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Abstract

Over a 13-year span, a major South American oil company’s
maintenance department fought high vibrations in three gas
reinjection compressor trains. To reduce the chances of machine
trips, technicians field balanced the compressors every year and
replaced worn point contact pivot tilt pad journal (TPJ) bearings and
O-ring squeeze film dampers (SFDs) with new ones yearly. The
downtime from implementing these preventative measures and from
actual trips in the trains resulted in a loss of capacity of 1% a year and

additional flaring of the gas.

After a thorough analysis of the compressors and inspection of damaged
components, it was determined that the reoccurring problems would be solved by
installing optimized Flexure Pivot tilt pad journal bearings with Integral Squeeze
Film Damper (ISFD) technology into the compressors.

In 2013 the reinjection compressors were placed back into service with Flexure Pivot
TPJ bearings with ISFD technology. Since then the reinjection compressors have
exhibited lower vibration levels that do not grow over time, have had ZERO trips,
and have not required field balancing for continuous operation. Overall efficiency
has increased by approximately 1%.
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Unit Background Information

3 gas reinjection compressor trains operating since 2000

Each compressor train has two casings
— First casing (LP) experienced vibration issues
— Second casing (HP) did not have vibration issues
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Discharge pressure: 33 MPa U e 1 W Vibration Issuclle
Rated speed: 11,456 rpm i s =
OEM bearing information

— 114.3 mm bore x 50.8 mm long TPJ

— 5-pad, load on pad
— 60% offset




Problem Statement

Vibration trend of LP compressor with OEM

Vibration pk-pk

(microns)

bearings over 5-month span

+ 85,40

Rotor vibration levels increased over time

— Downtime due to high vibrations
resulted in about 1% loss in production
time and additional flaring gas
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Root Cause

e Severe pivot wear in TPJ bearings Pivot wear
— Bearing clearance increased by 63+ microns . _
o ___.__2_\‘

e O-ring damper performance changed & ,;

— Damper film eccentricity ratio change

(bottoming out) Damper Axial
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Rotordynamic Model
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Baseline Mode Shapes with OEM Bearings

 Small log dec for baseline model (no SFD and no aero cross-coupling
stiffness from seals and impellers)
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Stability with OEM Bearings

e Level | stability predicts that the rotor is unstable without SFD
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Division Wall Seal Contribution
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e For stability, SFD required
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O-ring Squeeze Film Damper (SFD)

Damper radial clearance (c) =0.110 mm

Damper radius (R) =95.25 mm
Effective damper length (L) =37.85 mm

Stability is very sensitive to damper
eccentricity ratio (g)

Added O-ring stiffness

Damper stiffness and damping coefficients
(without O-ring stiffness):

K=1.94E+07 N/m, C=1.88E+05 Ns/m at £€=0.25
K=6.06E+07 N/m, C=2.62E+05 Ns/m at £=0.50
K=1.70E+09 N/m, C=2.06E+06 Ns/m at £=0.90
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Pivot Wear Effects on Synchronous Vibration

Pivot wear increased operating bearing clearance

and reduced preload, resulting in increased

synchronous vibrations

A bearing with an SFD can make the rotor less

sensitive to pivot wear than a bearing without an SFD
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Bearing Upgrades (Journal Bearing)

N
-

1. Flexure Pivot Tilt Pad Journal Bearing

— No pivot wear
e Integral pivot
 Maintains bearing clearance

. . . Conventional Tilt Pad Journal
— ngh pivot stiffness Bearing (Rocker Back)

* No pivot stiffness effect on bearing
dynamic coefficients

— Tight control of clearance and preload
e Electrical Discharge Machining (EDM)

— No pad flutter

Flexure Pivot Tilt Pad Journal
Bearing



Bearing Upgrades (Damper)

2. Integral Squeeze Film Damper (ISFD)

— Accurate stiffness control by Damper Film ‘S-spring’
eliminating O-ring support L g | > = L

— No change in stiffness and a7 |
damping over time |

— Designed to counter static load

— Optimized damping -
v
— Less cavitation o mm O-ring
OrlgmaCIlDamper ISFD Clearance
earance

Conventional SFD ISFD



Optimization of ISFD

 Optimized stiffness and
damping are 4.375 E+07
N/m (250,000 Ib/in) and
2.625E+05 N-s/m (1500
Ib-s/in)

e Additionally, the ISFD is
designed to center the
Flexure Pivot TPJ under
gravity load by
countering the static
deflection

Log. Dec. of 1st mode

ISFD optimization
(with areo cross coupling stiffness of 1.5E+07 N/m)
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Redesignhed Bearing

Original Design Optimized Design
Conventional TPJ with SFD Flexure Pivot TPJ with ISFD Technology

5-pad, Load On Pad 4-pad, Load Between Pad

Shaft diameter el Te) SR ek e st Shaft diameter 114.300 +0/-0.013 mm

Bearing bore (M REEROR0PASY S0 i Bearing bore 114.427 +0.025/-0 mm

Clearance range 2T Y Clearance range 0.124/0.156 mm

Preload range 0.293/0.501 Preload range 0.230/0.273

L/D 0.444 L/D 0.500

Pad arc 60° Pad arc 72°

Pivot Offset 60% Pivot offset 55%




15t Mode Shapes: Original and Upgraded Bearings
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No Subsynchronous Vibration (SSV) with Upgrade

e Small SSV with O-ring SFD

With OEM bearing * No SSV with ISFD
(Acceptance test)
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Vibration Improvement (Comp A & B)
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Vibration Improvement (Comp C)

e Compressor C was also
upgraded with a Flexure
Pivot TPJ with ISFD

technology

Vibration pk-pk
(microns)

e Again, the vibration level
decreased to below 30
um with the upgrade
and maintained that
same level due to no
change in bearing
clearance and SFD
performance over time

Vibration pk-pk
(microns)

Compressor C (vibration trend over 10 years)
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Summary

Three reinjection compressor trains suffered
from excessive vibration over many years
— Original configuration: point contact pivot

tilt pad journal bearings with an O-ring
SFD

The root cause was excessive pivot wear
and degradation of the O-ring SFD

— Bearing bore increased

— Stiffness and damping changed
over time




Summary

The compressors were retrofitted with optimized
Flexure Pivot tilt pad journal bearings with ISFD
technology

Operating exceptionally well
— Since 2013

— Low vibration levels

* 50% drop pk-pk compared to OEM bearings 1SFD optimization

(with areo cross coupling stiffness of 1.5E+07 N/m)

* Do not grow over time ~—2835 Wim
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— No field balancing required so far (2 years)

— No trips (continuous production) ~——
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— No expensive bearing replacements
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Lessons Learned

Increase in synchronous vibrations may be an indication of bearing clearance
increasing from pivot wear and/or change in O-ring damper performance

Pivot wear may accelerate over time from increasing imbalance due to deposits
on impellers

Without eliminating pivot wear, just replacing the worn bearing with new build
of the same design is NOT a long-term solution

Proper bearing and damper selection and optimization can reduce or
eliminate the likelihood of increasing vibrations and pivot wear

Flexure Pivot technology is a proven design to eliminate pivot wear

ISFD technology maintains performance over time



Feedback and Questions

Case Study: A Solution to Years of High Vibration Problems in
Three Reinjection Compressor Trains Running at
33 MPa Discharge Pressure




Appendix: Damper Desigh Comparison

Anti-Rotation Pin

_Damper Flow

NO Circumferential

‘S-spring’ Flow.

Squeeze Film (Outer Qil Film) — bearing whirls
or orbits (not spins) in a precessional motion
due to synchronous (unbalance) or non-
synchronous excitation, squeezing the oil and
thus generating an oil film pressure, and
subsequently a damping force. Flow can be
axial too, depending on sealing.

Damper Flow In/out
of Orifices and Axial Gaps

Conventional SFD Integral Squeeze Film Damper
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