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ABSTRACT 

 

Characterization of carbonate reservoirs is challenging as the result of 

heterogeneous distribution of petrophysical properties and mineralogy. Common rock 

classification techniques are strongly dependent on core measurements, whereas core 

data are usually sparse and inadequate for reliable heterogeneity analysis. I introduce an 

integrated rock classification workflow, based on conventional well logs and core data, 

which incorporates geological attributes and petrophysical, compositional, and elastic 

properties estimated from conventional well logs. The proposed rock classification 

method may enhance (a) assessment of petrophysical and compositional properties, (b) 

prediction of acid stimulation performance, (c) selection of completion depth intervals, 

and (d) production enhancement strategies in carbonate formations.  

In the proposed workflow, I incorporate diagenetic and depositional attributes by 

taking into account the impact of shapes of different pore types and minerals in each 

geological facies on resistivity logs and elasticity. Rock quality and rock-fluid quality 

indices are introduced to take into account the impact of dynamic petrophysical 

properties, rooted in diagenesis, for real-time rock classification. Furthermore, I apply an 

analytical technique for the depth-by-depth assessment of elastic rock properties, as well 

as interparticle and intraparticle porosity, in a limiting case where shear-wave slowness 

measurements are not available. In addition, I take advantage of Mercury Injection 

Capillary Pressure (MICP) measurements, where available, to characterize pore-throat 

radius distribution and modality using a multi-modal Gaussian function. I finally use 
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supervised and unsupervised learning techniques to classify rock types based on static 

and dynamic petrophysical, compositional, and elastic properties.  

I successfully applied the proposed workflow in four carbonate formations, 

Hugoton, Happy Spraberry, Veterans, and SACROC fields. Although the main focus of 

this dissertation is carbonate rock classification, I also introduced rock classification 

techniques based on conventional well logs in organic-rich shale formations. The 

reliability of these techniques was investigated in the Haynesville Shale. The identified 

petrophysical rock classes in all field cases were validated using core-derived rock 

classes, lithofacies descriptions, and thin-section images, where available. The results 

showed improvement in the assessment of petrophysical properties, compared to the 

conventional assessment techniques. 

The contributions of the proposed techniques include (a) incorporation of 

geological and petrophysical attributes for an integrated rock classification, (b) 

application of conventional well logs for the depth-by-depth assessment of elastic 

moduli and interparticle and intraparticle porosity, applicable where acoustic well logs 

are not available, (c) simultaneous characterization of pore modality and pore-throat 

radius distribution for rock classification in carbonate formations. 
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NOMENCLATURE 

 

a Archie’s Winsauer factor 

Brittindex Rock brittleness index, % 

B∞ Bulk volume saturated by mercury at infinite pressure 

c Count of the differences in the adjacent rock classes 

C Covariance matrix 

Cclay Volumetric concentration of clay, fraction 

CH Spatial heterogeneity coefficient 

Ck Organic carbon percentage in kerogen, % 

Cminerals Volumetric concentration of minerals, fraction 

E Rock effective Young’s modulus, GPa 

Emax Maximum Young’s modulus, GPa 

Emin Minimum Young’s modulus, GPa 

EBritt Normalized Young’s modulus, fraction 

G Shape factor of capillary pressure curve 

h Lag distance, ft 
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H Vertical calculation domain length, ft 

i Individual rock component 

Iclay Clay concentration index, fraction 

IRS Resistivity separation Index, fraction 

k  Average permeability, md 

k Permeability, md 

K Bulk Modulus, GPa 

Ki Bulk modulus of rock component, GPa 

K*
sc Rock effective bulk modulus, GPa 

L Horizontal calculation domain length, ft 

Lp Demagnetizing factor 

m Archie’s porosity exponent 

n Archie’s saturation exponent 

N Total number of rock components/data pairs/data points 

P*i Shape factor 

Pc Capillary pressure measurement, psi 
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Pd Displacement pressure, psi 

Q*i Shape factor 

r Pore-throat radius, m 

 
R*i Shape factor 

RDeep Deep electrical resistivity, ohm 

RShallow Shallow electrical resistivity, ohm 

Rsim. Simulated resistivity, ohm 

Rmeasured Measured resistivity, ohm 

SHg Mercury saturation, % 

 
model

Hg inc
S  Modeled incremental mercury saturation, % 

 
meas

Hg inc
S  Incremental mercury saturation, % 

Sw Water saturation, fraction 

T Total number of the pore-throat radius modes 

T(i)
 Wu’s tensor 

V Eigenvector matrix 

VT Transpose of eigenvector matrix 



 

xi 

 

w  Average fracture width, in 

wi Ideal fracture width, in 

(wkf)0 Acid fracture conductivity under zero closure stress, md-ft 

wkf Overall acid fracture conductivity, md-ft 

xi
 Volumetric concentration of rock component, fraction 

x  Mean values of x variables 

xinter-por Volumetric concentration of interparticle pores (porosity), fraction 

xintra-por Volumetric concentration of intraparticle pores (porosity), fraction 

yi Depth-by-depth measurements/estimated properties from well logs 

y  Mean values of y variables 

zi Individual data point 

Vbk  Kerogen bulk volumetric concentration, fraction 

Vbnk  Non-kerogen bulk volumetric concentration, fraction 

t Compressional-wave slowness, s/ft 

ᴦ Interfacial tension 

γ(h) Variance 
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Λ Matrix of eigenvalues 

λx Horizontal correlation length, ft 

λx,D Dimensionless horizontal correlation length 

λz Vertical correlation length, ft 

λz,D Dimensionless vertical correlation length 

μi Shear modulus of rock component, GPa 

μ*
sc Rock effective shear modulus, GPa 

 Porosity, fraction 

k Gas-filled kerogen porosity, fraction 

nk  Non-kerogen porosity, fraction 

t Total porosity, fraction 

b Bulk density, g/cm3 

bnk Non-kerogen bulk density, g/cm3 

k Kerogen density, g/cm3 

grain Grain density, g/cm3 

hc Hydrocarbon density, g/cm3 
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nk Non-kerogen matrix density, g/cm3 

w Water density, g/cm3 

σ Standard deviation  

σc Closure stress, psi 

σD Dimensionless standard deviation 

σi Electrical conductivity of rock component, mho/m 

σ*
sc Rock effective electrical conductivity, mho/m 

ʋ Poisson’s ratio, fraction 

ʋmax Maximum Poisson’s ratio, fraction 

ʋmin Minimum Poisson’s ratio, fraction 

ʋBritt Normalized Poisson’s ratio, fraction 

θ Contact angle 
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ACRONYMS 

 

CPU Computer Processing Unit 

ECS Elemental Capture Spectroscopy 

DEM Differential Effective Medium 

EOR Enhanced Oil Recovery 

FC Fluid Corrected 

GR Gamma Ray, GAPI 

 
KNN k-Nearest Neighbors algorithm 

MICP Mercury Injection Capillary Pressure 

NN Artificial Neural Network 

PEF Photoelectric Factor, b/elec 

RC Rock Class 

RFQI Rock Fluid Quality Index 

RQI Rock Quality Index 

SACROC Scurry Area Canyon Reef Operators Committee 

SCA Self-Consistent Approximation 
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SEM Scanning Electron Microscope 

SOM Self-Organizing Map 

TOC Total Organic Content, % 

UN_NN Unsupervised Artificial Neural Network 

WAG Water-Alternating-Gas Injection 

XRD  X-Ray Diffraction 
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CHAPTER I  

INTRODUCTION  

 

Reservoir characterization can be challenging in heterogeneous carbonate 

formations due to vertical and lateral variations of petrophysical properties and 

mineralogy in these formations. This dissertation introduces an integrated rock 

classification scheme for characterizing formation heterogeneity in carbonate reservoirs. 

The introduced rock classification technique incorporates geological lithofacies 

interpreted from core (where available) with estimates/measurements of static and 

dynamic petrophysical properties, mineralogy, and elastic properties based on 

conventional well logs. The integrated rock classification method can be applied for 

optimizing completion design and production enhancement in carbonate formations. 

Although the main focus in this dissertation is carbonate rock classification, I also 

introduce similar well-log-based rock classification techniques that are applicable in 

organic-rich shale formations for enhanced selection of fracture locations and well 

development. 

 

 

1.1 Background 

 

Post-depositional processes (i.e., diagenesis) strongly impact pore structure and 

mineralogy in carbonate formations. Grain dissolution, cementation, and compaction can 
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re-arrange grain packing and pore shape/size distribution. Mineralogy can be altered by 

dolomitization and recrystallization of aragonite and calcite (Ahr 2008). The 

aforementioned mechanisms result in complex pore structure and heterogeneous 

distribution of petrophysical properties (e.g., permeability), as well as mineralogy and 

elastic properties in carbonate formations. A reliable characterization of the distribution 

of these rock properties in the formation can contribute to the success of well 

development strategies such as acid fracture stimulation and enhanced oil recovery 

techniques (e.g., Water-Alternating-Gas injection).  

Rock classification is a common reservoir characterization method that 

categorizes rock groups with similar rock properties. This technique can be employed to 

improve the assessment of petrophysical and compositional properties in complex 

formations (Lucia 1995; Jennings and Lucia 2003; Lucia 2007). However, a reliable 

rock classification in carbonate formations should incorporate the impact of both 

depositional attributes and diagenetic modifications on rock properties (Skalinski and 

Kenter 2014). Purely descriptive classification schemes such as Dunham (1962) and 

modifications by Embry and Klovan (1971), as well as generic pore typing methods 

(Choquette and Pray 1970; Lucia 1995 and 2007; Ahr 2008), do not include diagenetic 

overprint corresponding to fluid flow in carbonate rocks. Petrophysical partitioning 

techniques such as Leverett’s J-function (Leverett 1941) and FZI method (Amaefule et 

al. 1993) classify rock types by artificial binning the permeability and the porosity core 

measurements. Winland’s R35 identifies rock classes based on the major pore system 

attribute derived from saturation-dependent Mercury Injection Capillary Pressure 
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(MICP) measurements (Pittman 1992). These techniques are closely related to the 

dynamic petrophysical properties rooted in diagenesis, but they do not take into account 

the depositional features of carbonate rocks (Leverett 1941; Pittman 1992; Amaefule et 

al. 1993). Archie’s rock classification (Archie 1952) only qualitatively takes into account 

both texture and pore types. Furthermore, aforementioned conventional core-based rock 

classification methods are highly dependent on core measurements, while an extensive 

core database might not be available for most wells. In the absence of an extensive core 

database, the conventional rock classification techniques in carbonate formations might 

not be capable of capturing the heterogeneity in these complex formations.  

On the other hand, well logs can provide real-time information about 

petrophysical, compositional, and elastic properties with a relatively high vertical 

resolution. Serra and Abbott (1980) applied well logs to conduct rock classification 

based on distinct log responses that were defined as electrofacies. Analytical well-log-

based rock quality factors are other alternatives for petrophysical rock classification. 

Previous publications showed the application of these analytical methods in siliciclastic 

formations (Gandhi et al. 2010; Heidari et al. 2011). These factors qualitatively include 

the dynamic petrophysical properties for reliable rock classification.  

Furthermore, a reliable assessment of elastic properties and rock classification 

based on these rock properties can provide insight into the formation fracturing potential. 

High Young’s modulus can indicate formation capability to overcome the closure stress 

effectively and promise continuous fracture conductivity (Deng et al. 2012). Therefore, 

formation intervals with optimum elastic properties can guarantee fracture endurance 
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throughout the well production life. However, selection of the fracture candidate zones 

can be challenging in carbonate formations, because of the heterogeneous distribution of 

petrophysical properties, mineralogy, and elastic properties. Common rock classification 

techniques that incorporate formation elasticity are based on real-time compressional 

and shear-wave slowness measurements (Leslie and Mons 1982). However, the shear-

wave slowness measurements are not always available. Effective medium theories, on 

the other hand, can be used to assess elastic properties, in the absence of shear-wave 

slowness measurements, by incorporating elasticity, shapes, and concentrations of rock 

constituents (i.e., pores and grains) (Berryman 1995; Brie et al. 1985). 

Pore shape is among the rock properties that affect both formation elasticity and 

electrical conductivity of the formation (Berryman 1995; Wang 2001; Brie et al. 1985; 

Zhan et al. 2012). The electrical conductivity of different pore types in the formation can 

be incorporated in the effective medium theories for the assessment of porosity 

(Kazatchenko et al. 2004). Application of different effective medium theories such as the 

Self-Consistent Approximation (SCA) and the Differential Effective Medium (DEM) 

theories in carbonate formations has been previously investigated (Kazatchenko et al. 

2004; Markov et al. 2005; Kumar and Han 2005; Gomez et al. 2009). Kazatchenko et al. 

(2004) applied the conductive and the elastic SCA theories for the assessment of 

porosity and elastic moduli of carbonate core samples. Markov et al. (2005) and Kumar 

and Han (2005) used the DEM method to model elastic moduli in carbonate core 

samples. Gomez et al. (2009) showed that DEM may estimate the elastic moduli 

accurately, but it is not reliable for modeling the electrical conductivity. On the other 



 

5 

 

hand, they showed that the SCA is a robust approach for the joint modeling of electrical 

conductivity and elastic properties in carbonate rocks (Gomez et al. 2009). Thus, the 

conductive and the elastic SCA theories can be used to estimate concentrations of 

different pore types and elastic moduli in carbonate formations, by incorporating the 

impact of shapes of different pore types and minerals on electrical conductivity 

measurements and formation elasticity, respectively.  

 

 

1.2 Statement of Problem 

 

The conductivity of an acid fracture is dependent on the rate and the 

homogeneity of dissolution of carbonate rocks in the acid. Heterogeneous distribution of 

petrophysical properties and mineralogy can result in non-uniform dissolution of the 

rock, creating acid etching on fracture faces that maintain fracture conductivity under 

closure stress. Characterization of small-scale distribution of petrophysical properties, 

mineralogy, and elastic properties, can improve prediction of acid fracture conductivity 

and can optimize completion design.  

Core/outcrop measurements of petrophysical properties (i.e., permeability) are 

commonly used to assess formation heterogeneity (Oeth et al. 2011; Goggin et al. 1992; 

Kittridge et al. 1990). However, core data might be inadequate for characterizing 

formation heterogeneity, and measurements of petrophysical properties obtained from 

outcrops might not be representative of the true reservoir conditions. Diagenetic 
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processes that carbonate rocks undergo at reservoir conditions can result in complex 

pore structure and heterogeneous distribution of minerals, which cannot be identified 

from outcrops. As an alternative to core/outcrop measurements, well logs can be used to 

assess petrophysical properties and mineralogy at all depths along the wellbore. 

Nevertheless, assessment of petrophysical properties based on well logs can be 

challenging in complex carbonate formations, as the result of the rapid vertical and 

lateral variation of these rock properties in the formation. Rock classification can be 

used to improve assessment of petrophysical and compositional properties based on well 

logs in carbonate formations. 

Moreover, rock classification can contribute to better understanding the impact of 

formation heterogeneity on fluid injection problems during enhanced oil recovery. 

Water-Alternating-Gas (WAG) injection which is composed of alternating flow of water 

and gas reduces the high mobility of gas, preventing early breakthrough that can result in 

poor sweep efficiency. However, loss of injectivity during WAG cycles has been a major 

limiting factor in many WAG projects. Heterogeneous distribution of petrophysical 

properties (i.e., permeability) can impact the injectivity during WAG injections. The 

effective fluid mobility is reduced not only in the layer with higher permeability, but also 

in the adjacent layers with lower permeability. Thus, a larger fraction of gas flows into 

the layers of higher porosity and permeability, compared to layers with poor 

petrophysical properties. This results in reduced injectivity and a lower oil recovery 

(Rogers and Grigg 2001).  
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In this dissertation, I propose an integrated rock classification workflow based on 

conventional well logs and core data to characterize formation heterogeneity and to 

improve the assessment of petrophysical and compositional properties in carbonate 

formations. The application of conventional well logs is emphasized in this dissertation, 

as the advanced logging tools (e.g., Nuclear magnetic resonance and Formation Micro-

Imager) are not available in all wells. Furthermore, a contribution of the proposed rock 

classification workflow, compared to the conventional rock classification techniques in 

carbonates, is the integration of depositional and diagenetic attributes. The rock 

classification workflow takes into account the impact of both depositional and diagenetic 

attributes in rock classification by considering the effect of the shapes of different pore 

types and minerals in each geological facies on formation resistivity and elasticity. The 

workflow also uses the visible trend of mud filtrate invasion on resistivity well logs with 

different volumes of investigation to qualitatively account for the dynamic petrophysical 

properties, rooted in diagenesis.  

Furthermore, I conduct pore typing based on pore-size distribution functions 

derived from MICP measurements and populate pore types in core and well-log scales. I 

investigate the impact of pore systems on electrical resistivity measurements by 

evaluating the conformity of resistivity measurements and identified pore types. 

 Additionally, incorporation of elastic properties in rock classification can assist 

in determining the fracture locations for an enhanced acid fracture design. I estimate 

elastic properties from well logs, in the absence of a shear-wave slowness log, by 

incorporating shapes, elasticity, and volumetric concentrations of different rock 
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constituents. Finally, I take advantage of learning algorithms to distinguish the well log 

signatures, corresponding to mineralogy, elastic, and static and dynamic petrophysical 

properties, for rock classification.   

 

 

1.3 Research Objectives 

 

This dissertation focuses on integration of geological attributes, obtained from 

core data, and petrophysical properties, mineralogy, and elastic properties, estimated 

from conventional well logs, for rock classification in complex carbonate formations. 

The main objective is to develop an integrated rock classification scheme in carbonate 

formations to improve characterization of spatial heterogeneity. The introduced rock 

classification scheme has broad well development applications such as predicting acid 

fracture conductivity and quantifying the impact of formation heterogeneity on fluid 

injectivity loss during enhanced oil recovery (i.e., Water-Alternating-Gas injection). The 

following list summarizes the detailed objectives pursued by this research: 

i. Create ties between geological attributes and petrophysical properties. 

ii. Apply analytical techniques to estimate the volumetric concentrations of 

different pore types in the formation by incorporating the impact of pore shapes 

on resistivity well log. 

iii. Apply analytical techniques for depth-by-depth assessment of elastic moduli 

from conventional well logs, where a shear-wave slowness log is not available. 
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iv. Derive pore-size distribution functions from MICP measurements to 

characterize complex pore systems.  

v. Apply visible trends of mud-filtrate invasion on resistivity well logs, to 

qualitatively characterize distribution of dynamic petrophysical properties in 

the formation. 

vi. Introduce rock classification techniques based on conventional well logs, with 

minimal dependency on core measurement. These techniques can be applied 

where core data are not available.   

vii. Conduct permeability assessment by applying a core-based porosity 

permeability correlation in each rock class. Estimates of permeability are then 

used for variogram analysis and determination of the correlation length, which 

is an input to the acid fracture conductivity model. 

viii. Investigate the application of well logs and well-log-based estimates of 

petrophysical properties and mineralogy for variogram analysis. The 

correlation length is determined in each case and compared against the 

correlation length determined from variograms of well-log-based estimates of 

permeability. 

ix. Introduce a coefficient of spatial heterogeneity to characterize the spatial 

variation of petrophysical rock classes and lithofacies. 

x. Apply rock classification and coefficient of spatial heterogeneity introduced in 

(10) to investigate and quantify the impact of formation heterogeneity on fluid 
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injectivity abnormalities experienced during Water-Alternating-Gas enhanced 

oil recovery. 

 

 

1.4 Method Overview 

 

Fig. 1.1 shows the proposed workflow for an integrated rock classification in 

carbonate formations. The proposed rock classification workflow is adaptable to 

different data scenarios driven by the availability of (a) slabbed cores, thin-section 

images, and Scanning Electron Microscope (SEM) images for characterizing geological 

attributes and geometries of rock components, (b) visible well-log signatures, related to 

dynamic petrophysical properties (e.g. separation of resistivity logs, as the result of mud-

filtrate invasion into the formation), (c) core data (e.g., permeability and porosity 

measurement), (d) dynamic petrophysical data (e.g., relative permeability curves and 

MICP measurements), and (e) 3D micro-CT scan images.  

The proposed rock classification scheme incorporates geological (i.e., 

depositional and diagenetic) attributes, static and dynamic petrophysical properties, 

mineralogy, and elastic properties. Geological facies are defined based on the diagenetic 

and depositional attributes, where thin-section images, SEM images, and slabbed cores 

are available. Furthermore, shapes of different rock components in each geological 

facies are determined from an analysis on thin-section images, SEM images, and slabbed 
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cores for the assessment of elastic properties and porosity (i.e., interparticle and 

intraparticle porosity). 

 

 

(a) 

 

(b) 

Fig. 1.1—Proposed method: (a) workflow for an integrated rock classification in carbonate formations; (b) 

selection of the appropriate technique for rock classification based on availability of input data. 
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Multi-mineral analysis of well logs is conducted for preliminary assessment of 

petrophysical and compositional properties. The conductive and the elastic SCA theories 

are then applied to estimate depth-by-depth volumetric concentrations of interparticle 

(i.e., interconnected) and intraparticle pores (e.g., vugs), as well as elastic bulk and shear 

moduli using well logs in each geological facies in the formation. 

Finally, a petrophysical rock classification is conducted based on well-log-

derived depth-by-depth estimates of petrophysical properties, mineralogy, and elastic 

properties. In this step, three different approaches can be implemented based on the 

availability of data and well-log signatures. For the case, where the trend of mud-filtrate 

invasion on the resistivity well logs is apparent, a real-time analytical factor (i.e., RQI) is 

introduced to be applied for rock classification. In the case where an extensive core 

database is available, a supervised learning approach is used for rock classification. This 

is a rare case, as core data are usually sparse and not sufficient for characterizing the 

heterogeneity in carbonate formations. Alternatively, unsupervised learning is proposed 

for rock classification, where core data are inadequate. Furthermore, dynamic 

petrophysical properties (e.g., MICP measurements) can be incorporated in rock 

classification to account for pore size distribution in the formation. The results of 

petrophysical rock classification are used to update the estimates of permeability in each 

rock class. The updated results serve as inputs to the next iteration of well-log 

interpretation, the SCA theories, and petrophysical rock classification. The new 

petrophysical rock classes can be used to update estimates of permeability until a 

convergence criterion is met.  
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1.5 Outline of Dissertation 

 

Following the introductory chapter, this dissertation includes six additional 

chapters. Chapter II introduces an integrated rock classification approach that 

incorporates estimates of petrophysical, compositional, and elastic properties based on 

conventional well logs, with depositional and diagenetic attributes interpreted from core. 

I apply the introduced technique in two wells in the upper Leonardian carbonate interval 

of the Veterans field, in west Texas.  

Chapter III elaborates on pore typing based on attributes of multi-modal 

Gaussian functions derived from MICP measurements. This chapter also investigates the 

impact of pore structure on electrical resistivity by assessing the conformity between 

MICP-based pore types and resistivity measurements. The work described in this chapter 

is conducted in the SACROC Unit, located in west Texas. 

Chapter IV focuses on the use of conventional well logs for characterizing 

formation heterogeneity, where core data are not adequate. This chapter introduces rock 

classification techniques based on conventional well logs, with minimal dependency on 

core data, which can be used for enhanced assessment of permeability. The introduced 

techniques are applied in two carbonate formations, Happy Spraberry oil field and 

Hugoton gas field. Furthermore, this chapter investigates the application of well logs and 

estimates of petrophysical properties and mineralogy, obtained from well logs, for 

variogram analysis. The outcome of variogram analysis is characterization of formation 

heterogeneity incorporated for prediction of acid fracture conductivity.  
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Chapter V investigates and quantifies the impact of formation heterogeneity on 

loss of injectivity during WAG injection. Rock classification and heterogeneity analysis 

are conducted in ten wells in the SACROC Unit, located in the west Texas to study this 

phenomenon.  

In addition to rock classification in carbonate formations, which is the main focus 

in this dissertation, I introduce similar rock classification techniques in organic-rich shale 

formations. Chapter VI describes the introduced rock classification techniques and their 

application in the Haynesville Shale. 

Finally, Chapter VII summarizes the concluding remarks of the research 

stemming from this dissertation and recommendations for future research. 
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CHAPTER II  

INTEGRATED ROCK CLASSIFICATION IN CARBONATE FORMATIONS BASED 

ON ELASTIC AND PETROPHYSICAL PROPERTIES ESTIMATED FROM 

CONVENTIONAL WELL LOGS* 

 

A reliable rock classification in a carbonate reservoir should take into account 

petrophysical, compositional, and elastic properties of the formation. However, depth-

by-depth assessment of these properties is challenging, as a result of the complex pore 

geometries and significant heterogeneity caused by diagenesis. Common rock 

classification methods of carbonate formations do not incorporate the impact of both 

depositional and diagenetic modifications on rock properties. Furthermore, elastic 

properties, which control fracture propagation and the conductivity of fractures under 

closure stress, often are not accounted for in conventional rock classification techniques. 

I apply an integrated rock classification technique, based on both depositional and 

diagenetic effects that can ultimately enhance (a) assessment of petrophysical properties, 

(b) selection of candidates for fracture treatment, and (c) production from carbonate 

reservoirs. 

 

 

_______________________________________ 

*Reprinted with permission from “Integrated Rock Classification in Carbonate 

Formations Based on Elastic and Petrophysical Properties Estimated from Conventional 

Well Logs” by Mehrnoosh Saneifar, Roy Conte, Clotilde Chen Valdes, Zoya Heidari, 

and Michael C. Pope, 2015. AAPG Bulletin, Preliminary Ahead of Print version, 

Copyright 2015 by the AAPG whose permission is required for further use. 
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I applied the conductive and the elastic Self-Consistent Approximation (SCA) 

theories to estimate depth-by-depth volumetric concentrations of interparticle (e.g., 

interconnected pore space) and intraparticle (e.g., vugs) pores, as well as elastic bulk and 

shear moduli, in the formation. This process incorporated the impact of shape and 

volumetric concentrations of rock components on electrical conductivity and elastic 

properties.  

I documented a successful application of the technique in two wells in the upper 

Leonardian carbonate interval of the Veterans field, in west Texas. The identified rock 

types were verified using thin-section images and core samples.  

 

 

2.1 Introduction 

 

Assessment of petrophysical, compositional, and elastic properties in carbonate 

formations is challenging, due to the abrupt vertical variation of pore structure and 

lithology. Pore shape is among the rock properties that affects formation elasticity and 

therefore, needs to be incorporated for a reliable assessment of elastic properties (Brie et 

al. 1985; Wang 2001; Zhan et al. 2012). Pore shape also affects electrical conductivity of 

the formation (Brie et al. 1985). Effective medium theories were introduced for 

modeling effective elastic moduli and electrical conductivity of fluid-bearing rocks, 

which take into account pore/grain shapes as well as volumetric concentrations of 

individual rock constituents (Brie et al. 1985; Berryman 1995).  
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Furthermore, a reliable assessment of elastic properties can provide insight into 

the formation fracturing potential. Poisson’s ratio may represent the fracture initiation 

possibility, and Young’s modulus may reflect the ability of the rock to maintain a 

fracture (Rickman et al. 2008). High Young’s modulus in carbonate rocks can resist the 

closure stress effectively and promise continuous fracture conductivity (Deng et al. 

2012). Therefore, formation intervals with optimum elastic properties can guarantee 

fracture endurance throughout the well production life. However, selection of the best 

zones for fracturing can be challenging in carbonate formations, because of the 

heterogeneous distribution of petrophysical, compositional, and elastic properties. A 

reliable rock classification based on elastic properties, as well as petrophysical properties 

and mineralogy in the formation, can improve completion design, reservoir 

characterization, and ultimately production from a complex carbonate formation.  

I introduced and applied an integrated rock classification scheme that 

incorporates petrophysical, compositional, and elastic properties, as well as depositional 

and diagenetic attributes. The first step in the method was geological facies classification 

based on both depositional and diagenetic attributes. I utilized the conductive and the 

elastic SCA theories to estimate depth-by-depth volumetric concentrations of 

interparticle (i.e., interconnected) and intraparticle (e.g., vugs) pores, as well as elastic 

bulk and shear moduli using well logs in each geological facies in the formation. Finally, 

I conducted petrophysical rock classification based on well-log-derived depth-by-depth 

estimates of petrophysical, compositional, and elastic properties. I applied the introduced 
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technique in two wells in the upper Leonardian carbonate interval of the Veterans field, 

in west Texas (Saneifar et al. 2015).  

The contributions of the introduced rock classification technique compared to the 

previously introduced methods include (a) application of conventional well logs for the 

depth-by-depth assessment of elastic moduli and interparticle and intraparticle porosity, 

where acoustic well logs are not available, (b) incorporation of the elastic properties in 

carbonate rock classification, and (c) creating ties between geological facies and 

petrophysical attributes for an integrated rock classification. 

 

 

2.2 Veterans Oil Field, West Texas: Geological Setting 

 

Veterans oil field is located in the Glasscock County, Texas, on the eastern side 

of the Midland Basin, near its Eastern Shelf (Fig. 2.1). The reservoir is an upper 

Leonardian succession of detrital carbonate deposited in slope and basinal environments 

(Fig. 2.2). The detrital carbonate units extend from the Eastern Shelf margin into the 

Midland basin and may represent a combination of debris flows and submarine fan 

depositional processes (Cook 1983). Hydrocarbon production from this interval in the 

Veterans Field is highly variable. For instance, Well A produced oil at economic rates 

following fracture stimulation, whereas, the coeval section in Well B failed to produce 

oil after similar fracture stimulation (Saneifar et al. 2015). 
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Fig. 2.1—Regional map of the Permian Basin showing Glasscock County and the approximate field 

location (Saneifar et al. 2015). 

 

The upper Leonardian detrital carbonate succession in the Veterans Field best fits 

a base-of-slope apron depositional model in which carbonate aprons develop along 

relatively steep slopes and are fed by several small submarine canyons that by-pass fine-

grained upper slope sediments (Schalger and Chermak 1979; Mullins and Cook 1986; 

Playton et al. 2010; Conte 2014).  

  

Permian basin Sub-basins Approximate field location
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(a) 

 

(b)  

         (After Conte 2014) 

Fig. 2.2—Veterans Field Example Stratigraphy: (a) Leonardian stratigraphic chart of the Eastern Shelf 

and Midland Basin stratigraphy; (b) Upper Leonardian detrital carbonate succession stratigraphy in 

Veterans Field Glasscock County, Texas. The succession is underlain and overlain by shale (Saneifar et al. 

2015). 

 

The following section reviews the common rock classification techniques in 

carbonate formations and their reliability in capturing heterogeneity in carbonate 

formations.    
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2.3 Method 

 

First, geological facies were classified based on the analysis of depositional and 

diagenetic features, using thin-sections, slabbed cores, and Scanning Electron 

Microscope (SEM) images (Fig. 2.3). Well-log interpretation was the next step for 

preliminary assessment of porosity (i.e., total and interconnected), permeability, water 

saturation, and mineral concentrations. The shape factors of rock inclusions, elasticity 

and conductivity of rock inclusions, and estimates of mineral concentrations from well-

log interpretation were applied to assess interparticle and intraparticle porosity, as well 

as elastic moduli using the conductive and the elastic SCA theories. Petrophysical rock 

classification was implemented using an unsupervised artificial neural network, with an 

input of well-log-based estimates of (a) interparticle and intraparticle porosity, (b) elastic 

moduli of the formation, (c) mineral concentrations, and (d) number of petrophysical 

rock classes. The results of rock classification were used to update the estimates of 

permeability and water saturation in each rock class. The updated results were inputs to 

the next iteration of well-log interpretation, the SCA theories, and petrophysical rock 

classification. The iteration continued until a convergence criterion for the assessment of 

permeability and water saturation was met (Saneifar et al. 2015).   
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Fig. 2.3—A workflow illustrating the methods, including well-log interpretation, geological facies 

classification, assessment of elastic moduli and porosity, rock classification, and assessment of 

permeability and water saturation. 
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(i.e., skeletal grains, detrital component, pore system, and mineralogy) and diagenetic 

features using slabbed cores, thin-section petrography, and SEM images (Saneifar et al. 

2015). Textural classification was conducted based on Dunham’s (1962) classification. 

Choquette and Pray’s (1970) pore typing scheme was used to classify pore size. Finally, 

geological facies were determined by incorporating the textural features and diagenetic 
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observations. Digital measurements of pore sizes were based on thin-section images 

obtained using a petrographic microscope. The petrographic microscope was equipped 

with a high-resolution digital camera and software to capture the thin-section images and 

measure the diameter of the pores. The software converted each captured image from 

pixel scale to micrometer scale before measuring the pore diameter.  The thin-section 

images were impregnated with blue dye to indicate pore spaces, and stained with 

Alizarin Red S to determine the relative abundance of calcite, quartz, and dolomite. As 

the thin-section and SEM images represented only a small two-dimensional section of 

the rock, slabbed cores were used in addition to the thin-section and SEM images to 

determine the geologic facies. 

 

 

2.3.2 Initial Well-Log Interpretation 

 

I conducted joint-interpretation of conventional well logs for the preliminary 

assessment of interconnected and total porosity, water saturation, permeability, and 

volumetric concentrations of clay and non-clay minerals (Fig. 2.3). The input well logs 

for multi-mineral analysis included gamma ray (GR), electrical resistivity, density, 

neutron porosity, Photoelectric Factor (PEF), and compressional-wave slowness. Mud 

logs, core descriptions, and field reports were used to determine the types of existing 

minerals.  I initially applied Wyllie’s time-average equation (Wyllie et al. 1956) and 

Archie’s equation (Archie 1942) to estimate interconnected porosity and water 
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saturation. I assumed that Archie’s equation is reliable in the clay-free matrix with 

interconnected pores (Archie 1942). Archie’s parameters were initially assumed to be 1, 

2, and 2 for Archie’s Winsauer factor, a, Archie’s porosity exponent, m, and Archie’s 

saturation exponent, n, respectively. Preliminary estimates of permeability were obtained 

by applying core-derived porosity-permeability correlation for the entire depth interval 

of interest. The results of well-log interpretation, applied models, and Archie’s 

parameters were updated, after implementing the introduced approach, as described in 

the following sections.  

 

 

2.3.3 Depth-by-Depth Assessment of Porosity and Elastic Moduli 

 

I used an effective medium theory, called Self-Consistent Approximation (SCA), 

for the depth-by-depth assessment of elastic properties and concentration of different 

pore types (Berryman 1995). Effective medium theories enable analytical modeling of 

composite materials (e.g., rocks) for their effective properties such as electrical/thermal 

conductance and elasticity. The conductive and elastic SCA theories assume isotropic 

conductive and elastic medium of arbitrarily distributed ellipsoidal components with 

symmetric shapes. Shape factors and concentrations of all constituents are incorporated 

in the SCA theories. In addition, all components of the composite material are treated 

equally in the SCA theories, without considering one component as a host. The SCA is 
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known to be an appropriate technique for modeling the electrical conductivity and the 

elastic properties in complex rocks (Kazatchenko et al. 2004; Gomez et al. 2009). 

I applied the conductive and the elastic SCA theories (Berryman 1995) along 

with interpretation of other borehole geophysical measurements, to estimate depth-by-

depth volumetric concentrations of interparticle and intraparticle pores, as well as elastic 

bulk and shear moduli in the formation. 

Conductive SCA theory is given by 
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Elastic SCA model is described via 
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where N is the total number of rock components, i refers to each rock component, xi is 

volumetric concentration of the i-th rock component, σi, Ki and μi are electrical 

conductivity and bulk and shear moduli of the rock component i, and σ*sc, K*sc, and μ*sc 

are the effective electrical conductivity and bulk and shear moduli of the rock, 

respectively (Berryman 1995). The factors R*i, P*i, and Q*i are functions of the assigned 

aspect ratio of each rock component, which takes into account the shape of different 

inclusions in the rock.  R*i, P*i, and Q*i are given by 



 

26 

 


 


cbap scpip

i
LL

R
,,

*

*

)1(

1

9

1


,

 

(2.4) 

)(*

3

1 i

jjlli TP  , (2.5) 

 and  

)(
5

1 )(*

i

i

jljli PTQ  ,

 

(2.6) 

where T(i) is Wu’s tensor (Wu 1966) and Lp is the demagnetizing factor along the semi-

axes of an ellipsoid. The demagnetizing factor can be obtained using simplified 

equations provided by Osborn (1945) for prolate and oblate ellipsoids. The assumptions 

for the aspect ratio of rock inclusions usually involve significant uncertainty. For reliable 

assessment of the aspect ratios of minerals and different pore types, I conducted an 

analysis of available thin-section and SEM images. I assumed that aspect ratios of 

individual inclusions are constant for each geological facies. This approach incorporated 

the geological attributes in the assessment of petrophysical and elastic rock properties 

and in the final rock classification. 

I applied the conductive SCA theory for the depth-by-depth assessment of 

porosity by implementing Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 

1963) to minimize the cost function, given by 

2

.

2

( ) 1inter por intra por
sim

measured

R
f x x

R
    ,

 

(2.7) 

where xinter-por and xintra-por are the volumetric concentrations of interparticle and 

intraparticle pores, respectively. Rsim. and Rmeasured are the simulated resistivity (i.e., 
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inverse of conductivity) obtained using Conductive SCA theory and the shallow 

resistivity measurements, respectively. Aspect ratios of rock inclusions, as well as 

electrical conductivity of clay minerals, were adjusted in each geological facies, while 

remaining in a physically viable range (i.e., consistent with core thin-sections and SEM 

images), to minimize the difference between the modelled and measured resistivity. 

Estimates of porosity were applied as inputs to the elastic SCA theories for the depth-by-

depth assessment of effective bulk and shear moduli. Finally, I estimated Young’s 

modulus, E, by (Mavko et al. 2009) 
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2.3.4 Petrophysical Rock Classification 

 

I applied an unsupervised artificial neural network to automatically determine 

different rock classes (Fig. 2.3). The inputs to the unsupervised artificial neural network 

included well-log-based estimates of petrophysical, compositional, and elastic 

properties, as well as the number of rock classes. The artificial neural network applies a 

Self-Organizing Map (SOM), also known as Kohonen map, to index different input 

parameters by fuzzy clustering (Kohonen 2001). The unsupervised network 

agglomerates clusters of input data by minimizing the intra-class variance and takes 

iterative steps to organize similar input data and to assign them to particular nodes on the 
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SOM map. Unlike the supervised artificial neural network, the unsupervised artificial 

neural network does not require training with pre-determined rock classes (Gottlib-Zehf 

2000). 

 

 

2.3.5 Iterative Assessment of Petrophysical Properties and Rock Classification 

 

After petrophysical rock classification, I applied the improved estimates of 

interconnected porosity to assess permeability and water saturation in each rock class. I 

assumed that the interconnected porosity is equal to the effective porosity that 

contributes to the fluid flow. I applied core-based porosity-permeability correlations in 

each rock class for permeability assessment. I identified the Archie’s porosity exponent, 

m, in each rock class based on core measurements of water saturation and interconnected 

porosity. Water saturation was estimated using Archie’s equation, assuming that this 

relationship is reliable in clay-free carbonate formations with interconnected pore space. 

The updated porosity, permeability, and water saturation were used to enhance the 

outcomes of well-log interpretation and final rock classification (Fig. 2.3). 
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2.4 Results 

 

I applied the introduced rock classification scheme to two wells in the Veterans 

oil field, WELL A and WELL B. WELL A produced at a high rate after a successful 

acid fracture stimulation, whereas WELL B experienced negligible production. In the 

following sections, I explain the possible reason for the failure in WELL B.  

 

 

2.4.1 Facies Classification 

 

Slabbed cores, thin-sections, and SEM images were analyzed for both wells in 

the Veterans oil field (Saneifar et al. 2015). WELL A is located close to the Eastern 

Shelf and WELL B is located deeper in the basin (Fig. 2.2). This analysis showed two 

main types of pore systems: (a) intraparticle pores that occur as isolated intrafossil pores, 

mostly in fusulinid grains and (b) interparticle pores that include interconnected pores 

between grains (Saneifar et al. 2015). Both pore systems were classified into two pore-

size classes, micropores and mesopores, based on Choquette and Pray’s (1970) 

classification. Pores with pore-size diameter smaller than 62.5 µm were classified as 

micropores and pores having pore-size diameter of 62.5-4000 µm were identified as 

mesopores. Finally, the facies in the upper Leonardian succession were identified based 

on the depositional texture (i.e., skeletal grains, detrital component, pore system, and 

mineralogy) and diagenetic features. The facies include (a) facies 1: clast-supported 
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polymict conglomerate, (b) facies 2: fusulinid wackestone, (c) facies 3: skeletal 

wackestone, (d) facies 4: fusulinid-crinoid packstone, and (e) facies 5: partially silicified 

skeletal wackestone (Saneifar et al. 2015). Calcite and dolomite are the main 

components in the succession with varying concentrations of silt and secondary quartz 

(chalcedony).  

The clast-supported polymict conglomerate consists of clasts of skeletal 

wackestone to packstone, mudstone, and reef boundstone. This facies is characterized by 

solution-enhanced interparticle pores and intraparticle pores in skeletal grains in the 

clasts. The pore sizes vary from micropores to mesopores (< 2000 µm diameter). Poorly 

developed blocky fringing calcite cement, blocky calcite and dolomite rhombs 

commonly occur in the intraparticle pores, whereas blocky calcite and saddle dolomite 

commonly occur in the interparticle pores (Fig. 2.4).  

The fusulinid wackestone is composed of fusulinid grains, brachiopod shell 

fragments, bryozoans, and crinoid fragments (Fig. 2.5). The matrix also contains a small 

concentration of silt-sized quartz grains. The intraparticle pore system is characterized 

by cement-reduced (blocky fringing calcite, blocky calcite, and saddle dolomite) 

intrafossil pores in the fusulinids, whereas the interparticle pore system is characterized 

by solution-enhanced intergranular pores. Dissolution of both matrix and skeletal grains 

occasionally results in channel pore spaces. Pore sizes range from micropores to 

mesopores (< 4000 µm diameter). Blocky calcite and lower concentration of saddle 

dolomite occur as pore-filling cements in both the intraparticle and interparticle pore 

spaces. A small amount of silica replacement also is common in the skeletal grains. 
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(a) 

 
(b) 

Fig. 2.4—Veterans Field Example: slabbed core and thin-section images of facies 1, clast-supported 

polymict conglomerate. (a) Slabbed core image shows skeletal wackestone to packstone, reef boundstone, 

and mudstone clasts; (b) The photomicrograph shows intraparticle pores, fusulinid grains, and dissolution 

(white represents open pores). 
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(a) 

 
(b) 

 
(c) 

Fig. 2.5—Veterans Field Example: pore-scale images of facies 2, fusulinid wackestone, including (a) 

Photomicrograph showing secondary dissolution and cement reduced intraparticle pores (blue) in 

fusulinids, (b) Photomicrograph showing solution-enhanced intergranular pores (blue represents open 

pores), and (c) SEM image showing solution-enhanced interparticle pore space. 
 

200 m
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The skeletal wackestone consists of brachiopod shell fragments, crinoid 

fragments, occasional peloidal grains, and rare fusulinids with low concentrations of silt-

sized quartz grains in the matrix (Fig. 2.6). This unit has interparticle pore spaces that 

are characterized by solution-enhanced intergranular pores. Blocky calcite and a low 

concentration of secondary dolomite occur as pore-filling cements. Silica replacement of 

skeletal grains is common. The pores range in size from micropores to mesopores that 

are less than 250 µm diameter, depending on the degree of dissolution.  

 

 
(a) 

  

(b) 

Fig. 2.6—Veterans Field Example: pore-scale images of facies 3, skeletal wackestone, including (a) 

Photomicrograph showing interparticle porosity enhancement by dissolution (blue represents open pores) 

and (b) SEM image showing porosity enhancement by dissolution, resulting in enlarged irregular pores. 

200 µm
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The fusulinid-crinoid packstone facies consists primarily of fusulinid grains and 

crinoid fragments. It is characterized by intraparticle pores (< 1000 µm diameter) in 

fusulinid grains and interparticle pores, enhanced by partial dissolution of grains. 

Fusulinid pores commonly have small amount of calcite blocky fringing cement and 

dolomite, whereas calcite syntaxial overgrowth occurs in crinoid fragments (Fig. 2.7). 

The partially silicified skeletal wackestone consists of brachiopod shell 

fragments, crinoid fragments, sponge spicules, and sparse fusulinids. A small 

concentration of silt-size quartz grains also occurs in the matrix. The facies occurs as a 

subfacies in the fusulinid wackestone. It is characterized by dissolution and partial to 

complete silicification of both grains and matrix. In the silicified part, the skeletal grains 

are replaced by secondary quartz (chalcedony), whereas the matrix is partially to 

completely dissolved. The pore system in this facies is complex and highly 

heterogeneous. The silicified part of the rock has high interparticle porosity ranging from 

micropores to mesopores (< 1000 µm diameter), whereas the unsilicified rock has low 

porosity (Fig. 2.8). However, the silicified section seems to be isolated from the rest of 

the pore network, resulting in an overall poor interconnected porosity (Saneifar et al. 

2015).  
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Fig. 2.7—Veterans Field Example: photomicrograph of facies 4, fusulinid-crinoid packstone. The 

Photomicrograph shows intraparticle pores in fusulinids, with dolomite (gray-white) filling the pore space 

(blue represents open pores). 

 

 
 

 
Fig. 2.8—Veterans Field Example: photomicrograph of facies 5, partially silicified skeletal 

wackestone. Silicified part of the rock (off-white/beige) shows intense secondary dissolution and 

interconnected pores (blue represents open pores), whereas the unsilicified part does not have 

significant porosity. 

 

The diagenetic history in each of the facies appears to be relatively uniform. All 

five facies were compacted in the burial environment. The matrix in these facies is a 

mixture of mud and crushed skeletal grains, whereas most of the larger skeletal grains 

are either deformed or broken. Calcite is the most abundant cement occurring as poorly- 

to well-developed fringes in the intraparticle pores, syntaxial overgrowth in crinoids, and 
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subhedral to anhedral blocky calcite in both intraparticle and interparticle pores. Saddle 

dolomite occurs in both the intraparticle and interparticle pores. Silica replacement in 

grains also is common (Saneifar et al. 2015). Table 2.1 summarizes the pore types 

within the geological facies. 

 

Facies Pore Type 

Clast-Supported Polymict 

Conglomerate 

Solution-enhanced interparticle and intraparticle pores in skeletal 

grains in clasts (micropores and mesopores < 2000 µm diameter) 

Fusulinid wackestone 

Intraparticle and solution-enhanced interparticle pores (micropores 

and mesopores < 3000 µm diameter) 

Skeletal Wackestone 

Solution-enhanced interparticle pores, controlled by the intensity of 

dissolution (micropores and mesopores < 250 µm diameter) 

Fusulinid-Crinoid Packstone 

Intraparticle pores in fusulinid (mesopores < 1000 µm diameter) 

and interparticle pores enhanced by partial grain dissolution 

Partially Silicified Skeletal 

Wackestone 

Interparticle and intraparticle pores controlled by dissolution and 

silicification (micropores and mesopores < 1000 µm diameter) 

Table 2.1—Veterans Field Example: pore types within the geological facies. 

 

The clast-supported polymict conglomerate and the fusulinid wackestone have 

the best reservoir quality because both the intraparticle and interparticle pores are 

enhanced by solution enlargement. The skeletal wackestone also has good reservoir 

quality, as the interparticle pores also are enhanced by solution enlargement (Saneifar et 

al. 2015). Fig. 2.9 (Track 12) and Fig. 2.10 (Track 12) show geological facies 
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classification, based on the facies identified from thin-section images, slabbed core 

samples, and SEM images, in WELL A and WELL B, respectively. 

 

 

Fig. 2.9—Veterans Field ExampleWELL A: conventional well logs and the estimates of 

petrophysical and compositional properties. Tracks from left to right include, Track 1: depth; Tracks 

2-5: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, PEF, compressional 

wave-slowness; Track 6: shallow, medium, and deep resistivity logs; Track 7: estimates of volumetric 

concentrations of dolomite, calcite, chert, silt, and illite; Track 8: estimates of total porosity; Track 9: 

estimates of intraparticle porosity; Track 10: estimates of interparticle porosity, compared to core 

measurements; Track 11: estimates of Young’s modulus, compared to core measurements; Track 12: 

geological facies classification; Track 13: petrophysical rock classification; Track 14: estimates of 

permeability, compared to core measurements; Track 15: estimates of water saturation, compared to 

core measurements. 
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Fig. 2.10—Veterans Field ExampleWELL B: conventional well logs and the estimates of 

petrophysical and compositional properties. Tracks from left to right include, Track 1: depth; Tracks 

2-5: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, PEF, compressional 

wave-slowness; Track 6: shallow, medium, and deep resistivity logs; Track 7: estimates of volumetric 

concentrations of dolomite, calcite, chert, silt, and illite; Track 8: estimates of total porosity; Track 9: 

estimates of intraparticle porosity; Track 10: estimates of interparticle porosity, compared to core 

measurements; Track 11: estimates of Young’s modulus, compared to core measurements; Track 12: 

geological facies classification; Track 13: petrophysical rock classification; Track 14: completed 

depth intervals with fracture treatment, marked in black; Track 15: estimates of permeability, 

compared to core measurements; Track 16: estimates of water saturation, compared to core 

measurements. 
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minerals. The well logs available included GR, shallow, medium, and deep array 

induction electrical resistivity, bulk density, neutron porosity, PEF, and compressional-

wave slowness.  

The dominant clay type in this formation is illite. The non-clay matrix 

components in this formation are calcite, dolomite, silt, and chalcedony. Formation 

fluids include saline formation water and oil. The drilling mud is fresh water-based mud. 

Tables 2.2 and 2.3 list the parameters assumed in the well-log interpretations of WELL 

A and WELL B. 

 

 
Parameters Value Unit 

Formation water resistivity @ 98 oF  0.04 ohmm 

Formation water salt concentration  170,000 ppm 

Mud-filtrate resistivity @ 98 oF  0.86 ohmm 

Mud-filtrate salt concentration  51,470 ppm 

Shale porosity  0.15 - 

Table 2.2—Veterans Field Example WELL A: input parameters for well-log interpretation. 

 

Parameters Value Unit 

Formation water resistivity @ 105 oF  0.03 ohmm 

Formation water salt concentration  220,000 ppm 

Mud-filtrate resistivity @ 105 oF  0.84 ohmm 

Mud-filtrate salt concentration  4700 ppm 

Shale porosity  0.15 - 

Table 2.3—Veterans Field Example WELL B: input parameters for well-log interpretation.  
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After initial well-log interpretation, I estimated porosity (i.e., interparticle and 

intraparticle) and elastic moduli using the conductive and the elastic SCA theories. The 

inputs to these processes included the depth-by-depth estimates of total porosity and 

volumetric concentrations of minerals from initial interpretation of well logs, as well as 

aspect ratios of different rock components. I categorized the pore network into 

interparticle and intraparticle porosity. From an analysis of the thin-section and the SEM 

images, I assumed that the interparticle pores are predominantly interconnected and the 

intraparticle pores are isolated vugs. The conductive SCA theory was applied to estimate 

the interparticle and intraparticle porosity using shallow resistivity measurements, with 

the assumption that the interconnected pores are fully saturated by drilling mud-filtrate 

in the near-wellbore region, and isolated pores are saturated by formation water at 

reservoir conditions. Clay minerals were assumed to be conductive due to the presence 

of clay-bound water. A prolate ellipsoidal model was used to determine Wu’s tensor 

(Wu, 1966) and demagnetizing factors. I assumed interparticle porosity to have a small 

aspect ratio (≤ 0.1), characterized intraparticle porosity by stiff near-spherical shape 

using an aspect ratio of 0.3-0.5, and considered an elongated ellipsoidal shape with an 

aspect ratio of 0.01-0.05 for clay minerals. Non-clay matrix components are assumed to 

be near-spherical, with an aspect ratio of 0.5.  

I obtained the depth-by-depth estimates of interparticle and intraparticle porosity 

by minimizing the difference between the modeled resistivity and the apparent shallow 

resistivity well log. Estimates of interparticle and intraparticle porosity were assumed to 

sum up to the total porosity (i.e., initially estimated using conventional well-log 
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interpretation). The estimates of interparticle and intraparticle porosity were applied in 

the elastic SCA theory for the assessment of elastic moduli. The assumed elastic moduli 

of individual rock components are listed in Table 2.4. 

 

Rock Component Ki (GPa) µi (GPa) 

Calcite 76.80 32.00 

Dolomite 94.90 45.00 

Chert 37.00 44.00 

Silt 37.00 44.00 

Illite 52.30 31.70 

Water 2.25 0.00 

Table 2.4—Veterans Field Example: assumed input elastic moduli of individual rock components. 

  
  

I cross-validated the well-log-based estimates of elastic properties using core 

measurements obtained from static mechanical experiments using a conventional triaxial 

rock testing system. I estimated elastic properties of the core samples under a constant 

pore pressure of 6.9 MPa and hydrostatic conditions. The confining pressure was 

increased from 10 MPa to 40 MPa, at a constant loading rate of 0.5 MPa/min.  

Next, I conducted rock classification using an unsupervised artificial neural 

network. The inputs to the network included well-log-based depth-by-depth estimates of 

(a) volumetric concentrations of minerals, (b) interparticle and intraparticle porosity, and 

(c) bulk and shear moduli. 

Fig. 2.9 (Track 13) and Fig. 2.10 (Track 13) show the outcome of the 

petrophysical rock classification in WELL A and WELL B, respectively. The identified 

rock types were in agreement with the description of the identified geological facies and 

were verified using thin-section images and core samples. 
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According to the daily reports, depth interval of XX50–XY25 in WELL A was 

completed by acid fracturing and Well B was fractured at the depth intervals illustrated 

in black on Fig. 2.10 (Track 14). Fracturing in WELL A was successfully completed, as 

indicated on the reports. However, production from WELL B was negligible. The results 

of rock classification in WELL B show that the fractures in this well were initiated in the 

rock classes with low values of Young’s modulus. Poor elastic rock properties (e.g., 

Young’s modulus) could be a possible reason for unsuccessful fracture treatment in this 

well and consequent negligible production. However, additional geomechanical data and 

information about formation anisotropy is required to confirm this observation. 

Furthermore, the results of rock classification (Figs. 2.9 and 2.10, Track 13) were 

used to update Archie’s parameters to improve estimates of water saturation. Table 2.5 

lists the Archie’s porosity exponent, m, in the identified petrophysical rock classes. 

Constant values of 1 and 2 were used for Archie’s Winsauer factor, a, and Archie’s 

saturation exponent, n, respectively.  The same table lists the petrophysical and elastic 

properties of the identified petrophysical rock classes. All the previously estimated 

petrophysical and compositional properties were finally updated based on the 

petrophysical rock classification. 

 
  

Rock Class Interparticle Porosity Young’s modulus (GPa) m 

1 0.24 ± 0.62 65.50 ± 7.10 2.09 ± 0.33 

2 0.12 ± 0.02 62.31 ± 9.74 1.84 ± 0.22 

3 0.06 ± 0.02 82.25 ± 11.3 2.00 ± 0.22 

4 0.04 ± 0.03 75.74 ± 8.50 1.95 ± 0.20 

5 0.10 ± 0.03 71.95 ± 4.30 2.03 ± 0.35 

Table 2.5—Veterans Field Example: general properties of the identified petrophysical rock classes. 
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Figs. 2.9 and 2.10 (Tracks 7-11) show the final estimates of mineral composition, 

total porosity, interparticle and intraparticle porosity, as well as the estimates of Young’s 

modulus, compared to the corresponding core measurements, in WELL A and WELL B, 

respectively. Fig. 2.11 illustrates a cross-plot of the well-log-based estimates of Young’s 

modulus compared to the core measurements in WELL A. I observed average relative 

error of about 8% in well-log-based estimates of Young’s modulus compared to core 

measurements. The estimates of interparticle porosity involved a 14% average relative 

error, compared to the core measurements. The estimates of porosity also were 

qualitatively validated using thin-section analysis. 

 

 

Fig. 2.11—Veterans Field Example: cross-plot of the estimates of Young’s modulus compared 

against their core measurements. There is an average relative error of approximately 8% in the 

assessment of Young’s modulus. 

 

Fig. 2.12 compares the estimates of interparticle porosity obtained by Wyllie’s 

time-average equation and the ones from SCA method, compared against core 
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measurements of interconnected porosity in WELL A. The results show 40% 

improvement in porosity assessment using the SCA method. 

 

 

Fig. 2.12—Veterans Field Example: comparison of porosity estimated using Wyllie’s method and 

SCA theory, against core measurements. Estimates of porosity obtained from Wyllie’s method have 

50% average relative error, while estimates of porosity obtained from SCA theory have only 10% 

average relative error.  

 

Finally, I estimated permeability based on the core-derived porosity-permeability 

correlations in each rock type. Fig. 2.9 (Tracks 14 and 15) and Fig. 2.10 (Tracks 15 and 

16) compare the estimates of permeability and water saturation against core 

measurements in WELL A and WELL B, respectively. Fig. 2.13 shows a comparison of 

initial estimates of permeability obtained using the core-derived porosity-permeability 

correlation for the entire depth interval of interest and final estimates of permeability, 

acquired using the core-derived porosity-permeability correlation in each rock class, 

plotted against core measurements. Final estimates of permeability are improved by 
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approximately 50%. Furthermore, a comparison of initial estimates of water 

saturation obtained using constant Archie’s porosity exponent, m, and final water 

saturation calculated using a variable m in each rock class, against core 

measurements, showed that final estimates of water saturation are improved by 

approximately 20%. 

 

 

Fig. 2.13—Veterans Field Example: comparison of initial estimates of permeability obtained using 

core-derived porosity-permeability correlation for the entire depth interval of interest and final 

permeability, estimated using core-derived porosity-permeability correlation in each rock class, plotted 

against core measurements. Final estimates of permeability are improved by approximately 50%.  
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2.5 Sensitivity Analysis 

 

I conducted a sensitivity analysis to investigate the impact of different pore types 

and shapes of matrix and pore inclusions on the effective electrical resistivity and elastic 

moduli. I built a synthetic case based on the formation properties of the Veterans field 

example. Table 2.6 lists the assumed components of the synthetic matrix and their 

volumetric concentrations. 

 

Rock Component Volumetric Concentration 

Calcite 0.40 

Dolomite 0.15 

Chert 0.01 

Silt 0.02 

Illite 0.07 

Intraparticle Pores 0.05 

Interparticle Pores 0.30 

Table 2.6—Synthetic Case: rock components assumed for sensitivity analysis and their volumetric 

concentrations.  

 

I assumed that the interparticle pores are fully saturated by fresh water-based 

mud-filtrate and intraparticle pores are saturated by saline fomation water. Table 2.4 lists 

the elastic moduli assumed for rock components and water. Table 2.2 lists the resistivity 

values assumed for formation water and drilling mud-filtrate.  

Effective conductivity and elastic moduli are estimated using SCA method. Fig. 

2.14 shows the impact of interparticle and intraparticle porosity on the electrical 

resistivity and elastic properties of the rock. The results show that the intraparticle and 

interparticle porosity have a stronger impact on the electrical resistivity, compared to 
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their impact on elastic moduli. An increase in interparticle porosity from 0.1 to 0.3, 

causes a decrease in electrical resistivity and bulk and shear moduli by approximately 

50%, 42%, and 30%, respectively. Electrical resistivity and bulk and shear moduli 

decrease by approximately 60%, 27%, and 38%, respectively, with an increase in 

interparticle porosity from 0.1 to 0.3. 

Next, I investigated the effect of aspect ratio of pores on electrical resistivity and 

elastic moduli using the SCA theories. Fig. 2.15 shows that the shape of pore inclusions 

has a stronger influence on elastic moduli compared to its impact on electrical resistivity. 

On average, an increase in the aspect ratio of interparticle pores from 0.01 to 1, increases 

the electrical resistivity from 1 to 1.5 ohmm, whereas bulk and shear moduli are 

increased by approximately 3 and 7 times, respectively. I also investigated the impact of 

shape of calcite grains (i.e., the dominant mineral component in the Veterans field) on 

electrical resistivity and elastic moduli of the rock. The results showed that the shape of 

calcite inclusions has negligible impact on the electrical resistivity and elastic moduli, 

compared to the effect of pore shapes. 
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        (a) 

 
        (b) 

 

       (c) 

Fig. 2.14—Sensitivity analysis: impact of different pore types on (a) electrical resistivity, (b) bulk 

modulus, and (c) shear modulus of a synthetic case built based on formation properties of the 

Veterans field. 
 

Intraparticle Porosity

Intraparticle Porosity

Intraparticle Porosity
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(a) 

 
(b) 

 
(c) 

Fig. 2.15—Sensitivity analysis: impact of different shapes of pore inclusions on (a) electrical 

resistivity, (b) bulk modulus, and (c) shear modulus of a synthetic case built based on formation 

properties of the Veterans field. 
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2.6 Conclusions 

 

An integrated rock classification technique was introduced to improve selection 

of fracture candidate zones in carbonate formations, by taking into account elastic 

properties, as well as petrophysical properties and mineralogy. First, geological facies 

classification was conducted based on depositional and diagenetic attributes in carbonate 

formations. Then, the conductive and the elastic Self-Consistent Approximation methods 

were implemented to estimate depth-by-depth elastic properties and porosity (i.e., 

interparticle and intraparticle) in each of the geological facies. The depth-by-depth well-

log-based estimates of petrophysical, compositional, and elastic properties were applied 

to classify rock types. 

This rock classification technique was successfully applied in the Veterans oil 

field, in west Texas. The estimates of interparticle porosity, as well as Young’s modulus 

in WELL A and WELL B were in agreement with core measurements and thin-section 

images with 14% and 8% average relative error, respectively. The identified rock types 

were verified using thin-section images and core samples. A 40% improvement was 

observed in the assessment of interconnected porosity compared to the initial application 

of Wyllie’s time-average equation. The estimates of permeability and water saturation in 

WELL A and WELL B were improved by approximately 50% and 20%, compared to 

those from conventional techniques. The results of rock classification in WELL B show 

that the low values of Young’s modulus at fracture locations may be the reason for 

unsuccessful fracture treatment and negligible production from this well. 
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Furthermore, the petrophysical rock classification can improve selection of 

candidate zones for fracture treatment by taking into account petrophysical, 

compositional, and elastic rock properties.  The rock classification in conjunction with 

reliable well-log-based assessment of permeability and water saturation can further 

improve the sweet-spot selection, while reducing the cost, by minimizing the number of 

perforations and fracture stages.  
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CHAPTER III  

CHARACTERIZATION OF PORE STRUCTURE IN CARBONATE 

FORMATIONS USING A MULTI-MODAL GAUSSIAN FUNCTION FOR 

ANALYZING THE IMPACT OF PORE SYSTEMS ON ELECTRICAL 

RESISTIVITY 

   

Carbonate formations are commonly characterized by complex pore networks 

that involve different pore systems with various shapes and interconnectivity. 

Petrophysical properties and flow characteristics are strongly controlled by the 

distribution of pore systems in the formation. Thus, a reliable characterization of pore 

structure in heterogeneous carbonate formations can enhance assessment of 

petrophysical properties. MICP measurements can be used for assessing the pore-throat 

radius modality and distribution. However, a large number of core samples are required 

for the assessment of heterogeneous distribution of pore systems in a carbonate 

formation.  

In this chapter, I applied electrical resistivity logs and well-log-based estimates 

of porosity and permeability for prediction of pore types identified from MICP 

measurements. To minimize the discrepancy when predicting pore types at different 

measurement scales, I sequentially populated the identified pore types at the MICP 

domain to the core-plug and well-log scales.  I first applied a multi-modal Gaussian 

function to characterize modality and distribution of pore-throat radius data obtained 

from MICP measurements. Then, I extrapolated the identified pore types at the well-log 
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scale using well-log-based estimates of porosity and permeability and fluid-corrected 

resistivity logs. I investigated the impact of pore structure on electrical resistivity 

measurements by assessing the predictability of the formation pore types from electrical 

resistivity measurements.  

 

 

3.1 Introduction 

 

Successful development of heterogeneous carbonate reservoirs requires an 

accurate assessment of the flow units and corresponding petrophysical properties. 

Depositional and diagenetic modifications result in a complex pore structure of different 

shapes and interconnectivity in carbonate formations (Lucia 1995; Lucia 2007; Sok et al. 

2010). Variable distributions of the pore systems can significantly impact petrophysical 

properties and flow characteristics of the formation. Reliable pore type identification can 

be performed using MICP measurements. MICP measurements can correspond to 

various attributes of pore systems, controlling flow in the reservoir, including pore 

volume, pore-throat size, pore connectivity, and pore-size homogeneity (Purcell 1949; 

Skalinski and Kenter 2014).   

Several MICP-based pore typing techniques have been developed during recent 

decades. The Winland R35 (Pittman 1992) utilized the pore-throat radius corresponding 

to 35% of mercury (non-wetting phase) saturation, derived from the MICP 

measurements, as an indicator of the effective flow properties. Marzouk et al. (1998) 
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defined three pore types (micropores, mesopores and macropores) in carbonate 

formations based on the pore-throat radius measured by MICP or air-water centrifuge. 

Furthermore, Clerke (2009) illustrated the use of Thomeer’s hyperbolas (1960) for 

fitting MICP measurements to assess quantitatively the pore-size distribution in complex 

carbonate formations. In addition, Gaussian (or log-normal) density functions have been 

used for modeling pore-size and grain-size distributions (Spencer 1963; Nimmo 2004; 

Genty et al. 2007; Chicheng and Torres-Verdín 2013). In fact, the parameters associated 

with a Gaussian density function relate more directly to the pore modality and the 

attributes of the pore-size distribution, as compared to Thomeer’s hyperbolas (Chicheng 

and Torres-Verdín 2013). Application of pore typing techniques based on MICP core 

measurements can improve understanding of flow mechanism in heterogeneous 

formations. However, a large number of core samples are required for a reliable 

assessment of heterogeneous distribution of pore systems in a carbonate formation. 

Alternatively, well logs can provide information about petrophysical properties of the 

formation at all depths along the wellbore.  

Resistivity logs are sensitive to pore structure and fluid distribution in the 

formation (Archie 1942). Since the matrix of most carbonate rocks is a weak electrical 

conductor, the electrical current mainly flows through the fluid in the pore space. Thus, 

the size, shape, and connectivity of the pores and the pore throats influence the flow of 

electric charge. Although the impact of carbonate pore structure on electrical resistivity 

has been inferred, no quantitative evaluation of this effect exists (Brie et al. 1985). An 

approach for better understanding the effect of carbonate pore structure on resistivity 
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measurements is to evaluate the predictability of core-based pore types from resistivity 

logs. In this chapter, I employed a multi-modal Gaussian function to identify pore types 

from quantitative characterization of the available MICP measurements in a carbonate 

formation. I evaluated the predictability of pore types from resistivity measurements at 

the well-log scale. 

The main advantage of the introduced approach, as compared to conventional 

pore typing techniques, is simultaneous inclusion of pore system attributes 

corresponding to pore modality, pore volume, and pore connectivity, rather than 

incorporation of only one pore attribute or qualitative interpretation of MICP data. 

Application of the multi-modal Gaussian function yields the number of pore-throat 

radius modes in the formation. Thus, pore typing based on the Gaussian attributes is not 

restricted to a user-defined modality criteria.  

 

 

3.2 Method 

 

To minimize the discrepancy in prediction of pore types at different measurement 

scales, I determined pore types in each scale and sequentially extrapolated them from the 

smallest to the largest measurement scale. Thus, the first step in the method was pore 

typing based on the attributes of a multi-modal Gaussian function that characterizes 

pore-throat radius distribution in the porous medium. The identified pore types in the 

MICP domain were then extrapolated to the core-plug and well-log domains.  
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3.2.1 Pore Typing Based on MICP Data with a Multi-Modal Gaussian Function 

 

Fig. 3.1 shows a typical plot of capillary pressure measurements, Pc, against 

saturation of the non-wetting fluid (i.e., mercury), SHg, in the porous medium.  

 

  

Fig. 3.1—Relationship between capillary pressure measurements and mercury saturation in the porous 

medium, represented by a hyperbolic function. Pd,is the displacement pressure, B∞ is the bulk volume 

saturated by mercury at infinite pressure, and G is the geometric factor corresponding to the shape of the 

capillary pressure curve. 

 

Three MICP curve parameters include the displacement pressure, Pd, the bulk volume 

saturated by mercury at infinite pressure, B∞, and the geometric factor corresponding to 

the shape of the capillary pressure curve, G. These attributes can be identified using a 

hyperbolic function (Thomeer 1960; Lucia 1995) given by 
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(3.1) 

Moreover, for appropriate pore-size modality and distribution analysis, capillary 

pressure measurements are presented in terms of their corresponding throat-radius 

distribution by 

 
2 cos

cP
r


 ,

 
(3.2) 

where ᴦ is the interfacial tension, θ is the contact angle, and r is the pore-throat radius in 

m. One approach to characterize the pore-throat radius distribution (in terms of 

incremental mercury saturation versus pore-throat radius) is to apply the derivative of 

Thomeer’s hyperbola with respect to the pore-throat radius. However, it is often 

challenging to obtain a smooth pore-throat radius distribution from the differentiation 

method, as the result of limited and often noisy data points (Peters 2012; Chicheng and 

Torres-Verdín 2013). A more appropriate method is to apply a multi-modal Gaussian 

function for the best fit through the pore-throat radius measurements. Multi-modal 

Gaussian function is given by 
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exp
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r b
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c
,

 
(3.3) 

where (SHg)inc is the incremental mercury saturation, i corresponds to individual pore-

throat radius modes, represented by individual Gaussian functions, T is the total number 

of the pore-throat radius modes, and a, b, and c are the fitting attributes of each Gaussian 



 

58 

 

function. Fig. 3.2 illustrates example of a bimodal Gaussian function with its 

corresponding fitting attributes to characterize the pore-throat radius distribution.  

 

 
Fig. 3.2—A typical bimodal Gaussian function used for characterizing pore-throat radius distribution in 

the porous medium. a is the height of the peak of each pore-throat radius mode, corresponding to its 

fraction of pore volume saturated by mercury or flow capacity of the reservoir. b is the mean value of each 

mode’s pore-throat radius. c is the width of each mode corresponding to the variability or standard 

deviation of each pore-throat radius mode. 

 

Parameter a is the height of the peak of each pore-throat radius mode, corresponding to 

its fraction of pore volume saturated by mercury or flow capacity of the reservoir. 

Parameter b is the mean value of each mode’s pore-throat radius. Larger values of b 

indicate higher hydraulic conductivity. Flow capacity or permeability is controlled by 

both parameters a and b. Furthermore, the width of each mode is represented by 

parameter c, designating the variability or standard deviation of each pore-throat radius 
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mode. The maximum number of modes considered in this analysis were four, to 

maintain viable petrophysical bounds and to be consistent with the previous observations 

in carbonate formations. The number of the modes and fitting parameters was optimized 

by implementing the Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 

1963) to minimize the cost function given by 

   
2

mod meas

2

( ,a ,b ,c )
el

i i i Hg Hginc inc
f N S S  ,

 

(3.4) 

where  
model

Hg inc
S is the modeled incremental mercury saturation and  

meas

Hg inc
S  is the 

incremental mercury saturation obtained from MICP measurements. K-means clustering 

(MacQueen 1967; Lloyd 1982; Spath 1985) is then conducted using the fitting attributes 

of the multi-modal Gaussian function to determine pore types. The K-means technique 

partitions a dataset into a small number of clusters by minimizing the distance between 

each data point and the center of the cluster. 

 

 

3.2.2 Pore Typing in the Core and Well-Log Domains 

 

Fig. 3.3 shows the procedure for populating identified pore types based on the 

MICP measurements in the core and well-log domains.  
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Fig. 3.3—A workflow for populating MICP-based pore types in the core and well-log domains.  

 

First, I applied the k-Nearest Neighbors (KNN) algorithm (Cover and Hart 1967) to train 

a supervised model with an input of MICP porosity and permeability measurements and 

an output of the MICP-based pore types. I validated the model for predicting the MICP-

based pore types using 20% of the training dataset. I then applied the supervised model 

to populate the identified pore types in the core domain using an input of core-plug 
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porosity and permeability measurements. Next, I used another KNN model, trained using 

core-plug porosity and permeability measurements, and identified core-based pore types 

(after validation), to predict pore types in the well-log domain. The inputs to this model 

were electrical resistivity measurements and well-log-based estimates of porosity and 

permeability. The well-log-based estimates of porosity were obtained from a joint-

interpretation of conventional well logs, using Wyllie’s time-average equation (Wyllie et 

al. 1956) and Archie’s equation (Archie 1942). The well logs used for this analysis 

included gamma ray (GR), electrical resistivity, density, neutron porosity, Photoelectric 

Factor (PEF), and compressional-wave slowness. Permeability estimates in the well-log 

domain were obtained by applying a supervised model based on KNN algorithm, with an 

input of core porosity and permeability measurements. The model was trained using 

80% of the input dataset and tested on the remaining 20%. The predictability of core-

based pore types from resistivity measurements was evaluated by quantifying the 

correlation between resistivity measurements and predicted pore types. 

 

 

3.3 Field Example: The SACROC Unit, West Texas 

 

I applied the proposed method to three wells at the SACROC (Scurry Area 

Canyon Reef Operators Committee) Unit located in the Midland basin, west Texas. The 

producing formation in this field is Canyon Reef, a Pennsylvanian limestone that has a 

heterogeneous distribution of petrophysical properties as well as lateral and vertical 
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discontinuity of porosity and permeability, due to its formation in high-amplitude sea-

level fluctuations during glaciation (Kane 1979; Brnak et al. 2006). Geological 

interpretations show that the SACROC Unit is composed of massive amounts of bedded 

bioclastic limestone and thin shale beds representing the Strawn, Canyon, and Cisco 

Groups of the Pennsylvanian. In particular, the Cisco and Canyon Groups are mostly 

composed of limestone with minor amounts of locally present shale (Han et al. 2010). 

I used the multi-modal Gaussian functions to characterize pore-throat radius 

distributions, obtained from 24 MICP measurements in three understudied wells of the 

SACROC Unit. The MICP measurements were conducted using rock-chip samples 

(smaller in size compared to conventional core plugs). The Gaussian function analysis 

yielded the fitting attributes and the number of the required function modes to fit the 

data, corresponding to the number of the pore-throat radius modes, for each sample. Fig. 

3.4 shows an example of the Gaussian function fit to one of the sample measurements, 

exhibiting pore-size bimodality, and the corresponding attributes of the bimodal 

Gaussian function. I determined three pore types by implementing KNN clustering on all 

the attributes of the multi-modal Gaussian functions. Fig. 3.5 illustrates pore-throat 

radius distribution for each of the identified pore types. The identified pore types are 

distinct with respect to pore-size modality, flow capacity (i.e., parameter a), and 

hydraulic conductivity (i.e., parameter b). Pore type 1 is predominantly monomodal and 

corresponds to the best pore type with the highest flow capacity and hydraulic 

conductivity. Pore type 2 and pore type 3 have a lower flow capacity compared to pore 

type 1. Pore type 2 exhibits pore-throat radius bimodality, while pore type 3 is primarily 
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monomodal. One sample in pore type 3 (pointed out by the red arrow in Fig. 3.5c) 

corresponds to relatively low pore-throat radius. As this pore-throat radius size is not 

well represented by the available MICP data, I included this sample in the most similar 

category, pore type 3. 

 

 
Fig. 3.4—SACROC Unit Field Example: an example of the multi-modal Gaussian function fit to pore-

throat radius distribution, exhibiting pore-size modality, and the corresponding fit attributes. 
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Fig. 3.5—SACROC Unit Field Example: pore-throat radius distributions of the identified pore types. Pore 

type 1 is predominantly monomodal and corresponds to the best pore type with the highest flow capacity 

(parameter a) and hydraulic conductivity (parameter b). Pore type 2 and pore type 1 have a lower flow 

capacity compared to pore type 1. Pore type 2 exhibits pore-throat radius bimodality, while pore type 3 is 

predominantly monomodal. One sample in pore type 1 (pointed out by the red arrow) corresponds to 

relatively low pore-throat radius. As this pore-throat radius size is not well represented by the available 

data, I included this sample in the pore type 1 category.  

 
 

Fig. 3.6 shows all the identified pore types projected on (a) a plot of incremental 

mercury saturation and (b) a standard plot of capillary pressure measurements against 

mercury saturation. Furthermore, Fig. 3.7a indicates that the identified pore types 

correspond to unique ranges of porosity and permeability. This observation is consistent 

with the properties of the pore types in terms of their flow capacity and hydraulic 

conductivity.  
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(a) 

 (b) 

Fig. 3.6—SACROC Unit Field Example: identified pore types projected on (a) a plot of incremental 

mercury saturation versus pore-throat radius and (b) a plot of capillary pressure versus mercury saturation.   

 

Next, I applied the KNN algorithm to populate the identified MICP-based pore types in 

the core-plug domain, using an input of core-plug porosity and permeability 
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measurements. A relative average error of approximately 3% was associated with a blind 

test of the KNN model used to predict the MICP-based pore types in the core-plug 

domain. Fig. 3.7b shows the identified pore types in the core-plug domain projected on a 

plot of permeability versus porosity. A comparison of Fig. 3.7b with Fig. 3.7a illustrates 

that the pore types in the core-plug domain are consistent with the identified MICP-

based pore types in terms of their corresponding porosity and permeability. Moreover, I 

conducted joint-interpretation of available conventional well logs to assess porosity and 

mineralogy in three understudied wells of the SACROC Unit. The productive interval of 

the Canyon Reef is mainly composed of limestone and minor concentrations of shale. 

Therefore, the types of minerals in the well-log interpretation were assumed to be calcite 

and clay. The outcome of the well-log interpretation was depth-by-depth estimates of 

porosity, volumetric concentrations of minerals, and water saturation. 
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Fig. 3.7—SACROC Unit Field Example: identified pore types projected on a plot of permeability versus 

porosity in (a) MICP domain, (b) core-plug domain, and (c) well-log domain. The identified pore types are 

consistent, with respect to their corresponding porosity and permeability distributions, in all three 

measurement scales.  

 

Core descriptions served to verify the estimates of mineralogy. The estimates of porosity 

and permeability were validated using the available core measurements (Fig. 3.8). 

Assessment of water saturation, however, was not a focus of this work, as the SACROC 

Unit was put through extensive water flooding. Well-log-based estimates of permeability 

were obtained from a KNN model constructed using core porosity and permeability 

measurements. I used well-log-based estimates of permeability and porosity, as well as 
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the fluid-corrected deep resistivity log measurements to extrapolate the core-plug-

domain pore types in the well-log domain. The blind test showed an average relative 

error of approximately 5% in predicting core-plug-based pore types in the well-log 

domain. Fig. 3.7c illustrates the distribution of the well-log-based estimates of porosity 

and permeability in the identified pore types. Table 3.1 further lists the properties of 

pore types in the well-log domain. The results show that the outcome of pore typing in 

the well-log domain is consistent with the pore types determined in the MICP-core and 

core-plug scales. A similar conclusion can be drawn from the comparison between pore 

types identified in the core-plug and well-log scales demonstrated in Fig. 3.8. In 

addition, the fluid-corrected resistivity well log exhibited a correlation coefficient of 

approximately 57% with the identified pore types and its application resulted in an 

accurate prediction of pore types in the well-log scale. This confirms that the resistivity 

measurements are significantly affected by the formation pore structure and can be used 

for assessing porosity inn carbonate formations. 
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Fig. 3.8—SACROC Unit Field Example: conventional well logs and results of well-log interpretation, 

permeability assessment, and pore typing in a key well. Tracks from left to right include, Track 1: depth; 

Tracks 2-5: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, compressional-

wave slowness, and apparent resistivity logs (including the fluid-corrected deep resistivity log); Track 6: 

estimates of volumetric concentrations of calcite and clay; Track 7: estimates of total porosity, compared 

to core measurements (red dots); Track 8: estimates of effective porosity from acoustic measurements; 

Track 9: estimates of water saturation; Track 10: estimates of permeability, compared to core 

measurements; Track 11: outcome of pore typing in core-plug domain; Track 12: outcome of pore typing 

in well-log domain. 

 

Rock Class Porosity (%) Permeability (md) Deep Resistivity 

(ohmm) 
1 13.6 ± 4.0 12.5 ± 3.8 3.5 ± 1.2 

2 6.6 ± 3.2 3.5 ± 2.4 34.5 ± 10.7 

3 3.1 ± 1.7 0.2 ± 0.1 134.6 ± 89.6 

Table 3.1—SACROC Unit Field Example: properties of identified pore types in the well-log domain. 
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3.4 Conclusions 

 

In this chapter, I conducted pore typing at three different measurement scales, 

including MICP-core, core-plug, and well-log scales, and investigated the predictability 

of the formation pore types from electrical resistivity measurements. I used a multi-modal 

Gaussian function to characterize pore-size modality and distribution obtained from MICP 

data in the SACROC Unit. Pore typing generated three distinct pore types in each 

measurement scale. The best pore type, pore type 1, was predominantly monomodal and 

corresponded to the highest flow capacity and hydraulic conductivity. Pore type 2 was 

characterized with pore-throat radius bimodality. Pore type 2 and pore type 3 had a lower 

flow capacity compared to pore type 1. Application of the deep resistivity log together 

with well-log-based estimates of porosity and permeability resulted in an accurate 

prediction of pore types in the well-log domain. The results further indicated a correlation 

coefficient of approximately 57% between the fluid-corrected resistivity measurements 

and the formation pore types. These results show that the pore structure has a strong 

influence on the electrical resistivity measurements. Thus, these measurements can be 

incorporated in the assessment of porosity in carbonate reservoirs. 
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CHAPTER IV  

APPLICATION OF CONVENTIONAL WELL LOGS TO CHARACTERIZE 

SPATIAL HETEROGENEITY IN CARBONATE FORMATIONS REQUIRED 

FOR PREDICTION OF ACID FRACTURE CONDUCTIVITY*  

 

Acid etching, as the consequence of heterogeneous distribution of 

petrophysical properties and mineralogy, results in the conductivity of acid fractures in 

carbonate reservoirs. Reliable characterization of small-scale formation spatial 

heterogeneity using geostatistical analysis (i.e., variogram analysis) can significantly 

improve prediction of acid fracture conductivity. Previous publications suggest that 

permeability correlation length can be used to assimilate spatial heterogeneity in 

prediction of acid fracture conductivity. Well logs are good candidates to provide 

information about petrophysical and compositional properties of the formation with the 

required resolution for prediction of acid fracture conductivity. However, the assessment 

of permeability and mineralogy from conventional well logs is challenging as the result 

of high spatial heterogeneity and complex pore structure. Rock typing has been 

suggested in the literature to improve permeability assessment in carbonates.  

 

_______________________________________ 

*Reprinted with permission from “Application of Conventional Well Logs to 

Characterize Spatial Heterogeneity in Carbonate Formations Required for Prediction of 

Acid-Fracture Conductivity” by Mehrnoosh Saneifar, Zoya Heidari, and A.D. Hill, 2014. 

SPE Production and Operations Journal, Pre-print, Copyright 2014 by the Society of 

Petroleum Engineers. 
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Most of the previously introduced rock typing methods are dependent on core 

measurements. However, core data are generally sparse and not available with the 

sampling rate required for prediction of acid fracture conductivity.  

The main objective of this chapter is to quantify formation spatial heterogeneity 

using variogram analysis of well logs and well-log-based estimates of petrophysical and 

compositional properties in carbonate reservoirs. I introduce an iterative permeability 

assessment technique based on well logs, which takes into account characteristics of 

different rock classes in the reservoir. Furthermore, I propose three rock classification 

techniques based on conventional well logs which take into account static and dynamic 

petrophysical properties of the formation as well as mineral composition. 

I successfully applied the proposed techniques in two carbonate formations, 

Happy Spraberry oil field and Hugoton gas field.  

 

 

4.1 Introduction 

 

Non-uniform dissolution of rock during acid fracturing, caused by 

heterogeneous distribution of petrophysical properties and mineralogy in carbonate 

formations, results in acid etching on fracture faces. Fractures remain conductive 

under closure stress, as the high points on the etched surface act as pillars to keep 

the fracture channel open. Characterization of small-scale formation spatial 

heterogeneity is necessary to accurately predict acid fracture conductivity. A recent 
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acid fracture model utilizes a geostatistical parameter, correlation length, to include 

spatial variation of permeability for prediction of fracture conductivity (Mou et al. 

2011; Deng et al. 2011; Oeth et al. 2013).  

Previous studies applied permeability data from cores and outcrops to estimate 

the correlation length from variogram analysis (Goggin et al. 1992; Kittridge et al. 

1990). Permeability measurements from outcrops may not be representative of the 

reservoir conditions. Recent studies showed improvement in the assessment of 

permeability based on MICP measurements (Buiting and Clerke 2013; Clerke et al. 

2008; Clerke 2009).  Numerous data points are required at small scales for a reliable 

variogram analysis. However, core measurements are typically sparse and can be 

inadequate in identifying the correlation length (Oeth et al. 2011). Well logs can be 

used for estimating correlation length, as they are recorded at small scales and are 

available at all depths along the wellbore. A high-resolution assessment of 

permeability distribution based on well logs can result in accurate estimation of 

geostatistical parameters and improved prediction of acid fracture conductivity.  

Nevertheless, permeability assessment based on well logs in carbonate 

formations is challenging. The conventional porosity-permeability regression 

techniques are not reliable in carbonate formations as a result of complex pore 

structure and highly-variable petrophysical and compositional properties. Empirical 

permeability correlations developed mainly based on sandstone core measurements 

are not reliable in carbonate formations (Wyllie and Rose 1950; Timur 1968; Katz 

and Thompson 1986; Coates and Denoo 1981). Several studies developed a 
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correlation of permeability with different well logs using statistical multiple 

regression techniques (Yao and Holditch 1993; Saner et al. 1997; Mohaghegh et al. 

1997; Xue et al. 1997; Mathisen et al. 2003). The limitation of this approach is the 

complicated nature of the relationship between petrophysical parameters and well-

log attributes. In addition, each correlation is unique for the specific formation it is 

developed in and cannot be generalized for permeability assessment in other 

formations (Babadagli and Al-Salimi 2002).  

Unconventional well logs such as neutron capture spectroscopy and NMR 

can be used along with conventional well logs to improve the assessment of 

lithology and static/dynamic petrophysical properties (Clerke et al. 2014). However, 

these advanced tools are not available in all the wells. Therefore, assessment of 

permeability and lithology using conventional well logs remains a challenge for 

petrophysicists in carbonate formations. 

Previous publications suggest that a reliable petrophysical rock classification 

can significantly improve permeability assessment in reservoirs with extensive rock 

features (Lucia 1995; Jennings and Lucia 2003; Lucia 2007). Methods such as Leverett’s 

J-function (Leverett 1941) and Winland’s R35 (Pittman, 1992) classify rock classes 

based on pore throat size obtained from saturation-dependent capillary pressure. Other 

methods such as rock fabrics number (RFN) (Lucia 1995) are based on correlations 

among permeability, porosity, and particle size/rock fabric. Most of the common rock 

typing techniques are strongly dependent on core data. However, core measurements are 

usually limited and not available at high sampling rates required for capturing the 
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heterogeneous distribution of lithology and permeability of carbonate formations. 

Therefore, the conventional rock typing methods can fail in detecting all rock variations 

in heterogeneous carbonate reservoirs. Furthermore, it is necessary to take into account 

dynamic petrophysical properties such as saturation-dependent capillary pressure and 

relative permeability in carbonate rock typing (Al-Farisi et al. 2009). These 

measurements are not available real-time and are usually limited to core data. 

Recent publications investigated the effect of rock classes on mud-filtrate 

invasion and its consequent impact on well logs. These publications used numerical 

simulations of mud-filtrate invasion in homogeneous pore structures (Xu and Torres-

Verdín 2012; Xu et al. 2012; Gandhi et al. 2010; Heidari et al. 2011). Similar methods 

were proposed to incorporate numerical simulations of mud-filtrate invasion for 

assessment of permeability, saturation-dependent capillary pressure, and relative 

permeability (Salazar et al. 2006; Heidari and Torres-Verdín 2012; Gandhi et al. 2010; 

Heidari et al. 2011; George et al. 2003; Miranda et al. 2009). However, in the case of 

carbonate formations, the complex pore structure significantly affects the process of 

mud-filtrate invasion. Consequently, it is challenging to quantify the impact of rock 

classes on spatial distribution of fluids in near wellbore region (i.e., due to mud-filtrate 

invasion) in carbonate formations.  

Moreover, previous studies introduced analytical rock quality factors based on 

real-time well logs for petrophysical rock classification in siliciclastic formations 

(Gandhi et al. 2010; Heidari et al. 2011). These factors qualitatively take into account the 
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impact of rock classes on mud-filtrate invasion to include dynamic petrophysical 

properties for reliable rock classification.  

Other approaches for rock classification based on well logs include application of 

classical statistical methods such as clustering (Ye et al. 1998) and discriminant analysis 

(Silva et al. 2002; Lee and Datta-Gupta 2002). However, these approaches cannot 

reliably identify distinct groups in data with no multivariate-normal distribution, such as 

well logs. Artificial neural network techniques are more suitable approaches for rock 

classification based on well logs as they do not assume multivariate-normal distribution 

(Skalinski et al. 2005).  

I proposed an iterative process to improve permeability assessment using 

conventional well logs. This method uses well-log-derived rock classes for the 

assessment of depth-by-depth permeability. I introduced three rock classification 

approaches that employ conventional well logs to classify rock classes in carbonate 

formations. The first rock typing approach applies a new real-time analytical factor 

based on conventional well logs and include (a) separation of shallow and deep electrical 

resistivity logs as a result of mud-filtrate invasion that is controlled by static and 

dynamic petrophysical properties, (b) porosity, (c) volumetric concentration of shale, 

and (d) original fluid saturations (i.e., in the case of rock-fluid quality index) (Saneifar et 

al. 2014b).  

The second and the third approaches include application of a supervised and an 

unsupervised artificial neural network. I detected different patterns induced as a result of 

the cumulative effect of static/dynamic petrophysical properties as well as the effect of 
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interconnected porosity, variation of fluid saturations, and mineralogy on well logs. The 

supervised artificial neural network was trained with well logs and well-log-based 

estimates of petrophysical properties for depths with predicted lithofacies/rock classes. 

The trained network was employed to implement rock typing throughout the desired 

depth interval. This technique is highly dependent on core measurements in the field. 

However, after training the network for a specific field, the network can be applied in 

any well drilled in the same formation to provide rock classes and permeability estimates 

independent from core measurements. The unsupervised artificial neural network used in 

this study was based on the Hierarchical clustering algorithm. This technique is not 

dependent on core measurements for rock classification (Saneifar et al. 2014b).  

The contribution of the proposed rock classification techniques compared to the 

previously introduced methods are (a) minimal dependence on core measurements for 

rock classification, (b) qualitatively honoring cumulative effect of static and dynamic 

petrophysical properties on well logs, and (c) taking into account the effect of fluid 

saturations and mineralogy on well logs for improved rock classification and 

permeability assessment. I finally conduct variogram analysis of conventional well logs 

and well-log-based estimates of petrophysical properties and mineralogy to quantify 

formation spatial heterogeneity in carbonate reservoirs. 

The following sections describe the introduced methods for permeability 

assessment and rock classification as well as their application in two carbonate 

formations including (a) Hugoton gas field in Kansas and (b) Happy Spraberry oil field 

in Texas. 
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4.2 Method 

 

Fig. 4.1 shows a flowchart summarizing the proposed approach in this chapter. 

Basic well-log interpretation was the first step for rock classification and permeability 

assessment. I conducted multi-mineral analysis by joint inversion of conventional well 

logs. The input to multi-mineral analysis included (a) well logs such as GR (gamma ray), 

electrical resistivity, bulk density, neutron porosity, PEF (Photoelectric Factor), and 

compressional-wave slowness (if available) logs and (b) the response of well logs to 

pure minerals (Schlumberger 1989). As a preliminary requirement for well-log 

interpretation, I checked the well logs and core data for any required depth-shifting. The 

outcome of multi-mineral analysis were simultaneous estimates of porosity, fluid 

saturations, and volumetric concentration of minerals. I then classified petrophysical 

rock classes based on well logs and estimate depth-by-depth permeability in each rock 

class. Geostatistical analysis was conducted using well logs, well-log-based 

petrophysical and compositional properties to characterize formation spatial 

heterogeneity (Saneifar et al. 2014b). The following sections explain the introduced 

methods for permeability assessment, rock classification, and geostatistical analysis. 
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Fig. 4.1—Flowchart of the proposed method for permeability assessment, rock classification, and 

geostatistical analysis. 

 

 

 

4.2.1 Iterative Approach to Enhance Permeability Assessment 

  

I applied an iterative technique for simultaneous assessment of rock classes and 

permeability. The iterative process started with an initial rock classification based on two 
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further in the following sections. I then estimated permeability using the estimates of 

porosity by applying the core-derived porosity-permeability correlation in each rock 

class. The updated permeability estimates supported by well-log-based rock 

classification can then be applied as the input for any desired well-log-based rock 

classification technique. The new rock classes can be used to update permeability 

estimates until a convergence criterion is met. Incorporation of permeability 

estimates from other production data, such as well tests, inflow performance, 

production logs, where available, can also further enhance the outcome of the 

applied rock classification techniques (Saneifar et al. 2014b). 

 

 

4.2.2 Rock Classification Using Analytical Rock Quality Index 

 

I introduced rock quality index (RQI) and rock-fluid quality index (RFQI), 

which can be calculated real-time and depth-by-depth using well logs. The 

dimensionless indices correspond to a combined impact of porosity, clay content, 

and separation of shallow and deep resistivity well logs on the formation quality. 

The separation of shallow and deep resistivity occurs as the result of cumulative 

mud-filtrate invasion and is affected by the static and the dynamic petrophysical 

properties, such as permeability saturation-dependent relative permeability and 

capillary pressure (Gandhi et al. 2010; Heidari et al. 2011). RQI is given by 
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RS clayRQI I I    ,

 
(4.1) 

where   is the estimated porosity. I can either use total or interconnected porosity in 

this equation. However, interconnected porosity is preferred to be used in carbonate 

formations. Iclay and IRS in Eq. 4.1 are given by 

1

1
clay

clay

I
C


  

(4.2) 

and  

   log logRS Deep ShallowI R R  ,

 
(4.3) 

where Cclay is the volumetric concentration of clay, RDeep is deep resistivity, RShallow is 

shallow resistivity, IRS is resistivity separation index, and Iclay is clay concentration 

index. For IRS assessment, I first corrected the deep resistivity measurements for the 

effect of initial fluids in the formation by fluid substitution using Archie’s equation. 

The shallow resistivity was assumed to be completely affected by water based mud-

filtrate invaded the near-wellbore region. To correct the deep resistivity, I applied 

Archie’s equation to the entire depth interval and substituted hydrocarbon with 

water in the calculated resistivity. I used the well-log-based estimates of porosity 

and the assumed electrical properties listed in Table 4.1 to calculate the corrected 

deep resistivity. This approach is an approximation to account for fluid substitution 

and is valid only if the impact of mud-filtrate invasion on the deep resistivity log is 

negligible.  
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Parameters Value 

Archie’s Winsauer factor, a 1 

Archie’s porosity exponent, m 1.96 

Archie’s saturation exponent, n 1.83 

Formation water resistivity @ 96 oF (ohm-m) 0.04 

Formation water salt concentration (ppm) 170,000 

Mud-filtrate resistivity @ 96 oF (ohm-m) 0.84 

Mud-filtrate salt concentration (ppm) 5147 

Shale porosity  0.10 

Table 4.1—Hugoton field example: the assumed formation properties used in 

well-log interpretation. 

 

Furthermore, RFQI takes into account the impact of initial fluids in the 

formation which can be used for completion/production planning. RFQI is given by 

 logRS clay DeepRFQI I I R    ,

 
(4.4) 

In the cases of oil-based and fresh water-based mud-filtrate invasion in 

hydrocarbon-bearing zones, where there is no measureable separation between 

resistivity logs with multiple radial lengths of investigation, IRS index is not 

applicable for identifying different rock classes. The introduced analytical factors 

work the best in the presence of saline water-based mud. I assumed that invasion 

parameters including time of mud-filtrate invasion remained constant for all the 

considered depth intervals in this study. This assumption was appropriate for the 

field examples, as the reservoir depth interval is relatively small. If invasion 

parameters vary at different depths, numerical simulation of mud-filtrate invasion 

based on daily reports would be required for reliable quantification of the impact of 

static and dynamic petrophysical properties on well logs. Consequently, the two 

indices introduced in this chapter are only reliable if (a) the impact of mud-filtrate 
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invasion is measureable on electrical resistivity logs with different radial lengths of 

investigation and (b) invasion parameters including overbalance pressure, mud 

properties, and time of invasion are not considerably variable at different depths.  

 

 

4.2.3 Rock Classification Using Artificial Neural Network 

 

I applied both supervised and unsupervised artificial neural network 

algorithms for rock classification (Saneifar et al. 2014b). The supervised artificial 

neural network (NN) was first trained with an available input dataset representative 

of the formation’s petrophysical characteristics and corresponding pre-defined 

output rock classes. The rock classes were determined based on the lithofacies 

description and the core-based Leverett J-function rock (Leverett 1941) typing 

technique in the core domain. The input training set included conventional well logs 

such as acoustic, PEF, GR, shallow and deep electrical resistivity, bulk density, and 

neutron porosity logs, as well as mineralogy, core permeability, and core porosity 

measurements. I used Levenberg-Marquardt, a back-propagation function, to establish 

the relations between input data and pre-defined rock classes (Levenberg 1944). I 

calibrated the supervised artificial network to minimize the error in rock classification, 

by conducting blind tests on the training dataset. I then applied the supervised neural 

network to identify rock classes in the uncored depth intervals.  
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The unsupervised neural network used for rock classification was based on the 

Ward’s Hierarchical clustering algorithm (Ward 1963; Guha et al. 1998). Inputs to the 

unsupervised neural network included well logs and/or well-log-based estimates of 

petrophysical properties, as well as the total number of classes desired. The classification 

was represented by the Self-Organizing Map (SOM), also known as Kohonen map 

(Kohonen 2001). The network agglomerates clusters of input data by minimizing the 

intra-class variance and takes iterative steps to organize similar input data and assigning 

them to particular nodes on the SOM map. Unlike the supervised artificial neural 

network, the unsupervised network does not require training with pre-determined rock 

classes (Gottlib-Zeh 2000). Geostatistical analysis is then performed to extract the 

underlying formation heterogeneity. 

 

 

4.2.4 Geostatistical Analysis 

 

Quantifying formation spatial heterogeneity significantly enhances reservoir 

characterization and attributes that have important control on acid fracture 

conductivity. Variogram analysis is commonly applied for spatial heterogeneity 

assessment of the formation petrophysical properties, as well as lithofacies variation 

(Gringarten and Deutsch 1999). The main purpose of a variogram analysis is 

determination of the correlation length of a variable. Correlation length corresponds 

to the spatial self-similarity of a variable (e.g., permeability) in a certain direction 
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(Isaaks and Srivastava 1989).  I conducted variogram analysis using estimated 

petrophysical, compositional properties, and well logs to determine the correlation 

length of these variables along the wellbore. Fig. 4.2 shows a typical variogram plot 

used to identify correlation length, designated by λ.  

 

 

Fig. 4.2—A typical variogram plot, used to identify the correlation length of a variable (). 

Correlation length corresponds to the spatial self-similarity of a variable (e.g., permeability) in a 

certain direction. 
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where γ(h) is the estimated variance of variable z, h is the lag distance at which variance 

is calculated for evenly-spaced data points, N is the number of data pairs separated by a 

distance h,  zi and zi+h are individual data points, separated a distance h from each other. 

Variograms of petrophysical properties typically express a geometric anisotropy 

behavior, which corresponds to an increase in the variance with the lag distance. The 

distance at which the variance levels off and no longer varies with the increase in 
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distance is known as the correlation length. In this work, I used Stanford Geostatistical 

Modeling Software (SGeMS) to plot and analyze the variograms (Remy et al. 2008).  

 

 

4.2.5 Principle Component Analysis 

 

An alternative to the application of well-log-based permeability estimates for 

characterization of formation spatial heterogeneity is direct application of well logs. I 

applied Principle Component Analysis (PCA) to assimilate different well logs and well-

log-based estimated properties without significant loss of variability in the dataset. I then 

used the first Principle Component (PC1) that contains most of the variability of the 

dataset for variogram analysis (Guide to Statistics 2000). I normalized well logs by 

subtracting the mean from each well-log reading and then dividing by the standard 

deviation. Well logs were transformed to Principle Components (PC) using the 

eigenvectors of the covariance matrix. Covariance of a matrix with two variables, x and 

y, is defined as 
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 (4.6) 

where C is the covariance matrix, xi and yi are depth-by-depth measurements/estimated 

properties from well logs, x and y are the mean values of x and y variables, respectively. I 
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applied spectral decomposition to identify the eigenvalues and eigenvectors of the 

covariance matrix such that  

TC V V  ,

 

(4.7) 

where Λ is the matrix of eigenvalues, V is the eigenvector matrix, and VT indicates the 

transpose of eigenvector matrix. The eigenvector with the highest eigenvalue provides 

the PC with the highest contribution to the total variability in the dataset. PCs are ranked 

in the order of their contribution to the variability in the dataset. 

 

 

4.2.6 Quantifying the Impact of Formation Spatial Heterogeneity on Acid Fracture 

Conductivity 

 

I applied a newly developed acid fracture conductivity correlation (Deng et al. 

2012) to investigate the impact of formation spatial heterogeneity on the overall acid 

fracture conductivity under closure stress. The correlation relates the overall acid 

fracture conductivity to the horizontal and the vertical correlation lengths of 

permeability, which are assumed to be representatives of the formation spatial 

heterogeneity. This correlation was developed on the basis of numerical experiments 

conducted using a previously-developed acid-fracture simulator (Deng et al. 2012). The 

correlation of conductivity at zero closure stress, in the case that permeability 

distribution has a dominant impact on fracture conductivity, is given by  
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          9 3

1 2 , 3 4 5 , 60
4.48 10 1 1D

f D x D zwk w a erf a a a erf a a e
        

  
,    

 a1 = 1.82   a2 = 3.25  a3 = 0.12 

 a4 = 1.31   a5 = 6.71  a6 = 0.03  

 

(4.8) 

where (wkf)0 is the conductivity at zero closure stress in md-ft, w is the average fracture 

width at zero closure stress, λD,x and λD,z are the dimensionless correlation lengths along 

the horizontal calculation domain length, L, and the vertical calculation domain length, 

H, (calculation domain size is 10 ft ×10 ft) respectively, and σD is the dimensionless 

standard deviation of permeability. λD,x and λD,z are given by 

,
x

D x
L


 

 

(4.9) 

and 

,z
z

D
H


  .

 

(4.10) 

w can be estimated via 

  0.830.56 0.8 D iw erf w ,

 

(4.11) 

where wi is the ideal fracture width in inches, defined as dissolved rock volume divided 

by fracture surface area. Furthermore, σD can be obtained via  

  
 

ln

ln
D

k

k


  ,

 
(4.12) 

where k is the average permeability. 

Finally, the overall acid fracture conductivity at closure stress, σc, is obtained via 
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 expf cwk    ,

 

(4.13) 

where 

      
0.52

0.42.8

, ,z0
0.22 0.01 1f D x D D Dwk       
  

 

(4.14) 

and 

    415.6 4.5ln 7.8ln 10D E       
 

(4.15) 

 

 

 

4.3 Sensitivity Analysis: Impact of Vertical Correlation Length on Acid 

Fracture Conductivity 

 

I used three synthetic cases with different vertical correlation lengths of 

permeability to conduct a sensitivity analysis on the impact of vertical correlation length 

of permeability on the overall acid fracture conductivity at variable closure stress using 

the correlation described in Eqs. 4.8–4.15. Table 4.2 lists the parameters used for 

these three synthetic cases. I used low, medium, and high values of vertical 

correlation length for synthetic cases 1, 2, 3, respectively, and kept all the other 

parameters constant in the three synthetic cases. Fig. 4.3 shows the overall 

calculated fracture conductivities at closure stresses of 0 – 6000 psi for the three 

examples. A reduction in the vertical correlation length of permeability, 

corresponding to a more heterogeneous distribution of permeability in the vertical 

direction, results in higher fracture conductivity. The calculated fracture 
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conductivity increases by approximately 26% and 45%, when the dimensionless 

vertical correlation length is decreased from 0.7 to 0.12 and from 0.7 to 0.0156, 

respectively. This significant increase in the fracture conductivity confirms the 

importance of determining and incorporating the vertical correlation length in the 

prediction of acid fracture conductivity. The upcoming sections include the 

application of the introduced well-log-based method for reliable assessment of 

vertical heterogeneity of formation properties. 

 

 
Fig. 4.3—Sensitivity Analysis: calculated fracture conductivity for three synthetic case studies with 

different vertical correlation lengths of permeability, at closure stresses of 0 – 6000 psi. A reduction 

in the vertical correlation length of permeability, corresponding to a more heterogeneous distribution 

of permeability in the vertical direction, results in higher fracture conductivity. The calculated 

fracture conductivity increases by approximately 26% and 45%, when the dimensionless vertical 

correlation length is decreased from 0.7 (Case 3) to 0.12 (Case 2) and from 0.7 (Case 3) to 0.0156 

(Case 1), respectively. 
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Parameters Synthetic Case 1 Synthetic Case 

2 

Synthetic Case 3 

wi (in) 

 

0.04 0.04 0.04 

fcalcite (%) 35 35 35 

λD,x 0.7 0.7 0.7 

λD,z 0.0156 0.12 0.7 

σD 0.7 0.7 0.7 

E (Mpsi) 4 4 4 

Table 4.2—Sensitivity Analysis: parameters used to investigate the impact of 

formation spatial heterogeneity on fracture conductivity. 

 

 

 

4.4 Field Example No. 1: Hugoton Gas Field 

  

The 70-year old Hugoton field, the largest gas field in North America, is 

located in southwestern Kansas. This field has yielded over 23 TCF gas production 

from the lower Permian, upper Wolfcampian Chase group (Olson et al. 1997). The 

Chase Group is approximately 350 ft thick and includes carbonate, sandstone, and 

siliciclastic mudstone units (Dubois et al. 2006). Porosity in this reservoir ranges 

from 10 to 30%; permeability varies from less than 0.1 millidarcy (md) to over 800 

md (Olson 1998). Kansas Geological Survey (KGS) identified 11 lithofacies in the 

Hugoton field, from a study on depositional sequences, rock texture and principal 

pore size (Dubois et al. 2006). In this field example, limited data are available to 

identify the shapes of different rock components in each geological facies for the 

assessment of elastic properties and interparticle and intraparticle porosity using SCA 

theories. However, the clear trend of mud-filtrate invasion on resistivity well logs can be 

used for qualitative incorporation of dynamic petrophysical properties in rock 
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classification. Furthermore, extensive core data are available for core-based rock 

classification. Based on this data scenario, I applied the following rock classification 

techniques in a well in the Hugoton gas field: (a) conventional core-based Leverett J-

function (Leverett 1941), (b) analytical rock quality and rock-fluid quality indices, (c) 

supervised artificial neural network, and (d) unsupervised artificial neural network. I 

then estimated permeability in each rock class, separately.  

I first interpreted conventional well logs to estimate porosity, water 

saturation, and volumetric concentrations of minerals. There was no required depth-

shifting for well logs or core data in this well. Table 4.1 lists the parameters used for 

the well-log interpretation. Clay type is assumed to be illite. Dominant non-clay 

minerals in this formation consist of calcite, dolomite, and quartz. Formation fluids 

include saline formation water and gas. The formation was invaded by fresh water-

based mud.  

After initial well-log interpretation, I estimated permeability using the 

conventional core-based porosity-permeability correlation for the entire depth 

interval shown in Fig. 4.4. I identified five rock classes based on lithofacies 

description and the core-based Leverett J-function rock typing technique. Fig. 4.4 

illustrates (a) the conventional well logs used in well-log interpretation including 

GR, PEF, electrical resistivity, bulk density, and neutron porosity, (b) the estimated 

petrophysical/compositional properties, and (c) the rock classes identified using the 

core-based Leverett J-function rock typing technique and lithofacies description. 

Estimated petrophysical/compositional properties include volumetric concentrations 
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of minerals, porosity, permeability, and water saturation. Porosity is over-estimated 

in rock class 2. That can be as the result of an additional mineral present at that 

depth interval, which is not included in multi-mineral analysis. Mineralogy from 

core measurements can further improve the model and estimates for petrophysical 

properties. However, the results show that rock classification based on the well-log-

based estimated properties (e.g., porosity) is consistent with the outcome of the core-

based rock typing and is not affected by the error associated with the estimates of 

porosity in rock class 2. Furthermore, the estimates of water saturation do not agree 

with core measurements of water saturation. This difference is mainly associated 

with the significant uncertainty in the core measurements of water saturation as 

water-based drilling mud has invaded the near-wellbore region in this formation. 

The estimates of permeability using the conventional core porosity-permeability 

correlation are subjected to a significant error compared to core permeability 

measurements. These results further emphasize the need for a reliable method to 

improve permeability assessment. The identified rock classes using the core-based 

Leverett J-function method, shown in Fig. 4.4, are in agreement with the description 

of the lithofacies documented by Dubois et al. (2006). Rock class 1 corresponds to 

the worst rock class or silty mudstone and rock class 5 corresponds to the best rock 

class. These rock classes which are based on core measurements as well as 

lithofacies descriptions were used as the ground truth for cross-validation of the 

proposed rock classification techniques.  
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Fig. 4.4—Field Example No. 1, Hugoton Gas Field: conventional well logs and the estimated petrophysical/compositional properties. Tracks 

from left to right include, Track 1: depth; Tracks 2-5: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, PEF, and 

apparent resistivity logs; Track 6: estimates of volumetric concentrations of dolomite, calcite, quartz and illite (clay); Tracks 7-8: total porosity 

and water saturation overlaid with the corresponding core measurements; Tracks 9-10: normalized RQI log and normalized RFQI log; Tracks 11-

13: core-derived rock classes, RQI-based rock classes, and RFQI-based rock classes; Tracks 14-15: rock classes obtained using two cases of 

supervised neural network, with well logs and with estimated properties; Track 16: rock classes obtained from unsupervised neural network; 

(Tracks 11-16: green represents mudstone or the worst rock class and orange corresponds to the best rock class) Track 17: estimated permeability 

from core porosity-permeability correlation, overlaid with core measurements of permeability; Track 18: permeability estimates using RQI-based 

rock classification, overlaid with core measurements of permeability; Tracks 19-20: permeability estimates from rock classification using two 

cases of supervised neural network, with well-logs and estimated properties, overlaid with core measurements of permeability; Track 21: 

permeability estimates from rock typing using unsupervised neural network, overlaid with core measurements of permeability.
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Next, I used RQI to identify rock classes. The separation of shallow and 

corrected deep resistivity was applied for RQI assessment. RQI log was used to 

classify rocks into five rock classes (Fig. 4.4). I also calculated RFQI which takes into 

account the type and the saturation of desired fluids in the reservoir. This index can be 

directly used for selecting candidates for acid fracturing as it takes into account reservoir 

fluids as well as static and dynamic rock properties.  

I then identified rock classes using supervised artificial neural network 

following two approaches. The first approach adopted only well logs as inputs to the 

network. The input well logs included IRS, GR, bulk density, neutron porosity, and 

PEF. The network was trained by more than 1000 iterations, where core 

measurements and lithofacies description were available. The output of the network 

was rock classes.  

The training and input datasets in the second approach included estimates of 

petrophysical/compositional properties obtained from well logs including porosity, 

permeability, and volumetric concentrations of calcite, dolomite, quartz, and clay. 

The training dataset also contained core measurements of porosity and permeability. 

First iteration of permeability estimates for the rock typing techniques was obtained 

using core-derived porosity-permeability correlation. These permeability estimates 

were updated in every iteration.  

Next, I identified rock classes in this field example using an unsupervised 

artificial neural network. This approach was not dependent on any core 

measurements or pre-defined rock classes. The inputs to the unsupervised rock 
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classification approach included IRS, volumetric concentrations of calcite, dolomite, 

quartz, clay, and estimated porosity. Fig. 4.4 shows the results for rock typing using 

supervised and unsupervised artificial neural networks.  

Finally, I estimated depth-by-depth permeability in each rock class. Fig. 4.4 

compares estimated permeability values based on different rock typing techniques 

against core measurements and Fig. 4.5 shows cross-plots of permeability estimates 

and core permeability measurements for all the techniques employed in this study 

and the corresponding relative errors in permeability estimates. The rock 

classification based on supervised artificial neural network provides the most 

accurate rock classification and permeability assessment among all the applied 

methods when compared against core measurements. In the case of supervised 

artificial neural network approach, inputting well logs to the network provides a 

more accurate rock classification and permeability assessment compared to the 

application of petrophysical/compositional estimated properties as input parameters. 

Among the methods with minimal dependence on core measurements (i.e., RQI and 

unsupervised artificial neural network) the rock classification using RQI provides 

the most reliable rock classes. Fig. 4.5 shows that the analytical rock classification 

(RQI) provides an improvement of approximately 50% in permeability assessment. 

Although the difference in errors of permeability assessment from RQI and 

supervised artificial neural network using an input of well logs is small, supervised 

artificial neural network requires training and calibration using core measurements, 

whereas RQI can be obtained real-time.   
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Fig. 4.5—Field Example No. 1, Hugoton Gas Field: cross-plots of core permeability measurements 

and well-log-based permeability estimates obtained from (a) conventional permeability assessment 

technique, (b) supervised neural network with well logs as inputs to the network, and (c) supervised 

neural network with well-log-based estimated petrophysical. 

 

Furthermore, the presence of IRS has a significant impact on reliable rock 

classification in both supervised and unsupervised artificial neural network 
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approaches. The presence of core measurements can, however, further improve 

assessment of rock classification in all the aforementioned techniques.  

 

 

4.4.1 Characterization of Formation Spatial Heterogeneity Used for Prediction of 

Acid Fracture Conductivity 

 

Previous publications (Mou et al. 2011; Deng et al. 2011; Oeth et al. 2013) 

documented a recently developed acid fracture model that applies permeability 

correlation length to take into account formation spatial heterogeneity in prediction 

of fracture conductivity. Permeability correlation length is assigned to each 

calculation domain of size 10 ft by 10 ft, in horizontal and vertical directions. In this 

section, I first show an example to illustrate the significance of the application of 

well-log-based permeability estimates for variogram analysis. I then present 

variogram analysis to obtain the vertical correlation length in a hydrocarbon-bearing 

zone, with the best rock quality, using (a) well-log-based permeability estimates, (b) 

well logs and their first Principle Component, and (c) estimated 

petrophysical/compositional properties and their first Principle Component.  

Fig. 4.6 shows variograms constructed using (a) core permeability 

measurements and (b) the best well-log-based estimates of permeability, in the 

Hugoton field example, in the depth interval of 2692–2705 ft. I observe that 
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minimum variance of core permeability measurements starts at a value larger than 

zero variance. This local discontinuity is known as the “nugget effect”.  

 

 

(a) 

   

(b) 

Fig. 4.6—Field Example No. 1, Hugoton Gas Field: comparison of permeability variograms for (a) 

core permeability measurements and (b) well-log-based permeability estimates in the depth interval 

of 2692–2705 ft. The significant nugget effect observed in the variogram of core permeability 

measurements corresponds to the possible measurement error, as well as data sampling at a relatively 

large scale. 
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The significant nugget effect observed in the variogram of core permeability 

measurements corresponds to the possible measurement error, as well as data 

sampling at a relatively large scale (Fig. 4.6). The results confirm that the variogram 

of core permeability measurements is not reliable for identifying the correlation 

length of permeability, as the core data are limited (Fig. 4.6). On the other hand, 

variogram of well-log-based permeability estimates has a negligible nugget effect 

and can reliably provide the correlation length (approximately 4 ft). Therefore, well-

log-based estimates of permeability that are validated using core measurements can 

be applied to characterize formation spatial heterogeneity.  

To further investigate the application of well logs for characterizing 

formation spatial heterogeneity, I selected the hydrocarbon-bearing depth interval of 

2692–2723 ft, corresponding to the best rock class and conducted variogram 

analysis. Fig. 4.7 shows the variogram obtained using well-log-based permeability 

estimates. I applied the spherical variogram model and estimated correlation length 

of approximately 4 ft (Fig. 4.7). The first structure displayed on the variogram plot 

was used to determine the correlation length, as the first few variogram points are 

known to be more reliable for model-fitting and determination of the correlation 

length (Beatty 2010).  

Next, I investigated the direct application of well logs, as an alternative to 

well-log-based permeability estimates for characterizing the spatial heterogeneity. 

Direct application of well logs can be an appropriate substitute for the application of 

well-log-based permeability estimates in variogram analysis, where (a) there is not 
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enough core data available for calibration purposes and (b) the correlation between 

core-derived porosity and permeability is poor. Additionally, application of core-

base porosity-permeability correlation for the assessment of permeability in each 

rock class results in diminished resolution, as the consequence of smoothing the 

available data. Direct application of well logs in lieu of permeability estimates can 

prevent the additional smoothing involved in permeability assessment.  

 

 

Fig. 4.7—Field Example No. 1, Hugoton Gas Field: variogram analysis using well-log-based 

estimates of permeability in depth interval of 2692–2723 ft. The correlation length is estimated to be 

approximately 4 ft. 

 

I used GR, neutron porosity, bulk density, PEF, and IRS in the variogram 

analysis. GR and PEF logs correspond to volumetric concentration of clay and 

lithology in the formation, respectively. Bulk density and neutron porosity provide 

information about formation porosity and lithology. IRS which corresponds to the 

separation of the resistivity well logs, as the result of fluid invasion into the 

formation, can be used as a representative of the formation static/dynamic 
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petrophysical properties such as permeability. Fig. 4.8a shows the variogram of 

individual well logs for the selected depth interval. Among the well logs used, GR 

and IRS are not good representatives of the formation spatial heterogeneity in the 

selected zone. Their variograms correspond to a larger correlation length compared 

to the correlation length identified using permeability estimates (Fig. 4.8a). This 

behavior is expected, as GR only corresponds to the shale content in the formation 

and apparent resistivity logs have a relatively poor vertical resolution. However, 

variograms of well logs such as bulk density and PEF provide correlation lengths, 

similar to that of permeability estimates. As individual well logs might not be 

indicative of spatial heterogeneity, I used PCA to assimilate all the well logs with no 

significant loss of variability in the dataset. Principle Component is an alternative form 

of presenting the data, while retaining the main structure of the dataset. Fig. 4.8b 

shows the variogram constructed using PC1 for the zone under study. The 

correlation length identified from this variogram is approximately 3 ft, which is 

smaller than the one obtained from the permeability variogram (Fig. 4.8b).  

In addition to the direct application of well logs, I applied estimated porosity and 

volumetric concentration of minerals to conduct variogram analysis in the zone of 

interest (i.e., depth interval of 2692–2723 ft). Fig. 4.9a shows the variogram of the 

estimated properties, corresponding to a similar correlation length compared to the 

correlation length of permeability estimates. I conducted PCA using the estimates of 

porosity and volumetric concentration of present minerals and analyzed the variogram of 
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PC1. Fig. 4.9b illustrates the variogram constructed using PC1 of the estimated 

properties. Based on this variogram, the correlation length is estimated to be 3 ft. 

   

 
(a) 

 
(b) 

Fig. 4.8—Field Example No. 1, Hugoton Gas Field: variogram analysis for (a) well logs and (b) the 

first Principle Component of well logs, in the depth interval of 2692–2723 ft. The correlation lengths 

estimated from the variograms of PEF, neutron porosity, and bulk density measurements, as well as 

the first Principle Component of the well logs are approximately 3 ft. However, GR and IRS are not 

indicative of the formation spatial heterogeneity. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

V
a

ri
a

n
ce

Lag Distance (ft)

GR

RHOB

NPHI

Irs

PEF

0

1

2

3

4

5

6

7

8

0 5 10 15 20

V
a

ri
a

n
ce

Lag Distance (ft)



 

104 

 

 

(a) 

 

(b) 

Fig. 4.9—Field Example No. 1, Hugoton Gas Field: variogram analysis for (a) estimates of 

volumetric concentrations of minerals and porosity and (b) the first Principle Component calculated 

for the estimates of volumetric concentrations of minerals and porosity, in the depth interval of 2692–

2723 ft. The correlation lengths obtained from the variograms of the estimated volumetric 

concentrations of minerals and porosity, as well as the first Principle Component are approximately 3 

ft. 
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Variograms constructed based on PC1 of well logs and PC1 of estimated 

porosity and volumetric concentration of minerals correspond to relatively smaller 

correlation length, compared to the correlation length estimated from permeability 

estimates. This is as the result of improved characterization of formation 

heterogeneity, since there is less data smoothing involved in well logs, estimated 

porosity, and estimated mineral concentrations, compared to the well-log-based 

permeability estimates. The results confirm that the PC1 of the well logs and the 

estimated petrophysical/composition properties can be used to characterize 

formation spatial heterogeneity, in near wellbore region. 

 

 

4.5 Field Example No. 2: Happy Spraberry Oil Field 

 

Happy Spraberry field is located on the western edge of the eastern shelf of 

Permian (Midland) Basin in Garza County, Texas. The 100 ft thick carbonate zone 

is located in the Lower Clear Fork formation (Gentry 2003). It contains four typical 

lithofacies that are identified based on constituent composition, depositional texture 

and sedimentary structures (Hammel 1996; Roy 1998; Layman 2002). Reservoir 

lithofacies consist of oolitic skeletal grainstone/packstone and skeletal rudstone. 

Non-reservoir facies include floatstone and shaly siltstone. Oolitic grainstone facies 

are the highest reservoir quality lithofacies contributing the most to the Happy 

Spraberry production (Hammel 1996; Roy 1998; Layman 2002). 
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I first conducted a joint inversion of conventional well logs to estimate 

interconnected and total porosity, water saturation, and volumetric concentration of 

minerals. I applied a depth shifting of +1 ft on core measurements. Table 4.3 lists 

the parameters used in well-log interpretation, based on previous field studies 

(Mazingue-Desailly 2004). Formation fluids include saline formation water and oil.  

 
Parameters Value 

Archie’s Winsauer factor, a 1 

Archie’s porosity exponent, m 2 

Archie’s saturation exponent, n 2 

Formation water resistivity @ 110 oF 

(ohm-m) 

0.038 

Formation water salt concentration (ppm) 148,500 

Mud-filtrate resistivity @ 110 oF (ohm-m) 0.11 

Mud-filtrate salt concentration (ppm) 40,600 

Shale porosity 0.08 

Table 4.3—Happy Spraberry field example: the assumed formation properties 

used in well-log interpretation. 

 

Fig. 4.10 shows the conventional well logs used for well-log interpretation 

and the estimates of porosity, water saturation, and volumetric concentrations of 

minerals. Interconnected non-shale porosity is estimated by joint-interpretation of 

well logs, including compressional-wave slowness log. The compressional-wave 

slowness was corrected for clay and non-clay minerals using the well-log-based 

estimates of volumetric concentrations of minerals (Backus 1962). 

In Field Example No. 2, I could not use either supervised neural network 

approach or RQI method, because (a) core measurements are limited and (b) the 

impact of mud-filtrate invasion on electrical resistivity logs is not significant outside 
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of the highest permeability zone (X930-X990 ft). Thus, I used the unsupervised 

neural network technique. 

 

 
Fig. 4.10—Field Example No. 2, Happy Spraberry Oil Field: conventional well logs and the 

estimated petrophysical/compositional properties. Tracks from left to right include, Track 1: depth; 

Tracks 2-6: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, PEF, 

compressional-wave slowness, and apparent resistivity logs;  Track 7: estimates of volumetric 

concentrations of calcite, quartz and shale; Tracks 8-10: total porosity, interconnected porosity, and 

water saturation estimates overlaid with the corresponding core measurements; Track 11: rock classes 

identified using unsupervised artificial neural network (rock class 1 is the worst rock type and rock 

class 4 is the best); Track 12: final permeability assessment compared to core permeability 

measurements. 
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quartz and calcite. Permeability is then estimated using core porosity-permeability 
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The identified rock classes are in agreement with the described lithofacies in the 

field (Layman 2002). Fig. 4.10 shows the identified rock classes and permeability 

estimates. Rock class 1 corresponds to the worst rock type class or silty mudstone 

and rock class 4 is the best rock type. Permeability estimates are consistent with core 

measurements in the depth interval of X900-Y000 ft. However, more core 

measurements are required to cross-validate the permeability estimates from well 

logs.  

Next, I conducted variogram analysis to characterize formation spatial 

heterogeneity in the depth interval of X950-X980 ft, corresponding to the best rock 

class. I applied (a) well-log-based permeability estimates, (b) well logs: GR, neutron 

porosity, bulk density, PEF, compressional-wave slowness, (c) PC1 of well logs, and 

(d) PC1 of the well-log-based estimates of porosity and volumetric concentration of 

minerals as inputs to the variogram analysis. Fig. 4.11 shows the variogram 

constructed using permeability estimates. Based on this variogram, the correlation 

length is 4 ft. Then, I used well logs to conduct PCA.  Figs. 4.12a and 4.12b 

illustrate the variograms obtained from well logs and PC1 of well logs, respectively. 

The correlation length of PC1 variogram is estimated to be 4 ft, the same as the 

correlation length identified using permeability estimates. Figs. 4.13a and 4.13b 

show the variograms of the estimated properties and PC1 of the estimated 

properties, respectively. The correlation length from variogram of PC1 is estimated 

to be 3 ft, which is smaller than the identified permeability correlation length. This is 

as the result of less smoothing involved in the input data, compared to the well-log-
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based estimates of permeability. The results show that the PC1 of the well logs and 

the estimated petrophysical/composition properties can be used to characterize 

formation spatial heterogeneity. 

 

 
Fig. 4.11—Field Example No. 2, Happy Spraberry Oil Field: variogram analysis using well-log-based 

permeability estimates, depth interval of X950-X980 ft. The correlation length is estimated to be 4 ft. 
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(a) 

 

(b) 

Fig. 4.12—Field Example No. 2, Happy Spraberry Oil Field: variogram analysis for (a) well logs and 

(b) first Principle Component of well logs, depth interval of X950-X980 ft. The correlation length 

estimated from the variogram of the first Principle Component of well logs is estimated to be 4 ft, 

which is the same as the correlation length obtained using permeability estimates. 
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(a) 

 

(b) 

Fig. 4.13—Field Example No. 2, Happy Spraberry Oil Field: variogram analysis for (a) estimated 

mineral volumetric concentration and porosity and (b) first Principle Component of estimated mineral 

volumetric concentration and porosity, depth interval of X950-X980 ft. The correlation length 

obtained using the variogram of the first Principle Component of the estimated volumetric 

concentration of minerals and porosity is estimated to be 3 ft, which is smaller than the correlation 

length obtained using permeability estimates. 
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4.6 Conclusions 

 

In this chapter, I conducted variogram analysis of conventional well logs and 

well-log-based estimates of petrophysical and compositional properties to quantify 

formation spatial heterogeneity in carbonate reservoirs. I proposed a new method which 

iteratively updates depth-by-depth permeability and rock class assessments using well 

logs. Permeability is estimated within different rock classes separately in each iteration. 

For well-log-based rock classification, I introduced three rock classification techniques 

including (a) a real-time well-log-derived analytical factor, (b) unsupervised artificial 

neural network, and (c) supervised artificial neural network. The first two techniques are 

independent of core measurements for rock classification. However, the supervised 

artificial neural network is highly dependent on the core measurements in the field. This 

technique involves training using core measurements and quality check of the network, 

whereas the analytical factor (RQI) can be obtained real-time and requires relatively less 

time for preparation of the input data.  All the methods take into account static/dynamic 

petrophysical properties as well as compositional properties in rock classification. To 

qualitatively include the impact of dynamic petrophysical properties, I used the 

separation of the resistivity well logs, corresponding to the water-based mud-filtrate 

invasion in the hydrocarbon zones. I assumed that invasion parameters including time 

and rate of mud-filtrate invasion remain constant for all the considered depth intervals in 

this study. This assumption might cause uncertainty in the rock classification results in 

larger depth intervals. In such situation drilling reports should be used for interval-by-
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interval quantification of invasion properties combined with near wellbore fluid-flow 

simulation. 

I successfully applied the introduced techniques for rock classification and 

permeability assessment in two carbonate field examples including Hugoton gas field 

and Happy Spraberry oil field. The results obtained for Hugoton gas field suggest that 

supervised neural network provides the most reliable estimates for rock classification 

and permeability assessment among all the introduced methods, with 54% improvement 

in permeability assessment. Direct application of well logs provides a more reliable rock 

classification compared to the application of estimated petrophysical/compositional 

properties using well logs.  

In the cases with limited core measurements, however, I recommend the 

application of the introduced analytical rock quality index or unsupervised artificial 

neural network for rock classification. In the Hugoton gas field, I observed 50% and 

38% relative improvements in permeability assessment using analytical rock quality 

index and unsupervised artificial neural network for rock classification, respectively.  

Furthermore, I showed that well-log-based permeability estimates are more 

reliable compared to core measurements to characterize formation spatial heterogeneity 

for prediction of acid fracture conductivity. I also conducted a sensitivity analysis to 

study the impact of vertical correlation length of permeability on the overall acid fracture 

conductivity at variable closure stress. The calculated fracture conductivity increased by 

approximately 26% and 45%, when the dimensionless vertical correlation length was 

decreased from 0.7 to 0.12 and from 0.7 to 0.0156, respectively. The variogram analysis 
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in both field examples showed that well logs as well as well-log-based estimates of 

petrophysical/compositional properties can be applied in variogram analysis in lieu 

of well-log-based permeability estimates, in the lack of enough core data for 

calibration. This work can be further improved by incorporating the accurate 

volumes of investigation of different logging tools based on their geometrical 

configuration in the variogram analysis.  
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CHAPTER V  

AN INVESTIGATION ON THE IMPACT OF HETEROGENEITY IN 

CARBONATE FORMATIONS ON FLUID INJECTIVITY LOSS DURING 

WATER-ALTERNATING-GAS INJECTION 

 

In this chapter, I investigated and quantified the impact of spatial heterogeneity 

in a carbonate formation on injectivity loss during Water-Alternating-Gas (WAG) 

injection. WAG technique is commonly used to improve sweep efficiency of gas 

injections in depleted oil fields. However, heterogeneous distribution of porosity and 

permeability in carbonate formations can cause injectivity abnormalities during WAG 

cycles. These anomalies reduce the effective fluid mobility in all rock types, irrespective 

of their porosity and permeability. Thus, a larger fraction of gas flows into the layers of 

higher porosity and permeability, compared to layers with poor petrophysical properties. 

This can lead to reduced injectivity in the well and loss of WAG operation effectiveness 

(Rogers and Grigg 2001).  

I first conducted automatic rock classification based on conventional well logs, 

using an unsupervised neural network, to characterize the heterogeneous distribution of 

petrophysical properties and mineralogy in a carbonate formation. I then applied a new 

heterogeneity coefficient to quantify the spatial distribution of rock classes. The viability 

of the introduced heterogeneity coefficient was confirmed using Principle Component 

and variogram analyses.  



 

116 

 

The aforementioned technique was applied to ten wells of the SACROC Unit, 

located in west Texas, in which WAG injection was implemented. Five of the selected 

wells in this field exhibited no injectivity abnormality, while the other five wells 

experienced unexpected low gas injectivity during CO2 injection and an apparent 

reduction in water injectivity during the follow-up brine injection. I quantified and 

compared the magnitude of the spatial heterogeneity in the distribution of rock classes 

for all ten wells.  

 

 

5.1 Introduction 

 

Water-Alternating-Gas (WAG) injection has been commonly implemented as an 

enhanced oil recovery (EOR) technique, aiming at improving the sweep efficiency of gas 

injections. This EOR procedure, first proposed by Caudle and Dyes (1958) includes 

alternating slugs of water in the gas injection to control the higher mobility of gas as 

compared to that of the reservoir fluids. The WAG technique integrates the microscopic 

displacement of the oil by gas, which is normally better than by water, and the improved 

macroscopic sweep by water injection for enhanced oil displacement (Christensen et al. 

2001). Despite the higher sweep efficiency by alternating the gas and water injection in 

one operation, as opposed to injecting gas and water separately, loss of injectivity during 

WAG cycles has been an industry concern since the first field tests (Gorell 1990; Rogers 

and Grigg 2001).  
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Injectivity abnormalities can result in significant pressure drop in the reservoir, 

resulting in a lower oil recovery that could unfavorably affect the economic viability of a 

WAG project. Key factors affecting the injectivity during WAG operations include 

WAG ratio, injection rate, rock wettability, relative permeability, and formation spatial 

heterogeneity (Schneider and Owens 1976; Jackson et al. 1985; Huang and Holm 1986; 

Potter 1987; Roper et al. 1992; Surguchev et al. 1992; Rogers and Grigg 2001). The 

latter is of particular importance in carbonate formations with lateral and vertical 

variability of petrophysical properties (e.g., permeability). WAG injection reduces the 

effective fluid mobility not only in the layers with high permeability, but also in the 

adjacent layers with lower permeability. Consequently, the higher permeability layers 

receive a larger fraction of gas, which leads to reduction of frontal advancement in the 

lower permeability layer and loss of injection (Rogers and Grigg 2001).  

Well logs can be used for depth-by-depth assessment of petrophysical and 

compositional properties and characterization of formation spatial heterogeneity. 

However, interpretation of well logs in complex carbonate formations is challenging. 

Rock classification can be applied to improve the well-log-based estimates of 

petrophysical and compositional properties in heterogeneous carbonate formations and 

to optimize selection of candidate wells for WAG injection. Although there are several 

rock-fluid properties that can strongly affect injectivity during WAG operations, this 

chapter focuses on quantifying the impact of formation spatial heterogeneity on WAG 

injectivity abnormalities.  
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I conducted petrophysical rock classification using conventional well logs in ten 

wells in the SACROC (Scurry Area Canyon Reef Operators Committee) Unit, west 

Texas, subjected to WAG injection. Five of the selected wells in this field showed no 

injectivity abnormality, while the other five experienced unexpected low CO2 injectivity 

during gas injection, as well as an apparent reduction in water injectivity during the 

follow-up brine injection. I applied geostatistical analysis to investigate and to quantify 

the impact of formation spatial heterogeneity on injectivity loss during WAG injection. I 

introduced a heterogeneity coefficient for characterizing the heterogeneous distribution 

of the identified petrophysical rock classes. Application of the new heterogeneity 

coefficient was validated by comparing it against the other common geostatistical 

approaches for the assessment of spatial heterogeneity.   

To the best of my knowledge, there has been no previous research conducted on 

quantifying the impact of formation spatial heterogeneity on WAG injectivity loss. As 

formation heterogeneity is among the most influential factors affecting the WAG 

injectivity, it is important to understand its impact on the injectivity during WAG 

operations (Schneider and Owens 1976; Jackson et al. 1985; Huang and Holm 1986; 

Potter 1987; Roper et al. 1992; Surguchev et al. 1992; Rogers and Grigg 2001). The 

proposed technique can predict the likelihood of success or failure of WAG injection in 

oil wells prior to investment, thus minimizing the possible economic risk and associated 

costs. 
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5.2 WAG Injection in the SACROC Unit 

 

The SACROC Unit, located in Scurry County, west Texas, was discovered in 

1948 as the Kelly Snyder field (Brnak et al. 2006). Extending on the northeastern fringe 

of the Permian Basin, the SACROC Unit is among the largest oil fields onshore in North 

America, with 2.8 billion barrels of oil in place (Brnak et al. 2006). Early depletion in 

the Kelly Snyder field, with solution-gas drive as the primary producing mechanism, 

indicated the necessity of a pressure maintenance program to alleviate extreme loss of 

reserves (Kane 1979). In 1952, the operators and royalty owners decided to unitize the 

Kelly Snyder and the Diamond M fields into the SACROC Unit to improve the 

secondary and tertiary recovery of oil. Water flood was initiated in 1954, followed by 

the first WAG injection project in 1972 (Fig. 5.1). After a peak in production, the unit 

went on a rapid decline. Several projects were executed to recover from the decline, but 

there was no considerable success. In 1995, a WAG flood pilot consisting of five-spot 

patterns was developed for utilizing large injection volumes of CO2 at miscible 

conditions. Consequently, the decline in the production was halted. WAG projects in the 

SACROC Unit have continued to expand, and production subsequently increased to 31 

billion barrels (Langston et al. 1988; Brnak et al. 2006). 

Despite the enhanced oil recovery, injectivity loss has continued to be a major 

limiting factor in some WAG operations in the SACROC Unit. Sudden loss of injectivity 

during CO2 injection, followed by reduction in water injectivity during brine injection, 

has led to unsuccessful WAG operations in the SACROC wells. Efforts to mitigate loss 
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of injectivity in the field have been mostly unsuccessful (Schneider and Owens 1976; 

Harvey et al. 1977; Potter 1987).  

 

 
Fig. 5.1—SACROC Unit: historical oil production and EOR operations (Brnak et al. 2006). 

 

Furthermore, heterogeneous distribution of the petrophysical properties is an 

evident attribute of Canyon Reef, the main producing formation in the SCAROC Unit. 

Canyon Reef is a Pennsylvanian age limestone carbonate that was exposed to high-

amplitude sea-level fluctuations, resulting the rapid vertical growth of the reef. As a 

result, Canyon Reef formation is characterized by increased heterogeneity and lateral 

and vertical discontinuity of porosity and permeability (Kane 1979; Brnak et al. 2006). 

WAG injection is intended to provide effective profile control in reservoirs with 

communicating layers of variable petrophysical properties, in which the injected fluids 
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have a tendency to flow to high permeability layers and bypass layers with low 

permeability (Gorell 1990). However, in formations with poor vertical communication, 

such as the Canyon Reef, this mechanism might not be as effective. In these reservoirs, 

the vertical distribution of the injected fluids is dominated by permeability contrasts, 

and, unlike reservoirs with communicating layers, it is almost independent of the WAG 

ratio. Fluid flow into each layer is proportional to its fraction of the overall flow 

capacity, kh, where k is the permeability in millidarcy (md) and h is the height of layer in 

ft. Consequently, the most permeable layer receives a higher fraction of the injected 

fluids, compared to the neighboring low-permeability layers. This disparity causes 

reorientation of pressure profiles when alternating the injected fluids, thus reducing 

injectivity. 

 

5.3 Method 

Petrophysical rock classification based on conventional well logs was applied to 

characterize distribution of petrophysical properties and mineralogy. The inputs to the 

rock classification were depth-by-depth estimates of porosity and permeability and 

mineralogy, obtained from the joint-interpretation of conventional well logs. A new 

heterogeneity coefficient was used to quantify spatial variation of rock classes in the 

formation. A comparison of the heterogeneity coefficient in the wells with and without 

anomalous injectivity abnormality during WAG operations can provide insight into the 

impact of formation spatial heterogeneity on injectivity abnormalities. Furthermore, 

variogram analysis was conducted to validate the new heterogeneity coefficient and its 
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application for real-time decision making on selection of the best WAG injectors. The 

following sections provide a detailed description of the method.  

 

 

5.3.1 Well-Log Interpretation 

 

I conducted multi-mineral analysis by joint inversion of conventional well logs to 

estimate petrophysical and compositional properties. The input well logs included 

gamma ray (GR), electrical resistivity, density, neutron porosity, Photoelectric Factor 

(PEF), and compressional-wave slowness. The types of minerals in the formation were 

determined using the available core descriptions and field reports. I estimated porosity 

and water saturation using Wyllie’s time-average equation (Wyllie et al. 1956) and 

Archie’s equation (Archie 1942), respectively. 

Furthermore, I constructed a supervised model based on k-Nearest Neighbors 

(KNN) algorithm (Cover and Hart 1967), with an input of core porosity and permeability 

measurements, to estimate permeability in the well-log domain. The model was trained 

using 80% of the input dataset and tested on the remaining 20%. 
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5.3.2 Petrophysical Rock Classification 

 

An unsupervised artificial neural network was constructed for automatic rock 

classification in the formation using the Kohonen algorithm (Kohonen 2001). The inputs 

for rock classification included depth-by-depth estimates of porosity, permeability, and 

volumetric concentrations of minerals, obtained from well-log interpretation, MICP-

based pore types (determined in Chapter III), and the number of rock classes. I 

determined the latter based on the properties of pre-defined lithofacies, as well as the 

observed variability in the input data. The outcome of the rock classification was the 

rock classes of similar distribution in porosity, permeability, and mineralogy. The 

artificial neural network iteratively classifies the input data into individual groups by 

minimizing their intra-class variance using the Ward’s Hierarchical clustering method 

(Ward 1963; Guha et al. 1998). The input data are iteratively organized and assigned to 

particular nodes on the Self-Organizing Map (SOM), also known as the Kohonen map 

(Kohonen 2001). I conducted geostatistical analysis on the distribution of identified rock 

classes to quantify the spatial heterogeneity, in terms of agglomerated petrophysical 

properties and mineralogy, represented by each rock class. 
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5.3.3 Geostatistical Analysis 

 

Commonly used measures of formation heterogeneity in the petroleum industry 

are the Dykstra-Parsons (Dykstra and Parsons 1950) and the Lorenz (Schmalz and 

Rahme 1950) coefficients. These heterogeneity coefficients provide quantitative 

measures of permeability variations in the formation. However, they do not account for 

the spatial discontinuity in permeability, which is a common feature in complex 

reservoirs. In addition to permeability, distribution of porosity and mineralogy should be 

incorporated for a reliable heterogeneity analysis. Alternatively, heterogeneity analysis 

can be conducted on the distribution of rock classes that are identified based on the 

variation of porosity, permeability, and mineralogy. For this purpose, I introduced a 

spatial heterogeneity coefficient, given by 

H

c
C

N
 ,

 

(5.1) 

where CH is the spatial heterogeneity coefficient, c is the count of the differences in 

the adjacent data pairs (i.e., rock classes), and N is the total number of data points. 

The term c is represented by 

 
1

N

i

i

c P


 ,

 
(5.2) 

where 

1 0i i iP z z    .

 
(5.3) 

zi+1 and zi are the adjacent data points (i.e., rock classes) separated by the sampling 

distance and […] are the Iverson brackets (Iverson 1962). [Pi] is defined to be 1 if Pi is 
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true, and 0 if it is false. CH of 0 corresponds to a homogenous formation, whereas CH of 

1 corresponds to a reservoir that is spatially heterogeneous.  

I performed variogram analysis on the porosity, permeability, and 

mineralogy, assimilated using Principle Component Analysis (PCA), to validate 

application of the introduced heterogeneity coefficient. Variogram analysis is 

commonly applied for characterization of the spatial heterogeneity in formation 

petrophysical properties (Gringarten and Deutsch 1999). The main purpose of a 

variogram analysis is to assess the correlation length of a variable, which represents 

the spatial discontinuity of a variable (e.g., permeability) (Isaaks and Srivastava 

1989).   

I applied PCA to assimilate estimates of porosity, permeability, and mineralogy 

without significant loss of variability in the dataset. The first Principle Component (PC1) 

which contains most of the variability in the input dataset is used for variogram analysis 

(Guide to Statistics 2000). Input data are transformed to PCs using the eigenvectors of 

the covariance matrix. Covariance of a matrix with two variables, x and y, is defined as 
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 (5.4) 

where C is the covariance matrix, xi and yi are depth-by-depth estimates of the first and 

the second variable, respectively, and x and y are the mean values of the x and y 

variables, respectively. I applied spectral decomposition to identify the eigenvalues and 

eigenvectors of the covariance matrix such that  
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TC V V  ,

 

(5.5) 

where Λ is the matrix of eigenvalues, V is the eigenvector matrix, and VT indicates the 

transpose of eigenvector matrix. The eigenvector with the highest eigenvalue provided 

the Principle Component (PC) with the highest contribution to the total variability in the 

dataset. PCs were ranked in the order of their contribution to the variability in the 

dataset. 

 

 

5.4 Results 

 

I applied the described technique to ten wells in the SACROC Unit.  Five of the 

wells under study experienced WAG sensitivity (i.e., injectivity abnormality) and are 

denoted by Well-S-# in this chapter. The other five wells were WAG-insensitive (with 

no injectivity abnormality) and are labeled as Well-I-#. Core porosity and permeability 

measurements were available in eight wells. I conducted multi-mineral analysis using 

the available conventional well logs to assess porosity, permeability, and mineralogy in 

all wells. As the productive interval of the Canyon Reef is mainly composed of 

limestone and minor amounts of shale, the types of minerals in the multi-mineral 

analysis were assumed to be calcite and clay. The outcome of the multi-mineral analysis 

was depth-by-depth estimates of porosity, volumetric concentrations of minerals, and 

water saturation. The estimates of porosity were validated using the available core 

measurements of porosity. Fig. 5.2 shows the estimates of porosity, with an approximate 
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average relative error of 20%, compared to core measurements of porosity. Core 

descriptions were used to verify the estimates of mineralogy. Assessment of water 

saturation is not a focus of this work, as the SACROC Unit has undergone extensive 

water flooding.  

 
Fig. 5.2—SACROC Unit: comparison of porosity estimated from multi-mineral analysis, against core 

measurements. Estimates of porosity have an approximate average relative error of 20%. 

 

Furthermore, I estimated permeability by constructing a supervised KNN-based model 

using core porosity and permeability measurements. The model was trained by an input 

of core porosity and an output of core permeability in six wells and then was tested on 

the other two cored wells for quality control. Fig. 5.3 shows the estimates of 

permeability against core measurements of permeability in the two tested wells. The 

average relative error associated with the estimates of permeability in the tested dataset 

was approximately 34%. 
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I then performed rock classification using the depth-by-depth estimates of 

porosity, permeability, and volumetric concentrations of clay and calcite, and MICP-

based pore types (refer to Chapter III) in all ten wells. Three rock classes were identified 

on account of the variability in porosity, permeability, and mineralogy. Table 5.1 lists 

the properties of the identified rock classes.  

 
Fig. 5.3—SACROC Unit: comparison of permeability estimated by KNN-based supervised model, against 

core measurements. Estimates of permeability have an approximate average relative error of 34%. 
 

 
Rock Class Porosity Permeability Volumetric Concentration of 

Clay 
1 0.16 ± 0.02 133.30 ± 4.30 0.06 ± 0.01 

2 0.10 ± 0.00 126.60 ± 9.74 0.07 ± 0.00 

3 0.04 ± 0.01 92.30 ± 10.50 0.21 ± 0.02 

Table 5.1—SACROC Unit: general properties of the identified petrophysical rock classes. 

 

 
Rock class 1 is best rock class, characterized by the highest porosity and permeability, 

and the lowest volumetric concentration of clays. Rock class 3, on the other hand, is the 

worst rock class with the lowest porosity and permeability, and the highest clay content. 

10
-1

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

10
3

Core Permeability (md)

E
st

im
a

te
d

 P
e
r
m

e
a

b
il

it
y

 (
m

d
)



 

129 

 

Moreover, Figs. 5.4 and 5.5 illustrate conventional well logs and results of multi-mineral 

analysis, permeability assessment, and rock classification in a WAG-sensitive well and a 

WAG-insensitive well, respectively.  

 

 

 
Fig. 5.4—SACROC Unit: conventional well logs and results of multi-mineral analysis, permeability 

assessment, and rock classification in Well-S-4 (WAG sensitive). Tracks from left to right include, Track 

1: depth; Tracks 2-6: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, PEF, 

compressional-wave slowness, and apparent resistivity logs; Track 7: estimates of volumetric 

concentrations of calcite and clay; Track 8: estimates of total porosity, compared to core measurements 

(red dots); Track 9: estimates of water saturation; Track 10: estimates of permeability, compared to core 

measurements; Track 11: petrophysical rock classes. 
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Fig. 5.5—SACROC Unit: conventional well logs and results of multi-mineral analysis, permeability 

assessment, and rock classification in Well-I-5 (WAG insensitive). Tracks from left to right include, Track 

1: depth; Tracks 2-6: GR, caliper, neutron porosity (in water-filled limestone units), bulk density, PEF, 

compressional-wave slowness, and apparent resistivity logs; Track 7: estimates of volumetric 

concentrations of calcite and clay; Track 8: estimates of total porosity, compared to core measurements 

(red dots); Track 9: estimates of water saturation; Track 10: estimates of permeability, compared to core 

measurements; Track 11: petrophysical rock classes. 

 

Fig. 5.6 shows a side-by-side comparison of the outcome of rock classification in all ten 

wells. The distribution of rock classes appears to be more heterogeneous in the WAG-

sensitive wells, compared to the distribution of rock classes in the WAG-insensitive 

wells. This observation was confirmed by the new spatial heterogeneity coefficient that 

quantified the distribution of rock classes in all the wells. 
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Fig. 5.6—SACROC Unit: the results of rock classification in five WAG-sensitive and five WAG-insensitive wells. Distribution of rock classes in 

WAG-sensitive wells is relatively more heterogeneous compared to WAG-insensitive wells. 
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Fig. 5.7 illustrates the identified spatial heterogeneity coefficient in all ten wells. The 

comparison of the average spatial heterogeneity coefficients of the WAG-sensitive wells 

and the WAG-insensitive wells showed that the spatial heterogeneity of the formation is 

approximately 30% higher in the WAG-sensitive wells. 

 
 

 

 
Fig. 5.7—SACROC Unit: the spatial heterogeneity coefficient determined in five WAG-sensitive and 

five WAG-insensitive wells. The average value of the spatial heterogeneity coefficient in the WAG-

sensitive wells is approximately 30% higher than that in the WAG-insensitive wells. 

 

Additionally, Fig. 5.8 indicates the average concentration of rock classes in the WAG-

sensitive and WAG-insensitive wells. The results illustrate 32% and 43%, higher 

average concentration of rock classes 1 and 2, respectively, in the WAG-sensitive wells, 

as compared to the WAG-insensitive wells. The higher values of spatial heterogeneity 
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with the occurrence of the injectivity loss during WAG operations in the WAG-sensitive 

wells.  

 

 
Fig. 5.8—SACROC Unit: the average concentration of three rock classes in WAG sensitive and WAG 

insensitive wells. The average concentration of rock classes 1 and 2, with relatively high porosity and 

permeability, are 32% and 43%, respectively, higher in the WAG sensitive wells, compared to the WAG 

insensitive wells. 
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permeability, and volumetric concentrations of calcite and clay in all ten wells. I then 

conducted variogram analysis on the determined PC1 using the exponential variogram 

model. Figs. 5.9 and 5.10 show the variograms of Well-S-1 and Well-I-, respectively.  

 

 
Fig. 5.9—SACROC Unit: variogram analysis in Well-S-1. The estimated correlation length, λ, is 

approximately 20 ft. 

 
 

 

 
Fig. 5.10—SACROC Unit: variogram analysis in Well-I-1. The estimated correlation length, λ, is 

approximately 35 ft. 
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The first structure displayed on the variogram plot was used to determine the correlation 

length, as the first few variogram points are known to be more reliable for model-fitting 

and determination of the correlation length (Beatty 2010). The correlation lengths in 

Well-S-1 and Well-I-1 were approximately 20 ft and 35 ft, respectively. Fig. 5.11 

illustrates all variograms of (a) WAG-sensitive wells and (b) WAG-insensitive wells. 

The results show that the variograms of the WAG-sensitive wells correspond to a 

smaller correlation length and a higher heterogeneity, compared to those of the WAG-

insensitive wells. 

The heterogeneity analysis on petrophysical rock classes using the new 

coefficient involves minimal computational time and effort, as compared to the 

combined PCA and variogram analysis for quantifying the spatial distribution of 

petrophysical properties and volumetric concentrations of minerals.  
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(a) 

 

(b) 

Fig. 5.11—SACROC Unit: variogram analysis in (a) five WAG-sensitive and (b) five WAG-insensitive 

wells. The variograms of WAG-insensitive wells exhibit larger correlation length and are more 

homogeneous, compared to the variograms of WAG-sensitive wells. 
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5.5 Conclusions 

 

In this chapter, I investigated the impact of spatial heterogeneity in the 

distribution of petrophysical rock classes on the WAG injectivity loss in ten wells of the 

SACROC Unit. I conducted petrophysical rock classification using an unsupervised 

artificial neural network, with inputs of porosity, permeability, pre-defined pore types, 

and volumetric concentrations of minerals. A new heterogeneity coefficient was 

introduced and applied for quantifying the spatial variability of the identified rock 

classes. I determined the heterogeneity coefficients in all ten wells and compared their 

magnitude to investigate the impact of the formation spatial heterogeneity on the WAG 

injectivity loss. The results showed that in the wells with WAG injectivity loss, the 

distribution of rock classes is approximately 30% more heterogeneous, compared to the 

wells with no injectivity loss. In the same wells, I also observed about 32% and 43% 

higher occurrence of rock classes 1 and 2, respectively, compared to the wells with no 

injectivity loss. PCA on petrophysical properties and mineralogy was conducted in 

conjunction with variogram analysis to validate the outcome of heterogeneity analysis 

using the new coefficient.  

The results are promising for successful application of the introduced well-log-

based method for pre-selection of candidate wells for WAG injection for successful 

enhanced oil recovery. Although formation spatial heterogeneity can affect the success 

of WAG operations, there remains other formation properties and WAG design 

parameters that must be further investigated for their impact on WAG sensitivity.    
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CHAPTER VI  

ROCK CLASSIFICATION IN THE HAYNESVILLE SHALE BASED ON 

PETROPHYSICAL AND ELASTIC PROPERTIES ESTIMATED FROM WELL 

LOGS* 

 

Rock classification can enhance fracture treatment design for successful field 

developments in organic-shale reservoirs. Petrophysical and elastic properties of the 

formation are both important to consider when selecting the best candidate zones for 

fracture treatment. Rock classification techniques based on well logs can be 

advantageous compared to conventional ones based on cores and enable depth-by-depth 

formation characterization. This chapter proposes and evaluates three rock classification 

techniques in organic-rich shale formations which incorporate well logs and well-log-

based estimates of elastic properties, petrophysical properties, mineralogy, and organic-

richness. The three rock classification techniques include (a) a 3D cross-plot analysis of 

organic richness, volumetric concentrations of minerals, and rock brittleness index, (b) 

an unsupervised artificial neural network, built from an input of well logs, and (c) an 

unsupervised artificial neural network, constructed using an input of well-log-based 

estimates of petrophysical, compositional, and elastic properties. The self-consistent  

 

_______________________________________ 

*Reprinted with permission from “Rock Classification in the Haynesville Shale Based 

on Petrophysical and Elastic Properties Estimated from Well Logs” by Mehrnoosh 

Saneifar, Alvaro Aranibar, and Zoya Heidari, 2014. SEG Interpretation Journal, 3, 

SA65–SA75, Copyright 2014 by the Society of Exploration Geophysicists and American 

Association of Petroleum Geologists. http://dx.doi.org/10.1190/INT-2013-0198.1. 
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approximation model is applied to estimate elastic rock properties. This model enables 

estimation of the elastic properties based on the well-log-derived estimates of 

mineralogy and the shapes of rock components, in the absence of acoustic-wave velocity 

logs. Finally, the three proposed techniques were applied to the Haynesville Shale for 

rock classification. The identified rock types were verified using thin-section images and 

the previously-identified lithofacies. The results showed that well logs can be directly 

used for rock classification instead of petrophysical/compositional properties obtained 

from well-log interpretation. Use of well logs, instead of the well-log-derived estimated 

properties, can reduce uncertainty associated with the physical models used to estimate 

elastic moduli and petrophysical/compositional properties. The three proposed well-log-

based rock classification techniques can potentially enhance fracture treatment for 

production from complex organic-shale reservoirs through (a) detecting the best 

candidate zones for fracture treatment and (b) optimizing the number of required fracture 

stages. 

 

 

6.1 Introduction 

 

Recent advances in completion techniques such as hydraulic fracturing have 

transformed organic-shales into economic plays during the past decade. Production from 

these resources is challenged by the complex and tight pore structures of the shale 

reservoirs (King 2010). Parameters such as hydrocarbon content and formation porosity 



 

140 

 

alone are not sufficient for sweet-spot selection in organic-shale formations. It is 

possible to have a well with good storage capacity (porosity) and high total organic 

content (TOC), but small hydrocarbon production because of hydraulic fracture failure 

(Gupta et al. 2012). Petrophysical, compositional, and elastic properties are needed to 

select hydraulic fracture initiation points in organic-shale reservoirs. However, selection 

of fracture locations can be difficult due to the heterogeneous distribution of rock 

properties in organic-shale formations. Rock classification can be used to improve 

fracture placement. 

Rock classification in conventional reservoirs has been proven to be effective for 

subsurface reservoir description (Xu et al. 2012; Xu and Torres-Verdin 2013a and 

2013b). However, conventional rock typing techniques using core porosity and core 

permeability measurements (Amaefule et al. 1993; Leverett 1941; Lucia 2007; Pittman 

1992) are not reliable for organic-shale reservoirs. Unlike in carbonate and sandstone 

formations, ranges of porosity and permeability variation in organic-shale formations are 

narrow. Furthermore, the uncertainty in laboratory measurements of the ultra-low 

permeability is significant in these formations (Kale et al. 2010).  

Recent studies on rock classification in organic-shale reservoirs were based on 

core measurements of TOC, porosity, and mineralogy (Gupta et al. 2012; Kale et al. 

2010). Hammes and Frébourg (2012) identified the main lithofacies in the Haynesville 

Shale using an extensive core database. Characterization of rock heterogeneity and rock 

typing based on core data in organic-shale reservoirs requires a large database of core 

measurements. They usually cover small depth sampling intervals. However, acquisition 
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of a large core database is expensive and uncertainties in core measurements in organic-

shale formations are large.  

Well logs are good alternative input data for rock typing in organic-shale 

reservoirs, where core measurements are sparse and uncertain. Popielski et al. (2012) 

conducted rock classification in the Barnett and the Haynesville shales based on bed-by-

bed estimates of total porosity, concentrations of kerogen and other minerals, and fluid 

saturations, simultaneously obtained from nonlinear joint inversion of well logs. 

However, elastic rock properties should be included in rock classification for a reliable 

selection of fracture candidate zones (Gupta et al. 2012).   

Elastic rock properties (e.g., Young’s modulus and Poisson’s ratio) provide 

information about brittleness of a formation and its reaction to fracture treatment. 

Poisson’s ratio and Young’s modulus reflect the possibility of fracture initiation and the 

ability of the rock to keep the fracture open after propagation, respectively (Rickman et 

al. 2008). Gupta et al. (2012) and King (2010) also discuss the influence of Young’s 

modulus and Poisson’s ratio on the ability of the rock to be fractured. They agree with 

Rickman et al. (2008) on the possible increased fracture potential of rocks with high 

Young’s modulus and low Poisson’s ratio. In situ assessment of elastic rock properties in 

organic-shale formations, however, can be complicated. Previous publications showed 

that empirical rock-physics techniques might not be reliable in organic-shale formations 

which can result in estimates that do not agree with laboratory measurements (Jiang and 

Spikes 2011). Furthermore, the abnormally high pore pressure in geopressured shale-gas 

formations (e.g., the Haynesville Shale) causes a slow-down in the first compressional 
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arrival that does not represent the true elastic properties of the formation (Parker et al. 

2009). Effective medium theories are other alternatives that can be applied to estimate 

elastic properties in complex organic-shale formations (Jiang and Spikes 2011; Montaut 

et al. 2013). They take into account the impact of shapes and volumetric concentrations 

of rock components (i.e., minerals and pore space) in estimation of elastic properties.  

In this chapter, three well-log-based rock classification techniques based on 

petrophysical, compositional, and elastic properties are proposed and compared. The 

three proposed rock classification techniques include (a) 3D cross-plot analysis of 

organic richness, volumetric concentrations of minerals, and rock brittleness index, (b) 

unsupervised artificial neural network constructed from a direct input of well logs, and 

(c) unsupervised artificial neural network constructed using an input of well-log-based 

estimates of petrophysical, compositional, and elastic properties. The main advantage of 

the three proposed rock classification techniques, compared to the previous rock 

classification methods in organic-shale formations (Gupta et al. 2012; Hammes and 

Frébourg 2012; Kale et al. 2010; Popielski et al. 2012), is the inclusion of well-log-based 

estimates of elastic properties, in addition to petrophysical and compositional properties, 

in rock classification. The proposed rock classification techniques can be applied to 

enhance selection of fracture candidate zones and production planning in organic-shale 

reservoirs. The following sections describe the proposed techniques and their application 

to the Haynesville Shale. 
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6.2 Method  

 

In this section, I first describe the three proposed rock classification techniques 

(a) 3D cross-plot analysis of organic richness, volumetric concentrations of minerals, 

and rock brittleness index, (b) unsupervised artificial neural network using an input of 

well logs, and (c) unsupervised artificial neural network built from an input of well-log-

based estimates of petrophysical, compositional, and elastic properties. Next, I explain 

the methods employed to obtain the well-log-based estimates of petrophysical, 

compositional, and elastic properties. 

 

 

6.2.1 Three Rock Classification Techniques 

 

In the first rock classification technique, I applied a 3D cross-plot analysis to 

identify different rock classes based on well-log-derived properties, including organic 

richness, volumetric concentrations of minerals, and rock brittleness index. I used the K-

means clustering technique (MacQueen 1967; Lloyd 1982; Spath 1985) to identify 

different rock classes.  

In the second and the third rock classification techniques, unsupervised artificial 

neural network was applied to classify automatically different rock types in organic-

shale formations (Saneifar et al. 2014a). The difference between the second and the third 

techniques was the input data to the network. Fig. 6.1 shows the input data and the 
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output of two unsupervised artificial neural networks used in the second and the third 

rock classification techniques.  

 

 

(a) 

 

(b) 

Fig. 6.1—Workflows showing inputs and output (i.e., rock classes) of the unsupervised artificial neural 

networks used in the second and the third rock classification techniques in the Haynesville Shale. (a) The 

second rock classification technique: the input data to the artificial neural network include well logs; (b) 

The third rock classification technique: the input data to the artificial neural network include well-log-

based estimated properties. 

 

The input data for both artificial neural networks were selected to be representative of 

petrophysical, compositional, and elastic properties of the formation. Fig. 6.1a shows the 

second rock classification technique based on an artificial neural network, built using an 

input of well logs, including bulk density, neutron porosity, photoelectric factor (PEF), 

apparent deep resistivity, compressional- and shear-wave slowness, and Elemental 
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based on an artificial neural network, constructed using an input of well-log-based 

estimated properties, including TOC, Poisson’s ratio, Young’s modulus, total porosity, 

and volumetric concentrations of minerals. The number of rock types, determined based 

on previous field studies (Hammes and Frébourg 2012), thin sections, and core images, 

were also inputs to both networks. 

The applied artificial neural networks adopted a Self-Organizing Map (SOM), 

also known as Kohonen map, to index different input parameters by a fuzzy clustering 

algorithm (Kohonen 2001). The fuzzy clustering algorithm enables classifying input data 

with similar behavior. The self-organizing process includes simple iterative steps to 

organize similar input data and to assign them to particular nodes on the map. Unlike a 

supervised artificial neural network, an unsupervised network does not require training 

with pre-determined rock classes (Gottlib-Zeh 2000).  The following sections explain the 

methods to obtain input data for all three proposed rock classification techniques. 

 

 

6.2.2 Well-Log Interpretation 

 

A joint inversion of PEF, bulk density, neutron porosity, apparent resistivity, 

compressional- and shear-wave slowness, and ECS logs was conducted to estimate total 

porosity and volumetric/weight concentrations of minerals and fluids. The assumed 

petrophysical and compositional model included non-clay minerals, clay minerals, 

organic matter, fluid saturations, and total pore space (Ambrose et al. 2010; Quirein et 
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al. 2010). The types of existing minerals were identified based on core X-Ray 

Diffraction (XRD) measurements (Saneifar et al. 2014a).   

The large number of unknown petrophysical and compositional properties leads 

to non-uniqueness of the results. To mitigate this non-uniqueness, well-log-based 

estimates of volumetric concentration of kerogen were used as an input to the joint 

inversion of well logs. The logR technique was employed to estimate TOC using 

compressional-wave slowness and resistivity well logs (Passey et al. 1990; Quirein et al. 

2010). Estimates of TOC were verified using core measurements (Saneifar et al. 2014a). 

Volumetric concentration of kerogen was then calculated based on the estimates of TOC 

and by taking into account the organic maturity of the formation (Passey et al. 1990; 

Quirein et al. 2010).   

 

 

6.2.3 Assessment of Kerogen Porosity 

 

Kerogen porosity corresponds to the hydrocarbon storage capacity in organic-

rich shale formations and, therefore, it is important to be taken into account in rock 

classification in these formations. I estimated kerogen porosity using a model introduced 

by Alfred and Vernik (2012). This model assumes that kerogen pore space is filled with 

hydrocarbon, and water is stored in the non-kerogen matrix. Kerogen porosity in this 

model is defined by kerogen pore volume divided by kerogen bulk volume. The first step 

to estimate kerogen porosity is to identify kerogen density. To estimate kerogen density, 
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I derived the correlation between grain density and total organic content (TOC) using 

core measurements (Quirein et al. 2010). This correlation is given by 

1
0.003TOC 0.36

grain
  ,

 
(6.1) 

in the Haynesville Shale field example evaluated in this chapter. I then estimated 

kerogen density by assuming TOC is equal to 100%. The constants in Eq. 6.1 can be 

updated for different formations using core measurements. 

I then estimated kerogen porosity by solving the bulk density equation given by  

 

(6.2) 

where k and nk are kerogen and non-kerogen porosities, b and nk are bulk density and 

non-kerogen matrix density, and bk and bnk are kerogen and non-kerogen bulk densities 

(Alfred and Vernik 2012). Kerogen and non-kerogen bulk densities are given by  

  ( )bk k k k hc      

 

(6.3) 

and 

( ),bnk nk nk nk w      

 

(6.4) 

respectively, where k is kerogen density, hc is hydrocarbon density, and w is water 

density. Non-kerogen porosity and A are given by 

k bk
nk t

bnk

V

V


  

 
(6.5) 

and 

(1 )[ ( ) ],k nk k k kA TOC C      

 

(6.6) 

 (1 )( )
,

( )

nk nk bnk bk
b bnk

nk k nk

TOC

A TOC

   
 

  
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respectively, where t is total porosity, Vbk is volumetric concentration of kerogen, Vbnk is 

non-kerogen bulk volumetric concentration, and Ck is organic carbon percentage in 

kerogen. I assumed that the organic carbon percentage in kerogen is equal to the inverse 

of kerogen density (Quirein et al. 2010) as given by 

1.k kC  

 

(6.7) 

 

 

6.2.4 Assessment of Elastic Properties of the Rock 

 

An effective medium theory, the self-consistent approximation, was used to 

estimate elastic properties of the rock (Mavko et al. 2009). The self-consistent 

approximation model incorporates the effect of mineralogy as well as shape and elastic 

properties of matrix inclusions in estimation of effective elastic properties of the porous 

media. This technique estimates the effective bulk and shear moduli by solving the 

coupled equations given by 

* *

1
( ) 0

N i

i i SCi
x K K P


 

 

(6.8) 

and 

* *

1
( ) 0

N i

i i SCi
x Q 


  ,

 

(6.9) 

where i refers to each rock component, xi is the volumetric concentration of the rock 

component i, Ki and μi are the bulk and the shear moduli of the rock component i, N is 

the total number of inclusions, and K*
SC and μ*

SC are the effective bulk and shear moduli 
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of the rock. Estimates of the volumetric concentrations of the rock components are 

obtained using well-log interpretation. The factors P*
i and Q*

i correspond to the shape 

geometry of each rock component and are functions of the aspect ratio and the elastic 

moduli of individual rock components, as well as effective elastic moduli of the rock. P*
i 

and Q*
i are determined using equations provided by Berryman (1995). The aspect ratios 

for grains and pores were initially determined based on thin-sections and then were 

iteratively updated in each rock class to guarantee an agreement between the estimated 

elastic moduli and core measurements (Saneifar et al. 2014a). 

The self-consistent approximation model estimates high-frequency behavior for 

saturated rocks in terms of the wave induced fluid flow. Additionally, this model 

estimates homogenized low-frequency elastic properties. The self-consistent 

approximation simulates rocks with isolated cavities with respect to the flow where there 

is no time for wave-induced pore pressure to equilibrate. Therefore, the self-consistent 

approximation is reliable for tight organic-shale formations because their permeability is 

in the nano-Darcy range. Furthermore, the pores can be assumed to be isolated with 

minimal hydraulic communication within the fluid components of the rock (Jiang and 

Spikes 2011). 
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6.2.5 Brittleness Index 

 

Brittleness index is a function of (a) fracture initiation potential in a rock, 

represented by Young’s modulus and (b) the capability of the rock to maintain a fracture, 

reflected by Poisson’s ratio. I quantified the brittleness of the rock based on dynamic 

Young’s modulus and Poisson’s ratio using a model introduced by Rickman et al. 

(2008). The brittleness index, expressed as a percentage, is calculated via 

 
100,

2

Britt Britt
Index

E
Britt

 
  
 

 

(6.10) 

where EBritt and ʋBritt are normalized Young’s modulus and Poisson’s ratio, respectively, 

given by 

min

max min

Britt

E E
E

E E




  
(6.11) 

and 

max

min max

,Britt

 


 




  
(6.12) 

where Emax and Emin are the maximum and the minimum Young’s moduli, and ʋmax and 

ʋmin are the maximum and the minimum Poisson’s ratios, respectively. Dynamic 

Young’s modulus and Poisson’s ratio were calculated using the well-log-based estimates 

of bulk and shear moduli (i.e., K*
SC and *

SC) from the self-consistent approximation 

(Birch 1960). 
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6.3 Field Example: The Haynesville Shale 

 

The three proposed rock classification techniques, described in the method 

section, were applied to a dataset acquired from a well in the upper Jurassic Haynesville 

Shale in Caddo Parish, Louisiana (Saneifar et al. 2014a). The organic-rich Haynesville 

Shale is currently one of the most productive shale-gas plays in the United States 

(Hammes et al. 2011). It extends through part of northeast Texas and northwest 

Louisiana and is bordered by the Bossier shale from above and the Smackover limestone 

from below. The Haynesville Shale is composed of clay, organic matter, siliceous silt, 

and carbonates. Although the carbonate fraction is mainly calcite, in some layers calcite 

is replaced by dolomite, resulting in dolomite being the dominant carbonate mineral. The 

porosity ranges from 8% to 12%, and TOC varies from 1% to 8.5% (Hammes et al. 

2011).  

Development of the Haynesville Shale is known to be challenging due to its 

highly laminated nature and abruptly changing reservoir properties. A reliable rock 

classification is required for optimizing completion design and production enhancement 

in this formation. Hammes and Frébourg (2012) conducted lithofacies classification 

based on mineralogy, fabric, biota, and texture. Their identified lithofacies included (a) 

unlaminated peloidal mudstone (i.e., the most organic-rich facies), (b) laminated peloidal 

calcareous or siliceous mudstone, (c) bioturbated calcareous or siliceous mudstone, and 

(d) organic-poor facies. Although a comprehensive study on the geological attributes can 

contribute significantly to reservoir development, a reliable petrophysical rock 
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classification can quantitatively categorize rock classes based on petrophysical, 

compositional, elastic properties.  

The first step to obtain petrophysical, compositional, and elastic properties was to 

conduct joint-interpretation of well logs and core measurements (Saneifar et al. 2014a). 

Table 6.1 summarizes the assumed Archie’s parameters and fluid and formation 

properties used for well-log interpretation. The types of matrix mineral components were 

chosen based on XRD measurements. To minimize the number of unknown parameters 

and, consequently, the non-uniqueness of the results, minerals with similar physical 

properties such as illite-mica and mixed-layer clay were grouped. Then, minerals with 

less than 2.5% volumetric concentration were eliminated from the initial 

petrophysical/compositional model. The matrix components assumed in the model 

included quartz, plagioclase, calcite, dolomite, pyrite, illite, kerogen, gas, and saline 

water. To further decrease the non-uniqueness of the results from the joint inversion of 

well logs, a linear correlation between weight concentrations of quartz and plagioclase 

based on XRD data was included. The outputs of the joint inversion of well logs 

included estimates of porosity, fluid saturations, and volumetric/weight concentrations of 

clay and non-clay minerals (Saneifar et al. 2014a). The estimated volumetric 

concentrations of rock components were then used to estimate kerogen porosity using 

Eqs. 6.1–6.7. 
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Variable Value Units 

Archie’s Winsauer factor, a 1.00 ( ) 

Archie’s porosity exponent, m 2.40 ( ) 

Archie’s saturation exponent, n 2.00 ( ) 

Formation-water salt concentration 200 kppm NaCl 

Bound-water salt concentration 200 kppm NaCl 

In situ water density 1.05 g/cm3 

In situ gas density 0.19 g/cm3 

In situ kerogen density 1.3 g/cm3 

Formation temperature 140 °C 

Table 6.1—Summary of assumed Archie’s parameters and fluid and formation properties. 

 

Next, effective bulk and shear moduli were estimated using the self-consistent 

approximation method. Spherical shapes were assumed for stiffer rock components (e.g., 

quartz) and penny-crack shapes were assumed for softer rock components (e.g., illite). 

Reservoir fluids were assumed to fill the penny-shaped cracks. Calcite was partially 

included with a spherical shape and the rest with a penny-crack shape, based on pore-

scale core images in the Haynesville Shale (Saneifar et al. 2014a).  

Fig. 6.2 shows the well logs and the estimates of petrophysical, compositional, 

and elastic properties including total porosity, kerogen porosity, shear and bulk moduli, 

water saturation, and volumetric concentrations of minerals compared to the available 

core measurements. Relative errors of less than 13% and 10% were observed in the 

estimates of bulk and shear moduli, respectively, compared to the core measurements.  
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Fig. 6.2—Petrophysical and compositional well-log interpretation in the Haynesville Shale. Tracks from 

left to right include, Track 1: depth; Tracks 2-6: gamma ray (GR), apparent deep resistivity, neutron 

porosity (in water-filled limestone porosity units), bulk density, PEF, and compressional-wave slowness 

logs; Track 7: volumetric concentrations of minerals estimated using well logs; Track 8: solid volumetric 

concentrations of minerals obtained using XRD measurements; Track 9-10: total porosity and total water 

saturation, compared against core measurements; Track 11-12: Well-log-based estimates of bulk and shear 

moduli, compared against core measurements; Track 13: kerogen porosity (i.e., kerogen pore volume 

divided by kerogen bulk volume). 

 

I then quantified the brittleness of the formation by calculating the rock brittleness index 

using well-log-based estimates of elastic properties. Results depicted in Fig. 6.3 show 

that an increase in Young’s modulus and a decrease in Poisson’s ratio increases 

brittleness in the Haynesville Shale field example. Mineralogy of the formation as well 

affects rock brittleness. Fig. 6.4 shows the impact of the increase in volumetric 

concentrations of quartz and illite on the brittleness index in the Haynesville Shale. 

Higher quartz concentration results in an increase in brittleness index, whereas higher 

illite concentration results in a decrease in brittleness index. I found that the impact of 
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calcite and dolomite concentrations on the brittleness is not significant in the 

Haynesville Shale. 

 

 

(a) 

 

(b) 

Fig. 6.3—Impact of (a) Poisson’s ratio and (b) Young’s modulus on rock brittleness index in the 

Haynesville Shale. Brittleness index, Young’s modulus, and Poisson’s ratio are estimated using well logs. 
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(a) 

 

(b) 

Fig. 6.4—Impact of volumetric concentrations of (a) quartz and (b) illite on the rock brittleness index in 

the Haynesville Shale. Volumetric concentrations of minerals and the brittleness index are estimated using 

well logs. 
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Next, I implemented the first rock classification technique, 3D cross-plot 

analysis, to identify different rock classes in this field example based on logR, kerogen 

porosity, volumetric concentrations of minerals (i.e., quartz and illite), and rock 

brittleness index. Figs. 6.5 and 6.6 show the 3D cross-plots of logR, brittleness index, 

and volumetric concentrations of quartz and illite, respectively. The color bar in Fig. 

6.6b quantifies kerogen porosity. Fig. 6.6b shows that kerogen porosity is inversely 

proportional to TOC and logR, with a few exceptions. I applied kerogen porosity in the 

first rock classification technique (i.e., 3D cross-plot analysis) to narrow the desired 

depth intervals for production and fracture treatment by avoiding low gas-filled kerogen 

porosity.  

 

 

Fig. 6.5—Cross-plot analysis in the Haynesville Shale: 3D cross-plot of logR, rock brittleness index, and 

volumetric concentration of quartz. The identified rock classes 1, 2, 3, and 4 are represented by orange, 

green, maroon, and blue dots, respectively. 
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(a) 

 

(b) 

Fig. 6.6—Cross-plot analysis in the Haynesville Shale. 3D cross-plot of logR, rock brittleness index, and 

volumetric concentration of illite where (a) Identified rock classes 1, 2, 3, and 4 are represented by orange, 

green, maroon, and blue dots, respectively and (b) the color bar shows kerogen porosity (i.e., kerogen pore 

volume divided by kerogen bulk volume). 

 

Finally, the second and the third rock classification techniques, using two 

unsupervised artificial neural networks, were applied to execute automatic rock 
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classification. In the second rock classification technique, the artificial neural network 

was built using an input of well logs (i.e., bulk density, neutron porosity, PEF, apparent 

deep resistivity, compressional- and shear-wave slowness, and ECS logs) and in the third 

rock classification technique, the artificial neural network was constructed from an input 

of well-log-based estimated rock properties (i.e., TOC, Poisson’s ratio, Young’s 

modulus, kerogen porosity, total porosity, and volumetric concentrations of calcite, illite, 

and quartz). I assumed four rock types in this formation, based on the previous field 

studies (Hammes et al. 2011), available thin sections, and core images.   

Fig. 6.7 shows the identified rock classes obtained from the second and the third 

rock classification techniques and the comparison against the rock classes identified 

from cross-plot analysis. Furthermore, the outcomes of both the second and the third 

rock classification techniques were in agreement with the rock classes obtained from 3D 

cross-plot analysis executed in the first technique. A comparison of the results obtained 

from the second and the third rock classification techniques shows that inputs of well 

logs and well-log-based estimated properties to the artificial neural networks, 

respectively, provided similar rock classes, except in limited depth intervals. There were 

not enough core measurements available to prove the reliability of the second or the 

third rock classification technique over the other one in terms of the minor differences in 

the boundaries detected for different rock classes. However, I expect that having 

physical properties (i.e., well logs) as inputs to rock classification instead of estimated 

petrophysical properties can eliminate the uncertainties associated with the assumptions 

made for well-log interpretation.  
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Fig. 6.7—Well-log-based rock classification in the Haynesville Shale. Tracks from left to right include, 

Track 1-6: depth, GR, apparent deep resistivity, neutron porosity (in water-filled limestone porosity units), 

bulk density, PEF, and compressional-wave slowness logs; Track 7: volumetric concentrations of mineral 

constituents; Track 8-9: bulk and shear moduli, compared to core measurements; Track 10: Kerogen 

porosity (i.e., kerogen pore volume divided by kerogen bulk volume); Track 11-12: well-log-based 

estimates of TOC and brittleness index; Track 13-14: identified rock classes using the second and the third 

rock classification techniques, in which well logs and well-log-based estimates of petrophysical and 

compositional properties are inputs to the artificial neural network, respectively; Track 15: rock classes 

using the first rock classification technique, 3D cross-plot analysis, after refinement by including kerogen 

porosity. 

 

Table 6.2 lists the properties of the four identified rock classes in terms of 

organic richness (logR), brittleness index, and volumetric concentrations of quartz and 

illite. I cross-validated the identified rock classes determined from all the three 

techniques using 45 thin-section images obtained at the depths corresponding to the four 

identified rock classes. The properties of the identified petrophysical rock classes (Table 

6.2) were in agreement with the geological lithofacies described by Hammes and 

Frébourg (2012) in the Haynesville Shale. 
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Rock Class 
Brittleness 

Index (%) 
logR 

Volumetric  

Concentration of Quartz 

Volumetric 

Concentration of Illite 

RC1 20-55 0.9-1.8 0.19-0.45 0.20-0.35 

RC2 30-50 0.23-0.9 0.19-0.45 0.20-0.34 

RC3 50-70 0.23-0.9 0.18-0.49 0.15-0.30 

RC4 47-80 0-0.23 0.30-0.56 0.15-0.30 

Table 6.2—Compositional properties and brittleness index of the identified rock classes in the 

Haynesville Shale. 

 

Fig. 6.8 shows four thin-section images from the four identified rock types as 

representatives of those rock types. Based on the results from all three rock classification 

techniques, rock class 4 represents the most brittle rock, while being the least organic-

rich among the other rock classes. Thin-section images at the depth intervals 

corresponding to rock class 4, confirmed a low concentration of kerogen and lack of 

natural fractures (Fig. 6.8). Rock class 4 has similar properties to organic-poor facies, as 

characterized by the lowest TOC among the other lithofacies (Hammes and Frébourg 

2012).  

The petrophysical and elastic properties obtained for rock class 3 showed that 

this rock class is organic-rich and brittle in nature, which is confirmed by the presence of 

kerogen and natural fractures in thin-section images at corresponding depths. The 

characteristics of rock class 3 were consistent with the most abundant facies, laminated 

peloidal siliceous facies, with medium range of TOC and brittleness (Hammes and 

Frébourg 2012). 
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Fig. 6.8—Typical core thin-section images in the four identified rock types. The thin-section representing 

rock class 1 shows unlaminated organic matter (in black), dispersed randomly between siliciclastic and 

carbonaceous grains. The thin-section from rock class 2 contains laminations of burrows and fine-grained 

siliceous grains, organics (black), carbonate, and clay. The thin-section from rock class 3 confirms 

increased abundance of silt-sized siliceous grains, laminated among peloids. The thin-section from rock 

class 4 contains the least amount of the organic matter compared to other rock classes. 

  

The outcomes of all three rock classification techniques showed that rock class 2 

is less brittle compared to rock classes 3 and 4, whereas the kerogen content in rock class 

2 and rock class 3 is similar. Apparent laminations of burrows and fine-grained siliceous 

grains, organics, carbonate, and clay observed on the thin-section images of rock class 2, 

confirm that this rock class has similar properties to bioturbated siliceous facies 

(Hammes and Frébourg 2012).  
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Finally, rock class 1 is the most organic-rich and the least brittle among all the 

identified rock classes. Rock class 1 corresponds to unlaminated, peloidal, siliceous 

facies. The thin-section image of this rock class in Fig. 6.8 shows that organic matter is 

randomly dispersed in the rock among siliciclastic and carbonate grains.  

 

 

6.4 Discussion 

 

The main advantage of the three proposed rock classification techniques, 

compared to the previous ones (Gupta et al. 2012; Hammes and Frébourg 2012; Kale et 

al. 2010; Popielski et al. 2012) in organic-shale formations, is the incorporation of elastic 

properties, in addition to petrophysical and compositional properties. Hence, the three 

integrated rock classification techniques that include elastic properties can be applied to 

identify sweet spots that are good candidates for fracture treatment.  

Among the three rock classification techniques applied, the first one, 3D cross-

plot analysis, is the most conventionally used technique. However, in complex organic-

rich shale formations, several rock properties, such as elastic properties, volumetric 

concentrations of minerals, porosity, TOC, and kerogen porosity, should be incorporated 

for a reliable rock classification. In such cases, the application of conventional 3D cross-

plot analysis might be challenging and can be subjected to significant uncertainty. In the 

second and the third rock classification techniques, the application of unsupervised 

artificial neural networks allows inclusion of more than three input parameters for an 
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automatic and reliable rock classification. In particular, direct application of well logs, as 

inputs to the artificial neural network in the second rock classification technique, allows 

real-time rock classification and can further reduce uncertainties associated with (a) the 

rock physics models used for petrophysical and compositional evaluation of organic-rich 

shale formations and (b) the assumed rock-physics models such as resistivity-porosity-

saturation models (e.g., Archie’s, Waxman-Smits, and dual water models) and effective 

medium theories. 

I estimate elastic moduli by applying an effective medium theory, the self-

consistent approximation, which takes into account shapes and volumetric 

concentrations of rock components. The effective medium theories enable estimation of 

the elastic moduli where compressional- and shear-wave velocity logs are not available 

or where they are not reliable. There are, however, limitations associated with these 

models. The effective medium theories assume isotropic elastic medium of arbitrary 

distributed components with symmetric idealized shapes. This assumption can introduce 

error into the assessment of elastic moduli in formations with significant anisotropy, 

such as the Haynesville Shale, which has a highly-laminated nature. I verified the well-

log-based estimates of elastic moduli in the field example using core measurements. 

Although the number of core measurements were limited in the field example, they were 

sufficient to validate the estimates in different rock types. Access to more core 

measurements would be beneficial for better validation of the accuracy of the well-log-

based estimates of elastic moduli. Nevertheless, I emphasize that there might be 
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uncertainties in core measurements because of the differences between laboratory and 

reservoir conditions. 

Furthermore, none of the three applied rock classification techniques require 

calibration against core measurements. Consequently, they are less influenced by the 

uncertainty associated with core measurements resulting from the use of conventional 

laboratory techniques.  

To further improve the proposed rock classification techniques, assessment of 

brittleness can be improved by assimilating the stress profile and pore pressure. 

Moreover, production data, where available, can be integrated to core-measured and 

well-log-based properties to improve rock classification. 

 

 

6.5 Conclusions 

 

I proposed three well-log-based rock classification techniques in organic-shale 

formations that incorporated petrophysical, compositional, and elastic properties of the 

formation. I applied these three techniques to classify rock types in the Haynesville 

Shale. I then verified the rock classes using thin-section images and the previously-

identified lithofacies in the Haynesville Shale. The rock classes determined using the 

first rock classification technique, 3D cross-plot analysis, are in agreement with the 

results of the second and the third rock classification techniques obtained from 

unsupervised artificial neural networks, with the inputs of well logs and well-log-based 
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estimated properties, respectively. Furthermore, I compared the application of well logs 

in the second rock classification technique against the use of well-log-based estimates of 

petrophysical, compositional, and elastic properties as inputs to the third rock 

classification technique. Rock classification using both the second and the third rock 

classification techniques resulted in similar rock classes. The results are promising for 

the direct application of well logs for rock classification, instead of using the estimated 

properties. 

The well-log interpretation results showed that the rock types with the highest 

organic-richness were the least brittle, because of the ductile nature of the organic 

matter. Therefore, to ensure a successful fracture treatment, the selection of the best rock 

types for initiating fractures needs to be enhanced by taking into account both brittleness 

and organic-richness in rock classification. Furthermore, I showed that assimilating 

kerogen porosity in rock classification can narrow down the choice of good candidate 

depth intervals for production and fracture treatment. An advantage of the well-log-

based rock classification techniques applied in this chapter is their minimal dependency 

on core measurements, which makes them reliable tools for characterization of rock 

classes and heterogeneity in organic-shale formations. 
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CHAPTER VII  

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the main contributions of the research conducted in this 

dissertation. Main conclusions are reiterated, and recommendations regarding future 

research are also provided. 

 

 

7.1 Summary 

 

The objective of this dissertation was to develop an integrated rock classification 

scheme based on conventional well logs and core data to improve characterization of 

spatial heterogeneity in carbonate formations. Thus, I introduced an integrated rock 

classification scheme that incorporates geological attributes, static and dynamic 

petrophysical properties, mineralogy, and elastic properties, estimated from conventional 

well logs, for rock classification in complex formations. The application of conventional 

well logs is emphasized in this dissertation, as the advanced logging tools (e.g., Nuclear 

magnetic resonance and Formation Micro-Imager) are not available in all wells. The 

following are the main contributions of the introduced rock classification method 

compared to previous conventional techniques:  

 Integration of depositional and diagenetic attributes for rock classification in 

carbonate formations by incorporating the impact of the shapes of different pore 
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types and minerals in each geological facies on electrical resistivity 

measurements and formation elasticity.  

 Application of conventional well logs for the depth-by-depth assessment of 

elastic moduli and interparticle and intraparticle porosity, where acoustic well 

logs are not available. 

 Incorporation of depth-by-depth estimates of elastic properties, as well as 

petrophysical properties and mineralogy for rock classification in complex 

formations. 

 Characterization of pore-throat radius distribution, obtained from MICP data, 

using a multi-modal Gaussian function for simultaneous inclusion of pore system 

attributes corresponding to pore modality, pore volume, and pore connectivity. 

An advantage of this approach, compared to previous pore typing techniques, is 

incorporation of no user-defined modality criteria. 

 Integration of MICP-based pore types for reliable rock classification in the core 

and well-log scales. 

 Introduction of rock classification techniques with minimal dependence on core 

measurements, in cases where core data are not adequate for characterizing 

carbonate heterogeneity.  

 Introduction of rock classification methods based on the visible trend of mud 

filtrate invasion on resistivity well logs with different volumes of investigation to 

qualitatively take into account the dynamic petrophysical properties, rooted in 

diagenesis. 
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7.2 Conclusions 

 

This section lists the conclusions based on the results reported in the dissertation. 

 

 

7.2.1 Integrated Rock Classification in Carbonate Formations Based on Elastic and 

Petrophysical Properties Estimated from Conventional Well Logs 

 

i. Petrophysical rock classification can improve selection of candidate zones for 

fracture treatment by taking into account petrophysical, compositional, and 

elastic rock properties.  Rock classification in conjunction with accurate well-

log-based assessment of permeability and water saturation can further improve 

sweet-spot selection, while reducing the cost, by minimizing the number of 

perforations and fracture stages.  

ii. Outcomes of the integrated rock classification in WELL B showed that the low 

values of Young’s modulus estimated at fracture locations may be the reason for 

unsuccessful fracture treatment and negligible production from this well.  

iii. Estimates of interparticle porosity and Young’s modulus in WELL A and WELL 

B were in agreement with core measurements and thin-section images with 14% 

and 8% average relative error, respectively.  
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iv. An improvement of approximately 40% was observed in the assessment of 

interconnected porosity compared to the initial application of Wyllie’s time-

average equation.  

v. Estimates of permeability and water saturation in WELL A and WELL B were 

improved by approximately 50% and 20%, respectively, compared to those from 

conventional techniques. 

 

 

7.2.2 Characterization of Pore Structure in Carbonate Formations Using a Multi-

Modal Gaussian Function for Analyzing the Impact of Pore Systems on Electrical 

Resistivity 

 

i. A quantitative analysis of MICP-based pore-throat radius distributions was 

conducted for pore typing in three wells at the SACROC Unit.  

ii. The three identified pore types were successfully predicted at core-plug and well-

log scales in the SACROC Unit. 

iii. The results indicated a correlation coefficient of approximately 57% between the 

fluid-corrected resistivity measurements and the formation pore types, 

confirming that the pore structure has a strong influence on the electrical 

resistivity measurements. 
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7.2.3 Application of Conventional Well Logs to Characterize Spatial Heterogeneity 

in Carbonate Formations Required for Prediction of Acid Fracture Conductivity   

 

i. Two well-log-based rock classification techniques with minimal dependency on 

core data were introduced including (a) a real-time well-log-derived analytical 

factor and (b) unsupervised artificial neural network.  

ii. A third rock classification technique based on supervised artificial neural 

network was proposed. The supervised network, trained using the available core 

data, can be applied for prediction of rock classes in uncored wells in the field. 

iii. The introduced techniques were successfully applied in two carbonate field 

examples including Hugoton gas field and Happy Spraberry oil field. The results 

obtained for Hugoton gas field suggest that supervised neural network provides 

the most reliable estimates for rock classification and permeability assessment 

among all the introduced methods, with 54% improvement in permeability 

assessment. Direct application of well logs provides a more reliable rock 

classification compared to the application of well-log-based estimates of 

petrophysical/compositional properties. 

iv. In cases with limited core measurements, I recommend the application of the 

introduced analytical rock quality index or unsupervised artificial neural network 

for rock classification. In the Hugoton gas field, I observed 50% and 38% 

relative improvements in permeability assessment using analytical rock quality 
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index and unsupervised artificial neural network for rock classification, 

respectively.  

v. The variogram analysis in both field examples showed that well logs as well as 

well-log-based estimates of petrophysical/compositional properties can be 

applied in variogram analysis in lieu of well-log-based permeability 

estimates, in the lack of enough core data for calibration. This work can be 

further improved by incorporating the accurate volumes of investigation of 

different logging tools based on their geometrical configuration in the 

variogram analysis. 

 

 

7.2.4 An Investigation on the Impact of Heterogeneity in Carbonate Formations on 

Fluid Injectivity Loss during Water-Alternating-Gas Injection 

 

i. I investigated the impact of spatial heterogeneity in the distribution of 

petrophysical rock classes on the injectivity loss experienced during WAG 

injection in the SACROC Unit.  

ii. A new heterogeneity coefficient was introduced for quantifying the spatial 

variability in the identified petrophysical properties. PCA on petrophysical 

properties and mineralogy was conducted in conjunction with variogram analysis 

to validate the introduced heterogeneity coefficient.   
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iii. The results showed that wells with higher heterogeneity in the distribution of 

petrophysical rock classes are more likely to experience injectivity abnormalities 

during WAG injection.  

iv. A higher concentration of rock layers with high porosity and permeability, in the 

wells with heterogeneous distribution of rock classes, can contribute to the 

occurrence of WAG injectivity abnormalities.  

v. The results are promising for successful application of the introduced well-log-

based method for pre-selection of candidate wells for WAG injection for 

successful enhanced oil recovery. 

 

 

7.2.5 Rock Classification in the Haynesville Shale Based on Petrophysical and 

Elastic Properties Estimated from Well Logs 

 

i. I proposed three well-log-based rock classification techniques in organic-shale 

formations that incorporated petrophysical, compositional, and elastic properties 

of the formation. I successfully applied these three techniques to classify rock 

types in the Haynesville Shale. The rock classes were verified using thin-section 

images and the previously-identified lithofacies in the Haynesville Shale.  

ii. Rock classes determined using 3D cross-plot analysis are consistent with the 

results of rock classification using unsupervised artificial neural networks, with 

the inputs of well logs and well-log-based estimated properties.  
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iii. Results are promising for the direct application of well logs for rock 

classification, instead of using the estimated petrophysical and compositional 

properties. 

iv. Well-log interpretation results showed that the rock types with the highest 

organic-richness were the least brittle, because of the ductile nature of the 

organic matter. Therefore, to ensure a successful fracture treatment, the selection 

of the best rock types for initiating fractures needs to be enhanced by taking into 

account both brittleness and organic-richness in rock classification.  

v. Assimilation of kerogen porosity in rock classification can narrow the choice of 

good candidate depth intervals for production and fracture treatment.  

vi. An advantage of the well-log-based rock classification techniques was their 

minimal dependency on core measurements, which makes them reliable tools for 

characterization of rock classes and heterogeneity in organic-shale formations, 

where extensive core data might not be available. 

 

 

7.3 Recommendations 

Although this dissertation focused on addressing some of the challenges in 

carbonate formations, there remain many unsolved problems in the areas of petrophysics 

and rock classification in complex formations. The following is a list of possible 

research avenues for future work that could expand the technical contribution of this 

dissertation: 
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i. An extensive analysis of scale-dependency of petrophysical properties and flow 

characteristics in carbonates reservoirs. 

ii. Comprehensive and quantitative assessment of different pore types (intergrain, 

intercrystal, moldic, interagrain, etc.) in carbonate formations by image analysis 

of SEM images, thin-sections, and micro-CT and CT scans of core samples and 

whole-core samples. 

iii. Introduction of new upscaling techniques for reliable extrapolation of 

petrophysical properties from small measurement scales (e.g., pore scale) to log 

and field scales in heterogeneous formations. 

iv. Formulation of a new and reliable resistivity model for the assessment of water 

saturation in carbonate formations with complex pore systems based on multi-

scale analysis of effective porosity, capillarity effects, and electrical resistivity 

v. Development of well-log-based techniques for the direct assessment of effective 

porosity from resistivity well logs. 

vi. Integration of production data with geological and petrophysical attributes for 

rock classification in carbonate formations. 

vii. Assimilation of stress profiles and pore pressure measurements in the assessment 

of mechanical properties and selection of completion candidate zones. 

viii. Incorporation of geochemical and geomechanical properties to assess maturity 

and fracability for rock classification in unconventional reservoirs. 
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