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ABSTRACT

Concurrent Design of Facility Layout and Flow-Based Department Formation.

(December 2003)

Junjae Chae, B.S., Ajou University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Brett A. Peters

The design of facility layout takes into account a number of issues including the

formation of departments, the layout of these, the determination of the material han-

dling methods to be used, etc. To achieve an efficient layout, these issues should be

examined simultaneously. However, in practice, these problems are generally formu-

lated and solved sequentially due to the complicated nature of the integrated problem.

Specifically, there is close interaction between the formation of departments and lay-

out of these departments. These problems are treated as separate problems that are

solved sequentially. This procedure is mainly due to the complexity of each problem

and the interrelationships between them. In this research, we take a first step toward

integrating the flow-based department formation and departmental layout into com-

prehensive mathematical models and develop appropriate solution procedures. It is

expected that these mathematical models and the solution procedures developed will

generate more efficient manufacturing system designs, insights into the nature of the

concurrent facility layout problem, and new research directions.
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CHAPTER I

INTRODUCTION

A. Motivation

Facilities can be broadly defined as buildings where resources, such as people,

material, and machines, come together for a stated purpose - typically to make a

physical product or provide a service [1]. Facility layout design can be described as an

arrangement of these resources. Manufacturing companies spend a significant amount

of time and money designing or redesigning their facilities because the design of a

facility layout has a tremendous effect on the operation of the system that it houses.

A poor facility layout can be costly and may result in poor system performance as

well as customer dissatisfaction [1]. However, the design of an efficient manufacturing

system must take into account a number of issues including the determination of

the products to be manufactured, the manufacturing or service processes to be used,

the quantity and type of equipment required, and the preliminary process plans.

Additionally, the formation of the manufacturing departments and the layout of these,

the determination of the material handling methods to be used, and the quantity and

types of material handling devices needed to perform the required material handling

are some of the more important issues to be addressed.

To achieve an efficient layout, ideally all of the items mentioned above should be

examined simultaneously. However, in practice these problems are generally formu-

lated and solved sequentially due to the complicated nature of the integrated problem.

An integrated facility layout problem is defined as the simultaneous optimization of

The journal model is IEEE Transactions on Automatic Control.
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Facility layout 

Number of  departments Department formation

Fig. 1. Decision variable interactions

sub-problems, but, in fact, the interaction of the sub-problems makes an integrated

facility layout problem difficult to formalize. Specifically, there is close interaction be-

tween the determination of the number of departments, the formation of departments,

and the facility layout as depicted in Fig. 1.

Most research in facility layout assumes that the areas of the departments are

known although the exact department shapes are typically not specified in advance.

However, it is commonly assumed that departments will take rectangular shapes.

The final solution of the layout problem is a block layout that shows the coordinate

information including the dimensions and location of each department. This block lay-

out does not show the assignment of the manufacturing components to departments.

However, it is generally assumed that the procedure for assigning manufacturing units

to pre-specified groups to form departments has been done a priori. It’s also assumed

that the number of departments, which is one of the parameters of the facility layout

problem, has also been determined by this department formation procedure. This ex-

plains the interaction of those problems as in Fig. 1. The department formation and

layout problems have traditionally been treated as problems to be solved separately

and sequentially. This is mainly due to the complexity of each problem. However,

it is important to consider these problems in an integrated manner. A small change

in one department can affect the entire system layout, and a different layout may

require different forms of departments for achieving the best system efficiency.

In this research, we integrate these problems into comprehensive mathematical
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models. Formulating a model to explicitly represent interrelated decision variables is

very difficult. In this research, we explore new ways of representing this integrated

problem. The models address broader facility layout problems that attempt to cap-

ture several relevant aspects of the overall design problem. Specifically, the models

intend to determine several essential factors that influence the structure of the man-

ufacturing facility. Among these are the assignment of manufacturing components to

departments, the number of departments created, the dimensions of each department,

and the location of the departments in the floor space. This study, we believe, opens

up new research directions that will lead to better layout solutions.

B. Background

The facility layout problem seeks the best arrangement of a set of facilities. Fa-

cilities could be the rooms required in a building, pieces of machinery on an assembly

line, logic blocks on an integrated circuit or something else [2]. Facilities are com-

monly assumed to be departments in a manufacturing system, where the department

is defined as a collection of machines. The traditional objective in determining the

arrangement is to minimize the transport costs that are generated by the manufac-

turing activity. The transportation requirements between machines, departments,

or manufacturing units can be quantified in a from-to chart. Measuring the travel

distance of material between departments is a general method for quantifying the

significance of the paired department relationship. Typically, the centroid of each

department is used as the measuring point.

The traditional layout design problem considers area information or assumes an

equal size constraint for each department. A number of computer-based heuristic

layout algorithms have been developed as construction or improvement layout design



4

algorithms using area information [3, 4, 5, 6, 7, 8, 9]. The computerized layout

algorithm provides only an approximate layout design solution since it may result in

undesired department shapes.

For the equal-sized department layout problem, the quadratic assignment prob-

lem (QAP) [10] is used to model the problem. This approach considers the problem

of assigning n (equal-sized) departments to n pre-determined locations. However,

the optimal solution cannot be obtained for a realistic problem because the QAP

is NP-complete [11]. A modified QAP may model an unequal-area facility layout

problem by breaking the departments and facility floor space into small grids [12].

However, it is difficult to solve even small problems optimally with this method be-

cause splitting departments into grids significantly increases the problem size. This

solution difficulty has led some researchers to conclude that such discrete fashioned

QAP-type models are not applicable for facility layout problems with unequal-sized

departments [13]. A more detailed review of the traditional facility layout literature

is provided in Chapter II.

The mixed integer program (MIP)-based formulation [14] finds the arrangement

of all departments in continuous floor space without violating overlapping and bound-

ary restrictions. Specifically, the facility layout problem (FLP) model is an MIP-based

model for the facility layout problem [15]. In the FLP, the department shape is spec-

ified as rectangular and a bounded perimeter constraint is used as a surrogate area

constraint because the actual area constraint is non-linear (wi ·hi = ai, where wi, hi, ai

represent width, height, and area of department i, respectively). The MIP-based ap-

proach is powerful since it provides more specific information about the system, such

as the dimensions of unequal-sized departments. However, even small size problems

are still extremely difficult to solve optimally. Construction and improvement heuris-

tics have been developed for the FLP to solve large-sized problems.
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When considering unequal area departments, the area constraint wihi = ai is

required to achieve authentic optimality. Since this area constraint is nonconvex and

hyperbolic, most of the previous research on the facility layout problem with unequal

area departments attempts to linearize this constraint. Montreuil [14], Meller et

al. [15], and Lacksonen [16] used linearizations of the area constraint so that the

model would be appropriate for general purpose optimization software packages for

solving mixed-integer linear programming (MILP), such as CPLEX. However, all of

those approaches were based on the assumption that the number of departments and

department areas are known in advance.

A multi-bay structure is one way to incorporate department formation by re-

stricting the layout types. Assignment of departments to bays is analogous to the

process of department formation in the general facility layout problem. The facility

layout problem in multi-bay environments is concerned with determining the most

efficient assignment of departments to parallel bays, where the bays are connected

at one or both ends by an inter-bay material handling system. This problem arises

in the context of heavy manufacturing and in the semiconductor industry, where the

inter-bay material handling system is cost dominant over material movement within

the bays. Thus, the efficiency of the layout is measured mainly in terms of inter-bay

material movement.

Only a few studies in the literature have documented research on multi-bay

manufacturing facility layout [17, 18]. These works define the characteristics of multi-

bay structures as follows: (1) material movement between the bays is limited to

the ends of the bays, (2) inter-bay material handling costs dominate the material

handling costs within the bay, (3) the number of bays and bay areas are known, and

(4) the bay structure is typically designed to have a linear flow production pattern

within each bay. Meller [17] and Castillo and Peters [18] developed models using
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these characteristics of multi-bay manufacturing and presented two-stage solution

procedures for solving this problem.

C. Research Objective

The objective of this research is to develop integrated facility layout models.

The ideal integrated layout design model would integrate all design factors such as

department formation, material handling system selection, production and inventory

control, etc. However, it has so far proved very difficult to create such a model, since,

as noted above, the interactions of the sub-problems make the integrated facility

layout problem difficult to formalize. Thus, we focus in this study on the formation

of departments and the efficient spatial arrangement of those departments.

In order to achieve this design objective, we propose two integrated facility layout

models that capture several aspects of the facility layout problem. These models and

solution procedures can be applied to a variety of manufacturing settings with minor

modifications. The proposed formulations and solution procedures make an important

step towards the development of integrated facility layout models.

This dissertation is organized as follows. A review of the related literature is

presented in Chapter II. Chapter III introduces the integrated department forma-

tion and layout design problem. In this chapter, we consider the determination of

flow-based department formation and the layout design of these departments simulta-

neously. We discuss the linearization procedure, which is not determined a priori for

approximating the department area. A solution procedure using a population-based

algorithm is also presented in this chapter.

The layout design of a multi-bay manufacturing facility with limited bay flexibil-

ity is discussed in Chapter IV. A common characteristic of this facility layout problem
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is that the inter-bay material handling costs typically dominate the within-bay mate-

rial handling costs. Thus, at the facility layout design stage, efficiency is measured in

terms of the inter-bay material handling movement. Bay width flexibility can reduce

inter-bay material handling movement by increasing the opportunities for assigning

departments with heavy interactions to a single bay. This assignment procedure is

comparable to the process of department formation discussed in Chapter III. Here,

a hybrid-genetic algorithm is presented and tested as a solution procedure. Finally,

in Chapter V conclusions drawn from this research and its contributions to the field

are presented.
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CHAPTER II

LITERATURE REVIEW

Layout design is a well-known combinatorial optimization problem; it has been

an active research area for the past few decades [12, 19]. The traditional layout de-

sign problem considers area information, or assumes an equal size constraint, for each

department. The from-to chart, which indicates the transportation requirements be-

tween a pair of departments, or the relationship chart, which specifies the significance

of paired department relationships, can be used as an input method in the traditional

layout design problem. The centroid of a department is often used to represent the

point that is specified as the pick-up/drop-off point in the department.

A number of computer based heuristic layout algorithms, which use provided

area information, have been developed over the years. Departments are assigned to

floor space one at a time with a construction type layout algorithm, e.g., ALDEP

[3], CORELAP [4], and PLANET [5], or an initial layout design is improved by an

improvement layout design algorithm, e.g., CRAFT [6], COFAD [7], MULTIPLE [8],

and SABLE [9]. These computerized layout algorithms provide only an approximate

layout design solution since they may result in an undesired department shape or an

infeasible solution.

Koopmans and Beckman [10] introduced the quadratic assignment problem (QAP)

to model the problem with equal areas and a known set of location sites. The QAP

formulation assigns a department to one location which is fixed and known a priori ;

the efficiency of placing the department in a particular location is dependent on the

location of interacting departments. Since QAP is NP-complete [11], which generally

implies that it is a hard problem to solve, the optimal solution cannot be obtained for
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a realistic problem. This approach is also incapable of solving layout design problems

when the location sites are not specified in advance.

The unequal-area facility layout problem may be modeled as a modified QAP

by splitting the department into small grids with equal area [12]. For grouping small

grids in a department and ensuring that the original department does not become

fragmented at the final block layout, a large artificial flow between the grids needs to

be assigned. However, it is not possible to solve even small problems since the grids

are then treated as departments and this increases the size of the problem.

Another approach is the adjacency graph-based algorithm, which uses adjacency

relationships among departments, e.g., [20, 21, 22, 23, 24]. Specific information about

the size of the department, i.e., the area and shape, is ignored and a node in the graph

represents the department. The arcs connecting the nodes represents the department

adjacency relationships. Three steps are required to develop a layout with this ap-

proach [25]: (1) develop an adjacency graph from the department relationships, (2)

build a dual graph of the adjacency graph, and (3) convert the dual graph into a

block layout. An adjacency graph is usually difficult to transform into a block layout

design. It can result in an undesirable solution due to an umbrella effect where many

departments are adjacent to a single department. Thus, it is necessary to limit the

number of arcs incident at each department to facilitate the steps, and heuristics

need to be used to construct a maximally weighted adjacency graph since such a

problem is difficult in general. This approach does not guarantee optimal results for

unequal-area layout problems such as the QAP [23].

As a more specific, continuous representation of a layout, a mixed-integer pro-

gramming (MIP) formulation was presented by Montreuil [14]. The model is not

based on the traditional discrete (QAP) structure. In MIP, the department shape

specified as a rectangular and a bounded perimeter constraint is used as a surrogate
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area constraint because the actual area constraint is non-linear (li · wi = ai, where

li, wi, ai represent length, width, and area of department i, respectively). Heragu

and Kusiak [26] developed a special case of the model, where the length, width, and

orientation of the department are known in advance.

Although the mixed-integer programming approach is capable of incorporating

specific information about the problem and producing comprehensive results about

the system, optimally solving even small sized problems is difficult. Since the MIP

approach is unsolvable for realistic-sized instances, heuristics have been introduced

to solve large-sized unequal-area problems utilizing continuous representations of the

layout.

Tam [27, 28] introduced LOGIC (named for Layout Optimization using Guillotine-

Induced Cuts), a slicing tree structure that is constructed recursively by partitioning

a rectangular block. The tree structure has branches and interior nodes which repre-

sent the slicing operation, e.g., left cut, right cut, bottom cut or top cut. A simulated

annealing procedure is used to exchange slicing operators in the tree [27] and generate

different rectangular partitioning schemes. For the same layout structure, a genetic

algorithm can also be used for generating a differently partitioned layout [28].

Tate and Smith [29] developed FLEX-BAY, an improvement-type algorithm for

continuous representation. The pre-specified rectangular area is divided in one direc-

tion into bays of varying width, and each bay is divided into one or more rectangular

departments. A dynamic penalty function is used to restrict the shape of unequal

area departments to maintain the feasibility of the layout. A genetic algorithm is

used to evaluate and generate an efficient layout for a given structure. The number of

bays and the number of departments in the bay are implemented by indicating where

the break point exists.

While some research has focused attention on developing heuristics for unequal-
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area department layout, there has been more effort directed at finding direct solutions

for the underlying optimization problem, especially by linearizing the non-linear area

constraints of a department so that the problem can be solved by widely available

software packages. The MIP model of Montreuil [14] used perimeter-based area con-

straint linearization, but this model can lead to large errors in the final area of each

department. Lacksonen [16] proposed piecewise linearization of the actual area con-

straint by adding two binary variables for each department to reduce the error. Meller

et al. [15] improved the accuracy of perimeter-based linearization by adding one real

variable for each department.

Research on the facility layout problem with emphasis on department formation

has been conducted by a number of researchers. However, such research is primarily

focused on the grouping of machines or manufacturing units into families to take

advantage of their similarities in manufacturing and design [30]. The department

may be formed based on the product family, the process, or a combination of both,

and the part-machine incidence matrix is traditionally used to form the department.

The fractal layout [31, 32], an extension of the product family layout, allows for

distribution of machine replicas to multiple departments, so that machine accessibility

from different departments is enhanced. Holonic layout [33] treats each machine as

a self-governing entity that can be placed randomly throughout the manufacturing

facility with no specific department boundary, while the product family and fractal

layout assume that the number of departments and the maximum number of machines

assigned to each department are known in advance. Some recent studies consider

layout issues such as inter-department and intra-department material handling costs

in the context of product family layouts [34, 35].

In brief, the traditional model of facility layout design which results in a block

diagram has limitations in revealing the information necessary for designing manufac-
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turing facilities. Further exploration of integrated facility layout models is necessary.

In particular, formulations of layout designs that contain specific information about

manufacturing systems and formulations that concurrently determine detailed de-

partment formation and specific department locations remain to be addressed.
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CHAPTER III

INTEGRATION OF FLOW-BASED DEPARTMENT FORMATION INTO

FACILITY LAYOUT DESIGN

The general facility layout problem seeks to find the most efficient arrangement

of pre-specified departments. However, because the department formation problem is

closely related to the layout problem, the two need to be integrated to achieve more

efficient facility layouts. In this chapter, we consider the concurrent determination

of layout design and flow-based department formation and attempt to determine the

most efficient assignment of sub-departments to departments in a facility.

A. Problem Description

Arranging departments to minimize total flow distance is the main objective in

our concurrent design problem (as it is in the traditional facility layout problem).

Additionally, the number of departments and the flow-based department formation

are determined simultaneously with the layout. As noted before, the integrated fa-

cility layout problem is difficult to formalize because of the interaction of these sub-

problems. Thus, we limit our problem with several assumptions.

A department is defined as follows:

A manageable-sized collection of machines, manufacturing units, or sub-

departments, covered by a local material-handling device.

We define the flow-based department formation problem as follows:

Assignment or grouping of machines, manufacturing units, or sub-departments

into the department to minimize inter-department traffic.
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In this research, we will use a group of unequal-sized sub-departments to form

a department, where the sub-departments have unequal area and are considered to

be indivisible. The grouping procedure does not consider the specific dimensions of

each sub-department although the area of each sub-department is known. However,

determination of the horizontal and vertical dimensions of each sub-department is

conducted after the grouping procedure is complete.

The formed departments are arranged within the facility boundaries, which are

assumed to form a rectangular shape. The interaction between two departments is

obtained by aggregating the interactions between the sub-departments assigned to

the two departments. Therefore, the layout arrangement depends on the allocation

of sub-departments to the departments and the interaction of the sub-departments

that are not in the same department.

The number of departments is a decision variable that relates to the allowable

size of departments in the facility. Since each department’s size is limited by an

upper and lower bound, we are able to compute the maximum and minimum number

of departments in advance. However, the exact number of departments for the facility

is determined at the time of grouping the manufacturing units into departments.

In this concurrent design of facility layout and department formation problem,

we consider the following:

• Determination of the number of departments,

• Assignment of sub-departments to departments,

• Determination of horizontal and vertical dimensions of each department, and

• Arrangement of departments to minimize the inter-department material han-

dling cost.
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Intra-department layout design is considered after configuring this integrated

problem. Thus, the procedure can be conducted as two separate stages. The proce-

dure of the first stage, the facility layout design and flow-based department formation,

is demonstrated in Sections B to E. Section F presents the within-department layout

procedure.

B. Problem Formulation

1. General Facility Layout Problem

Consider the following parameters:

frs : flow from department r to department s

Ar : area of department r

Lx, Ly : width and length of the facility

lbr, ubr : lower and upper bounds of the dimensions of department r

We can formulate the general facility layout problem as follows.

(FLP-1) min
∑

r

∑
s

frsDrs (3.1)

s.t. lxr · lyr = Ar ∀r (3.2)

cxr +
lxr

2
≤ cxs − lxs

2
+ Lx(1− αrs) ∀r, s (3.3)

cyr +
lyr

2
≤ cys − lys

2
+ Ly(1− βrs) ∀r, s (3.4)

αrs + αsr ≤ 1 ∀r, s (3.5)

βrs + βsr ≤ 1 ∀r, s (3.6)

αrs + βrs ≥ 1 ∀r, s (3.7)

Drs = |cxr − cxs|+ |cyr − cys| ∀r, s (3.8)
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Dept.  r

Dept. s

cxs

cyr

cys

cxr

Lx

Ly
lyr

lxr

Fig. 2. Illustration of decision variables and parameters for FLP-1

lxr

2
≤ cxr ≤ Lx − lxr

2
∀r (3.9)

lyr

2
≤ cyr ≤ Ly − lyr

2
∀r (3.10)

lbr ≤ lxr ≤ ubr ∀r (3.11)

lbr ≤ lyr ≤ ubr ∀r (3.12)

αrs, βrs ∈ {0, 1} ∀r, s. (3.13)

Constraint (3.2) denotes the departmental area, and constraints (3.3)-(3.7) en-

sure that no overlap is allowed between the departments. Drs represents the rectilinear

distance between the respective centroids (cx, cy) of departments r and s. We impose

the boundary constraints (3.9) and (3.10) to guarantee that each department r is

within the building (Lx ×Ly). In addition, the width and length of each department

r (lxr, lyr) are restricted by upper and lower bounds (ubr, lbr). These bounds not

only limit the department area to a manageable size but also capture the aspect ra-

tio constraint, which delineates the maximum permissible ratio between the longest

and shortest sides. The illustration of decision variables and parameters for FLP-1 is

shown in Fig. 2.
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The FLP-1 solves the layout design problem by determining the dimensions of

each department and the location of the department in the facility. However, it

does not consider the formation of each department. We remodel the problem to a

concurrent design problem by modifying constraints (3.2)-(3.7). The explanation of

the modification is presented in the following section.

2. Concurrent Design Model

We assign sub-departments to the departments by determining the location of

each department in the facility in such a way as to minimize the inter-department

material handling costs. In this problem, a department is formed by grouping one

or more sub-departments, and the dimensions and location of each department are

determined based on the sub-departments that are assigned to the department.

In department area constraint (3.2), Ar represents the area of department r.

Also, Ar can be expressed as the sum of the sub-department areas (ai) in department

r.

∑
i∈Ωr

ai = Ar (3.14)

where, Ωr is a set of sub-departments that are assigned to department r.

However, it is very difficult to formulate the problem that includes the variables

for both sub-departments and departments because it would have to consider two

different instances simultaneously in one formulation. We can eliminate the need

to consider departmental variables by defining their formation as a result of sub-

department location. We assume that the department has a pick-up/drop-off point

at the centroid and use the fact that the sub-departments assigned to a department

have the same pick-up/drop-off point for their inter-department material flow. Thus,

we allow the centroid of sub-department i to be located at the same position as
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the centroid of sub-department j if these sub-departments are assigned to the same

department. The department that includes these sub-departments needs to be demar-

cated based on the area requirements of these sub-departments. The new constraint

for grouping the sub-departments is as follows:

ai +
∑

j,j 6=i

(1− γij)aj = lxi · lyi ∀i (3.15)

where,

γij =





1 if sub-department i and j are not in the same department

0 otherwise.

The left-hand side of equation (3.15) represents the area of the department that

includes sub-department i and sub-department j when j 6= i and γij = 0. According

to constraint (3.15), the dimensions of sub-department i (lxi, lyi) are not matched

with the area of sub-department i (ai). The area of lxi · lyi indicates the area of

the department that includes sub-department i. This implies that all of the sub-

departments in the same department have the same area with the same dimensions.

It violates the restriction that the sum of the areas of the sub-departments can not

exceed the total area of the facility. However, it is possible to house all of the sub-

departments in the facility without the violation if we allow complete overlapping of

sub-departments that are in the same department. The overlapping can be controlled

by the following constraints:

cxi +
lxi

2
≤ cxj − lxj

2
+ Lx(1− αij) ∀i, j (3.16)

cyi +
lyi

2
≤ cyj − lyj

2
+ Ly(1− βij) ∀i, j (3.17)

αij + αji ≤ 1 ∀i, j (3.18)

βij + βji ≤ 1 ∀i, j (3.19)
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αij + αji + βij + βji ≥ γij ∀i, j (3.20)

αij + αji + βij + βji

2
≤ γij ∀i, j (3.21)

where α and β are binary variables indicating horizontal and vertical spatial sequenc-

ing, respectively. Constraints (3.3)-(3.7) in FLP-1 control the relative location of

departments and do not allow overlapping. However, constraints (3.16)-(3.21) selec-

tively allow overlapping for sub-departments that are assigned to the same depart-

ment. If sub-department i and j are in the same department, then γij = 0. Then, the

variables αij, αji, βij, βji should be zero according to constraint (3.21) and this makes

the overlapping prevention constraints (3.16) and (3.17) ineffective. Four cases of

relative location of sub-departments based on a combination of the binary variables,

αij, βij, and γij are shown in Fig. 3.

Based on the above discussion, we develop model FLP-DF for concurrent design

of the facility layout and department formation.

(FLP-DF) min

n∑
i=1

n∑
j=1

fijDij (3.22)

s.t.
lxi

2
≤ cxi ≤ Lx − lxi

2
∀i (3.23)

lyi

2
≤ cyi ≤ Ly − lyi

2
∀i (3.24)

cxi +
lxi

2
≤ cxj − lxj

2
+ Lx(1− αij) ∀i, j (3.25)

cyi +
lyi

2
≤ cyj − lyj

2
+ Ly(1− βij) ∀i, j (3.26)

αij + αji ≤ 1 ∀i, j (3.27)

βij + βji ≤ 1 ∀i, j (3.28)

αij + αji + βij + βji ≥ γi,j ∀i, j (3.29)

αij + αji + βij + βji

2
≤ γij ∀i, j (3.30)

lb ≤ lxi ≤ ub ∀i (3.31)
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i

j

i

j

i

j

i j

(cxi , cyi)

(cxj , cyj)

(cxi , cyi)

(cxi , cyi)

(cxi , cyi)

(cxj , cyj)

(cxj , cyj)

(cxj , cyj)

(c) αij = 1 , βij = 1 , γij = 1

(a) αij = 0 , βij = 1 , γij = 1 (b) αij = 1 , βij = 0 , γij = 1

(d) αij = 0 , βij = 0 , γij = 0

Fig. 3. Four cases of binary variable combinations
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lxi
lyi

a
i+

Σ
j,

j=
i(

1
-γ

ij
)
a

j

Fig. 4. The solution space of ai +
∑

j,j 6=i(1− γij)aj = lxi · lyi

lb ≤ lyi ≤ ub ∀i (3.32)

ai +
∑

j,j 6=i

(1− γij)aj ≤ lxi · lyi ∀i (3.33)

Dij = |cxi − cxj|+ |cyi − cyj| ∀i, j (3.34)

αij, βij, γij ∈ {0, 1} ∀i, j (3.35)

The unequal area constraint (3.33) is nonconvex and hyperbolic as depicted in

Fig. 4. This complicated solution space needs to be linearized for the mixed-integer

linear programming model (MILP) so that the problem can be solved with an opti-

mization software package.

C. Linearization

The linearization contains two parts: (1)determination of the department area

(ai+
∑

j,j 6=i(1−γij)aj) and (2)determination of the horizontal and vertical dimensions
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of the department that is represented by the dimensions of any sub-department in

the department (lxi, lyi). Although these two parts can be linearized separately, we

need to construct an integrated formulation since these variables are inter-related.

The linearized constraints underestimate the actual area in order to avoid violating

area constraints. As a result, the actual area of the department, which is the sum

of the area of the sub-departments assigned to the department, is greater than, or

equal to, the estimated department area. This creates a problem when we design

the within-department layout of the sub-departments. Therefore, the dimensions of

the department need to be adjusted for this purpose. Note that the dimensions of

sub-department i (lxi, lyi), which are the same as the dimensions of the department

that includes sub-department i, are only effective in the first stage. In stage 2, the

actual dimensions ai = lxi · lyi will be used.

The meshed and curved surface in Fig. 4 represents the relationship of lxi,lyi and

ai +
∑

j,j 6=i(1− γij)aj in the solution space, and the curved lines on the plane are the

projected space of each level of ai +
∑

j,j 6=i(1−γij)aj. For linear approximation of this

curved space, variable x0i is introduced. x0i works as a mediator and facilitator to link

ai +
∑

j,j 6=i(1− γij)aj to lxi and lyi. To simplify the notation, we set ai +
∑

j,j 6=i(1−
γij)aj as Φi. We also introduce linear functions f1(x0i) and f2(x0i) to substitute for

the non-linear area constraint. This linearization considers two separate cases. One

is for determination of the department area, and the other is for determination of the

dimensions of the department.

Φi ≤ lxi · lyi =⇒ Φi ≤ f1(x0i) and f2(x0i) ≤ lxi · lyi (3.36)
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lxi 

x0i 

lyi 

Φi 

Φi 

Fig. 5. The relationship of Φi and x0i

1. Step 1: Φi ≤ f1(x0i)

The area Φi reflects the multiplication of the width and the length. In other

words, we need to have two pieces of information to express area. However, there

is one instance when we can find the area with a single value of length or width –

the case where the length and width are equal. We set the variable x0i to represent

this case. The plane vertically and diagonally bisecting the solution space shows the

relationship between Φi and x0i in Fig. 5. In this case, f1(x0i) = x2
0i and so the curve

can be represented as

Φi = x2
0i. (3.37)

Since the feasible region is the left hand side of the curve, we have to place the

straight line of the linear approximation in the feasible region in order to underes-

timate the area. It could generate an infeasible solution if we set the line on the

right hand side of the curve because the total area of the department could exceed
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the desired floor space. We are able to set the function of the straight line that

passes through the two intersections of lb, ub and Φi = x2
0i in Fig. 6. This line can be

expressed as

f1(x0i) = (ub + lb)(x0i − lb) + lb2. (3.38)

The gap between the actual area representation and the linearly relaxed line

remains as an error term. The number of linear functions for the approximation is

inversely proportional to the error. Two piecewise linear segments are shown in Fig. 7,

and each line can be expressed as follows:

f1k(x0i) = (ubk + lbk)(x0i − lbk) + lb2
k, k = 0, 1. (3.39)

A binary variable is used to determine the partition point between the two line

segments. We use one binary variable, ρi, to recognize the two separated areas.

Detailed discussions about accuracy and time considerations are in Section C.3 and

Section G.1. The resulting constraints are

x0i ≤ ub0 + M · ρi, ∀i (3.40)

f10(x0i) ≤ (ub0 + lb0) · x0i − ub0lb0 + M · ρi, ∀i (3.41)

lb1 ≤ x0i + M · (1− ρi), ∀i (3.42)

f11(x0i) ≤ (ub1 + lb1) · x0i − ub1lb1 + M · (1− ρi), ∀i (3.43)

ρi ∈ {0, 1}, ∀i. (3.44)

Since the point
√

lb · ub is a partition of two separated linearizing areas with

a minimized maximum error, it can be substituted for ub0 and lb1 (ub0 = lb1), and

f1k(x0i) can be replaced with the area Φi, which is equivalent to ai+
∑

j,j 6=i(1−γij)·aj.

These changes result in
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ub

Φi 

x0i 
lb

f 1
(x
0

i 
)

lb2

ub2

Fig. 6. Linearization of Φi = x2
0i

ub1

Φi 

x0i 

lb0

lb2

ub2

ub0 = lb1

Fig. 7. Partition for the linearization of Φi = x2
0i
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x0i ≤
√

lb · ub + Mρi, ∀i (3.45)

ai +
∑

j,j 6=i

(1− γij)aj ≤ (lb +
√

lb · ub)x0i − lb
√

lb · ub + Mρi, ∀i (3.46)

√
lb · ub ≤ x0i + M(1− ρi), ∀i (3.47)

ai +
∑

j,j 6=i

(1− γij)aj ≤ (
√

lb · ub + ub)x0i − ub
√

lb · ub + M(1− ρi),∀i (3.48)

ρi ∈ {0, 1}, ∀i. (3.49)

2. Step 2: f2(x0i) ≤ lxi · lyi

The linearization discussed in the previous section is for a department area that

can be flexibly changed by assigned sub-departments to the department. The pro-

cedure can not determine the specific dimensions of the department, although it

approximates the size of the department in terms of x0i. The curve on the plane gen-

erated by the horizontal cut in Fig. 8 is the point where lxi · lyi generates equivalent

values. Since we assume that the upper and lower bounds of the department area are

known, we can approximate the curve (lxi · lyi = Φi) between points P1 and P2 in

Fig. 9 by a linear function.

Since we know points P1 and P2, tangent lines can be obtained by differentiating

the equation f(lxi, lyi) = lxi · lyi at points P1 and P2. The diagonal line in Fig. 10

represents the case where the value of lx is equivalent to ly so the department forms

a square; this line is identical to the axis of x0i in Fig. 5. (x1, y1), and (x2, y2) are

intersections of the tangent lines at points (P1, x0i) and (P2, x0i).

The cutting plane at point P2 is

lyi = − lb

ub
(lxi − x2) + y2, (3.50)
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lxi 
lyi 

Φi 

lxi 

lyi 

Fig. 8. Φi = lxi · lyi

and this line intersects with the line

lyi = −(lxi − x0i) + x0i, (3.51)

at x0i =
√

lb · ub. The point (x2, y2) can be calculated as the intersection of these two

cutting planes

(x2, y2) =

(
2 · (lb−

√
ub · lb) · ub

lb− ub
,
2 · (

√
ub · lb− ub) · lb
lb− ub

)
. (3.52)

The distance between x0 and (x2, y2) is

|x0i − x2| =

∣∣∣∣∣
√

lb · ub− 2 · (lb−
√

ub · lb) · ub

lb− ub

∣∣∣∣∣ (3.53)

|x0i − y2| =

∣∣∣∣∣
√

lb · ub− 2 · (
√

ub · lb− ub) · lb
lb− ub

∣∣∣∣∣ . (3.54)
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lxi 

lyi

lb ub
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ub

lxi lyi = Φi
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Fig. 9. lxi · lyi = Φi and lb ≤ lxi, lyi ≤ ub

 

(x2, y2)

 

 

lb
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Fig. 10. Three tangential supports for the approximation to the area constraints
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Φi

Φj

x0i

x0j

S

S

lb ub

S

S

(a)

(b)

Fig. 11. Three tangential supports along the point of x0i

These two distances are equivalent because x2 and y2 are on the cutting plane

generated by x0i, and x0i is the point where lxi = lyi. This distance is used to find

the cutting plane even if x0i is not equivalent to
√

lb · ub as in the curve (b) shown

in Fig. 11. The coordinates (x1, y1) can be calculated in the same way as (x2, y2)

because the curve is symmetric.

Now, we can approximate the curve using three cutting planes, and we are able

to define the plane as a function of x0i. There are three separate regions for the

variable lxi, [lb, x1], [x1, x2], and [x2, ub], and the plane can be chosen based on lxi

falling on one of the boundaries. As mentioned before, this linear approximation

underestimates the actual size of the area. Otherwise, an infeasible solution results.

We introduce binary variables λi and µi to distinguish each boundary. Three

tangential supports are alternatively activated based on the combination of these
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binary variables, which results in the following constraints:

x0i + S ≤ lxi + M · λi ∀i (3.55)

(
lb

ub
+ 1) · x0i ≤ lyi +

lb

ub
lxi + (1− lb

ub
)S + M · λi ∀i (3.56)

lxi ≤ x0i + S + M · (2− λi − µi) ∀i (3.57)

x0i − S ≤ lxi + M · (2− λi − µi) ∀i (3.58)

x0i ≤ lyi

2
+

lxi

2
+ M · (2− λi − µi) ∀i (3.59)

lxi ≤ x0i − S + M · µi ∀i (3.60)

(
ub

lb
+ 1) · x0i ≤ lyi +

ub

lb
lxi + (

ub

lb
− 1)S + M · µi ∀i (3.61)

λi + µi ≥ 1 ∀i (3.62)

λi ∈ {0, 1} ∀i (3.63)

µi ∈ {0, 1} ∀i. (3.64)

Our MILP model for optimal facility layout with flow-based department forma-

tion (FLP-DF) is formulated as follows.

(FLP-DF) min.
n∑
i

n∑
j

fijDij

s.t. (3.23)− (3.32), (3.34), (3.35)

(3.45)− (3.49), (3.55)− (3.64)

Constraints (3.45) - (3.49) and (3.55) - (3.64) represent the cutting planes gen-

erated by the linearization of the curved surface as shown in Fig. 12.

3. Maximum Error Estimation

The department area is underestimated by the linear approximation, which can

lead to estimation errors. These errors occur when (1) the size of the area of each
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lxi
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Σ
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j=
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1
-γ

ij
)
a

j

Fig. 12. Linearized solution space

department, which is represented as the square of a variable (x0i), is linearized and (2)

inter-related variables lxi, lyi, which represent the width and the length of a depart-

ment area, are linearized by three supporting tangential lines. The maximum error

occurs at the intersection of two of the three tangential lines. Thus, the maximum

error εmax is the sum of the max errors εmax
1 and εmax

2 .

a. Estimation of εmax
1

Consider the case where one straight line passing through the point of lb, ub of

Φi = x2
0i approximates the curved line of Φi = x2

0i. We expect that the maximum

error occurs somewhere between lb and ub. To estimate this, the difference between

the actual value (x0i1) and the approximated value (x0i2) is calculated as shown in

Fig. 13 (b), and the highest point of the parabola can be estimated by differentiating
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(a) (b)

Φi 

lb ub
lb2 ub2

x0i1x0i2

x
0

i1
 -

 x
0

i2

Fig. 13. Estimation of dε

the function G(x0i1, x0i2) = x0i1−x0i2. We define this difference as dε, which considers

only the difference between x0i1 and x0i2.

Suppose GΦ to be a function of Φi, then

G(x0i1, x0i2) = x0i1 − x0i2 (3.65)

⇒ GΦ(Φi) =
√

Φi −
(

Φi

lb + ub
+

lb · ub

lb + ub

)
(3.66)

⇒ dGΦ(Φi)

dΦi

=
1

2
√

Φi

− 1

lb + ub
. (3.67)

We can set equation (3.67) to zero to calculate Φi, the point of max difference,

dmax
ε , and we have Φi as

Φi =

(
lb + ub

2

)2

. (3.68)

This indicates that the maximum difference, dmax
ε , occurs exactly at the mid-

point of lb and ub, and the error at this point can be expressed as

εd =
(lb− ub)2

2(lb + ub)2
. (3.69)
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This only shows the error based on the point of max-difference between the actual

value and the estimated value. However, the maximum error based on the proportion

of the area violation does not occur at the same point of dmax
ε in [lb, ub].

The error function ε1(x) is

ε1(x) =
(lb + ub)x− lbub− x2

(lb + ub)x− lbub
. (3.70)

To find the point of max-error, we differentiate the function and set it to zero.

dε1(x)

dx
=

(lb + ub)− 2x

(lb + ub)x− lbub
−

− (lb + ub)(−x2 + (lb + ub)− lbub)

((lb + ub)x− lbub)2
= 0, (3.71)

⇒ x =
2lbub

(lb + ub)
(3.72)

Thus, the max-error is calculated as follows:

εmax
1 = 1− 4lbub

(lb + ub)2
. (3.73)

We can consider this estimated max-error in terms of the AB-ratio (ABR). The

AB-ratio is defined as the ratio of maximum width (or length) over the minimum

length (or width) of a department, i.e., a maximum allowable ratio of the upper

bound over the lower bound (ub/lb). The bound restriction of the side length of

a department limits the area of the department as well. Fig. 14 shows alternative

department shapes and areas for a given AB-ratio.

Fig. 14 (a) shows the case of a department with minimum area when lb = 1. The

department can be flexibly formed by selecting the side length in the range of the

lower and upper bounds as shown in Fig. 14 (b), and the maximum available area is

shown in Fig. 14 (c).
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 lb = 1, ub = 3 (ABR = 3)

(a) area = 1 (b) 1< area < 9 (c) area = 9

1
1

3

3

Fig. 14. Potential department shapes and areas when ABR = 3

Now, equation (3.73) can be written as

εmax
1 = 1− 4 · ABR

(ABR + 1)2
. (3.74)

This indicates that the max-error depends only on the AB-ratio, and the max-

error can be reduced by setting the ABR close to 1.

We can consider linearizations using more partitioned segments, which reduces

the max error, but these involve more binary variables. When we consider the use of

two linearization segments on Φi ≤ x2
0i, the point of lb+ub

2
can be set as a partition

point of the two segments since this point divides the bounded region [lb, ub] exactly

in half. However, as has been mentioned, partitioning at the exact mid-point does

not minimize the maximum error. The point of partition that minimizes max-error

can be computed using equation (3.74). Fig. 15 shows the ABR based on a point of

partition located between lb and ub.

The AB-ratio ABR1 is linearly increased while ABR2 is decreased based on the

location of p varying from lb to ub, and the AB-ratio applied to equation (3.74) is

ABR = max{ABR1, ABR2} (3.75)
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Fig. 15. Point p for the minimum AB-ratio
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This term is minimized when ABR1 = ABR2. The point that minimizes the

AB-ratio is at the intersection of the two lines ABR1 and ABR2 in Fig. 15 (b), and

this is the point at which the AB-ratio of each segment is equivalent. Thus, the point

that minimizes ABR is

p

lb
=

ub

p
(3.76)

⇒ p =
√

lb · ub. (3.77)

b. Estimation of εmax
2

The maximum area constraint violation, the error εmax
2 , is found at the intersec-

tion of two tangential lines (as shown in Fig. 10) either at the point of (x1, y1) or

(x2, y2). Thus, the max error generated by the estimated length and width is

εmax
2 =

ub · lb− x1y1

ub · lb , or
ub · lb− x2y2

ub · lb (3.78)

= 1− 4(lb−
√

ul · lb)(
√

ub · lb− ub)

(lb− ub)2
. (3.79)

The equation in terms of the AB-ratio is

εmax
2 = 1− 4(1−√ABR)(

√
ABR− ABR)

(1− ABR)2
. (3.80)

The possible overall area constraint violation is the sum of each maximum error

as εmax = εmax
1 + εmax

2 . Fig. 16 shows this case.

D. Extending Department Area

The FLP-DF solves the problem but the original department area is approx-

imated and underestimated. Thus, the departments need to be enlarged to their

original size since the area of the departments is used as the floor space for sub-
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lxi lyi 

x0i 
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Fig. 16. Error estimation for εmax

departments placed within it.

The department placed in the floor space can be represented using an incident

matrix consisting of elements 1, 0,−1 to depict the relative location of departments.

We use Sukhotu’s partitioning technique to construct a block layout [36], which ex-

tends the underestimated area up to the original, using an incident matrix obtained

from the MIP. A more detailed discussion of this procedure is provided in Appendix A.

E. Heuristic Approach

The mixed-integer program (MIP) for the general facility layout problem is

known to be very difficult even for small instances (N ≤ 9). The concurrent de-

sign problem, FLP-DF, is far more difficult because it considers more aspects that

better represent the system. Thus, to find the solution in a desirable amount of time,

we use a heuristic approach.

Since genetic algorithms (GAs) have proven effective for finding favorable solu-
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tions to facility layout problems, and their structural analysis is comparable to our

concurrent design problem, we will use a GA in this study. GAs represent a popula-

tion approach that is based on biological genetic mechanisms. In our application, the

layout configuration compares to chromosomes and the sub-departments are anal-

ogous to genes. However, it is inevitable that the general genetic algorithm for a

facility layout problem must be modified in order to handle characteristics such as

the grouping of sub-departments into a department. Thus, we develop a modified

genetic algorithm to cope with the specific attributes of inter-department layout and

department formation.

1. General Genetic Algorithms

The category of genetic algorithms was developed in 1975 by Holland [37] who

was inspired by biological systems that produce organisms that not only adapt to

the environment successfully but also thrive. The survival of the fittest principle in

natural biological systems has been applied to combinatorial optimization problems

with remarkable success. GAs maintain a population of candidate solutions rather

than generate a sequence of candidate solutions one at a time [29]. Genetic algorithms

also have a number of unique features as listed below (see Tate and Smith [29],

Liggett [38]):

• a representation consisting of data that describes a unique feasible solution

• a reproduction mechanism for generating new solutions by combining features

from solutions in the existing population

• a mutation mechanism for generating new solutions by operating on a single

previously known solution
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population
crossover

mutation

evaluation

Fig. 17. General structure of a genetic algorithm

• an evaluation mechanism for selecting a set of solutions from the population(s),

giving preference to those with better objective function values

• a culling mechanism for removing solutions from the population

An initial population of solutions can be generated randomly. This population is

multiplied by a breeding mechanism that combines two chromosomes to produce off-

spring that possibly improves the solution and by mutation mechanism that changes

the genes in the chromosome for new offspring. The population is improved by eval-

uating and culling the generations, and the iteration of these procedures leads to

improved solutions. The general structure of a GA appears in Fig. 17.

Genetic search methods are highly parallel making it more likely they will settle

on a global or near-global solution than other constructive or improvement proce-

dures [38] because each population member searches many different possible direc-

tions. Genetic algorithms have proved to be fairly robust with varying parameter

settings and problem particulars, and GAs usually find near optimal solutions as

long as solutions with similar encodings do not have highly variant objective function

values [29].
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2. Genetic Algorithm Implementation

a. Representation and Operators

We use the flexible bay structure developed by Tong [39] to place a department

that is formed by grouping sub-departments. A pre-specified rectangular area is

divided in one direction into bays of varying widths. Since each department is of

different size, each bay is divided into rectangular departments of equal widths but

different lengths. The bay width is flexibly adjusted for the departments assigned to

the bay.

Tate and Smith [29] used the flexible bay structure and developed an algorithm

named FLEX-BAY for unequal-area facility layout design. They used two distinct

chromosomes to represent flexible bay solutions. The first chromosome represents the

sequence of departments, and the second chromosome represents the number of bays

and the break points of the sequence between the bays.

The representation of the concurrent design problem is more complicated than

that of the FLEX-BAY algorithm. We use one chromosome to represent the solution.

However, we additionally use another chromosome to examine the possible grouping

and layout using the chromosomes generated for representing the solution. This addi-

tional chromosome is called a sub-chromosome to distinguish it from the chromosomes

used to represent the solution. The procedure of grouping the sub-departments to

form departments and determining the number of departments determining the total

number of bays, and determining the number of departments to place in each bay is

handled by the algorithm, which is modified to manage this complicated procedure.

The representation is shown in Fig. 18.

A chromosome is composed of numbers that represent the sub-departments.

There is no specific indication of the breaking points for the grouping of depart-
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ments or bays. However, the sequentially arranged numbers can be grouped if they

meet the condition of forming a department by adding a sub-department one by one,

left to right. The feasible region in Fig. 18 (a) indicates the candidate breaking points

for grouping a department when the summed area is in the range of the designated

department size. Once the grouping procedure has determined a set of alternative

groups, each group is numbered and used as a sub-chromosome. The general genetic

algorithm is used to determine the best layout in a given chromosome using these

sub-chromosomes. Determination of the bay break point, which indicates where bays

occur, is the same as the grouping procedure shown in Fig. 18 (b).

For breeding, we use the partial matched crossover to avoid generating an infeasi-

ble solution. The number in a chromosome indicating sub-departments only appears

once, and these numbers should not be duplicated in the procedure of reproduction.

The partial matched crossover checks to see if there are two integer numbers, which

are the same, in the new chromosome and swaps the number of the position in the

chromosome instead of inserting the number from the other parent.

We used a swap mutation operator for the mutation. Two randomly selected

positions are swapped to generate a new chromosome. As we mentioned with the

breeding mechanism, the gene which represents sub-departments is unique in the

chromosome and should not be duplicated. The standard mutation operator chooses

one of the genes in the chromosome and changes its inheritance but, in this problem,

the chromosome becomes an infeasible representation since the new gene would be

one of the integer numbers in the chromosome or a number that is not one of the

structural elements of the chromosome.
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Fig. 18. Representation of the GA
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b. Evolution Parameters

Several trial experiments have been conducted to determine a good set of evolu-

tion parameters. Population sizes from 10 to 50, 50% to 90% as the crossover rate,

and 10% to 50% as the mutation rate were tested. The percentage of individuals in

a generation produced via mutation is typically very small (0.1%-1%) [1]. However,

Tate and Smith [29] used a very flexible range of mutation rates to experiment for

parameters (1% to 50%), and they found that a higher probability of mutation is

required for culling to ensure population diversity. After examining the combinations

of parameters, we set the population size at 10, the crossover rate at 60%, and the

mutation rate at 10%. With a population close to 50, it takes longer to finish the

iterative procedure without improving the solution quality. The parent selection for

crossover and mutation is different in every generation with an average rate of 0.6

and 0.1, respectively.

c. Evaluation and Penalty Function

The population size is maintained over the generations by a culling procedure

with the selection based on certain evaluation principles for determining the nature

of next generation. The GA retains a small percentage (typically 10%-30%) of the

individuals from each previous generation based on their fitness value [1]. All of the

offspring generated by the crossover and mutation mechanisms are members of the

next generation.

The fitness value evaluated by calculating the total flow distance between de-

partments, would be increased excessively by a penalty function if the configuration

of the individuals is not feasible. This happens because each department has a lim-

ited length and width or AB-ratio (ABR) as explained in Section C.a and defined as
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aspect ratio for this case by

ABR = max{lxi, lyi}/min{lxi, lyi} (3.81)

where lb ≤ lxi, lyi ≤ ub and lxi, lyi are the width and length of sub-department i

as well as of department r which contains sub-department i. We set the penalty by

multiplying a number times the fitness value if the configuration of the individuals

is not feasible. The objective of using a penalty function is to help find a feasible

solution and exclude infeasible solutions from the population. However, if there are

not enough feasible individuals from a generation, an infeasible individual may be

included in the next generation for possible transformation into a quality solution.

F. Intra-department Layout Design

The intra-department layout problem can be considered as a general unequal-

area facility layout problem. It can be solved using CPLEX if the problem size is small

as in Section G.3; the maximum number of sub-departments in a department is 6 in

the problem of 20 sub-departments. However, this problem also needs to be linearized

for unequal-area constraints although it’s not as complicated as a concurrent design

problem because the area of each sub-department is known in advance.

1. Separating as an Independent Problem

Each department layout is solved as a separate problem but interaction between

sub-departments that are not in the same department should also be considered. The

previous procedure assumed that the pick-up/drop-off point of each department is it’s

centroid and that the material flow from a sub-department to another sub-department

in a different department passes through the p/d point of each department. Thus,
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the flow matrix given for the concurrent design problem can be separated for each

within-department layout problem by considering the flow between p/d point and

sub-departments i as follows.

fi,p/d =
∑

j

fijγij (3.82)

fp/d,i =
∑

j

fjiγji (3.83)

2. ε-Accurate Model

We adopted the ε-Accurate Model FLPε [40] to solve the problem. The model

linearizes unequal-area constraints with error ε. ε can be controlled by the number

of cutting planes that linearize the curve of the area constraints without introducing

binary variables for linearizing. This model assumes that the area of each department

is known a priori so that the model can generate the number of cutting planes nec-

essary to achieve the desired error range for the known area constraints. Thus, the

number of linear constraints is inversely proportional to the max-error. A detailed

discussion of the model is provided in Appendix B.

G. Computational Results

Since literature does not yet exist for an integrated model that considers layout

design and flow-based department formation, there is no comparable data for us to

use. However, unequal-area sub-departments can be treated as departments and then

we can use existing data for department layout problems although we are unable to

compare layout solution efficiency. We took a problem set for 6 to 9 sub-departments

and ran these in CPLEX. The genetic algorithm was implemented using C++ to

test mid-sized problems. We tested some well-known problems for 10 to 14 sub-
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departments from studies published by van Camp et al. [41], Bazaraa [42], and Hassan

et al. [43] and also tested a larger sized problem (20 sub-departments) from Armour

and Buffa [6]. We define these data sets as VC10, B12, B14 and AB20 respectively.

We additionally have tested for the problems in Morris and Tersine [44], Co and

Araar [45] to compare the grouping and layout efficiency of the solution procedure.

Finally, we tested the large size problems for 100 sub-department problems.

1. Level of Accuracy and Computational Time Consideration

Maximum error based on boundary restriction must be estimated to decide the

level of accuracy and the time consumed in solving the problem. The more binary

variables that are introduced to linearize the problem, the less error there is generated

in the department area and the more time there is consumed in solving the problem.

As discussed in section C, the linearization procedure has two parts. The part where

we determine the specific dimensions of the sub-departments uses three cutting planes

for linearization. The other part where we determine the area of the sub-departments

can have more cutting planes for reducing maximum possible error, but this means

increasing the number of binary variables and therefore, the computational time. The

boundary restrictions are set at 2 for the lower bound and 6 to 8 for the upper bound,

and three possible cases are considered for this linearization as shown in Fig. 19.

These errors εmax
1 are calculated based on equation (3.74). Table I shows the

estimated maximum error εmax
1 for each case of Fig. 19 when [lb, ub] = [2, 8].

Two partitioned segments reduce the error dramatically from the case of no

partition. However, binary variables need to be introduced to identity each segment if

it is partitioned for linearization. Partitioning the line into three segments requires 2n

binary variables, which is the same number of binary variables needed for 4 partitioned

segments. This takes much more time compared to a case with n binary variables.
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lb ub lb ub lb ub

(a) (b) (c)

Fig. 19. Partitioning for area constraint linearization

We have tested the problem M6 ([lb, ub] = [2, 6] and ABR = 3), which is taken

from [15], to compare the CPU time in each case in Fig 19 using a Pentium 4 class

computer, 2.2Ghz CPU, 512Mb of physical memory operating under MS-Windows

XP Professional. Table II shows the results of this comparison.

The extended cost in the results indicates that all three cases generate the same

layout configuration. However, the OFV for (a) is quite different from the extended

OFV which is assumed to be the original, and (c) takes a much longer time to generate

the solution although the result of (c) is very close to the original. Problem M6

has been tested by setting different partition schemes. Table II shows the detailed

results of the computational time and accuracy. Three of the cases generate an

Table I. Estimated max. error εmax
1 and number of binary variables when ABR = 4

number of maximum number of

segments error binary variables

(a) 1 0.36 0

(b) 2 0.11 n

(c) 4 0.03 2 · n
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Table II. Error estimation (ε1) based on the number of partitioned segments for M6

Estimated M6

Max. Error CPU Extended Max. Error

εmax
1 + εmax

2 time Cost Cost Error Overall

(a) 32.2% 0.0 57.54 69.0 26.2% 19.6%

(b) 14.4% 2157.47 64.62 69.0 9.6% 8.2%

(c) 9.1% 65,781.31† 67.24 69.0 6.2% 4.6%

†Not solved optimally due to insufficient memory. The optimality

gap is 21.47%

identical layout solution for problem M6; the extended costs of all three are equivalent.

However, the max-error for case (a) is 26.2% with a 19.6% overall error. Case (c)

generated a solution that is close to the extended area solution but the procedure’s run

time is extremely long (in fact, it did not finish because the search tree consumed all

of the available memory in the computer system). Thus, we use the two-partitioned

segmentation approach for the linearization process for the remainder of the test

problems.

2. The Small Test Problems

We performed a computational test for a 6 to 9 sub-department problem on FLP-

DF. As was mentioned, the solution to this problem set is not directly comparable

since there is no previous literature on this problem. We took the problem from

[13] and [15], and we considered the departments as sub-departments. The test was

performed on the same system used in the previous section - a CPLEX 6.5 in AMPL

interface with a Pentimum 4 class computer, 2.2 GHz, and 512 Mb of physical memory.

Table III shows the computational results for these small problems.
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Table III. Computational results of FLP-DF

Cost CPU time Optimality gap # of dept. [lb,ub]

M6 64.62 2,157.47 0% 4 [2,6]

M7 93.52 86,400 7.16% 6 [2,6]

FO7 19.39 9,560.15 61.20% 6 [2,7]

FO8 30.20 7,074.30 75.44% 7 [2,7]

FO9 n/a† [2,8]

O7 131.30 8,287.92 78.43% 6 [2,7]

O8 310.72 9,410.39 74.90% 7 [2,7]

O9 n/a† [2,8]

†No feasible solution found before memory limit was exceeded.

The result shows that only the 6 sub-department problem can be solved to op-

timality. The number of binary variables used for the problem is 3N2; 3N is for

linearization and 3N(N − 1) is for the relative locations between sub-departments.

Thus, even a small sized problem can have many binary variables that cause the

solution procedure to be incomplete in a desirable time frame or with a limited mem-

ory source. Problems sized from 7 to 9 sub-departments could not finish the search

procedure because of lack of memory in the computer system.

These results are from the formulation that underestimates the department area.

Table IV lists the errors εr = (Ar − lxrlyr)/Ar × 100(%) in the actual area of all

departments in the feasible solution corresponding to FLP-DF, where Ar represents

the area of department r. The departments are numbered arbitrarily since there

was no physical department indicated, and they are represented by the grouping of

sub-departments.
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The estimated maximum errors εmax
1 are 14.36%, 18.39%, 22.22% for ABR =

3, 3.5, 4 respectively. Larger aspect ratios lead to larger errors. The GA uses actual

area constraints to configure feasible solutions. Thus, the error term should be ex-

cluded when comparing the results of FLP-DF and GA. These extended areas are

used as floor space in the intra-department layout as well. The results generated

by CPLEX for FLP-DF are refined by extending the areas [36] as was mentioned in

Section D. Table V shows the comparison of results based on extending the area from

the underestimated feasible solutions and the solutions generated by GA.

Table V. Result comparison for FLP-DF and GA

FLP-DF Extended GA

Cost(optimality gap) Cost Cost CPU sec

M6 64.62(0%) 69.0 69.0 10.61

M7 93.52(7.16%) 99.26 99.26 11.45

FO7 19.39(61.20%) 21.76 20.48 11.5

FO8 30.20(75.44%) 30.68 23.35 12.5

FO9 n/a† 18.58 13.52

O7 131.30(78.43%) 137.94 131.11 11.56

O8 310.72(74.90%) 312.55 245.60 12.67

O9 n/a† 219.47 13.31

†No feasible solution found in given memory source

The GA generates the solutions quite efficiently. It configures M6 and M7 as

FLP-DF using the extension method. The GA also provides better solutions for the

rest of the problems (FO7,FO8,O7, and O8), than those found by CPLEX.
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3. The Mid-Sized Test Problems

Since we know that the genetic algorithm for the concurrent design problem

efficiently finds solutions for smaller problems, we now apply the search procedure

to mid-sized problems. We take some widely known unequal-area facility layout test

problems and modify them for use in this study. van Camp 10 [41], Bazaraa 12 and

14 [42, 43] specified minimum side length in their papers but we only restricted the

size of department, not of sub-departments. We used the Bazaraa problems that were

modified in [29]: there are 4 departments that are not interactive in Bazarra 12 and

1 department that does not have side length or shape restriction in Bazaraa 14.

There is no fixed minimum side length in the 20-department problem [6]. How-

ever, we set the maximum AB-ratio of the departments as on our other test problems.

Table VI shows the computational results for these larger problems.

A higher aspect ratio generates fewer departments with lower inter-department

material handling costs. The number of departments generated for the problems of

AB20 are not reduced by increasing the aspect ratio. However, the material handling

cost can be reduced by grouping sub-departments differently. The maximum number

of sub-departments in a department in AB20 with ABR = 4 is 6 and with ABR = 3.5

is 5.

Table VI. Computational results for mid-sized problems

ABR = 3.5 ABR = 4.0

Cost Time(sec.) # of dept. Cost Time(sec.) # of dept.

VC10 17,570.5 13.7 8 13,138.5 13.5 7

B12 11,127.4 44.5 10 10,330.5 29.9 8

B14 6,107.1 35.2 7 5,620.9 23.8 6

AB20 674.9 35.3 7 607.0 45.6 7
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4. Within Department Design

The number of sub-departments assigned to each department varies. However,

in the small problems, each department generated by the FLP-DF has less than

three sub-departments, and the design of the layouts within these departments is

almost trivial. The departments generated by the GA also consist of one or two

sub-departments. Thus, we will focus on configurations in larger problems.

The ε-accurate model used in this problem is set at 0.01% of the max-error.

Accuracy requires adding many linear constraints. However, the solution time for the

problem is not significantly increased since it does not require adding binary variables.

The side length restriction originally set for departments in VC10 [41], B12 and

B14 [42, 43], and AB20 [6], is applied to this within-department layout as the side

length restriction for the sub-departments. However, some of the problems do not

have a feasible solution with the given restriction of side length. This is because some

of departments consist of two or three sub-departments and there are not enough feasi-

ble alternatives for placing the sub-departments. Specially, when the sub-department

area or shape is restricted to a square (1×1), it is hard to find a feasible configuration.

In this case, we free the shape restriction for a specific sub-department.

The test was executed in CPLEX 6.0 on a Silicon Graphics Power Challenge

workstation operating under IRIX64 Release 6.5. Tables VII,VIII,IX and X show the

computational results for each of the within-department layouts.
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Table VII. Within-department layout for VC10

ABR = 3.5 ABR = 4.0

Dept. CPUs No. of CPUs No. of

No. Cost (Second) sub-dept. Cost (Second) sub-dept.

1 13,038.4 0.11 3 2,908.2 0.20 2

{7,8,9} {1,6}
2 1,577.5 0.02 2

{4,7}
3 13,424.5 0.16 3

{5,8,10}
{ · }= sub-department assigned to the department
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Table VIII. Within-department layout for B12

ABR = 3.5 ABR = 4.0

Dept. CPUs No. of CPUs No. of

No. Cost (Second) sub-dept. Cost (Second) sub-dept.

1 665.9 0.05 2 597.9† 0.04 2

{4,5} {3,7}
2 479.9 0.03 2 186.6† 0.03 2

{8,10} {4,9}
3 416.2 0.02 2

{6,10}
4 1,067.6 0.10 3

{2,8,14}
{ · }= sub-department assigned to the department

†No side length limit applied since no feasible configuration in given

side length restriction
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Table IX. Within-department layout for B14

ABR = 3.5 ABR = 4.0

Dept. CPUs No. of CPUs No. of

No. Cost (Second) sub-dept. Cost (Second) sub-dept.

1 129.3† 0.04 2 729.0 0.05 2

{2,11} {1,5}
2 395.7† 0.04 2 385.6 0.02 2

{3,8} {3,10}
3 266.7† 0.04 2 240.3 0.01 2

{5,6} {6,11}
4 243.6† 0.14 3 26.0‡ 0.08 2

{1,9,12} {12,14}
5 159.2 0.17 3 439.3§ 0.09 3

{7,10,13} {2,8,13}
6 709.8 0.12 3

{4,7,9}
{ · }= sub-department assigned to the department

†No side length limit applied

‡Free of restriction sub-department 12

§Free of restriction sub-department 13
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Table X. Within-department layout for AB20

ABR = 3.5 ABR = 4.0

Dept. CPUs No. of CPUs No. of

No. Cost (Second) sub-dept. Cost (Second) sub-dept.

1 12.5 0.04 2 29.1 0.05 2

{1,3} {2,20}
2 36.6 0.04 2 11.2 0.05 2

{11,12} {5,12}
3 24.9 0.04 2 39.7 0.05 2

{17,18} {11,17}
4 52.9 1.39 4 130.4 381.59 6

{2,4,5,9} {1,4,7,8,13,19}
5 40.5 0.54 4 104.2 248.35 6

{10,14,15,19} {3,6,9,10,14,15}
6 96.2 15.48 5

{6,7,8,13,20}
{ · }= sub-department assigned to the department
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5. The Comparable Problems

Several problems were tested to evaluate the GA developed in this research.

Unfortunately, there is no directly comparable data set. Thus, we have modified

some problems from the literature related to department formation or GT (Group

Technology) for cellular manufacturing.

a. Problem - Morris and Tersine

Morris and Tersine [44] configured a process layout for 40 parts and 8 processes

with 30 machines. Their final layout does not appear in the publication. To address

this, we assume that each machine has one unit of area and a total of 30 units for

the floor space. This process layout has 8 departments and each department has 3 or

4 machines. We used a genetic algorithm with FLEX-BAY [29] type of configuration

to generate layouts of these 8 departments.

To make this department layout problem comparable to our integrated problem

we set the maximum allowable machines in a department to 4: we set the minimum

department area to greater than 1 and the upper bound of department length to 2.2.

The floor space for the layout was set at 7.5×4 for both the original process layout and

the integrated problem. We additionally tested the problem allowing the department

to have more machines (up to 7) by setting the upper bound of department length to

3.

Table XI shows the results of these layouts. The search procedure for the in-

tegrated layout with department formation was assisted by an initial chromosome

(which was grouped based on the flow between machines) to accelerate the search.

We also increased the number of iterations for the grouping procedure in the algorithm

in order to generate good department representations in the solution.
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8,18,19,26

4,5,10,29

2,25,27,28

11,13,15,24

17,21,23,30

1,3,7,96,12,22

14,16,20

Fig. 20. Department layout based on Morris and Tersine data

The layout generated by the integrated method with comparable size restriction

improves the efficiency of inter-department material flow 58.9% from the original

process layout. The layouts are similar, but the machine assignments to departments

is radically distinct from the original layout as shown in Fig. 20 and Fig. 21. In

these figures, the numbers in the departments indicate the machines assigned to that

department. Layout efficiency can be improved by allowing departments to have more

space – integrated layout (b). As the space of each department sets bigger, the total

number of departments in the facility is reduced. The integrated layout (b) improves

the efficiency by 34.6% from the integrated layout (a), and 74.4% from the original

process layout (shown in Fig. 22).

Table XI. Layout efficiency comparison for process layout and integrated layout with

department formation

Cost CPU sec

Min. Ave. Std. Min. Ave. Std.

Dept. layout 322.3 339.1 12.4 0.02 0.02 0

Integrated layout (a) 132.5 203.2 69.4 717.8 721.3 2.9

Integrated layout (b) 86.7 98.5 21.5 580.4 585.9 4.7
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14,19,27,29 4,7,12,15 17,20,26

18,23,2516,22,24,28

1,5,11,30

2,3,10,136,8,9,21

Fig. 21. Integrated layout (a) based on Morris and Tersine data

8,9,12,20,21,26

1,5,11,18,23,25,30

3,10,13,16

2,4,7,15,17

6,14,19,27,29

22,24,28

Fig. 22. Integrated layout (b) based on Morris and Tersine data
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b. Problem - Co and Araar

Co and Araar [45] provided a modified group layout for 10 machine types and

15 job types. They used 64 machine replica to increase the machine accessibility and

minimize flow-distance. To make our problems comparable, we assume that we have

64 different sub-departments each with 1 unit of area. Since the layout provided in

the literature has 72 units of area (8 × 9), we generated 8 dummy sub-departments

to include in the problem.

The maximum area of the department in the given layout is 20 (4 × 5), so we

set the maximum area of department to 20 and the maximum allowable side length

to 5. We also tested the problem with more flexibility in department size by setting

maximum number of machines to 25 and the maximum allowable side length to 6.

Table XII shows the results of the integrated layout with department formation.

We used the grouped departments in the literature as one of the initial representations

of the solution to assist in the search procedure. We also increase the number of

iterations for the grouping procedure in the algorithm in order to generate good

department representations in the solution.

The integrated procedure generates a more efficient layout because it inherently

considers machine grouping in its solution. The inter-department material handling

cost for the modified group layout from Co and Araar [45] is 109. When we set

Table XII. Result of integrated layout based on data in Co and Araar

Cost CPU sec

Min. Ave. Std. Min. Ave. Std.

(a) 87.4 93.1 4.7 2,723.9 2,732.4 7.1

(b) 76.8 84.1 6.0 2,713.0 2,716.1 2.2
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1(7+1)

2(8+0)

5(5+3)

4(9+3)

3(20+0)
6(15+1)

Fig. 23. Modified group layout from Co and Araar (cost = 109)

the parameters comparable to the original layout, the genetic search in this research

generated a layout with an inter-department material handling cost of 87.4 - an im-

provement of 19.8%. Fig. 23 and Fig. 24 show the layouts. The number in the

parenthesis indicates the number of machines assigned to the department. The next

number in the parenthesis in Fig. 23 indicates unused space in the department. These

unused spaces, which are treated as dummy departments in the integrated procedure,

are gathered in department 3 in Fig. 24.

In the case that the maximum allowable department area and the maximum

allowable number of machines in departments are increased, the search method pro-

vided further layout improvement ((b) in Table XII). It improved the layout efficiency

by 12.1% from the layout (a) and 29.5% from the original layout. As mentioned, this

increase led to fewer departments in the facility as shown in Fig. 25.
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1(16+0)

2(9+0) 5(12+0)

4(19+0)

3(0+8) 6(8+0)

Fig. 24. Integrated layout (a) based on Co and Araar data (Cost=87.4)

1(25)

2(10)

5(10)

4(11)

3(16)

Fig. 25. Integrated layout (b) based on Co and Araar data (Cost=76.8)



64

6. The Larger Problems

We generated larger data sets with 100 sub-departments to further test GA.

Two different AB-ratios were tested on five different 100 sub-department problems.

Table XIII shows the difference in data structures for the example problems.

Table XIII. Data Structure of 100 sub-department example problems

Flow a: range of 0 to 12 (100-1,100-4,100-5)

b: range of 0 to 100 (100-2,100-3)

Sub-dept. area a: varied in range of 1 to 10 (100-1,100-3)

b: identical area = 1 (100-2)

c: identical area = 1.84 (100-4,100-5)

Aspect ratio a: 1.56 (100-1,100-3,100-5)

of floor space b: 1.39 (100-2,100-4)

Minimum length a: 1 (100-1,100-2,100-3)

of department b: 1.35 (100-4,100-5)

The example problems have two flow patterns as shown in Table XIII. The

first group (100-1, 100-4, 100-5) has flow in the range of 0 to 12. The second group

(100-2, 100-3) has flow in the range of 0 to 100 and the flows are biased to certain

pairs of sub-departments. This explains the difference of the cost between these two

groups as shown in Table XIV. For problems 100-1 and 100-3, only 1 and 2 feasible

solutions, respectively, were found during 10 runs. However, feasible solution were

found 9 or 10 out of 10 runs for remainder of the problems. The area variations of the

sub-departments sometimes make it difficult for the search procedure to find feasible

solutions.
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The run time for the procedure seems independent of either the AB-ratios or

the area variations of the sub-departments. The CPU time of the search in this

procedure is also consistent for the various types of data structures, but the ease of

finding feasible solutions is highly dependent on the data structure, particulary on

the sub-department area variations.

The AB-ratio represents not only the acceptable ratio of max-to-min side length

of each department, but also the allowable area for the department. As a result,

higher ABR leads to fewer departments and lower material handling costs overall.

H. Summary and Conclusion

In this chapter, the concurrent design problem for facility layout and flow-based

department formation has been presented. The design of facility layout simultane-

ously considers the assignment of sub-departments to departments. We developed

a model that incorporates these two problems. The actual department area con-

straint in the model is nonconvex and hyperbolic, and it must be linearized to apply

standard algorithms and widely available optimization software packages for solving

mixed-integer linear programming (MILP) models, such as CPLEX. The proposed

formulation, which is an MILP and named FLP-DF, provides integrated solutions

for flow-based department formation and efficient spatial arrangement of these de-

partments. However, the model includes many binary variables (3N2) and cannot

solve the problem in a desirable time with limited computer memory resources. Only

the 6-sub-department problem has been solved optimally. A heuristic method based

on genetic algorithms has been developed to solve this integrated problem more effi-

ciently.

The intra-department layout problem has been discussed and configured using
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the ε-accurate model FLPε developed by Castillo and Westerlund [40]. Each de-

partment area generated by the model FLP-DF needs to be extended for an intra-

department layout since the model underestimates the department area. We used

Sukhotu’s method [36] for this extension.

Although the proposed model could not solve problems involving more than

6-sub-departments in a desirable time, it does capture the department formation

problem and the layout problem for those departments. In contrast to the tradi-

tional facility layout problem, the number of departments and the dimensions of each

department are not imposed in advance on the final layout solution. The proposed

heuristic approach also accurately captures these issues and provides solutions for

larger problems.

We believe that the facility layout problem with flow-based department formation

presented in this Chapter raises many interesting questions and directions for future

research. One such area would be the development of more effective and efficient

models, particulary for large problems. Developing more accurate models by reducing

the max-error on area constraints without losing time efficiency would be another

important area for future attention. Assuming pick-up/drop-off points that are not

at the centroid of the department would be yet another promising area for future

research.
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CHAPTER IV

LAYOUT DESIGN OF MULTI-BAY FACILITIES WITH LIMITED BAY

FLEXIBILITY

In this chapter, we consider the concurrent layout design and assignment of de-

partments to bays on the basis of the multi-bay manufacturing facility layout problem.

The facility layout problem in multi-bay environments is concerned with determining

the most efficient assignment of departments to parallel bays, where the bays are

connected at one or both ends by an inter-bay material handling system as shown

in Fig. 26. This problem arises in the contexts of heavy manufacturing and the

semiconductor industry [17], where the inter-bay material handling system is cost

dominant over material movement within the bays. Thus, the efficiency of the layout

is primarily measured in terms of inter-bay material movement.

Traditionally, in the multi-bay manufacturing facility layout problem, it is as-

sumed that the area of each bay is predetermined prior to assigning departments to

bays. This inflexibility could be a hinderance to improvement in layout configuration.

Thus, we abandon the assumption of uniformly arranged bays in a given floor space

and allow for some flexibility in bay area, which can improve efficiency.

The research in this chapter extends the design of the bays by adopting flexibility

of bay width beyond that in traditional studies. To address this problem, it introduces

an innovative mathematical formulation for the multi-bay facility layout problem.

A. Background

Only a few works in the literature have focused on multi-bay manufacturing

facility layout [17, 40], and the problem is not even mentioned in the most recently
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Inter-Bay Material Handling System

Bay 1 Bay 2 Bay B

Fig. 26. A multi-bay manufacturing facility

published facility layout problem review [19]. However, there are some similarities

between this problem and the multi-floor facility layout problem, and a detailed

discussion of the comparison can be found in Meller [17].

The characteristics of multi-bay manufacturing are as follows:

• Material movement between bays is limited to the end of the bays.

• Inter-bay material handling costs dominate intra-bay material handling costs.

• The number of bays and bay areas are known.

• The bay structure is typically designed to have a linear flow production pattern

within each bay.

Meller [17] incorporated these characteristics into a two-stage solution method-

ology. A mixed-integer program is used to assign departments to the bays in Stage

1. The layout within the bays is configured using a dynamic programming approach

called a linear ordering problem, which was developed by Picard and Queyranne [46].

Castillo and Peters [40] developed a model for a distributed multi-bay manu-

facturing facility layout problem by employing replicas of a department type. A
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two-stage approach was used, and in Stage 1 a heuristic was adopted to solve a bay

assignment and a flow allocation problem among the department replicas. In Stage 2,

the Picard and Queyranne [46] solution procedure was used to determine within-bay

layout.

In this chapter, we consider a multi-bay facility layout problem with bays that

have flexible widths. The width of the bays are determined at the time of assigning

departments to the bays. The flexibility is controlled by upper and lower bounds

on the width. This is main difference with FLEX-BAY approach: the bay width in

FLEX-BAY is controlled by the departments assigned to the bay. In the context of

the multi-bay manufacturing facility layout problem, bay flexibility allows the facility

layout configuration to be much more efficient.

The solution methodology for this problem also consists of two stages. In Stage

1, we solve for the assignment of departments to bays by determining the width of

each bay. In Stage 2, the layout within each bay is determined. The methodology for

Stage 1 is presented in Sections B to D; for Stage 2, it is presented in Section E.

B. Problem Description

We define the multi-bay facility layout problem with limited bay flexibility as

the assignment of departments to bays where the width of the bays has flexibility

within a given range so that inter-bay material movement can be minimized. The

specification of the number of bays is an important issue but its subjectivity makes

it difficult to formalize [47]. In this research, the number of bays is determined when

each bay area is configured based on the assignment of the departments to the bay.

This is the aspect that differs from the traditional multi-bay layout problem.
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C. Problem Formulation

Consider the following parameters:

fij : the flow from department i to department j.

ai : the minimum required area for department i.

W : the width of the available floor space.

L: the length of the available floor space.

lb, ub : the lower and upper bounds on the bay width.

The objective of the problem is to minimize the material handling movement

between bays. We sum the material handling movements between the departments

that are assigned to different bays. Let δij be the binary variable indicating the

relative position of a department in floor space, where

δij =





1 if department i is on the left side of department j

0 otherwise.
(4.1)

We then define the formulation of the flexible bay assignment problem with the

following mixed-inter program:

FBAP

min
∑

i

∑
j

fijDij (4.2)

πi +
wi

2
≤ πj − wj

2
+ W (1− δij) ∀i, j (4.3)

wi

2
≤ πi ≤ W − wi

2
∀i (4.4)

ai +
∑

j(j 6=i)

(1− δij − δji)aj ≤ wi · L ∀i (4.5)

δij + δji ≤ 1 ∀i, j (4.6)

lb ≤ wi ≤ ub ∀i (4.7)
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Inter-Bay Material Handling System

Bay 1 Bay 2 Bay B L

W

w1

π1 π2

Fig. 27. Illustration of variables for a multi-bay facility layout

Dij = |πi − πj| ∀i, j (4.8)

δij = {0, 1} ∀i, j (4.9)

where Dij represents the horizontal distance between departments i and j. Constraint

(4.3) is for overlap prevention, where πi represents the horizontal coordinate of the

centroid of department i and wi represents the width of department i which is the

same as the width of the bay that holds department i.

Each bay area (wi ·L) is expressed by the sum of the area of the departments (ai)

that are assigned to it as constraint (4.5). The limited bay flexibility is controlled by

preset parameters, ub, lb, which represent the allowable upper and lower bounds of

the bay width as constraint (4.7). The illustration of variables for a multi-bay facility

layout is shown in Fig. 27. Note that there is no explicit decision variable denoting

the assignment of each department to a bay. The assignment of a department is

implicitly provided by grouping the departments that have the same p/d point, π.
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D. Solution Procedure - Memetic Approach

The number of binary variables for FBAP is N(N − 1), when there are N de-

partments. A branch-and-bound algorithm is used to solve the problem through

CPLEX optimization software. However, the computational time of the algorithm

increases exponentially as the problem size gets larger, and this concern leads to a

meta-heuristic approach.

Evolutionary algorithms have been applied to many fields of optimization, and

it has been shown that augmenting evolutionary algorithms with problem-specific

heuristics can lead to highly effective approaches [48]. A Memetic algorithm [49] is

a hybrid evolutionary algorithm that combines a population-based search approach

and a local search heuristic. MAs are similar to genetic algorithms (GAs). How-

ever, GAs are based on biological evolution while MAs imitate cultural evolution -

memes [50] can be modified during an individual’s life time but genes can not. Thus,

MAs have more opportunity to improve the quality of an individual. A detailed com-

parison of the result of GA and MA applied to this problem is provided in Section F. 2.

The pseudo code [48] of the MA used in this study is as follows:

Procedure MA;
begin

initialize population P
forEach individual i ∈ P do i:= Local-Search(i);
forEach individual i ∈ P do Evaluate-Fitness(i);
repeat

for i:=1 to #crossover do
select two parents ia, ib ∈ P randomly;
ic:=Crossover(ia, ib);
ic:=Local-Search(ic);
individual ic ⊆ offspring;

endfor
for i:=1 to #mutations do

select an individual i ∈ P randomly;
im:=Mutate(i);
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im:=Local-Search(im);
individual im ⊆ offspring;

endfor
select best n individuals i ∈ P ;
add individual in to offspring;
P = offspring;

until terminate =true;
end;

1. Representation and Operators

We use a flexible bay structure as in Chapter III to place departments. The bay

width is flexibly adjusted for departments assigned to the bay. However, we concen-

trate on the location of the bay rather than on the arrangement of the departments.

The representation of this multi-bay structure is simpler than that in Chapter III

since specific department locations in the bay are not involved in the first stage. This

simpler structure allows us to adopt MA for this problem without difficulty. However,

the structure of the chromosomes and the mechanisms for grouping departments into

bays are identical.

A chromosome is composed of numbers that represent the departments and there

is no indication of breaking points for grouping into bays. However, the sequentially

arranged numbers can be grouped if they meet the conditions for forming a bay when

the areas of the departments are added one by one, left to right. The feasible region

in Fig. 28 indicates the candidates’ breaking points for grouping as a bay when the

summed area is in the range of the designated bay size. This feasible region depends

on the flexibility of the bay width.

The operators for crossover and mutation used in this chapter are the same as

in Chapter III, and the parent selection policy is also equivalent. The only difference

is that there is an operation performed for local search so that the chromosomes are

improved for a given generation not only by the breeding and mutating mechanism
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Fig. 28. Representation of chromosomes

but also by the search procedure.

a. Parent Selection

The very first parents are uniformly randomly generated, and the selection of

the parents for the next generation is also random. While the parents are sometimes

chosen by a tournament, this increases the selective pressure that guides the search

procedure to converge to a local optima [51]. However, the best solution comes from

continuing on the next generation.

b. Crossover

The partial matched crossover is used to avoid generating an infeasible solution.

The integer number in a chromosome, which indicates the department, should not

be duplicated in a chromosome after the process of crossover is finished. The partial

matched crossover checks to see if there are two of the same integer numbers in a

new chromosome and swaps the number of that position in the chromosome instead
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of inserting the number from the other parent.

c. Mutation

The swap mutation operator, which simply selects two positions at random and

swaps them, is used. As explained in Chapter III, it is different from the standard

mutation operator, where a bit of an offspring is flipped with some probability.

d. The Local Search

A simple 2-opt algorithm, also known as a pairwise interchange heuristic, was

used to enhance the GA to generate a MA. The 2-opt algorithm consists of three

steps:

Step 1 Let S be the initial solution and z its objective function value (OFV).

Set S∗ = s, z∗ = z, i = 1 and j = i + 1 = 2.

Step 2 Consider the exchange between the positions of departments i and j

in the solution S. If the exchange results in a solution S ′ that has

OFV z′ ≤ z∗, set z∗ = z′ and S∗ = S ′. If j ≤ n, set j = j + 1;

otherwise, set i = i + 1. If i ≤ n, repeat step 2; otherwise go to step

3.

Step 3 If S 6= S∗, set S = S∗, z = z∗, i = 1, j = i + 1 = 2 and go to step 2.

Otherwise, return S∗ as the best solution. Stop.

The 2-opt algorithm considers only two departments at a time for exchange, and

whenever a better solution is found, the algorithm discards the previous best solution.

The total possible exchanges for step 2 are n(n−1)
2

because each department can be

exchanged with n − 1 other departments and there are n departments in total, and

the exchange of i with j is identical to the exchange of j with i.
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2. Evolution Parameters

The procedure for assigning departments to bays is much simpler, but the proce-

dures for improving each representation is more complicated than those in Chapter III.

However, the parameters are set the same way as in Chapter III since the trial ex-

periments indicate that the parameter set used in the previous chapter is reasonable.

After examining the combinations of the parameters, we set the population size at

10, the crossover rate at 60%, and the mutation rate at 10%.

3. Penalty Function and Dummy Department

The fitness value evaluated by calculating total flow distance between bays would

be increased excessively by a penalty function if the configuration of the individual

is not feasible. Although the departments arranged in bays do not have an aspect

ratio, a penalty function needs to be introduced in this problem since the bay widths

are restricted based on the flexibility.

If the sum of the area of each department is not equal to the floor space (area

compactness is less than 100%), a dummy department could help design better con-

figurations. The BAP [17] and FBAP are able to assign the departments to bays

and the empty space in each bay is calculated. However, the heuristic method needs

to consider the possibility of having empty space in each bay since the procedure

orderly determines the bay area by filling the limited floor space from left to right.

Whenever the summed area of the department reaches the size limit of the bay, the

procedure fixes the area as a bay and proceeds to the next bay. Only the last bay

can have empty space based on this procedure. Introducing a dummy department

provides more opportunity for each bay to have empty space, and therefore the search

procedure to have more chance of finding better solutions.
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E. Within-bay Layout

The objective of the Stage 2 problem is to minimize the material handling costs

within the bays. We assume that there is one material handling system and that the

within-bay costs are dependent on the within-bay distances between departments i

and j, which are determined by the solutions to Stage 1 and Stage 2. If departments

i and j are not assigned to the same bay, then we can define the distance as dij =

diMHS + djMHS where diMHS corresponds to the vertical distance between department

i and the material handling system.

The objective function for the layout problem in Stage 2 is

min
∑

i

∑
j

fijdij. (4.10)

The within bay layout problem can be considered as a single-row department

layout problem [26] since we assume a linear flow production pattern within each bay.

The problem in Stage 2 is to determine the layout of each bay independently. To

do so, we introduce fiMHS as the product flow from department i to the automated

material handling system and fMHSi as the product flow from the automated material

handling system to department i. That is,

fiMHS =
∑

j

fij(δij + δji) and (4.11)

fMHSi =
∑

j

fji(δij + δji). (4.12)

The length of department i is equal to the area of department i, ai, divided by

the width of the bay that department i is assigned to. We assume all distances are

measured rectilinearly between department centroids.
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F. Computational Results

The two-stage solution methodology proceeds as follows: in Stage 1, we use the

FBAP to find an optimal solution for the assignment of departments to bays. The

memetic approach can be used to find solutions for large problems. In Stage 2, the

individual within-bay layout is configured as a single-row facility layout problem [26].

The data sets is taken from Meller [17], which was originally taken from Meller and

Bozer [19] and Bozer et al. [8]. Each data set consists of departmental areas, flow

data, bay dimensions, and a specification of fixed departments. We use 11, 15, 21,

and 40 department problems, and the bays in each problem have 10%, 20%, and 30%

flexibility.

1. The BAP and FBAP

Table XV and XVI shows the comparison of the BAP and FBAP. The problem

sets are tested using an AMPL interface with CPLEX 6.5 on a Pentium 4 class com-

puter, 2.2 GHz CPU and 512Mb of physical memory operated under MS-Windows

XP Professional. Note that distance (Dist.) refers to the total flow times the ap-

propriate distance. Since the FBAP has more binary variables (N(N − 1)) than the

BAP (NB, when there are B bays), it takes a much longer time to solve the FBAP

than the BAP for large sized problems. It takes only a second to get the solution

for a 40-department, 4 bay problem in the BAP, but the FBAP cannot generate an

optimal solution in 12 hours. The solution procedure for a 40-department problem

with no bay width flexibility with FBAP was interrupted at 17.45 hours with a 76%

of an optimality gap due to insufficient memory.
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The inter-bay material handling cost is dramatically reduced when bay width

flexibility exists. The number of bays is determined when the departments are as-

signed to bays. However, we can get the minimum number of bays before the assign-

ment since we know the maximum width of the bays. That is,

n =

⌈∑N
i ai

L · ub

⌉
. (4.13)

The number of bays is decreased from 4 to 3 in a 20-department problem with

20% and 30% bay flexibility. Since we assume that the inter-bay material handling

costs dominant, a reduction in the number of bays leads to a reduction in inter-bay

material handling cost.

2. GA and MA

The MA is a hybrid GA. The mechanism of the MA for improving individuals

is almost identical to the general GA except for the addition of the local search step.

Because of the local search, the time for the procedure is also longer. If there were no

difference in the search results observed between these two heuristics, there would be

no reason to use the MA since it is less time efficient. However, we do observe that

the MA found more favorable solutions than did the GA.

We experimented with the GA and MA using the same parameter set as op-

erators. To compare the search procedures of these two heuristics under the same

conditions, we tested and plotted the solutions of each iteration for a 15-department

problem with a fixed bay width. Fig. 29 shows the results at the end of each gener-

ation, and Table XVII and XVIII show the comparison of the GA and MA for the

whole problem set.

The solutions for problem sets 15, 21, and 40 shown in Tables XVII and XVIII

are based on an experiment with different numbers of dummy departments since



83

500

10,050

22,125

1 21 41 61 81 100

 10,750

 6,700

GA

MA

Number of generations

O
F

V

Fig. 29. Comparison of the search procedures of the GA and MA for a 15-department

with fixed bay width problem

these problem sets had area compactness of less than 100%. The best solution can be

chosen from among these various experiments. Then the best average can be taken

from the set of experiments with the varying numbers of dummies.

The solutions generated by GA are not close to optimal except for the 11-

department problem. It is reasonable for a facility to have a more efficient layout if

the bay widths are more flexible. However, the solutions of the 15 and 40-department

problems by the GA do not follows this trend, and the 21-department problem only

shows this trend in its averages.
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Among the MA generated solutions, the best and the average are the same for

almost every experiment, and all are much better than those of the GA. However,

the search procedure of the MA takes a much longer time as was mentioned before.

This fact led to specification that perhaps the GA could produce a better solution

if the search procedure took more time to explore for solution space. Therefore, we

changed the parameter set of the GA for the 15, 21, and 40-department problems

and tested again to see how the solution was affected. Table XIX shows the results

of doubling the number of generations and the size of populations.

Changing the parameter set did, infact, seem to affect the final results. Increasing

the number of generations and the population size enabled the search procedure

to find better solutions. We also tested the 21-department problem with 10% bay

width flexibility to see the effectiveness of a different parameter set for the number

of generations and population size. Fig. 30 shows the resulting trends.

According to the results for the 21-department problem in Fig. 30, increasing

the maximum number of generations and the population size appears to facilitate the

procedure in finding a better solution. However, increasing those parameters with a

GA cannot guarantee that the search procedure will always find a better solution than

that of the procedure with fewer generations and a smaller population. Numerous

attempts with the GA for the 21-department problem with various parameter sets

could not generate a solution as good as the one provided by the MA, even with 1,000

as the maximum number of generations, which is ten times more than the MA uses.
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3. FBAP and MA

The memetic approach used in Stage 1, finds solutions which are known as opti-

mal in given problems: 12 out of 16 problems were verified as optimal by FBAP and

BAP. The time to solve 11-1 is less than 0.05 of a second in the FBAP and 0.8 of a

second in the MA. However, the MA finds the solution for the 21-1 and 40 in a very

short time compared to the FBAP, without degrading the quality of the solution. The

MA found a solution with objective value of 870 for the 40 department problem with

no bay flexibility problem to 870, which is the optimal solution from BAP. Thus we

would expect that the solution for the 40 department problem with 10, 20, and 30%

bay flexibility is near optimal as well, although this hasn’t been verified. Table XX

shows the comparison of these results.

Bay width flexibility clearly makes layout more efficient and in some problems

even a small amount of flexibility can yield large improvement. The proposed method-

ology using the FBAP efficiently finds the solution. The inter-bay material handling

cost improvement resulting from bay width flexibility compared to layouts with fixed

identical bay areas is summarized in Fig. 31.

The improvement is in proportion to the bay width flexibility and inversely pro-
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Table XX. Comparison of FBAP and MA for inter-bay material handling cost

Data Bay FBAP MA

Set Flexibility(%) Dist. Time Dist. Time

11-1 0 282.0 0.0 282.0 0.79

10 282.0 0.0 282.0 0.78

20 162.0 0.0 162.0 0.8

30 162.0 0.0 132.0 0.8

15 0 6,700.0 0.0 6,700.0 2.88

10 5,314.8 10.6 5,314.8 13.56

20 5,042.3 16.9 5,042.3 3.97

30 4,769.8 225.9 4,769.8 12.38

21-1 0 981.0 4,403.1 981.0 13.14

10 960.5† 41,026.8 915.5 13.78

20 780.0 1,630.6 780.0 14.26

30 747.0 5,998.2 747.0 13.90

40 0 2,290.0† 62,807.0 870.0§ 265.24

10 2,065.0† 44,272.0 838.5 270.26

20 n/a‡ 838.5 374.37

30 3,346.7† 37,124.3 774.3 183.21

†Not solved optimally due to insufficient memory.

‡No feasible solution found before memory limit was exceeded.

§Known optimal solution by BAP.
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portional to the size of problem. It is reasonable that higher flexibility provides more

chances for a better solution and that the area of a department in a large sized prob-

lem is not as significant as in a small sized problem; 30% of bay width flexibility in

the 11-department problem improves the inter-bay material handling cost more than

50% while flexibility improves the cost only 11% in the 40-department problem.

4. Within-bay Configuration

Table XXI, XXII, XXIII, and XXIV show the layout solutions in Stage 2. The

optimal solutions of each problem with the FBAP and the best solutions of each

problem with the MA, if there is no optimal solution found with the FBAP, are used

to configure the within-bay layout. Each bay used an individual flow matrix that is

constructed by splitting original flow matrix with consideration of the flow to and

from the MHS. The time to solve the problems 11-1, 15, and 21-1 were less than

0.1 second since the number of departments assigned to a bay is relatively small.

However, the computation is significant on problem 40 since some of the bays have

many departments.

Table XXI. Solution to Stage 2 for problem 11-1

Data Bay Bay

Set Flexibility(%) # Layout solution sequence Dist. Time

11-1 0 and 10 1 MHS:11-1-5-10-9-6-2 1,103.3 0.0

2 MHS:7-8-3-4 232.7 0.0

20 1 MHS:11-10-9-1-5-6-7 975.3 0.0

2 MHS:2-8-3-4 169.1 0.0

30 1 MHS:11-10-9-1-5-6-7-2 938.6 0.0

2 MHS:8-3-4 142.4 0.0
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Table XXII. Solution to Stage 2 for problem 15

Data Bay Bay

Set Flexibility(%) # Layout solution sequence Dist. Time

15 0 1 MHS:15-12-14-5 11,390.0 0.0

2 MHS:9-10-4-3-1-2 11,887.5 0.0

3 MHS:6-8-13-7-11 8,043.0 0.0

10 1 MHS:15-12-14-5-1-2 12,893.3 0.0

2 MHS:9-10-4-3 9,950.0 0.0

3 MHS:6-8-13-7-11 8,600.0 0.0

20 1 MHS:15-12-14-5-1-2 12,893.3 0.0

2 MHS:9-10-4-3 11,153.1 0.0

3 MHS:6-8-13-7-11 8,600.0 0.0

30 1 MHS:15-12-14-5-1-2 12,893.3 0.0

2 MHS:9-10-4-3 12,700.0 0.0

3 MHS:6-8-13-7-11 8,600.0 0.0
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G. Summary and Conclusions

In this chapter, we have introduced layout design of a multi-bay facility with lim-

ited bay flexibility. The characteristic of inter-bay material handling costs dominating

within-bay material handling costs leads to a two-stage approach for solving the prob-

lem. For the case where the facility operates with one inter-bay MHS, the bays are

connected at one end, and the layout within each bay follows a linear production

pattern, we have developed an efficient approach to find a favorable solution.

We formulated a mixed-integer program that takes into account bay flexibility.

The bay area flexibility provides more opportunities for better solutions. An MIP-

based model, FBAP, simultaneously determines the assignment of departments to

bays and the corresponding bay areas. MA, a population based search algorithm

that combines genetic algorithms and local search, has been used to solve large sized

problems. The MA finds the known optimal solution for most of the example problems

within a few minutes.

The model FBAP provides optimal solutions for the case where one inter-bay

MHS is operated at the end of the bays. It can be adapted to other cases of multi-bay

layout; however, additional variables and constraints would be required to represent

other layout cases. Thus, developing more generally applicable models is a future

research priority. In addition, the incorporation of other concerns, such as production

planning, should also be investigated.



96

CHAPTER V

CONCLUSIONS AND CONTRIBUTIONS

A. Contributions

This dissertation develops concurrent design models for integrating facility layout

and department formation problems and creates solution procedures to contend with

the associated increases in complexity. This research develops models that address

broader facility layout design problems and as such generate versatile insight about

their nature, thus leading the way to improved solutions.

Addressing integrated facility layout problems necessitated the creation of a novel

modeling technique. Having developed these models to contend with the discussed

problems and their associated application areas, new solution procedures had to be

devised as well. Since these areas represent many design structures in manufacturing

systems, the proposed formulations serve as a critical step toward integrated facility

layout.

The model presented in Chapter III was concerned with concurrent determination

of flow-based department formation and layout of these departments within a facility.

The flow-based department formation problem has been defined and identified. The

model for the concurrent design problem makes it possible to consider several decision

factors related to layout design and department formation simultaneously instead of

solving those problems sequentially as in traditional facility layout problems. The

problem specific genetic algorithm presented in Chapter III provides solutions for

larger problems known to be difficult to solve optimally even when considering only

the layout problem.

The model presented in Chapter IV extends the design of bays to have flexi-
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bility beyond those traditionally studied in multi-bay manufacturing facility layout

problems. This specific problem is concerned with determining the most efficient as-

signment of departments to bays in a facility that is defined by parallel bays arranged

along a connecting aisle and served by an automated material handling system. Tra-

ditionally, in the multi-bay manufacturing problem, it is assumed that all the bay

widths are known within a facility. We allow these bays to have widths that are

flexible but limited for reasonable bay shapes and departmental assignments. From

a practical standpoint, such extensions allow significant cost savings compared to

traditional, multi-bay approaches with identical bays.

The evolutionary algorithm for the multi-bay manufacturing facility layout prob-

lem, based on a memetic algorithm, provides a solution approach for larger problems

that cannot be solved optimally in a reasonable time. The heuristic algorithm is a

hybrid genetic algorithm that combines local search with each generation of genetic

searches. Its performance is superior to that of a general genetic search, and the

procedure is able to efficiently find solutions for a range of problems.

B. Conclusions

The interaction between facility layout and department formation is widely recog-

nized. However, developing an integrated model that simultaneously determines the

formation of departments and the layout of those departments is a difficult task. The

traditional approach to addressing the problems is to sequentially solve the restricted

problems with necessary assumptions.

This research circumvents the limitations of traditional modelling by integrating

department formation and facility layout into comprehensive mathematical formu-

lations while still developing effective solution procedures. The expectation here is
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that these developments will enhance facility layout solution quality, develop insight

about the nature of layout formulation, and generate new research directions.

Although the models provide desirable information for facility layout design,

some restrictions for modelling the system are still necessary. Thus, future research

directions include the development of more generally applicable models with more

effective and efficient solution procedures. In addition, the incorporation of other

factors that are needed for the formation of departments, such as part-machine re-

lationships, production volume, part flows, and material handling equipment, should

be investigated. The variable cost of intra-department material handling, which is

affected not only by material handling equipment but also by the size of the depart-

ment, should also be explored.
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APPENDIX A

EXTENSION OF AN UNDERESTIMATED DEPARTMENT AREA

The solutions from an MILP with area linearization can be extended to the

original area. Let Ω be the ’approximate’ block layout obtained from an MILP, and

consider the following parameters.

ai : area requirement for department i

xΩ
i : horizontal coordinate of centroid of department i in Ω

yΩ
i : vertical coordinate of centroid of department i in Ω

hΩ
i : height of department i in Ω

wΩ
i : width of department i in Ω

n : number of departments

We define

uΩ
i = yΩ

i +
hΩ

i

2
and lΩi = yΩ

i −
hΩ

i

2
(A.1)

and

q(i, j) =‖ (xΩ
i , uΩ

i )− (xΩ
j , lΩj ) ‖ (A.2)

To compute the coordinates and dimensions of all of the departments in the fa-

cility, an incident matrix needs to be constructed as in [36]. Let Π be the incidence

matrix with elements π(i, j), i = 1, ..., np and j = 1, ...n, where np is the number of

partitions. The incident matrix generating algorithm for this problem is as follows.

Set np = n and Π = 0
for i = 1 to n
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if uΩ
i > lΩj ,∀j then π(1, j) = 1

if lΩi < uΩ
j ,∀j then π(np, j) = −1

next i

k = 1
for i = 1 to n

if π(j, i) = 1,∃j then k = k + 1
r = arg minj q(j, i),∀j
if π(j, i) = 1, ∃j then π(j, i) = −1
else π(k, i) = −1 and π(k, r) = 1

next i

for i = 1 to n
if π(j, i) ≤ 0,∀j then

r = arg minj q(i, j), ∀j and π(kr, i) = −1 where π(kr, r) = −1
next i

Sort Π such that a < b ∀{a, b : π(a, i) = 1 and π(b, i) = −1, i = 1, ..., n}

for i = 1 to n
if π(i, j) = 0, ∀j then delete Π(i, :)

next i

4

y
1

y
4

1 2 3 4

y1 0 1 1 0

y2 0 0 0 0

y3 0 0 0 0

y4 -1 0 0 -1

Fig. 32. Approximated block layout of a four department problem from MIP and the

incident matrix for the first step

The first step begins with placing the departments that set the upper and lower

floor boundaries. Then the distance from the upper bound of one department to

the lower bound of another department is measured and compared to configure the

relative location. The approximated block layout from the MIP and the matrix for
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4

y
1

y
2

y
3

y
4

1 2 3 4

y1 0 1 1 0

y2 1 -1 0 0

y3 0 0 -1 1

y4 -1 0 0 -1

Fig. 33. Block layout of the four department problem and its corresponding incident

matrix

the first step of the algorithm are shown in Fig. 32.

The algorithm works by identifying the spacial relations of each department and

finalizes by deleting unnecessary rows of the matrix. The algorithm finds the layout

based on a given approximation. The extended block layout and the corresponding

incident matrix are shown in Fig. 33.
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APPENDIX B

ε-ACCURATE MODEL

Castillo and Westerlund [40] developed the ε-accurate model that linearizes area

constraints without adding binary variables. The linearized area is underestimated

to be feasible in its produced area with its dimensions. ε indicates the controllable

error by the cutting planes generated along the curve of the area constraint.

FLPε:

min
n−1∑
i=1

n∑
j=i+1

fij(|xi − xj|+ |yi + yj|) (B.1)

s.t.
1

2
(lxi + lxj)− (xi − xj) ≤ Lx(Xij + Yij), ∀1 ≤ i ≤ j ≤ n, (B.2)

1

2
(lxi + lxj)− (xj − xi) ≤ Lx(1 + Xij − Yij), ∀1 ≤ i ≤ j ≤ n, (B.3)

1

2
(lyi + lyj)− (yi − yj) ≤ Ly(1−Xij + Yij), ∀1 ≤ i ≤ j ≤ n, (B.4)

1

2
(lyi + lyj)− (yj − yi) ≤ Ly(2−Xij − Yij),∀1 ≤ i ≤ j ≤ n, (B.5)

xi +
1

2
lxi ≤ Lx, i = 1, ..., n, (B.6)

xi − 1

2
lxi ≥ 0, i = 1, ..., n, (B.7)

yi +
1

2
lyi ≤ Ly, i = 1, ..., n, (B.8)

yj − 1

2
lyi ≥ 0, i = 1, ..., n, (B.9)

lxlow
i ≤ lxi ≤ lxup

i , i = 1, ..., n, (B.10)

lylow
i ≤ lyi ≤ lyup

i , i = 1, ..., n, (B.11)

−lxi − ai

l̄x
2
ik

lxi ≤ −2
ai

l̄xik

, k = 0, ..., Ci, i = 1, ..., n. (B.12)

Xij, Yij ∈ {0, 1},∀1 ≤ i ≤ j ≤ n, (B.13)
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The floor area is a rectangle of size Lx × Ly. For each sub-department i, (xi, yi)

indicates the coordinates of its centroid and lxi, lyi represent its width and height

dimensions, respectively. The combination of binary variables Xij and Yij indicates

the relative location of sub-departments i and j. Ci in constraint (B.12) is an integer

number obtained by

Ci =

⌈
ln(lxup

i /lxlow
i )

ln((1 +
√

ε)/(1−√ε))

⌉
(B.14)

and l̄xik represents a point between lxlow
i and lxup

i generating a cutting plane. This

point is computed as follows:

l̄xik = l̄xi,k−1

(
lxup

i

lxlow
i

)1/Ci

, k = 1, ..., Ci, (B.15)

where l̄xi0 = lxlow
i

Ci is the total number of sub-intervals in the interval lxlow
i to lxup

i . Thus, the

total number of cutting planes to be generated for department i is Ci + 1. This

number of cutting planes is inversely proportional to ε. A more detailed explanation

of the cutting planes follows.

The cutting plane generated by the tangential support at point l̄xi0 = lxlow
i and

a cutting plane at point l̄xi0 < l̄xi1 ≤ lxup
i intersect at coordinates (l̄x

max
i01 , l̄y

max
i01 ) as

shown in Fig 34. This intersection is the point of maximum area constraint violation

represented by

l̄x
max
i01 = 2

1/l̄xi1 − 1/l̄xi0

1/l̄x
2
i1 − 1/l̄x

2
i0

(B.16)

l̄y
max
i01 = − ai

l̄x
2
i0

l̄x
max
i01 + 2

ai

l̄xi0

(B.17)

with an area constraint violation of

εmax
i01 = 1− l̄x

max
i01 l̄y

max
i01

ai

=

(
l̄xi1 − l̄xi0

l̄xi1 + l̄xi0

)2

. (B.18)
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A

B

lxilyi = ai

lxi0
lxi01

max

lxi1

lyi01
max

Fig. 34. Cutting plane generation

The coordinates (l̄x
max
i01 , l̄y

max
i01 ) are derived from the the convex lower bound−lyi+

ai/lxi ≤ 0. The cutting plane that underestimates such a convex lower bound at a

point l̄xi0 follows:

−lyi − ai

l̄x
2
i0

lxi ≤ −2
ai

l̄xi0

(B.19)

If a maximum area constraint violation ε is given, the point of generating cutting

plane can be found. The following equation can be obtained from (B.18).

l̄xi1

l̄xi0

=
1 +

√
ε

1−√ε
. (B.20)

As it is possible to find the point l̄xi1 from l̄xi0 with a maximum violation ε, it

is also possible to find the next point l̄x02 from l̄xi1 with a maximum violation ε in

the interval l̄xi1 to l̄xi2 until lxup
i is reached. As is explained about Ci, the following

equation is valid.

l̄xiCi

l̄xi0

=
l̄xi1

l̄xi0

l̄xi2

l̄xi1

· · · l̄xiCi

l̄xiCi−1

=

(
l̄xi1

l̄xi0

)Ci

=

(
1 +

√
ε

1−√ε

)Ci

. (B.21)
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Thus, the total number of cutting planes for department i can be found using the

valid implied lower and upper bounds lxlow
i and lxup

i on l̄x0i and l̄xiCi
. The equation

(B.14) is obtained from this equation (B.21).
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