𝜃
+ 

𝜈

𝑅
 𝑊(𝐿, 𝜃, 𝑡) = 0 (3.14) 

 

 
𝜈

𝑅2
𝜕𝑉(0, 𝜃, 𝑡)

𝜕𝜃
−
𝜕2𝑊(0, 𝜃, 𝑡)

𝜕𝑧2
−
𝜈

𝑅2
𝜕2𝑊(0, 𝜃, 𝑡)

𝜕𝜃2
= 0 (3.15) 

 

 
𝜈

𝑅2
𝜕𝑉(𝐿, 𝜃, 𝑡)

𝜕𝜃
−
𝜕2𝑊(𝐿, 𝜃, 𝑡)

𝜕𝑧2
−
𝜈

𝑅2
𝜕2𝑊(𝐿, 𝜃, 𝑡)

𝜕𝜃2
= 0 (3.16) 

 

at z=0 and z=L. 
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3.1.3. Modal decomposition 

A modal decomposition approach is applied in this subsection. If the external forcing 

is harmonic or the cylinder is undergoing free vibrations, the total displacements in the 

vertical, tangential and radial directions may be expanded in double Fourier series 

according to: 

 𝑈(𝑧, 𝜃, 𝑡) = ∑∑𝛼𝑚𝑛 cos(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑒𝑖𝜔𝑡 (3.17) 

 𝑉(𝑧, 𝜃, t) = ∑ ∑𝛽𝑚𝑛 sin(𝑚𝜋𝑧/𝐿) sin(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑒𝑖𝜔𝑡 (3.18) 

 𝑊(𝑧, 𝜃, 𝑡) = ∑∑𝛾𝑚𝑛 sin(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑒𝑖𝜔𝑡 (3.19) 

where 𝛼𝑚𝑛, 𝛽𝑚𝑛 and 𝛾𝑚𝑛 are the corresponding amplitudes of the displacements. The 

displacement mode corresponding to 𝑛=0 and m=1 is called the "breathing" mode and its 

natural frequency will receive particular attention, especially in choosing the material 

properties of the cylindrical shell. The modal amplitudes associated with each (m, n) mode 

of vibration can be written as 

 {𝜉𝑚𝑛} = [

𝜉1𝑚𝑛
𝜉2𝑚𝑛
𝜉3𝑚𝑛

] = [

𝛼𝑚𝑛
𝛽𝑚𝑛
𝛾𝑚𝑛

] (3.20) 

and orthogonal shape functions as 

 {𝑊𝑚𝑛(𝑧, 𝜃)} = [

𝑊1𝑚𝑛

𝑊2𝑚𝑛

𝑊3𝑚𝑛

] = [

cos(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

sin(𝑚𝜋𝑧/𝐿) sin(𝑛𝜃)

sin(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

] (3.21) 

such that the modal displacements can be expressed as 
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{𝑢𝑚𝑛} = [

𝜉1𝑚𝑛𝑊1𝑚𝑛

𝜉2𝑚𝑛𝑊2𝑚𝑛

𝜉3𝑚𝑛𝑊3𝑚𝑛

] (3.22) 

3.1.4. Mass and stiffness matrices  

The mass and stiffness matrices for the cylindrical shell can be defined following 

Newman's (1994) procedure. A separate system of equations can be written for each (m, 

n) mode of vibration according to:  

 [ℒ]{𝑢𝑚𝑛} = [ℒ] [

𝛼𝑚𝑛cos(𝜆𝑧) cos(𝑛𝜃)

𝛽𝑚𝑛sin(𝜆𝑧) sin(𝑛𝜃)

𝛾𝑚𝑛 sin(𝜆𝑧) cos(𝑛𝜃)

] = {𝑓𝑚𝑛} (3.23) 

with  {𝑓𝑚𝑛}  as the modal forcing. If the cylinder is undergoing un-damped free 

vibrations, then {𝑓𝑚𝑛} = 0. Therefore, we can write 

 [ℒ]{𝑢𝑚𝑛} = [ℒ] [

𝛼𝑚𝑛cos(𝜆𝑧) cos(𝑛𝜃)

𝛽𝑚𝑛sin(𝜆𝑧) sin(𝑛𝜃)

𝛾𝑚𝑛 sin(𝜆𝑧) cos(𝑛𝜃)

] = [ℒ′] [

𝛼𝑚𝑛
𝛽𝑚𝑛
𝛾𝑚𝑛

] = 0 (3.24) 

With 

 [ℒ′] = [

ℒ′11 ℒ′12 ℒ′13
ℒ′21 ℒ′22 ℒ′23
ℒ′31 ℒ′32 ℒ′33

] (3.25) 

where 

 ℒ′11 = −𝜌𝑠ℎ𝜔
2 +

𝐸ℎ

𝑅2(1 − 𝜈2)
𝜆2 +

𝐸ℎ(1 − 𝜈)

2𝑅2(1 − 𝜈2)
𝑛2 (3.26) 

 

 ℒ′12 = ℒ
′
21 = −

𝐸ℎ(1 + 𝜈)

2𝑅2(1 − 𝜈2)
𝜆𝑛 (3.27) 

 

 ℒ′13 = ℒ
′
31 = −

𝐸ℎ𝜈

𝑅2(1 − 𝜈2)
𝜆 (3.28) 

 

 ℒ′22 = −𝜌𝑠ℎ𝜔
2 +

𝐸ℎ(1 − 𝜈)

2𝑅2(1 − 𝜈2)
𝜆2 +

𝐸ℎ

𝑅2(1 − 𝜈2)
𝑛2 (3.29) 
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 ℒ′23 = ℒ
′
32 =

𝐸ℎ

𝑅2(1 − 𝜈2)
𝑛 (3.30) 

 

 ℒ′33 = −𝜌𝑠ℎ𝜔
2 +

𝐸ℎ𝜇

𝑅2(1 − 𝜈2)
(𝜆2 + 𝑛2)2 +

𝐸ℎ

𝑅2(1 − 𝜈2)
 (3.31) 

 

The parameter 𝜆 is defined as 𝜆 = 𝑚𝜋𝑅/𝐿, which is consistent with the expression 

presented in Leissa’s report (1973). It can be seen that the U, V and W degrees of freedom 

are coupled through the stiffness matrix. If the radial displacement 𝜉3𝑚𝑛 = 𝛾𝑚𝑛 is known, 

then the free vibration problem 

 [ℒ′]{𝜉𝑚𝑛} = 0 (3.32) 

can be written as 

 [
ℒ′11 ℒ′12
ℒ′21 ℒ′22

] [
𝛼𝑚𝑛/𝛾𝑚𝑛
𝛽𝑚𝑛/𝛾𝑚𝑛

] = [
−ℒ′13
−ℒ′23

] (3.33) 

Only pressure forces can be exerted on the cylinder and 𝑓𝑧 = 𝑓𝜃 = 0. Under this condition 

the modal force equilibrium equations can be written as 

 ℒ′11𝛼𝑚𝑛 + ℒ
′
12𝛽𝑚𝑛 = −ℒ

′
13𝛾𝑚𝑛 (3.34) 

 ℒ′21𝛼𝑚𝑛 + ℒ
′
22𝛽𝑚𝑛 = −ℒ′23𝛾𝑚𝑛 (3.35) 

 (ℒ′31𝛼𝑚𝑛 + ℒ
′
32𝛽𝑚𝑛 + ℒ

′
33𝛾𝑚𝑛)𝑊3𝑚𝑛 = 𝑓𝑟𝑚𝑛 (3.36) 

Substitute  𝛼𝑚𝑛  and 𝛽𝑚𝑛 into the radial modal force equilibrium equation to obtain 

 (ℒ1
′′ + ℒ2

′′ + ℒ3
′′)𝛾𝑚𝑛𝑊3𝑚𝑛 = 𝑓𝑟𝑚𝑛 (3.37) 

with 
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ℒ1
′′ + ℒ2

′′ + ℒ3
′′

= −𝜌𝑠ℎ𝜔
2 +

𝐸ℎ

𝑅2(1 − 𝜈2)
[1 + 𝜇(𝜆2 + 𝑛2)2]

−
𝐸ℎ

𝑅2(1 − 𝜈2)
𝜈𝜆 (

−𝑐2𝜆𝑛
2 + 𝜈𝜆 (𝑐1𝜆

2 + 𝑛2)

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
)

+
𝐸ℎ

𝑅2(1 − 𝜈2)
𝑛 (

𝑐2𝜈𝜆
2𝑛 − (𝜆2 + 𝑐1𝑛

2)𝑛

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
) 

(3.38) 

Hence, the radial modal force equilibrium equation (3.40) becomes 

 

(−𝜔2[𝜌𝑠ℎ]

+
𝐸ℎ

𝑅2(1 − 𝜈2)
[1 + 𝜇(𝜆2 + 𝑛2)2

+
(2𝑐2𝜈𝜆

2 − 𝜆2 − 𝑐1𝑛
2)𝑛2 − (𝜈𝜆)2 (𝑐1𝜆

2 + 𝑛2)

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
]) 𝛾𝑚𝑛𝑊3𝑚𝑛

= 𝑓𝑟𝑚𝑛 

(3.39) 

Summing over all (m, n) modes we obtain 

 

∑(−𝜔2[𝜌𝑠ℎ]

𝑚,𝑛

+
𝐸ℎ

𝑅2(1 − 𝜈2)
[1 + 𝜇(𝜆2 + 𝑛2)2

+
(2𝑐2𝜈𝜆

2 − 𝜆2 − 𝑐1𝑛
2)𝑛2 − (𝜈𝜆)2 (𝑐1𝜆

2 + 𝑛2)

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
]) 𝛾𝑚𝑛𝑊3𝑚𝑛

=∑𝑓𝑟𝑚𝑛
𝑚,𝑛

= 𝑓𝑟 

(3.40) 

From the method of weighted residuals, we can multiply equation (3.43) by 𝑊3𝑗ℓ 

and integrated over the surface of the cylinder to obtain 
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∑𝛾𝑚𝑛 ∫∫ 𝑊3𝑗ℓ (−𝜔
2[𝜌𝑠ℎ]

2𝜋

0

0

−𝐿𝑚,𝑛

+
𝐸ℎ

𝑅2(1 − 𝜈2)
[1 + 𝜇(𝜆2 + 𝑛2)2

+
(2𝑐2𝜈𝜆

2 − 𝜆2 − 𝑐1𝑛
2)𝑛2 − (𝜈𝜆)2 (𝑐1𝜆

2 + 𝑛2)

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
])𝑊3𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

= ∫∫ 𝑊3𝑗ℓ𝑓𝑟(𝑧, 𝜃) 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 

(3.41) 

which can be rewritten as 

 ∑(−𝜔2𝑀𝑗ℓ𝑚𝑛 + 𝐶𝑗ℓ𝑚𝑛)𝛾𝑚𝑛
𝑚,𝑛

= ∫∫ 𝑊3𝑗ℓ(𝑧, 𝜃)𝑓𝑟(𝑧, 𝜃)𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 (3.42) 

with mass matrix 

 𝑀𝑗ℓ𝑚𝑛 = 𝜌𝑠ℎ ∫∫ 𝑊3𝑗ℓ𝑊3𝑚𝑛

2𝜋

0

𝑅 𝑑𝜃 𝑑𝑧 =

0

−𝐿

𝜌𝑠2𝜋𝑅𝐿ℎ (
𝛿𝑗𝑚

2
) (
𝛿ℓ𝑛
𝜀ℓ
) (3.43) 

and stiffness matrix 

 

𝐶𝑗ℓ𝑚𝑛

=
𝐸ℎ

𝑅2(1 − 𝜈2)
[1 + 𝜇(𝜆2 + 𝑛2)2

+
(2𝑐2𝜈𝜆

2 − 𝜆2 − 𝑐1𝑛
2)𝑛2 − (𝜈𝜆)2 (𝑐1𝜆

2 + 𝑛2)

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
] ∫∫ 𝑊3𝑗ℓ𝑊3𝑚𝑛

2𝜋

0

𝑅 𝑑𝜃 𝑑𝑧

0

−𝐿

= 2𝜋
𝐸ℎ𝐿

𝑅(1 − 𝜈2)
[1 + 𝜇(𝜆2 + 𝑛2)2

+
(2𝑐2𝜈𝜆

2 − 𝜆2 − 𝑐1𝑛
2)𝑛2 − (𝜈𝜆)2 (𝑐1𝜆

2 + 𝑛2)

(𝜆2 + 𝑐1𝑛2)(𝑐1𝜆2 + 𝑛2) − (𝑐2𝜆𝑛)2
] (
𝛿𝑗𝑚

2
) (
𝛿ℓ𝑛
𝜀ℓ
) 

(3.44) 

where 𝛿𝑗𝑚 is the Kronecker delta and 𝜀𝑛 is the Jacobi factor: 



52 
 

 𝛿𝑗𝑚 = {
1    for  𝑗 = 𝑚
0    for   𝑗 ≠ 𝑚

 (3.45) 

 𝜀𝑛 = {
1    for  𝑛 = 0
2    for  𝑛 ≥ 1

 (3.46) 

   

3.1.5. Hydrostatic stiffness matrix 

In order to complete the equations of motion, we need to determine the hydrostatic 

stiffness matrix. This can be done by calculating the hydrostatic contributions from the 

external pressure. The integral on the right hand side of equation (3.44) represents the 

linearized pressure force on the cylinder. The external pressure on the cylinder −𝑓𝑟 can 

be decomposed into hydrodynamic and hydrostatic contributions according to 

 −𝑓𝑟(𝑧, 𝜃) = −𝑖𝜔𝜌𝜑(𝑅, 𝜃, 𝑧) − 𝜌𝑔𝑧 (3.47) 

The total hydrostatic force on the cylinder is 

 

−𝜌𝑔 ∫∫ ∑ ∑𝛾𝑚𝑛 sin(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑧 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

= −𝜌𝑔 ∫∫ 𝑊3𝑗ℓ(𝑧, 𝜃) 𝑧 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 

(3.48) 

According to Newman (1994), the hydrostatic stiffness matrix is determined as 

 𝑐𝑗ℓ𝑚𝑛 = −𝜌𝑔 ∫∫ (𝑤𝑗𝑙 + 𝑧𝐷𝑗𝑙)𝑊3𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 (3.49) 

where 𝑤𝑗𝑙  is the vertical Cartesian component of the shape function 𝑊3𝑗𝑙  and the 

divergence 

 𝐷𝑗𝑙 = ∇ ∙ {𝑊3𝑗𝑙} (3.50) 

The Cartesian components of the shape function 𝑊3𝑗𝑙 are 



53 
 

 [

𝑢𝑗𝑙
𝑣𝑗𝑙
𝑤𝑗𝑙
] = [

sin(𝑗𝜋𝑧/𝐿) cos(ℓ𝜃)cos(𝜃)

sin(𝑗𝜋𝑧/𝐿) cos(ℓ𝜃)sin(𝜃)

cos(𝑗𝜋𝑧/𝐿) cos(ℓ𝜃)  

] (3.51) 

In order to evaluate the divergence of 𝑊3𝑗𝑙 in Cartesian coordinates, we apply the 

Tchebytchev decomposition of cos(ℓ𝜃) 

 
cos(ℓ𝜃) = ∑(

ℓ
ℓ − 2𝑘

)

[
ℓ
2
]

𝑘=0

(−1)𝑘(cos𝜃)ℓ−2𝑘(1 − (cos𝜃)2)𝑘

= 𝑇ℓ(cos𝜃) 

(3.52) 

With 

 

𝑇0(cos𝜃) = 1   

𝑇1(cos𝜃) = cos𝜃 

𝑇ℓ(cos𝜃) = 2 cos𝜃 𝑇ℓ−1(cos𝜃) − 𝑇ℓ−2(cos𝜃)   for  ℓ ≥ 2

 (3.53) 

WAMIT assumes that unit normals on the cylinder are pointed inward from the fluid 

domain toward the center of the cylinder; therefore a positive divergence should be 

associated with a decrease in buoyancy. This means that 

 

 𝐷𝑗0 = −
𝜕𝑢𝑗0

𝜕𝑥
−
𝜕𝑣𝑗0

𝜕𝑦
−
𝜕𝑤𝑗0

𝜕𝑧
= [

𝑗𝜋

𝐿
−
1

𝑅
] sin (

𝑗𝜋𝑧

𝐿
)                

𝐷𝑗1 = −
𝜕𝑢𝑗1

𝜕𝑥
−
𝜕𝑣𝑗1

𝜕𝑦
−
𝜕𝑤𝑗1

𝜕𝑧
= [

𝑗𝜋

𝐿
−
1

𝑅
] sin (

𝑗𝜋𝑧

𝐿
) cos𝜃       

𝐷𝑗2 = −
𝜕𝑢𝑗2

𝜕𝑥
−
𝜕𝑣𝑗2

𝜕𝑦
−
𝜕𝑤𝑗2

𝜕𝑧
= [

𝑗𝜋

𝐿
−
1

𝑅
] sin (

𝑗𝜋𝑧

𝐿
) cos(2𝜃)

  (3.54) 

Evidently,  

 𝐷𝑗𝑙 = [
𝑗𝜋

𝐿
−
1

𝑅
]  sin (

𝑗𝜋𝑧

𝐿
) cos(ℓ𝜃) (3.55) 

The hydrostatic stiffness matrix can be separated into two components: 
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𝑐𝑗ℓ𝑚𝑛
(1) = −𝜌𝑔 ∫∫ 𝑤𝑗𝑙𝑊3𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

= −𝜌𝑔 ∫∫ sin (
𝑚𝜋𝑧

𝐿
) cos(𝑛𝜃) cos (

𝑗𝜋𝑧

𝐿
) cos(ℓ𝜃)𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

= {−𝜌𝑔
𝑅𝐿𝛿ℓ𝑛
𝜀ℓ𝑛

[
cos((𝑚 − 𝑗)𝜋) − 1

(𝑚 − 𝑗)
+
cos((𝑚 + 𝑗)𝜋) − 1

(𝑚 + 𝑗)
 ]   for  |𝑚 − 𝑗| = 1 

0                                                otherwise

 

(3.56) 

 

where 

 𝜀ℓ𝑛 = {
1    for  (ℓ×𝑛) = 0
2    for  (ℓ×𝑛) ≥ 1

 (3.57) 

and  

 

𝑐𝑗ℓ𝑚𝑛
(2) = −𝜌𝑔 ∫∫ 𝑧 𝐷𝑗𝑙  𝑊3𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

= −𝜌𝑔 ∫∫ 𝑧 sin (
𝑚𝜋𝑧

𝐿
) cos(𝑛𝜃) sin (

𝑗𝜋𝑧

𝐿
) cos(𝑙𝜃) 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 

(3.58) 

 

From equation (3.58), the second component of the hydrostatic stiffness matrix is 

 

𝑐𝑗ℓ𝑚𝑛
(2) = −𝜌𝑔 ∫∫ 𝑧 𝐷𝑗𝑙  𝑊3𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

= −𝜌𝑔 ∫∫ 𝑧 [
𝑗𝜋

𝐿
−
1

𝑅
]  sin (

𝑗𝜋𝑧

𝐿
) sin (

𝑚𝜋𝑧

𝐿
) cos(ℓ𝜃) cos(𝑛𝜃)  𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

=

{
 
 

 
 𝜌𝑔𝐿2

𝛿ℓ𝑛
𝜋𝜀ℓ𝑛

(1 −
𝑗𝜋𝑅

𝐿
) [
cos((𝑚 + 𝑗)𝜋) − 1

(𝑚 + 𝑗)2
−
cos((𝑚 − 𝑗)𝜋) − 1

(𝑚 − 𝑗)2
] for 𝑚 ≠ 𝑗

𝜌𝑔𝐿2
𝜋𝛿ℓ𝑛
2𝜀ℓ𝑛

(1 −
𝑗𝜋𝑅

𝐿
)                                     for 𝑚 = 𝑗

 

(3.59) 
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The velocity potential can be decomposed into diffracted and radiated components 

according to 

 ϕ = 𝜑𝑒𝑖𝜔𝑡 = ϕD + ϕR = (𝜑D +∑𝛾𝑚𝑛𝜑𝑚𝑛
𝑚

)𝑒𝑖𝜔𝑡 (3.60) 

The diffracted velocity potential can be further decomposed into incident and 

scattered wave components according to 

 ϕD = ϕI + ϕS = (𝜑I + 𝜑S)𝑒
𝑖𝜔𝑡 (3.61) 

The wave exciting force 𝐹𝑗ℓ can be found as   

𝐹𝑗ℓ = −𝑖𝜔𝜌 ∫∫ 𝑊3𝑗ℓ (𝜑I + 𝜑S)|𝑟=𝑅  𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 (3.65)  

The radiation components will be further decomposed into added mass (𝜔2𝑎𝑗ℓ𝑚𝑛𝛾𝑚𝑛) and 

radiation damping (−𝑖𝜔𝑏𝑗ℓ𝑚𝑛𝛾𝑚𝑛) contributions according to 

(𝜔2𝑎𝑗ℓ𝑚𝑛−𝑖𝜔𝑏𝑗ℓ𝑚𝑛)𝛾𝑚𝑛 = −𝑖𝜔𝜌𝛾𝑚𝑛 ∫∫ 𝑊3𝑗ℓ 𝜑𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

 (3.66)  

Thus, we have the following set of equations of motion to be incorporated in WAMIT: 

∑[−𝜔2(𝑀𝑗ℓ𝑚𝑛 + 𝑎𝑗ℓ𝑚𝑛)+𝑖𝜔𝑏𝑗ℓ𝑚𝑛
𝑚,𝑛

+ (𝐶𝑗ℓ𝑚𝑛 + 𝑐𝑗ℓ𝑚𝑛
(1) + 𝑐𝑗ℓ𝑚𝑛

(2) )] 𝛾𝑚𝑛 = 𝐹𝑗ℓ 

(3.67)  

  

3.1.6. Natural frequencies 

The natural frequencies of the elastic cylinder may be determined by finding the roots 

of the characteristic equation, which is obtained by calculating the determinant of [ℒ′]. 

Denoting 
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Ω2 =
𝜌𝑠(1 − 𝜈

2)𝑅2𝜔2

𝐸
 (3.68)  

 

the determinant of [ℒ ′] is 

|

−Ω2 + 𝜆2 + 𝑐1𝑛
2 −𝑐2𝜆𝑛 −𝜈𝜆

−𝑐2𝜆𝑛 −Ω2 + 𝑐1𝜆
2 + 𝑛2 𝑛

−𝜈𝜆 𝑛 −Ω2 + 1 + 𝜇(𝜆2 + 𝑛2)2
| (3.69)  

 

Setting the determinant of [ℒ ′] equal to zero leads to the frequency equation 

Ω6 − 𝐾2Ω
4 +𝐾1Ω

2 − 𝐾0 = 0 (3.70)  

where 

𝐾2 = 1 + (1 + 𝑐1)(𝑛
2 + 𝜆2) + 𝜇(𝑛2 + 𝜆2)2 (3.71)  

𝐾1 = 𝑐1[(3 + 2𝜈)𝜆
2 + 𝑛2 + (𝑛2 + 𝜆2)2] + (1 + 𝑐1)𝜇(𝑛

2 + 𝜆2)3 (3.72)  

𝐾0 = 𝑐1[(1 − 𝜈
2)𝜆4 + 𝜇(𝑛2 + 𝜆2)4] (3.73)  

 

Each of the roots of equation (3.70) is associated with a natural frequency ωn. 

According to Leissa (1973), the lowest one corresponds to radial displacements. In order 

to set the natural frequency of the shell in the range of studied wave frequencies, the 

material properties of the cylinder are chosen. Table 3.1 presents the selected material 

properties and geometric characteristics of the cylinder. Table 3.2 shows the natural 

periods associated with each (m, n) mode of vibration. Note that these natural periods of 

the cylinder are determined under the assumption that there is no interior flow inside the 

cylinder. For the case where the cylinder is filled with water, the natural period need to be 

identified through the calculation of the Response Amplitude Operator (RAO).  
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Table 3.1 Material properties of the elastic cylinder 

Parameter Value 

Radius of cylinder, R 4.3m 

Draft of cylinder, d 10.5m 

Water depth, L 10.5m 

Thickness of cylinder, h 0.025m 

Poisson’s coefficient, v 0.49 

Young’s modulus, E 1 MPa 

Density, 𝝆𝒔 2300 kg/m3 

 

 

Table 3.2 Natural periods of the elastic cylinder (not filled with water). 

 n=0 n=1 n=2 n=3 

m=1 1.7386 2.6834 5.0069 8.7874 

m=2 1.3218 1.5815 2.2207 3.2043 

m=3 1.3061 1.4063 1.6891 2.1351 

m=4 1.3001 1.3529 1.5076 1.7574 

 

 

3.1.7. Diffraction and radiation potentials – exterior flow 

The incident wave propagating in the θ = 0 direction can be expressed in cylindrical 

coordinates as: 

ϕI(𝑟, 𝜃, 𝑧, 𝑡)

=  𝑖
𝑔𝐴

𝜔
 
cosh(𝑘(𝑧 + 𝐿))

cosh(𝑘𝐿)
 {∑ 𝑖−𝑛𝜀𝑛 𝐽𝑛(𝑘𝑟) cos(𝑛𝜃)

∞

𝑛=0

} 𝑒𝑖𝜔𝑡 

(3.74)  
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where 𝐽𝑛(𝑘𝑟) is the Bessel function of the first kind and 

𝜀𝑛 = {
1    for  𝑛 = 0
2    for  𝑛 ≥ 1

 (3.75)  

The free surface elevation associated with this velocity potential is 

𝜂I = −
1

𝑔

𝜕ΦI

𝜕𝑡
|
𝑧=0

 

= Re {𝐴𝑒𝑖𝜔𝑡∑𝑖−𝑛𝜀𝑛 𝐽𝑛(𝑘𝑟) cos(𝑛𝜃)

∞

𝑛=0

} 

= 𝐴 cos(𝑘𝑥 − 𝜔𝑡) 

(3.76)  

The first-order velocity potential for the wave scattered by a rigid, bottom-mounted 

circular cylinder in the domain r ≥ R, expressed in cylindrical coordinates, is given by 

MacCamy and Fuchs (1954): 

ϕs(𝑟, 𝜃, 𝑧, 𝑡) =  −𝑖
𝑔𝐴

𝜔
 
cosh(𝑘(𝑧 + 𝐿))

cosh(𝑘𝐿)
∙  

{∑ 𝑖−𝑛𝜀𝑛  
𝐽𝑛

′ (𝑘𝑅)

[𝐻𝑛
(2)
(𝑘𝑅)]

′  𝐻𝑛
(2)
(𝑘𝑟) cos(𝑛𝜃)

∞

𝑛=0

}𝑒𝑖𝜔𝑡 

(3.77)  

where 𝐻𝑛
(2)
(𝑘𝑟) is the Hankel function of the second kind and  [∙]′  denotes the 

derivative with respect to the argument of the function. For the deformable cylinder the 

scattering potential is the same as the one for the non-deformable body as specified by 

Newman (1994). 

 The first-order pressure on the cylinder due to the combined effects of the incident 

and scattered waves is 



59 
 

−𝜌
𝜕ΦD

𝜕𝑡
|
𝑟=𝑅

=  𝜌𝑔𝐴 
cosh(𝑘(𝑧 + 𝐿))

cosh(𝑘𝐿)
 {∑ 𝑖−𝑛𝜀𝑛  [𝐽𝑛(𝑘𝑅)

∞

𝑛=0

− 
𝐽𝑛

′ (𝑘𝑅)

[𝐻𝑛
(2)(𝑘𝑅)]

′  𝐻𝑛
(2)(𝑘𝑅)]  cos(𝑛𝜃)} 𝑒𝑖𝜔𝑡

= −2𝑖
𝜌𝑔𝐴

𝜋𝑘𝑅
 
cosh(𝑘(𝑧 + 𝐿))

cosh(𝑘𝐿)
 {∑

𝑖−𝑛𝜀𝑛

[𝐻𝑛
(2)(𝑘𝑅)]

′   cos(𝑛𝜃)

∞

𝑛=0

} 𝑒𝑖𝜔𝑡 

(3.78)  

 

where use is made of the identity 

𝐽𝑛(𝑘𝑅) − 
𝐽𝑛

′ (𝑘𝑅)

[𝐻𝑛
(2)(𝑘𝑅)]

′  𝐻𝑛
(2)(𝑘𝑅) = −

2𝑖

𝜋𝑘𝑅[𝐻𝑛
(2)(𝑘𝑅)]

′ (3.79)  

 

The diffraction force on the rigid cylinder (without the 𝑒𝑖𝜔𝑡 factor) is 

𝐹𝐷 = −𝑖𝜔𝜌 ∫∫ (𝜑I + 𝜑S)|𝑟=𝑅

2𝜋

0

0

−𝐿

𝑅 cos 𝜃 𝑑𝜃 𝑑𝑧

=  2𝑖
𝜌𝑔𝐴

𝜋𝑘
 ∫

cosh(𝑘(𝑧 + 𝐿))

cosh(𝑘𝐿)
𝑑𝑧

0

−𝐿

 {∫ ∑
𝑖−𝑛𝜀𝑛

[𝐻𝑛
(2)(𝑘𝑅)]

′  cos(𝑛𝜃)

∞

𝑛=0

cos 𝜃 𝑑𝜃

2𝜋

0

}

= 4𝜌𝑔𝐴 
 tanh(𝑘𝐿)

𝑘2[𝐻1
(2)(𝑘𝑅)]

′  

(3.80)  

 

and the diffraction moment about the origin of the global coordinate system is 



60 
 

𝑀𝐷 = −𝑖𝜔𝜌 ∫∫ (𝜑I + 𝜑S)|𝑟=𝑅

2𝜋

0

0

−𝐿

 𝑧 𝑅 cos 𝜃 𝑑𝜃 𝑑𝑧

=  2𝑖
𝜌𝑔𝐴

𝜋𝑘
 ∫

𝑧 cosh(𝑘(𝑧 + 𝐿))

cosh(𝑘𝐿)
𝑑𝑧

0

−𝐿

 {∫ ∑
𝑖−𝑛𝜀𝑛

[𝐻𝑛
(2)(𝑘𝑅)]

′  cos(𝑛𝜃) cos 𝜃

∞

𝑛=0

𝑑𝜃

2𝜋

0

}

= 4𝜌𝑔𝐴 
[sech(𝑘𝐿) − 1] 

𝑘3[𝐻1
(2)(𝑘𝑅)]

′   

(3.81)  

The deformable cylinder has a pulsating boundary with oscillatory radial 

displacements about r = R.  Dean and Dalrymple (1991) gave an analytical solution for 

the velocity potential of a pulsating cylindrical wave maker which has radial 

displacements. In that case, the associated radial velocity is 

𝜕

𝜕𝑡
𝑊(𝑧, 𝜃, 𝑡) = 𝑖𝜔 ∑ ∑𝛾𝑚𝑛 sin(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑒𝑖𝜔𝑡 (3.82)  

 

and the velocity potential of the radiated wave field in the domain r ≥ R, in cylindrical 

coordinates, is 

ϕR(𝑟, 𝜃, 𝑧, 𝑡) =  −𝑖
𝑔

𝜔
∑ ∑{𝑃𝑚𝑛 𝐻𝑛

(1)(𝑘𝑟)cosh(𝑘(𝑧 + 𝐿)) 

∞

𝑛=0

∞

𝑚=1

+ [∑𝐸𝑚𝑛𝑞 𝐾𝑛(𝜅𝑞𝑟) cos (𝜅𝑞(𝑧

∞

𝑞=1

+ 𝐿))]} cos(𝑛𝜃)𝑒𝑖𝜔𝑡  

(3.83)  

 

where 𝐻𝑛
(1)
(𝑘𝑟) is the Hankel function of the first kind and 𝐾𝑛(𝜅𝑞𝑟) is the modified 

Bessel function of the second kind.  

For the propagating wave, the following dispersion relation has to be satisfied: 
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𝜔2 = 𝑔𝑘 tanh(𝑘𝐿) (3.84)  

while the wavenumber 𝜅ℓ of the evanescent mode satisfies the dispersion relation 

𝜔2 = −𝑔𝜅𝑞tan(𝜅𝑞𝐿) (3.85)  

At the boundary (r=R), the radial velocity of the thin shell must equal the radial 

velocity of the fluid, therefore 

𝜕ϕR
𝜕𝑟

|
𝑟=𝑅

=
𝜕

𝜕𝑡
𝑊(𝑧, 𝜃, 𝑡)

= 𝑖𝜔 ∑∑𝛾𝑚𝑛 sin(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑒𝑖𝜔𝑡 

(3.86)  

 

Therefore for any (m, n) mode we must have 

𝛾𝑚𝑛 sin(
𝑚𝜋𝑧

𝐿
) = −

𝑔

𝜔2
{ 𝑘𝑃𝑚𝑛 [𝐻𝑛

(1)(𝑘𝑅)]
′

cosh(𝑘(𝑧 + 𝐿))

+ [∑𝜅𝑞𝐸𝑚𝑛𝑞 [𝐾𝑛(𝜅𝑞𝑅)]
′
 cos (𝜅𝑞(𝑧 + 𝐿))

∞

𝑞=1

]} 

(3.87)  

 

 

Multiply equation (3.87) by cosh(𝑘(𝑧 + 𝐿)) , and multiply equation (3.87) by 

cos (𝜅𝑞(𝑧 + 𝐿)). Then we integrate them over the water depth to obtain 

𝑃𝑚𝑛 = −𝛾𝑚𝑛
𝜔2

𝑔𝑘[𝐻𝑛
(1)(𝑘𝑅)]

′

∫ sin(𝑚𝜋𝑧/𝐿) cosh(𝑘(𝑧 + 𝐿))  𝑑𝑧
0

−𝐿

∫ cosh2(𝑘(𝑧 + 𝐿))  𝑑𝑧
0

−𝐿

= −𝛾𝑚𝑛
4

[𝐻𝑛
(1)(𝑘𝑅)]

′

(𝑘𝐿) tanh(𝑘𝐿) (𝑚𝜋)[cos(𝑚𝜋) − cosh(𝑘𝐿)]

[(𝑚𝜋)2+ (𝑘𝐿)2][2𝑘𝐿 + sinh(2𝑘𝐿)]
 

(3.88)  
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𝐸𝑚𝑛𝑞 = −𝛾𝑚𝑛
𝜔2

𝑔𝜅𝑞[𝐾𝑛(𝜅𝑞𝑅)]
′′

∫ sin (
𝑚𝜋𝑧
𝐿 ) cos (𝜅𝑞(𝑧 + 𝐿))   𝑑𝑧

0

−𝐿

∫ cos2 (𝜅𝑞(𝑧 + 𝐿))   𝑑𝑧
0

−𝐿

= 𝛾𝑚𝑛
4

[𝐾𝑛(𝜅𝑞𝑅)]
′

(𝜅𝑞𝐿)tan(𝜅𝑞𝐿)(𝑚𝜋) [cos(𝑚𝜋) − cos(𝜅𝑞𝐿)]

[(𝑚𝜋)2 − (𝜅𝑞𝐿)
2
] [2𝜅𝑞𝐿 + sin(2𝜅𝑞𝐿)]

 

(3.89)  

 

Once 𝑃𝑚𝑛  and 𝐸𝑚𝑛𝑞  are known, we can determine the added mass, radiation 

damping, and exciting force matrices using the analytical expressions for the velocity 

potentials of the incident, scattered and radiated waves 

𝑎𝑗ℓ𝑚𝑛

= 𝜌
8𝜋𝛿ℓ𝑛
𝜀ℓ𝑛

𝑅𝐿2 𝑅𝑒 {
1

2𝑘𝐿 + sinh(2𝑘𝐿)

𝐻𝑛
(1)(𝑘𝑅)

[𝐻𝑛
(1)(𝑘𝑅)]

′

∙
(𝑚𝜋)[cos(𝑚𝜋) − cosh(𝑘𝐿)]

[(𝑚𝜋)2+ (𝑘𝐿)2]
 
(𝑗𝜋)[cos(𝑗𝜋) − cosh(𝑘𝐿)]

[(𝑗𝜋)2+ (𝑘𝐿)2]

+∑
1

2𝜅𝑞𝐿 + sin(2𝜅𝑞𝐿)

𝐾𝑛(𝜅𝑞𝑅)

[𝐾𝑛(𝜅𝑞𝑅)]
′′

∞

𝑞=1

∙
(𝑚𝜋)[cos(𝑚𝜋) − cos(𝜅𝑞𝐿)]

[(𝑚𝜋)2 − (𝜅𝑞𝐿)
2
]

  
(𝑗𝜋)[cos(𝑗𝜋) − cos(𝜅𝑞𝐿)]

[(𝑗𝜋)2 − (𝜅𝑞𝐿)
2
]

} 

(3.90)  

 

The radiation damping matrix is 

𝑏𝑗ℓ𝑚𝑛 = 𝑅𝑒 {𝜌 ∫∫ 𝑊3𝑗ℓ 𝜑𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

}

=
8𝜋𝛿ℓ𝑛
𝜀ℓ𝑛

𝜌𝑅𝐿2𝜔 𝑅𝑒 {
𝑖

2𝑘𝐿 + sinh(2𝑘𝐿)

𝐻𝑛
(1)(𝑘𝑅)

[𝐻𝑛
(1)(𝑘𝑅)]

′   

∙
(𝑚𝜋)[cos(𝑚𝜋) − cosh(𝑘𝐿)]

[(𝑚𝜋)2+ (𝑘𝐿)2]
 
(𝑗𝜋)[cos(𝑗𝜋) − cosh(𝑘𝐿)]

[(𝑗𝜋)2+ (𝑘𝐿)2]
} 

(3.91)  
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The diffraction force vector is 

𝐹𝑗ℓ = −𝑖𝜔𝜌 ∫∫ 𝑊3𝑗ℓ (𝜑I + 𝜑S)|𝑟=𝑅  𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

=

{
 
 
 
 
 

 
 
 
 
 
𝜌𝑔𝐴𝐿

𝑘

4𝑖

[𝐻0
(2)(𝑘𝑅)]

′

(𝑗𝜋)[cos(𝑗𝜋) − cosh(𝑘𝐿)]

[(𝑗𝜋)2+ (𝑘𝐿)2]cosh(𝑘𝐿)
        for  ℓ = 0

𝜌𝑔𝐴𝐿

𝑘

4

[𝐻1
(2)(𝑘𝑅)]

′

(𝑗𝜋)[cos(𝑗𝜋) − cosh(𝑘𝐿)]

[(𝑗𝜋)2+ (𝑘𝐿)2]cosh(𝑘𝐿)
        for  ℓ = 1

𝜌𝑔𝐴𝐿

𝑘

4𝑖−ℓ+1

[𝐻ℓ
(2)(𝑘𝑅)]

′

(𝑗𝜋)[cos(𝑗𝜋) − cosh(𝑘𝐿)]

[(𝑗𝜋)2+ (𝑘𝐿)2]cosh(𝑘𝐿)
        for  ℓ ≥ 2

 

(3.92)  

 

3.1.8. Radiation potentials – interior flow 

The shell is designed to be very flexible for the case of the deformable cylinder. 

Therefore, in order to equilibrate the exterior hydrostatic pressure, the cylinder must be 

considered as filled with water. This means that the interior modes of fluid motion must 

be considered in the model, and the interior flow will be coupled to the exterior flow. The 

deformations of the cylinder will be forced by the pressure difference across the cylinder 

wall. We also assume that the fluid level inside the cylinder matches the mean water level 

outside the cylinder so that there is no net hydrostatic pressure on the cylinder wall.  

The net radial pressure on the cylinder is therefore 

𝑓𝑟(𝑧, 𝜃) = −𝑖𝜔𝜌[𝜑𝑅𝐼(𝑅, 𝜃, 𝑧) − 𝜑(𝑅, 𝜃, 𝑧)] (3.90)  

Here, 𝜑𝑅𝐼  is the radiation potential of the interior flow. Since the radius of the 

cylinder is small relative to the height, we assume that the symmetric pumping modes will 

be the primary modes so that r = 0 is an anti-node 

lim
𝑟→0

𝜕𝜑𝑅𝐼
𝜕𝑟

= 0 (3.91)  
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The radial boundary conditions suggest a radiation potential for the interior flow of 

the form 

ϕ𝑅𝐼(𝑟, 𝜃, 𝑧, 𝑡) = 𝜑𝑅𝐼(𝑟, 𝜃, 𝑧)𝑒
𝑖𝜔𝑡 =

 −𝑖
𝑔

𝜔
∑ ∑ {𝑄𝑚𝑛 𝐽𝑛(𝑘𝑟)cosh(𝑘(𝑧 + 𝐿))  +

∞
𝑛=0

∞
𝑚=1

[∑ 𝐷𝑚𝑛𝑠 𝐼𝑛(𝜅𝑠𝑟) cos(𝜅𝑠(𝑧 + 𝐿))
∞
𝑠=1 ]}cos(𝑛𝜃)𝑒𝑖𝜔𝑡   

(3.92)  

 

where 𝐼𝑛(𝜅𝑠𝑟) is the modified Bessel function of the first kind. At r = R, the radial velocity 

of the thin shell must equal the radial velocity of the fluid 

𝜕ϕ𝑅𝐼
𝜕𝑟

|
𝑟=𝑅

=
𝜕

𝜕𝑡
𝑊(𝑧, 𝜃, 𝑡)

= 𝑖𝜔 ∑∑𝛾𝑚𝑛 sin(𝑚𝜋𝑧/𝐿) cos(𝑛𝜃)

∞

𝑛=0

∞

𝑚=1

𝑒𝑖𝜔𝑡 

(3.93)  

 

Therefore, for any (m, n) mode we must have 

𝛾𝑚𝑛 sin(𝑚𝜋𝑧/𝐿)

= −
𝑔

𝜔2
{ 𝑘𝑄𝑚𝑛 [ 𝐽𝑛(𝑘𝑅)]

′cosh(𝑘(𝑧 + 𝐿))

+ [∑𝜅𝑠𝐷𝑚𝑛𝑠 [𝐼𝑛(𝜅𝑠𝑅)]
′  cos(𝜅𝑠(𝑧 + 𝐿))

∞

𝑠=1

]} 

(3.94)  

 

Similarly, we multiply equation (3.94) by cosh(𝑘(𝑧 + 𝐿)) and multiply equation 

(3.94) by cos(𝜅𝑠(𝑧 + 𝐿)). Integrating over the water depth leads to 
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𝑄𝑚𝑛 = −𝛾𝑚𝑛
𝜔2

𝑔𝑘[𝐽𝑛(𝑘𝑅)]′
∫ sin(𝑚𝜋𝑧/𝐿) cosh(𝑘(𝑧 + 𝐿))  𝑑𝑧
0

−𝐿

∫ cosh2(𝑘(𝑧 + 𝐿))  𝑑𝑧
0

−𝐿

= −𝛾𝑚𝑛
4

[𝐽𝑛(𝑘𝑅)]′
(𝑘𝐿) tanh(𝑘𝐿) (𝑚𝜋)[cos(𝑚𝜋) − cosh(𝑘𝐿)]

[(𝑚𝜋)2+ (𝑘𝐿)2][2𝑘𝐿 + sinh(2𝑘𝐿)]
 

(3.95)  

 

𝐷𝑚𝑛𝑠 = −𝛾𝑚𝑛
𝜔2

𝑔𝜅𝑠[𝐼𝑛(𝜅𝑠𝑅)]′
′

∫ sin (
𝑚𝜋𝑧
𝐿 ) cos(𝜅𝑠(𝑧 + 𝐿))   𝑑𝑧

0

−𝐿

∫ cos2(𝜅𝑠(𝑧 + 𝐿))  𝑑𝑧
0

−𝐿

= 𝛾𝑚𝑛
4

[𝐼𝑛(𝜅𝑠𝑅)]′
′

(𝜅𝑠𝐿)tan(𝜅𝑠𝐿) (𝑚𝜋)[cos(𝑚𝜋) − cos(𝜅𝑠𝐿)]

[(𝑚𝜋)2 − (𝜅𝑠𝐿)2][2𝜅𝑠𝐿 + sin(2𝜅𝑠𝐿)]
 

(3.96)  

 

The added mass matrix for the interior flow is 

𝑎𝑗ℓ𝑚𝑛
(𝐼) = 𝑅𝑒 {+𝑖

𝜌

𝜔
∫∫ 𝑊3𝑗𝑛 𝜑𝑅𝐼𝑚𝑛 𝑅 𝑑𝜃 𝑑𝑧

2𝜋

0

0

−𝐿

}

= −𝜌
8𝜋𝛿ℓ𝑛
𝜀ℓ𝑛

𝑅𝐿2 𝑅𝑒 {
1

2𝑘𝐿 + sinh(2𝑘𝐿)

𝐽𝑛(𝑘𝑅)(𝑘𝑅)

[𝐽𝑛(𝑘𝑅)(𝑘𝑅)]′

∙
(𝑚𝜋)[cos(𝑚𝜋) − cosh(𝑘𝐿)]

[(𝑚𝜋)2+ (𝑘𝐿)2]
 
(𝑗𝜋)[cos(𝑗𝜋) − cosh(𝑘𝐿)]

[(𝑗𝜋)2+ (𝑘𝐿)2]

+∑
1

2𝜅𝑠𝐿 + sin(2𝜅𝑠𝐿)

𝐼𝑛(𝜅𝑠𝑅)

[𝐼𝑛(𝜅𝑠𝑅)]′
′

∞

𝑠=1

∙
(𝑚𝜋)[cos(𝑚𝜋) − cos(𝜅𝑠𝐿)]

[(𝑚𝜋)2 − (𝜅𝑠𝐿)2]
  
(𝑗𝜋)[cos(𝑗𝜋) − cos(𝜅𝑠𝐿)]

[(𝑗𝜋)2 − (𝜅𝑠𝐿)2]
} 

(3.97)  

 

Since the evanescent modes do not contribute to radiation damping and 𝐽𝑛(𝑘𝑅) is 

real valued for 𝑛 ≥ 0, we determine that the radiation damping matrix for the interior 

flow 𝑏𝑗ℓ𝑚𝑛
(𝐼)

 is zero. As a result, the equations of motion for the generalized modes in the 

case where the elastic cylinder is filled with water will be: 
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∑[−𝜔2(𝑀𝑗ℓ𝑚𝑛 + 𝑎𝑗ℓ𝑚𝑛 + 𝑎𝑗ℓ𝑚𝑛
(𝐼) ) + 𝑖𝜔𝑏𝑗ℓ𝑚𝑛 + 𝐶𝑗ℓ𝑚𝑛] 𝛾𝑚𝑛

𝑚,𝑛

= 𝐹𝑗ℓ (3.98)  

For the WAMIT setup, the body mass matrix 𝑀𝑗ℓ𝑚𝑛 is calculated externally and 

incorporated into WAMIT as an external input in the .FRC file. Besides, to account for 

the fact that WAMIT will calculate the hydrostatic stiffness matrix 𝑐𝑗ℓ𝑚𝑛
(1)

 and use it in 

the calculation of the RAOs, the stiffness matrix input to WAMIT in the .FRC file should 

be (𝐶𝑗ℓ𝑚𝑛 − 𝑐𝑗ℓ𝑚𝑛
(1) ), with the matrix 𝑐𝑗ℓ𝑚𝑛

(1)
 calculated externally. 

 

3.2. Radiation Surface Elevation of One Single Deformable Cylinder 

WAMIT has been run to study the behavior of one single deformable cylinder in 

shallow water, and to verify the analytical expressions for added mass, radiation damping, 

exciting force and RAOs. The first nine generalized modes are considered in this section. 

Table 3.3 represents the index of these nine modes with respect to certain values of m and 

n. The total number of modes in the input file for WAMIT is fifteen, which includes both 

six fixed body modes and nine generalized modes. The radiated wave field for the first 

five generalized modes is shown from Figure 3.2 to Figure 3.6. 

We can observe that as the mode index increases, the contribution of the radiated 

wave to the total wave field becomes smaller. Starting from the 4th mode, the radiation 

becomes negligible, especially when the distance from the cylinder is large.  
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Table 3.3 Index of generalized modes for a given pair of m and n. 

 n=0 n=1 n=2 

m=1 1 2 3 

m=2 4 5 6 

m=3 7 8 9 

 

 

    

Figure 3.2. Surface elevations of radiated waves for the 1st generalized modes.  
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Figure 3.3. Surface elevations of radiated waves for the 2nd generalized modes. 

 

 

Figure 3.4. Surface elevations of radiated waves for the 3rd generalized modes. 
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Figure 3.5. Surface elevations of radiated waves for the 4th generalized modes. 

 

 

Figure 3.6. Surface elevations of radiated waves for the 5th generalized modes. 

 

The added mass, radiation damping and exciting force coefficients of the first 6 

generalized modes for the exterior flow are plotted from equation (3.90), equation (3.91) 

and equation (3.92) and are shown in Figures 3.7, 3.8 and 3.9. The numerical outputs from 

WAMIT are also shown in the figures. Comparing these two results, we can observe that 
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WAMIT’s results are almost on top of the theoretical curves from our theory, which 

verifies the analytical expressions for the added mass, radiation damping and exciting 

force matrices. The good agreement between both results also demonstrates the accuracy 

for the evaluation of the velocity potentials using WAMIT’s high-order method. 

 

 

Figure 3.7. Added mass coefficients for the first six generalized modes. 
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Figure 3.7. Continued. 
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Figure 3.8. Damping coefficients for the first six generalized modes. 
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Figure 3.9. Exciting forces from Haskind relations for the first six generalized modes. 
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Figure 3.10. RAO for the first four generalized modes. 

 

In addition, the RAOs for the first four modes are plotted in Figure 3.10. Agreement 

between the theoretical values and WAMIT’s results has been reached. The 90 degree 

phase shift of the RAOs occurs at approximately 7.8 seconds, which indicates the natural 

periods associated with the first four modes are 7.8 seconds.  

 



75 
 

3.3. Natural Periods of One Single Deformable Cylinder Filled with Water: 

Comparison with Theoretical Values 

Koga and Tsushima (1990) provided an asymptotic solution for the natural frequency 

of the vibration of a cylindrical shell filled with a liquid. The solution is valid for different 

combinations of boundary conditions at the top and bottom ends. The system considered 

is a circular cylindrical shell having a radius 𝑅, a length 𝐿, a thickness h, a mass per unit 

volume 𝜌𝑠, Poisson’s ratio 𝜈, and Young’s modulus 𝐸. The shell is filled with a liquid 

having a mass per unit volume 𝜌. According to their theory, the equation for the radial 

displacement can yield a formula for the natural frequency: 

𝜔2 = 𝜔0
2 [1 +

(1 − 𝜐2)𝜉1
4

𝜇(𝑛2 − 1)2
] (3.99)  

where 𝜔0 is the definite value of 𝜔 and can be expressed as: 

𝜔0
2 =

𝜇𝑛2(𝑛2 − 1)2

𝛾𝑛2 + 1
 (3.100)  

with 𝜇 =
ℎ2

12𝑅2
≪ 1. n is the wave number for the interior flow. 𝛾 is defined as: 

𝛾 = 1 +
𝜌𝜐
𝜌𝑠

 (3.101)  

where 𝜌𝜐 is the virtual mass of the liquid and is given approximately by: 

𝜌𝜐 =
𝜌𝑅

𝑛ℎ
 (3.102)  

In equation (3.99), 𝜉1 is unknown and can be determined from the characteristic 

equations of the boundary conditions. In the present study, the ends of the cylindrical shell 

are clamped and the associated characteristic equation is as follows: 

𝑐𝑜𝑠ℎ(𝑛𝜉1𝐿) 𝑐𝑜𝑠(𝑛𝜉1𝐿) − 1 = 0 (3.103)  

The eigenvalue 𝜉1 is given as the minimum root of the characteristic equation: 

𝜉1 =
4.730 ∗ 𝑅

𝑛𝐿
 (3.104)  
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Equation (3.98) is used to determine the natural frequency of the vibrating thin shell. 

Once the natural frequency is obtained, it can be converted into natural period through the 

relation 𝑇 =
2𝜋

𝜔
. The dimensions and structural parameters for the elastic cylinder in Table 

3.1 are used in the calculation, and the resulting natural period is found to be 7.41 seconds, 

which is consistent with our observation from Figure 3.10.  
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4. ARRAYS OF BOTTOM-MOUNTED ELASTIC CYLINDERS 

 

The preceding steps in the previous sections have been realized in order to study the 

wave interactions with elastic cylinder arrays. In the rigid cylinder cases, our setup of the 

WAMIT program has been validated by the effective medium approach and the theory of 

the Fabry–Pérot interferometer. For the elastic cylinder, the generalized deformation 

modes incorporated in WAMIT are also proven to be successful. Material properties of 

the deformable cylinder have been chosen so that the natural period of the "breathing" 

mode is in the range of studied incident wave periods. In this final section, both the 

radiation and the diffraction problems of deformable cylinder arrays will be taken into 

consideration. Four cases of different arrays of elastic cylinders are implemented in 

WAMIT, and the results of surface wave elevations are discussed. The objective is to 

investigate the phenomenon that the incident waves may be trapped and attenuated within 

the cylinder array, which is analogous to the attenuation effect that occurs when an 

acoustic wave propagates through bubbly water.  

 

4.1. Diffraction and Radiation of Arrays of Elastic Cylinders 

The final step of this study is to activate generalized body modes for the cylinders in 

WAMIT so that we can obtain the wave interactions of deformable cylinder arrays with 

both radiated and diffracted waves included. For this purpose, three cases of deformable 

cylinder arrays have been performed in WAMIT. The setup of those cases is shown in 

Table 4.1. The wave periods in the first three cases are 20s. The first one is a 49-cylinder 

case and the only generalized body mode considered in this case is the “breathing” mode. 

The second one is a 2 by 50 cylinder case. The third one has 200 elastic cylinders, arranged 

in a 4 by 50 array. The last case has the same array as the third one, but the wave period 

of this case is 12s. All cases have nine generalized modes activated except for the first one.  
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Table 4.1 Deformable cylinder array cases studied in WAMIT. 

 Case D1 Case D2 Case D3 Case D4 

Columns 1 2 4 4 

Rows 49 50 50 50 

Total 49 100 200 200 

Length 727.5m 742.5m 742.5m 742.5m 

Wave period 20s 20s 20s 12s 

Modes 

considered 

“breathing” 

mode 

all nine 

modes 

all nine 

modes 

all nine 

modes 

 

 

Table 4.2 Input parameters for WAMIT in the cases of deformable cylinder arrays. 

Parameter Value 

Water depth, h 10.5m 

Wave period, T 20s 

Wavenumber outside array, k 0.0315m-1 

Incident wave angle, 𝜽 0 

Incident wave amplitude, A 1 

Radius of cylinder, R 4.3m 

Draft of cylinder, d 10.5m 

Spacing between cylinders, a 15m 

Filling ratio, fs 0.2582 

Gravitational acceleration, g 9.81m/s2 
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Input parameters for the WAMIT can be found in Table 4.2. The results of all four 

cases are shown from Figure 4.1 to Figure 4.20. The radiated wave fields are shown in 

Figures 4.1, 4.3, 4.8, 4.13 and 4.18, while the free surface elevations associated with both 

radiation and diffraction are represented in Figures 4.5, 4.10, 4.15 and 4.19.  

Figure 4.1. Radiated wave field for the 50 deformable cylinders with an incident wave of 20s period. 

Figure 4.2. Anomaly for the 50 deformable cylinders with an incident wave period T=20s. Both 

radiation and diffraction are included. 
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For cases D2, D3 and D4, a comparison of the surface elevation contributions from 

the diffraction and the radiation is executed from WAMIT’s output. First the cylinders are 

treated as rigid bodies that cannot deform, then the radiation is added to get the complete 

wave field of the deformable cylinder problem. The objective of this comparison is to 

analyze the effect caused by the vibration of cylinders. Results are shown in Figures 4.4, 

4.5, 4.9, 4.10, 4.14 and 4.15. For those plots the surface wave elevation is determined from 

only the real part of WAMIT’s result, therefore the phase difference is not presented. Only 

diffraction problem is considered in Figures 4.4, 4.9 and 4.14, while in Figures 4.5, 4.10 

and 4.15 both radiation and diffraction are calculated. The wave fields in those two figures 

seem to be similar, however there exists difference in term of the position of amplitude 

changes. In Figure 4.4, where waves are only diffracted by rigid cylinders, a variation of 

wave amplitude can be observed on the incident wave side, while the wave pattern on the 

transmitted side is much more stable. However, on the contrary, the transmitted wave in 

Figure 4.5 is more disturbed than the waves coming from the incident side. This is due to 

the fact that in Figure 4.5, the wave radiated by the vibrating cylinders not only 

compensates the reflected waves on the left hand side, but also disturbs the transmitted 

waves on the right hand side.  
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Figure 4.3. Radiated wave field for the 2 by 50 deformable cylinders with an incident wave period 

T=20s. 

 

 

Figure 4.4. Diffraction wave surface elevation for the 2 by 50 deformable cylinders with an incident 

wave period T=20s. 
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Figure 4.5. Diffraction and radiation wave surface elevation for the 2 by 50 deformable cylinders with 

an incident wave period T=20s.  

 

Figure 4.6. Anomaly for the 2 by 50 deformable cylinders with an incident wave period T=20s. Only 

diffraction problem is included. 
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Figure 4.7. Anomaly for the 2 by 50 deformable cylinders with an incident wave period T=20s. Both 

radiation and diffraction are included. 

 

To better reveal the contribution from radiation, we can apply the anomaly analysis 

to this comparison. From Figure 4.6 and Figure 4.7, one can notice that the contribution 

from radiation is easy to identify, as the range of surface elevation changes from [-0.05, -

0.5] to [-0.3, -0.7] as the radiation is introduced in Figure 4.7. In addition, when the 

cylinders are radiating waves, the variation of wave amplitude is more obvious on both 

sides of the array. The “tip effect” can be seen on the plot where only the contribution of 

wave elevation from diffraction is considered.  

From Figure 4.10 and Figure 4.15, one can observe that for the same 4 by 50 array, 

the variation of wave amplitude becomes easier to identify as the incident wave length 

decreases. For the 12s case the “focusing” area where the wave amplitude is relatively 

larger than the surrounding area is also more obvious.  
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Figure 4.8. Radiated wave field for the 4 by 50 deformable cylinders with an incident wave period 

T=20s. 

 
Figure 4.9. Diffraction wave surface elevation for the 4 by 50 deformable cylinders with an incident 

wave period T=20s. 
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Figure 4.10. Diffraction and radiation wave surface elevation for the 4 by 50 deformable cylinders 

with an incident wave period T=20s.  

 
Figure 4.11. Anomaly for the 4 by 50 deformable cylinders with an incident wave period T=20s. Only 

diffraction problem is included. 
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Figure 4.12. Anomaly for the 4 by 50 deformable cylinders with an incident wave period T=20s. Both 

radiation and diffraction are included. 

 
Figure 4.13. Radiated wave field for the 4 by 50 deformable cylinders with an incident wave period 

T=12s.  
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Figure 4.14. Diffraction wave surface elevation for the 4 by 50 deformable cylinders with an incident 

wave period T=12s. 

 
Figure 4.15. Diffraction and radiation wave surface elevation for the 4 by 50 deformable cylinders 

with an incident wave period T=12s.  
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Figure 4.16. Anomaly for the 4 by 50 deformable cylinders with an incident wave period T=12s. Only 

diffraction problem is included. 

 

 
Figure 4.17. Anomaly for the 4 by 50 deformable cylinders with an incident wave period T=12s. Both 

radiation and diffraction are included. 
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In addition, the radiated wave component that caused by the first mode (the 

“breathing” mode) is extracted from the nine modes, and the associated radiation and 

diffraction surface elevations and anomaly of this single mode are plotted in Figures 4.18, 

4.19 and 4.20. Comparing Figures 4.13, 4.15 and 4.17 with Figures 4.18, 4.19 and 4.20, 

one can find that the radiated wave field generated from all nine generalized modes 

appears to be similar as the radiated wave field caused by only the “breathing” mode. This 

similarity has further verified the previous conclusion that the contribution from higher 

body modes is very small comparing to lower modes. 

Figure 4.18. Radiated wave field of the first mode (“breathing” mode) for the 4 by 50 deformable 

cylinders with an incident wave period T=12s. 
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Figure 4.19. Diffraction and radiation wave surface elevation for the 4 by 50 deformable cylinders 

with an incident wave period T=12s. Only the first mode (“breathing” mode) is included. 

 

 
Figure 4.20. Anomaly for the 4 by 50 deformable cylinders with an incident wave period T=12s. Both 

radiation and diffraction problems are considered. Only the first mode (“breathing” mode) is included. 
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4.2. Reflection and Transmission Coefficients of Arrays of Elastic Cylinders 

The reflection and transmission coefficients for the completed deformable cylinder 

cases are listed in Table 4.3. To further compare the cases where the cylinders are rigid 

with the cases that the cylinders are deformable, and to analyze contribution from the 

radiation, the coefficients associated with the diffraction problem for the same arrays are 

also provided. In addition, for the case D4, the reflection and transmission coefficients 

associated with the situation where only the “breathing” mode is included are calculated. 

As we can see in the table, when the radiation is included, the calculated transmission 

coefficients tend to be larger than those in the rigid cylinder cases. However, we expected 

the transmission coefficients to decrease when the radiation is added to the cases. This 

indicates that for the cases currently studied, the trapping of waves has not yet been 

reached.  

 

Table 4.3 Reflection and transmission coefficients for the deformable cylinder cases.  

Case 
Array 

size 

Generalized modes 

considered 

Wave 

period 

Include 

radiation 

Reflection 

coefficient 

Transmission 

coefficient 

D1 1 by 50 “breathing” mode 20s 
No 0.5016 0.4944 

Yes 0.4672 0.5202 

D2 2 by 50 9 modes 20s 
No 0.5015 0.4840 

Yes 0.4740 0.5196 

D3 4 by 50 9 modes 20s 
No 0.4915 0.4655 

Yes 0.4942 0.6084 

D4 4 by 50 9 modes 12s 
No 0.5028 0.4832 

Yes 0.6987 0.7845 

D4 4 by 50 “breathing”mode 12s Yes 0.5771 0.6372 
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4.3. Response Amplitude Operator (RAO) of Arrays of Elastic Cylinders 

In Figure 4.21, the RAOs of the cylinders for the case of 4 by 50 cylinders is plotted 

with respect to the cylinder index. The index of the cylinders always increases in the 

positive directions of the x-axis and the y-axis. As we can see in the plots, for the 1st and 

2nd generalized body modes, larger RAOs can be found on the cylinders in the first edge 

of the effective medium. The incident wave encounters those cylinders first, and therefore 

the ratio of the cylinder’s motion to the wave amplitude causing that motion becomes 

higher. However, for other modes, the largest RAOs are identified on the second column 

of cylinders in the 4 by 50 cylinders array. 

 

 

Figure 4.21. RAO for the first six generalized modes in the case of 200 elastic cylinders. 
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Figure 4.21. Continued. 

 

4.4. Relation Between Radiation and Scattering 

Although the scattering problem is different from the radiation, there exist certain 

relationships between them. In our analysis of wave interactions with elastic cylinder 

arrays, attention is mainly focused on the relationships between the reflection and 

transmission coefficients of the scattered waves and the radiated wave amplitudes. The 

objective of this analysis is to verify that the energy is conserved during the refraction 

process. Newman (1975) related the properties of the scattering problem and the radiation 
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problem for the interaction of an incident plane progressive wave system with a cylinder 

body. His analytical solutions have been used in this study to verify WAMIT’s results of 

surface elevations of radiated and diffracted wave field.  

At large distances from the body, on the free surface, the radiation potential can be 

expressed as 

 𝜙𝑅~𝐴±𝑒
∓𝑖𝐾𝑥, 𝑥 → ±∞ (4.1) 

where 𝐴±  are complex coefficients, representing the wave amplitude and phase at 

infinity.  

For the scattering problem, the body is stationary, and at infinity on the free surface 

the scattering wave potential is 

 𝜙𝑆~ {
𝑒𝑖𝐾𝑥 + 𝑅𝑒−𝑖𝐾𝑥 ,         𝑥 → +∞

𝑇𝑒𝑖𝐾𝑥,                𝑥 → −∞
 (4.2) 

where R and T are the complex reflection and transmission coefficients. Here, 𝑒𝑖𝐾𝑥 

represents the incident wave of unit amplitude. 

Define the composite potential 

 𝜙𝐶 = 𝜙𝑅 − (
𝐴−
𝑇
)𝜙𝑆 (4.3) 

such that there are no waves at 𝑥 = −∞.  

On the free surface at infinity, the composite potential should satisfy the following 

boundary condition: 

 𝜙𝑐~ {
(𝐴+ −

𝐴−𝑅

𝑇
)𝑒−𝑖𝐾𝑥 − (

𝐴−
𝑇
)𝑒𝑖𝐾𝑥,    𝑥 → +∞

0,                            𝑥 → −∞
 (4.4) 

 

whereas on the cylinder body, 

 
𝜕𝜙𝐶
𝜕𝑛

= 𝑓 (4.5) 
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Here f is a given function of position on the body.  

Assuming that the body geometry and wavelength are such that complete reflection 

is impossible, the upstream standing wave for the boundary-value problem 𝜓𝑐 = 𝐼𝑚(𝜙𝐶) 

must vanish. Therefore, the imaginary part of equation (4.4) must be zero,  

 𝐼𝑚 [(𝐴+ −
𝐴−𝑅

𝑇
)𝑒−𝑖𝐾𝑥 − (

𝐴−
𝑇
) 𝑒𝑖𝐾𝑥] = 0 (4.6) 

which means  

 𝐴+ −
𝐴−𝑅

𝑇
+
𝐴−
∗

𝑇∗
= 0 (4.7) 

where an asterisk denotes a complex conjugate. Multiplying the complex conjugate of the 

above equation by R, and adding this product to itself, we have 

 𝐴+ + 𝐴+
∗ 𝑅 +

𝐴−
∗ (1 − 𝑅𝑅∗)

𝑇∗
= 0 (4.8) 

From conservation of energy, 

 𝑅𝑅∗ + 𝑇𝑇∗ = 1 (4.9) 

From equation (4.8) and (4.9), we have 

 𝐴+ + 𝐴+
∗ 𝑅 + 𝐴−

∗ 𝑇 = 0 (4.10) 

Equation (4.8) and equation (4.10) are used to verify the relation between scattering 

and radiation problem for the three elastic cylinder cases. The selected field points for this 

calculation are in the area close to the x-axis, which indicates they are less affected by the 

tip effect. The reflection and transmission coefficients are derived from WAMIT’s 

numerical results as in the previous section of rigid cylinder arrays. The complex 

coefficients for the radiated wave can be found in the .6p output file from WAMIT. The 

results are shown in Table 4.4, where we can see that equation (4.8) and (4.10) are satisfied 

for the WAMIT cases of elastic cylinders. Therefore, the energy is conserved during the 

diffraction and radiation processes.  
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Table 4.4 Relation of radiation and scattering problems for the elastic cylinder cases. 

 Case D1 Case D2 Case D3 

Equation (4.8) 0.00107+0.0005i 0.00124+0.0009i 0.00079+0.001i 

Equation (4.10) 0.00082+0.0008i 0.00101+0.0011i 0.00058+0.0002i 
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5. SUMMARY AND CONCLUSIONS 

 

In this research, wave interactions with arrays of bottom-mounted vertical circular 

cylinders have been studied. The main objective is to study the degree to which the 

incident waves may be trapped inside the cylinder array, and to investigate acoustical and 

optical analogies. In fact, in the field of acoustics, an incident acoustic wave of certain 

frequency may be attenuated when it propagates through a layer of a bubbly liquid.  

The research starts with the wave interactions with arrays of bottom-mounted rigid 

cylinders, which simplifies the problem and enables us to verify the setup for the WAMIT 

program. Hu and Chan’s (2005) effective medium approach and the theory of the Fabry-

Pérot interferometer are integrated to predict the coefficients associated with the reflection 

and transmission processes when incident waves encounter the rigid cylinder array, and 

the theoretical results are compared with WAMIT’s numerical output. The equations of 

motion for a single elastic cylinder exposed to incident waves are derived, and the 

analytical expressions for the added mass, radiation damping, and exciting force are 

determined, as well as those for the structural mass and stiffness of the cylinder in the 

generalized modes of interest. Hydro-elastic analysis is then performed using WAMIT, 

and the numerical results are shown to match those obtained from the theoretical 

derivations. For the last step of this research, generalized modes are activated for the 

cylinder arrays, and hence the radiation problem is taken into account.  

This research is the continued work of the master’s thesis of Aldric Baquet (2010), 

who is a former student of Dr. Richard S. Mercier. Because of the large number of 

cylinders and the nine generalized body modes considered for each cylinder, the 

computational time for the case of arrays of deformable cylinders is very large. Each of 

the cases requires about one week to complete the POTEN part of WAMIT. The FORCE 
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part takes even longer when we have a great number of field points. Therefore, the 

outcome of this research is limited because of the huge computational effort involved.  

The following conclusions can be made from this research: 

i. The application of the effective medium approach in our research is successful. When 

integrated with the effect of the Fabry-Pérot interferometer, the approach can predict 

model reflection and transmission by a cylinder array. The pseudo-inverse method can be 

used to process WAMIT’s surface elevation output, and hence evaluate reflection and 

transmission coefficients for the array. The results present a good agreement with those 

determined by the effective medium approach. 

ii. A set of equations of motion of the pulsating cylinder can be derived according to the 

theory of vibrating thin shells. Added mass, radiation damping, and exciting force were 

calculated from the velocity potentials and expressed in matrix form. Agreement with 

WAMIT’s numerical results has been reached. This indicates that our analytical formulas 

are valid and can be further incorporated into WAMIT in the hydro-elastic analysis of 

vibrating cylinders.  

iii. The modal superposition method is successfully applied in the research. If the elastic 

cylinder is undergoing free vibrations, the total displacements in the vertical, tangential 

and radial directions can be expanded into Fourier series. Generalized body modes have 

been added into WAMIT's NEWMODE subroutine. These modes are circumferential 

modes and they describe the radial deformations of the cylinder. 

iv. The cylinder must be considered as filled with water in order to equilibrate the exterior 

hydrostatic pressure since the cylinder shell is very flexible. This means that the interior 

modes of fluid motion must be considered in the model.  

v. Values of cylinder dimensions and material properties have been selected to set the 

natural period at the lower end of the studied wave band. However, those dimensions may 

not ensure the water is shallow enough. Therefore, a redesign process might be needed.  



99 
 

vi. Analytical expressions of the reflection index, reflectance, and transmittance of the 

rigid cylinder arrays have been formulated. The values are in good agreement with those 

determined from WAMIT’s output file of wave elevation using the pseudo-inverse method. 

vii. When the length of the array is finite, a so-called “tip effect” can be observed at the 

top end of each array, where the wave field is more interfered than the area near the plane 

of symmetry through the middle of the array. In addition, the intensity of the effect changes 

with the array length. Throughout the different arrays of cylinders studied in the research 

we can easily notice a weaker disturbance of the wave amplitude for a longer array.  

viii. The “tip effect” can affect the transmitted wave amplitude, and hence the reflection 

and transmission coefficients identified from WAMIT’s result. Therefore, it is not possible 

to identify the transmitted wave component using the surface elevation data on the field 

points that are close to the tip. 

ix. For a given (m,n) mode, the natural period of the elastic cylinder that is not filled with 

water can be determined by finding the roots of the characteristic equation. The natural 

period of the cylinder filled with water can be obtained from the plots of RAO for certain 

modes, and the result is consistent with the theoretical values. 

x. As the mode index goes higher, its contribution of the radiated wave to the total wave 

surface elevation becomes smaller or even negligible.  

xi. The anomaly detection is proved to be effective in term of revealing the changes of 

wave amplitude in the wave domain, and hence the “tip effect” occurring at the ends of 

the arrays. In order to obtain the anomaly of the surface elevations, we can subtract the 

incident wave from WAMIT’s output of the refracted wave field.  

xii. For the elastic cylinder cases, the relationships between the reflection and 

transmission coefficients of the scattered waves and the radiated wave amplitudes are 

verified.  

xiii. When the radiation problem is added in the elastic cylinder cases, the transmission 



100 
 

coefficients become larger than those in the cases where only the diffraction problem is 

considered. Therefore, for the combinations of the wave conditions, the deformable 

cylinder array sizes and the cylinder dimension currently studied in this research, a 

significant attenuation of waves has not yet been found.  

The future work for this research would be looking for the combination of wave 

condition, cylinder array size and cylinder dimension that can cause a trapping of waves 

inside the array. It can also be focused on conducting experimental tests for the elastic 

cylinder arrays. Redesigning the cylinder dimensions and material properties may be 

needed during the process. It would also be interesting to investigate the number of 

cylinders needed that will cause a significant attenuation given a certain wave condition.  

In this research, periodic spacing is used for the cylinder arrays in order to reduce the 

computational effort. It will be more analogous to the acoustic problem if random spacing 

is introduced in the study.  
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