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ABSTRACT

Software Defined Networking (SDN) is a novel paradigm for designing, developing

and managing communication networks. SDN separates the traditional network

control and data planes, centralising the control plane activities of the network in

software based SDN controllers. This approach enables the network operators to

interface with a logically centralized device to operate, configure and manage a large

complex network. The SDN concept defines the data plane as a set of abstractions

and provides a standardized protocol to interact with these abstractions. Owing to

its significant advantages, this concept has gained popularity especially among the

data center operators and hardware equipment manufacturers, and is slowly being

adopted by the industry.

However, the paradigm shift from the traditional networking model to SDN-type

architectures poses several major challenges. In an SDN architecture, the routers

and switches frequently generate requests to the controller. In particular, a request

is generated for every new flow. The controller needs to respond promptly to the

requests to ensure correct and efficient operation of the network. Even a moderately

sized network with dynamic flows will place a high volume of demand on the con-

troller. Increased controller pressure results in increased response times, leading to

higher latencies in data-plane to control-plane communication and affecting efficiency

of the entire network. This can lead to a scenario where the controller becomes a

major bottleneck in the network.

Several solutions have been proposed to address this problem using distributed

and hierarchical controller designs. In contrast, in this thesis we propose to address

this problem from a different perspective. In particular, we leverage the widely
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used tools in the design of memory architectures, such as caching to improve the

efficiency of the SDN architecture. In this work, we first propose to augment an SDN

architecture with a flowcache. The flowcache serves as a transparent layer in between

the controller and the switch. It acts as a cache to the controller, temporarily storing

flows sent across the management link, thus reducing access time for future requests

of similar flows. Next, we analyze the properties and uses of flowcache. Finally,

we compare different design choices for the flowcache and evaluate the benefits of

introducing a flowcache in an SDN architecture.
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NOMENCLATURE

DHCP Domain Host Configuration Protocol

FIFO First In First Out

IP Internet Protocol

LAN Local Area Network

LRU Least Recently Used

OF Open Flow

ONF Open Networking Foundation

QoS Quality of Service

SDN Software Defined Networks

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VLAN Virtual Local Area Network

WAN Wide Area Network
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1. INTRODUCTION

1.1 Motivation

Software Defined Networking (SDN) has recently gained significant attention from

the networking industry. The core principle behind the SDN model is to provide flex-

ibility in both designing and managing communications network through a logically

centralized controller. In an SDN architecture, the controller maintains a view of the

underlying network and installs flows in the forwarding elements (switches) to route

traffic along specific paths. This approach provides the network administrators the

capability to configure and program the networking devices to meet the requirements

of the specific network applications.

Each SDN application maintains a specific minimum requirement on the number

of flows that has to be resident on the switch for it to perform efficiently. For a large

number of applications this count grows multifold. Since each hardware switch has

limited capacity, it can store only a small number of flows. This forces the controller

to reinstall flows on a frequent basis, increasing the overall latency between the data

and the control plane. Therefore, an increase in the number of applications running

on the controller leads to substantial performance degradation of the entire system.

A simple proposed solution can be to implement the switches entirely in software

which enables them to have unbounded table sizes. Software switches like Open

vSwitch [8] have recently been developed. These switches are not constrained by

the flow table capacity, but are limited by the number of ports. Additionally, their

performance is degraded by the slow processing of packets in the software.

Hardware switches implement packet processing pipelines in hardware, leading

to significant performance improvements. However these switches are expensive.
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They typically implement flow tables using Ternary Content Addressable Memory

(TCAM) for faster classification of packets. Each packet is matched against all the

flow rules in parallel, and the highest priority match is selected. Today’s commodity

switch can support about 2,000 to 2,000,000 flow rules. However, the higher cost and

excessive power requirement of TCAM’s makes it difficult for commodity switches

to support a high TCAM count. Hence, commodity switches are unable to support

a large number of flows. Current research projects like FastPath [7], which rely on

hashing of tables, can considerably improve the performance of a software switch,

but are still slow compared to TCAMs.

In this thesis, we apply the principle of caching to the design of flowcache for

the SDN model. A cache is a transparent component which stores recently accessed

and pre-fetched data, to service all future requests for that specific data faster. On

a cache hit, the request is serviced by reading the data from the cache, otherwise

the data is fetched from its actual storage location. Caching has seen widespread

use especially in computer memory architectures. There has been extensive research

on the different designs of caches, hierarchical organization of caches, and various

techniques that can be used to make caching more effective. We take advantage of

the research in this field to provide a robust architecture for our SDN model.

In our work, we propose a novel SDN architecture for access networks. Ac-

cess networks interconnect the end-users to the core network using wireless and

wired connection interfaces. These networks are limited by hardware resources. The

slow bandwidth across the management channel and use of lightweight commodity

switches characterize the limitations of an access network. Efficient management of

these resources becomes necessary from the perspective of the end-users. Our SDN

model focuses on managing these hardware resources to achieve maximum perfor-

mance gains.
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In our SDN architecture, a flowcache sits transparently between the controller

and the switches. The flowcache acts as a software cache for the logically centralized

controller, by storing all the flows recently installed into the switch. Since flowcache

is implemented as a software based cache, it has the ability to store a large number of

flows. This gives the controller an abstraction of a much larger switch which can store

an unbounded number of flows, thus satisfying the table space requirements of all

the applications concurrently running on the controller. In this thesis, we discuss the

different design choices and tradeoffs of flowcache and draw a comparison between

the memory system cache and the flowcache. Finally we evaluate the performance

improvement in throughput and latency achieved by inserting a flowcache in an

existing SDN architecture.

1.2 Related Work and Background

There have been many studies that have tried to address the scalability problem

in an SDN architecture. These studies have identified three separate bottlenecks

in an SDN model - the controller, the communication channel between the control

plane and data plane, and the hardware switch.

In Kandoo [2], the authors propose a hierarchical controller design, where the lo-

cal applications are offloaded to the local controllers, while the applications requiring

global view of the network, execute on a centralised one. The design requires main-

tenance of complex data structures between the global and local controllers. Onix

[4] and Hyperflow [14] present a distributed controller design, where each controller

maintains a different set of switches and communicates among themselves to share a

global view of the network. The state distribution protocol presented in Onix [4] to

share the global view of the network is complex and introduces the challenges faced

in a distributed system.
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Difane [16], presents a solution to reduce the traffic in the controller-switch chan-

nel. Their solution partitions the flows among a set of switches and installs appro-

priate rules, to selectively direct packets to specific switches. The solution requires

extensive TCAM usage, where the secondary switches act as cache devices. AVANT-

GUARD [10] tries to reduce the switch to control plane traffic, especially when the

network is under attack. It uses the concept of SYN cookies to detect false con-

nection requests, and introduces event-triggers for faster discovery and response to

changes in the data plane traffic.

The work by Katta and Rexford [3] tries to solve the flow capacity problem for

data-center specific networks by extending the solution presented in Difane [16]. It

exploits the large data capacity of software switches by using them as the secondary

cache devices. It, also selectively redirects data packets to specific software switches

on a hardware switch miss. However, their solution incurs a significant overhead by

creating its own rules. Additionally, with that solution the throughput is limited by

the channel bandwidth available across the hardware and software switches.

In this thesis, we present a novel architecture, that leverages the principle of

caching to achieve the required performance goals. Our SDN architecture targets

the edge networks which are limited by software processing power. The flowcache

acts as a proxy component which avoids the complexity of creating new rules by

installing rules which are inserted by the controller.

1.2.1 OpenFlow Overview

OpenFlow is an implementation of the SDN paradigm which has recently gained

popularity. Starting 2008, twelve different versions of the OpenFlow protocol have

been published by the Open Networking Foundation, with OpenFlow version 1.5 as

their most recent iteration. Each version of the protocol adds on new abstractions
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and structures to efficiently manage the OpenFlow enabled switches.

OpenFlow is an application layer communication protocol that operates above the

TCP/TLS connection. It provides the logically centralized controller an efficient way

to program the underlying switches to route packets through the network. OpenFlow

separates the control plane and the data plane of a switch in an effort to centralize the

control plane activities of a distributed network. Figure 1.1 depicts a basic OpenFlow

model.

Figure 1.1: OpenFlow: Controller and Switch

OpenFlow provides an interface that enables the controller to configure and man-

age the underlying network. Using OpenFlow, a controller installs, modifies and

deletes rules (flows) in the switch’s forwarding table. Packets are routed in the

network using the forwarding rules installed in the switches.

An OpenFlow-enabled switch is the data-plane component of the SDN architec-

ture. Each switch maintains a data-plane channel to forward packets and a switch-

agent to interact with one or more controllers. The data-plane is composed of a set
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of abstractions namely ports, flow tables, groups, queues and meters. These config-

urable abstractions are administered by the controller to efficiently route the traffic

through the network. The different abstractions in the SDN model are shown in

Figure 1.2.

Figure 1.2: Abstractions in a Switch1

In Figure 1.2, ports are the ingress and egress points through which all messages

enter and leave the switch. Flow tables are used for classification of data packets

and application of flow policy decisions. The queue abstraction helps an OpenFlow

switch to provide Quality of Service (QoS) support, while the meter abstraction is

used to limit the packet flow. The group abstraction is an aggregation of flows used

mostly for egress processing. In our SDN architecture, we limit flowcache to the

abstractions - flow tables.

Each OpenFlow switch contains a fixed number of flow tables. A flow table is

composed of a set of fields used to match an incoming packet, and a set of instruc-

tions associated with each such match. All data packets entering the switch behave

1Reprinted with permission from Flowgrammable [1].
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similarly as they traverse the switch data plane. Figure 1.3 shows the steps in the

lifecycle of a packet.

Figure 1.3: Lifecycle of a Packet in the Switch Dataplane1

In Figure 1.3, a key is built for each incoming packet based on the information

present in the packet and the metadata fields associated with it. The extracted key

is used to search a table for a matching flow. In case of multiple tables, the tables

are searched in an increasing order starting from the first table. On a match, the set

of instructions associated with the match is executed.

OpenFlow classifies packets using their flow signatures. These flow signatures

are stored in a structure called match. Figure 1.4 shows the structure of match in

OpenFlow version 1.3.1.

1Reprinted with permission from Flowgrammable [1].

7



Figure 1.4: Structure for Match in OpenFlow 1.31

Each match structure in a flow table is associated with an instruction set. Open-

Flow instructions include forwarding the packet to another table, applying a sequence

of actions, etc. An action defines the policy of a flow. Some of the actions include

fowarding of a packet to a specific port, enqueueing of the packet to a particular

queue, stripping VLAN information of the packet, etc. A single flow can apply a

sequence of actions to the same packet.

OpenFlow defines three types of messages.

1. Controller-to-switch - These messages are sent by the controller to either mod-

ify a switch abstraction, or request for some information, - examples include

FlowMod, GroupMod, TableMod, StatsReq, PacketOut.

2. Asynchronous - These messages are sent by the switch to either provide an

information to a request or to send a packet to the controller with no matching

1Reprinted with permission from Flowgrammable [1].
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flow - FlowRemoved, PacketIn, StatsReply.

3. Symmetric - These messages can be sent by both controller and the switch.

They are used to verify for a live connection - EchoReq/EchoRes.

Each OpenFlow message consists of a 8-byte header field. The header field (Figure

1.5) specifies the version of the OpenFlow Protocol being used, the type of message

being exchanged across the management channel, the length of the message including

the header field and a transaction-id (xid) used specifically for asynchronous commu-

nication. All OpenFlow versions share the same structure of the header field across

all the different types of messages.

Figure 1.5: Structure for OpenFlow Header1

PacketIn is a common asynchronous message sent from the switch to the con-

troller. It is used to send a captured packet to the controller in an event there is

an unknown flow, that does not have an entry in the switch flow table. Figure 1.6

shows the structure of the message.

1Reprinted with permission from Flowgrammable [1].
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Figure 1.6: Message Structure for PacketIn in OpenFlow v1.31

The PacketOut message type is sent by the controller to the switch. It provides

the controller the capability to inject packets into the switch dataplane. The con-

troller can either inject a raw packet or indicate a local buffer from which a raw

packet is released. These injected packets skip the classification stage of the data-

plane and directly execute the action set provided by the PacketOut message. Figure

1.7 shows the structure of PacketOut message.

Figure 1.7: Message Structure for PacketOut in OpenFlow v1.31

FlowMod is a message type sent by the controller to the switch to modify the

state of the flow table. It is arguably the most important message in the OpenFlow

1Reprinted with permission from Flowgrammable [1].
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protocol, as it defines the forwarding actions of the data plane. A FlowMod message

has three different commands i.e. adding, deleting or modifying a flow in a specific

flow table. It contains a match to classify the flows and a sequence of instructions

to describe the flow policies. Figure 1.8 shows the structure of FlowMod message.

Figure 1.8: Message Structure for FlowMod in OpenFlow v1.31

TableMod is a message type sent by the controller to the switch to configure the

state of a flow table. This message defines the fate of a packet when there is a Table

miss. A packet can be forwarded to the controller, dropped or sent to next table in

the event of a table miss. The TableMod message structure is shown in Figure 1.9.

Figure 1.9: Message Structure for TableMod in OpenFlow v1.31

1Reprinted with permission from Flowgrammable [1].
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2. FLOWCACHE DESIGN

2.1 Flowcache Architecture

A standard SDN architecture consists of switches, controllers and applications.

The applications run above the controllers and use the controller interface to config-

ure and program the underlying switches to meet its requirements. The controller

acts as a computationally heavy element of the SDN architecture. It maintains the

state of the underlying network and typically uses a south bound protocol such as

OpenFlow ([5],[6]) to interact with the different switches. The switches are simple

networking elements which provide dataplane forwarding capabilities.

In our SDN architecture (Figure 2.2 and 2.1), we introduce a flowcache which

transparently sits between the controller and the switches. It acts as a proxy device,

intercepting the standard OpenFlow messages being sent across the management

links (i.e., the communication links between the controller and the switches that

transmit control traffic) to monitor the required behaviour of the switch.

Figure 2.1: Abstract SDN Model with Flowcache
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Figure 2.2: SDN Architecture with Flowcache

The following sections provide an overview of the different properties of a flow-

cache, the possible locations it can be deployed, and the way it handles the OpenFlow

messages sent across the management link.

2.1.1 Flowcache Properties

Flowcache requires a large storage capacity to exploit the concept of “unbounded”

flows. It creates the same number of flow tables as in the switch, mapping each table

in flowcache to a table in the switch. A flow table in flowcache constantly maintains

a superset of all the flows installed in the corresponding flow table in switch. In case

of a PacketIn event, flowcache searches its own flow tables for a header match. On a

hit, it sends a corresponding FlowMod/PacketOut to the switch. In case of a miss,

it sends a PacketIn message to the Controller.
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The transparency property helps flowcache to work in the current SDN model.

Neither the controller, nor the switch is aware of the presence of the flowcache compo-

nent. To achieve transparency, flowcache accepts connections from the switch acting

as a controller, and connects to an actual controller representing itself as a switch.

This transparency property further aids in adding hierarchical levels of flowcache, as

discussed in section 2.4

2.1.2 Flowcache Location

Flowcache can be deployed at four possible locations in the SDN architecture

- the controller, the hardware switch, a server located in the same LAN as the

hardware switch or elsewhere in the network. Each location has its own advantages

and disadvantages as discussed below:

• In the Controller - Located besides the controller (Figure 2.3), the flowcache

shares its burden by managing all the switches trying to connect to the con-

troller. In this model, all incoming packets initially traverse through flowcache

before they hit the controller. Additionally, flowcache does not require any ad-

ditional hardware as it can run on the same hardware as that of the centralized

controller. However, the latency across the flowcache-switch channel increases,

leading to higher communication delay across the management link.

Figure 2.3: Flowcache Location - Controller
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• As a Middle Box - In this model, a logically centralized controller manages

switches present in multiple wide area networks (WAN). A flowcache is installed

in each of these WAN’s for better management of switches. The flowcache

provides faster classification of flows and reduces the communication delay

across the management links. Additionally, it reduces the load on the controller

by caching all similar type of flows present in a WAN like ISP flows, cable

company flows, etc. However it requires an additional server to function. Figure

2.4 depicts this model.

Figure 2.4: Flowcache Location - as a Middle Box

• In Close Proximity to the Hardware Switch - In this model, a flowcache

is located in close proximity to the switches (possibly on the same LAN). It

manages a small number of switches leading to much faster processing of flows

in the flowcache flow table. Further, as flowcache is located in close proximity

to the switches, the communication delay across the flowcache-switch channel
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decreases leading to better throughput of the overall system. However, this

leads to an increase in the number of flowcache devices that has to be deployed

in the SDN architecture, increasing the total cost of the hardware. Figure

2.5 depicts a scenario where the flowcache is located in the same LAN as the

switches.

Figure 2.5: Flowcache Location - Part of LAN Connecting the Switches

• Alongside Hardware Switch - In this case the flowcache component man-

ages a single switch (Figure 2.6). It is part of the switch agent which inter-

acts with the controller. In this model, the communication delay across the

flowcache-switch channel is minimal. Additionally, it does not require any ad-

ditional hardware as it can run alongside the hardware switch. However, the

communication delay across the controller-flowcache channel increases, and the

performance of flowcache is limited by the switch hardware capabilities.
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Figure 2.6: Flowcache Location - Switch

In our model, flowcache is located at close proximity to the OpenFlow enabled

switches to minimise the communication delay across the flowcache-switch channel.

The flowcache is designed with a primary focus on access networks. Access networks

typically have few commodity switches connected to a master station. The master

station then connects to the controller. In our design, the flowcache will be located

in the master station.

2.1.3 Handling Openflow Messages

The flowcache transparently interprets all the OpenFlow messages. The Open-

Flow messages can be broadly divided into three different categories.

1. Modification/Update Messages : The OpenFlow protocol supports four dif-

ferent types of modification messages namely FlowMod, TableMod, GroupMod and

PortMod. The FlowMod message is used to add, modify or delete flows from a spe-

cific table in the switch. On receiving a FlowMod message, the flowcache initially

updates its corresponding flow table. It then updates the corresponding flow table

in the switch by passing the FlowMod down to the switch (Fig 2.7). The flowcache

handles the overflow error condition, by evicting a flow based on the eviction pa-

rameter. The GroupMod and the PortMod messages are simply redirected to the
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switch. The TableMod message is used to set the table configurations of the switch.

The Flowcache restricts the upper layer controller to modify the configuration state

of the flow table in a switch. It updates the configuration of its own flow table to

get the desired output.

Figure 2.7: Flow Modification Scenario

2. Traffic Statistics : Flowcache polls the switch for statistics of all the installed

flows at fixed intervals of time. On receiving a Mutlipart StatsReq message, it queries

the switch with the specific type of request. However, for a StatsReq of an inactive

flow present in the flowcache, it simply responds with the statistics information main-

tained in its own flow table. Figure 2.8 depicts this scenario. The dotted messages

represent the query messages which may possibly be sent to the switch based on

18



whether the flow is currently installed in the switch.

Figure 2.8: Query Scenario

3. Synchronization Request: OpenFlow protocol makes extensive use of the Bar-

rier Request and Response messages. These messages synchronize the decisions made

by the controller onto the switch. On receiving a Barrier message, a switch is required

to complete all the previous commands, before executing any future requests. The

sequence of events that occurs on receiving a Barrier message is pictorially depicted

in the Figure 2.9
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Figure 2.9: Synchronization Scenario

2.2 Eviction in Switch

Flowcache acts as an inclusive cache. It buffers all the flows being installed by the

controller to the hardware switch. For each such flow, it stores metadata, which helps

to maintain consistency between the switch and the cache (Figure 3.2). A flow is

classified as active when installed in the switch; otherwise, it is classified as dormant.

Periodically, all the active flows are updated using the flow statistics obtained from

the switch.

Flowcache needs to evict a flow from the switch, when the flow table is completely

filled or a maximum configurable threshold has been reached. Different eviction

strategies can be deployed as discussed in Section 2.2.3. However, in each such

eviction strategy, flowcache needs to inspect about different types of dependencies

that exists between flows. There are two separate types of dependencies that needs

to be considered.

• IntraTable Dependencies - Dependencies between flows in the same table.

• InterTable Dependencies - Dependencies between flows in different tables.
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2.2.1 IntraTable Dependencies

A flow table consists of a cardinal number of flows which are sorted based upon

priority and exact match rules. Each flow rule consists of a match structure mapped

to a set of instructions. Whenever a packet matches a flow, the instruction set

associated with the flow is executed. Starting version 1.3, OpenFlow allows the

match structure to contain wildcard fields and arbitrary masks.. This allows the

same packet to match multiple flows in the table. In such a case, the flow with the

highest priority is selected.

The controller assigns the priority to flow rules, which along with the match

structure decides the route a packet traverses when it hits the data plane. The

flowcache may need to evict a flow from the switch periodically. However, during

eviction, it must ensure that all data packets are routed through the same path

irrespective of whether a flowcache is present in the SDN architecture.

For example, let us consider the flow table depicted in Table 2.1. Let the rules

R1, R2,. . . ,R6 be arranged in decreasing order of priority. The set of all packets

matching rule R2, also matches rule R4. In the current configuration of the flow

table, when a packet with header of type 01110 arrives, rule R2 is selected based on

its higher priority value. However, simply evicting rule R2 from the table, leads us

to an inconsistent state. Now, the same packet would match rule R4, and would be

sent across the wrong output port. These inconsistencies needs to be discovered and

managed by flowcache while evicting flows from the flow table.
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Table 2.1: An Example OpenFlow Flow Table

Rules Match Instructions(with Actions)

R1 11110 GOTO Table 1

R2 011*0 Output Port 1

R3 111*0 GOTO Table 2

R4 0*1** Output Port 2

R5 1*1** Output Port 3

R6 All Match Drop

The paper [3] by Rexford presents an approximate solution to the above problem.

In their solution, they initially construct a dependency graph, where a rule is said to

be dependent on a rule of lower prioirty, if the set of packets matching the current

rule also matches a lower priority rule. In our example, rule R2 is directly dependent

upon rule R4. Rexford’s solution also defines indirect dependencies, i.e. say rule R3

is directly dependent on rule R5, and rule R5 is directly dependent upon rule R6,

then rule R3 is also dependent upon rule R6 (the transitivity property). Figure 2.10

shows the dependency graph for table 2.1.
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Figure 2.10: Intra Table Dependency Graph

Following the algorithm presented in Rexford’s paper [3], we extracted the flows

from the switches in dependent cover sets. We tried to minimise the number of flows

to be evicted based on the volume of traffic hitting a flow.

2.2.2 InterTable Dependencies

Starting OpenFlow protocol 1.1, an OpenFlow switch formally introduces the

abstraction of multiple flow tables. It allows the controller to have fine-grained

control over each flow table. Multiple flow tables simplify flow management and

reduce explosion in the number of flow entries. The manual [12] by ONF presents

example applications describing the use of multiple flow tables.

A packet traversing the switch dataplane initially hits the first flow table. It

advances from table i to table j, where 0 ≤ i < j ≤ n, on executing an instruction of

type GOTO Table (Figure 2.11). This implies all packets hitting flow table j where

i < j ≤ n need to be directed to table j from a prior table.
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Figure 2.11: OpenFlow Instruction Type Goto Table

On eviction of a flow entry with an instruction of type Goto Table ’T’, it is possible

that an entry in the corresponding flow table ’T’ becomes stale. To illustrate the

above scenario, let’s assume two OpenFlow tables in a switch say Table 0 and Table

1 (Figure 2.12). Table 0 acts as a security firewall table, where it rejects all flows

not originating from IP addresses 128.0.0.1/16 and 128.0.8.1/16. It further classifies

packets based on its source of origin. Table 1 acts as a QoS table. It direct packets

through different output ports based on the type of service expected. By Table 1,

all data packets with VLAN id “SFast” are sent through the output port 2. Now,

say we decide to evict the flow entry A2. Since A2 is the only entry which sets the

packet VLAN id to “SFast”, evicting it would imply none of the packets match the

flow entry B2 in Table 1, i.e. the entry B2 becomes stale.

Figure 2.12: Table Highlighting Stale Entries

24



A possible solution to the above problem is to identify and evict stale entries

during eviction of normal entries. To identify stale entries, we construct a reference

graph. In this graph, a node represents a flow entry, whereas an edge represents a

reference between two flow entries. Whenever an entry ‘E’ containing an instruction

of type GOTO Table ‘T’ is inserted, we formulate the packet set ‘S’ that matches

the newly inserted entry, and advances to the next table ‘T’. The packet set ’S’ is a

sequence of 0,1 and wildcard bits. For all rules in table ‘T’, we find the intersection of

the packet set ‘S’ and their match set. On every successful match, we add a reference

edge between ’E’ and the matched rule.

We consider the second case here. On insertion of a simple flow rule, we verify if

a reference edge needs to be added between a prior table rule and the new rule. For

that purpose, each table keeps track of all the prior tables entries, where it has been

referenced. Next, we try to find the intersection of the set of packets originating from

these entries, and the newly added entry. On success, we would add a reference edge

from the earlier entry to the new entry. Figure 2.13 shows the reference edges being

added between flow entries.

Figure 2.13: Reference Edges Between Flow Entries
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Eviction is a comparatively simple process. On eviction of a flow, we validate the

state of all the reference edge nodes. For all the nodes prior to the current table,

we remove the edge. For all other nodes, we verify the incoming edge count. A NIL

count indicates the node has become stale and has to be evicted out.

The above solution requires an exhaustive search of flow entries at the time of

insertion of a rule. Further, the packet set S matching a flow entry can have a wide

range of values, given the large number of fields OpenFlow allows a packet to be

matched on.

In our implementation, we employ an easy and efficient solution. We avoid evict-

ing stale entries at the time of removal of an entry, and depend on our eviction policy

to handle these entries. We try to argue, that since the stale entries do not match

on a data packet, the eviction strategy should evict these entries first. In this way,

we deal with only current entries and reduce the total time taken during eviction.

2.2.3 Eviction Strategies

Hardware switches perform better in comparison to software switches. However,

these switches are limited by hardware resources such as TCAMs, queues, buffers,

etc. Managing these resources efficiently becomes necessary for improved network

performance. An important and critical switch resource is a flow table. In order to

efficiently manage a flow table, flows must be periodically evicted based upon various

strategies.

Eviction in a flow table is a known problem. Inherently, in OpenFlow protocol,

the controller can evict a flow from the switch in two ways -

1. Request of the Controller - Sending a FlowMod message of command type

DELETE

2. Switch Flow Expiry Mechanism - Specifying idle or hard timeout values.
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However, selecting the flow to be evicted is a challenging task. Different studies

have tried to address this problem based upon the application requirements and flow

statistics. Broadly, eviction in a switch can be classified depending upon the locality

of flows.

• Spatial Locality - In this type of locality, packets hitting a particular flow in

the switch provide some indication on the type of packets that will hit the

switch in the near future. Here, the locality is often dependent upon the

type of application running on the controller. For example, say we have a

DHCP application currently running on the controller. When the controller

application receives a PacketIn message with a DHCP DISCOVER packet, it

can preinstall flows on the switch based on the future expected DHCP messages

like DHCP OFFER and DHCP REQUEST messages.

• Temporal Locality - This locality is based on the network load. Higher number

of packets hitting a flow indicates a higher importance to that flow, while a

flow with low packet hit in the recent past indicates a less important flow.

This type of locality tries to extract metadata information from the frequency

of data packets, rather than the type of packet. Common eviction strategies

like LRU, FIFO are based on the temporal locality.

A flowcache acts as a transparent component which needs to manage the table

space in a switch. It is unaware of the type of applications currently running on

the controller. Thus, for eviction it relies on the temporal locality of the flows and

is dependent upon the packet statistics rather than the type of packet hitting the

switch. Different kind of eviction strategies can be applied to maintain the table

space inside a switch. Figure 2.14 depicts a generic sequence of packet exchanges

used to install a flow in a specific switch table, which is currently full.
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Figure 2.14: Eviction Scenario in a Switch

In Figure 2.14, the switch initially sends a PacketIn message to flowcache. The

flowcache component searches for a flow matching the packet header. On a successful

hit, the flowcache would try to install the matched flow onto the switch. Since the

switch table is currently full, flowcache first needs to evict a flow from the switch.

After successful eviction, it installs the new flow in the switch.

In the next section, we discuss three different type of eviction strategies that can

be used by flowcache.

2.2.3.1 Eviction Done by Switch

In this strategy, the switch itself can be configured to evict flows from the table.

When a switch table is completely full, or a maximum threshold has been reached,

the switch evicts a flow based on the type of eviction policy currently in use. Starting

OpenFlow 1.4, the OpenFlow protocol allows the controller to configure the switch

to evict flows either based on the importance of a flow, or based upon lifetime of a
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flow. Figure 2.15 defines the structure of the message used to configure the eviction

policy in switch table.

Figure 2.15: Message Structure to Configure Switch for Eviction in OpenFlow 1.4

In Figure 2.15, the TableMod message is sent across to the switch with the config

field set as OFPTC EVICTION. The table property message type directs the switch

to evict flows based on the flags specified in the flow. Table 2.2 lists the flags along

with their description.

Flags Description

FLAG OTHER Evict flows based on internal switch constraints

FLAG IMPORTANCE Evict flows based on their assigned importance

FLAG LIFETIME Evict flows based on their remaining lifetime

Table 2.2: Flags for TableMod Eviction Property

Although the above strategy is well defined, none of the switches except Open-
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vSwitch supports OpenFlow protocol 1.4. Given the complexity of the OpenFlow

protocol and its frequent iterations, it is difficult for vendors and open-source or-

ganizations to maintain the most recent OpenFlow standard. Further, the current

message structure, does not provide dependency management. Both inter-table and

intra-table dependencies needs to be considered at the time of eviction.

2.2.3.2 Eviction using Flow Statistics

In this strategy, the flowcache evicts flows from the switch, using the mea-

sure of flow statistics. OpenFlow 1.3 protocol defines messages MultipartStats Re-

quest/Reply which help the controller to obtain flow statistics from the switch.

Flowcache internally maintains packet count for all flows. Periodically, it updates

the count by requesting the switch for flow statistics of all the flows currently residing

in the switch.

Flowcache can maintain either coarse-grained or fine-grained flow statistics. Its

granularity depends upon the periodicity of the request. The periodicity itself de-

pends upon the available bandwidth across the flowcache and switch channel. Al-

though fine-grained statistics provide a near real-time view of specified switch table

and may lead to a better eviction policy, it overloads the switch with frequent re-

quests. Further, since a commodity switch can contain ∼ 2K flows, frequently

obtaining the statistics of all the flows will put the available bandwidth across the

control channel under pressure.

2.2.3.3 Eviction using Timeouts

In this strategy, flowcache tries to setup flows with near perfect idle and hard

timeout values. A hard timeout value implies the flow entry is to be removed after

the specified number of seconds, regardless of how many packets it has matched, while

a idle timeout value implies the flow entry is to be removed when it has matched
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no packets in the specified number of seconds. Recent studies by Zarek and Vishnoi

([17], [15]) have worked on different algorithms to predict perfect idle time timeout

values.

A small timeout value leads to early eviction of a flow from the switch, increasing

the PacketIn count to the controller. However, a large timeout value leads to flows

being resident on the switch for a longer duration. This in turn leads to an increase

in the ’working set of flows’ - the number of flows residing in the switch at the

same time, thus requiring a larger switch table size. Therefore, it is critical to setup

flows with near perfect timeout values. The work by Vishnoi and Zarek present

heuristic based timeout values. Both their prediction algorithms, starts at a small

idle timeout value for all the flows. The timeout values for frequent flows increases

based upon different network heuristics like number of packetIn’s for the same flow,

interval between packetIn’s for the same flow, etc. Their algorithms show around

50% improvements when compared to a standard SDN model.

However, given the advantages of their prediction techniques, it is still a complex

task to not only search for near perfect timeout values, but also to maintain these

values as the load on the network continuously changes. Further, the time taken for

the different prediction algorithms to converge is an important factor which needs to

be studied.

2.3 Transparency Property

The flowcache transparently sits between the controller and the switch. This

transparency allows a flowcache to work in the current SDN model. It also enables

us to insert flowcaches’ at different locations in the SDN architecture, thus allowing

a model of ’Hierarchy of caches’.

However, transparency has its own disadvantages. Due to transparency flowcache
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can only evict flows based on temporal locality of reference, and misses on applica-

tion caching. Once the controller is made aware of the flowcache, it can configure

the flowcache to store flows based upon the type of application. Further advanced

caching techniques like prediction caching, prefetching can be employed for better

performance.

Therefore, transparency has both its own advantages and disadvantages. In the

current SDN model, flowcache is installed as a transparent software component,

although future extensions can be made to enable controller-aware caching of flows.

2.4 Hierarchy of Caches

A flowcache can be installed at different hierarchical levels starting from the

lowest level location near the switch to the highest level near the controller. At

higher levels, it is required to manage an increasing number of devices and support a

larger flow-table size. The advantages and disadvantages of each location is discussed

in section 2.1.2. Using this model, we can envision an SDN architecture similar to

the current memory architecture, where the flowcache is installed at all hierarchical

levels. Figure 2.16 depicts this architecture.

Figure 2.16: Hierarchy of Caches - in Memory Systems and SDN Architecture
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Contrary to the memory caches where the cache size increases from top to bottom,

the size of flowcache grows from bottom to top. The switch itself can be compared

to the smallest sized memory registers while the controller can be compared to the

main memory. The flowcaches’ located at intermediate locations act as L1, L2 and

L3 caches respectively as we move from the switch to the controller.

This SDN architecture gains in the advantages of the memory caches. The flow-

cache located near the switch maintains a smaller flow-table, requiring less time to

classify a packet. Also, the latency across the flowcache and the switch channel in-

creases as we move from lower to higher levels of cache. However, this hierarchical

flowcache structure has certain disadvantages with respect to networking systems.

First and foremost, installing and managing different flowcaches at remote locations

is costly and complex task. Second, the classification stage at each hierarchical level

consumes some time, leading to an increase in latency for the first PacketIn message

to the controller. Since the network traffic consists of many small flows, the time

taken to route these packets increases. Therefore, this hierarchical architecture is

well suited for networks with larger flows, while the increase in latency for smaller

flows makes it less suitable for access networks.
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3. IMPLEMENTATION

3.1 Challenges

There are a number of challenges involved in the practical implementation of

flowcache. OpenFlow version 1.0, does not allow fine-grained control of flows in a

switch. It allows a switch to contain multiple flow tables but does not define message

structures to direct a flow to a specific table. Given the lack of control, it becomes

hard for flowcache to manage space in individual tables and even more difficult to

handle eviction in switches. Future versions of OpenFlow protocol allow fine-grained

control of tables and flows. We implemented flowcache in OpenFlow version 1.3, the

most common version used in current SDN architecture.

Transparency is an important property for flowcache to work in the current SDN

architecture. However, since flowcache acts as a storage location, and does not exe-

cute instructions on packets, it is unable to simply direct packets to the controlller

on hitting a table-miss entry in the flowcache. Further, synchronization of addition

and deletion of flows between the controller and the switch becomes a challenging

task. To solve the above challenges, we exploited the use of VLAN tagś. PUSH/POP

VLAN tags helped us to correctly implement the functionality of the flowcache com-

ponent.

A standard switch or controller has either a north bound or a south bound con-

nection interface. However, we required flowcache to work as a proxy device and

thus work both as a controller and a switch at the same time. Thus it would require

us to manage both the south bound and the north bound connection interfaces, for

them to work in syncronization. Given the complexity of the component, we decided

to build a single threaded software application. In our current implementation of
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flowcache, we extended the work done by Softswitch [11], a userspace switch written

in C language.

3.2 Connection Setup

Flowcache acts as a transparent component between the switch and the controller.

It accepts TCP/TLS connections from the switches identifying itself as a controller.

For each accepted switch connection, it establishes a TCP/TLS connection to the

controller identifying itself as a switch, with the same datapath ID.

The connection setup can be done either in a stateless or a stateful manner. In

a stateless setup, the flowcache relays the messages to the controller and does not

maintain the different setup states - version negotiation, feature discovery. While

in a stateful setup, the flowcache maintains different connection states with both

the switch and the controller. The stateless method, although easy to implement

becomes difficult to manage in case of frequent disconnections. When compared to a

stateless setup, a stateful setup can prevent false connections to the loaded controller.

35



Figure 3.1: Stateful Connection Setup in Flowcache

A flowcache does a stateful connection setup. Initially, it accepts a new OpenFlow

connection request from the switch. After successful version negotiation and feature

discovery states, it initiates an OpenFlow connection to the controller. Figure 3.1

illustrates the connection setup phase.

After successful connection setup phases, flowcache creates a new relay for each

switch to controller connection. The next section describes the details of the relay

and internal processing of flowcache.

3.3 Flowcache Internals

Flowcache maintains an internal state of all the individual flows in the switches.

The table in Figure 3.2 describes the structure of a flow table inside flowcache.
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Figure 3.2: A Flow Table in Flowcache

Each table coarsely contains metadata fields about the installed flow and certain

packet processing fields that define the flow. The Installed field identifies all the

flows presently installed in the switches. The Cookie or the Match field is used to

index a flow in the specified switch. The Cookie field contains a unique value. It is

set by the controller and is used extensively after the Openflow versions 1.3 to map

a specific flow in the switch. The Match field is used for classification of a packet

header. The eviction state parameter aids the flowcache to select a flow for eviction

from the switch.

Figure 3.3: Internals of Flowcache
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Flowcache creates a relay across the north bound and south bound interface. It

filters most of the OpenFlow messages send across the channel. However, there are

around nine OpenFlow messages listed in Table 3.1, which a flowcache intercepts.

These intercepted messages pass through the internal flowcache state machine. De-

pending upon the type of messages, they are passed through the pipeline of tables,

modified, and finally passed either to the controller, or to the switch or are dropped.

Table 3.1: OpenFlow Messages Intercepted by Flowcache after Connection Setup

Messages Initiated by Description

PacketIn Switch Sends captured packet to the controller

PacketOut Controller Inject a packet to the switch data plane

FlowMod Controller Add/Modify/Delete a flow from the flow table

FlowRemoved Switch Informs controller of a removed flow

MultipartStats Req Controller Query request for statistics

MultipartStats Res Switch Query response for statistics

Barrier Req Controller Synchronization point set by controller

Barrier Res Switch Synchronization request accepted by switch

Error Switch Reports an error to the controller
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4. EXPERIMENTAL SETUP

We constructed an experimental model to replicate the scenario of an access

network. Access networks typically consists of wireless/wired access points commu-

nicating to a nearby master station, which in turn communicates with the remote

controller.

Figure 4.1: Experimental Setup

Our model in Figure 4.1 consisted of the Ryu [9] controller, the Userspace Softswitch

[11], two Linux hosts and a flowcache component. The controller was installed on a

remote machine resident on one of the rack servers. The switch and the hosts resided

on a Linux machine, while the flowcache operated from a separate Linux machine

connected to the same LAN. The two hosts connected to the switch via Virtual Eth-

ernet pairs to form a simple linear topology. We configured the latency across the
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flowcache-controller channel to be around 10ms. This configuration was based on

latencies found in access networks.

Different experiments were conducted to compare the performance of the SDN

model with and without flowcache. In order to test the efficiency of the system, we

measured the available throughput across the two hosts. The load on the controller

was measured by calculating the number of PacketIn OpenFlow messages received

by the controller. Since the controller has to process each of the PacketIn message,

higher number of PacketIn messages increases the load on the controller.

The workload traffic was generated using CAIDA [13] packet trace. CAIDA

captures packet using passive traffic monitors located at various core routers. The

packet’s were captured on a 10GB line card and had an average throughput of around

3GBps in 60 seconds window. Due to privacy reasons, the traces were anonymized,

and data link-layer headers and the packet data portion were deleted.

In our experiment, we scaled down the packet trace to run with an average

throughput of around 22Mbps. Since, the trace provided only layer3 and layer4

headers, we had to create our own network traffic. We installed a UDP client and a

packet sniffer at two end hosts. The UDP client would send packets to the packet

sniffer ip, changing the UDP destination ports to the layer 4 ports obtained from

CAIDA packet trace. Using this technique we generated individual flows. In our test,

we inserted around 200,000 packets in the network at an average rate of 22Mbps.

These 200,000 packets resulted in generation of around 24,500 individual flows.
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5. RESULTS AND DISCUSSION

We evaluated the performance of our system by measuring the throughput across

the end hosts. We examined the change in throughput by varying the size of the

switch flow table. In our model as shown in Figure 4.1, the latency across the

flowcache-controller channel and switch-controller channel was configured as 5 ms,

while the latency across switch-flowcache channel was around 0 ms. In figure 5.1, the

observed throughput for flowcache remained constant for all the table sizes at the set

input rate. However, the performance of the base SDN model (i.e. without flowcache)

constantly decreased with smaller table sizes. In this experiment, flowcache sent

around 26000 flow requests to the controller compared to around 100000 flow requests

sent in the base case. The high count of flow requests in the 5 ms latency channel

caused the performance decrease in the base SDN model.

Figure 5.1: Normalized Throughput of our SDN Model
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In order to measure the load on the controller we count the number of PacketIn

messages received by the controller. Figure 5.2 shows the difference in the number

of messages processed by the controller. An increase in the size of the flow table

led to higher hit rate, leading to less number of PacketIn messages being sent to the

controller. The SDN model using the flowcache component sends PacketIn message

only on finding a new flow. Since flowcache buffered all the flows installed by the

controller, it avoided sending a request for the same packet it had encountered before.

This led to smaller number of PacketIn messages to the controller, producing an

almost constant load across all table sizes. The number of PacketIn messages sent

across the flowcache-controller channel was considerably less when compared to the

base SDN model.

Figure 5.2: Measuring the Load on Controller for Varying Flow Table Size

We compared the performance of our system using different eviction policies

namely LRU, FIFO, and Statistics based. The LRU and FIFO policy are imple-

mented in the software switches, while the statistics based policy is managed directly

by flowcache. Figure 5.3 shows the throughput obtained by running the tests in our
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experimental model. Clearly, the statistics based measurement performs poorly,

while the LRU and FIFO schemes show similar performance. The statistics based

policy required additional time for the flow statistics message to be sent across the

flowcache-switch channel. Since a flow table consists of hundreds of flows, each flow

statistics request placed an added pressure on the switch, decreasing the forwarding

time of the switch. Further, flowcache needed to send additional flow modificiation

messages to the switch to delete a flow, compared to the automatic deletion done by

the switch in LRU and FIFO schemes. In Figure 5.3, we were unable to obtain the

results for table size 800 in case of statistics based eviction policy, due to the limita-

tions of the software switch [11]. It does not support sending statistics measurement

across multiple OpenFlow messages, and the statistics measurement of a table size

with 800 flows exceeds the maximum OpenFlow message length of 65535.

Figure 5.3: Performance Measurement Using Different Eviction Policies
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Here, we try to contrast the performance obtained by using statistics measure-

ments at different periodicities. Coarse-grained statistics were obtained at an interval

of 10 seconds, whereas fine-grained statistics were obtained at a small interval of 1

second. Fine-grained statistics presents a near real-time view of the switch, but puts

additional pressure on the switch and the communication channel. In our experi-

ment, the fine-grained statistics showed better performance for tables sized 400 and

200 (Figure 5.4). In these two cases, the number of PacketIn messages were compar-

atively less, and evicting flows based on real time view of the tables resulted in better

performance. However, for table sized 100, the state of the table changed rapidly, so

in fine-grained eviction policy the additional flow statistics failed to provide real-time

view of the tables and only added excess traffic to the control plane channel.

Figure 5.4: UDP Throughput - Coarse-grained Vs Fine-grained Statistics
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6. CONCLUSION

There are several challenges in designing a flowcache. First and foremost caching

in software is slow. With OpenFlow standard introducing wider match fields, packet

classification time is constantly increasing. In such a scenario, a lightly loaded con-

troller may be faster to install new flows, than obtaining them from flowcache. Be-

sides classifying packets, the flowcache needs to constantly estimate and maintain the

“working set of flows”. Often packets arriving in bursts can lead to thrashing, causing

the same packets to continuously cycle between flowcache and switch. Further, esti-

mating the “working set of flows” may be a difficult task, since incoming packet rate

often depends upon external conditions like time of day, date, occasion, etc. Given

the above challenges faced to make flowcache work as a transparent component made

the design and development cycle even more exacting.
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7. FUTURE WORK

Flowcache can be extended in different directions. It can be extended to solve

the compatibility issues between different OpenFlow versions. Currently, a number

of OpenFlow switches support separate versions of the OpenFlow protocol. In this

situation, it becomes difficult for a controller to manage these switches. An applica-

tion developer is either limited by the base set of capabilities supported by all the

switches, or feels the need to manage the capabilities of each switch separately. In

such cases, Flowcache can present ‘a big switch’ abstraction to the controller, where

it provides the controller application an interface to the most advanced set of capa-

bilities supported by a switch in the given network. All capabilities not handled by

a switch will be handled internally by flowcache using a software switch.

Flowcache can also extend its support for all the dataplane abstractions. Cur-

rently, flowcache only supports the switch flow table abstraction. New abstractions

like groups, queues and meters can be individually handled by flowcache.

Starting 2014, ONF has started to work towards OpenFlow 2.0, in an effort to

increase the flexibility of the switch dataplane by making packet processors pro-

grammable and protocol-independent. In this work, they define an Intermediate

Representation (IR) which resides in a separate location between the switch and the

controller. Given the preference of the location, flowcache can fit their model. How-

ever, for flowcache to work in OpenFlow 2.0 its capabilities must be modified and

extended to meet their specific requirements.
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