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ABSTRACT

The objective of the thesis is to analyze, understand and explicate the various

physical mechanisms underlying the suppression of instability and mixing in com-

pressible mixing layers. The investigation comprises of three studies which employ

linear analysis and Direct Numerical Simulation (DNS). The first study examines the

effect of compressibility on the underlying planar Kelvin-Helmholtz (KH) instability.

The transformative influence of compressibility on the ubiquitous free shear-flow in-

stability is investigated. This study focuses on the change in the character of pressure

from a Lagrange-multiplier in incompressible flows to a thermodynamic variable in

compressible flows. Linear analysis reveals that compressibility engenders the for-

mation of a dilatational-interface-layer (DIL) within which the velocity perturbation

is wave-like rather than vortical. Inherently unsteady dilatational action is shown

to disrupt vortex merging and roll-up leading to suppression of KH instability. The

second study examines the effect of perturbation alignment and non-linear interac-

tion on the stability of compressible mixing layers. Linear analysis clearly shows that

compressibility effects diminish with increasing obliqueness of the perturbation with

respect to the shear plane. Notably, spanwise perturbations are impervious to Mach

number effects. The non-linear effects are examined using DNS. It is shown that

triadic interactions among the perturbation wavemodes lead to new perturbation

wavemodes that are aligned closed to the spanwise directions and hence unstable.

The third study examines mixing layer flow structure at various Mach numbers. At

low speeds, the mixing layers exhibit strong spanwise rollers and short streamwise

ii



ribs. The effect of Mach number on the evolution of structures and the interaction

between them are investigated in detail. With increasing Mach numbers, the span-

wise rollers are suppressed. In the absence of spanwise rollers, the streamwise ribs

align to form streamwise structures.
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0
m), 0, 0);

initial velocity perturbation field of u′i = (0, û0
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I

INTRODUCTION

Kelvin-Helmholtz (KH) instability occurs at the interface of two fluid layers in

relative motion or in a state of stratification. The KH instability is not only important

in atmospheric and oceanic flows [3–6], in geophysics and astrophysics [7–10], but also

as well as in engineering applications. For example, in astrophysical plasma flows, the

interface between the solar wind and the Earth’s magnetosphere [11] can create KH-

like waves or billows . This instability is also believed to occur in many astrophysical

plasmas such as the magnetopause [12], the planetary magnetosphere [7,13], Earth’s

auroa [14], cometary tails [15], supernovas [16–18], protoplanetary disks [19], jets and

outflows [20,21], and other astrophysical situations.

The KH instability is of great importance in the turbulent mixing of engineer-

ing flows [22]. In the field of aerodynamics, this instability occurs in mixing layers,

jets and wakes. This instability is the central mixing mechanism in free shear flows.

Due to the ubiquitous nature of KH instability, especially in shear layers, it has

been an important research topic in both fundamental investigations [23] and engi-

neering applications [24]. While the KH instability in incompressible flows has been

investigated exhaustively, its behavior in compressible flows has not been thoroughly

examined. Therefore, there is a need to understand the KH instability, in particular,

and corresponding mixing layer behavior, in general, in compressible shear layers of

interest in nature and engineering flows.

For the past several decades, it has been established that the mixing layer growth
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rate reduces as the Mach number increases [1, 25–29]. To empirically represent the

compressibility effects in the supersonic regime, a functional form for the mixing-layer

spreading rate was proposed by Papamoschou and Roshko [1]. Further experiments

have supported this functional form and have been consolidated to the so-called Lan-

gley Curve (Figure I.1) compiled by Birch & Eggers [30]. The Langley Curve presents

the ratio between the spreading rate of a compressible mixing layer to its correspond-

ing incompressible value at different Mach numbers. Initially, it was speculated that

some of the observed effects could be due to density difference [31]. Later, it was

emphatically demonstrated that high-speed compressibility effects, rather than den-

sity effects, were responsible for the growth rate reductions (Brown & Roshko [32];

Bradshaw [33]; Papamoschou & Roshko [1, 31]).

The evolution of compressible mixing layers has also been investigated through

several direct numerical simulations (DNS): Sandham & Reynolds [34], Vreman et

al [35], Freund et al [36] and large eddy simulations (LES) by Comte et al [37],

Foysi & Sarkar [38] and Hadjadj et al [39]. There is general agreement amongst

the numerical studies that turbulence production and momentum thickness decrease

with increasing Mach number. KH instability is the principal mixing mechanism and

thus any fundamental study of mixing layer efficiency must address the underlying

flow physics.

I.A. Objectives

At the current stage of development, there is clear evidence that the KH instabil-

ity is profoundly affected by compressibility. Many studies (reviewed in Chapter II)

2



Figure I.1. Variation of normalized spreading rate with Mach number
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have been performed to understand the various effects of compressibility on mixing

layers leading to important progress. However, the fundamental nature of this effect

and the underlying physical mechanisms are still unclear. Specifically, the precise

pressure-velocity interaction mechanism underlying the influence of compressibility

is yet to be explicated. Most importantly, the effect of compressibility on the KH

instability is not clearly understood. To address these questions, we formulate the

objectives of this work as follows:

1. The primary objective is to examine the influence of compressibility on the

Kelvin-Helmholtz instability with a particular emphasis on the underlying

physical mechanism. Linear stability analysis and direct numerical simula-

tion will be performed to explicate the flow physics. The flow physics will be

compared and contrasted against the KH instability in incompressible flows.

2. The second objective is to examine the effect of perturbation obliqueness and

non-linear interaction on the mixing efficiency in compressible mixing layers.

3. The final objective is to examine the transformation in flow and vortical struc-

ture in the mixing layer as a function of Mach number.

I.B. Approach

To study the influence of compressibility on the KH instability and mixing layers,

extant tools can be classified into three categories of: (i) experiments, (ii) stability

analyses and (iii) numerical simulations. An overview of these approaches is illus-

trated in Figure I.2. The present study employs the approaches in the shaded boxes:
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inviscid linear stability analysis and results from direct numerical simulations. Using

Figure I.2. Current approaches in studying mixing layers in available
literature

linear stability analysis, we identify the relevant mechanisms and important flow fea-

tures responsible for the onset and the development of the instability. Once the right

mechanisms are identified, their effect is examined in detail by using direct numerical

simulations. While most stability analyses examine an eigenvalue problem [40–43],

the present linear analysis solves an initial value problem and correspondingly sim-

ulates a temporal mixing layer to highlight transient dynamics.

I.C. Dissertation Outline

In this work, we examine instability and turbulence in a planar mixing layer of

the type shown in Figure I.3. Shear is generated by two nearly-parallel streams of

5



fluids with unequal velocities and, often in the compressible case, unequal densities.

This dissertation only examines the effect of large shear rate. The figure shows two

streams of mean velocity Ui , Mach number Mi , and density ρi merging to form a

mixing layer. In each stream, the speed of sound can also differ.

U1,M1, a1, ρ1

U2,M2, a2, ρ2

Figure I.3. Schematic representation of a planar mixing layer flow

This dissertation is organized as follows: Chapter II presents a complete litera-

ture review of the previous relevant theoretical, numerical and experimental work in

the context of the KH instability and mixing layers in compressible flows, followed by

a brief discussion of the compressibility parameters. The relevant linear initial value

problem is formulated in Chapter III. The numerical method used for the DNS, the

gas-kinetic method, is detailed in Chapter IV. The specification of the initial con-

ditions, boundary conditions, and other simulation parameters are also discussed in

Chapter IV. Extensive validation studies of the present scheme against recent DNS

data and available experimental results for supersonic mixing layers will close Chap-

ter IV. Using the tools introduced in Chapters III and IV, we proceed to describe the

main three studies of the dissertations in Chapters V, VI, and VII. In Chapter V, the

modification and inhibition of the KH instability in the presence of compressibility

6



are explicated. Chapter VI presents the DNS results of mixing layers to highlight

the effect of perturbation obliqueness at different Mach numbers. In Chapter VII,

the effects of compressibility and perturbation obliqueness on the vortical structure

of the mixing layer are examined. Finally, Chapter VIII provides a brief summary

of the salient findings of this work.
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II

LITERATURE REVIEW

In this chapter, we review the important contributions in the area of incompress-

ible and compressible KH instability and mixing layers. This review is categorized

along the line of stability analyses, experimental studies and numerical simulations.

We close this chapter by compiling a list of non-dimensional parameters that char-

acterize compressibility effects in mixing layers.

II.A. Linear Stability of Compressible KH and Mixing Layers

Rayleigh was the first to address the stability characteristics of incompressible

shear flows and identify the importance of the inflection point in the mean velocity

profile [44]. One of the earliest compressible mixing layer stability investigations was

conducted by Miles [45]. In this paper, the KH instability is established between a

layer of low-viscosity liquid located over a layer of air. While speeds of two layers are

small, this paper still yields valuable insight into the mechanism in high-speed flows.

Inviscid linear stability analyses of a high-speed compressible mixing layer include:

spatial analysis of Gropengiesser [42] and temporal stability analyses of Lessen et al

with subsonic and supersonic initial disturbances [40, 41]. In these studies, a hyper-

bolic tangent profile is used as the base flow. Using the inviscid temporal stability

analysis, Lessen et al established that viscosity has a stabilizing influence on a com-

pressible mixing layer [40, 41]. While Lessen et al assumed the temperature of the

stationary stream is higher than that of the moving gas, Gropengiesser varied the
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temperature ratio of the two streams as an input parameter. Both concurred that

growth rate decreases as Mach number increases. Gropengiesser observed the growth

reduction of instability with the increase of Mach numbers. These stability results

were later verified by Ragab & Wu [43]. Besides the growth rate, the propagation of

disturbances at oblique angles to the streamwise direction was also examined [40,42],

demonstrating that the shear layer becomes more unstable as this angle increases.

Assuming uniform temperature through the layer, later studies investigated the

temporal stability of a compressible mixing layer [46–48]. Jackson & Grosch [49,50]

conducted an inviscid stability study of a compressible mixing layer, considering both

two- and three-dimensional perturbation fields. Their base flow, including stationary

and moving streams, was described by a hyperbolic tangent profile. The temperature

was determined by the Crocco-Busemann’s relation [51] which specifies the initial

temperature profile as a function of the initial velocity field and Mach number. Over

a wide range of Mach numbers, Jackson & Grosch classified unstable modes as follows

[49]: (i) at low Mach numbers there exists only one class of modes, called subsonic

modes , where growth rate decreases with the increase of Mach number, (ii) at high

Mach numbers, there are two classes of unstable modes: fast modes and slow modes .

These two bands of unstable frequencies can be related to the phase-speed ratio

between the two streams. Therefore, a reference Mach number, M∗, to related these

two freestream phase-speeds was introduced as follows [49]:

M∗ ≡
1 + (T−∞/T+∞)1/2

cos(θ)
, (2.1)

M∗reference Mach number where θ is the angle of propagation of the disturbance

wave with respect to the streamwise direction. T−∞ and T+∞ are the freestream
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temperatures at y = −∞ and y = +∞, respectively. Fast modes are supersonic with

respect to the stationary stream and exist at Mach numbers greater than M∗. Slow

modes, existing at Mach numbers less than M∗, are supersonic with respect to the

moving stream. Both modes are vorticity modes, not acoustic modes [52]. As Mach

number approaches unity, Jackson & Grosch [49] showed that the proposed existence

of the supersonic fast and slow modes was in agreement with previous work [47,48].

Most early analyses demonstrated that under the incompressible K-H instability,

small perturbations along the interface between two fluids first experience linear

growth stages [53–57], and then undergo nonlinear growth stages [9, 58–60] which

may lead to turbulent mixing due to the nonlinear interactions among perturbation

modes. In stratified flows, Chimonas [61] found that the growth rate of the fastest

growing mode in a plane-parallel stratified shear flow is of the order of S2 (square of

shear rate).

Betchov & Szewczyk conducted a linear stability analysis of a laminar shear

layer [62] which we use to expand upon the rationale of inviscid analysis. By the

linear stability diagram of a two dimensional mixing layer (Fig.2 of [62]), they demon-

strated that the perturbation amplification rates are no longer affected by viscosity

when the Reynolds number exceeds 40. In other words, as the Reynolds number in-

creases, instability becomes inviscid such that it can be well described by the Rayleigh

equation [63].

Employing a spatial linear stability analysis, Ragab & Wu [43] investigated the

effects of three parameters on the growth rate of compressible mixing layers: the

velocity ratio, the temperature ratio, and the Mach number. Considering both in-
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viscid and viscous stability, a hyperbolic tangent profile for the initial base velocity

field and Sutherland’s profile for the initial base temperature field were used. Their

major findings concluded that (i) the dependence of the maximum growth rate on

the velocity ratio for a compressible mixing layer required more complex represen-

tation as compared to the one for incompressible flows, (ii) the compressible mixing

layer had an inviscid inflection instability, thus the viscosity delayed the growth of

the disturbances independent of their frequencies, and (iii) non-parallel effects were

observed as negligible factors for compressible mixing layers.

II.B. Experimental Studies of Compressible Mixing Layers

There is an extensive amount of experimental work in the field the mixing layer

stability. However, most studies have focused on the incompressible flows rather

than compressible ones. Evidently this is due the fact that most operating conditions

cannot be easily replicated in any ground-based experimental facility. Here we discuss

some of those experimental studies which are relevant to our subject matter.

Early experimental studies on a chemically–reacting, turbulent shear flow by

Breidenthal [64] showed that streamwise streaks appeared as a result of stretching

the spanwise instability wave, which forms in the early stage of flow development.

In fact, Winant & Browand [65] were the first to explain the early stage of transition

mechanism in mixing layer flows. They proposed that in the case of sufficiently large

Reynolds numbers, the vortical lumps of fluid begin rolling due to the initial shear.

The successive amalgamation of spanwise vortices is the main process contributing

to the mixing layer growth in the streamwise direction. Consequently, the vorticity
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initially contained in the base velocity profile is being redistributed into larger and

larger vortices, their wavelength and strength being doubled after each interaction.

One of the experimental works examining the structure development of mixing

layers is that of Lasheras et al [66]. Their work illustrated that for incompressible

flows, mixing transition can be explained by the development of secondary insta-

bility, which is followed by the KH as a primary instability. While KH instability

is associated with spanwise rollers, secondary instability can be related to vortical

braids or ribs. By examining the effects of the initial perturbations on the shear

layer development, Lasheras et al [66] concluded that a positive strain (stretching)

of the interface between two streams is produced by the first KH wave, and the mag-

nitude and the location of the braids are correlated to the amplitude of the the first

KH wave and to the initial position of the perturbation. Lasheras et al observed

that streamwise vortical structures initially form between two consecutive spanwise

rollers, which is perhaps why they are known as braids. These braids then propagate

into the cores of the rollers.

A notable experimental study of the compressible mixing layer was conducted

by Elliot & Samimy [67]. Employing planar laser Doppler velocimetry, they mea-

sured the relevant turbulence characteristics of a fully developed flow. Their results

exhibited that as the Mach number increases there is a reduction in the turbulent in-

tensities and the Reynolds stresses. The reduction of the mixing layer growth as Mach

number increases has been observed experimentally by Papamoschou & Roshko [1],

Goebel & Dutton [29], Clemens & Mungal [26] and many others researchers [25,27,68]

as well.
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II.C. Numerical Simulations of Mixing Layers

While linear analyses establish asymptotic characteristics of the evolution, nu-

merical simulations have been widely used to understand the stability mechanism

in compressible mixing layers. It is has been found that for incompressible mix-

ing layers, streamwise KH instability grows until the saturation of the axisymmetric

spanwise rollers [69, 70]. Spanwise rollers interact with each other and eventually

coalesce through a pairing mechanism. In addition to the spanwise rollers, other or-

ganized and reoccurring structures have been observed through various experimental

studies (Brown & Roshko [71]; Winant & Browand [65]; Hernan & Jimenez [72];

Jimenez [73]; Lasheras et al [66]; Bernal & Roshko [74]; Cho & Maxworthy 1986;

Bell & Mehta [68]) and numerical investigations (Lin & Corcos [75]; Metcalfe et

al [76]; Moser & Rogers [77]; Rogers & Moser [78], [79] ). These vortical structures

have been referred to by different names such as streamwise filaments, streamwise

streaks, braids, or ribs. Note that these structures can only be observed in the

vortical plane, normal to the streamwise flow direction. Ribs are formed between

the spanwise rollers and are found to be counter-rotating with respect to the cor-

responding rollers. Numerical simulations also reveal the importance of the initial

perturbation orientation, the non-linear interaction among the perturbation modes

and flow structure toward understanding the effect of compressibility effects on the

development of the mixing layers.
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II.C.1. Role of Obliqueness

A numerical study conducted by Metcalfe et al [76] was an early attempt to

identify the importance of the amplitude and orientation of the initial perturbation

modes during the early-stage development of mixing layer instability. Although their

work was limited to the incompressible limit, their results provided valuable insight

in explaining the possible mechanism of transition applied to compressible mixing

layers. Using a pseudo-spectral scheme, Metcalfe et al performed a temporal DNS

to investigate pairing mechanism and other interaction between vortices as their

initial perturbations. They showed that the introduction of a two-dimensional (or

streamwise) disturbance can have a fundamental effect on the mixing layer evolution.

Through their temporal simulation, they showed that despite more complexities in

a turbulent mixing layer, there are three-dimensional secondary instabilities similar

to those in boundary layer flows. They concluded that the linear instabilities in

a wall-bounded flow are mainly driven by viscosity; therefore, linear instabilities

are weak. Contrary to wall-bounded flows, free shear flows (e.g. mixing layers)

are mainly driven by convection. As a result, free shear flows are subject to a

variety of inviscid instabilities. Depending on which type of perturbation mode

is dominant among other modes, the corresponding governing instability can be

specified. Another remarkable finding of their temporal DNS was that the transition

of mixing layers depends significantly on the past history of the flow. Metcalfe et al

used the term three-dimensionality to refer to the very early stage of instability of

the initial growth of the mixing layer. Although the term of three-dimensionality has

been used by many researchers since, it is avoided in this work for reasons that will
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be explained later. Oblique disturbances in the context of the compressible mixing

layers were first discussed by Sandham & Reynolds [34].

In terms of the the initial perturbation wavevector, the critical role of oblique-

ness with respect to the shear plane has been further investigated in several stud-

ies [80–83]. It was demonstrated that the obliqueness angle affects the growth of the

perturbation kinetic energy. Employing DNS of temporally evolving compressible

mixing layer, Sandham & Reynolds [34] demonstrated that oblique disturbances are

more unstable than two-dimensional initial disturbances. Additionally, they showed

that a combination of a streamwise mode and a pair of oblique modes exhibited

faster growth than a single mode [34]. However, that study does not investigate the

effect of obliqueness or non-linearity in great detail.

II.C.2. Non-linearity

Most investigations have been studying the effect of compressibility in homo-

geneous shear flows and mixing layers, starting with a large set of isotropically dis-

tributed initial perturbation/fluctuation modes evolving in the corresponding back-

ground field. These studies then record the difference in the evolution of statistics

at various levels of compressibility as indicated by Mach number. However, such an

approach does not provide clear insight into various physical processes rendering clo-

sure modeling difficulties. It is essential to understand the behavior of the individual

wave mode.

With the exception of the work [84], most, if not all, previous homogeneous shear

turbulence investigations have focused on the evolution of collective-mode velocity
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and pressure statistics. The statistics are gleaned from a collection of perturbation

modes that are initially distributed in an isotropic manner. While this has led

to important advances in understanding, a comprehensive explanation requires the

characterization of individual mode behavior. This section delineates, building on the

earlier work by [84], the evolution of pressure and velocity amplitudes of individual

modes as a function of initial convective Mach number and initial wave-orientation.

Triadic interaction representation has been used in studying homogeneous tur-

bulence [85,86]. There is a large amount of valuable theoretical and numerical work

in the realm of the role of the triadic interaction on the energy transfer in various

types of flows such as: homogeneous shear turbulence [87,88], the rotating stratified

turbulence [89], and decaying isotropic turbulence [90]. Yet, triad interaction is not

extensively explored in the domain of inhomogeneous shear flows .

II.C.3. Mixing Layer Structure

Most studies of the compressibility effects on the flow structures in mixing layers

are restricted to relatively low-Mach number flows [70, 78, 79]. Although there have

been a few studies in the context of compressible mixing layer structure [91–93], a

detailed explanation for the underlying physics of how compressibility affects the

structures of inhomogeneous shear flows is absent.

The morphology of the secondary instability was demonstrated in a frame-by-

frame visualization by Bernal [94]. Although his work provided an overall picture of

the counter-rotating structures residing in the spanwise plane (x-plane in Figure I.3),

it was unclear whether these structures were the same wiggles around the rollers seen
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in the streamwise plane (z-plane in Figure I.3). Later, other researchers demonstrated

that the inception of the transition process in mixing layer flows began with the K-H

instability. A major contributor to instability comes from the mixing of unmixed

core fluid entrained during the initial two-dimensional development [74], when the

coalescence of the spanwise vortices occurs mainly in the spanwise plane. Meanwhile,

contribution to secondary instability starts with stretching vorticity along the braids

in the normal plane and between the spanwise rollers. Hence, most authors call this

phenomenon three dimensionality instability since it resides in two planes versus the

KH-type, which is only in the streamwise plane. The secondary instability occurs via

the formation of streamwise structures or ribs. Bernal and Roshko [74] deduced, that

although the ribs play an indirect role in the mixing transition mechanism, both the

primary instability (correlated to the spanwise rollers) and the secondary instability

(correlated to the streamwise ribs) generate three-dimensionality. Additionally, they

argued that amalgamation of the spanwise rollers redistributes three dimensionality.

However, even Bernal and Roshko [74] themselves were not satisfied with the pro-

posed argument of the transition growth in mixing layer flows, as they also mention

that there might be additional internal instabilities in the flow.

II.D. Compressibility Parameters

To quantify compressibility effects, a variety of Mach numbers have been used

in literature. However, the true utility of these Mach numbers in analyses strictly

depends on the nature of the flow of interest. Although the physical interpretation

of these Mach numbers may seem straightforward, the relevance may not always
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be evident. It is important therefore to identify the appropriate Mach number for

parametrizing a physical effect, based on the governing equations. For the sake

of completion of discussion in this review, Mach numbers commonly used in the

literature are introduced and discussed briefly. Consequently, in later chapters of

this work, stability analysis (in Chapter III) and the DNSs (in Chapters V & VI)

are used to identify the appropriate Mach number which embodies the effect of

compressibility in mixing layers.

II.D.1. Convective Mach number, Mc

A dimensionless parameter called the convective Mach number, Mc, has been in-

troduced by Bogdanoff [95] who expanded upon the earlier idea of Coles [96] that was

further studied by Dimotakis [97] and Papamoschou & Roshko [1]. They proposed

the parametrization of Mc based on a stability analysis of a temporally evolving

vortex sheet. The convective Mach number for each stream can be defined with

respect to the velocity of the large vortices [95] or the convective velocity, Uc. In a

mixing layer between two parallel streams of flow with velocities U1 and U2 (where

U1 > U2 ), we have

M (1)
c ≡

U1 − Uc
a1

, M (2)
c ≡

U2 − Uc
a2

, (2.2)

where a1 and a2 are the speeds of sound corresponding to the free stream velocities

of U1 and U2, respectively. M
(1)
c and M (2)

c are the convective Mach numbers relative

to stream 1 and stream 2, respectively. Assuming the initial pressure across the

interface between two streams is uniform, one can write:(
1 +

γ1 − 1

2
M2

c1

)γ1/(γ1−1)

=

(
1 +

γ2 − 1

2
M2

c2

)γ2/(γ2−1)

. (2.3)
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The two convective Mach numbers can be related by

M1
c =

(
γ1

γ2

)1/2

M2
c . (2.4)

Considering the ρ2/ρ1 as the density ratio between two streams, Uc can also be

written as

Uc = U1

1 + (U2/U1)
√
ρ2/ρ1

1 +
√
ρ2/ρ1

. (2.5)

In the case of the incompressible uniform-density flow, convective velocity will simply

be Uc = (U1 + U2)/2. Generally speaking, when γ1 6= γ2 and ρ2 6= ρ1, the two

convective Mach numbers, M1
c and M2

c , are different. Additionally, an asymmetric

behaviour can be expected since compressibility effects may occur unevenly across

the interface. Assuming the same specific heat ratio (γ) at both streams and the

isentropic flow throughout, then M1
c = M2

c = Mc. The convective velocity (Uc) and

convection Mach number (Mc) yield

Uc =
U1a2 + U2a1

a1 + a2

, (2.6)

and

Mc ≡
U1 − U2

a1 + a2

=
∆U

a1 + a2

, (2.7)

where ∆U is the velocity difference between two streams. In this case, Uc is the

velocity of the stagnation point rather than the velocity of the large-scale structures

as presumed by Bogdanoff [95] earlier. It is noteworthy to mention that in the case of

the three dimensional disturbances, the orientation of the propagation with respect

to the shear plane shall be included [50]. Therefore, an effective convective Mach

number can be defined by

Mceff = Mc cos(θ), (2.8)
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where θ is the obliqueness angle with respect to the streamwise direction as seen in

(2.1). The inclusion of the projection of disturbances on the shear plane or cos(θ)

has been suggested by previous authors [34, 42, 98] based on heuristic arguments.

Despite the apparent simplicity of the convective Mach number in (2.7), there are

some concerns about considering it as a parameter: (i) it is empirically and intu-

itively evident that a mixing layer with one subsonic and one supersonic streams

will behave differently from a mixing layer with two supersonic streams, in spite of

having the same convective Mach number; (ii) equation (2.6) is based on the ex-

istence of the stagnation point in a convective frame of reference and the absence

of shocks in a shear flow, which is implemented by the isentropic flow assumption.

Clearly, this assumption is not valid for either highly compressible or reacting mix-

ing layers. Therefore, Mc may not be the optimal physical parameter for quantifying

compressibility in mixing layers.

II.D.2. Relative Mach number, Mr

Based on the velocity difference across the shear layer, Birch & Keyes [99] define

the relative Mach number, Mr, as

Mr ≡
U1 − U2

ā
. (2.9)

where ā is the average speed of sound of the two streams. In the case of the same

specific heat ratio for both streams, the relative Mach number is simply twice the

convective Mach number. Due to its easier measurement, this Mach number has

been mainly used in experimental studies, such as [29].
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II.D.3. Turbulent Mach number, Mt

Another Mach number to quantify compressibility is the turbulent Mach num-

ber, which is given by

Mt ≡
√
u′2

a
, (2.10)

where u′ is the perturbation velocity and a is the speed of sound. In some situations

this Mach number is not a useful parameter to characterize compressibility effects.

For instance, if the velocity fluctuations are of smaller order than the speed of sound,

we cannot expect shocks to be formed due to the fluctuating motion. Through

the DNS of the compressible turbulence, it is demonstrated that the structure of

homogeneous shear turbulence cannot be characterized by Mt, whereas decaying

isotropic turbulence can. They observe that the former is independent of the initial

conditions [100]. It is found that Mt cannot be a very informative parameter when

there is a need to identify the ratio of the solenoidal to the non-solenoidal component

of the velocity field [24].

II.D.4. Gradient Mach number, Mg

The definition of Mc requires a measure of relative velocity across a shear layer

(see (2.7)). Thus, it can be formally linked to another compressibility parameter,

the gradient Mach number, Mg , that was introduced by Sarkar [101]. In the case of

a mixing layer, the initial value of the gradient Mach number can be defined by

Mg ≡
Sl

ā
, (2.11)

where S is the mean shear rate, ā is the average of the speeds of sound of two streams,

and l represents a characteristic or an appropriate length-scale of the perturbation
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in the direction of shear. The parameter Mg can vary locally within a shear layer,

whereas Mc involves the mean velocity difference across the entire shear layer; there-

fore, Mc is a global parameter. In other words, Mg can be interpreted as the ratio of

two timescales: the ratio of an acoustic time for a large eddy (l/ā) to the mean flow

timescale (1/S ).

It is useful to investigate whether there is any correlation between these Mach

numbers, especially Mc, Mg, and perhaps Mt. In the self-similar region of a mixing

layer, Mc can be an appropriate choice for a similarity parameter. In mixing layers,

the mean shear rate, ∂U/∂y can be approximated as δU/δω, where δω is the vorticity

thickness defined by δω = ∆U/(∂ū1/∂y). The integral lengthscale can be assumed

to be of the order of δω, while it can also vary by convective Mach number such that

l = f (Mc)δω. Therefore, one can write

Mg ≈
∆U

δω

f(Mc)δω
a

≈Mcf(Mc). (2.12)

Sarkar estimates that the value of Mg at the centerline of a mixing layer is a

function of the convective Mach number in a linear relation as Mg ≈ 2.2Mc [101].

It is found that the parameter Mg is twice the value of Mc in high-speed mixing

layers, whereas Mg remains almost constant in the boundary layer with the increase

of the free-stream Mach number M∞ (equivalent to the Mc in mixing layers)(Figure

14 of [101]). This may explain the difference between the extent of compressibility

effects in the compressible mixing layer as opposed to the compressible boundary

layer.

There has also been an attempt to derive a relationship between Mt and Mc

[24]. In a mixing layer, it may be assumed that u′/∆U = f ∗(Mc), where f ∗ is the
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normalized spreading rate (e.g. the vertical axis in Figure I.1) and u′ is the peak

value of the root mean square velocity fluctuations. Thus, one can write

Mt ≈ f ∗Mc. (2.13)

As (2.13) and (2.12) indicate these three Mach numbers, Mg, Mc, andMt, are nearly

proportional to each other, and are also of the same order despite the fact that each

can represent different physical aspects of the flow. For instance, the definitions of

Mc and Mg both include the mean characteristics of the velocity field. However Mc

corresponds to the mean velocity difference across the two streams, while Mg corre-

sponds to the mean velocity difference across an inhomogenous shear layer (measured

by the vorticity thickness). Nonetheless, the correlation of Mg and Mc can provide

useful information, as in the case of the annular mixing-layer simulation [102]. Since

Mc is defined based on the mean characteristics of the flow, it can be interpreted as

the Mach number of the relative motion of the large eddies.
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III

GOVERNING EQUATIONS AND LINEAR STABILITY ANALYSIS

While most stability analyses concur that in compressible mixing layers there

is a reduction of growth rate with increasing convective Mach number [50,103,104],

fundamental understanding of suppression is lacking. The present chapter aims to

give a basis for a physical understanding of the KH instability under the influence

of compressibility using linear stability analysis of a compressible mixing layer. We

now present the three-dimensional, unsteady, compressible Navier-Stokes equations

that form the basis of instability analysis. Effects of body forces are not included

in this study. The conservation equations of mass, momentum, and energy are as

follows:
∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (3.1)

∂

∂t
(ρuj) +

∂

∂xk
(ρujuk) = −∂ (pδjk)

∂xk
+

1

Rel

∂σjk
∂xk

, (3.2)

∂p

∂t
+ uj

∂p

∂xj
= −γp∂uk

∂xk
+
γ(γ − 1)

Rel

∂ (σjkuk)

∂xj
+

γ

PrRel
∇2(

p

ρ
), (3.3)

where the thermodynamic pressure, p, is given by the ideal gas law

p = ρRT, (3.4)

and the viscous stress tensor σij is given by the constitutive relation:

σij = 2µSij +

[
2

3
(λ− µ)Skk

]
δij, (3.5)

where xi are the Cartesian coordinates, ui are the velocity components for i = 1-

3 and time is denoted by t. The density and the dynamic pressure are ρ and p,
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respectively. The specific heat ratio is γ = cp/cv. The coefficient of the dynamic

viscosity, µ, is given by Sutherland’s law, and λ is the second viscosity coefficient.

Sij is the rate of strain tensor given by

Sij =
1

2
(∂ui/∂xj + ∂uj/∂xi) . (3.6)

The relevant non-dimensional parameters are the Reynolds number, Rel, and the

Prandtl number, Pr, which are defined by

Rel =
ρUl

µ
, (3.7)

Pr =
cpµ

k
. (3.8)

It is important to point out that the energy equation (3.3) is expressed in terms of

pressure. These equations form the foundation of the linear stability analysis.

III.A. Linear Stability Analysis

We perform linear analysis for a general parallel streamline shear flows in which

the flow of specific interest is a planar mixing layer. Our analysis is restricted to

inviscid flow with no chemical reaction. The inflectional instability of the mixing

layer provides the inviscid instability mechanism, and the only effect of viscosity is

damping disturbance amplitudes [62]. It has been established that the viscous ef-

fects on the large-scale dynamics of the highly compressible free shear flows do not

actively contribute to the instability mechanism [105,106]. To capture the transient

stages of instability evolution, we formulate the linear stability analysis as an initial

value problem. This is a similar approach as the work of Prichett et al [107]; how-

ever, they were interested in understanding the magnetohydrodynamics instability
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of compressible plasma.

Starting with equations (3.1)-(3.3) for a passive mixing layer flow, we take the

initial pressure and the initial density to be uniform. Reynolds decomposition is

applied to the instantaneous field. Although the flow is compressible, it has been

established that at the linear limit, the difference between Favre and Reynolds aver-

ages is negligible in shear flows [101]. An arbitrary flow quantity is decomposed into

base and perturbation components:

q = q̄ + q′, (3.9)

where (̄.) and (.)′ denote mean or background quantities and small disturbance or

perturbation quantities, respectively. Since pressure across the interface between

two streams is taken to be continuous, it can be adopted as the primary variable.

Applying decomposition (3.9) to (3.1)-(3.3) renders the evolution equation of the

base quantities as follows:
∂ρ̄

∂t
+ ūj

∂ρ̄

∂xj
= ρ̄

∂ūj
∂xj

, (3.10)

∂ūj
∂t

+ ūk
∂ūj
∂xk

= −1

ρ̄

∂p̄

∂xj
, (3.11)

∂p̄

∂t
+ ūk

∂p̄

∂xk
= −γp̄∂ūk

∂xk
, (3.12)

Assuming that the mean flow field only varies slowly in the streamwise (x1) and span-

wise (x3) directions, the base velocity can be described by a parallel shear velocity

profile as

ui = (U1(x2), 0, 0). (3.13)

Therefore, ui,j = Sδi1δ2j, where S is the mean shear rate. A particular mean velocity

of a hyperbolic tangent profile can be taken for the initial mean velocity field as
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shown in IV.4. This implies that ∂ūi/∂xi = 0 and ∂p̄/∂xi = 0 [ref]. Thus, in the

linear limit, we have:

ρ̄ ≈ ρ̄(x1, x2, x3, 0) = ρ̄0; and p̄(t) ≈ p̄(x1, x2, x3, 0) = p̄0. (3.14)

By subtracting the base flow from the instantaneous flow equations, the perturbation

field evolution equations are obtained:

∂ρ′

∂t
+ U1

∂ρ′

∂x1

= −∂(ρ̄u′k)

∂xk
, (3.15)

∂u′1
∂t

+ U1
∂u′1
∂x1

= −u′2
∂U1

∂x2

− 1

ρ̄

∂p′

∂x1

, (3.16)

∂u′2
∂t

+ U1
∂u′2
∂x1

= −1

ρ̄

∂p′

∂x2

, (3.17)

∂u′3
∂t

+ U1
∂u′3
∂x1

= −1

ρ̄

∂p′

∂x3

, (3.18)

∂p′

∂t
+ U1

∂p′

∂x1

= −γ ∂(p̄u′k)

∂xk
. (3.19)

Due to the nature of the initial base flow profile (3.13), the linearized velocity per-

turbation equations are expressed as given in (3.16)-(3.18). Having the perturbation

field in place, we continue with our linear analysis. Differentiating (3.16) with respect

to x1, (3.17) with respect to x2, and (3.18) with respect to x3, we get

∂

∂t

(
∂u′1
∂x1

)
+ U1

∂

∂x1

(
∂u′1
∂x1

)
= −1

ρ̄

∂2p′

∂x2
1

− ∂u′2
∂x1

S(x2), (3.20a)

∂

∂t

(
∂u′2
∂x2

)
+ U1

∂

∂x1

(
∂u′2
∂x2

)
= −1

ρ̄

∂2p′

∂x2
2

− S(x2)
∂u′2
∂x1

, (3.20b)

∂

∂t

(
∂u′3
∂x3

)
+ U1

∂

∂x1

(
∂u′3
∂x3

)
= −1

ρ̄

∂2p′

∂x2
3

, (3.20c)

where the mean/background shear in the normal direction, S(x2), is given by

S(x2) =
∂U1

∂x2

. (3.21)
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Adding the three equations above leads to

∂

∂t

(
∂u′i
∂xi

)
+ U1

∂

∂x1

(
∂u′i
∂xi

)
= −1

ρ̄

∂2p′

∂x2
i

− 2S(x2)
∂u′2
∂x1

, (3.22)

Since the aim is to express the pressure perturbation Laplacian in terms of pressure

itself to the extent possible, the right-hand side of equation (3.22) are obtained from

the energy equation (3.3). For the sake of simplicity, we refer to S(x2) as S hereafter.

To construct the left-hand side of (3.22), the energy equation (3.3) is differentiated

once with respect to t and once with respect to x1, respectively, as follows:

∂

∂t

(
∂u′i
∂xi

)
= − 1

γp̄

(
∂2p′

∂t2
+ U1

∂2p′

∂t∂x1

)
, (3.23)

U1
∂

∂x1

(
∂u′i
∂xi

)
= −U1

γp̄

(
∂2p′

∂t∂x1

+ U1
∂2p′

∂x2
1

)
. (3.24)

Substituting (3.23) and (3.24) into (3.22), the evolution of the pressure perturbation

can be expressed in a hyperbolic form of

∂2p′

∂x2
i

+ 2ρ̄S
∂u′2
∂x1

=
1

ā2

[
∂2p′

∂t2
+ 2U1

∂2p′

∂t∂x1

+ U2
1

∂2p′

∂x2
1

]
, (3.25)

where ā =
√
γp̄/ρ̄ is the speed of sound. Equation (3.25) expresses the evolution

of the pressure perturbation in a very general sense of a mixing layer, which applies

to either a compressible or an incompressible case. However, at the incompressible

limit, the speed of sound is infinite. As a → ∞, equation (3.25) can be reduced to

an elliptic form of Poisson’s equation for the pressure perturbation as follows:

∇2p′ =
∂2p′

∂x2
i

= −2Sρ̄
∂u′2
∂x1

. (3.26)

In this case, pressure is acting as a Lagrange multiplier, imposing only the incom-

pressibility condition. In order to facilitate further analyses and to delineate the

28



behavior of the perturbation from the base field, we apply the Howarth-Dorodnitzn

transformation [108]. In this transformation, the flow evolution is essentially de-

scribed as a coordinate moving at the convective velocity of Uc, defined in (2.5). The

advantage of working in this coordinate frame is the fact that velocity distributions

remain the same in spite of having different initial Mach numbers at two streams.

Taking the streamwise mean velocity as a convective velocity of the coordinate frame,

the suggested transformation is given by

X1 ≡ x1 −
∫ t

0

U1(X2)dξ, (3.27a)

X2 ≡ x2, (3.27b)

X3 ≡ x3, (3.27c)

t ≡ t. (3.27d)

Hence, the perturbation equations (3.15)-(3.19) can be rewritten in the new frame

as follows:
∂ρ′

∂t
= −ρ̄

[
∂u′1
∂X1

+
∂u′2
∂X2

− S∗ +
∂u′3
∂X3

]
, (3.28)

∂u′1
∂t

= −1

ρ̄

∂p′

∂X1

− u′2S,
∂u′2
∂t

= −1

ρ̄

∂p′

∂X2

+
1

ρ̄

∂p′

∂X1

S∗, (3.29)

∂u′3
∂t

= −1

ρ̄

∂p′

∂X3

, (3.30)

∂p′

∂t
= −γp̄

[
∂u′1
∂X1

+
∂u′2
∂X2

− S∗ +
∂u′3
∂X3

]
, (3.31)

where

S∗ = S∗(X2, t) =

∫ t

0

S(X2)dξ. (3.32)

Alternatively, the pressure equation in a new coordinate frame can also be written
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in the hyperbolic wave form starting from (3.25) as follows:

1

ā2

∂2p′

∂t2
− ∂2p′

∂X2
i

= −2ρ̄S
∂u′2
∂X1

. (3.33)

Based on the assumption of the nearly-parallel mean field, the flow homogeneity in

streamwise (x1) and spanwise (x3) direction, or in the new transformed coordinate

systems, (X1 and X3), is consequently deduced. Such periodicity allows us to work

in wavenumber space. Thus, we examine the behavior of a single Fourier mode of

the wavevector of ~κ = κ1 ~e1 + κ3 ~e3, where κ1 and κ3 are the components of the

wavenumber vector in the streamwise and spanwise directions, respectively. The

modulus of the wavenumber vector is defined as κ =
√
κ2

1 + κ2
3.

In an initial value approach, we analyze temporal development of a small pertur-

bation about its initial state [109]. Simple Fourier mode solutions to the equations

(3.28)-(3.31) can be considered if we let the wave vector evolve in time [110, 111].

As the problem is periodic in the streamwise and spanwise directions, we can take

a Fourier transformation in the variable X1 and X3. Therefore, the solution can

be sought to be harmonic wavemodes, with an arbitrary initial profile in X2 and t

direction in the following form of

q′ = q̂(X2, t)e
i(κ1X1+κ3X3), (3.34)

where i =
√
−1 is the unit imaginary number, and (̂.) represents the Fourier ampli-

tude of a perturbation mode. Considering the perturbation array of q′ = (ρ′, u′i, p
′)

and the proposed solution form of (3.34), the Fourier transform of the perturbation

field equations, (3.15)-(3.19), are obtained as follows

∂ρ̂

∂t
= −ρ̄

[
iκ1û1 +

∂û2

∂X2

− iκ1û2S
∗ + iκ3û3

]
, (3.35)
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∂û1

∂t
= − i

ρ̄
κ1p̂− û2S, (3.36)

∂û2

∂t
= −1

ρ̄

∂p̂

∂X2

− i

ρ̄
κ1p̂S

∗, (3.37)

∂û3

∂t
= −iκ3

ρ̄
p̂ (3.38)

∂p̂

∂t
= −γp̄

[
iκ1û1 +

∂û2

∂X2

− iκ1û2S
∗ + iκ3û3

]
. (3.39)

To examine the compressibility effect manifesting via the role of pressure, we return

to the hyperbolic equation (3.25). In similar fashion, using equations (3.36) -(3.39),

we can obtain the evolution equation of the pressure perturbation, in the wavenumber

space as follows:
∂2p̂

∂x2
2

− (κ2
1 + κ2

3)p̂+ 2iρ̄κ1û2S =
1

a2
0

∂2p̂

∂t2
. (3.40)

To highlight the influence of Mach number and the initial perturbation orientation

in the pressure perturbation evolution (3.40), the following definitions are presented:

1. The gradient Mach number, Mg, corresponds to the shear rate across an

appropriate length-scale, which is defined by

Mg ≡
Sl

ā
=

S

āκ
, (3.41)

where the magnitude wavevenumber, κ, can be accounted as the related lengthscale,

l.

2. The obliqueness angle, β, is a measure of the initial wavenumber vector with

respect to the streamwise direction. The obliqueness angle is defined by

β ≡ cos−1

(
κ0

1

κ0

)
, (3.42)

where κ0
1 and κ0 are the initial value of the streamwise wave number and wavenumber

magnitude, respectively. The orientation of the wavemode, oblique angle with respect
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Figure III.1. Schematic representation of a typical oblique wavemode

to the streamwise direction on the κ1-κ3 plane is depicted in Figure. III.1. Based

on this definition, the modes along the κ1 direction are called streamwise modes

(β = 0) while spanwise modes are along the κ3 directions (β = π/2). For the oblique

modes: β ∈ (0, π/2). Using these two definitions and dividing by the magnitude of

the wavenumber vector, κ2, (3.40) can be rearranged to

1

κ2

∂2p̂

∂x2
2

− p̂+ 2i
ρ̄

κ
û2S cos β = M2

g cos2 β
1

S2

∂2p̂

∂t2
. (3.43)

3. To focus on the compressibility effect more meticulously, we define a new

parameter called the effective gradient Mach number which plays an important role

in the interaction between flow dynamics, given by

M∗
g = Mg cos β. (3.44)

Normalized temporal and spatial coordinates are suggested as

t∗ = St, (3.45)
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x∗ = κ0x. (3.46)

The normalized velocity, û∗i , and pressure amplitudes, p̂∗, are given respectively by

û∗i ≡ ûi/u
0, p̂∗ ≡ p̂/p0, (3.47)

where u0 is the r.m.s of the initial perturbation velocity and p, is the initial back-

ground pressure. By taking the non-dimensionalizing temporal and spatial coordi-

nates found in (3.45)-(3.46) and using (3.47) and (3.44), the equation (3.43) can be

rewritten as
∂2p̂∗

∂x∗2
2
− p̂∗ + 2i

u0ρ̄

κp̄
û∗2S cos β = M∗

g
2∂

2p̂∗

∂t∗2
, (3.48)

Similarly, the velocity perturbation evolution can be expressed as

∂2û∗2
∂x∗2

2
+ (û∗2S

∗ − û∗1)S∗ +
i

κ

p̂∗

γu0
S cos β = M∗

g
2∂

2û2

∂t∗2
. (3.49)

To isolate the compressibility effect, mainly via the velocity-pressure interaction,

based on the value of M∗
g , we consider three cases as follows:

I. Incompressible Case: At the incompressible limit, since a → ∞, M∗
g → 0,

(3.48) is reduced to
∂2p̂

∂x∗2
2
− p̂+ 2i

ρ̄

κ
û2S cos β = 0. (3.50)

Equation (3.50) is the Poisson’s equation expressed in the wavenumber space, where

the last term on the left-hand side acts as a source term.

II. Compressible Case with β = π/2: If the initial wavenumber vector is along

the spanwise direction, then cos β = 0 → M∗
g = 0. Therefore, pressure evolves

according to the reduced form of (3.48) given by

∂2p̂

∂x∗2
2
− p̂ = 0 ⇒ ∇p′ = 0. (3.51)
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If the initial perturbations are spanwise modes, it is evident that pressure perturba-

tion evolution is impervious to the value of M∗
g = 0. In other words, the thermody-

namic pressure field is decoupled with the flow field. For the spanwise modes case

with κ1 = 0, the velocity perturbation field equations in (3.36)-(3.38) are reduced to

∂û1

∂t
= −û2S, (3.52)

∂û2

∂t
= −1

ρ̄

∂p̂

∂X2

, (3.53)

∂û3

∂t
= −iκ3

ρ̄
p̂, (3.54)

Here, the velocity field experiences the least amount of compressibility effects. This

implies that no matters what the initial convective Mach number is, the streamwise

velocity perturbation grows linearly in a monotonical manner as indicated in (3.52).

This extreme is called the pressure-release limit in literature [112]. Consequently,

the turbulent kinetic energy evolution also follows the pressure-release limit.

III. Compressible Case with 0 ≤ β < π/2: Take an arbitrary initial perturbation

mode at any obliqueness β ∈ [0, π/2). Further manipulation on the equation (3.48) is

carried out, since the (3.48) is not completely dimensionless. In order to do so, only

in the compressible limit, the following normalization of the pressure is suggested

p̂∗∗ =
p̂

ρ̄ā2
. (3.55)

The pressure perturbation (3.48) can be rearranged. Thus, the velocity-pressure

interaction is expressed by the inhomogeneous wave equation as:

∂2p̂∗∗

∂x∗2
2
− p̂∗∗ + 2iMp M

∗
g û
∗
2 = M∗

g
2∂

2p̂∗∗

∂t∗2
(3.56)
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where the perturbation Mach number is defined by

Mp ≡
û0

2

ā
, (3.57)

Mp is similar in characteristics with turbulent Mach number, Mt in (2.10). The non-

dimensional source term, 2iMp M
∗
gu
∗
2 in (3.56), contributes to the inhomogenous part

of the wave equation. There particular solution to the wave equation (3.56) exits

in the case of the large shear rate, S in the vicinity of the initial inflection point

of the background velocity field. Whereas, in the top and bottom outer region, the

general solution to the homogeneous part of (3.56) is more dominant. Regarding the

compressibility parameters, it must be noted that the convective Mach number Mc

is a of global measure of the mixing layer speed, while Mg is a local measure of the

effect of compressibility on the perturbation of wavenumber κ.

Figure III.2. Schematic of modal stability of incompressible and (b) com-
pressible homogeneous shear flows

For homogeneous shear flows, detailed analysis has been performed in [113] lead-
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ing to a clear explication of the velocity-pressure coupling and resulting reduction in

kinetic energy growth. To delineate how compressibility affects the stability of homo-

geneous shear flows, their work has reached the following inferences: (i) streamwise

modes (β = 0) experience the highest degree of compressibility effect, (ii) spaniwse

modes (β = π/2) experience the least of compressibility effects, (iii) between β = 0

and π/2, there exists a critical angle, beyond which all modes expertise subsonic

Mach numbers. Figure III.2 schematically shows these effects.

At the current stage of development, the stabilizing mechanism manifesting

via p′-u′2 interactions, in homogeneous shear flow is reasonably well understood. A

similar analysis of mixing layer geometry is rendered difficult due to the fact that

inhomogeneity precludes many of the simplifying feature. Therefore, we examine

the effect of compressibility on KH instability in Chapter V and mixing layers in

ChapterVI using a combination of linear analysis and numerical simulations.
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IV

NUMERICAL SCHEME FOR TEMPORAL MIXING LAYER

SIMULATIONS

This chapter presents the details of the numerical scheme used for DNS. Nu-

merical implementation of this scheme, initial conditions, boundary conditions and

simulation parameters are discussed in detail. Validation studies of the numerical

scheme are also provided.

IV.A. Numerical Scheme

Most of the current computational schemes are based on the Navier-Stokes equa-

tions, which represents momentum balance within an infinitesimal continuum control

volume. However, applications involving high non-equilibrium conditions such those

in astrophysical fluid dynamics, atmospheric re-entry, and hypersonic flights demand

kinetic theory-based solvers (constructed based on the Boltzmann equation) that can

offer significant advantages over the conventional Navier-Stokes solvers. The Boltz-

mann equation is potentially valid over a wide range of non-equilibrium conditions

of relevance to high-speed flows. The Navier-Stokes based solvers are known to gen-

erate unrealistic flow physics, resulting in the numeric adverse effects. On the other

hand, due to the dissociative nature of the kinetic theory-based schemes, they are

able to capture the non-equilibrium effects, they may not be capable of resolving

such adverse effects [114]. One of the key advantages of the kinetic theory-based

formulation resides in a one-particle distribution function. To construct a numerical
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scheme, it is more precise to apply the discritization to a fundamental quantity rather

than derived continuum variables, such momentum and energy [115]. Based on the

gas-kinetic theory, the Navier-Stokes equations can be derived (or recovered) from

the Boltzmann equation using the Chapman-Enskog expansion [116,117]. Moreover,

the simulation of a highly compressible flow with strong shock waves and extreme

expansion waves requires a numerical scheme which offers both the robustness and

accuracy [114,118–122].

The Gas-Kinetic Method (GKM) has gained popularity over the last decade,

particularly in the context of compressible flow simulations [123–125], more specifi-

cally the type of GKM in which the Boltzmann equation collision term is expressed by

a simplified kinetic collision model (e.g. the Bhatnagar-Gross-Krook (BGK) collision

model [126]). The physical content of the BGK-GKM is far richer than Navier-Stokes

solvers, especially in non-equilibrium flows [127,128].In this work, we carry out DNS

using the GKM-BGK scheme. A brief description of this scheme is now presented.

IV.A.1. Gas-Kinetic Method

The DNS scheme used in this work is founded on the kinetic Boltzmann equa-

tion, which serves as the evolution equation of a single particle distribution function

in phase-space. Considering a microscopic description of the flow, based on the par-

ticles’ motion, macrospoic fluid variables can be defined as a statistical measure of

particle behavior. For instance, fluid density can be defined as

ρ =
∑
i

mni =
∑
i

f(xi, t, ui, ξi), (4.1)
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where m is the molecular mass, and ni is the number of particles moving at a specific

velocity in the control volume. Due to the very large numbers of particles in a small

fluid volume, the probability of particles of a certain velocity, mni is approximated by

a continuous distribution function, f(xi, t, ui), where the location of a particle with

a velocity of ui in space and time is denoted by (xi, t). The internal motions among

the molecules, such as rotation and vibration, are taken into account via the internal

variable ξi, which may have different value in different Cartesian coordinates, xi. At

equilibrium, the internal variable ξ2
i is equal to ξ2

i = ξ2
1 + ξ2

2 + ... + ξ2
K , where K

is total number of degrees of freedom for a specific fluid. More information on the

formulation of ξi can be found in [114]. Following the particles in the phase-space,

the summation in (4.1) can be rewritten in integral form as follows:

ρ =

∫
f(xi, t, ui, ξi)dΞ, (4.2)

where dΞ = duidξ is an elemental volume in an expanded, non-equilibrium phase-

space. Similar to (4.2), the other macroscopic quantities can be expressed as the

moments of the distribution function as follows:

Q =


ρ

ρUi

E

 =

∫
ψαfdΞ, α = 1..5, (4.3)

where the array of the macroscopic quantities Q includes Ui, the component of fluid

velocity, and the total energy of fluid flow is given by E = 1
2
ρ
(
U2
i + K+2

2λ

)
, where λ

is a function of temperature, T , molecular mass, m, and the Boltzmann constant,

kB, by the relation λ = m/2kBT . The collision invariants, denoted by ψα can be

39



expressed as an array in the Cartesian coordinate frame as follows:

ψα = (ψ1, ψ2, ψ3, ψ4, ψ5)T =

(
1, u1, u2, u3,

1

2

(
u2

1 + u2
2 + u2

3 + ξ2
))T

. (4.4)

GKM is a finite-volume numerical scheme which combines both macroscopic and

kinetic approaches. In GKM, we seek to solve the transport equations (3.1)-(3.3) to

determine the array of the macroscopic quantities Q. The kinetic part comes from

the fact that the fluxes are calculated by taking moments of a particle distribution

function,f . The central equation for GKM is:

∂

∂t

∫
∀
Q dx+

∮
A

~F · d ~A = 0, (4.5)

where ~F is the flux through cell interfaces, ~A. Equation (4.5) essentially corresponds

to the Euler equation in the x-direction, which indicates conservation of a macro-

scopic flow quantity or Q within a control volume. Nonetheless, the algorithm of the

GKM formulation can be decomposed into three stages:

(i) Reconstruction of the Macroscopic Quantity, Q: At this stage, the val-

ues of macroscopic variables at cell centers are interpolated to generate the cell-

interface values. In this work, we use the weighted essentially non-oscillatory

(WENO) scheme [?, 129], more specifically a 5th order accuracy WENO. How-

ever, the implementation of any desired flux limiter is viable in our code.

(ii) Flux Calculation: The fluxes of the macroscopic quantities, F, across cell

interface are calculated by using the kinetic approach or better say evolution of

moment. This step is the central part of GKM. The flux through a cell interface

for a one-dimensional flow case is the following:

F1 = [Fρ, Fρui , FE]T =

∫ ∞
−∞

uiψαf(x1, t, u1, ξ)dΞ, (4.6)
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where F1 represents the flux calculation of mass, Fρ, momentum , Fρui , and

energy, FE, calculated in the x direction. In a similar manner, fluxes in other

directions can also be calculated.

(iii) Update: Having calculated fluxes using (4.6), the cell-centred macroscopic

variables, Q, can be updated using time-dependent fluxes in all three directions:

Qn+1
j −Qn

j =
1

x1i+1/2,j,k − x1i−1/2,j,k

∫ tn+1

tn

(
F1i+1/2,j,k(t)− F1i−1/2,j,k(t)

)
dt

+
1

x2i,j+1/2,k − x2i,j−1/2,k

∫ tn+1

tn

(
F2i,j+1/2,k(t)− F2i,j−1/2,k(t)

)
dt

+
1

x3i,j,k+1/2 − x3i,j,k−1/2

∫ tn+1

tn

(
F3i,j,k+1/2(t)− F3i,j,k−1/2(t)

)
dt,

(4.7)

Equation (4.7) shows the macroscopic variable updates for a one-dimensional

flow case. Here, n represents the number of the time step. To calculate the

fluxes at the cell interface, the flow variables at the cell center must be inter-

polated to the cell interface. In this work, our scheme uses WENO as its flux

limiter [130].

Starting with the Flux Calculation step, we need to determine f according to (4.6).

Therefore, we consider the Boltzmann equation with the BGK model for its collision

term, which has the form of

∂f

∂t
+ ui

∂f

∂xi
=

(g − f)

τ
, (4.8)

where a distribution function f , as a non-equilibrium state is approaching the distri-

bution function g in the equilibrium state within the characteristic relaxation time of

τ . The relaxation time can be interpreted as the time interval between collision. The
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equilibrium state distribution is assumed to have a form of the Maxwell-Boltzmann

distribution, which is given in three-dimensions as follows:

g = ρ

(
λ

π

)(K+2)/2
(−λ(u1−U1)2+(u2−U2)2+(u3−U3)2), (4.9)

where (u1, u2, u3) are the components of the microscopic particle velocity , and (U1, U2, V3)

are components of the macroscopic flow velocity . Equation (4.8) is a non-linear

integro-differential equation. Applying (4.3) to calculate the macroscopic quantities,

f appears in a non-linear manner in the definition of g. Assuming that collisions be-

tween particles are perfectly elastic, results in the conservation of mass, momentum

and energy [131]. Thus, f and g satisfy the compatibility constraint give by∫ ∆t

0

∫
ψα

(g − f)

τ
dtdΞ = 0, α = 1...5. (4.10)

In our scheme, both the initial gas distribution function f0 = f(xi, 0, ui, ξi) and

the equilibrium state g are evaluated based on the distribution of macroscopic flow

variables [123]. With a local constant value for τ , the general solution to the BGK-

GKM in (4.8) at a cell interface xi+1/2 and time t is obtained by

f(xi+1/2,j,k, t,u, ) =
1

τ

∫ t

0

g(x′i,j,k, t
′,u, ξ)

e−(t−t′)/τdt′ + e−t/τf0(xi+1/2,j,k − ut)dt′,

(4.11)

where x′i,j,k represents the particle trajectory given by x′1 = xi+1/2,j,k − (t − t′)u

and the microscopic velocity of a particle is denoted by u = (u1, u2, u3). As a

special case, one can assume that at time t0, the initial gas distribution function f0

is described independent of the spatial coordinates, according to (4.3), no quantity

will macroscopically change in time and space. Then (4.11) can be reduced to

f(xi+1/2,j,k, t) =
(
1− e−(t−t0)/τ

)
g + e−(t−t0)/τf(xi+1/2,j,k, t0) (4.12)
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Equation (4.12) clearly indicates that the initial distribution function, f0, exponen-

tially approaches the equilibrium distribution function, g, defined earlier in (4.9)

within the characteristic relaxation time, τ . Either from 4.12 or 4.11, it is evident

that the formal solution for f has two unknowns, f0 and g. Besides determining

these two unknowns, we also need to provide an expression for the collision time, τ .

Applying the second-order of the Chapman-Enskog expansion [127], the BGK-GKM

equation (4.8) can be rewritten as

f = g + u1g,x1 + u2g,x2 + u3g,x3 − τ (u1g,x1 + u2g,x2 + u3g,x2 + g,t)

= g(a+ ax1 + bx2 + cx3)− τ(au1 + bu2 + cu3 + A), (4.13)

where a = ∂g/∂x1, b = ∂g/∂x2, c = ∂g/∂x3, and A = ∂g/∂t. One can demonstrate

the dependence of coefficients (a, b, c, A) on the particle velocities by performing a

Taylor expansion about a Maxwellian with the form of

a = a0 + a1u1 + a2u2 + a3u3 + 1
2
a4(u2

1 + u2
2 + u2

3 + ξ2)

...

...

A = A0 + A1u1 + A2u2 + A3u3 + 1
2
A4(u2

1 + u2
2 + u2

3 + ξ2)

(4.14)

For the sake of the notational simplicity, we set xi+1/2,j,k = 0 and t = 0. Rewriting

(4.13) at the cell interface and in a form of the piecewise function, f0 at the left and

right sides of the cell interface along the x1 direction for instance) has the form of

f0(x1, x2, x3, 0) =


gl
[
1 + alx1 + blx2 + clx3 − τ(alx1 + blu1 + clx3 − Al)

]
, x < 0;

gr [1 + arx1 + brx2 + crx3 − τ(arx1 + bru1 + crx3 − Ar)] , x ≥ 0,

(4.15)
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where the superscripts (.)l and (.)r indicate the left and right side of the cell interface,

respectively. The equilibrium state g across a cell interface can be approximated by

g(x1, x2, x3, t) = g0

(
1 + (1−H[x]) ālx1 +H[x]ārx1 + b̄x2 + c̄x3 + Āt)

)
, (4.16)

were H[x] is the Heaviside function. Substituting equations (4.15) and (4.16) into

(4.11) and performing the integration, the gas distribution function f at a cell inter-

face can be expressed as

f(xi+1/2,j,k,u, ξ) =
(
(1− Āτ)(1− e−t/τ ) + Āt

)
g0

+
(
(t+ τ)e−t/τ − τ

) (
ālu1H[u1] + āru1 (1−H[u1]) + b̄u2 + c̄u3

)
g0

+e−t/τ
(
1− (t+ τ)(alu1 + blu2 + clu3)− τAr

)
H[u]gl

+e−t/τ (1− (t+ τ)(aru1 + bru2 + cru3)− τAr) (1−H[u]) gr, (4.17a)

Details of calculation of the coefficients (a, b, c, A) can be found in [114,122,123,132].

To summarize, the overall flow chart of the scheme used for the DNSs of this work

is depicted in Figure IV.1.

IV.B. Mixing Layer Simulations

Since we perform a temporal stability analysis in Chapter III, simulation of a

temporally evolving mixing layer is applicable. A temporally developing mixing layer

can be interpreted as an approximation of the evolution of a set of flow structures

as they are convected downstream. Such an approximation of spatial correlations

by temporal correlations is known by different names of the frozen turbulence ap-

proximation or Taylor’s hypothesis or Galilean transformation [133]. However, it

is demonstrated that the applicability of Taylor’s hypothesis in shear flows is only
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Figure IV.1. Flow chart describing GKM steps

valid if any single large-scale structure is not rapidly interacting with its adjacent

structures [134].

In a temporal formulation, the spatial flow periodicity is enforced while allowing

perturbation fields to evolve temporally. On that note, flows in nature and almost

all experiments evolve spatially in time. Since the flow originates at a point in

space, then an instability develops spatially downstream along the direction of mean

velocity. The best way to explain the basic concept of these two formulations is

to show the difference in the choice of coordinate. The schematic representation

of the frame reference for both formulations is shown in Figure. IV.2. A spatially

growing mixing layer, illustrated in Figure. IV.2 (a) is seen from a laboratory frame

of reference. Whereas in a convective frame of reference, a reference frame is fixed to

largescale structures travelling at Uc. A temporally evolving mixing layer is shown
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(a) (b)

Figure IV.2. (a) spatial mixing layer in the laboratory frame of reference,
(b) temporal mixing layer in the convective frame of reference

in Figure. IV.2 (b). In the convected frame of reference, there exists a saddle point

between two adjacent eddies.

Speaking of the dynamical mechanism, spatially- and temporally-evolving mix-

ing layers show similarities [135]. However, there is an argument for the validity

of Taylor’s hypothesis applicability to the flows involving largescale structures in-

teractions. All largescale structures interactions such as pairing, merging, tearing,

slippage may result in the absence of a global convective velocity, whereas Taylor’s

hypothesis requires a single convective velocity for the entire the flow to transform

the coordinate frame [134]. Regarding the validity of Taylor’s hypothesis applicabil-

ity, there is another relevant work which compares the statistics of the spatial and

temporal simulations of the decaying isotropic turbulence for different range of com-

pressibility [136]. In terms of relating the spatial and temporal frames together, it

was found that Taylor’s hypothesis is valid for for solenoidal flow variables e.g. vor-

ticity, therefore the computed statistics of incompressible turbulence statistics form

the temporal and spatial simulations are in good agreement with the experimental
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data. However, the Taylor’s hypothesis may not be applicable for purely compress-

ible motion: for instance the temporal and spatial correlations of the dilatation are

not in agreement [136].

The applicability of Taylor’s hypothesis is further discussed [137–139]: in the

case of small turbulence intensity as the convection mean velocity is much larger than

fluctuation fields in decayling isotropic flows [137]. Most works concur on the fact

the Taylor’s hypothesis is able to relate the temporal problem to the spatial problem

correctly, at least in the qualitative sense, if the evolution of the shear layer is small

compared to the evolution of the vortex size or large-scale interactions [134,138].

Assuming an initial constant static pressure across the mixing layer, and con-

sidering the same specific heat ratio for both fluid flows, the convective velocity , Uc,

is obtained by

Uc ≡
a2U1 + a1U2

a1 + a2

, (4.18)

where Ui and ai refer to the mean velocities and speeds of sound, respectively. The

advantages of a temporal simulation compared to the spatial one are: (i) relatively

simple implementation of the boundary conditions by avoiding the requirement of

imposing inflow-outflow condition, (ii) lower computational cost making it viable to

implement, and (iii) smaller scales and higher Mach number cases examined in more

detail, with more efficient codes, at higher resolutions.

However, time-developing schemes have their own disadvantages as well. The

biggest drawback is the high level of uncertainty in initial conditions (more specifi-

cally in the case of fully turbulent initial set-up), which yields inconsistency in flow

statistics measured by laboratory experiments. This may be accentuated by the fact

47



Figure IV.3. Schematic of the temporal mixing layer

that the frozen turbulence approximation is not accurate unless the velocity ratio of

the spatial layers approaches unity [140].

In spite of the high demands on computational effort, several researchers have

conducted DNS of spatially growing mixing layers [141–143]. The increase of the

computing power over the last decade seems promising in overcoming this limitation.

However, apart from computational effort, setting up the correct boundary conditions

in spatially growing simulations that correspond to the exact experimental inflow and

outflow conditions is challenging. Figure IV.3 shows the schematic of a temporal

mixing layer. For more details on the initial velocity profile see § IV.B.3. The

reference length-scale here is chosen as the initial vorticity thickness, δ0
ω, defined by

the ratio of the initial velocity difference between two streams and the maximum

shear, δ0
ω = ∆U/(∂u

∂y
)max.

IV.B.1. Scheme Implementation

In a cubic geometry of [0, Lx1 ]× [−1
2
Lx2 ,

1
2
Lx2 ]× [0, Lx3 ], the fully compressible

Navier-Stokes equations are solved. The length of the computational domain is set
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equal to l = 2π. The box is discretized into Nx1 × Nx2 × Nx3 elements along the

x, y and, z directions, respectively. The upper stream has a velocity of ∆U/2, and

the lower stream has a velocity of −∆U/2. A sketch of the computational domain

is shown in Figure IV.4. Based on the assumption of slow variation of density and

Figure IV.4. Schematic of the computational domain for the temporally
evolving shear layer

pressure in the x1 − x3 plane in this analysis, the decomposition (3.9) can only

be applied to the velocity field. Unlike the one-dimensional initial base field, the

perturbation field is fully three-dimensional, given by

u′i = (u′1, u
′
2, u
′
3). (4.19)

IV.B.2. Boundary Conditions

For both streamwise and spanwise directions, a periodic boundary condition

is used. In order to simulate the farfield accurately in the cross-stream direction,
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we would ideally prefer to resolve the equations on an infinite domain. A closer

approximation to this would be to impose a non-reflective boundary condition in

the normal direction. The basic idea of such a boundary condition, developed by

Thompson [144], is to consider the free-slip mean field at the wall, while the cross-

stream fluctuation field remains periodic.

IV.B.3. Initial Conditions

It is well-known that in a temporal mixing layer simulation, the transition to

turbulence is very sensitive to the details of inflow disturbances [35, 145–147]. How-

ever, one of the advantages of numerical simulations over laboratory experiments

is the ability to precisely specify these initial conditions. The action of the initial

broadband perturbation is essentially nothing but the collective behavior of many

individual wave modes. To avoid any ambiguity caused by different terms used by

various researchers, the terminology for the initial perturbation modes is introduced

as follows:

(i) Streamwise modes are the modes that are initially aligned along the downstream

direction(β = 0). The perturbation velocity is initialized by

(u′1, u
′
2, u
′
3) = (0, u′2

0 sin(κ1x1 + ∆), 0), (4.20)

(ii) Spanwise modes are the modes that are initially aligned in the cross-stream

direction with respect to the initial mean flow field (β = π/2). Thus, the initial

solenoidal velocity perturbation used in DNS is given by:

(u′1, u
′
2, u
′
3) = (0, u′2

0 sin(κ3x3 + ∆), 0), (4.21)
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The velocity fields in both (4.20) and (4.21) are initially divergence-free with

fluctuations along the direction of shear (x2 direction).

(iii) The modes that are initially residing on the plane normal to the streamwise

direction are called oblique modes (0 < β < π/2). Oblique modes combine

characteristics of both spanwise and streamwise modes. The initial conditions

for the fluctuating velocity field are given by:

(u′1, u
′
2, u
′
3) = (0, u′2

0 sin(κ1x1 + κ3x3 + ∆), 0), ∆ ∈ [0, π], (4.22)

where ∆ ∈ [0, π] is an arbitrary phase shift, and κ1 and κ3 are streamwise and

spanwise wavenumbers, respectively. Figure.III.1 shows a typical oblique mode,

which can be defined in the κ1 − κ3 plane. The initial turbulence intensity can

be set by adjusting the amplitude of the initial sinusoidal wave, u′20. In all the

initial modes considered (4.20)-(4.22), u0
1 and u0

3 are taken to be zero. This is

due to the fact that these components do not contribute to the instability.

Figure IV.5. Schematic diagrams (not to scale) of the initial perturbation
mode within the computational domain: (a) streamwise, (b) spanwise,
and (c)oblique wave modes
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Figure.IV.6 exhibits these three classes of modes in a computational domain. In the

literature, streamwise modes have been referred to as azimuthal or two-dimensional.

Due to the lack of clarity, the term three dimensionality has been associated to the

oblique modes. It was assumed that the oblique were the only modes responsible

for the generation of small-scale structures or three dimensionality; for instance in

the work of Metcalfe et al [76], where a summation of two streamwise modes (a

fundamental mode and its subharmonic) and one spanwise mode was used. Until the

work of Sandham and Reynolds [34], the term of obliqueness had seldom been used

in the literature. The amplitude of perturbation modes in many prior investigations

has been chosen as the most unstable eigenfunctions of the linear Orr-Sommerfeld

equations for a given wavenumber. Most work done in area of the compressible flows

instability has adopted an eginevalue problem approach, similar to what has been the

trend in the area of incompressible instability. However, we formulate the instability

of a compressible mixing layer as an initial value problem. Based on this approach,

we analyze the temporal evolution of a small perturbation about its initial value.

The inflectional instability of the mixing layer provides an inviscid instability

mechanism [63, 98]. In the current numerical simulations, the mean velocity is ini-

tialized by a hyperbolic tangent profile for the streamwise velocity, u(y) , while all

other mean velocity components are set to zero. Thus,

(ū1, ū2, ū3) = (
∆U

2
tanh

(
− x2

2δ0
m

, 0, 0)

)
, (4.23)

where δ0
m is the half of the initial mixing layer thickness. The desired convective

Mach is achieved by changing the initial mean velocity, ∆U/2, accordingly.
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IV.B.4. Simulation Parameters

The density ratio between two streams is specified to unity. The mean pressure

is set to a uniform value, p0. The initial temperature for all the cases is T0 = 300.

The initial momentum thickness Reynolds number is fixed to Re0
δm

= 400 for all

cases at different initial convective Mach numbers. The Prandtl number is set to

Pr = 0.7. In the current simulations, air is used as the working fluid, thus, the Gas

constant is R = 287 (J/KgK) and the specific heat ratio is γ = 1.4.

IV.C. Validation Studies

A comprehensive validation of GKM has been conducted in the context of a

variety of homogeneous shear flows such as decaying isotropic flows, where linear and

non-linear flow features are independently verified and validated against asymptotic

Rapid Distortion Theory (RDT); DNS results [113,148]; in wall-bounded flows [149]

and the Lattice Boltzmann Method (LBM) [124]. To validate GKM for temporal

mixing layer simulations, we compare current DNS results against previous DNS

data by Sandham and Reynolds [34], Pantano and Sarkar [2], and experimental data

from Elliot and Samimy [67].

IV.C.1. Validation for Stability Simulations

To validate our scheme against the spectral scheme used in DNS by Sandham

and Reynolds [34], in addition to the mean velocity profile given in (4.23), two dif-

ferent types of initial perturbation fields are tested : (i) the streamwise perturbation

mode similar to (4.20) but for all velocity components and (ii) a combination of the
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streamwise mode and a pair of oblique waves with the obliqueness angle of β = π/4

given by

u′ = u′02d sin(x1) + u′0pair sin(x1 + x3), (4.24)

where u′02d and u′0pair are the initial perturbation amplitudes of the streamwise mode

and a pair-mode set to match the initial values in the DNS of Sandham and Reynolds

[34]. The variation of the kinetic energy as a function of normalized time at different

Mach numbers is compared in Figure.IV.7. The growth trend at two different Mach

numbers agree well with their DNS results. At later times, at higher Mach number,

the oblique waves have an energy content that is almost two orders of magnitude

higher than the streamwise waves do. This may be related to the difference in

numerical methods, and more specifically, initial conditions. At lower Mach numbers,

the oblique waves are more amplified than the two-dimensional (streamwise) waves.
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Figure IV.6. Temporal evolution of the turbulent kinetic energy at
Mc =(a) 0.8 and (b) 1.05.
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IV.C.2. Validation for Turbulence Simulations

To validate our scheme for a collection of perturbation modes, we compare

present DNS against that of Pantano and Sarkar [2]. The energy spectrum of these

perturbations, which are random, initially divergence-free and isotropic, can be given

by

E(κ) = Ae−B(κ/κ0)2 , (4.25)

where κ is the wavenumber, and the constant A is chosen such that the initial turbu-

lent intensity of 10% is attained. The constant B and the initial wavenumber κ0 are

set such that the desired initial peak wavelengths are obtained. The temporal evo-

lution of the normalized momentum thickness at different convective Mach numbers

is compared against the DNS results of Pantano and Sarkar in Figure IV.8. Fur-

thermore, the comparison of the turbulence profile in terms of the r.m.s. of velocity

and the Reynolds shear stress along the normal direction is shown in Figure IV.9.

These results are also compared with experimental data [67]. The agreement is again

reasonably good.

Table IV.1. Parameters for the validation simulations

Case Mc s Reδ0ω Pr0 δ0
m Nx ×Ny ×Nz

V1 0.8 1.0 380 0.7 0.25 128× 256× 128
V2 1.05 1.0 380 0.7 0.25 128× 256× 128
V3 0.3 1.0 640 0.7 0.25 256× 512× 128
V4 0.7 1.0 640 0.7 0.25 256× 256× 128
V5 1.2 1.0 640 0.7 0.25 256× 512× 128
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Figure IV.7. Time evolution of the normalized momentum thickness.
Dash-dot lines correspond to the DNS results.

IV.C.3. Convergence Study

In order to validate the scheme and establish the accuracy of the results, several

simulations are performed to examine the effects of the grid resolution and time-step

size. All simulations are performed at Reynolds number, Re = 400, and Prandtl

number, Pr = 0.7. Table IV.2 lists the grid sizes and the corresponding parameters

of these simulations. The evolution of the normalized turbulent kinetic energy for

different resolutions is shown in Figure IV.10. The time-step convergence study

is presented in Figure IV.11, where the different simulations with different time-

step are carried out for the resolution of 256Nx1 × 512Nx2 × 128Nx3 . Both grid

convergence and time-step convergence demonstrated in Figures IV.10 and IV.11

are performed for the compressible mixing layer case of Mc = 1.2. The streamwise

initial velocity perturbation is of the form of ~u′ = (0, u′2(0) sin(x1), 0), with initial
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Figure IV.8. (a) Streamwise, (b) cross-stream r.m.s. velocity, and (c) the
Reynolds shear stress along the normal direction in compressible mixing
layer at Mc = 0.7. Symbols correspond to experimental data at Mc = 0.64,
whereas dash-dot lines correspond to the DNS results at Mc = 0.7.
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turbulent intensity set to 7%. Clearly converged results are obtained for grids finer

than 256Nx1 × 512Nx2 × 128Nx3 and time-steps smaller than 1× 10−5 units.

Table IV.2. Simulations parameters for grid convergence studies

Case Mc β δ0
m Nx1 ×Nx2 ×Nx3

G1 1.2 0 0.25 256× 512× 128
G2 1.2 0 0.25 256× 512× 256
G3 1.2 0 0.25 1025× 256× 256
G4 1.2 0 0.25 1025× 512× 128
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Figure IV.9. Temporal evolution of the normalized turbulent kinetic en-
ergy for different resolution of Nx1 × Nx2 × Nx3 and the fixed time-step of
∆t = 10−5.
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Figure IV.10. Temporal evolution of the normalized turbulent kinetic en-
ergy for different time-step of ∆t for the simulations in the computational
domain with the fixed resolution of 256Nx1 × 512Nx2 × 128Nx3.
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V

EFFECT OF COMPRESSIBILITY ON KELVIN-HELMHOLTZ

INSTABILITY

The objective of the chapter is to explicate the key compressibility mechanism

responsible for the KH instability suppression employing linear analysis and numer-

ical simulations First, we complete the linear analysis, introduced in Chapter III to

examine KH instability under the influence of compressibility. Then we employ the

results of the numerical simulations of a temporally evolving mixing layer at differ-

ent initial convective Mach numbers to develop a more comprehensive understanding.

Finally, the physics of compressible KH instability evolution will be compared and

contrasted against the KH instability in incompressible flows.

V.A. Linear Analysis

Since KH instability is an inviscid instability driven by the inflection point [63,

98, 150], it suffices to consider the inviscid linear perturbation equations [46]. We

commence our linear analysis from Chapter III. It is established that (i) the normal

component of velocity perturbation, u′2, plays an important role in the evolution of

perturbation kinetic energy and spanwise vorticity, and (ii) changes in pressure-

velocity interaction and the consequent effect on spanwise vorticity (and kinetic

energy) Classical KH instability involves only planar (streamwise) perturbations.
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Therefore, we set β = 0

∂2û∗2
∂x∗2

2
+ (û∗2S

∗ − û∗1)S∗ +
i

κ

p̂∗

γu0
S = M2

g

∂2û∗2
∂t∗2

, (5.1)

∂2p̂∗

∂x∗2
2
− p̂∗ + 2i

u0ρ̄

κp̄
û∗2S = M2

g

∂2p̂∗

∂t∗2
, (5.2)

where the normalized independent variables as follows: t∗ ≡ St and x∗2 ≡ κX2, and

κ is the magnitude of the wavenumber vector. The normalized velocity and pressure

amplitudes are: p̂∗ ≡ p̂/p and û∗i ≡ ûi/u
0, respectively where u0 is the r.m.s of the

initial perturbation velocity. Recall that the gradient Mach number, is defined by

Mg ≡
S

ā0κ
, (5.3)

where ā0 =
√
γp̄/ρ̄ is speed of sound, S is the background shear rate and κ is the

magnitude of the wavenumber vector. From the form of the equations (5.1)-(5.2), it

is evident that the Mg is the relevant Mach number to characterize compressibility

effects on the perturbation field. It is crucial to point out that Mg is a local mea-

sure of the effect of compressibility on the perturbation of wavenumber κ, while the

convective Mach number, Mc, is a global measure of the mixing layer speed. Based

on the value of Mg, effect of compressibility on KH instability can be classified as

follows:

1. At the incompressible limit, ā → ∞, then Mg → 0, the hyperbolic equation

expressing the evolution of the pressure perturbation, (5.2) is reduced to an elliptic

form of
∂2p̂∗

∂x∗2
2
− p̂∗ = −2i

u0ρ̄

κp̄
û∗2S. (5.4)

This is indeed the Poisson’s equation for the pressure and leads to the familiar KH

behavior [98]. Nonetheless, due to a smaller value of the shear rate, the source term
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is relatively weak at low-Mach number flows. At the incompressible limit, pressure

has the sole purpose of imposing the divergence-free constraint on the velocity field.

2. At higher speeds (Mg > 0), the full form of hyperbolic wave equations

(5.1)-(5.2) govern the evolution of velocity and pressure perturbations. In this limit,

pressure is a true thermodynamic variable with evolution governed by an inhomoge-

neous wave equation given in (5.2) with a propagation speed of 1/Mg in the normal

direction. It is well established in literature that KH is severely suppressed [1,49,98].

While the transformative influence of compressibility is known, the precise mecha-

nism of suppression and its connection to wave behavior of p′ and u′2 needs to be

formally established and understood. We now explicate the suppression mechanism

by combining the above linear analysis with findings from numerical simulations.

V.B. Direct Numerical Simulations

To examine KH instability in compressible flows and to contrast the KH dy-

namics at low and high Mach numbers, we perform DNS of a temporally evolv-

ing mixing layer. The numerical scheme employs the GKM, introduced in Chap-

ter IV, which effectively solves the full Navier-Stokes equations with all non-linear

and viscous physics completely intact. The background velocity field is taken to

be ui = (∆U/2 tanh(x2/(2δ
0
m), 0, 0), where δ0

m is the initial momentum thickness of

the mixing layer, is the the velocity difference between two streams farfield. Only

streamwise perturbations corresponding to the classical KH instability are considered

in this chapter. Isolating the effect of only a single perturbation mode rather than

the broadband perturbation helps us to scrutinize the evolution of KH instability
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development more comprehensively. Even at very high speeds, it is evident from

Chapter III that high wavenumber perturbations (κ > S/ā0) experience subsonic

gradient Mach numbers. Therefore, low wavenumber or large wavelength initial

velocity perturbation field is chosen: u′i = (0, û0
2 sin(κ1x1), 0);κ1 = 2π/L = 1, 2,

where L is the domain length and û0
2 = 0.05∆U . A thorough numerical convergence

study, presented in section IV.C.1 confirms that a cubical domain of side L = 2π

with 256 × 512 × 128 grid points provides results of requisite accuracy. Table V.1

describes the simulation parameters.

Table V.1. Initial physical and numerical parameters for the KH insta-
bility simulations

Case Mc s Reδ0ω κ1 δ0
m Nx ×Ny ×Nz

C1 0.3 1.0 395 1.0 0.25 256× 1024× 256
C2 0.4 1.0 395 1.0 0.25 256× 512× 256
C3 0.6 1.0 395 1.0 0.25 256× 512× 128
C4 0.7 1.0 400 1.0 0.25 256× 512× 128
C5 0.8 1.0 400 1.0 0.25 256× 512× 128
C6 0.9 1.0 400 1.0 0.25 256× 512× 128
C7 1.0 1.0 400 1.0 0.25 256× 512× 128
C8 1.1 1.0 400 1.0 0.25 256× 512× 128
C9 1.2 1.0 400 1.0 0.25 256× 512× 128
C10 0.3 12.0 400 2.0 0.25 256× 512× 128
C11 0.7 1.0 400 2.0 0.25 256× 512× 128
C12 1.2 1.0 400 2.0 0.25 256× 512× 128

To closely examine the dynamics of the KH instability as Mach number in-

creases, mixing layers of different convective Mach numbers are computed: Mc =

0.3, 0.6, 0.8, 1.0 , 1.1 & 1.2. The initial is varied based on the initial Mc. It must

be noted that the convective Mach number Mc is a of global measure of the mix-

ing layer speed, while Mg is a local measure of the effect of compressibility on the
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perturbation of wavenumber κ. The thermodynamic fields are initially taken to be

uniform: temperature ratio and the density ratio between two streams, s = ρ2/ρ1,

are initially of unity. The simulations are carried out for the air γ = 1.4 and ini-

tially uniform density of unity, ρ̄0 = 1 (N.m2). The initial Reynolds number based

on the momentum thickness and Prandtl numbers are Reδ0m = 400 and Pr = 0.7,

respectively.

Specification of boundary conditions is detailed in Chapter IV. Various features

of the flow conditions including the hyperbolic tangent profile for the background

streamwise velocity ū0
1(x2) and the sinusoidal wave for the initial streamwise pertur-

bation mode u′20(x1) are exhibited in Fig.V.1. Note the locations of the three points

in Fig.V.1 that are marked by S1, S2 and the initial inflection point of the back-

ground velocity marked by P . The streamwise and normal directions are denoted by

x1 and x2, respectively.

Figure V.1. A schematic representation of the flow conditions and com-
putational geometry of a mixing layer initialized to a hyperbolic tangent
profile for the mean velocity as ū = (∆U/2 tanh(x2/δ

0
m), 0, 0); initial veloc-

ity perturbation field of u′i = (0, û0
2 sin(κ1x1), 0); pivot point P ; stagnation

points S1, S2; and quadrants marked by Q1 −Q4.
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V.B.1. Mixing Metrics

The extent of KH instability can be characterized in terms of the following

mixing metrics: (i) momentum thickness, (ii) the turbulent kinetic energy, (iii) the

normal-component of velocity, and (iv) vorticity thickness; additionally to character-

ize the degree of the KH instability development, the evolution of two more quantities

are investigated: (v) enstrophy and (vi) circulation. The temporal evolution of all

statistics are shown in normalized time defined by

τ =
∆U/2

δ0
m

t. (5.5)

All mixing metrics are non-dimensionalized in the conventional way by its initial

value, except circulation which is non-dimensionalized by the initial characteristic

velocity (∆U/2) and the initial characteristic shear layer thickness (δ0
m). The defini-

tion of each mixing metric as follows:

1. Spreading rate can be one of the indicators of the mixing layer growth.

This work considers characterizing the spreading rate both in terms of themomentum

thickness, δm, and vorticity thickness, δω. Additionally, instability growth can be

measured in terms of the turbulent kinetic energy, k = (u′i · u′i)/2. The momentum

thickness is defined by

δm(t) =
1

ρ̄0∆U2

∫ ∞
−∞

ρ̄(
1

4
∆U2 − u2

1)dx2. (5.6)

The vorticity thickness is defined by

δω(t) =
∆U

(∂ū1/∂x2)max
, (5.7)

where (∂ū1/∂x2)max occurs at the inflection point, marked by P in Figure V.1. Mo-

mentum thickness or vorticity thickness can be related to each other. The correlation
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between them depends on the initial values of the convective Mach number and the

velocity ratio between two streams [2]. The temporal evolution of the momentum

thickness and the vorticity thickness for different initial Mc is presented in Figure

V.2. The temporal evolution of turbulent kinetic energy, k, along with its important

normal component, u′2u′2 is presented in Figure V.3. The turbulent kinetic energy

evolves nearly monotonically until it saturates, as shown in Figure V.3 (a). The

maximum growth is observed at the lowest initial Mc (0.3). Normal component of

velocity u′2 follows the same trend of evolution as does that of k, expect within the

very early stage of evolution. For both k and u′2u′2, the energy growth is suppressed

at the higher Mc.
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Figure V.2. Temporal evolution of the normalized (a) momentum thick-
ness and (b) vorticity thickness at different Mach numbers when the initial
obliqueness angle is zero, β=0.

2. Enstrophy. To understand how flow structures are affected by compressibil-

ity, we can exploit other properties of velocity field such as vorticity. In this context,
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Figure V.3. Temporal evolution of the normalized turbulent kinetic en-
ergy and the normal component of the turbulent kinetic energy at differ-
ent Mach numbers when the initial obliqueness angle is zero, β=0.

mixing can be studied in the perspective of vorticity magnitude. One measure of

vortex strength or the vorticity intensity is the enstrophy, Ω, defined by

Ω =
1

2
ω′3 · ω′3, (5.8)

where ω′3 is the spanwise perturbation vorticity. The temporal evolution of enstrophy

normalized by its initial value at different Mach numbers is illustrated in Figure V.4.

As Mach number increases, the growth of enstrophy in the entire field is inhibited to

the extent that at Mc = 1.2, the entrophy remain nearly constant.

3. Circulation. Another measure of the magnitude of the vortex strength is

circulation, Γ, defined by

Γ ≡
∮
C

~u′ · ~I, (5.9)

where u′ is the velocity perturbation field and I is a directed line segment at a point

on the closed curve, C. Clearly, circulation is a kinematic property depending only

67



Figure V.4. Temporal evolution of the normalized enstrophy at Mc =
0.3, 0.7 and 1.2.
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Figure V.5. Sketch of the closed curve for calculating circulation on the
x1 − x2 plane.
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on the velocity field and choice of closed curve. This scalar quantity is of great

importance in describing vortical flow structures. Circulation exists in the flow if

the line integral in (5.9) is finite. In the absence of shocks or other discontinuities,

applying the Stoke’s theorem to the above definition leads to

Γ =

∫∫
S

~Ω · ~nS, (5.10)

where S is the infinitesimal area closed by the infinitesimal curve, C, and ~n is a

normal vector to this area. Note that expressing circulation as a surface integral of

the vorticity component normal to the surface enclosed by the contour is only valid

for incompressible flows. For all Mach numbers, the circulation is calculated along

the line integral in (5.9). A closed curve is assumed as a square with a length of

0.25Lxi around the pivot point at the center of the mixing layer shown in Figure

V.5. The temporal evolution of the normalized circulation is depicted in Figure.V.6,

indicating that the circulation in the low-Mach number cases (e.g. Mc = 0.3) keeps

increasing, as shown in Figure.V.6 (a), while it oscillates around zero for high Mach-

number cases (e.g. Mc = 1.2) as depicted in Figure V.6 (b).

To demonstrate the change of nature of the velocity-pressure interaction, toward

the dynamics of KH instability under influence of compressibility, a point close to

the interface, within the vicinity of P is chosen. This point is marked by the cross

sign in Figure V.5. The evolution of the velocity and pressure field at this specific

location is monitored and shown in Figure V.7. At low speed flows (e.g. Mc = 0.3),

the pressure gradient field, ∂p̂/∂x2, and the source term in (5.2), û2S, due to the

nature of Poission equation, u′2 and p′ remain in-phase, as shown in Figure V.7 (a).

On the other hand, at high speed flows (e.g. Mc = 1.2), temporal of evolution of u′2
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Figure V.6. Temporal evolution of the normalized circulation in (a) the
incompressible mixing layers at Mc = 0.3 and 0.6 and (b) the compressible
mixing layers at Mc = 0.8, 1.0 and 1.2
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(a) (b)

Mc = 0.3 Mc = 1.2

Figure V.7. Temporal evolution of the perturbation field for a mixing layer
with the initial velocity field of β = 0 at (a) Mc = 0.3 and (b) Mc = 1.2.

and p′ at the same given point indicates that they evolve in the out-of-phase manner,

seen in in Figure V.7 (b). From Figure V.7, it clear that the variation of p′ in low

Mach numbers is very small comparing to the counterpart in high Mach numbers,

to the extent that p′ keeps oscillating with the relatively high amplitude.

Consistent with findings in literature [1,2,24], all mixing characteristics diminish

with Mach number indicating a strong suppression of KH instability with increasing

Mc. In low speed flows, for a given initial Mach number (e.g. Mc = 0.3), it can

be shown that p′, u′1, u′2 and ω′3 fields evolve monotonically resulting in the classi-

cal KH instability behavior. Whereas, in high speed flows, the growth of most of

mixing characteristics are inhibited. Now, we will examine the underlying physical

mechanism which has been identified from analysis to be the p′-u′2-ω′3 interactions.

We begin with a brief description of the incompressible instability mechanism and
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contrast it against the compressible-case behavior. While extending incompressible

concepts to compressible flows is injudicious, it is useful for contrasting how structure

evolves with the change of Mach number. Using the incompressible KH instability

as the baseline behavior, we investigate how the flow changes with a gradual increase

in Mach number. Starting our investigation, we begin with the incompressible KH

instability.

V.C. KH Instability Mechanism at Low Mach Numbers

We now describe the three stages of KH development [70, 77] by analyzing the

p′ and ω′3 contours at various stages. The dynamics in the four quadrants Q1 - Q4

around the pivot (P ) and stagnation (S1, S2) points, schematically shown in Fig.V.1,

are central to this description. There are three distinct stages in the evolution of the

KH instability at low Mach numbers [70]:

Stage 1: Initial Development Stage. The behavior in the initial develop-

ment stage is dictated by the initial conditions and source terms in the pressure

and vorticity equations. In this stage, velocity perturbation evolution and vorticity

perturbation production are initiated by the following terms:

∂u′1
∂t
∼ −u′2S, (5.11)

∂ω′3
∂t
∼ −u′2

∂2U1

∂x2
2

, (5.12)

where ω3 is the spanwise component of vorticity perturbation. The vortex sheet,

respectively is the highest concentration of vorticity, initially forms at the interface

between the two streams. Low pressure region forms around pivot point P and high-

pressure region about the stagnation points S1 & S2. In the neighborhood of P ,
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negative (clockwise) vortices are initiated in quadrants Q2 & Q4, positive (counter-

clockwise) vortices in Q1 and Q3. Around the stagnation points S1 & S2, clockwise

vortices are generated in Q1 & Q3 and the counter-clockwise vortices in Q2 & Q4.

These features are captured in Figure.V.8 (a) and (b).

Stage 2: Pairing, merger and roll-up stage . The incompressible steadily-

evolving velocity field has the following effects at the pivot point P : (i) clockwise

vortices are strengthened; (ii) counter-clockwise vortices are weakened; and, (iii)

pressure is further reduced. As a result, the two negative vortices grow, merge in

the vicinity of P and begin to roll around P to the pivoting action of the source

term in equation (5.4). As the cores of the original spanwise rollers merge and form

an almost circular core, the spiral arms of weaker spanwise rollers are ejected away,

seen in Figure. V.8 (d). It is well known that vorticity and negative pressure have

a positive feedback interaction. Consequently, at P , both p′ and clockwise vorticity

mutually intensify each other. The merged clockwise vortex begins to roll-up rapidly

and constitutes the central mechanism of KH instability. Therefore, this period of

evolution is called merger and roll-up stage. The rolling vortex begins to entrain fluid

from both the free-streams as can be seen from Figure.V.8 (c) and (d). At S1 &

S2, the incompressible velocity field engenders: (i) suppression of clockwise vortex;

(ii) enhancement of the counter-clockwise vortex; and (iii) rise in pressure. However,

the counter-clockwise vortex and high pressure fields do not mutually intensify one

another. Thus, the pressure and vorticity fields grow slowly at these stagnation

points. Early in this stage, there is a sustained growth of the instability. Vorticity

continues growing until the first pairing occurs, about τ = 30, which is consistent
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with the first peak of the circulation plot for Mc = 0.3 as shown in Figure. V.6 (a).

(a) (b)

(c) (d)

(e) (f)

P P

P P

P P

S2S1 S2S1

S2S1S2S1

S2S1 S2S1

Figure V.8. x1−x2- plane contours of pressure perturbation contours (on
the left) and spanwise vorticity perturbation (on the right) of a mixing
layer at Mc = 0.3, illustrating Stage 1 in (a-b), Stage 2 in (c-d) and Stage
3 in (e-f) of the KH instability development in the incompressible flows.
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Stage 3: Asymptotic KH instability stage. The final stage is marked by

consolidation and rapid inward spiral rotation of the low-pressure vortex about the

pivot point. Entrainment intensifies leading to the onset of instability as can be

seen from Fig.V.8 (e) and (f). At this stage, subharmonics are dissipated. This

leads to a nearly solid body vortex rotation in the low pressure region around P ,

when disturbances reach their final amplitude. The shape of the strongest roller

core eventually becomes elliptical in form and vertically aligned, as does the pressure

perturbation field. Following the velocity streamtrace reveals that the centers of all

three spanwise cores finally get aligned on the x2 = 0 plane. Eventually, the strong

spanwise rollers are advected into the braid region by viscous dissipation. Ultimately,

this location develops into an asymmetric structure of the so-called cat ′s eye vortex

structure, shown in Fig.V.8 (f).

V.D. KH Instability Dynamics at High Mach Numbers

Unlike the well-established incompressible KH instability, the compressible coun-

terpart has not been studied in detail. The evolution of the pressure perturbation

is now governed by the hyperbolic equation (5.2). Due to the presence of a large

initial shear, the effect of the source term in the pressure perturbation equation (5.2)

is significant.

V.D.1. Gradient Mach Number as a Compressibility Parameter

At low Mach numbers, Mg remains very small throughout the flow domain over

the entire evolution. With increasing Mach number, the region ofMg > 1 gets larger.
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WhenMc ≥ 0.8, the formation of a layer around the interface within whichMg > 1 is

evident. The evolution of the local value ofMg for the compressible case ofMc = 1.2

is shown in Figure V.9.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure V.9. Gradient Mach number contours for Mc = 1.2 at τ = (a) 0,
(b)10, (c)24, (d)64, (e)105 , (f)172, (g)209, (h)257 ,(i)287, (j)345, (k)355
and (l) 375. Solid dark blue line indicates Mg = 1.
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The layer around the interface wherein Mg(x2) exceeds unity is given the name

dilatational interface layer (DIL). Based on Mg, the mixing layer can be divided

into three regions: DIL and two other regions on either side comprising of the two

free streams. The compressibility effects are prominent within the DIL and less so

in the outer region. The three regions are presented in schematic in Fig V.10. A

Mach number schematic given by Papamoschou and Roshko is shown in Figure.V.11.

Contrary to the present work, Papamoschou and Roshko partition the flow field on

Figure V.10. A schematic of a compressible mixing layer; the dilatational
interface layer where Mg > 1; two stagnation points (S1 and S2); and
propagated pressure waves in the outer region (color online).

the basis of the convective Mach number. Unfortunately, such classification can be

misleading as the maximum compressibility effects manifest at the interface wherein

the convective Mach number can be subsonic.
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(a) (b)

Figure V.11. Profiles of the flow velocity (solid line) and speed of sound
(dashed line); Uc is the convective velocity in a mixing layer given by (2.6);
a is the average speed of sound which varies along the normal direction
at (a) stationary (b) convective coordinates frames, taken from [1]

Within the DIL, pressure behavior is dictated by thermodynamic considerations

and the perturbations evolve according to the inhomogeneous wave equation given

in (5.2). Perturbation pressure waves propagate along the x1 − x2 plane with a

velocity proportional to 1/Mg. Toward the outer regions, pressure waves from the

DIL propagate with the speed of 1/M∗
g . The pressure perturbation equation in (3.31)

can be rewritten in terms of the dilatation as

∂p′

∂t
= −γp̄ [D − S∗] , (5.13)

where the velocity perturbation dilatation, D, is defined by

D =
∂u′i
∂Xi

. (5.14)

Since the pressure field is periodic within the DIL, the nature of the dilatation field

evolution is periodic correspondingly, according to the equation (5.13). Most impor-
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tantly, the flow field along the interface is unsteady under the influence of pressure

wave propagation. The pressure and velocity fields develop a phase lag. Within

the DIL, the value of the pressure perturbation alternates between its maxima and

minima at a given point in space.

In the outer regions, Mg(x2) < 1, and the source terms in the wave equations

are weaker. The outer regions cannot be considered truly incompressible in character

as the pressure and dilatational waves generated in the DIL propagate throughout

the flow domain. A schematic of the DIL and outer layers, along with the various

characteristics of the different regions are shown in Fig.V.10.

To understand the unsteady compressibility effects upon KH instability, contours

of pressure and vorticity perturbations contours for Mc = 1.2 case are presented in

Figure V.12. From Figures V.12 (c) and (e), the DIL can be identified as the narrow

region in the middle wherein the pressure field shows steep variations. In the outer

regions, the pressure wave merely propagates diagonally to the flow domain boundary.

It is clear from the vorticity contours that high levels of vorticity are restricted to

the DIL. The different stages of perturbation evolution are now described. We will

first examine the behavior within DIL and then proceed to the outer regions. The

different parts of the DIL will still be referred as pivot, P , and stagnation points,

S1 andS2, depicted in Figure V.1, based upon the nomenclature introduced in the

incompressible case.

Stage 1: The initial development stage of the compressible case is similar

to the incompressible one as the initial conditions and source terms in the governing

equations are identical. The qualitative similarities of this stage at different Mach
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P P

P P

P P

S2S1 S2S1

S2S1S2S1

S2S1 S2S1

Figure V.12. Contours of pressure perturbation (on the left) and spanwise
vorticity perturbation (on the right) of a mixing layer at Mc = 1.2, illus-
trating Stage 1 in (a-b), Stage 2 in (c-f) of the KH instability development
in the compressible flows.
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numbers can be seen by comparing Figure V.8 (a) and (b) with Figure V.12 (a)

and (b). Once again, low and high pressure regions form around pivot point P and

stagnation points S1 and S2 respectively.

Stage 2: The second stage behavior is dictated by the evolution equations of

velocity and pressure fields, and therefore is markedly different in the compressible

case. Now p′ and u′2 evolve according to wave equations resulting in the following

around P : (i) gradual u′2 magnitude reduction and sign change leading ultimately to

the reversal of the vortices in Q2 and Q4 to counter-clockwise; (ii) similar reversal of

vortices in Q1 and Q3 to clockwise; and (iii) gradual increase in pressure at P . Thus,

vortex reversal dominates the second stage rather than merging. Indeed during the

reversal process, positive pressure and counter-clockwise vortex prevail at P , shown

in Figure V.12 (c) and (d). With passage of time, the pressure at P returns to

negative values, clockwise vorticity returns toQ2 andQ4 region and counter-clockwise

to Q1 and Q3 quadrants as seen in Figure V.12 (e) and (f). Most importantly,

the reversals preclude the steady positive feedback of clockwise vortex and negative

pressure field at P which is central to incompressible KH instability. A similar

reversal, but in the opposite sense occurs at the stagnation points. Thus this stage

is now identified as the first vortex reversal stage with no roll-up.

Stage 3: The final asymptotic stage is marked by periodic reversals until non-

linear or viscous processes intervene. There is no steady entrainment and thus the

circulation remains small.

Outer regions: Although Mg is smaller than unity in the outer regions, the

behavior here is not similar to that in incompressible flow. Pressure waves generated
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within the DIL propagate through these regions dominating the flow features. At

any given point, the velocity is nearly periodic and this leads to very little mixing

even in the low Mg regions. Although regions with large circulation are formed in

these subsonic regions, vorticity reverses directions in accordance with the pressure

field reversal. These large, but weak time-dependent circulation zones can not cause

significant mixing.

Summary. The physical mechanism of suppression KH instability in compress-

ible flows is explicated through the pressure-vorticity interaction dynamics. To sum-

marize the main features of KH perturbation evolution in compressible and incom-

pressible flows, we sketch the relevant dynamics in Figure V.13. The most crucial

dynamics occur in the vicinity of the so-called pivot point P . The first stage of

evolution in the two cases are quite similar as the behavior is dictated by the initial

conditions and source terms in the evolution equations. Low pressure region forms

around P and clockwise and counter clockwise vortices form in diagonally opposite

quadrants as seen in Figure V.13 (a) and (b). The behavior in the second stage is

determined by the evolution equations and is consequently markedly different in the

two cases. In the incompressible case, the velocity field mediates a steady positive-

feedback interaction between clockwise vortex and negative pressure field causing

mutual intensification and ultimately triggering the KH instability, as illustrated in

(Figure V.13 (c). The onset of compressibility engenders the formation of a layer

called dilatational interface layer (DIL). Within the DIL, the compressible velocity

field is inherently oscillatory as it is governed by the wave equation. This results in

vorticity and pressure field reversals, precluding positive feedback growth, as shown
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in Figure V.13 (d). In the final stage, the incompressible case features growing inward

spiraling motion around the pivot point entraining increasing quantities of fluid from

either side as shown in Figure V.13 (e). In stark contrast, the compressible interface

features mostly oscillatory fluid motion that cannot sustain any sizable mixing be-

tween the two streams as flow field alternates between Figure V.13 (d) and Figure

V.13 (f).

Stage 1

Stage 2

Stage 3

(a) (b)

(c) (d)

(e) (f)

Figure V.13. Schematic representation of contrasting the stages of devel-
opment of the KH instability in compressible flows (on the right) against
the incompressible counterpart (on the left); and u′2S are marked by solid
black arrows.
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VI

EFFECT OF OBLIQUENESS AND NON-LINEAR INTERACTIONS

A comprehensive analysis of mixing layer stability entails two further investi-

gations. Mixing layers of practical relevance are subject to perturbations that are

oblique to the plane of shear. It is important to establish the stability characteristics

of such oblique perturbations. It is also vital to examine the effect of non-linear

interactions among oblique modes. In this chapter, we investigate obliqueness and

non-linearity effects drawing from the planar KH instability analysis presented in

the previous chapter. The various mixing metrics defined in the KH instability will

again be employed to assess the degree of instability.

VI.A. Linear Stability of Oblique Perturbations

From the linearized perturbation equations in Chapter III, the pressure-velocity

interaction of an oblique perturbation can be expressed in the form of hyperbolic

wave equations:

∂2û∗2
∂x∗2

2
+ (û∗2S

∗ − û∗1)S∗ +
i

κ

p̂∗

γu0
S cos β = M∗

g
2∂

2û2

∂t∗2
, (6.1)

∂2p̂∗

∂x∗2
2
− p̂∗ + 2i

u0ρ̄

κp̄
û∗2S cos β = M∗

g
2∂

2p̂∗

∂t∗2
, (6.2)

where β is the obliqueness angle of the initial perturbation mode, κ is the initial value

of the wavenumber vector, S is the background shear rate and S∗ ≡
∫ t

0
S(X2)dξ.

The normalized velocity, û∗, amplitude and pressure amplitudes, p̂∗, are obtained

by û∗i ≡ ûi/u
0 and p̂∗ ≡ p̂/p, respectively where u0 is the r.m.s. of the initial
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perturbation velocity. Recall also that the effective gradient Mach number, M∗
g , is

defined by

M∗
g = Mg cos β =

S

āκ
cos β. (6.3)

Here, M∗
g is the relevant measure of compressibility experienced by an oblique per-

turbation mode. It is clear that M∗
g decreases with increasing the obliqueness angle.

The modes with the obliqueness angle of close to β = 0 experience the highest effect

of compressibility. In this work, modes with M∗
g ≥ 1 are called supersonic modes.

Whereas the modes aligned closer to the spanwise direction with β = π/2, where

M∗
g < 1, can be classified as subsonic modes. It is clear that in the case of β = π/2,

M∗
g = 0. Then, the pressure term is eliminated from equations (6.1)-(6.2). To ana-

lyze linear stability of oblique perturbations in mixing layers, based on the value of

β, three categories of perturbation modes are considered as follows:

Figure VI.1. Schematic of modal stability for compressible mixing layers

85



1. Streamwise mode (β = 0): The baseline case of β = 0, corresponding to

the initial perturbation along the streamwise direction, is extensively discussed in

Chapter V. Compressibility inhibits the growth of the KH instability due to the fact

that the streamwise modes are suppressed the most as Mach number increases.

2. Spanwise mode (β = π/2): In specific case of purely spanwise modes, the per-

turbations are aligned with the principal direction of the background flow, along κ3

direction in Figure VI.1. Since β = π/2, M∗
g = 0. Therefore, the pressure pertur-

bations evolve according to the reduced form of (6.2), which has an elliptic form

as:
∂2p̂

∂x∗2
2
− p̂ = 0. (6.4)

Regardless of the value of Mach number, the spanwise modes grow all the time. Since

these modes are corresponding to M∗
g = 0, compressibility has the least effect on

their growth. This is also referred to pressure− release limit [151–154], where the

spanwise wave modes can be called pressureless modes [155] as well. For spanwise

modes, the velocity perturbations evolve according to:

∂û1

∂t
= −û2S, (6.5)

∂û2

∂t
= −1

ρ̄

∂p̂

∂X2

∼ 0, (6.6)

∂û3

∂t
= −iκ3

ρ̄
p̂ ∼ 0. (6.7)

It is evident that the incompressible and compressible contribution of the pressure

vanishes from the streamwise component of velocity amplitude, û1 in (6.5). Thus,
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we can simply write û1(t) = −û2(0)St. If there are no initial pressure perturbation,

both the incompressible and compressible of the pressure is eliminated from the û2

and û3 equations (6.6)-(6.7). Then, for spanwise modes, the turbulent kinetic energy

can be written as

k ∼ û1û
∗
1(t) = −u2

2S
2t2. (6.8)

Hence, the evolution of velocity components are entirely unaffected by pressure re-

gardless of the initial Mach number. The spanwise mode is unstable.

3. Oblique mode (β ∈ (0, π/2)): As this mode combines characteristics of both

spanwise and streamwise modes, the full form of the non-homogeneous wave equa-

tions of (6.1)-(6.2) govern the velocity-pressure interaction. Within the range of

β ∈ (0, π/2), there exists an angle which corresponds to an effective gradient Mach

number of unity:

βcrit ≡ cos−1(
1

Mg

) =
κā

S
. (6.9)

The existence of such a critical obliqueness angle verifies demarcation of the two

modal classes: subsonic modes, where β > βcrit; and supersonic modes, where β <

βcrit. The higher the Mach number, the larger the critical obliqueness angle. The two

modal classes of supersonic and subsonic along with the critical obliqueness angle are

depicted in Figure VI.1. Clearly, for the smaller β, the source terms in (6.1)-(6.2) are

stronger and the perturbation growth is suppressed more by compressibility. This is

in concert with the definition of the effective gradient Mach number in (6.3): when

β is closer to zero, the highest compressibility effect is experienced by the oblique

mode. Whereas for the oblique modes with β > βcrit, the perturbations are less
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suppressed and evolve almost independent of Mach number.

In summary, spanwise modes with the initial obliqueness angle of β = π/2 are

impervious to compressibility and perturbation grows exponentially regardless of the

initial convective Mach number of a mixing layer flow. Whereas in the streamwise

modes, β = 0 are affected the most by compressibility. Based on the behavior of the

β = 0 and β = π/2 modes, it is suggested that wave modes with low obliqueness

angles will experience higher compressibility effects than large obliqueness angles.

To isolate the effect of the perturbation alignment, the evolution of an individual

perturbation mode can be analyzed through the numerical simulations by changing

the obliqueness angle β : 0→ π/2 at different Mach numbers.

VI.B. Simulations of Single Oblique Modes

To focus on the linear effect, the background flow field is initially perturbed by

a single wave mode of the form:

u′j(x, 0) = ûj(κ(0), 0)eiκ(0)·x = ûj(κ(0), 0) sin(κ(0) · x + φ), φ ∈ [0, π], (6.10)

where κ(0) is the initial wavevector and ûj is the corresponding Fourier coefficient.

The phase angle, φ, represents an arbitrary shift between the wave mode vector and

the normal x2-direction. A schematic representation of the streamwise, spanwise and

oblique modes is depicted in Figure VI.2.

For all simulations, regardless of the type of initial perturbation modes, the û0
2

is set to 0.05 ∆U and φ = 0. The background velocity field is again taken to be

ui = (∆U/2 tanh(x2/(2δ
0
m), 0, 0), where δ0

m is the initial momentum thickness of the

mixing layer. The density ratio between two streams is specified to unity. The initial
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background pressure is set to a uniform value, p0. The initial temperature for all

the cases is T0 = 300. The initial momentum thickness Reynolds number is fixed to

Re0
δm

= 400 for all cases at different initial convective Mach numbers. The Prandtl

number is set to Pr = 0.7. In the current simulations, air is used as the working

fluid, thus, the Gas constant is R = 287 (J/KgK) and the specific heat ratio is

γ = 1.4. The simulation parameters are presented in Table VI.1.

Table VI.1. Simulation parameters for the study of the obliqueness angle
effects

Case Mc β δ0
m Nx1 ×Nx2 ×Nx3

M3B0 0.3 0 0.25 256× 1024× 128
M3B30 0.3 30 0.25 256× 512× 128
M3B60 0.3 60 0.25 256× 512× 128
M3B90 0.3 90 0.25 256× 256× 128
M7B0 0.7 0 0.25 256× 1024× 128
M7B30 0.7 30 0.25 256× 512× 128
M7B60 0.7 60 0.25 256× 512× 128
M07B90 0.7 90 0.25 256× 256× 128
M12B0 1.2 0 0.25 256× 1024× 128
M12B30 1.2 30 0.25 256× 512× 128
M12B60 1.2 60 0.25 256× 512× 128
M12B90 1.2 90 0.25 256× 256× 128

Now, we present results for these three classes of modes by presenting the tem-

poral evolution of the momentum thickness (δm), vorticity thickness (δω), turbulent

kinetic energy (k) and the average of the normal component of turbulent kinetic

energy (u′2u′2). All quantities are non-dimensionalized- in the conventional way- by

their initial values. Recall that time is non-dimensionalized by the maximum initial

shear rate: τ = (∆U/δ0
m)t.

I. Streamwise modes (β = 0): The initial dilatational velocity perturbation
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Figure VI.2. Schematic diagrams (not to scale) of the initial perturbation
mode within the computational domain: (a) streamwise, (b) spanwise,
and (c)oblique wave modes

is along the streamwise direction and has the form of

(u′1, u
′
2, u
′
3) = (0, û0

2 sin(κ0
1x1), 0) (6.11)

Although the streamwise mode case, (β = 0) was discussed extensively in Chapter

V, in order to identify the role of the obliqueness angle on the instability of a mixing

layer, this case is included here as well. The evolution of the perturbation rate,

shown in Figure VI.3, demonstrates that the streamwise modes experience the highest

effective Mach number. The normalized momentum thickness is much smaller at

Mc = 1.2 than one of quasi-incompressible case, i.e. with the lowest convective Mach

number, e.g. Mc = 0.3, depicted in Figure VI.3 (a). Compressibility inhibits the

growth of the vorticity thickness as well, as seen in Figure VI.3 (b).
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Figure VI.3. The temporal evolution of the normalized momentum thick-
ness and the normalized vorticity thickness at different Mach numbers
when the initial obliqueness angle is zero, β=0.
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Figure VI.4. The temporal evolution of the normalized turbulent kinetic
energy and the normal component of the turbulent kinetic energy at dif-
ferent Mach numbers when the initial obliqueness angle is zero, β=0.
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II. Spanwise modes (β = π/2): For these wavemodes, the initial solenoidal

velocity perturbation used in the DNS is given by:

(u′1, u
′
2, u
′
3) = (0, û0

2 sin(κ0
3x3), 0). (6.12)

The evolution of both the momentum thickness and the vorticity thickness for the

spanwise modes (β = π/2) is demonstrated in Figure VI.5. There is rapid growth

for both thicknesses regardless of the initial convective Mach number. The same

trend can be observed in the evolution of the normalized kinetic energy, as shown in

Figure VI.6 (a), while the evolution of the most contributive component of turbulent

kinetic energy in the case of β = π/2, u′2u′2, is shown in VI.6 (b). Note that the

change of u′2u′2 is fairly small as the Mach number increases, as shown in Figure VI.6

(b). Clearly, the growth of the spanwise wavemode perturbations is impervious to

compressibility. The evolution of both the momentum thickness and the turbulent

kinetic energy indicates the monotonic growth of the mixing layer, thus, leading to

the unstable state.

In this case, the linear analysis shows that the velocity field experiences the least

compressibility effect. This implies that irrespective of the initial convective Mach

number, the streamwise velocity perturbations will experience a monotonic growth as

indicated in (6.5) and illustrated in Figure VI.6 (b), referring to the pressure-release

limit in literature. Consequently, the turbulent kinetic energy evolution also follows

as the pressure-release limit undergoes the monotonic growth as shown in Figure

VI.6 (a). The variation of u′2 remains small, as shown in Figure VI.6 (b). This is

perfectly in agreement with the results of the linear analysis expressed in equation

(6.6).
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Figure VI.5. The temporal evolution of the normalized momentum thick-
ness and the normalized vorticity thickness at different Mach numbers
when the initial obliqueness angle β = π/2.
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Figure VI.6. The temporal evolution of the normalized turbulent kinetic
energy and the normal component of the turbulent kinetic energy at dif-
ferent Mach numbers when the initial obliqueness angle is π/2, β = 90.
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III. Oblique modes, β ∈ (0, π/2): Oblique modes combine characteristics of

both streamwise and spanwise wave modes. The initial oblique modes perturbation

have the form of

~u′ = (u′1, u
′
2, u
′
3) = (0, û0

2 sin(κ0
1x1 + κ0

3x3), 0), (6.13)

where both the streamwise and spanwise wavevector components are initially non-

zero, κ0
1 6= κ0

3. The evolution of a single wave mode for various obliqueness angles

has been studied, but for the sake of brevity, only the results of the obliqueness

angles β = π/6 and π/3 are presented. The evolution of the momentum thickness

and the vorticity thickness for the single mode perturbation with obliqueness angle

of β = π/6 is shown in Figure VI.7 and those of β = π/3 is shown in Figure VI.9.

It is evident that as obliqueness angle increases, the effect of compressibility

diminishes. For instance, the evolution of the turbulent kinetic energy for β =

π/6, shown in Figure VI.8 (a), indicates that the initial development stage persists

similarly to the streamwise wave mode shown in Figure VI.4, where there is an initial

saturation point. For for the case of β = π/3, there is a weaker dependence on Mc

in the evolution of perturbation, similar to the spanwise case. Note the evolution of

momentum thickness and turbulent kinetic energy for β = π/3 mode in Figure VI.9

(a) and Figure VI.10 (b), respectively. Nonetheless, compressibility still suppresses

the perturbation growth as it shown through the evolution of all mixing indicators

in Figures VI.10 & VI.9.

Comparing the evolution of either of these mixing indicators, for different oblique-

ness angles at a given Mach number reveals that modes closer to the streamwise

direction become more stable. Conversely, the more closely the initial perturbations
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are aligned with the spanwise direction, the more unstable they become. In other

words, in high speed flows, oblique modes with larger solenoidal components or larger

β, e.g. β = π/3, (Figure VI.10) have higher kinetic energy content than do oblique

modes of smaller β, e.g. β = π/6 (Figure VI.8).

For high speed flows, the nature of velocity field evolution can be analyzed

through the turbulent kinetic energy, k, or its normal component, u′2u′2. At a given

Mach number (e.g. Mc = 1.2), comparing the temporal evolution of k and u′2u′2 for

the β = π/6 oblique mode (Figure VI.10) with that of the streamwise mode (Figure

VI.4) and spanwise mode (Figure VI.6) shows that the wave-like behaviour of velocity

fluid is less observed as β increases. This essentially stems from the change in the

nature of the pressure expressed by the hyperbolic (wave) equation of (6.2) when

β = 0, to the purely elliptic equation of (6.4) when β = π/2. This is evident since

the oscillation impact decreases as β : 0→ π/2.

Linear analysis in Chapter III demonstrates that the velocity component u′2

plays an important role in the evolution of perturbation kinetic energy and spanwise

vorticity. Comparing the temporal evolution of u′2u′2 for different oblique angles at

a given Mach number, shown in Figures VI.4-VI.6 (b), indicates that in low-speed

flows (e.g. Mc = 0.3), the growth rate of u′2u′2 decreases as β increases. However, in

high-speed flows (e.g. Mc = 1.2), the u′2u′2 growth of the streamwise modes (β = 0)

is substantially more suppressed compared to the one of other oblique modes (e.g

β = π/6 or π/3). It is important to point out that in spanwise modes (β = π/2),

u′2u
′
2 remains almost the same regardless of the initial Mach number as shown in

Figure VI.6 (b), while there is still a trend of slight suppression of growth with the
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increase of Mach number.
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Figure VI.7. The temporal evolution of the normalized momentum thick-
ness and the normalized vorticity thickness at different Mach numbers
when the initial obliqueness angle is β = π/6.
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Figure VI.8. The temporal evolution of the normalized turbulent kinetic
energy and the normal component of the turbulent kinetic energy at dif-
ferent Mach numbers when the initial obliqueness angle is β = π/6.
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Figure VI.9. The temporal evolution of the normalized momentum thick-
ness and the normalized vorticity thickness at different Mach numbers
when the initial obliqueness angle is β = π/3.
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Figure VI.10. The temporal evolution of the normalized turbulent ki-
netic energy and the normal component of the turbulent kinetic energy
at different Mach numbers when the initial obliqueness angle is β = π/3.

The evolution of the normalized turbulent kinetic energy, Figure VI.4 (a) il-

lustrates that after the first peak of the initial amplification, at any given Mach

number, perturbations will eventually reach an asymptotic stability. It may be use-
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ful to highlight the saturation level of the normal-component of energy,
(
u′2u

′
2

)
max

,

where the first maximum of energy occurs. The corresponding time can be denoted

by τmax as well. Figure VI.4 (a) shows that saturation level decreases drastically

as Mach number increases. Compressibility inhibits the growth of the streamwise

perturbations in high-speed flows (e.g. for Mc = 1.2). Therefore, the suppression of

the growth of u′2u′2 is more enhanced in high-Mach number mixing layer, shown in

Figure VI.4. It is important to note that all Mach-number mixing layers share the

similar initial growth stage. As it is shown in VI.4 (b), the normal perturbations

peak for the first time at the relatively similar τmax values regardless of their initial

convective Mach numbers. Notably, spanwise perturbations are impervious to Mach

number effects. Within 0 < β < π/2, the wave modes behave within the range of

the stable streamwise modes, contributing to the KH instability and the unstable

spanwise modes, contributing the exponential growth of perturbation. If the wave

mode is aligned closer with the shear direction, it behaves similar to the unstable

subsonic modes. Whereas for modes aligned closer with streamwise direction, the

growth is more suppressed by compressibility. This is evidence of how the overall

flow evolution is highly dependent on the precise form of the initial perturbations.

The effect of obliqueness on the growth of perturbation stability is summarized

in the schematic diagram in Figure VI.11. For a given Mc, perturbation suppression

intensifies with decrease of β. For a given β, perturbation suppression intensifies

with increase of Mc.
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Figure VI.11. Stability map of the compressible mixing layer

VI.C. Effect of the non-linear interactions

To investigate the effect of compressibility manifesting via non-linear interac-

tions, we consider two classes of initial conditions at different initial Mach numbers:

(i) single mode and (ii) coupled mode. Investigation of non-linear interactions is com-

plex due to the emergence of wave-vectors not present in the initial conditions. How-

ever, the most elementary way to understand the non-linear interaction is through

a triadic-interaction map. The term triad refers to the interaction between two per-

turbation wavevectors (κa and κb) leading to the generation of a third wave-vector

(κc) such that:

κc = κa ± κb, (6.14)

In spectral space, energy transfer can be explained by triadic interaction among

wave modes. The non-linear triadic interaction does not create or destroy energy.
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It merely redistributes energy among the constituents of the interaction. Energy

transfers predominantly from lower to higher wavenumber or from the more ener-

getic perturbations to the less energetic ones.

I. Single initial mode: If the initial perturbation field consists a single mode, then

the first stage of non-linear interaction will involve only self-interaction. Then, ac-

cording to the triadic interaction rules, the new generated mode will be collinear

with the original one. In other words, as single mode of arbitrary obliqueness β will

generate higher harmonics whose obliqueness will continue to be β. In the second

stage, the following infarctions are possible: (i) original-original, (ii) original-first

harmonic and (iii) first-harmonic-first harmonic. In subsequent stages, higher and

higher harmonics will be generated until viscous effects terminate higher wavenum-

ber modes. All the generated modes will be of the same obliqueness β of the original

mode. In the incompressible flows, the non-linear effect do no qualitatively affect the

inviscid stability characteristics since all of the harmonics share the same β. To a

large extent, the stability character of the newly generated modes will be similar to

that of the original mode. Nonetheless, based on the definition of M∗
g in (6.3), the

higher harmonics may experience lowerM∗
g as the wavenumber vector magnitude |κ|

attains higher value. In summary, non-linearity does not affect the stability of single

initial modes.

II. Coupled initial mode: to emphasize the importance of the non-linear inter-

actions, we now initialize the perturbations field with two wavevectors of oblique-
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ness ±β. A schematic of the first stage of non-linear interactions is shown in Fig-

ure VI.12. The first stage results in the emergence of two new obliqueness angles:

streamwise (β = 0) and spanwise (β = ±π/2). In subsequent non-linear interaction

stages, more and more modes will be generated due to the following interactions: (i)

original-original, (ii) original-generated, and (iii) generated-generated modes. These

interactions will lead to more and more modes of different wavenumber magnitude

and obliqueness angles. In the incompressible case, all the modes grow, while for the

compressible case, the modes oriented closer to the streamwise direction get more

suppressed compared to others as schematically shown in Figure VI.11 earlier. The

stability characteristics will depend upon both parameters: |κ| and β. The com-

pressibility effect on each generated mode will depend on, M∗
g , the effective Mach

number:

M∗
g = Mg cos β =

S

āκ
cos β. (6.15)

Clearly, small β or |κ| values will experience higher Mach numbers and greater degree

of suppression. Viscous effects are proportional to νκ2. Thus, in simulations starting

with paired ±β modes, we can expect highest level of energy content in modes close

to β = ±π/2. The energetic modes are anticipated to be of small wavenumber

magnitude, |κ|.

A schematic of triadic interactions between two wavevectors of obliqueness an-

gles β and −β is shown in Figure VI.12. Each interaction results in emergence of

streamwise (β = 0) and spanwise (β = ±π/2) modes. These interactions are then

repeated iteratively leading to a rapid proliferation of modes. Any generated stream-

wise modes will be suppressed and spanwise modes will be unstable. Therefore, even
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if the initial modes are stable, non-linear interactions can lead to unstable modes.

We now perform DNS of paired modes to verify the foregoing analysis and establish

the effects of non-linearity.

Figure VI.12. Sketches of the three types of triad interactions among
wavemodes

VI.C.1. Simulations of Coupled Oblique Modes

To isolate the non-linearity effects, the temporal evolution of single wave modes

is contrasted with that of coupled pair wave modes. The velocity perturbation initial

condition for a single wave mode and coupled pair mode under consideration are given
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respectively by:

~u′ ≡ (u′1, u
′
2, u
′
3) = (0, û0

2 sin(κ0
1x1 + κ0

3x3), 0), (6.16)

~u′ = (u′1, u
′
2, u
′
3) = (0, û0

2 sin(κ0
1x1 + κ0

3x3) + û0
2 sin(κ0

1x1 − κ0
3x3), 0). (6.17)

For both single wavemodes and pair wavemodes, the streamwise wavenumber is ini-

tially taken as equal to the spanwise wavenumber, κ0
1 = κ0

3. Therefore, a single mode

with obliqueness angle of β = π/4 and a coupled mode with the obliqueness angle of

β = pmπ/4 are considered. The schematic of these two classes of wave modes are

presented in VI.13. The simulation parameters are shown in Table VI.2.

Table VI.2. Simulation parameters for non-linear effects study

Case Mc β δ0
m Nx1 ×Nx2 ×Nx3

N1 0.3 π/4 0.25 256× 512× 128
N2 0.3 (π/4,−π/4) 0.25 256× 512× 256
N3 1.2 π/4 0.25 256× 512× 128
N4 1.2 (π/4,−π/4) 0.25 256× 512× 256

Turbulent kinetic energy: The evolution of the energy spectrum on the plane

normal to the shear, the κ1−κ3-plane, is defined by

E(κ1, κ3) =

∫ Lx2/2

−Lx2/2

ûi(κ) ûi
c(κ)dx2, (6.18)

where (.)c indicates a complex conjugate, and κ1 and κ3 are taken as integer wavenum-

bers contained in the computational domain. To analyze the non-linearity effects,

the energy content, E(κ1, κ3), calculated by (6.18), for the single mode and coupled
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mode are compared in Figure. To establish how such non-linearity effects correspond

to compressibility, this comparison is carried out at low and high Mach numbers. The

temporal growth of the turbulent kinetic energy, k/k0, for both single and coupled

modes are shown in Figure VI.14. For each initial mode, turbulent kinetic energy is

non-dimensionalized in the conventional way by its initial value, k0. Clearly, at high

Mach number the coupled mode has much higher growth than a single wave mode.

Focusing on the difference between the magnitude of k/k0 for the single and pair

modes as time advances, in the case of incompressible (Figure VI.14 (a)) and the

Figure VI.13. Schematic representation of the initial wavemode in the
κ1−κ3 plane for (a) a singleton with the obliqueness angle of β = π/4 and
(b) a pair wavemode with the obliqueness angle of β = (π/4,−π/4).
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compressible case (Figure VI.14 (b)), demonstrates non-linear effects are enhanced

in high speed flows. This is due to the fact that single modes in high-Mach number

flows are more affected and suppressed by compressibility than the coupled modes.

Note that all discussion is restricted to the early stages of development or before the

breakdown to turbulence.

Figure VI.14. The evolution of the turbulent kinetic energy for a singleton
with the obliqueness angle of β = π/4 and a pair wavemode with the
obliqueness angle of β = (π/4,−π/4) at (a) Mc = 0.3 and (b)Mc = 1.2.
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Energy spectrum of initial single modes: The energy content as a function

of κ1 and κ3 for a single mode at two different initial Mach numbers of Mc = 0.3 and

1.2 are compared in in Figures VI.15 and VI.16, respectively. The contour plots are

shown for the times marked in VI.14. Initially, for both low and high Mach numbers,

the most energetic waves are of the obliqueness of π/4, shown in Figure VI.15 (a) and

Figure VI.16(a). For both low and high Mach numbers, the most energetic modes

remain at the same wavenumber since non-linearity results in other oblique modes.

Energy spectrum of initial coupled modes: To understand the non-linear

effects in compressible flows, the energy content of a coupled mode (β = ±π/4) is

investigated at low (Mc = 0.3) and high (Mc = 1.2) Mach numbers shown in Figure

VI.17 and Figure VI.18, respectively. Comparisons of wavespectra evolution of the

coupled wave modes at low and high Mach numbers reveal that energy transfers

toward the spanwise direction under the influence of compressibility. This is due to

the fact that at low Mach number flows, the growth of low β perturbations are not

suppressed, while at high Mach number flows, the lower beta modes are, the more

inhibited by compressibility.

In coupled modes, the new spanwise modes arising from triadic interaction are

more energetic than the original or streamwise modes. Hence, the new spanwise

modes are responsible for accelerated instability. Observation of the temporal evo-

lution of single modes and coupled modes indicate that at a low Mach number most

modes exhibit growth along their initial obliqueness angle. For single initial modes,

contrasted with coupled initial modes, there are not many new spanwise or stream-

wise wave modes created.
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Summary. For initial single modes of perturbation, energy remains with the

same obliqueness angles under the influence of compressibility. Degree of suppres-

sion increases with β. For initial couple modes, compressibility moves the energy

toward the spanwise direction. This is related to the fact that low β modes play

a key role in the non-linear interaction such that high β mode growth is indepen-

dent of compressibility effects, whereas the growth of low β modes is suppressed by

compressibility.
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Figure VI.15. Temporal evolution of the wavevector spectrum of a single-
ton at Mach number contours for Mc = 0.3 at τ = (a) 0, (b)4, (c)8, (d)12,
(e)16, (f)21, (g)25, (h)29, (i)31, (j)33, (k)37 and (l) 41. Dash gray line
indicates the initial obliqueness angle.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure VI.16. Temporal evolution of the wavevector spectrum of a sin-
gleton at Mach number contours for Mc = 1.2 at τ = (a) 0, (b)4, (c)8,
(d)12, (e)17, (f)20, (g)23, (h)27,(i)33, (j)37, (k)40 and (l) 43. Dash gray
line indicates the initial obliqueness angle.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure VI.17. Temporal evolution of the wavevector spectrum of a pair
wavemode at Mach number contours for Mc = 0.3 at τ = (a) 0, (b)4, (c)8,
(d)12, (e)16, (f)21, (g)25, (h)29, (i)31, (j)33, (k)37 and (l) 41. Dash gray
line indicates the initial obliqueness angle.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure VI.18. Temporal evolution of the wavevector spectrum of a pair
at Mach number contours for Mc = 1.2 at τ = a) 0, (b)4, (c)8, (d)12, (e)17,
(f)20, (g)23, (h)27 ,i)33, (j)37, (k)40 and (l) 43. Dash gray line indicates
the initial obliqueness angle.
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VII

MIXING LAYER FLOW STRUCTURE

It has been well-established in literature that compressibility not only affects the

stability characteristics, but also the flow structure in mixing layers [34, 37, 81, 156–

158]. Incompressible turbulent mixing layers are made of two primary coherent flow

structures: (i) spanwise vortices (rollers) and (ii) streamwise vortices (ribs) [79,159].

Spanwise rollers are known to arise from the KH instability. In compressible mixing

layers, on other hand, the KH instability is inhibited as established earlier in this

thesis. In this chapter change in the structure for the mixing layer with different

obliqueness angles at different Mach numbers is investigated. First, we examine the

flow structure of fully turbulent mixing layer. To explain, we also scrutinize, mixing

layers at the linear growth subject to a single perturbation mode.

VII.A. Vortical Structure of Turbulent Mixing Layers

Spanwise vorticity fields of a turbulent mixing layer with the initial flow condi-

tions similar to the DNS carried out by Pantano and Sarkar [2] at low (Mc = 0.3)

and high (1.2) initial convective Mach numbers are presented in Figure VII.1 and

VII.2, respectively. This data set is ideally suited for the present study as it has

already been validated against the DNS of Pantano and Sarkar [2] in section IV.C.1.

Incompressible mixing layer structure. At low Mach numbers (e.g. Mc =

0.3), the side view of the spanwise vorticity, shown in Figure VII.1 (a), exhibits

multiple spanwise rollers. These rollers are dominant only in the strong shear region
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around the interface. The top view of the center-plane spanwise vorticity contours,

depicted in Figure VII.1 (b), exhibits numerous rib-like structures throughout the

spanwise plane .

(a) (b)

Figure VII.1. Vorticity plots of the turbulent mixing layer simulation with
the initial flow conditions of [2] at Mc = 0.3.

Compressible mixing layer structure. The spanwise vorticity structure in

high Mach number simulation is shown in Figure VII.2 (a) (side view, z=0 plane)

and Figure VII.2 (v) (top view, y=0 plane). The absence of the spanwise rollers is

clearly evident. Instead of well-defined rollers, alternating strands of positive and

negative vorticity along the streamwise direction are seen. The top view, shown in

Figure VII.2 (b), further reinforced the fact that the elongated vortical structures are

aligned along the streamwise direction. The absence of spanwise rollers is likely due
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to the suppression of the KH instability at high speed. It would appear that in the

absence of the KH rollers, the longitudinal structures link to form long streamwise

coherent vortices of either sign.

To further highlight the change in vortex dynamics and the vortical structures,

animations of the side view (x1-x2 plane) and top view (x1-x3 plane) of the spanwise

vorticity at two different initial Mach numbers ofMc = 0.3 andMc = 1.2 are available

online.

(a) (b)

Figure VII.2. Vorticity plots of the turbulent mixing layer simulation with
the initial conditions of [2] at Mc = 1.2.

The largescale coherent structures seen in fully turbulent flows have their ori-

gins in linear stage of instability development. Therefore, we examine the vortical

structure of linear perturbations at different obliqueness angles.
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VII.B. Vortical Structure at Linear Growth Regime

(a) (b) (c) (d)

Figure VII.3. Side view of vorticity contours at the initial convective
Mach number of 0.3 at β = (a) 0, (b) 30, (c) 60 and (d) 90

(a) (b) (c) (d)

Figure VII.4. Side view of vorticity contours at the initial convective
Mach number of 1.2 at β = (a) 0, (b) 30, (c) 60 and (d) 90

From the analysis in Chapter III, the linearized perturbation vorticity equations

can be written as:

∂ω′1
∂t

+ U1
∂ω′1
∂x1

= − 1

ρ̄2

∂ρ̄

∂x2

∂p′

∂x3

− ∂U1

∂x2

∂u′3
∂x1

, (7.1)

∂ω′2
∂t

+ U1
∂ω′2
∂x1

= − 1

ρ̄2

∂ρ̄

∂x2

∂p′

∂x2

− ∂U1

∂x2

∂u′2
∂x3

, , (7.2)
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(a) (b) (c) (d)

Figure VII.5. Top view of vorticity contours at the initial convective Mach
number of 0.3 at β = (a) 0, (b) 30, (c) 60 and (d) 90

(a) (b) (c) (d)

Figure VII.6. Top view of vorticity contours at the initial convective Mach
number of 1.2 at β = (a) 0, (b) 30, (c) 60 and (d) 90

∂ω′3
∂t

+ U1
∂ω′3
∂x1

= − 1

ρ̄2

∂ρ̄

∂x2

∂p′

∂x1

− u′2
∂2U1

∂x2
2

+
∂U1

∂x2

(
∂u′1
∂x1

+
∂u′2
∂x2

)
.

The first term on the righ-hand side of all above equations, the baroclinic term, is

negligible since ρ̄ is uniform in x2 direction. The normal component of vorticity does

not play an important role in the evolution of vortical structure since the variation

of u′2 in the spanwise direction is small, thus ∂u′2/∂x3 ∼ 0 in the right-hand side of

(7.2). For the types of initial perturbation considered in this study, the streamwise

vorticity, ω′1, is not important as ∂u′3/∂x1 is small and does not grow in time. Thus,
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it suffices to focus on the spanwise vorticity, ω′3: Shear normal perturbations play a

critical role in the ω′3 equation (7.3). As was shown in Chapter III, u′2 is govern by

a wave equation:

∂2û∗2
∂x∗2

2
+ (û∗2S

∗ − û∗1)S∗ +
i

κ

p̂∗

γu0
S cos β = M∗

g
2∂

2û2

∂t∗2
. (7.3)

Recall that the compressibility effects manifest via, the effective gradient Mach num-

ber which includes the effect of shear rate and obliqueness angle of initial perturbation

mode is defined by M∗
g = S/(āκ) cos β. To contrast the vortex dynamics of a mixing

layer at different obliqueness angles between incompressible and compressible flows,

a side view (x1-x2 plane) of the spanwise vorticity contours from simulations with

perturbation of different obliqueness angles (β = 0, 30, 60, 90◦) at low Mc = 0.3 and

high Mc = 1.2 are depicted in Figure VII.3 and Figure VII.4, respectively. The

top view of the same structure is presented in Figure VII.5 and Figure VII.6. The

dependence of flow structure on perturbation orientation can now be summarized:

1. For β = 90◦,M∗
g = 0. Then regardless of the initial convective Mach number,

vorticity evolution will remain impervious to compressibility in (7.3), as shown in

Figure VII.3 (d) and VII.4 (d). This is also evident by comparing the vorticity

evolution from top view in Figure VII.5 (d) and VII.6 (d).

2. For β = 0◦, M∗
g = S/(āκ). Therefore compressibility has the strongest

effect on the evolution of u′2 according to the equation (7.3). At low Mach number

(Mc = 0.3), the strong structure of the spanwise roller leads to the formation of

cat’s eye, shown in FigureVII.3 (a). At high Mach number (Mc = 1.2), the wave-

like nature of u′2 causes the vortical structures to become oscillatory. Furthermore,

pressure is also wave-like. This prevents roll up of the vortex sheets that leads to KH
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initially. These positive and negative vortices retain their early sheet-like structure

aligned along the x1 direction. The lack of strong rotational motion also results in

vortex sheets from adjacent pivot points to link with one another. As a result, long

coherent vortex streaks of negative and positive vorticity form and persist for an

extended period of time.

3. For 0◦ < β < 90◦, structures of intermediate obliqueness angles experience

indeterminate level of vortex suppression. Comparing the top view of vorticity con-

tour at β = 30, 60◦ depicted in VII.6 (b and c) with their incompressible counterparts

depicted in VII.5 (b and c) indicates compressibility favors formation of longitudinal

vortices, while it suppresses the spreading rates of the mixing layer through the in-

hibition of the spanwise rollers. It is evident that as the obliqueness angle increases

(from β = 0 to 90◦), the effects of compressibility on flow structures decreases.

In high Mach number of fully turbulent and linear growth-regime mixing layers

at high Mach numbers, the sheet-like vortex structures at the interface clearly inhibit

mixing. It is evident that the two streams are segregated in the high-speed mixing

layer.

VII.C. Segregation of Two Streams

Finally, we examine if the two streams that constitute the mixing layer are

indeed segregated by pressure effects at high speeds. To highlight this effect, a set

of six fluid particles in each stream across the initial interface of the mixing layer

are tagged at the initial times and their motion is monitored. The motion of the 12

tagged fluid particles in low and high Mach number turbulent mixing layer is shown

118



in Figure VII.7 and Figure VII.8, respectively. The online version also contains

animations of the particle paths. The low Mach-number pathlines clearly move cross

the initial interface between the two streams and meander far from their origins,

indicating efficient mixing. In contrast, the high Mach-number pathlines stay within

their stream of origin without crossing the interface. This clearly demonstrates that

(i) the interface segregates the two streams; (ii) even within each stream mixing

is significantly suppressed. This verifies the presence of the DIL near the initial

interface of two streams in a high-speed mixing layer. The DIL acts as a buffer layer

preventing mixing between two streams. In summation, the action of pressure leads

to stirring motion between the two streams at low speeds, but merely a shaking of

the interface at high speeds.

(a) (b)

Figure VII.7. The temporal evolution of the velocity perturbation path-
lines with the embedded vorticity contour plots for a mixing layer with
the initial isotropic turbulent velocity field at Mc = 0.3 (a) initial τ = 0 (b)
at τ = 250 (color).
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(a) (b)

Figure VII.8. The temporal evolution of the velocity perturbation path-
lines with the embedded vorticity contour plots for a mixing layer with
the initial isotropic turbulent velocity field at Mc = 1.2 (a) initial τ = 0 (b)
at τ = 250 (color).
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VIII

SUMMARY AND CONCLUSIONS

From experiments and numerical simulations, it has been well established that

compressibility can severely reduce the spreading rate in high-speed mixing lay-

ers. It has also been observed that the flow structure, specifically vorticity, changes

significantly with Mach number. In literature several studies have examined com-

pressibility effect on mixing and flow structure. It has been shown that perturbation

obliqueness also plays a critical role in the flow dynamics of compressible mixing

layers. While important progress has been made, a comprehensive physical explana-

tion that consolidates the effects of compressibility and perturbation on mixing and

vorticity structure is yet to be developed. The objective of this thesis is to further

our understanding of the interplay between various physical phenomena in high-

speed mixing layers, and to attempt to develop a more complete explanation. The

thesis comprises of three studies, and employs linear analysis and direct numerical

simulations.

Study I—It is well-established that the Kelvin-Helmholtz (KH) instability is

central to shear flow mixing. Toward understanding the suppression of turbulent

mixing under the influence of compressibility, we first examine the modification to

KH instability at high speeds. It is also known from previous studies [101] that the

compressibility effect is more accurately parameterized by so-called gradient Mach

number rather than convective Mach number. In this study, combining the out-

comes of the linear stability analysis with the results of the numerical simulation, we
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establish that the flow domain can be classified into three regions: the far-field re-

gion on the fast side, far-field region on the slow side and dilatational interface layer

(DIL) in the middle. The DIL experiences very high gradient Mach numbers and

compressibility effects. In both the high- and low-speed far-field regions, the local

gradient Mach numbers are small, even though the convective Mach number can be

large. Within the DIL, the pressure is governed by the inhomogeneous wave equa-

tion. As a consequence, the pressure-velocity coupling leads to oscillatory motion in

the streamwise direction at the interface. Importantly, due to this strong streamwise

oscillations, the DIL acts as a barrier between the fast and slow moving fluids. The

oscillatory pressure and velocity fields of the DIL set the boundary conditions for the

flow in the high- and low-speed outer regions. The resulting motion in each outer

region is nearly oscillatory. This sequence of compressible flow phenomena leads to

inhibition of the K-H instability and mixing.

Study II— The second study uses linear analysis to establish that the effect

of compressibility decreases when the perturbation is inclined away from the shear

plane. Indeed, spanwise perturbations do not experience any compressibility effects.

The evolution of perturbations of various degrees of obliqueness is examined.

Study III— In the final study, we extend the inferences of the effect of com-

pressibility and obliqueness to flow structure. While the streamwise structures are

unaffected, the spanwise rollers are suppressed and deformed by the effect of com-

pressibility. In the absence of the spanwise rollers, the streamwise structures align

to form long coherent streamwise streaks. Thus, the thesis consolidates the effect of

Mach number and obliqueness on mixing efficiency and flow structure. Future works
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can employ this insight to develop strategies to predict and control mixing efficiency

in high-speed mixing layers.
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