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ABSTRACT 

 
 

Measurement Calibration/Tuning & Topology Processing in Power System State 

Estimation.  (December 2003) 

Shan Zhong, B.S., Huazhong University of Science and Technology, China; 

M.S., Tsinghua University, China 

Chair of Advisory Committee:  Dr. Ali Abur 

 
 
State estimation plays an important role in modern power systems. The errors in the 

telemetered measurements and the connectivity information of the network will greatly 

contaminate the estimated system state. This dissertation provides solutions to suppress 

the influences of these errors.  

A two-stage state estimation algorithm has been utilized in topology error 

identification in the past decade. Chapter II discusses the implementation of this 

algorithm. A concise substation model is defined for this purpose. A friendly user 

interface that incorporates the two-stage algorithm into the conventional state estimator 

is developed. 

The performances of the two-stage state estimation algorithms rely on accurate 

determination of suspect substations. A comprehensive identification procedure is 

described in chapter III. In order to evaluate the proposed procedure, a topology error 

library is created. Several identification methods are comparatively tested using this 

library. 

A remote measurement calibration method is presented in chapter IV. The un-

calibrated quantities can be related to the true values by the characteristic functions. The 

conventional state estimation algorithm is modified to include the parameters of these 

functions. Hence they can be estimated along with the system state variables and used to 

calibrate the measurements. The measurements taken at different time instants are 

utilized to minimize the influence of the random errors.  
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A method for auto tuning of measurement weights in state estimation is described in 

chapter V. Two alternative ways to estimate the measurement random error variances are 

discussed. They are both tested on simulation data generated based on IEEE systems. 

Their performances are compared.  A comprehensive solution, which contains an 

initialization process and a recursively updating process, is presented.  

Chapter VI investigates the errors introduced in the positive sequence state 

estimation due to the usual assumptions of having fully balanced bus loads/generations 

and continuously transposed transmission lines. Several tests are conducted using 

different assumptions regarding the availability of single and multi-phase measurements. 

It is demonstrated that incomplete metering of three-phase system quantities may lead to 

significant errors in the positive sequence state estimates for certain cases. A novel 

sequence domain three-phase state estimation algorithm is proposed to solve this 

problem. 
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CHAPTER  I 

INTRODUCTION 

Since electric power system state estimation (SE) was introduced by Fred Schweppe 

of MIT in 1969 [1], it has remained an extremely active and contentious area. At present, 

state estimation plays an essential role in modern Energy Management systems (EMS) 

providing a complete, consistent, accurate and reliable database for other key functions of 

the EMS system, such as security monitoring, optimal power flow, security analysis, on-

line power flow studies, supervisory control, automatic voltage control and economic 

dispatch control [2]-[3].  

Power system state estimation is the process carried out in the energy control centers 

in order to provide a best estimate of the system state based on the real-time system 

measurements and a pre-determined system model. A redundant set of real-time 

measurements, including bus voltage magnitudes, real and reactive power injections at 

the buses, real and reactive line power flows, and sometimes line current magnitudes, are 

collected from the entire network through the Supervisory Control and Data Acquisition 

(SCADA) system. These telemetered raw measurements are usually corrupted by 

different kinds of errors. State estimator is a digestive system that removes these 

impurities statistically to determine the state of the system. In formulating power system 

state estimation problem, the complex bus voltages (bus voltages magnitudes and phase 

angles) are commonly used as the state variables. Once system state is determined, the 

entire system quantities such as line power flows, line current magnitudes and bus power 

injections can be calculated. 

The deregulation of the electric power industry has transformed state estimation from 

an important application into a critical one. Many critical commercial issues in the power 

market, such as congestion management, need to be founded and justified on a precise 

model of power system, which is derived from the state estimation process. Hence, the 

improvement of the state estimation to achieve a more accurate and more reliable system 

________________ 
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state is a timely task. 

Although the role of a state estimator is clear, there is much freedom of choice in its 

practical implementation. One of the important options is that of the statistical 

methodology used to purify the measured data. Various methods for state estimation have 

been introduced [5]-[7] in the past decades. Among those methods, Weighted Least 

Squares (WLS) algorithm is the most popular one. The objective function to be 

minimized of this method is chosen as the weighted sum of squares of the measurement 

residuals. Since this kind of problem can be solved by efficient numerical techniques, 

state estimators based on WLS approach have been installed in almost all the EMS 

systems all over the world. However, WLS method is highly sensitive to bad data in the 

measurement set [8]. In order to solve this problem, an alternative formulation of the state 

estimation problem, Weight Least Absolute Values (WLAV) [8]-[10], has been used. It 

defines the sum of the weighted absolute values of the measurement residuals as the 

objective function. Although this method is not widely used in the industry due to slower 

speed compared to WLS method, its capability of automatic bad data rejection makes it 

useful in some special issues such as topology error identification.  

When a state estimation model fails to yield estimates within a degree of accuracy 

compatible with the standard deviations of the quantities estimated, one must conclude 

either that the measured quantities contain spurious data or that the model is unfit to 

explain the measured quantities. The procedure to identify and solve the former problem 

is called bad data analysis [4] while for the later one is topology error 

detection/identification. There exist many bad data analysis techniques [4], [11] and they 

are successfully utilized. However, the conventional state estimators are still vulnerable 

to errors in the topology of the system, which show up when the assumed status of the 

circuit breakers and switches do not coincide with their true statuses.  

Observability analysis is another important procedure closely related to state 

estimation. Sometimes state estimation is not possible if it is not given enough 

measurements. If all the state variables (bus voltage magnitudes and relative phase angles) 

can be estimated using the available measurements, a system is said to be observable. 

Various methods proposed for network observability analysis have been well document 

in the literature [12]-[14]. 
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Usually the following assumptions are made in formulating the conventional static 

power system state estimation problem [15]: 

1) The three-phase power system network is balanced. Thus, a single-phase 

equivalent circuit can represent the system. 

2) The system is operating in the steady state. 

3) The parameters of the network are known and accurate. 

4) The real-time topology of the network is precisely known. 

5) All measurements are collected at the same instant and represent a true snapshot 

of the system state. 

6) Measurement errors are independent random variables with zero mean Gaussian 

distribution. 

7) Variances ( 2σ ) of the measurement errors are exactly known. 

In a real power system, some of these assumptions may not always hold, which will 

result in erroneous estimates. The difficulties of solving this kind of problems give rise to 

the so-called Generalized State Estimation algorithm. Proposed by Alcir Monticelli [4] 

and others, the generalized approach takes into account that the network impedances and 

topology are not accurately known. They insisted that, in order to construct the best 

power flow model, the device statuses and impedance values must be regarded as subject 

to statistical errors. Likewise, all other potentially imprecise data sources, including 

transformer taps, phase shifter angles, voltage regulation set points, interchange schedules, 

equipment limits and plausibility criteria have to be factored into the estimation process. 

The first application of the generalized state estimation approach is identification of 

topology error. In a conventional EMS system, the topology issue is mainly addressed by 

topology processor. It runs before the state estimator. All the switch statuses will be input 

into topology processor and the output is the system model in bus/branch level. The 

detailed substation models will be ignored. It is easy to image that sometimes the switch 

statuses are incorrect. Most of topology processors can handle these errors by simple 

consistency check. It will identify some of this kind of errors and can still provide a 

correct system model. However, once this function fails, the topology error will go into 

the state estimator, which result in erroneous estimates. This requires state estimator 

capable of ability to detect and identify topology error. The topic of detection and 
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identification of topology errors has been addressed in many papers in the past decades. 

There are several rule-based methods [16]-[18] and methods using correlation index [19] 

as an indication of possible topology errors. Other approaches [20], [21] utilize 

normalized measurement residuals to identify topology errors. In early 1990’, Alcir 

Monticelli presented a new modeling method, which includes switches directly in the 

system model by incorporating their power flows within the state estimation formulation 

[22], [23]. Several topology error identification algorithms [24]-[28] are proposed based 

on this model. The main idea is to augment the state vector with the power flows through 

the circuit breakers and identify the status of the breakers based on the estimated flows 

through them. This is accomplished by representing the substations in detail using circuit 

breaker models. However, in order to keep the computational cost within reasonable 

limits, detailed substation models are employed only for a few substations suspected of 

having topological errors. A two-stage state estimation [8], [24] is used for this purpose. 

A small set of suspect substations will be identified after the first stage estimation. The 

second stage state estimation will incorporate the detailed model of the suspected 

substations and yield the estimated statuses of the CBs. 

Chapter II focuses on the implementation of this proposed two-stage state estimation 

algorithm based on a conventional state estimator. A simplified substation model that 

contains only a minimum amount of required data for the second stage state estimation is 

defined. A small set of data is also added to the conventional bus/branch model to 

establish the relationships between all substations. Using these extra data structures, the 

two-stage state estimator and its associated user interface are implemented and tested.  

The implementation is carried out in such a way that future revisions to the estimation 

and/or identification algorithms can easily be incorporated and arbitrary topologies for 

new substations can be defined as needed. It can serve as a test platform for any further 

developments in this topic. 

The success of the two-stage state estimator in identifying the topology errors 

depends on the correct identification of the suspect substations after the first stage. 

Currently used identification methods do not have satisfied performance under some 

circumstances. Chapter III describes an improved identification strategy, which utilizes 

the calculated state estimation residuals of the first stage and the associated network 
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configuration. In order to investigate and comparatively evaluate the performances of 

different identification methods, a topology error library containing 50 scenarios are built 

based on the IEEE 30 bus test system. The simulation results of different methods on this 

library will be compared and the best method will be selected. In addition, the new 

identification method will be implemented in an adaptive way. User in the practical 

system can modify some parameters to fit their needs. 

As mentioned above, one of the assumptions of the conventional state estimation is 

that measurement errors are independent random variables with zero mean Gaussian 

distribution. The telemetered measurements used in power system state estimation are 

final products of a chain of instruments, including instrument transformer, transducer, 

A/D (D/A) convertor, etc. Hence the uncertainties in the measurements are due to 

combination of random and systematic errors caused by those instruments. The raw 

measurements need to be calibrated before used by state estimator to satisfy the “zero 

mean error” requirement. On-site adjustment process can correct some of the systematic 

errors, such as model errors, erroneous instrument ratios and transducer ratings and 

scaling procedures. However, due to the diversity of error sources, the on-site calibration 

procedure, which is untimely and labor intensive, cannot get satisfactory result. It also 

cannot handle time dependent errors and some temporary errors, such as failure of the 

metering gear, intermittent error due to the interference in communication. Chapter IV 

will investigate how to utilize state estimation approach to process the on-line 

measurement calibration. 

While the systematic error might be eliminated by calibration methods, random error 

will always remain. The conventional state estimation assumes the variances of the 

random errors are known and the measurements will be weighted by the inverses of 

random error variances to suppress their influences. No matter using WLS method or 

WLAV method, the accuracy of the estimate results is greatly influenced by the weight 

vector. However, the random errors of measurements presented in control system are the 

combination of different sources of random errors, which come from different devices 

throughout the processing procedure. It is very difficult to precisely determine the 

variances of these random errors in advance. Moreover, some of the random error 

sources, such as those come from communication process, may be influenced by some 
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real-time factors. This results in the time dependent property of variances. In this case, 

state estimation should be capable of setting measurement weight adaptively. The 

estimation and the auto-tuning of the variances of the measurements are necessary. This 

topic will be discussed in Chapter V. 

Power systems are generally configured in three phases, and are designed to operate 

in an almost balanced manner. Analysis of balanced three-phase systems is relatively 

simple compared to the full detailed three-phase solution of the network equations.  A 

symmetrical component transformation will decompose the balanced three-phase system 

into three independent systems, commonly referred to as the positive, negative and the 

zero sequence networks.  Absence of negative and zero sequence signals under perfectly 

balanced three-phase operating conditions, allows the analysis to be carried out in the 

single phase, using only the positive sequence model.  State estimators are no exception, 

making use of the positive sequence network model and the measurements in solving for 

the best estimate for the system state. In a realistic system, there will be imbalances 

between three phases, such as non-transposed transmission line and unbalanced load 

distribution. This may introduce errors into the estimate of state estimator, which assume 

the system is fully symmetrical. Chapter VI will discuss the influences of this kind of 

modeling errors and discuss the solution to eliminate them. 

Finally, as a summary, Chapter VII will draw the conclusions of this dissertation, 

outline its main contributions and provide suggestions about possible future work. 
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CHAPTER  II 

IMPLEMENTATION OF TWO-STAGE METHOD FOR TOPOLOGY ERROR 

DETECTION/IDENTIFICATION 

2.1  Introduction 

Topology error identification is an important issue in the real time operation and 

control of power systems.  These errors will lead to inaccurate state estimates and 

furthermore will not be easily identified by the conventional bad data processing methods. 

The common cause of topology errors is the incorrect status information about the circuit 

breakers (CB) at the substations.  Since such information may not be monitored on-line 

for each and every breaker in the system, there may be situations where the actual and 

assumed status of a breaker may differ after the occurrence of a substation 

reconfiguration event. 

Several methods have been proposed in order to identify topology errors. Among 

them, there are those, which are rule-based [16]-[18] and others that are based on 

modified formulation of the state estimation algorithm [8], [24], [25]-[28]. The latter ones 

incorporate the circuit breaker models of [22]-[23] (zero impedance branches) into the 

state estimation formulation. The main idea is to augment the state vector with the power 

flows through the circuit breakers and identify the status of the breakers based on the 

estimated flows through them. This is accomplished by representing the substations in 

detail using these circuit breaker models. While it is possible to reduce the computational 

complexity of this formulation by cleverly manipulating the substation equations [28], 

including all the circuit breakers within the system model may not always be practical. In 

this dissertation, in order to keep the computational cost within reasonable limits, detailed 

substation models are employed only for a few substations suspected of having 

topological errors. A two-stage state estimation approach [24] is employed for this 

purpose. A small set of suspect substations will be identified after the first stage 

estimation. The second stage will incorporate the detailed model of the suspected 

substations and yield the estimated status of the CBs.  
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 A simplified substation model that contains only a minimum amount of required data 

for the second stage state estimation is defined. A small set of data is also added to the 

conventional bus/branch model to establish the relationship between all substations. 

Using these extra data structures, the two-stage state estimator and its associated user 

interface are implemented and tested.  The implementation is carried out in such a way 

that future revisions to the estimation and/or identification algorithms can easily be 

incorporated and arbitrary topologies for new substations can be defined as needed. 

2.2  Formulation of State Estimation and Bad Data Detection 

The problem of state estimation is usually formulated as a weighted least squares 

(WLS) problem [29], which is solved by efficient numerical techniques. The objective 

function to be minimized is chosen as the weighted sum of squares of the measurement 

residuals. However, WLS method is highly sensitive to bad data in the measurement set 

[8]. In order to avoid this, a different formulation of the state estimation problem has 

been used. It defines the sum of the weighted absolute values of the measurement 

residuals as the objective function. Due to its automatic bad data rejection property, 

WLAV estimation method will be used in topology errors identification. In the following 

parts of this section, we will describe these two methods briefly. 

2.2.1 WLS Methods 
The measurement equation for a system modeled at the bus/branch level will take the 

following form:  

1 exhz += )(                                                       (1) 

where: 

z is the measurement vector of dimension m; 

h(x) is the nonlinear relating the error free to the system states; 

x is the state vector of dimension n; 

e is the measurement noise vector; 

n,m: the number of the state variables and measurement respectively. 

Substituting the first order Taylor expansion of h(x) around some 0x in (1), we will 

have:  
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2 exHz +∆⋅=∆                                                  (2) 

where: 

)( 0xhzz −=∆  

0at  x
x
hH

∂
∂=  

0xxx −=∆  

The weighted least square (WLS) estimate for x can be found by minimizing the 

following objective function: 

3 2

1

2 ))(()( ∑
=

−=
m

i
iii xhzxJ ω                                               (3) 

With the first order of Taylor expansion of h(x) shown in (2), the following equation 

will be solved iteratively to find the solution minimizing (3). 

4 0)( =∆⋅⋅′−∆⋅⋅⋅′=
∂

∂

=

kk

xx

zWHxHWH
x
xJ

k

                             (4) 

where: W is the diagonal weight matrix. 

Equation (4) can be rewritten as: 

5  01 =∆⋅⋅′⋅=∆ − kk zWHGx                                             (5) 

where: HWHG ⋅⋅′= is called the gain matrix. 

The WLS estimation problem given by (3) and (5) can be solved iteratively until 

|| kx∆ become smaller than a threshold. 

2.2.2 WLAV Methods 
The weighted least absolute value (WLAV) estimate for x can be found by 

minimizing the following objective function: 

6 |)(|)(
1
∑

=

−=
m

i
iii xhzxJ ω                                                (6) 

This is accomplished by iteratively solving the following linear programming (LP) 

problem at each iteration k: 

7 ∑
=

+=
m

i
iii vuxJ

1

)()(min ω                                               (7) 
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8 vuxxHztosubject kkk −+∆⋅=∆ )(                                                    (8) 

Where: 

)( kk xhzz −=∆  

kk x
x
hxH at  )(

∂
∂=  

iω : measurement weight assigned to the ith measurement; 

u, v = nonnegative slack variables such that (u-v) represents the measurement 

residuals. The WLAV program represented by (7) and (8) can be solved using the linear 

programming (LP) method.  

2.2.3 Bad Data Detection/Identification 
When a state estimation program fails to yield accurate estimates, it is either due to 

the erroneous measurements or due to a modeling error or both. The former is normally 

known as bad data, and the latter is called the topology error.  

A common technique used for bad data processing is the normalized residuals test 

( nr test). In this section, we will describe the nr test used in WLS method and WLAV 

method, respectively. 

1) Normalized residuals in WLS method 

Assume that the state estimate x̂ has already been computed from (5). The residuals of 

the measurements are defined as: 

9 )ˆ(ˆ xhzr −=                                                        (9) 

The relationship between the residuals and the measurement errors can be obtained 

as:  

10 eSr ⋅=ˆ                                                           (10) 

where: WHGHIS ⋅′⋅⋅−= −1  

Then the covariance matrix of the residuals can be computed by: 

11 zzr RSSRSR ⋅=⋅⋅=ˆ                                                (11) 

The normalized residuals can be obtained as: 

12 rRdiagr r
n ˆ))(( 2/1

ˆ ⋅= −                                               (12) 
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If there exist some normalized residuals greater than the probability threshold, bad 

data will be detected in the measurement set. Further more, the measurement with the 

largest nr  will be identified as bad data in most of the cases.  

2) Normalized residuals in WLAV method 

The bad data processing in WLAV method follows the same procedure as in the WLS 

method. A detailed description of how to detect/identify bad data in WLAV method can 

be found in [29]. 

2.3  State Estimation Using the Substation Model 

Regardless of the solution method used, the conventional state estimation formulation 

is based on the bus/branch model obtained from the topology processor. The circuit 

breakers will not appear in the model. Estimation of the power flows through circuit 

breakers has first been suggested for data validation at the substation by Irving and 

Sterling [30]. This requires the detailed topology of the substation, including the circuit 

breakers, to appear in the system model. Circuit breakers are modeled as zero impedance 

branches. Their flows are treated as additional state variables [22] because the 

conventional SE cannot handle the zero impedance branches. Correspondingly, the 

formulation of the SE must be modified. In the following part, we will discuss how to 

include the substation model in the WLAV state estimation formulation. 

If a substation is to be modeled in detail, representing the individual circuit breakers 

and their configuration, then the linearized measurement equations shown in (2) will take 

the following form: 

13 efMxHz +⋅+∆⋅=∆                                                  (13) 

where: 

[M] is a ( lm × ) measurement to circuit breaker incidence matrix defined by: 

if the measurement i is an injection:  









−=
otherwise       0   

jbreaker   theof end-from at the isinjection   theif        1
jbreaker   theof end- toat the isinjection   theif        1   

ijM  

if the measurement i is a line flow: 
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





−
=

otherwise       0   
jbreaker   theof end-from at the is flow  theif        1   

jbreaker   theof end- toat the is flow  theif        1

ijM  

l is the number of the circuit breakers, 

f is a ( 1×l ) vector of power flows through the circuit breaker. 

When all circuit breakers are open, then f=0, and (13) reduces to (2). To simplify the 

notation, a new vector is defined to designate the state vector augmented by the circuit 

breaker power flows: 

14 [ ]TTT fxy ∆=∆                                                      (14) 

Now, the LP problem given by (7),(8) can be modified to include the breaker flow 

variables f, yielding: 

15 ∑
=

+=
m

i
iii vuxJ

1
)()(min ω                                              (15) 

16 vuyxHztosubject kkk −+∆⋅=∆ )(                                                   (16) 

Additional constraints are appended to the LP problem in form of zero voltage drops 

across closed circuit breakers. It is very easy to add the constraints into the measurement 

set in WLAV formulation. Since the status of the breakers are not known a priori, such 

constraints are made soft by introducing a pair slack variables so that the constraints will 

be disregarded if the breakers are actually open. For a circuit breaker between buses j and 

k, the following equation will be appended to (16): 

17 011 =−+− ++ mmkj vuxx                                          (17) 

Here u m+1 and v m+1 are the nonnegative slack variables for the newly added pseudo-

measurement. 

Depending on the column rank of the matrix [H|M], some or all entries in f will be 

observable. The unobservable states can be identified by the WLAV estimator during the 

initial phase of the solution. The details of the WLAV estimator implementation are 

given in [8]. 
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2.4  Two-Stage State Estimation Algorithm 

A two-stage state estimation algorithm was proposed in [8], [24] to detect/identify the 

topology error. This algorithm normally includes three parts. 

1) The First Stage State Estimator 

The first stage state estimation is nothing but a conventional one, which is based on 

the bus/branch model. Most of the conventional state estimation methods capable of bad 

data processing could be used directly. In our study we use WLAV method due to its 

ability to exclude bad data.  

2) Suspect Substations Identification 

After the first stage state estimation, we need to detect and identify any existing 

topology errors. Normally, this detection/identification procedure is based on the 

normalized residual analysis. In [8],[24], the number of times for each bus to which the 

suspect measurements of stage 1 are incident is used as the identification criterion. 

However, experience shows that this identification method may fail for certain cases. The 

identification of the suspect area is the crucial step for the two-stage algorithm. We will 

further discuss this topic in Chapter III.  

3) Second Stage State Estimation and Correction of Topology Errors 

The detailed models of suspect substations are incorporated into the bus/branch 

model in this stage. There are lots of algorithms which can handle the detailed substation 

model [24]-[28]. Most of those second stage’s algorithms will work well given a 

correctly identified sub-area. In our implementation of the two-stage algorithm, the 

generalized WLAV method [24] is used.  

The detailed procedure of this two-stage algorithm is given below: 

• Stage1 

1. Run the WLAV estimator using the bus/branch level system model formed by the 

topology processor based on the telemetered or assumed statuses of the circuit 

breakers in the system. 

2. Compute the normalized residuals by using the measurement residual covariance 

matrix developed in [8]. The normalized residuals are computed only for those 

measurements that are rejected by the WLAV estimator. 



  14 

  

3. Identify the suspect measurements with significant normalized residuals (in all 

simulations a threshold of 1.0 was used). If there are none, it will be decided that 

no topology or analog measurement error is present. Else, go to Stage 2. 

• Stage2 

1. Identify the suspicious buses based on the normalized residual analysis.  

2. Introduce the detailed substation models using zero impedance branches to 

represent the circuit breakers based on the configuration of the corresponding 

suspicious substations. Use all available measurements from the substations 

including the circuit breaker power flows, which may not have been explicitly 

used in Stage 1. For instance a flow through a circuit breaker that connects two 

bus sections inside the same substation, may get lost if the two bus sections are 

modeled as a single node in the bus level model. 

3. Run the WLAV estimator for the entire system. Repeat the normalized residual 

test. Flag those measurements failing the test and declare these errors as analog 

measurement errors. The true topology of the system will be determined 

according to the estimated statuses of the circuit breakers based on the 

normalized flows through them. 

The flowchart of this program is shown in Fig. 1. 

2.5  Modeling of the Substation 

The fully blown substation model is very complex. It is impossible and not necessary 

to include all the circuit breakers/switches in the system. A simplified version of the 

substation model that satisfies the requirements of second state estimation will be 

defined. Further more, this simplified model must fit into all of the existing substation 

schemes [31]. The simplified model will have the following properties: 

1) Every substation will be assigned a unique global number; 

2) A substation is precisely defined as that which is considered one electrical node 

when all breakers or switches are closed; 

3) All the non-independent switches and circuit breakers will be considered as one 

zero impedance branch; 
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Fig. 1.  Flowchart for two-stage state estimation  

Read the bus/branch data of the
system

Run the first stage state
stimation

Compute the normalized residuals of all
measurement

Determine the suspect bus

Check if the largest normalized residual is
above the threshold

Expand the system model by including the detailed
subtation model and related measurements

Compute the normalized power flows

Identify breaker status based
on normalized flows

End

Output the system state, breaker flows and
estimated breaker status

Output  estimated
system states

Yes

No

Run the second stage
state estimator
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Fig. 2.  Simplified substation model 

 

 

Fig. 2 is an example of how to simplify a substation with a breaker and half scheme. 

The substation will be assigned a unique global number. The topology information of the 

simplified substation model, for instance Fig. 2 (b), will be saved in a data structure 

associated with this number. The measurement data structure is similar to the one in the 

conventional bus/branch model. That is, there will be power injection and voltage 

measurements associated with nodes, and power flow measurements associated with 

breakers. Some of these measurements within a substation will not be used in the 

conventional state estimator based on the bus/branch model. However, they will be used 

in the second stage to make the system observable and increase the local redundancy. 

2.6  Data Files Format for Simplified Substation Model  

The topology data and measurement data for a substation will be separated in two 

different files. The advantage is we can store only one copy of topology data file for 

a) Original topology b) Simplified model 

1

2

3 5 

6 
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those substations which have the same configuration. The format of topology data file 

and measurement data file will be shown in following sections, respectively. 

2.6.1 Substation Topology Data File    
The purpose of this data file is to describe the nodes and the connections between 

them. It is composed of two sections. 

• Node Data Section 

Total Number of Nodes 

NodeNumber Type 

…………….. 

 

NodeNumber: Node number is unique in a specified substation; 

Type: The type of a node will be busbar (1), external (2) or internal(3); 

 

• Zero Impedance Branch Data Section 

 
Total Number of Zero Impedance Branches 

From To 

…………….. 

 

From: From node number of this branch; 

To: To node number of this branch; 

 
The topology data file corresponding to the substation shown in Fig. 2 is given below. 

  6 **Total number of nodes 

  1  1    ** NodeNumber Type 

  2  1    

  3  2    

  4  2    

  5  2    
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  6  2  ** End of node data section 

  6  **Total number of zero impedance branches 

  1  3  **From To 

  1  5          

  2  4   

  2  6  

  3  4  

  5  6  ** End of Zero Impedance Branch Data Section 

 

2.6.2 Measurement Data File for a Substation 
This file contains the measurement data for a single substation. The first two sections 

are used to describe the topology information. Other sections describe the branch status 

and measurement data. 

• File Name of Substation Topology Data File 

 
Topology Data File Name 

 

Topology Data File Name: A string, which refers to the data file name containing the 

substation topology; 

 

• Inter-substation Connectivity Data 

 
ConSubNo ConNodeNo 

…………….. 

 

ConSubNo: The global number of the neighboring substation connected to this node; 

if none, this value will be -1; 
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ConNodeNo: The node number of the neighboring substation connected to this node; 

if none, this value will be -1; 

(Remark: The number of rows in the section and the order they are listed should be 

identical to the number of external nodes defined in the topology data file. ) 

• Branch Status 

Status WSta 

…………….. 

 

Status: The status of this set of switches, 1: closed; 0:open; 2: unknown 

WSta: Standard deviation will be assigned to the equality constraint pseudo-

measurement; 

(Remark: In the same order as listed in topology data file) 

 

• Voltage Measurement 

Total Number of Voltage Measurements 

NodeNo VMag SubWV 

…………….. 

 

NodeNo: Node number of this measurement; 

VMag: The value of this measurement; 

SubWV: standard deviation of this measurement; 

 

• Power Injection Measurement 

Total Number of Power Injection Measurements 

NodeNo Pinj Qinj  WInj 

…………….. 

 

NodeNo: Node number of this measurement; 

PInj: Measurement of active power injection of this node; 

QInj: Measurement of reactive power injection of this node; 
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WInj: standard deviation of this measurement; 

 

• Power Flow Measurement 

Total Number of Power Flow Measurements 

BranNo PFlow QFlow WFlow 

…………….. 

 

BranNo: Branch number of this measurement (if greater than 0, the power 

flow will be at the from end; if less than zero, the power flow will be at the to end); 

PFlow:  Measurement of active power flows of this branch; 

QFlow:  Measurement of reactive power flows of this branch; 

WFlow: Standard deviation of this measurement; 

 

• Current Measurement 

Total Number of Current Measurements 

BranNo BranCur WCur 

…………….. 

 

BranNo: Branch number of this measurement (if greater than 0, the power 

flow will be at the from end; if less than zero, the power flow will be at the to end); 

BranCur: Measurement of current magnitude of this branch; 

WCur:  Standard deviation of this measurement; 

 

Consider the substation shown in Fig. 2 with the following information: 

Topology data file: type1.otp 

Connectivity: As shown in Fig.3-1 

Branch Status: Closed: (1-3)(2-4)(1-5)(2-6); Opened: (3-4)(5-6) 

Voltage Measurement: At node 1,2,3,4 

Power Injection Measurement: At Node 2,5,6 

Power Flow Measurement: At branches (1-3)(3-4) 
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Current Measurement: At branches (2-4)(5-6) 

Then, the corresponding measurement data file will be given as: 

Type1.top  

   12  3 

   18  2 

   17  5 

   28  8 

 1    0.001000 

 1    0.001000         

 1    0.001000  

 1    0.001000 

 0    0.001000 

 0    0.001000 

 4 

  1     1.05294    0.001000 

  2     0.99874    0.001000 

  3     1.05294    0.001000 

  4     0.99874    0.001000 

  3 

  2    -0.08200    -0.02500    0.001000  

  5     0.00000     0.00000    0.001000  

  6     0.00000     0.00000    0.001000  

  2 

  1    -0.09003    -0.02462    0.001000  
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  5     0.00804    -0.00037    0.001000  

  2 

  3    -0.26052    0.001000  

  6     0.45768    0.001000 

2.7  Other Data Structure  

A small set of extra data is also needed to store the relationship between the 

substations and the bus/branch system model. First of all, the following properties will be 

added to each bus in the bus/branch system model. 

1) Substation NO: The unique number of the substation model related to this bus.  

2) Node NO: The node number in the substation model where this bus belongs. If 

more than one node is combined to form this bus, the node number can be chosen 

arbitrarily from the list of nodes. 

Similarly, some connectivity information is also needed for the node in the substation 

model. 
 

1) Node type: There are three kinds of nodes in a substation: Busbar, External Node, 

which is connected to a transmission line, and Internal Node, which is connected 

to the elements within a substation (loads, shunt, etc). For example, in fig. 1 (b), 

node 1 and 2 will be Busbars, while node 3,4,5 and 6 will be External Nodes. 

2) Connected Substation NO.: The number of the substation, which is connected to 

this node by a transmission line. 

3) Connected Substation Node: The number of the node connected to this node in 

the Connected Substation. 

The data set listed above is the essential data required by a two-stage state estimation 

algorithm. Only a small modification is needed in the conventional state estimator 

database, in order to create the current bus/branch data structure.  In practice, the extra 

data structure may be further modified or expanded corresponding to the data structure of 

the existing state estimator and also for other application functions.  
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2.8  Graphical Interface for the Two-Stage State Estimation Program 

 

 

 
Fig. 3.  The main window of power education toolbox (PET) 

 
 

Power Education Toolbox (PET) [32], [33] is a user-friendly software package that is 

developed at Texas A&M University primarily as a teaching tool.  The software is 

designed to provide easy access to several commonly used application functions, such as 

power flow analysis, state estimation, etc, using the same user interface and power 

system diagrams.  A Windows based graphical user interface program provides the link 

between the user and the various application programs. PET models the system in 

bus/branch level thus can be treated as a conventional state estimator. The main window 

of this program is shown in Fig. 3. 

The two-stage state estimation will be implemented based on this package. This 

includes the integration of the extra interface, data structure and program. At the same 
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time, the modification of the old program must be limited in minimum in order to keep 

the compatibility. The open interfaces to the algorithm programs, including the first and 

second stage state estimator, suspect area identification procedure, are also requirements. 

Hence any new algorithms can be tested using this platform. 

 

 

 
Fig. 4.  User interface with the auxiliary substation window 

 

 

As discussed above, for purpose of topology error identification, the two-stage 

algorithm needs the detailed substation models for suspect substations. Correspondingly, 

an auxiliary substation window for editing and setting the substation models is created 

first. Fig. 4 shows the screenshot of the interface of the program with the auxiliary 

window opened. The bus/branch system model shown in the main window is the IEEE 30 

bus system. The substation shown in the auxiliary window is a pseudo-substation created 

for bus 15 based on the topology of IEEE 30 bus system. In addition, a navigator window, 
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which is opened on the left-top corner of Fig. 4, is implemented to facilitate locating the 

individual element when the one-line diagram is too big for single screen.  

The data structures of this substation model include topology information, 

measurement arrangement and extra data for nodes described in the former section. 

1) Creation of the substation model from scratch.  

The substation model can be edited and set in the auxiliary window directly. The 

editing procedures, including the topology configuration and measurement arrangement, 

are quite the same as the editing procedure of the one line diagram in the main window. 

In addition, the finished substation model can be stored as a template for substation with 

similar configuration. 

2) Creation of the substation model by template.  

 

 

 
Fig. 5.  The library list of substation models  
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There are only a limited number of substation schemes in a real power system. Hence 

many substations will have similar topological structures. It is more convenient to create 

models for those substations by templates. Fig. 5 shows the substation window with the 

list of substation library. Simply clicking on the name of correct template can create a 

substation model. The network elements and measurement configurations can then be 

changed to fit certain substation.  

3) Automatic Generation of Substation Measurements.  

The measurement values in the substation can be automatically generated. Set the 

relation parameters for the main system and the substation carefully and make sure it is 

correct. The program can utilize the power flow results of the main system and the 

topology information of the substation to calculate the measurement values for every 

meter in the substation. Note that in order to get the correct result, the status of all the 

circuit breakers should be set corresponding to the connection in the main system.  

2.9  Procedure to Test the Two-Stage State Estimation 

Two-stage state estimation method is tested using this program. The steps of testing 

for topology error identification are described below: 

1) Create the main system 

Use the main window of PET program to create the basic main system, including the 

network connections, generation and load setting. Place the measurements properly. 

2) Create the substation model 

Use substation model introduced in the former section to represent the actual 

substation. Create the substation data file for specified buses using the auxiliary window. 

There is no need to create the substation data files for all the buses. Only the substation 

models in the areas of interest are needed.  

3) Set the correct measurement values based on the correct network 

Make sure the connection information for those buses in the main system and nodes 

in the substation models are correctly specified. The status of the circuit breakers must 

correspond to the current connection of the main system. Compute the correct values of 

all measurements, including the measurements in the bus/branch model and the 

substation, by running power flow program based on the correct topology. 
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4) Set up the topology error 

Set up the desired topology error by changing the connections in the bus/branch 

model and the statuses of corresponding circuit breakers in the substation.  

5) Run the two-stage program 

After introducing the topology error, load the two-stage state estimator. After the first 

stage, if there is topology error detected, the system will run the second stage state 

estimation. If there are mismatches between the assumed status and estimated status of 

circuit breakers included in those suspect substations, the location of the topology error 

will be shown. 

 
 
 

 
Fig. 6.  IEEE 30 bus system  
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2.10  Simulation Result 

In this section, the simulation results of two different kinds of topology scenarios will 

be presented to demonstrate the two-state state estimation program’s operation.  

These cases are based on the IEEE 30 bus system (Fig. 6). We suppose bus 16 and 

bus 19, which are circled in Fig. 6, belong to the same substation. 

2.10.1 Case1: Bus Split Case 
 

Fig. 7 shows the detailed topology of this substation with the status of the circuit 

breakers. The scenario of this demo is described as the following: 

• The true status of the CB N5-N2 is open, which makes this substation appears as 

two split buses in the bus/branch model; 

• Assume that the operation of the CB N5-N2 is not reported to the control center. 

The control center still assumes the status of N5-N2 as closed. Then this 

substation will appear only as one bus in the bus/branch model. 

 

 

 
Fig. 7.  Substation model consists of bus 16 and bus 19 (case1) 

 

Closed Opened



  29 

  

(a). Correct setting  

(b). With topology error  
 

Fig. 8.  Illustration of the topology error (bus split case) 
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For convenience, a pseudo-switch with very small impedance is added between bus 

16 and 19 to simulate the connectivity. Fig. 8 shows the diagram with correct topology 

and after introduction of topology error. 

The first stage state estimation run using the bus/branch model which assumes no 

split in bus 16 and bus 19, as shown in Fig. 8 (b). We can get the normalized residuals of 

each measurement after the first stage state estimation. The measurements that have 

significant normalized residuals (greater than 1.0) are listed in Table I in descending 

order. 

The suspect area identification procedure will choose several buses by their statistical 

property as the suspect buses (The details of the suspect area identification procedure will 

be given in Chapter III). In this case, buses 16, 17 and 18 are chosen, as shown Fig. 9. 

The substations represented by these buses are then modeled in detail in the second stage 

state estimation. 

 

 
TABLE I 

SIGNIFICANT NORMALIZED RESIDUALS AFTER FIRST STAGE (CASE1)  

Meas # Type Location Normalized Residuals
107 QFLOW 19-20 3.2460 
104 QFLOW 16-12 2.8501 
103 QFLOW 16-17 2.7613 
91 QFLOW 15-18 2.7361 
87 QFLOW 17-10 2.3581 

106 QFLOW 19-18 2.2334 
35 PFLOW 16-12 2.1546 
38 PFLOW 19-20 2.0952 
36 PFLOW 16-17 1.8711 
26 PFLOW 15-12 1.8699 
22 PFLOW 15-18 1.6871 
18 PFLOW 17-10 1.6140 
37 PFLOW 19-18 1.5055 

142 VOLTAGE 19 1.0545 
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Fig. 9.  Simulation result after first stage state estimation (case1) 
 

 

After second stage, the normalized power flows through all the switch branches 

inside the suspect substation are estimated. Table II shows the estimated result for the 

substation represented by bus 16, which is shown in Fig. 7. If the value of normalized 

power flow is greater than threshold (3.0 for this case), the estimated status of 

corresponding branch will be closed, otherwise the estimated status will be open.  The 

estimated statuses for all the branches inside this substation are also shown in the last 

column of Table II. It can be seen that only the status of branch N2-N5 is different from 

the assumed status. The program alarms that there is topology error detected and 

indicates the location as shown in Fig. 10. 

 
 

TABLE II 
ESTIMATED STATE OF CIRCUIT BREAKER (CASE1)  

CBs Normalized P Flow Normalized Q Flow Estimated Status 
N1-N3 -115.2171 -49.0266 Closed 
N3-N4 0.1701 -0.0076 Open 
N2-N4 12.7813 5.6847 Closed 
N1-N5 125.4597 55.9197 Closed 
N2-N5 0.0987 0.0987 Open 
N1-N6 -4.6246 -6.7945 Closed 
N6-N7 -0.0568 0.0137 Open 
N2-N7 -12.7813 -5.6847 Closed 
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Fig. 10.  Simulation result after second stage state estimation (case1) 

 

 

2.10.2 Case2: Line Outage Case 
Fig. 11 shows the detailed topology of this substation with the status of the circuit 

breakers. The scenario of this demo is described as the following: 

 

 

Fig. 11.  Substation model consists of bus 16 and bus 19 (case2) 
 

Closed Opened
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• The true status of the CB N1-N3 is open, which mean the transmission line 12-16 

is outage in the bus/branch model; 

• Assume that the operation of the CB N1-N3 is not reported to the control center. 

The control center still assumes the status of N5-N2 as closed.  The transmission 

line 12-16 is still assumed on use in the system model. 

For convenience, a pseudo-switch is added into transmission line 12-16 to simulate 

the connectivity. Fig. 12 shows the diagram with correct topology and after introduction 

of topology error. 

The first stage state estimation run using the bus/branch model which assumes branch 

12-16 is still in service, as shown in Fig. 12 (b). We can get the normalized residuals of 

each measurement after the first stage state estimation. The measurements that have 

significant normalized residuals (greater than 1.0) are listed in Table III in descending 

order. 

The suspect area identification procedure will choose several buses by their statistical 

property as the suspect buses (The details of the suspect area identification procedure will 

be given in Chapter III). In this case, buses 16, 17 and 20 are chosen, the screenshot of 

the output is ignored here. The substations represented by these buses are then modeled 

in detail in the second stage state estimation. 

After second stage, the normalized power flows through all the switch branches 

inside the suspect substation are estimated. Table IV shows the estimated result for the 

substation represented by bus 16, which is shown in Fig. 11. The estimated statuses for 

all the branches inside this substation are also shown in the last column of Table IV. It 

can be seen that only the status of branch N1-N3 is different from the assumed status. 

The program alarms that there is topology error detected and indicates the location as 

shown in Fig. 13. 

 

 



  34 

  

 

 
(a). Correct setting  

 

 
(b). With topology error 

 
Fig. 12.  Illustration of the topology error (bus split case) 
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TABLE III 
SIGNIFICANT NORMALIZED RESIDUALS AFTER FIRST STAGE (CASE2)  

Meas # Type Location Normalized Residuals
24 PFLOW 12 – 15 -63.9720
36 PFLOW 16 – 17 -62.5336
28 PINJ 12 -27.8090
29 PINJ 16 23.0791
141 VOLTAGE 16 -13.0589
93 QFLOW 12 – 15 -11.7973
106 QFLOW 16 – 17 -10.3564
97 QINJ  12 -6.3620

 

 
TABLE IV 

ESTIMATED STATE OF CIRCUIT BREAKER (CASE2)  

CBs Normalized P Flow Normalized Q Flow Estimated Status 
N1-N3 0.0963 0.0963 Open 
N3-N4 -0.0556 0.0565 Open 
N2-N4 -20.7539 4.3846 Closed 
N1-N5 129.8345 57.8696 Closed 
N2-N5 -0.0577 0.1444 Open 
N1-N6 -129.8386 -57.8714 Closed 
N6-N7 0.0589 0.0570 Open 
N2-N7 20.7550 -4.3849 Closed 

 

 

 

Fig. 13.  Simulation result after second stage state estimation (case2) 
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2.11  Conclusion 

The implementation of a two-stage state estimation algorithm capable of topology 

error identification is discussed in this chapter. A concise substation model and the 

minimum required extra data set needed to run the two-stage state estimation are defined. 

With these data structures, a conventional state estimator is updated to support the two-

stage algorithm. 
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CHAPTER  III 

ROBUST IDENTIFICATION OF THE SUSPECT AREA 

3.1  Introduction 

The success of the two-stage state estimator in identifying the topology errors 

depends on the correct identification of the suspect substations after the first stage. Given 

correctly identified area and sufficient local redundancy, most of the second-stage state 

estimation program can successfully identify the topology error. Currently used 

identification methods do not have satisfied performance under some circumstances. An 

improved identification strategy, which utilizes the calculated state estimation residuals 

of the first stage and the associated network configuration, is described in this chapter. In 

order to investigate and comparatively evaluate the performances of different 

identification methods, a topology error library containing 50 scenarios are built based on 

the IEEE 30 bus test system. The simulation results of different methods on this library 

will be compared and the best method will be selected. In addition, the new identification 

method can be implemented in an adaptive way. User in the practical system can modify 

the parameters to fit their needs. Simulations have been done using Weighted Least 

Absolute Values (WLAV) method and Weighted Least Squares (WLS) methods, 

respectively. The results are compared and shown in the last section of this chapter. 

3.2  New Identification Method 

The following index NI, is defined in [24] as a criterion to identify those buses which 

may represent a substation with topology errors: 

18 nizINI
m

k

kii ...1,)(
1

1
== ∑

=

                                            (18) 

where: 

:iNI  Index for bus i ; 

:n  Total number of system buses; 

:1m  Number of suspect measurements; 

:kz  kth suspect measurement; 
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Those buses having the largest NI  index are identified as suspect substations. While 

this index appears to correlate with the suspect buses quite well in most cases, there are 

cases where the index may fail to indicate all suspect buses. Extensive simulation studies 

reveal that there is still room for improvement in order to develop a highly reliable 

identification procedure. The identification capability might be improved through 

following directions. 

3.2.1 Normalized Index for Suspect Buses  
The index defined in (18) is modified as below: 

20 nizINI
m

k

kii
Total ...1,)(

1
== ∑

=

                                            (20) 

where: 

:i
TotalNI   New modified index for bus i , 

:m  Total number of measurements; 

It directly follows from (18) that the larger the value of i
TotalNI , the larger the 

corresponding index iNI . Using their ratio, a normalized index can be defined as: 

21 i
Total

ii
n NININI /=                                                   (21) 

where: 

:i
nNI  Normalized index for bus i , 

The new index i
nNI  will be shown to outperform the previous index in identifying 

suspect buses. 

3.2.2 Limiting the Number of Suspect Measurements 
In choosing the suspect measurements, two approaches are possible. In the first one, 

all measurements with normalized residuals greater than a threshold will be considered as 

suspects and taken into account during the identification procedure. The other option is to 

choose a fixed number of measurements having the largest normalized residuals. This 

second approach is observed to provide better selectivity. 
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3.2.3 Increasing the Number of Suspicious Buses 
Theoretically, if all the substations are modeled in detail (breaker level), and 

redundant substation measurements from all substations are available, topology errors can 

be identified using the second stage estimator only. In practice, for very large power 

networks, this may not be practical. On the other hand, limiting the suspect substation to 

a single bus may limit the ability to identify the true topology error.  In order to make 

sure that the substation with topology error is included in the suspect list, the number of 

suspicious buses can be considered to be larger than one. Representing several 

substations in detail may increase the computation burden slightly, but this will be more 

than compensated by the increase in the possibility of correct identification of topology 

errors.  

In practice the maximum number of suspicious buses can be left as a parameter for 

the user. With the help of the topology library discussed next, a confidence level can be 

calculated and associated with each chosen “MaxBusNumber”, which stands for the 

maximum number of suspect buses. Then this parameter can be specified corresponding 

to the required accuracy and available computation capacity.  

In our study, several alternative identification strategies are designed based on the 

above considerations. For all of those strategies, an index for each bus is computed 

utilizing the normalized residuals after the first stage estimation. The index vector is 

sorted and is used as an identification criterion. The following strategies of choosing the 

suspect substations are designed based on different assumptions and choice of parameters. 

1) Choosing buses with the largest index (MaxBusNumber = 0). 

In this category, those buses having the largest chosen index are identified. The 

following four possible combinations for the computation of this index yield the four 

strategies below: 

A. Method 0A: Take into account all the suspect measurements and use NI  as the 

identification index. This is the method used in [24]. 

B. Method 0B: Take into account only the top five suspect active and reactive 

measurements. Use NI  as the identification index.   

C. Method 0C: Take into account all the suspect measurements and use nNI  as the 

index.  
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D. Method 0D: Take into account only the top five suspect active and reactive 

measurements. Use nNI  as the identification index.   

2) Choosing n suspect buses (MaxBusNumber = n). 

In this category, up to the user specified n buses having the largest indices will be 

identified as suspicious buses. Similar to the previous category, there will be four 

different possibilities to implement: 

A. Method nA: Take into account all the suspect measurements and use NI  as the 

index.  

B. Method nB: Take into account only the top five suspect active and reactive 

measurements. Use NI  as the index.   

C. Method nC: Take into account all the suspect measurements and use nNI  as the 

index.  

D. Method nD: Take into account only the top five suspect active and reactive 

measurements. Use nNI  as the index.   

These methods will be tested using the topology error library described in the 

following section.  

3.3  Topology Error Scenarios’ Library 

In order to test the performance of different identification methods, a library of 

topology error scenarios is built based on IEEE 30 bus system. Every electrical bus has 

been expanded and modeled as a hypothetical but realistic substation. All typical 

substation schemes have been employed in the model: ring, one-and-a half CB, etc. Fig. 

14 shows part of the expanded test system.  
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Fig. 14.  One-line diagram of part of the test system 
 

 

For each topology error scenario, the power flow result based on the correct topology 

is generated. Then the first stage state estimation is run with the correct measurements 

and the wrong topology. Finally, the identification procedure of different technique will 

be test. 

The library contains 50 topology error cases of four types. Each type will be briefly 

described in the following sections along with a simple substation model. 

1) Type 1: Merged Bus 

This case could be shown in Fig. 15. The correct status of CB1 is close. In the 

bus/branch model, bus bar 1 and 2 should be merged as one electrical node. But the 

system considers the status of it as open and split busbar1 and 2 in the bus/branch model. 

2) Type 2: Split Bus 

This case is the counterpart of type 1. In Fig. 15, the correct status of CB1 is open. In 

the bus/branch model, bus bar 1 and 2 should be split. But the system considers the status 

of it as close and merges them incorrectly. 
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Fig. 15.  Illustration of topology error in a simple substation model 

 

3) Type 3: Open ended line 

In this case, one or both of the CBs on the ends of a transmission line is actually open, 

which result in outage of this line. The system considers it is in service wrongly.   

4) Type 4: Closed ended line 

This case is the counterpart of type 3. Both of the CBs on the ends of a transmission 

line are actually closed. The system has the wrong status of CB in one or both ends and 

considers it is outage wrongly. 

50 scenarios with different kinds of topology error described above are built. The 

positions of the CBs with wrong statuses are selected arbitrarily throughout the system. 

Table V shows the type configuration of the library. 

 
 

TABLE V 
DISTRIBUTION OF THE LIBRARY  

Type 1 2 3 4 
Number of cases 10 10 15 15 

 
 

3.4  Simulation Results for Suspect Substation Identification Methods 

The first stage state estimation algorithm can be any conventional state estimation 

algorithm. The suspect area identification capabilities of different algorithms, such as 

Closed Opened Wrong status 

1 

CB1
2 
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WLAV and WLS, are different. Usually WLAV method has better performance than WLS 

for this purpose [24]. The proposed library is tested using both techniques.  

3.4.1 Simulation Result of WLAV 
Simulation results using WLAV for methods with MaxBusNumber = 0(Method 0A-0D) 

and MaxBusNumber = 3(Method 3A-3D) are showed in Table VI and Table VII 

respectively. 

Column 2 in the result tables lists the bus numbers which should be identified as 

suspect buses. Columns 4-7 list the suspicious buses get from different methods. If at 

least one bus in column 2 is included in the result bus list, we will say the identification 

process is successful for this case. Otherwise it fails and the results are underlined and 

italicized. The final rows of the tables are the statistic results of each method. The 

numerator represents the number of cases which can be identified correctly by this 

method while the denominator represents the total number of cases.  

It is easy to see from the result that for different types of topology error, the 

identification methods show different performances. For those cases where status of the 

CB is assumed to be open while it is actually closed (type 1 and type 4), all of the 

methods can identify the suspect buses correctly for every case. On the other hand, for the 

opposite scenarios (type 2 and type 3), some of the methods show bad performance. For 

instance, Method 0A can only correctly identify 9 cases out of 25. Obviously, the 

difficulty of identification of suspect area sits on topology error of type 2 and type 3. 

However, slightly increasing the number of suspicious buses can solve this problem. 

The results also show improvements in the identification capability when the 

normalized index nNI  is used and also when the top five suspect measurements instead 

of all are used. The best strategy is found as given by Method 3D, which assumes a 

maximum of 3 suspect buses.  Using this strategy correctly identifies all 50 tested cases.  

We can conclude that the procedure using normalized index nNI  and only taking into 

account top five suspect measurements instead of all is the best one in the simulation. A 

maximum of 3 suspect buses make this procedure correctly identify all the cases in the 

library. In practical implementation, we can even increase this number to make the 

identification procedure more robust.   
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TABLE VI 
TEST RESULT FOR METHODS WITH MAXBUSNUMBER = 0 (WLAV) 

Suspect Buses  CaseNO Correct 
Bus Type 

Method 0A Method 0B Method 0C Method 0D 
1 3;13 2 12; 4; 12;20; 3;4; 
2 8;29 2 27; 27; 8; 27; 
3 9;24 2 10; 22; 22;24;28; 22; 
4 11;26 2 25;28; 25; 25;28; 9;11;25;26; 
5 14;30 2 27; 27; 27; 27; 
6 16;19 2 19; 16; 19; 16; 
7 18;21 2 10; 10;15; 20; 21; 
8 20;23 2 10; 23; 18; 23; 
9 5;17 2 6; 5;7;10; 2; 5;7; 

10 12;31 2 14;15; 14;15; 14; 14; 
11 3;13 1 3;13; 3;13; 13; 13; 
12 8;29 1 8;29; 8;29; 8;29; 8;29; 
13 9;24 1 9;24; 9;24; 9; 9; 
14 11;26 1 11;26; 11;26; 11;26; 11;26; 
15 14;30 1 14;30; 14;30; 14;30; 14;30; 
16 16;19 1 16; 16; 16; 16; 
17 18;21 1 21; 21; 21; 21; 
18 20;23 1 20;23; 20;23; 20; 20; 
19 5;17 1 5;17; 5;17; 5;17; 5;17; 
20 12;31 1 12; 12; 12; 12; 
21 1;3;13 4 1;3; 1;3; 3; 3; 
22 2;6 4 2;6; 2;6; 2; 2; 
23 4;6 4 4;6; 4;6; 4; 4; 
24 6;8;29 4 6;8; 6;8; 8; 8; 
25 10;22 4 10;22 10;22 10; 10; 
26 20;10;23 4 20; 20; 20; 20; 
27 14;15;30 4 14;15; 14;15; 14; 14; 
28 9;22;24 4 22;24; 22;24; 22;24; 22;24; 
29 14;27;30 4 27;30; 27;30; 30; 30; 
30 9;24;25 4 24;25; 24;25; 24;25; 24;25; 
31 1;3;13 3 2; 2; 2; 2; 
32 2;6 3 2; 2; 5;7; 5; 
33 4;6 3 4; 2; 4; 2;3; 
34 10;22 3 21;23;24; 21;23; 21; 21; 
35 12;16;19 3 10; 17; 4; 17; 
36 15;20;23 3 23;24; 23; 23; 23; 
37 5;7;17 3 2; 6; 2; 2;7; 
38 9;22;24 3 24; 15;23;25;27; 24; 23; 
39 14;27;30 3 29; 29; 29; 29; 
40 9;24;25 3 24;25;27;28; 24;25;27;28; 24;25;28; 24;25;28; 
41 9;20;23;24 3 15; 15; 15; 15; 
42 14;15;30 3 15; 15; 14;15; 14; 
43 18;21;22 3 10;22; 10; 21;22; 22; 
44 6;10 3 6;10; 6;10; 6;10; 6;10; 
45 6;9;24 3 10; 10; 10; 9;16;17; 
46 9;20;23;24 4 24; 24; 24; 24; 
47 18;21;22 4 21;22; 21;22; 21; 21; 
48 6;10 4 10; 10; 10; 10; 
49 6;9;24 4 6;9; 6;9; 9; 9; 
50 9;24;25 4 24;25; 24;25; 24;25; 24;25; 

Total 34/50 33/50 35/50 38/50 
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TABLE VII 
TEST RESULT FOR METHODS WITH MAXBUSNUMBER = 3 (WLAV) 

Suspect Buses  CaseNO Correct 
Bus Type 

Method 3A Method 3B Method 3C Method 3D 
1 3;13 2 12;6;10; 4;12;3; 12;20;1; 3;4;13; 
2 8;29 2 27;8;28; 27;28;29; 8;27;28; 27;29;28; 
3 9;24 2 10;6;22; 22;10;21; 22;24;28; 22;21;24; 
4 11;26 2 25;28;6; 25;9;27; 25;28;8; 9;11;25; 
5 14;30 2 27;14;24; 27;29;30; 27;14;29; 27;29;30; 
6 16;19 2 19;16;17; 16;17;18; 19;16;17; 16;17;18; 
7 18;21 2 10;15;20; 10;15;21; 20;21;22; 21;15;22; 
8 20;23 2 10;22;24; 23;15;18; 18;22;24; 23;18;15; 
9 5;17 2 6;2;10; 5;7;10; 2;28;1; 5;7;9; 

10 12;31 2 14;15;31; 14;15;31; 14;31;15; 14;31;15; 
11 3;13 1 3;13; 3;13; 13;3; 13;3; 
12 8;29 1 8;29; 8;29; 8;29; 8;29; 
13 9;24 1 9;24; 9;24; 9;24; 9;24; 
14 11;26 1 11;26; 11;26; 11;26; 11;26; 
15 14;30 1 14;30; 14;30; 14;30; 14;30; 
16 16;19 1 16; 16; 16; 16; 
17 18;21 1 21;18; 21;18; 21;18; 21;18; 
18 20;23 1 20;23; 20;23; 20;23; 20;23; 
19 5;17 1 5;17; 5;17; 5;17; 5;17; 
20 12;31 1 12; 12; 12; 12; 
21 1;3;13 4 1;3; 1;3; 3;1; 3;1; 
22 2;6 4 2;6; 2;6; 2;6; 2;6; 
23 4;6 4 4;6; 4;6; 4;6; 4;6; 
24 6;8;29 4 6;8; 6;8; 8;6; 8;6; 
25 10;22 4 10;22; 10;22; 10;22; 10;22; 
26 20;10;23 4 20; 20; 20; 20; 
27 14;15;30 4 14;15; 14;15; 14;15; 14;15; 
28 9;22;24 4 22;24; 22;24; 22;24; 22;24; 
29 14;27;30 4 27;30; 27;30; 30;27; 30;27; 
30 9;24;25 4 24;25; 24;25; 24;25; 24;25; 
31 1;3;13 3 2;1;3; 2;1;3; 2;1;3; 2;1;3; 
32 2;6 3 2;6;5; 2;5;6; 5;7;2; 5;2;7; 
33 4;6 3 4;2;6; 2;4;3; 4;2;3; 2;3;4; 
34 10;22 3 21;23;24; 21;23;22; 21;23;24; 21;23;22; 
35 12;16;19 3 10;4;12; 17;10;16; 4;17;10; 17;16;20; 
36 15;20;23 3 23;24;15; 23;15;24; 23;24;15; 23;24;15; 
37 5;7;17 3 2;4;6; 6;2;4; 2;4;7; 2;7;6; 
38 9;22;24 3 24;23;22; 15;23;25; 24;23;22; 23;25;22; 
39 14;27;30 3 29;27;30; 29;27;30; 29;30;27; 29;30;27; 
40 9;24;25 3 24;25;27; 24;25;27; 24;25;28; 24;25;28; 
41 9;20;23;24 3 15;23;12; 15;23;12; 15;23;14; 15;23;12; 
42 14;15;30 3 15;12;14; 15;14;12; 14;15;12; 14;15;12; 
43 18;21;22 3 10;22;21; 10;22;21; 21;22;24; 22;21;10; 
44 6;10 3 6;10; 6;10; 6;10; 6;10; 
45 6;9;24 3 10;6;12; 10;6;9; 10;6;12; 9;16;17; 
46 9;20;23;24 4 24;23; 24;23; 24;23; 24;23; 
47 18;21;22 4 21;22; 21;22; 21;22; 21;22; 
48 6;10 4 10;6; 10;6; 10;6; 10;6; 
49 6;9;24 4 6;9; 6;9; 9;6; 9;6; 
50 9;24;25 4 24;25; 24;25; 24;25; 24;25; 

Total 42/50 46/50 44/50 50/50 
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3.4.2 Simulation Result of WLS 
The simulation result of proposed identification method using WLAV as first stage 

state estimation algorithm shows great performance. However, since WLS method is 

widely used in industry, the identification method should not only rely on WLAV method. 

The simulation results using WLS algorithm for proposed methods with MaxBusNumber 

= 0(Method 0A-0D) and MaxBusNumber = 3(Method 3A-3D) are showed in Table VIII 

and Table IX respectively. We can see the improvements in the identification capability 

when the normalized index nNI  is used and also when the top five suspect measurements 

instead of all are used. The performance of the identification process can also be greatly 

improved by slight increase of the maximum number of suspected buses. All these 

conclusions are similar to those got form simulation result of WLAV algorithm.   

Comparing  Table VIII and Table IX with Table VI and Table VII, we can find that 

the proposed identification method has better performance with WLAV than WLS. For 

the same methods, using WLAV can correctly identify more cases. As we can see in 

Table VII and Table IX, using Method 3D with WLAV can identify all the cases in the 

library while using WLS can only identify 47 out of 50. Fortunately, by further slightly 

increasing the maximum number of suspected buses, we can also get the best 

performance. As shown in Table X, when we set MaxBusNumber = 5(Method 5A-3D), 

both Method 5B and Method 5D can identify all of the 50 cases.  

3.5  Conclusions 

Topology errors can be identified by a two-stage state estimation algorithm that is 

proposed earlier. This chapter investigates the part of the algorithm involving the suspect 

bus identification procedure following the first stage estimation. Several possible 

strategies are developed and comparatively tested by using a topology error library that is 

created for this purpose based on IEEE 30 bus test system. The performance of each 

method is evaluated by simulation results using this library.  

For those cases where status of the CB is assumed to be open while it is actually 

closed (type2 and type3), most of the methods can identify the suspect buses correctly. 

On the other hand, for the opposite scenarios, not all of the methods show equally good 

performance. However, by increasing the maximum number of suspected buses slightly, 
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one of the developed methods appears to remain robust by performing consistently well 

under all studied scenarios. This method is the main contribution of this study and is 

expected to enhance the performance of the two-stage topology error identification 

method significantly.  

The proposed identification method has different performances when using different 

first stage state estimation algorithm. Generally to say, using WLAV is better than WLS 

for suspected area identification purpose. However, since WLS is widely used in the 

industry, the identification should not only rely on WLAV. Fortunately, it shows that by 

further increasing the maximum number of suspected buses slightly, the proposed 

identification method can also get the best performance with WLS algorithm.  
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TABLE VIII 
TEST RESULT FOR METHODS WITH MAXBUSNUMBER = 0 (WLS) 

Suspect Buses  CaseNO Correct 
Bus Type 

Method 0A Method 0B Method 0C Method 0D 
1 3;13 2 6; 4; 6; 4; 
2 8;29 2 27; 27; 24; 27; 
3 9;24 2 6; 10;22;24; 6; 24; 
4 11;26 2 6; 25; 24; 25; 
5 14;30 2 27; 27; 24; 30; 
6 16;19 2 18;19;20; 20; 18; 18;20; 
7 18;21 2 10;15; 20; 18; 20; 
8 20;23 2 10; 15;18; 10; 18; 
9 5;17 2 6; 7; 6; 5; 

10 12;31 2 15; 12;14;15; 15; 14;31; 
11 3;13 1 6; 12;13; 6; 12;13; 
12 8;29 1 6; 8; 6; 8; 
13 9;24 1 6; 9; 6;24; 9; 
14 11;26 1 25; 11; 24; 11; 
15 14;30 1 27; 14; 14;30; 14; 
16 16;19 1 12;16;19; 12;16; 16; 16; 
17 18;21 1 15;18;19; 18; 18; 18; 
18 20;23 1 10; 23; 10;24; 23; 
19 5;17 1 10; 17; 10; 17; 
20 12;31 1 12; 12; 12; 12; 
21 1;3;13 4 6; 1;2; 6; 1;2;31; 
22 2;6 4 6; 6; 6; 6;31; 
23 4;6 4 6; 4;12; 4;6; 4; 
24 6;8;29 4 6; 8; 6; 8; 
25 10;22 4 10; 10;21;22; 10; 10;21;22; 
26 20;10;23 4 12; 12;14; 14; 14; 
27 14;15;30 4 12;15; 12;14; 15; 14; 
28 9;22;24 4 10; 22; 10; 22; 
29 14;27;30 4 27; 30; 27; 30; 
30 9;24;25 4 24;25; 12;24;25; 24; 24;31; 
31 1;3;13 3 6; 1;2;3; 6; 1;2;3; 
32 2;6 3 6; 6; 6; 6; 
33 4;6 3 6; 4; 6; 4; 
34 10;22 3 10; 21;22; 10; 21;22; 
35 12;16;19 3 6; 16;17; 6; 16; 
36 15;20;23 3 10; 12; 10;24; 24; 
37 5;7;17 3 6; 7; 6; 7; 
38 9;22;24 3 10; 23; 24; 23; 
39 14;27;30 3 27; 29;30; 30; 30; 
40 9;24;25 3 24; 27; 24; 27; 
41 9;20;23;24 3 12;24; 12; 24; 12; 
42 14;15;30 3 15; 12; 14; 12; 
43 18;21;22 3 10; 10; 10; 10; 
44 6;10 3 6;10; 12; 6;10; 12; 
45 6;9;24 3 6; 9;12; 6; 9;12; 
46 9;20;23;24 4 19;20; 19;20; 19;20; 19;20; 
47 18;21;22 4 10;19;20;22; 19;20; 21; 19;20;21; 
48 6;10 4 10; 6;10;12;19; 10;24; 6;10;12;19; 
49 6;9;24 4 6; 9; 6; 9; 
50 9;24;25 4 27; 25; 24; 25; 

Total 24/50 33/50 27/50 36/50 
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TABLE IX 
TEST RESULT FOR METHODS WITH MAXBUSNUMBER = 3 (WLS) 

Suspect Buses  CaseNO Correct 
Bus Type 

Method 3A Method 3B Method 3C Method 3D 
1 3;13 2 6;12;15; 4;12;3; 6;12;15; 4;12;3; 
2 8;29 2 27;6;10; 27;28;6; 24;27;8; 27;28;6; 
3 9;24 2 6;10;15; 10;22;24; 6;10;24; 24;10;22; 
4 11;26 2 6;10;24; 25;9;11; 24;6;10; 25;9;11; 
5 14;30 2 27;15;12; 27;30;14; 24;27;14; 30;27;14; 
6 16;19 2 18;19;20; 20;15;18; 18;16;19; 18;20;15; 
7 18;21 2 10;15;12; 20;10;15; 18;10;15; 20;18;10; 
8 20;23 2 10;19;23; 15;18;23; 10;24;18; 18;15;23; 
9 5;17 2 6;2;4; 7;5;6; 6;24;2; 5;7;6; 

10 12;31 2 15;23;12; 12;14;15; 15;18;14; 14;31;12; 
11 3;13 1 6;4;2; 12;13;3; 6;4;2; 12;13;3; 
12 8;29 1 6;27;28; 8;6;12; 6;8;27; 8;6;12; 
13 9;24 1 6;10;22; 9;10;12; 6;24;10; 9;24;10; 
14 11;26 1 25;6;9; 11;9;12; 24;25;6; 11;26;9; 
15 14;30 1 27;12;14; 14;12;30; 14;30;27; 14;12;30; 
16 16;19 1 12;16;19; 12;16;19; 16;12;19; 16;12;19; 
17 18;21 1 15;18;19; 18;12;15; 18;15;19; 18;12;15; 
18 20;23 1 10;15;19; 23;12;15; 10;24;15; 23;12;15; 
19 5;17 1 10;2;6; 17;5;10; 10;2;6; 17;5;10; 
20 12;31 1 12; 12; 12; 12; 
21 1;3;13 4 6;2;4; 1;2;12; 6;2;4; 1;2;31; 
22 2;6 4 6;4;12; 6;2;4; 6;4;5; 6;31;2; 
23 4;6 4 6;2;10; 4;12;6; 4;6;2; 4;12;31; 
24 6;8;29 4 6;4;12; 8;28;12; 6;4;24; 8;28;31; 
25 10;22 4 10;21;22; 10;21;22; 10;24;21; 10;21;22; 
26 20;10;23 4 12;14;15; 12;14;10; 14;12;15; 14;12;31; 
27 14;15;30 4 12;15;14; 12;14;13; 15;12;14; 14;12;31; 
28 9;22;24 4 10;25;21; 22;12;24; 10;22;24; 22;24;31; 
29 14;27;30 4 27;12;14; 30;12;29; 27;14;30; 30;31;12; 
30 9;24;25 4 24;25;12; 12;24;25; 24;14;25; 24;31;12; 
31 1;3;13 3 6;2;4; 1;2;3; 6;2;4; 1;2;3; 
32 2;6 3 6;2;4; 6;2;12; 6;2;4; 6;2;12; 
33 4;6 3 6;2;4; 4;2;12; 6;24;2; 4;2;12; 
34 10;22 3 10;22;17; 21;22;10; 10;22;24; 21;22;10; 
35 12;16;19 3 6;10;12; 16;17;10; 6;10;12; 16;17;10; 
36 15;20;23 3 10;12;15; 12;23;24; 10;24;12; 24;12;23; 
37 5;7;17 3 6;2;4; 7;2;5; 6;2;4; 7;5;2; 
38 9;22;24 3 10;6;15; 23;12;15; 24;10;6; 23;24;12; 
39 14;27;30 3 27;29;30; 29;30;12; 30;27;29; 30;29;12; 
40 9;24;25 3 24;22;25; 27;12;22; 24;22;25; 27;24;12; 
41 9;20;23;24 3 12;24;15; 12;15;22; 24;12;15; 12;15;24; 
42 14;15;30 3 15;12;14; 12;15;14; 14;15;12; 12;14;15; 
43 18;21;22 3 10;22;21; 10;21;12; 10;22;21; 10;21;12; 
44 6;10 3 6;10;12; 12;6;10; 6;10;24; 12;6;10; 
45 6;9;24 3 6;10;12; 9;12;4; 6;10;24; 9;12;4; 
46 9;20;23;24 4 19;20;12; 19;20;12; 19;20;24; 19;20;12; 
47 18;21;22 4 10;19;20; 19;20;12; 21;10;19; 19;20;21; 
48 6;10 4 10;6;4; 6;10;12; 10;24;6; 6;10;12; 
49 6;9;24 4 6;10;4; 9;6;10; 6;10;4; 9;6;10; 
50 9;24;25 4 27;22;19; 25;12;24; 24;27;22; 25;24;12; 

Total 30/50 45/50 36/50 47/50 
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TABLE X 
TEST RESULT FOR METHODS WITH MAXBUSNUMBER = 5 (WLS) 

Suspect Buses  CaseNO Correct 
Bus Type 

Method 5A Method 5B Method 5C Method 5D 
1 3;13 2 6;10;12;4;15; 4;12;3;13;9; 6;24;10;12;4; 4;12;3;13;9; 
2 8;29 2 27;6;10;22;24; 27;28;6;25;29; 24;27;8;30;6; 27;28;6;25;29; 
3 9;24 2 6;10;15;22;12; 10;22;24;9;21; 6;10;24;15;22; 24;10;22;9;21; 
4 11;26 2 6;10;24;25;28; 25;9;11;26;27; 24;6;10;25;28; 25;9;11;26;27; 
5 14;30 2 27;15;12;24;28; 27;30;14;25;12; 24;27;14;30;15; 30;27;14;25;24; 
6 16;19 2 18;19;20;15;16; 20;15;18;19;16; 18;16;19;20;15; 18;20;15;19;16; 
7 18;21 2 10;15;12;19;21; 20;10;15;18;19; 18;10;15;12;19; 20;18;10;15;19; 
8 20;23 2 10;19;23;24;15; 15;18;23;19;10; 10;24;18;19;23; 18;15;23;19;24; 
9 5;17 2 6;2;4;10;12; 7;5;6;10;17; 6;24;2;4;5; 5;7;6;10;17; 

10 12;31 2 15;23;12;18;14; 12;14;15;31; 15;18;14;23;12; 14;31;12;15; 
11 3;13 1 6;4;2;10;12; 12;13;3; 6;4;2;10;12; 12;13;3; 
12 8;29 1 6;27;28;8;25; 8;6;12;29; 6;8;27;28;30; 8;6;12;29; 
13 9;24 1 6;10;22;24;4; 9;10;12;24; 6;24;10;22;4; 9;24;10;12; 
14 11;26 1 25;6;9;24;27; 11;9;12;26; 24;25;6;9;11; 11;26;9;12; 
15 14;30 1 27;12;14;15;30; 14;12;30;15; 14;30;27;12;15; 14;12;30;15; 
16 16;19 1 12;16;19;20; 12;16;19; 16;12;19;20; 16;12;19; 
17 18;21 1 15;18;19;21;22; 18;12;15;21; 18;15;19;21;22; 18;12;15;21; 
18 20;23 1 10;15;19;23;24; 23;12;15;20; 10;24;15;19;23; 23;12;15;20; 
19 5;17 1 10;2;6;5;7; 17;5;10;12; 10;2;6;5;16; 17;5;10;12; 
20 12;31 1 12; 12; 12; 12; 
21 1;3;13 4 6;2;4;12;1; 1;2;12;3;13; 6;2;4;12;5; 1;2;31;12;3; 
22 2;6 4 6;4;12;2;15; 6;2;4;12;5; 6;4;5;12;2; 6;31;2;4;12; 
23 4;6 4 6;10;2;12;27; 4;12;6;13;31; 4;6;10;2;5; 4;12;31;6;13; 
24 6;8;29 4 6;4;12;2;10; 8;28;12;6;13; 6;4;24;12;5; 8;28;31;12;6; 
25 10;22 4 10;21;22;17;24; 10;21;22; 10;24;21;22;17; 10;21;22; 
26 20;10;23 4 12;14;15;19;20; 12;14;10;13;15; 14;12;15;20;31; 14;12;31;20;10; 
27 14;15;30 4 12;15;14;18;23; 12;14;13;15;31; 15;12;14;18;23; 14;12;31;15;13; 
28 9;22;24 4 10;25;21;22;23; 22;12;24;13;21; 10;22;24;25;14; 22;24;31;12;21; 
29 14;27;30 4 27;12;14;29;25; 30;12;29;13;14; 27;14;30;12;29; 30;31;12;29;14; 
30 9;24;25 4 24;25;12;14;22; 12;24;25;13;14; 24;14;25;26;12; 24;31;12;25;14; 
31 1;3;13 3 6;2;4;10;1; 1;2;3;12;4; 6;2;4;10;5; 1;2;3;12;4; 
32 2;6 3 6;2;4;12;10; 6;2;12;4;5; 6;2;4;5;12; 6;2;12;5;4; 
33 4;6 3 6;10;2;4;27; 4;2;12;3;6; 6;10;24;2;4; 4;2;12;3;6; 
34 10;22 3 10;22;17;24;9; 21;22;10;12; 10;22;24;17;9; 21;22;10;12; 
35 12;16;19 3 6;10;12;4;9; 16;17;10;12; 6;10;12;16;4; 16;17;10;12; 
36 15;20;23 3 10;12;15;6;22; 12;23;24;15;22; 10;24;12;15;6; 24;12;23;15;22; 
37 5;7;17 3 6;2;4;3;5; 7;2;5;6;12; 6;2;4;5;3; 7;5;2;6;12; 
38 9;22;24 3 10;6;15;12;22; 23;12;15;22;24; 24;10;6;15;12; 23;24;12;15;22; 
39 14;27;30 3 27;29;30;12;25; 29;30;12;27; 30;27;29;12;25; 30;29;12;27; 
40 9;24;25 3 24;22;25;28;10; 27;12;22;24;25; 24;22;25;28;10; 27;24;12;22;25; 
41 9;20;23;24 3 12;24;15;22;23; 12;15;22;23;24; 24;12;15;22;23; 12;15;24;22;23; 
42 14;15;30 3 15;12;14;18;19; 12;15;14; 14;15;12;18;19; 12;14;15; 
43 18;21;22 3 10;22;21;12;23; 10;21;12;22; 10;22;21;24;12; 10;21;12;22; 
44 6;10 3 6;10;12;28;17; 12;6;10;4;9; 6;10;24;12;16; 12;6;10;4;9; 
45 6;9;24 3 6;10;12;4;15; 9;12;4;10; 6;10;24;12;4; 9;12;4;10; 
46 9;20;23;24 4 19;20;12;24;15; 19;20;12; 19;20;24;12;18; 19;20;12; 
47 18;21;22 4 10;19;20;22;21; 19;20;12;21;10; 21;10;19;20;22; 19;20;21;12;10; 
48 6;10 4 10;6;4;12;19; 6;10;12;19;9; 10;24;6;16;4; 6;10;12;19;9; 
49 6;9;24 4 6;10;4;27;2; 9;6;10;12; 6;10;4;27;5; 9;6;10;12; 
50 9;24;25 4 27;22;19;24;25; 25;12;24;27; 24;27;22;19;25; 25;24;12;27; 

Total 42/50 50/50 44/50 50/50 
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CHAPTER  IV 

REMOTE MEASUREMENT CALIBRATION BY STATE ESTIMATION METHOD 

4.1  Introduction 

Power system state estimation relies on telemetered measurements for optimal 

estimation of the system state. State estimators are designed to handle random as well as 

gross errors via appropriate bad data processing methods.  These errors appear in the 

telemetered quantities due to their accumulation during the various stages of transforming 

and transmitting the raw data to the control center computer.  Instrument transformers, 

transducers, telecommunication medium and devices may all contribute to such errors.  A 

measurement received at the control center may have an error with both a random as well 

as a systematic component depending upon the source of the error.   

 Power system state estimation itself can filter the random errors in the telemetered 

quantities. Most state estimation formulations, including the popular weighted least 

squares (WLS) method, are developed based on the assumption that the measurements 

contain only random errors with zero mean and known variance. On the other hand, 

systematic errors can be filtered either by post WLS estimation methods or via alternative 

robust estimation methods.  Unfortunately, performances of all of these methods are 

limited by the measurement redundancy. The number of bad data that can be handled by 

these methods cannot exceed an upper limit, which is dictated by the measurement 

redundancy and configuration.  Therefore, in order to obtain an accurate estimation result, 

majority of the measurements is required to be free of gross errors. This implies that the 

measurements must be appropriately calibrated so that the systematic errors associated 

with most measurements remain small. 

Manual calibration and checking of instruments at the substations are labor intensive 

and costly.  Furthermore, identification of the source of the systematic error may not be 

trivial when several stages of data transformation and telemetry are involved. Quite a few 

papers [38]-[47] have discussed the possibility of “soft” calibration techniques which can 

be conducted in the control center remotely. Papers [38]-[39] utilize the residuals result 

from state estimator to estimate the zero-offset and linear regression relation between the 

estimated/measured measurement pairs. Works in [40]-[43] suggests procedures that are 
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executed at individual substations in order to minimize errors in the analog measurements. 

Papers [44]-[46] propose branch/bus by branch/bus calibration methods utilizing the local 

redundancy. Study in [47] describes a system wide calibration method which relies on an 

essential reliable measurement set. However, these previous methods either cannot get 

satisfied performance or are not systematical enough for easy implementation. 

Other than measurement calibration topic, there are lots of papers [51]-[58] 

discussing the estimation of network topology parameters in state estimation, such as 

branch impedances or transformer tap changer position. Some of these previous works 

utilize techniques that augment the state vector to include those network parameters. 

Similarly, a new remote measurement calibration technique utilizing existing state 

estimation algorithms and the redundancy of the measurements is presented in [59]. The 

main idea is to relate the true and measured values by parametric equations and estimate 

these parameters simultaneously with the system states by using a modified state 

estimation program. In order to filter the random noise and provide the needed 

redundancy, the proposed technique can be implemented off-line utilizing several 

recorded measurement scans. This paper will further discuss this idea together with other 

important problems such as determination of the suspect measurement set, verification of 

the calibration results and observability analysis. 

4.2  Method Formulation 

Power system state estimation is formulated based on the measurement equation 

given below: 

22 exhz += )(                                                         (22) 

where: 

z : the measurement vector of dimension m ; 

)(xh : the nonlinear function relating the error free measurements to the system states; 

x : the state vector of dimension n ; 

e : the measurement noise vector; 

nm, : the number of state variables and measurements, respectively ( mn < ). 
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Consider a case where there exist systematic errors in some of the telemetered 

quantities. Then, assume that the measured and true values of a measurement are related 

through a nonlinear calibration function as given below: 

23 ),( pzfz =                                                         (23) 

where: 

z : the vector of telemetered quantities; 

z : the vector of true (calibrated) quantities; 

f : the characteristics function of the measurements need calibration. 

p : the vector of parameters in the characteristics function;  

The first-order Taylor series expansion of (22) and (23) for a set of value can be 

written as: 

24 pFzFz pz ∆⋅+∆⋅=∆                                                  (24) 

where: 

zF : zf ∂∂ / ; 

pF : pf ∂∂ / ; 

pzz ∆∆∆ ,, : Increments of pzz ,, , respectively. 

Use of the DC measurement model yields: 

25 exHz +∆⋅=∆                                                         (25) 

where: 

H : the Jacobian matrix; 

x∆ : Increment of x . 

Substitute (25) into (24) we have: 

26 epFxHFz pz ′+∆⋅+∆⋅⋅=∆                                         (26) 

where: 

eFe z ⋅=′ . 

In compact form (26) can be written as: 

27 [ ] e
p
x

FHFz pz ′+








∆
∆

⋅⋅=∆                                             (27) 
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Given enough redundancy, equation (27) can be solved by the conventional 

techniques used by state estimation, such as weighted least square (WLS) method. Due to 

the similarity of the formulation in (27) to the state estimation problem, it can be easily 

implemented by modifying an existing state estimation code.  

Using this formulation, the parameters of the chosen calibration functions can be 

estimated along with the system state variables. These parameters can then be used to 

calibrate the subsequently telemetered measurements by applying the inverse of the 

calibration function: 

28 )ˆ,(1 pzfzc
−=                                                        (28) 

where: 

cz : vector of calibrated measurements; 

p̂ : estimated p vector. 

The inverse function of f  may not be uniquely defined depending on the chosen 

expression. However, given the fact that in practical systems the calibrated values are 

close enough to the measured values, the correct solution can be identified by inspection.  

The formulation given in (27) assumes a single scan of measurements.  In general, 

there is not enough redundancy to allow estimation of all calibration parameters based on 

a single scan.  The fact that systematic errors remain to appear in several consecutive 

measurement scans can be exploited in order to increase redundancy and further suppress 

the influence of the random errors.  This is accomplished by using a window of k 

consecutive measurement scans simultaneously, where the expanded measurement and 

state vectors will be: 

29 ]...,,[ 21 kzzzz =                                                 (29) 

30 ],...,,[ 21 pxxxx k=                                              (30) 

Note that the calibration function parameter vector p is assumed to remain fixed from 

one scan to the next, while the measurements and the states are changing. Measurement 

equations for the k scan measurement window can be written using the expanded form of 

(27): 
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Where the arrays with subscripts i (1,2…k) correspond to the equations for the ith 

measurement scan. 

Applying WLS method, (31) will yield a bordered-block-diagonal gain matrix having 

the following structure: 

32  























=

pp
T
pk

T
p

T
p

pkk

p

p

GGGG
GG

GG
GG

G

�

��

21

22

11

                                       (32) 

Incorporating several scans together as in (31) naturally increases the computational 

burden significantly compared to single scan estimation. The gain matrix of (32) must be 

built and factorized at each state estimation iteration. However, alternative 

implementation methods exist [50] where computational burden is significantly reduced. 

On the other hand, if the calibration procedure is repeated few times on a daily basis, it 

essentially becomes an off-line procedure making these computation issues less relevant.  

It may run on a batch computer without interfering with the execution of the state 

estimator or any other on-line application. Hence, the calibration parameters can be 

updated routinely using the estimated results.    

4.2.1 Determination of the Suspect Measurements Set 
Before the calibration process, a suspected measurements set must be identified. This 

can be done by inspecting trouble spots, which yield bad data flags in consecutive state 

estimation runs, or by setting routine maintenance schedules. Theoretically to say, for 

optimal results, all measurements requiring calibration should be included in this set 

perhaps along with some already calibrated measurements. However, it was found that 

including of too many measurements in the suspected set couldn’t produce good results. 

Under this case, the calibration process can reduce the errors to some degree but the 
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calibration parameters may be biased. This can be solved by only including the first 

several identified bad data instead of the whole set in one calibration process. The 

uncalibrated measurements that are not included will be identified at the verification 

process described in section 4.2.3. 

4.2.2 Detailed Calibration Procedure 
The procedure for solving the expanded WLS estimation problem for the 

measurement model of (31) is summarized below: 

1. Determine the set of measurements to be calibrated.  

2. Collect k consecutive scans of measurements. Those scans should be made within 

a reasonable short window of time to ensure that the characteristics of the 

systematic errors in non-calibrated measurements remain the same. 

3. Initialize the system state vector ( kixi ..1,0 = ), the calibration parameter vector 

( 0p ) and the iteration index j = 1. 

4. Compute kiHFF j
i

j
pi

j
zi ..1,,, = . Where i and j are measurement scan and iteration 

indices respectively. Build the Jacobian for iteration j ( jH ) as given in (31). 

5. Compute the estimated measurement vector for iteration j ( kiz j
i ..1,ˆ = ). Calculate 

the measurement residuals for iteration j: 

33 kipzfzz jj
ii

j
i ..1),,ˆ( 1 =−=∆ −                                        (33) 

6. Solve the WLS state estimation problem and obtain the estimates of the system 

states for each scan ( kix j
i ..1, =∆ ) and calibration parameters ( jp∆ ) for iteration j. 

Update both vectors by: 

34 






∆+=
=∆+=

−

−

jjj

j
i

j
i

j
i

ppp
kixxx

1

1 ..1,
                                        (34) 

7. If converged, go to step 8. Else, update the iteration counter j =j+1 and go to step 

4. Convergence can be checked based on the norm of the incremental changes in 

the estimated vectors using a pre-specified tolerance. 

8. Update the calibration parameters and use them to calibrate the corresponding 
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measurements as given in (28).  

4.2.3 Verification of the Calibration 
The calibration procedure described in previous section utilizes K consecutive scans 

of measurements to estimate the calibration parameters of the suspect measurements. 

However, if some of the measurements with systematical errors are not included as 

suspected measurements or the calibration functions of some of the suspected 

measurements are not suited to the patterns of systematical errors, the calibration results 

may be biased.  This problem can be identified by using the k+1st scan of the 

measurements: after the calibration parameters are got, run the state estimation and bad 

data analysis for the k+1st scan using the calibrated values for those suspected 

measurements. If there are no bad data identified, it means all the bad data have been 

calibrated. The calibration process is completed and valid. Otherwise, the calibration 

process is not completed. There are two possibilities under this case: 

1) The bad data include those which have been calibrated in the previous calibration 

process. This means the calibration functions are not suited to the error patterns. 

Other better functions much be choose and the calibration process need to be rerun. 

For example, linear calibration function is used for one measurement in the 

calibration process. After the parameters have been estimated, this measurement 

still identified as bad data. In this case, the linear function should be replace with 

quadratic or some other nonlinear functions and rerun the calibration process. 

2) All of the identified bad data are other than those have been calibrated in the 

previous process. This indicates there exist some uncalibrated bad data outside the 

suspected measurements set defined in the previous calibration process. In this case, 

another set of suspect measurements is selected based on the bad data analysis 

results. Rerun the calibration process. Note here that we must use the calibrated 

values for those measurements have been calibrated in the previous calibration 

process. 

4.3  Implementation 

The general formulation of the proposed remote measurement calibration technique 

has been described above. In a specific implementation, the calibration function f  needs 
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to be determined in advance for a given system and all of its measurements.  The types of 

systematic errors appearing in measurements that are telemetered to the control centers 

are typically caused by the following reasons [41]: 

• Age, temperature and other ambient effects related drift and deterioration of 

instruments over time; 

• Changes in gains, zero offsets, and nonlinear characteristics of instruments 

involved in the measurement process; 

• Inadvertently introduced gross errors due to the wrong modeling and scaling used 

at the control center; 

• Errors in transducer parameters, instrument transformer ratios, transformer ratings, 

and scaling coefficients.  

The calibration function, which relates the measured and calibrated values, may be 

chosen as a quadratic function as below: 

35 czbzaz +⋅+⋅= 2                                                    (35) 

The first-order Taylor series expansion of (35) yields: 

36 cbzazzbzaz ∆+∆⋅+∆⋅+∆⋅+⋅⋅=∆ 2)2(                             (36) 

Substituting (36) into (25): 

37 1
2)2( ecbzazxHbzaz +∆+∆⋅+∆⋅+∆⋅⋅+⋅⋅=∆                     (37) 

Equation (37) can be rewritten in compact form as: 

38 [ ] 1
2 )()()2( e
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⋅⋅+⋅⋅=∆                    (38) 

Here D(v) is the operator of forming a diagonal matrix whose diagonal elements are 

equal to the vector v. 

Assuming k scans are considered simultaneously, (38) can be expanded as: 
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(39) 

Estimation of the unknown variables in (39) will yield the sought after parameters a, 

b and c for the chosen calibration function of (35). Corresponding measurements can be 

calibrated by using the inverse of this quadratic function as in (28).  Among the two 

possible solutions of this quadratic equation only one will be correct and needs to be 

identified.   

The calibration function (35) has two solutions given by: 

40 azcabbz 2/))(4( 21 −−+−=                                          (40) 

41 azcabbz 2/))(4( 22 −−−−=                                         (41) 

For a single measurement, we can define the calibrated residual for different solutions 

as: 

42 2,1;,...2,1   ;ˆ ==−= jkizzr i
j

i
j

i                                          (42) 

where: 

:j
ir  The residual of jth solution corresponds to ith  measurement scan. 

:j
iz  The jth solution corresponds to ith measurement scan. 

:ˆiz  The estimated value of this measurement corresponds to ith measurement scan. 

For all the possible solutions, we can calculate the sum of the squares of 

corresponding residuals as: 

43 ∑
=

=
k

i

j
i

j rR
1

2)(                                                     (43) 

The correct solution can be identified by simply selecting the one has the minimum 

value of (43). 



  60 

  

In an actual system, this can be further verified based on the information about the 

type and location of the measurements. For example, the active power injection of a 

generation (load) bus will always be greater (less) than zero, real power flows leaving 

towards the load side of the transformers must be positive, etc. 

As an alternative, the calibration function can also be chosen as linear instead of 

quadratic, reducing the unknown parameters to b and c only: 

44 czbz +⋅=                                                       (44) 

This model can be implemented by simply eliminating the columns and variables 

corresponding to the parameter a in (39).   Similar modifications can be made in (39) for 

other possible combinations of a, b and c.  Certainly it is possible to employ within the 

same formulation, different functional forms for calibrating different measurements. 

In practical implementation, the following issues must be considered: 

1) If the chosen measurements have already been calibrated once earlier, the original 

non-calibrated values must be used when forming the measurement vector. The 

existing calibration parameters can be used as initial values in estimating the new 

parameters. 

2) In case of a new calibration, initialize the parameter b as 1 while using zeros for a 

and c.  However, this choice of initial values will lead to ill-conditioning of the 

Jacobian. This problem can be circumvented by eliminating the parameters from 

the calibration model in the first iteration and including them in the subsequent 

iterations. Another alternative is to set the initial values of system state variables 

to the estimated values if they are available. 

3) If the values of the measurements to be calibrated include zeros, such as zero-

injections and the calibration models include parameters a or b, then the gain 

matrix will be ill conditioned. Hence, estimation of parameters a or b for zero-

valued measurements should be avoided. 

4.4  Observability Analysis 

Like state estimation, the proposed remote measurement calibration method is subject 

to observability problem. The gain matrix shown in (32) may become singular under 

certain circumstances: 
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1) The number of suspect measurements excesses the limit. 

2) The number of calibration parameters excesses the limit. 

Both of these problems will be addressed in this section. 

4.4.1 Number of Measurements Can Be Estimated 
The measurement calibration issue can be treated as a special measurement error 

detection/identification problem. The limitation of number of measurement can be 

estimated is similar to the topic in multiple bad data analysis, which has been discussed in 

detailed in [48]. The proposed method will encounter observability problems under the 

following conditions: 

1) Existence of critical measurements.  

2) Existence of critical k-tuples, which is defined as a set of k measurements, none of 

which belongs to any lower order critical tuples, whose deletion results in the loss 

of observability [48]. 

First of all, the error in the critical measurement can never be detected or identified. 

Hence there is no way for the critical measurement to be calibrated by remote 

measurement calibration method. 

Secondly, as shown in [48], k-2 gross errors in a critical k-tuple of measurements are 

detectable and identifiable while k and k-1 errors in a critical k-tuple of measurements are 

detectable but not identifiable. Similar rules are also valid in remote measurement 

calibration. 

1) Rule 1. Systematic errors in any k-2 or less measurements of a critical k-tuple of 

measurements can be calibrated. 

2) Rule 2. Systematic errors in any k-1 measurements in a critical k-tuple of 

measurements can be detectable, but not identifiable. Including of coefficients for 

all of those k-1 measurements in (31) will not result in singular matrix. We can 

still get the estimated results even though they might be biased. 

3) Rule 3. Systematic errors in all measurements of a critical k-tuple of 

measurements can be detectable but not identifiable. Including of coefficients for 

all of those measurements in (31) will result in a singular gain matrix. 
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These rules will be further discussed along with the simulation result in section 4.5.5. 

Unfortunately, these problems cannot be solved by increase the snapshots number in the 

equation. The increasing of the snapshots number can only helps to suppress the 

influence of random errors and increase the number of coefficients for individual 

measurement.  

From above discussion, we know that under certain circumstances, the gain matrix 

will be singular thus the whole procedure will fail. There are two ways to solve this 

numerical problem. 

1) After we get the suspect measurement set, conduct an observability analysis. 

Exclude those measurements that will make the gain matrix singular. This method 

needs extra detection procedure and it is not convenience. 

2) Similar to pseudo-measurement in normal state estimator, we can introduce 

pseudo-parameter-measurement. The value of pseudo-parameter-measurements 

can be set to the existed one or the “flat start” values if no extra information is 

available. These pseudo-parameter-measurements may be wrong in most of the 

cases. In order to make sure the estimated result will not be contaminated by these 

pseudo-parameter-measurements, they should be weighted lower compared to 

other measurements. Consideration must be given to avoid forming ill-condition 

matrix by these lower weights. This issue will be further studied along with the 

simulation results in section 4.5. Note here that the introduction of pseudo-

parameter-measurement can solve the numerical problems but cannot solve the 

observability problem. Although we can get results for those measurements which 

cannot be estimated under current measurement configuration as well, they may 

be biased. However, if there exist error in those measurements and we do not have 

other technique to suppress the influence. 

4.4.2 Number of Coefficients for Individual Measurement  
As shown above, only the coefficients of the redundancy measurements can be 

estimated along with the system state. On the other hand, each redundancy measurement 

can provide the possibility to the estimation of only one coefficient. This problem can be 

relief by increasing the number of snapshots. Formulation of k snapshots simultaneously 

make it is possible to estimate at most k coefficients for single measurements.  
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4.5  Simulation Results  

The proposed remote measurement calibration technique is tested on simulation data 

using different IEEE systems. The results show that the performance of this method 

remains insensitive to the size of the system due to the local nature of this problem. 

Hence, the detailed simulation results will be presented only for IEEE 14 bus system in 

this section. 

Fig. 16 shows the one-line diagram of the studied system. The measurement 

configuration is also shown in the picture. 
 

 

: Power injection  : Power flow  : Voltage magnitudes  
 

Fig. 16.  Studied system of remote measurement calibration with measurement configuration 
 

 

The system has the following measurements: 

• 10 injections at buses 1,2,3,4,8,9,11,12,13 and 14. 

• 11 flows on branches 1-2,1-5,2-4,3-4,4-5,4-7,6-12,7-8,9-14,12-13 and 13-14. 

• 5 voltage magnitudes at buses 1,3,4,5 and 14.   
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Measurement redundancy is 21/13. The structure of the sensitivity matrix for the 

active part is shown in (45). For convenience, the row sequence of aS is rearranged to 

form a block diagonal structure.  
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where: 

2S : A 2x2 sub matrix with rank 1. 

3S : A 7x7 sub matrix with rank 3. 

4S : A 8x8 sub matrix with rank 4. 

As can be seen from (45), for the active sub problem, this measurement set contains 

the following: 

1) Critical subset 1: 4 critical measurements, injections at 4,9,11 and flow 4-7. They 

correspond to the first four rows of aS  in (45). 

2) Subset 2:  Critical pair including injection 8 and flow 7-8, which correspond to 

the sub matrix 2S  in (45).   

3) Subset 3: Residual spread component [48] containing 7 measurements, injections 

at 12,13,14 and flows 6-12,9-14, 12-13, 13-14. Any four of these seven 

measurements form a critical 4-tuple. They correspond to the sub matrix 3S  in 

(45). 

4) Subset 4: Remaining 8 measurements. Any five of them form a critical 5-tuple. 

They correspond to the sub matrix 4S  in (45). 

Errors having a Normal distribution with zero mean and 0.004 variance are 

introduced for voltage magnitude measurements and 0.01 variance for all the power 

measurements. The calibration results for the power injection and flow measurements 
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differ from those for the voltage magnitude measurements. The simulation results for 

both cases will be given and discussed separately in the following sections. 

4.5.1 Multiple Bad Data in Power Injection/Flow Measurements 
The first simulation is done for the calibration of multiple biased power injection and 

power flow measurements. The quadratic model shown in (35) is used for all the 

measurements. The following three measurements are simulated as non-calibrated 

measurements using quadratic calibration models with the given parameters: 

• Active power injection on bus 3 ( 3.0;1.1;2.0 === cba ). 

• Active power injection on bus 14 ( 1.0;1.1;0.0 −=== cba ).   

• Active power flow on branch 3-4( 2.0;1.1;0.0 −=== cba ).  

Based on the basic network data of IEEE 14 bus system and random load 

configurations, 11 scans of measurements have been created using the biased parameters. 

The first 10 scans will be using to implement the calibration process while the last one is 

used to identify the suspected measurement set and validate the calibration results. 

With the uncalibrated data, the bad data analysis after state estimation produces 

following result: 

 

Significant Normalized Residuals: 
Measure NO=   14, PFlow        3-    4, Residual=  -42.2932  
Measure NO=    3, PInj    at bus     3, Residual=   42.1550  
Measure NO=    2, PInj    at bus     2, Residual=   13.4985  
Measure NO=   15, PFlow        4-    5, Residual=   -9.5462  
Measure NO=   10, PInj    at bus    14, Residual=   -6.9224  
Measure NO=   19, PFlow        9-   14, Residual=   -6.7008  
Measure NO=   21, PFlow       13-   14, Residual=   -6.1886  
Measure NO=   24, QInj    at bus     3, Residual=    4.5719  
Measure NO=   23, QInj    at bus     2, Residual=    4.0073  
Measure NO=    1, PInj    at bus     1, Residual=    3.0001  
 

Here 3.0 is used as a threshold. The measurement set chosen for the first calibration 

process includes the top three measurements in the list: active power injections at buses 

2,3 and active power flows on branches 3-4. The parameters of their calibration functions 

are estimated along with the system state variables using the first 10 scans. It takes 6 

iterations to converge to a tolerance of 10-5. 
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After the first calibration process, state estimation program is rerun using the 

calibrated measurement value for 11th scans. The bad data analysis produces three more 

bad data: 

 

Significant Normalized Residuals: 
Measure NO=   10, PInj    at bus    14, Residual=   -6.9047  
Measure NO=   19, PFlow        9-   14, Residual=   -6.7334  
Measure NO=   21, PFlow       13-   14, Residual=   -6.1747   
 

The list only contains three measurements and there are all different form the 

measurements which have been calibrated in the previous process.  Since we still have 

bad data identified, the second calibration process is run. Notes here that the calibrated 

measurement value will be used for those measurements that already calibrated in the 

first process. 

The state estimation following the second calibration process does not identify any 

bad data. This means the calibration process is complete and valid. 

Table XI shows the estimated system states at the 11th scan. The proposed method’s 

results are comparatively displayed with those provided by the conventional WLS 

method without any measurement calibration as well as the true values of the states. The 

corresponding values of the objective functions are also given in the last row. 

The estimated coefficients for these measurements haven been calibrated are shown 

in Table XII along with the measured, estimated and calibrated values of the 

measurements corresponding to the 11th measurement scan. Since we use quadratic 

model shown in (35) in this case, there may be two calibrated values for each 

measurement. However, the calibrated values shown in Table XII are calculated by (40). 

The identification process always pick solutions (40) as correct one during our simulation. 

For example, the value of (43) for calibrated values of active power injection in bus 3 

given by (40) is 3.4x10-5 while for (41) is 4562.35. 
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TABLE XI 
ESTIMATED SYSTEM STATES 

WLS Method  
Without Calibration Proposed Method True Value Bus No. 

|V| Ang.  |V| Ang. |V| Ang. 
1 1.0568 0.00 1.0598 0.00  1.0600  0.00  
2 1.0426 -6.99 1.0446 -7.04  1.0450  -7.05  
3 1.0139 -16.34 1.0078 -17.82  1.0100  -17.73  
4 1.0134 -14.16 1.0173 -14.05  1.0173  -14.04  
5 1.0143 -11.91 1.0186 -11.78  1.0182  -11.74  
6 1.0822 -21.24 1.0716 -17.04  1.0700  -17.02  
7 1.0722 -16.39 1.0767 -16.28  1.0763  -16.26  
8 1.0875 -16.26 1.0920 -16.14  1.0900  -16.26  
9 1.0917 -21.81 1.0872 -17.17  1.0873  -17.38  
10 1.0731 -25.94 1.0806 -17.11  1.0801  -17.49  
11 1.0738 -23.82 1.0744 -17.26  1.0724  -17.51  
12 1.0623 -22.54 1.0525 -18.25  1.0535  -18.16  
13 1.0623 -22.57 1.0544 -18.16  1.0538  -18.22  
14 1.0528 -24.60 1.0536 -19.32  1.0525  -19.58  

Cost 2332.096 15.310 N/A 
 

 
TABLE XII 

 SIMULATION RESULTS FOR OBSERVABLE CASE 
Meas.NO. Inj2 Inj3 Inj14 PFlow3-4 PFlow9-14 PFlow13-14 

a 0.024 0.184 -0.015 -0.030 -0.003 0.007 
b 0.999 1.079 1.122 1.082 0.984 0.995 Coeff. 
c -0.004 0.290 -0.116 -0.190 0.004 0.006 

Measured 0.122 -0.785 -0.383 -0.589 0.182 0.056 
Estimated 0.132 -1.299 -0.233 -0.356 0.184 0.053 
Calibrated 0.126 -1.273 -0.237 -0.365 0.181 0.050 

 

 

The simulation results clearly favor the proposed method as evident from the close 

match between the true and estimated states when calibration is employed.  Furthermore, 

for all of the three measurements with bad calibration, the estimated parameters of the 

calibration model are very close to the true values used in generating the simulation data. 

Naturally, in an actual system, the true form of the calibration model will not be known 

and the chosen model structure may not result in such a good match.  However, since the 

measuring instruments are not replaced frequently, it is assumed that the correct 

calibration model for individual measurements can be found based on a reasonably long 

operating history.  
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In order to test different calibration models, some simulations are also carried out for 

the linear model shown in (44). Similar performance of the method is observed as those 

shown in Table XI and Table XII. In the case of the linear model, the proposed 

calibration method requires fewer scans and iterations to yield results of similar quality. 

Moreover, utilizing the linear model avoids the multiple solutions’ problem. In practical 

implementation, in order to save computation time, most of the measurements can utilize 

the linear model. Quadratic model can be used on selected measurements whose 

characteristics show strong nonlinear behavior due to effects such as saturation, 

temperature dependence, etc. 

4.5.2 Simulation Results for Wrong Calibration Function 
Sometime the specified calibration functions may not be suitable for the 

measurements. This can be identified by the verification process. Assume the active 

power injection 3 is contaminated by (35) and the parameters are: 3.0;1.1;2.0 === cba . 

Similar to the simulation procedure in the previous section, 11 scans are generated. 

Before the calibration process, the bad data analysis for the last scan is: 

 

Significant Normalized Residuals: 
Measure NO=    3, PInj    at bus     3, Residual=   19.2952  
Measure NO=   14, PFlow        3-    4, Residual=  -17.1255  
Measure NO=    2, PInj    at bus     2, Residual=   10.6760  
Measure NO=   15, PFlow        4-    5, Residual=   -5.5081  
Measure NO=   13, PFlow        2-    4, Residual=   -3.5293  
Measure NO=   23, QInj    at bus     2, Residual=    3.2169   
 

The first three measurements will be selected into suspected set. In the first 

calibration process, we assume the errors are only offsets. So only parameters c in (35) 

will be estimated. 

After this calibration process, the bad data analysis for the last scan produces: 

 

Significant Normalized Residuals: 
Measure NO=    3, PInj    at bus     3, Residual=  -12.9601  
Measure NO=   14, PFlow        3-    4, Residual=   11.6389  
Measure NO=    2, PInj    at bus     2, Residual=   -5.8281  
Measure NO=   44, Voltage at bus     3, Residual=    3.1934  
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Measure NO=   15, PFlow        4-    5, Residual=    3.0292 
 
It can be seen that the top three measurements are those which have been calibrated. 

This means wrong calibration functions are used. Replace the calibration function with a 

linear function as (44). This time, b and c are both taken into account. 

However, even after this calibration process, bad data are still identified: 
 

Significant Normalized Residuals: 
Measure NO=    3, PInj    at bus     3, Residual=  -15.3400  
Measure NO=   14, PFlow        3-    4, Residual=   14.1366  
Measure NO=    2, PInj    at bus     2, Residual=   -7.8779  
Measure NO=   15, PFlow        4-    5, Residual=    3.6753  
Measure NO=   11, PFlow        1-    2, Residual=   -3.1420 

 
The first three measurements are still the same. Finally, we use (35) as the calibration 

function. After the third calibration process, no bad data is identified and the calibration 

results are: 
 

MeasureNO=3, Pinj at bus3,a=0.1974,b=1.0795,c= 0.2680  
MeasureNO=14,Pflow3-4, a=-0.0089,b=0.9764,c=-0.0175  
MeasureNO=2,PInj at bus2,a=0.0254,b=1.0320,c= 0.0142   

 
The estimated parameters are close to their theoretical values. 

4.5.3 Calibration of Voltage Magnitude Measurement 
There are differences between the voltage magnitude measurements and others when 

applying the proposed method.  In the per unit system, the voltage magnitudes vary only 

in a rather small region and they usually remain very close to 1. Utilizing of a quadratic 

model as (35) or a linear model as (44) may easily lead to multiple solutions of the 

parameters. This can be shown by a simple example. Assuming a linear model as (44) 

with a non-calibrated voltage magnitude measurement at bus 1 ( 2.00.1 +⋅= zz ), the 

estimated parameters b and c by the proposed method will be 3867.0;5556.1 −== cb . 

Even though these results do not match the parameters of the true (assumed) calibration 

model, since the true voltage magnitudes of bus 1 are very close to 1.06 in all of the 

snapshots, the calibrated values will still be very close to the true ones. This can be seen 

from the results shown in Table XIII. In this case, the parameter b can be fixed, 

simplifying it down to a single estimated bias parameter c.  
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TABLE XIII 
 SIMULATION RESULTS FOR VOLTAGE MAGNITUDE MEASUREMENTS 
Snapshot NO. 1 2 3 4 5 

Measured 1.2547 1.2631 1.2649 1.2555 1.2652  
Estimated 1.0568 1.0606 1.0607 1.0571 1.0600  
Calibrated 1.0552 1.0606 1.0617 1.0557 1.0620  

 

 

4.5.4 Introduction of Pseudo-Parameter-Measurements 
As suggested in section 4.4, the pseudo-parameter-measurements can be introduced to 

solve the numerical problem. However, the weights of these measurements will have 

great influence in the results. The behavior of calibration procedure under different 

weight settings for these pseudo-parameter-measurements is studied. 

For convenience, here we take the linear model as shown in (44) instead of the 

quadratic model. Assume we have three bad measurements: 

• Active power injection on bus 1 ( 1.0;1.1 == cb ).  

• Active power injection on bus 2 ( 2.0;2.1 == cb ).  

• Active power injection on bus 3 ( 3.0;3.1 == cb ). 

 

 
TABLE XIV 

 INFLUENCES OF WEIGHTS FOR PSEUDO-MEASUREMENT 
Meas.NO. PInj1 PInj2 PInj3 Cost 

b 1.0997 1.0057 1.1862 104 c 0.0901 0.1682 0.1738 
1355.397 

b 1.1013 1.0527 1.2844 103 c 0.1018 0.2105 0.2849 
273.949 

b 1.1024 1.1904 1.3002 102 c 0.1011 0.2073 0.3045 
211.478 

b 1.1021 1.2695 1.3026 10 c 0.1016 0.2036 0.3071 
208.788 

b 1.1021 1.2832 1.3030 1 c 0.1017 0.2030 0.3075 
208.738 

b 1.1021 1.2849 1.3030 No* c 0.1017 0.2029 0.3075 
208.738 

*: This means do not introduce pseudo-parameter-measures 
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The suspicious measurement set only includes the bad measurements. The pseudo-

parameter-measurements are introduced for all the coefficients. They are weighted by 

different values shown in the first column of Table XIV. And their values are set as “flat 

start” (b=1;c=0), which is obviously wrong. The weights for all other measurements will 

be set to 104. The estimated coefficients and the values of objective functions under 

different weights setting are shown in Table XIV. 

By comparing the estimated coefficients and the values of the objective functions, we 

can see that if the weights of the pseudo-measurements are set to 1/100 of the normal 

measurements, the result is pretty close to the result without those pseudo-measurements. 

This weight setting also avoids ill conditioning of the matrix. In the following simulation, 

when the pseudo-parameter-measurements are used, their weights will be set as 1/100 of 

other measurements. 

4.5.5 Critical Measurements/Critical K-Tuple of Measurements 
As mentioned in section 4.4, the proposed calibration technique has some limitation 

when there are critical measurements or critical k-tuple of measurements. Including the 

coefficients of the critical measurements or all the critical k-tuple of measurements will 

result in an ill-conditioned gain matrix without pseudo-parameter-measurement. The 

introduction of pseudo-parameter-measurement can solve the numerical problem. The 

coefficients of relationship functions for all the measurements can always be estimated. 

However, since the pseudo-parameter-measurement cannot increase the redundancy level, 

those “estimated” coefficients for critical measurements or critical k-tuple of 

measurements may be biased. 

1) Critical measurements. 

For critical measurements, the calibration procedure can only yield trivial results. The 

estimated coefficients are always very close to zeros. The detailed simulation results are 

ignored here. 

2) Critical k-tuple of measurements. 

If systematic errors only exist in k-2 measurements in a Critical k-tuple of 

measurements, they can be calibrated correctly. The simulation results are similar to 

Table XII and will be ignored here. 
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A simple case is created to test the behavior for k-1 systematic errors. The Subset 2 of 

system shown in Fig. 16 contains a critical pair. Assume there is error in active power 

injection 8 ( 2.02.1 +⋅= zz ), we have:  

• If the suspicious measurement set only contains this measurement, the estimated 

coefficients are: 2034.0;1956.1 == cb .  

• If the suspicious measurement set contains both measurements, the estimated 

coefficients are: 0965.0;0804.1;1124.0;1248.1 2211 ==== cbcb . 

These results confirm the argument of rule 2. Actually, the systematic error in this 

case is not identifiable. We can get correct answer for the first case just because we 

happen to have the correct suspect measurement identification.  

Assume there are errors in both measurements ( 2.02.1;1.01.1 2211 +⋅=+⋅= zzzz ), 

we have:  

• If the suspicious measurement set only contains injection 8, the estimated 

coefficients are: 2956.0;3043.1 == cb .  

• If the suspicious measurement set contains both measurements, the estimated 

coefficients are: 1302.0;1404.1;1724.0;1587.1 2211 ==== cbcb . 

No matter what the suspicious set is, we cannot get the calibration coefficients for 

individual measurement correctly. The estimated results always show an “average” 

property.  

From the simulation results, we can see that if the number of error measurement is not 

less than k-1 within a critical k-tuple of measurement, the calibration results may be 

biased for single measurement. However, generally they can eliminate the systematic 

error to a great degree due to the “average” property. If no other calibration technique is 

available under these circumstances, the proposed remote calibration procedure still can 

help to improve the performance of state estimator.  

3) The influence of voltage magnitude measurement. 

Above observability analysis do not consider the voltage magnitude measurements. In 

fact, the existences of voltage magnitude measurements will not influence the calibration 

redundancy for active power measurements.  However, they will increase the redundancy 

for reactive power measurements. In the system shown in Fig. 16, injection on bus 4 is 
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critical measurement. Since there is voltage magnitude measurement on bus 4, the 

systematic error in reactive part can be calibrated by proposed method. The voltage 

magnitude measurements will also increase the calibration redundancy of the reactive 

measurements of the critical k-tuple of measurements.  

4.6  Conclusions 

Elimination of systematic calibration errors in telemetered quantities is labor 

intensive and costly, if it is done at the metering site.  This chapter describes an 

alternative remote measurement calibration approach by which calibration of 

measurements are done as part of the state estimation. The measured values are related to 

the true values by some assumed calibration functions. The details of incorporating these 

calibration function parameters into the normal state estimation problem are presented. 

The parameters will be estimated along with the system states and used to calibrate the 

corresponding measurements. The method can be implemented off-line using several 

subsequent measurement scans together to increase redundancy. It is tested on different 

size IEEE systems. The simulation results show that this calibration procedure can 

improve the performance of state estimation when there are badly calibrated 

measurements. 
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CHAPTER  V 

AUTO TUNING OF MEASUREMENT WEIGHT 

5.1  Introduction 

Measurements that are telemetered to the control center to be processed by the power 

system state estimator usually contain a combination of systematic and random errors. 

The systematic errors in the measurements can possibly be eliminated by using 

appropriate calibration methods [38]-[44] while the random errors will always remain 

and will influence the accuracy of estimated state. 

The weighted least squares estimators assume a set of measurement error variances 

whose reciprocals are commonly chosen as the weights for the measurements.  These 

same weights also influence the commonly employed bad data detection and 

identification procedures which are based on the normalized residuals. Choice of these 

weights is therefore an important consideration for state estimators. Furthermore, once 

chosen, the weights need to be continuously updated since they vary with operating 

conditions and aging of the instruments. Hence, this requires adaptively adjustment of 

measurement weights. 

The measurement weights are typically assigned based on some assumed accuracy of 

the measuring instruments and they may be further adjusted to tune the residual based 

error detection tests.  While these approaches may work for most systems, it is felt that 

they can be further improved via a tuning procedure which further reduces the degree of 

user intervention.  Few papers [34]-[37] have so far addressed this issue. Reference [34] 

presents a general formulation of the parameter estimation problem and suggests that the 

standard deviation of measurement can also be treated as an unknown parameter; 

however no further details or simulation results are provided. Reference [35]-[36] uses a 

set of so-called test equations which include regular measurement equations as well as 

some consistency relations. The residuals of the test equations are then used to identify 

the measurement variances via the use of artificial neural networks 

A novel algorithm to estimate and adaptively update measurement variances is 

proposed in [37]. The measurement error variances are estimated based on their 
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calculated residuals corresponding to several past measurement scans. The sensitivity 

relationship between the measurement variances and the covariance matrix of their 

residuals is used for this purpose. However, this method can be further improved to 

address the following shortcomings: 

1. It requires the calculation of all the elements in the sensitivity matrix. This is 

computationally very expensive especially for large systems.  

2. Its initialization phase is successful provided that the range of measurement 

variances is confined to a small region.    

3. It assumes that the redundancy of the measurement set is high enough to make the 

Schur product (M) of the sensitivity matrix nonsingular, which is not always true. M 

is used for estimating measurement error variances. 

In this chapter, an alternative and simpler method which avoids the above listed 

shortcomings is proposed and comparatively discussed with the algorithm presented in 

[37]. Both methods make the following two assumptions: 

1. The correct network topology and parameters are known.  

2. Large systematical errors have been eliminated by appropriate calibration. The 

measurement errors only consist of Gaussian random errors. This can be ensured by 

disregarding those measurement scans with identified bad data. 

Initially, it is assumed that no information is available on the variances of the 

measurements. An off-line procedure, which is executed only for initialization purposes, 

is proposed.  Subsequently, a recursive updating procedure which is computationally 

more efficient and therefore suitable for on-line implementation to update the variances is 

presented. It is also realized that the capability of estimating variances of the available 

measurements depends on the measurement configuration and types.  Limitations 

imposed by the existing measurement structure and identification of cases for which 

variance estimation can not be carried out are also presented. 

5.2  Problem Formulation 

From the description of WLS method in chapter II, the residuals of measurements can 

be represented by the product of a sensitivity matrix and the measurements’ vector. 

46 zSr ⋅=                                                          (46) 
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Covariance matrix ( rR ) of measurement residual r can be expressed in terms of the 

covariance matrix ( zR ) of the measurement errors as: 

47 T
zr SRSR ⋅⋅=                                                     (47) 

A statistically sampled covariance matrix for rR  can be calculated given enough set 

of historical data. Also note that, the rank of the S  matrix in (47) is at most (m-n) making 

it a singular matrix [4]. Hence, given the matrix rR , (47) cannot be directly solved to find 

zR . However, using the assumption that random errors of individual measurements are 

not correlated, the covariance matrix zR can be assumed to be strictly a diagonal matrix. 

In that case, the diagonal elements of zR  and rR  can be related by manipulating (47) and 

used to estimate the diagonal elements of zR .  Two alternative procedures are developed 

for this purpose. 

5.2.1  Overview of Method 1 [37] 

Let zR
�

 be an array containing the diagonal entries of zR which is assumed to be 

diagonal.  Similarly define rR
�

 to be an array containing the diagonal elements of rR .  

Note that these diagonal elements are used in normalized residual test for identifying bad 

data. rR
�

 can be expressed in terms of zR
�

 by manipulating (47) as follows: 
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Matrix M will be non-singular provided that certain redundancy requirements, which 

will be elaborated on later, are met.  In (48), rR
�

 will be approximated as the sample 

variances of the residuals computed based on a set of historical state estimation runs. The 

measurement error variances may thus be estimated by solving (48) for zR . It is noted that 

this will also only be a good approximation for the true measurement variance vector. 

The true value of zR  can not possibly be found due to the singularity of matrix S in (47). 

It is further observed that the residual vector in (48) is comparably small making the 

numerical solution non-robust. This problem is overcome through scaling (48) as follows: 

49 www zSr =                                                       (49) 

where: 

rWr w ⋅= 2/1  is the weighted residual vector; 

2/12/1 −⋅⋅= WSWS w  is the weighted sensitive matrix; 

zWz w 2/1=  is the weighted residual measurement vector; 

Correspondingly, equation (47) can be rewritten as: 

50 Tww
z

ww
r SRSR )(=                                                  (50) 

where: 
w
z

w
r RR , : are the covariance matrix of weighted residual vector and weighted 

measurement vector respectively. 

Thus the weighted form of (48) is obtained as: 

51 w
z

ww
r RMR

��

=                                                    (51) 

where: 
wM : The weighted form of matrix M . 

Once w
zR

�

is calculated by solving (51), zR can be recovered by the inverse 

transformation as: 

52 w
zz RWR
�� 2/1−=                                                     (52) 



  78 

  

5.2.2 Proposed Alternative Method (Method 2) 

The formulation given above contains all elements of sensitivity matrix S . The 

calculation of this matrix is very time-consuming. An alternative formulation is proposed 

to avoid this extra computation burden.  

If the weight vector used in the state estimation is the inverse of the random error 

variances vector ( 1−= zRW ), equation (47) can be simplified as [2]: 

53 z
T

zr RSSRSR ⋅=⋅⋅=                                             (53) 

Thus, the diagonal elements will simply be related as: 

54 iirizi SRR /
��

=                                                    (54) 

. 
 In this formulation, only the diagonal elements of S are needed and they are 

typically available from the bad data processing function, which utilizes the normalized 

residual test.  

It can be seen from (48) and (54) that only the diagonal elements of the covariance 

matrix are needed for both formulations. Hence, the variances of the residuals of 

individual measurements are estimated by computing their sample variances 

corresponding to a set of historical data. The system model and the measurement 

variances are assumed to be constant during the given period. In order to make (48) or 

(50) valid, S  matrix and the weight vector W must be the same for all those snapshots. 

Even though the system state continuously varies during the computation period, the fast 

decoupled state estimation method is used to approximate a constant S matrix. It is 

observed that S is not too sensitive to changes in the states but is affected significantly by 

changes in network topology. 

5.3  Iterative Initialization Procedure 

The proposed method requires the state estimation results for several past time steps.  

When there is no prior information about the measurement error variances, the method 

will have to initialize the weights. This is accomplished via the below given iterative 

procedure which starts with an arbitrarily assumed set of weights: 
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1) Save k time samples of the system measurements. Those snapshots should be 

taken reasonably close to each other to ensure steady random error variances for 

all the measurements. The system topology must also remain unchanged; 

2) Initialize the weight vector. If no prior information is available, use a value of 1.0 

for all measurements; 

3) Run WLS state estimator using the same weight vector for all of those k 

snapshots. Compute the time series for each measurement residual and their 

sample variances; 

4) Use method 1 or method 2 to estimate the random error variances for all the 

measurements; 

5) Update the weights using the reciprocals of the estimated random error variances. 

Compute the maximum absolute deviation in the weights with respect to the 

previous iteration.  Go to step 3 and continue with iterations until the computed 

maximum deviation falls below a chosen threshold or the iteration limit is reached. 

Simulation results indicate that the convergence of the above iterative procedure 

remains sensitive to the number of snapshots up to a certain minimum number after 

which it is not improved significantly with an increase in the sample size. This minimum 

number is independent of the system size; hence once it is determined it can be used for 

any system. Some simulation results on this iterative procedure will be presented in later 

section. 

5.4  Recursive Updating Procedure 

The above described initialization procedure will yield a set of estimated 

measurement error variances, which are subsequently used to compute the measurement 

weights. However, the measurement error variances are known to vary in time due to 

various external factors as well as the deterioration of equipment.   Correspondingly, in 

order to follow the changes in the variance, the weight vectors also need to be updated 

frequently. Although the initialization process can be used to re-estimate the variance 

once a change is detected, it cannot be easily executed as frequently as required due to its 

heavy computational requirements.  It is observed that having initial values close to the 

true values for the majority of the measurement variances greatly reduces the iteration 

count for the estimation procedure described in section 5.2 to converge.  Hence, a 
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recursive updating procedure, which can be easily integrated into the conventional state 

estimator without significantly increasing the computational burden, is designed to solve 

this problem.  The steps of this updating procedure are as follows: 

1) Choose the weight vector using the reciprocals of the estimated error variances 

obtained from the iterative initialization process; 

2) Choose an updating window size, k. It can be chosen as the number of snapshots 

used in the initialization process or any other number. Initialize the counter 

( 0=i ); 

3) Run the conventional WLS state estimator using the current weight vector. 

Record the residuals for all the measurements. Increment the counter by 1 

( 1+= ii ); 

4) If the number of snapshots included in the recorded set is equal to k ( ki = ), go to 

step 5. Else, check if the system topology is changed. If yes, go to step 2. 

Otherwise go to step 3; 

5) Calculate the sample variances of residuals for k snapshots; 

6) Use method 1 or method 2 to estimate the random error variances for all the 

measurements;  

7) Compare the newly estimated variances and the current used one. If the different 

is significant enough (satisfies specified criterion) or the system topology is 

changed, update the current weight vector corresponding to the new estimation, 

trigger next updating process by going to step 2. Otherwise, continue. 

8) Run state estimator for the next snapshot. Replace the 1st residual vector in the 

recorded list by this one. Go to step 5.   

The only extra computation in the above given recursive updating procedure is the 

calculation of the sample variances for measurement residuals and the solution of (51) for 

method 1 or (54) for method 2.  

It should also be noted that the procedure needs to be re-initialized each time a 

topology change is detected as indicated in step 4. Any topology change will result in a 

change of the S  matrix.  As long as the system topology remains constant, the weight 

vector used in state estimator will be updated automatically every k snapshots. In addition, 

detection of variances’ change means the current S  matrix doesn’t fit the real condition 
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thus it will also trigger a new updating process. The changes of variances can be detected 

by checking whether the differences of the new estimation and currently used estimation 

satisfies specified criterion. We will discuss the selection of this criterion along with the 

simulation results later.  

5.5  Observability Problem  

The proposed procedure will require sufficiently high measurement redundancy for 

successful estimation of all measurement variances. It will encounter observability 

problems mainly under the following conditions: 

• Existence of critical measurements. If there are critical measurements, the 

corresponding rows and columns in S  will all be zero.   

• Existence of critical k-tuples [48]. The rows and columns of S corresponding to 

these measurements will be linearly dependent.  

In the following sections, we will discuss the influences of these situations on the 

estimation results of method 1 and method 2, respectively. 

5.5.1 Observability Analysis for Method 1 
The variances of critical measurements can simply not be estimated by this method 

because the zero rows and columns in S  will result in zero rows and columns in M .  

However, there is practically no need to estimate the variance of a critical measurement 

since the weight of the critical measurement will have no influence on the state 

estimation result. Some arbitrary values can be assigned as weights for the critical 

measurements to avoid ill-conditioning of the matrix during the state estimation process. 

On the other hand, there is a chance for M  to be singular when there is a critical k-

tuple. In such a case, equation (48) or (51) cannot be directly solved.  The algorithm 

shown in section II can be slightly modified to account for such cases with singular M . 

The original formulation of (48) will be used instead of the weighted formulation (51) for 

simplicity of notation.  

Consider equation (48) where M is a mm×  singular matrix with rank l (m>l).  

Furthermore, define a full-rank sub-matrix of matrix M  consisting of l rows and l 

columns as M ′ . Those l elements in vector zR  which correspond to these l columns can 

be estimated by: 
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55 rz RSMR ′⋅=′ − �� 1])'([                                                 (55) 

where: 

zR′
�

 is a subset of vector zR  corresponding to l columns in )'(SM ; 

rR′
�

 is a subset of vector rR  corresponding to l rows in )'(SM . 

The sub-matrix 'M  of rank l can be easily identified via the triangular factorization 

of M with pivoting.   

For those measurements whose variances cannot be estimated, we can use the initial 

values, if they exist, or the average of variances of other measurements belong to the 

same residual error spread area [49]. The simulation result shows that even under this 

circumstance, we still can get a good estimation of most of the measurements.   

The fact that there are pseudo-measurements, such as zero-injection measurements, 

can be exploited to improve the estimation procedure for the remaining measurement 

variances. These zero injections are considered as perfect measurements thus their 

variances need not be estimated.  They can be excluded at the outset from the variance 

estimation procedure. 

5.5.2 Observability Analysis for Method 2 
Variances of critical measurements cannot be estimated because the zero values in the 

denominator in (54). Hence, this case is handled the same as done in method 1.  

For critical k-tuples, no further problems are encountered since the corresponding 

denominators in (54) will be nonzero, their variances can be estimated.  However, these 

values will not individually reflect true variances, due to the linear dependencies existing 

between these measurements.  

It can be seen that compared to method 1, the handling of low redundancy situation is 

quite simple. It only needs to identify the critical measurements, which has been done 

automatically during the calculation of the diagonal elements of S matrix.  
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5.6  Simulation Result 

5.6.1 Simulation Results of the Initialization Process 
The initialization procedure is tested using simulated measurements on different size 

IEEE systems. The results of initialization obtained after 6 iterations for the IEEE 14 bus 

system are shown in Table XV.  Simulation parameters for this case are as follows: 

Bus number: 14 

Number of snapshots: 200 

Tolerance to converge: 10-4 

Measurement Setting: Fully measured 

Load Setting: Slow Changing 

Method: Method 1 

Standard Deviation Setting: 

Voltage: 0.004, except bus3,8 (0.080) and bus5,9 (0.001); 

Injection: 0.01, except bus4 (0.05) and bus 7,10 (0.001); 

Flow: 0.008, except branch3,5,9 (0.1) and branch 10 (0.001); 

In the above list, “Fully measured” means that a voltage magnitude measurement and 

a power injection measurement is assigned to every bus. Also, every branch is assigned a 

power flow measurement at one end. 

In order to generate realistic simulation data, bus loads are varied by treating them as 

random variables distributed according to a Normal distribution N(Mean, STD). The 

values in the base case are chosen as means. Using different standard deviations, the load 

settings in the simulations are divided into “slow changing” and “fast changing” 

categories with 1% and 100% of the mean value specified as the STD respectively.   

In Table XV, the first two columns indicate the type of measurement and its location. 

The third column shows the measurement standard deviations used when generating 

simulation data.  Although only one standard deviation value is used for both active and 

reactive parts of the same measurement, two different estimation results are obtained due 

to the use of fast-decoupled algorithm. Column 4 and 5 show the estimation results for 

the active and reactive measurements, respectively. Note that, column 5 is also used to 

show the results for voltage measurements after the flow measurements. 
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 TABLE XV 
SIMULATION RESULT FOR INITIALIZATION PROCESS (METHOD 1) 

Type NO. ZR  Comp
aR  Comp rR

Injection 1 0.010 0.0098 0.0109 
Injection 2 0.010 0.0079 0.0086 
Injection 3 0.010 0.0101 0.0125 
Injection 4 0.050 0.0521 0.0501 
Injection 5 0.010 0.0105 0.0088 
Injection 6 0.010 0.0104 0.0108 
Injection 7 0.001 0.0014 0.0023 
Injection 8 0.010 0.0104 0.0104 
Injection 9 0.010 0.0079 0.0115 
Injection 10 0.001 0.0030 0.0050 
Injection 11 0.010 0.0091 0.0101 
Injection 12 0.010 0.0112 0.0087 
Injection 13 0.010 0.0090 0.0097 
Injection 14 0.010 0.0087 0.0102 

Flow 1-2 0.008 0.0089 0.0069 
Flow 1-5 0.008 0.0092 0.0079 
Flow 2-3 0.100 0.1066 0.1000 
Flow 2-4 0.008 0.0083 0.0080 
Flow 2-5 0.100 0.1012 0.0984 
Flow 3-4 0.008 0.0079 0.0074 
Flow 4-5 0.008 0.0067 0.0077 
Flow 4-7 0.008 0.0074 0.0083 
Flow 4-9 0.100 0.1017 0.0942 
Flow 5-6 0.001 0.0032 0.0019 
Flow 6-11 0.008 0.0080 0.0086 
Flow 6-12 0.008 0.0068 0.0085 
Flow 6-13 0.008 0.0081 0.0079 
Flow 7-8 0.008 0.0078 0.0085 
Flow 7-9 0.008 0.0083 0.0081 
Flow 9-10 0.008 0.0077 0.0071 
Flow 9-14 0.008 0.0072 0.0074 
Flow 10-11 0.008 0.0087 0.0085 
Flow 12-13 0.008 0.0080 0.0074 
Flow 13-14 0.008 0.0083 0.0078 

Voltage 1 0.004   0.0038 
Voltage 2 0.004   0.0042 
Voltage 3 0.080   0.0853 
Voltage 4 0.004   0.0038 
Voltage 5 0.001   0.0009 
Voltage 6 0.004   0.0039 
Voltage 7 0.004   0.0039 
Voltage 8 0.080   0.0820 
Voltage 9 0.001   0.0010 
Voltage 10 0.004   0.0038 
Voltage 11 0.004   0.0035 
Voltage 12 0.004   0.0039 
Voltage 13 0.004   0.0040 
Voltage 14 0.004   0.0041 
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While the simulated weights for most of the same types of measurements are chosen 

to be the same, for few measurements these weights are intentionally simulated as 

different.  For instance, injection at bus 7, flow 2-4, flow 1-5, voltage at 5, etc. are 

assumed to have much smaller errors compared to the remaining measurements.  As 

evident from Table XV, the proposed estimation procedure can closely track the 

simulated weights, differentiating between the more and less accurate measurements.  

In addition, from Table XV we can draw the following conclusions for the estimation 

of variances. 

1) For those measurements have normal variances, the estimations are very good.  

2) For those measurements have relatively low accuracy, the estimations are also 

very good.  

3) For those measurements have relatively high accuracy, the performances are 

different for different kinds of measurement.  

A. For voltage magnitude measurements, the estimation is pretty close to the true 

value.  

B. For power injection and power flow measurements, some of them are not very 

close to the true value. However, the estimated variances of them are 

relatively smaller than the average values. 

Similar results are obtained for all the other larger size systems and these results are 

not shown here due to space limitations.  The number of iterations required for different 

size test systems remains insensitive to system size as shown in Table XVI. 

 
 

TABLE XVI 
NUMBER OF ITERATIONS FOR DIFFERENT SYSTEM SIZES 
Number of Buses 14 30 57 118 
Iterations Needed 6 8 8 6 

 

 

Since only the diagonal elements (the variances of individual measurement residuals) 

in the covariance matrix of residuals are used in this method, it is expected that the 

number of required snapshots for a given accuracy will not increase with increasing 

system size.   
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TABLE XVII 

SIMULATION RESULT FOR INITIALIZATION PROCESS (METHOD 2) 
Method 2 Method 1 

Type NO. ZR  
Comp

aR  Comp rR Comp
aR  Comp rR  

Injection 1 0.010 0.0102 0.0112 0.0098 0.0109 
Injection 2 0.010 0.0088 0.0093 0.0079 0.0086 
Injection 3 0.010 0.0102 0.0123 0.0101 0.0125 
Injection 4 0.050 0.0521 0.0481 0.0521 0.0501 
Injection 5 0.010 0.0076 0.0086 0.0105 0.0088 
Injection 6 0.010 0.0092 0.0105 0.0104 0.0108 
Injection 7 0.001 0.0045 0.0035 0.0014 0.0023 
Injection 8 0.010 0.0104 0.0103 0.0104 0.0104 
Injection 9 0.010 0.0085 0.0122 0.0079 0.0115 
Injection 10 0.001 0.0043 0.0049 0.0030 0.0050 
Injection 11 0.010 0.0091 0.0101 0.0091 0.0101 
Injection 12 0.010 0.0112 0.0089 0.0112 0.0087 
Injection 13 0.010 0.0089 0.0100 0.0090 0.0097 
Injection 14 0.010 0.0088 0.0109 0.0087 0.0102 

Flow 1-2 0.008 0.0087 0.0065 0.0089 0.0069 
Flow 1-5 0.008 0.0092 0.0082 0.0092 0.0079 
Flow 2-3 0.100 0.1065 0.0967 0.1066 0.1000 
Flow 2-4 0.008 0.0082 0.0081 0.0083 0.0080 
Flow 2-5 0.100 0.1012 0.0991 0.1012 0.0984 
Flow 3-4 0.008 0.0079 0.0071 0.0079 0.0074 
Flow 4-5 0.008 0.0084 0.0079 0.0067 0.0077 
Flow 4-7 0.008 0.0067 0.0081 0.0074 0.0083 
Flow 4-9 0.100 0.1017 0.0946 0.1017 0.0942 
Flow 5-6 0.001 0.0013 0.0020 0.0032 0.0019 
Flow 6-11 0.008 0.0081 0.0089 0.0080 0.0086 
Flow 6-12 0.008 0.0068 0.0086 0.0068 0.0085 
Flow 6-13 0.008 0.0083 0.0079 0.0081 0.0079 
Flow 7-8 0.008 0.0077 0.0086 0.0078 0.0085 
Flow 7-9 0.008 0.0078 0.0078 0.0083 0.0081 
Flow 9-10 0.008 0.0073 0.0073 0.0077 0.0071 
Flow 9-14 0.008 0.0071 0.0071 0.0072 0.0074 
Flow 10-11 0.008 0.0086 0.0082 0.0087 0.0085 
Flow 12-13 0.008 0.0080 0.0077 0.0080 0.0074 
Flow 13-14 0.008 0.0083 0.0080 0.0083 0.0078 

Voltage 1 0.004 0.0039   0.0038 
Voltage 2 0.004 0.0042   0.0042 
Voltage 3 0.080 0.0856   0.0853 
Voltage 4 0.004 0.0038   0.0038 
Voltage 5 0.001 0.0008   0.0009 
Voltage 6 0.004 0.0039   0.0039 
Voltage 7 0.004 0.0040   0.0039 
Voltage 8 0.080 0.0811   0.0820 
Voltage 9 0.001 0.0011   0.0010 
Voltage 10 0.004 0.0039   0.0038 
Voltage 11 0.004 0.0035   0.0035 
Voltage 12 0.004 0.0038   0.0039 
Voltage 13 0.004 0.0041   0.0040 
Voltage 14 0.004 0.0041   0.0041 
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Simulations are also carried out for rapidly changing loads. It is observed that the 

required number of iterations to converge to the same tolerance will increase for these 

cases.   However, the accuracy of the estimation results remains similar to those shown in 

Table XV.  This validates the applicability of the proposed technique to systems 

irrespective of their type of load variations. 

The above given simulation results are obtained by using method 1. Similar results 

are given by method 2 when the procedure is used for the same cases except for an 

increase in the number of iterations.  For the IEEE 14 bus system, the required number of 

iterations is 17 for method 2 and 6 for method 1. However, since there is no need to 

calculate all the elements of S matrix in method 2, the total computation time may not 

actually be more especially for larger systems. The estimation results of method 2 are 

shown in Table XVII. For comparison, the estimation results of method 1 for the same 

system are also shown in last two column of Table XVII. 

Furthermore, it should be noted that the estimation tolerance used in terminating the 

iterations is 10-4, which is rather small. This tolerance can be relaxed to reduce the 

iterations further. The simulation results show that a good estimation can be reached after 

only 5 or 6 iterations. Table XVIII shows the maximum error after each iteration for 

method 1 and method 2.  

 
 

TABLE XVIII 
MAXIMUM ERRORS AFTER EACH ITERATION 

Iter. Index 1 2 3 4 5 6 7 8 9 10 … 
Method 1 0.9989 0.0157 0.0011 0.0010 0.0006 0.0001 - - - - - 
Method 2 0.9953 0.0282 0.0091 0.0031 0.0010 0.0004 0.0003 0.0003 0.0002 0.0002 … 

 

 

It can be seen that the maximum error of method 2 before 6th iteration are similar to 

method 1. And after iteration 5th, the maximum error becomes very small. This implicit 

that only several iterations are needed to get an accurate estimation. Table XIX shows the 

estimation results of method 2 after only 5 iterations. For comparison, the estimation 

results of method 1 after converge are also shown in last two columns. 
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TABLE XIX 
SIMULATION RESULT FOR INITIALIZATION PROCESS (FEWER ITERATIONS) 

Method 2 (5 Iterations) Method 1 
Type NO. ZR  

Comp
aR  Comp rR Comp

aR  Comp rR  

Injection 1 0.010 0.0113 0.0118 0.0098 0.0109 
Injection 2 0.010 0.0113 0.0110 0.0079 0.0086 
Injection 3 0.010 0.0105 0.0117 0.0101 0.0125 
Injection 4 0.050 0.0519 0.0478 0.0521 0.0501 
Injection 5 0.010 0.0075 0.0079 0.0105 0.0088 
Injection 6 0.010 0.0084 0.0095 0.0104 0.0108 
Injection 7 0.001 0.0060 0.0053 0.0014 0.0023 
Injection 8 0.010 0.0101 0.0102 0.0104 0.0104 
Injection 9 0.010 0.0098 0.0123 0.0079 0.0115 
Injection 10 0.001 0.0060 0.0059 0.0030 0.0050 
Injection 11 0.010 0.0088 0.0099 0.0091 0.0101 
Injection 12 0.010 0.0109 0.0090 0.0112 0.0087 
Injection 13 0.010 0.0089 0.0099 0.0090 0.0097 
Injection 14 0.010 0.0091 0.0107 0.0087 0.0102 

Flow 1-2 0.008 0.0076 0.0057 0.0089 0.0069
Flow 1-5 0.008 0.0092 0.0082 0.0092 0.0079 
Flow 2-3 0.100 0.1065 0.0966 0.1066 0.1000 
Flow 2-4 0.008 0.0080 0.0079 0.0083 0.0080 
Flow 2-5 0.100 0.1011 0.0992 0.1012 0.0984 
Flow 3-4 0.008 0.0077 0.0074 0.0079 0.0074 
Flow 4-5 0.008 0.0082 0.0083 0.0067 0.0077 
Flow 4-7 0.008 0.0064 0.0079 0.0074 0.0083 
Flow 4-9 0.100 0.1017 0.0946 0.1017 0.0942 
Flow 5-6 0.001 0.0030 0.0031 0.0032 0.0019 
Flow 6-11 0.008 0.0082 0.0090 0.0080 0.0086 
Flow 6-12 0.008 0.0069 0.0086 0.0068 0.0085 
Flow 6-13 0.008 0.0084 0.0080 0.0081 0.0079 
Flow 7-8 0.008 0.0080 0.0086 0.0078 0.0085 
Flow 7-9 0.008 0.0072 0.0073 0.0083 0.0081 
Flow 9-10 0.008 0.0065 0.0069 0.0077 0.0071 
Flow 9-14 0.008 0.0068 0.0071 0.0072 0.0074 
Flow 10-11 0.008 0.0085 0.0081 0.0087 0.0085 
Flow 12-13 0.008 0.0080 0.0076 0.0080 0.0074 
Flow 13-14 0.008 0.0083 0.0080 0.0083 0.0078 

Voltage 1 0.004 0.0039   0.0038 
Voltage 2 0.004 0.0042   0.0042 
Voltage 3 0.080 0.0856   0.0853 
Voltage 4 0.004 0.0038   0.0038 
Voltage 5 0.001 0.0009   0.0009 
Voltage 6 0.004 0.0039   0.0039 
Voltage 7 0.004 0.0040   0.0039 
Voltage 8 0.080 0.0811   0.0820 
Voltage 9 0.001 0.0011   0.0010 
Voltage 10 0.004 0.0039   0.0038 
Voltage 11 0.004 0.0035   0.0035 
Voltage 12 0.004 0.0038   0.0039 
Voltage 13 0.004 0.0041   0.0040 
Voltage 14 0.004 0.0041   0.0041 
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In practical implementation, it is not necessary to require the estimation result 

converge to a small tolerance as 10-4. Several iterations are enough for getting a satisfied 

estimation.  

5.6.2 Sensitive Study of Estimation Errors 
The effect of choosing the wrong weights for the measurements on the solution of the 

WLS state estimation will be investigated here.  Two types of errors will be considered. 

The first type occurs when large estimated variances are used for measurements which 

are in fact highly accurate. The second type represents the opposite case where small 

variances are assumed for measurements that are actually not very accurate. 

The following four cases will be discussed to illustrate these effects.  Plots of relative 

errors between the state estimation solutions obtained using the incorrect and correct 

weights will be presented for comparison of effects of different types of errors.  

1. Case1: Low weights are assigned to highly accurate power measurements 

including power injection measurements and power flow measurements. The 

errors in the following measurements are simulated according to the correct 

variances while the state estimation uses the wrong ones: 

1) Power injections in buses 4 and 7. Their correct standard deviation is 0.001, 

which is wrongly set to 0.01. 

2) Power flows in 1-5 and 4-5. Their correct standard deviation is 0.001 which is 

wrongly set to 0.01. 

2. Case2: High weights are assigned to inaccurate power measurements including 

power injection measurements and power flow measurements. The measurements 

used for this simulation are: 

1) Power injections in buses 4 and 7. Their correct standard deviation is 0.1 

which is wrongly set to 0.01. 

2) Power flows in 1-5 and 4-5. Their correct standard deviation is 0.1 which is 

wrongly set to 0.01. 

3. Case3: Same as Case 1, but instead of the power measurements, the following 

voltage magnitude measurements are used: 
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Voltage magnitude at buses 4 and 7. Their correct standard deviation is 0.001 

which is wrongly set to 0.01. 

4. Case4: Same as Case 2, but instead of the power measurements, the following 

voltage magnitude measurements are used: 

Voltage magnitude at buses 4 and 7. Their correct standard deviation is 0.1 which 

is wrongly set to 0.01. 

In all these cases, the remaining measurements are assumed to have a standard 

deviation of 0.01 and their weights are set consistently. 

Since it is not possible to show the results of state estimation for all the system states, 

one example will be presented.  Similar results are obtained for all state variables in all 

the simulations.  The chosen state variable for illustrations is the voltage magnitude at 

bus 1. Fig. (a) through (d) show the plots of relative errors between the estimated voltage 

using the correct and incorrect weights for the indicated measurements for the four cases 

over a period covering 500 state estimation runs. Table XX shows the summary of these 

results. The second row in Table XX is the average value of the relative errors. Third row 

is the standard deviation. The fourth and fifth rows are maximum and minimum value, 

respectively. 

By comparing column 2, 4 to 3, 5 in Table XX, it is evident that the effects of the first 

type of errors are relatively smaller than those of the second type, irrespective of the type 

of measurements used.  On the other hand, a comparison of columns 2, 3 to 4, 5, implies 

that the incorrect choice of weights for the voltage magnitude measurements will have a 

much greater effect on the state estimation solution than choosing the incorrect weights 

for the power measurements. 
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(b) 
Fig. 17.  Sensitivity study results 
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(c) 

(d) 
 

Fig.17. Continued 
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TABLE XX 
RELATIVE ERRORS OF VOLTAGE MAGNITUDE IN BUS1  
Cases Case1 Case2 Case3 Case4 

Average Value 0.00013 0.00060 0.00184 0.00526 
STD 0.00010 0.00048 0.00132 0.00484 

Maximum Value 0.00051 0.00267 0.00758 0.02510 
Minimum Value 0.00000 0.00001 0.00004 0.00010 

 

 

Considering the results of section 5.6.1 as displayed in Table XV, it can be observed 

that the proposed initialization method can track the weights associated with the voltage 

magnitude measurements at higher estimation accuracy than the power measurements.  

Since the results from this section suggest that the solution of state estimation is less 

sensitive to errors in power measurement weights, it can be concluded that the benefits of 

the proposed method will remain effective even when some of the power measurements’ 

error variances can not be estimated very accurately by this method.     

5.6.3 Recursive Updating Process 
In order to test the performance of the proposed recursive updating procedure, time 

dependent standard deviations are introduced for selected measurements during the 

generation of the simulation data. The standard deviations of some measurements are 

abruptly changed as shown in Table XXI.  

 
 

TABLE XXI 
LIST OF VARIANCES CHANGES 

Injection Flow Voltage Meas. 
3 5 7 2-5 4-5 6-11 2 6 9 

Old Value 0.01 0.01 0.001 0.10 0.008 0.008 0.004 0.004 0.001 
New Value 0.05 0.05 0.008 0.05 0.03 0.001 0.01 0.001 0.01 

Time 600 700 800 600 700 800 600 700 800 
 
 
 

The simulation data contain a total of 2000 consecutive snapshots. The first 200 

snapshots are used to complete the initialization procedure. The results of this stage 

are similar to the results shown in Table XV. The updating procedure is applied starting 

with the 201’st time step. Depending on which estimation method is chosen, two possible 

procedures can be used and they are both tested on the same simulation data.  
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For convenience, we suppose the system topology is constant during the simulation 

period. Thus the only event to restart the updating process is the detection of the 

significant variances’ changes. As mentioned in step 7) of the updating process’ 

procedure, this can be done by compare the new estimation after each snapshot and the 

current used one. The relative errors between these two estimation results will be used as 

indicators. In addition we must specify a criterion to test the variances’ changes. Suppose 

we set the criterion as: 

1) At less one of the relative errors is greater than 5 and; 

2) At less five of the relative errors are greater than 1. 

The profile of new estimated standard deviation after every snapshot for reactive 

power injection in bus 3, whose standard deviation is changed at 600th point from 0.01 to 

0.05, is shown in Fig. 18. The updating process uses method 1 in this case.  

 

 

 
Fig. 18.  Simulation result of updating process (method 1) 
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Fig. 19.  Simulation result of updating process without criterion (method 1) 

 
 

 

Fig. 20.  Simulation result of updating process without criterion (method 2) 
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However, it is not easy to define the criterion appropriately in a practical system. A 

simple solution for this matter is to update the weight vector at the end of every updating 

process, no matter there are significant changes of the variances or not. In our simulation, 

since we use the window size as 200, the measurement weight vector will be updated 

every 200 measurement scans. The simulation results based on this idea are shown in Fig. 

19 and Fig. 20 for the updating process using method1 and method2, respectively. Similar 

to Fig. 18, only the profile of estimated standard deviation for power injection in bus 3 is 

shown. The simulation results indicate that both methods can keep track of the change in 

the standard deviation and update the corresponding weight correspondingly. 

Note that for one cycle (200 time steps) estimation, method 1 is computationally more 

demanding however it requires fewer cycles to converge to a new value than method 2 in 

case of a sudden jump in the measurement variance.  Actually, this is a highly unlikely 

worst case situation.  A more common situation is a gradual drift in the measurement 

error variances in which case method 2 can track the changes at a lower computational 

cost. Assuming that the state estimator can be executed every several seconds, the 

updating process can capture even the abrupt changes in the measurement error variances 

in less than few hours. Furthermore, if the variance changes gradually, the proposed 

updating process will track the changes much faster.  

5.6.4 Critical Measurements/Critical K-Tuple of Measurements 
It can be argued from the above discussion that the proposed technique performs 

satisfactorily both in initialization and updating modes, provided that there is sufficiently 

high redundancy in the measurement set. In the simulation example the 

measurement/state redundancy is 34/13. Now, its performance under reduced redundancy 

configurations will be studied. 

As shown in Fig. 21, the measurement set is modified to include 10 power injections, 

9 power flows and 3 voltage magnitude measurements. These measurements are also 

specified in the first two columns of Table XXII. The redundancy ratio for this 

configuration is 19/13. The structure of the sensitivity matrix for the active part is shown 

in (56). For convenience, the row sequence of aS is rearranged to form a block diagonal 

structure. 
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: Power Injection  : Power Flow  : Voltage Magnitudes 
Fig. 21.  Studied system with measurement configuration 

 
 

TABLE XXII 
SIMULATION RESULT FOR LESS REDUNDANCY CONFIGURATION 

Type NO. ZR  Comp
aR Comp rR

Injection 1 0.010 0.0098 0.0114 
Injection 2 0.001 0.0131 0.0107 
Injection 3 0.050 0.0453 0.0442 
Injection 4 0.010 0.0211 0.0245 
Injection 8 0.010 0.0093 0.0091 
Injection 9 0.010 0.0211 0.0245 
Injection 11 0.010 0.0211 0.0245 
Injection 12 0.010 0.0064 0.0055 
Injection 13 0.010 0.0063 0.0056 
Injection 14 0.010 0.0064 0.0055 

Flow 1-2 0.008 0.0079 0.0060 
Flow 1-5 0.008 0.0077 0.0081 
Flow 2-4 0.001 0.0031 0.0038 
Flow 3-4 0.100 0.1018 0.0982 
Flow 4-5 0.008 0.0086 0.0064 
Flow 4-7 0.008 0.0211 0.0245 
Flow 6-12 0.001 0.0064 0.0055 
Flow 7-8 0.008 0.0093 0.0091 
Flow 9-14 0.008 0.0063 0.0056 

Voltage 1 0.004   0.0033 
Voltage 3 0.080   0.0814 
Voltage 5 0.001   0.0026 
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where: 

2S : A 2x2 sub matrix with rank 1. 

3S : A 5x5 sub matrix with rank 1. 

4S : A 8x8 sub matrix with rank 4. 

As can be seen from (56), for the active sub problem, this measurement set contains 

the following:   

1) Critical subset 1: 4 critical measurements, injections at 4,9,11 and flow 4-7. They 

correspond to the first four rows of aS  in (56).   

2) Subset 2:  Critical pair including injection 8 and flow 7-8, which correspond to 

the sub matrix 2S  in (56).  

3) Subset 3: Residual spread component containing 5 measurements, injections at 

12,13,14 and flows 6-12,9-14. Any two of these five measurements form a critical 

pair. They correspond to the sub matrix 3S  in (56). 

4) Subset 4: Remaining 8 measurements. Any five of them form a critical 5-tuple. 

They correspond to the sub matrix 4S  in (56). 

 The initialization procedure is tested for this case using both method 1 and method 2. 

Again, the estimation results are similar except for the fact that method 2 converges in 

more iterations. Table XXII shows the results of method 2.  

For critical measurements, the weights have no influence and there is no way to 

estimate their variances. These are assigned the average value of all other measurements 

(0.0211) in order to avoid any ill conditioning.  

For critical pairs, such as the subset 2 and those pairs in subset 3, the corresponding 

sub-matrix of S has a rank of 1, and hence the estimation results of measurements 
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belonging to the same set are equal. This is a limitation imposed by the measurement 

configuration and can not be avoided without further meter placement.  

The estimation results for the weights of measurements in subset 4 are closer to the 

true values than those in subset 3.  This can be explained by the higher local redundancy 

in subset 4 compared to that of subset 3.   

Moreover, low redundancy has less of an influence on the estimation results for the 

voltage magnitude measurements. This is verified by the results in Table XXII, where the 

weights for all three voltage magnitude measurements each having a different error 

variance, can be closely estimated.  

5.7  Conclusions 

This chapter is concerned about the estimation of measurement error variances for 

their subsequent use in state estimation. A simple method is proposed based on the 

sample variances of the measurement residuals calculated using the historical records. An 

off-line iterative initialization and an on-line recursive updating procedure are developed 

and illustrated by simulated examples. The chapter also illustrates the limitations of the 

proposed method imposed by the measurement configuration using observability analysis.  

The presented approach can be used at desired intervals in order to maintain properly 

tuned weights for the measurements. 
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CHAPTER  VI 

THREE-PHASE STATE ESTIMATION STUDY 

6.1  Introduction 

Power systems are generally configured in three phases, and are designed to operate 

in an almost balanced manner.  Balanced three-phase operation implies the following 

conditions to be met: 

• Transposition of the transmission lines 

• Even distribution of bus loads 

• Maintaining balanced generator outputs 

Analysis of balanced three-phase systems is relatively simple compared to the full 

detailed three-phase solution of the network equations.  A symmetrical component 

transformation will decompose the balanced three-phase system into three independent 

systems, commonly referred to as the positive, negative and the zero sequence networks.  

Absence of negative and zero sequence signals under perfectly balanced three-phase 

operating conditions, allows the analysis to be carried out in the single phase, using only 

the positive sequence model.  State estimators are no exception, making use of the 

positive sequence network model and the measurements in solving for the best estimate 

for the system state. 

In practice, most high voltage systems are nearly balanced and depending on the 

system configuration and loading conditions, they can be modeled and solved in the 

positive sequence.  However, there may be cases where the balanced system assumptions 

no longer hold, when bus loads have an uneven distribution among the three phases, or 

relatively long but non-transposed transmission lines, carrying significant power flows 

exist in the system. Such lines will have different mutual coupling among the pairs of 

phase conductors and consequently the power flows through each of the three conductors 

of the lines will not be the same.    

Unbalanced operating state of a power system can be obtained using a more detailed 

network model and measurement set containing all three-phase quantities of interest. The 

problem of three-phase state estimation for transmission and distribution systems 
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operating under unbalanced conditions is described in several papers [60], [62]-[69].  

Some of them [62]-[63] describe the general three-phase state estimation algorithms, 

while others [64]-[69] focus on the application of three-phase state estimation in 

distribution systems utilizing special characteristics.  However, any phase unbalances in 

loads and/or any existing non-transposed transmission lines are commonly ignored in 

state estimators which are used for power systems today.  As indicated in [60], such 

simplifying assumptions may affect the accuracy and numerical robustness of the 

estimator.   

This chapter therefore studies the effects of such simplifying assumptions on the 

estimated state of the systems under varying operating conditions. A state estimator based 

on the full three-phase network model is developed first. This estimator is then utilized to 

evaluate cases of load unbalance as well as lack of line transposition. IEEE 30 bus test 

system is modified to generate these cases. A three-phase power flow program is used to 

generate the measurement data, which are then corrupted with Gaussian errors to 

simulate measurement deviations. True three-phase state of the system is compared 

against those obtained based on different assumptions on the measurements.  Details of 

these cases will be described after an overview of the system modeling.  

The results of sensitivity study give rise to a new method to get the full detailed three-

phase solution. The sequence domain three-phase state estimation algorithm is developed 

in this chapter. The main idea of this method is to model the power system in positive-

negative-zero sequence domain. Three-phase measurements are transformed into 

sequence domain. The single-phase WLS (Weighted Least Square) state estimation is run 

in each sequence domain and the estimated sequence domain results are converted back 

to three-phase domain. Utilizing this method, we can get three-phase solution by 

conducting three independent single-phase state estimations. Since the relation between 

time consuming and system size for a normal state estimation algorithm is nonlinear, this 

method should have better efficiency compare to the conventional three-phase state 

estimation algorithm. The detailed formulations and implementation of this method will 

be described in this chapter. 

A current injection method (CIM) formulated in rectangular coordinates is utilized to 

further increase the efficiency. The advantage of using current injection method in power 
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flow or state estimation problems is discussed in many papers. It will be faster than 

Newton-Raphson (NR) or fast-decoupled (FD) algorithm [71]-[72]. In addition, writing 

the network equations in rectangular coordinates make the Jacobian and gain matrix 

constant, thus further lessen the computation time.  

However, due to time limit, some of the important issues for this method have not 

been completely studied. Further research is needed in order to make it applicable to real-

time environment. 

Sections 6.2 - 6.7 in this chapter will discuss the algorithm and simulation results of 

the sensitivity study. The other sections will briefly introduce the sequence domain three-

phase state estimation algorithm and give the primitive simulation results.  

6.2  Algorithm and System Modeling 

The weighted least squares (WLS) algorithm is used in the implementation of the 

three-phase state estimator. The details of the measurement equations and Jacobian 

entries can be found in [62]. Sparse matrix techniques are used to improve the 

computational efficiency and memory savings.  All system components such as 

transmission lines, loads, transformers and generators are modeled in three-phase as 

described below. 

 

 
 

 
Fig. 22.  An example of three-phase transmission line 
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6.2.1 Three-Phase Transmission Lines 
A typical three-phase transmission line is given in Fig. 22. The network equations for 

this line can be written in compact form, according to the procedure described in [70]. 

The effect of the ground wire is included in the self and mutual impedance of the three-

phase conductors.  The primitive series impedance matrix of the line is given: 
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Defining the primitive admittance matrix 1−= PP ZY , the nodal equations for the 

system of Fig. 22 can be written as: 
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If the susceptances associated with the line charging exist, they will be added to the 

diagonal elements of the admittance matrix corresponding to the end nodes. The 

susceptances of all shunt elements in three phases are assumed equal.   

6.2.2 Three-Phase Loads and Generators 
Each three-phase bus consists of three single-phase buses with loads connected in 

Wye and modeled by negative power injections in the state estimation measurement 

equations.  Similarly, generated real and reactive power at each single-phase bus is 

modeled as a positive injection. Generator buses may have unbalanced injections 

assigned to them as measurements if the operating conditions are not balanced. 

6.2.3 Transformers 
The winding-connection type of transformer becomes critically important in the 

three-phase study [70].  While all transformers considered in this study are assumed to be 

Wye connected at both sides, any other combination can be modeled as shown in [70].  

Transformers with off-nominal tap settings are represented as shown in Fig. 23. 
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Fig. 23.  Typical three-phase transformer model 

 

 

Accordingly, the node equations of transformer can be described as (59). 
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where: 

PI and SI are primary and secondary three-phase current; 

PV and SV are primary and secondary three-phase voltages; 

t  is the off-nominal tap; 
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For the admittance matrices corresponding to other kinds of winding connections, 

please refer to [63]. 

6.2.4 Bus Shunts 
Bus shunts are assumed to be decoupled in each phase and they are modeled by 

adding appropriate susceptance values to the diagonal elements corresponding to the 

buses. 

6.3  Studied Cases 

All studied cases are built using the IEEE 30 bus system. Loading unbalances as well 

as the non-transposed line effects on the network model are studied.  In order to create a 
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three-phase network model for the IEEE 30 bus system, several assumptions are made 

regarding the sequence component data that are not readily available.  This will be 

explained below. 

6.3.1 Convert Positive Sequence Model to Three-Phase Model 
IEEE 30 bus system data are available only in the positive sequence. The following 

steps are followed to generate the three-phase network model based on the positive 

sequence model. 

1) Transmission lines 

We assume the relationship between negative, zero and positive sequence impedances 

of all the transmission lines is as follows: 

60 10 3ZZ = ; 12 ZZ =                                                 (60) 

where: 

0Z , 1Z , 2Z are the zero, positive and negative sequence impedances, respectively. 

Then the three-phase impedance matrix will become: 
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where: 

abcZ is the 33×  three-phase impedance matrix;  
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2) Transformers 

All phase to phase coupling are ignored for the transformers as shown in Fig. 23. The 

off-nominal taps and branch impedances are obtained directly from IEEE 30 bus data file. 

6.4  Cases of Unbalanced Operation 

Following cases are investigated.  Each case involves a different type of unbalance 

and severity.   

1) Case T1 
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In this case, all transmission lines are assumed to be non-transposed. The amount of 

coupling asymmetry among the three-phase conductors is chosen based on the mutual 

impedance between phase A and phase C.  This quantity is set equal to 90% of the mutual 

impedances between the other two phases.  

2) Case T2 

This case is identical to Case 1, except for the severity of the coupling asymmetry.  

The mutual impedance between phase A and phase C is set equal to 60% of other two 

mutual impedances.   

3) Cases L1-L4 

These are a set of four cases where all bus loads in the system are assumed to be 

unbalanced.  The amount of unbalance between phase loads, is varied by keeping the 

phase A and B loads equal, and changing phase C load to 90%, 80%, 70% and 60% of 

that of the other phase loads for the cases L1 through L4 respectively. 

6.4.1 Generation of Three-Phase Measurements  
A three-phase power flow program is used to generate the measurements 

corresponding to all the cases described above.  These perfect measurements are in turn 

corrupted by Gaussian distributed random errors with zero mean and standard deviation 

of 0.004, 0.01 and 0.008 for the voltage magnitude, power injection and power flow 

measurements respectively. 

6.5  Investigation Methodology 

The investigation concerning the above described cases is carried out by performing 

three state estimation solutions using different assumptions and available measurements, 

which are outlined below:  

1) Estimate1 (Three-phase) 

A three-phase state estimation is performed using the full set of three-phase 

measurements, assuming that the necessary instrumentation is available to have access to 

the measurements in all three phases. Once the three-phase estimates are obtained, their 

positive sequence components are evaluated and recorded.  

2) Estimate2 (Single-phase) 
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In this case, it is assumed that only phase A measurements are available at the control 

center where the state estimator is run.  The positive sequence network model, similar to 

the one used by the common single-phase state estimators, is employed. The resulting 

state estimate, which is a single-phase result, is recorded.  

3) Estimate3 (Single-phase) 

This is identical to the Estimate2, except for the measurement set, which now 

contains the positive sequence values of the three-phase measurements. This would 

correspond to a case where three-phase instrumentation and the corresponding 

measurements are available, yet a single-phase state estimator is to be run. 

These three sets of estimated results will be referred respectively as Estimate1, 

Estimate2 and Estimate3 in the presented tables below. The estimated states in Estimate2 

and Estimate3 are compared with Estimate1 to quantify the effects of the assumptions 

involved. A flowchart of overall investigation procedure is summarized in Fig. 24.  

 
 

 

Fig. 24.  Flowchart of investigation process 
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The following indices are used for the comparisons: 

1) Normalized residuals 

The normalized residuals for all measurements are computed for both kinds of state 

estimators. Those measurements with normalized residual great than 3.0 are recorded as 

the suspected bad data.  

2) Maximum Absolute State Mismatches 

Absolute mismatches between the states obtained as Estimate1 and as Estimate2, 

Estimate3 are computed. Maximum absolute mismatches of voltage magnitude and phase 

angles are recorded.  

3) Freq. of Relative Errors Greater Than 3σ 

The relative errors given by (62) are computed for Estimate2 and  Estimate3.  

62 
true

trueestimated

S
SS

err
−

=                                                   (62) 

where estimatedS is the estimated states and trueS is true states. 

The number of times these relative errors exceed three times the corresponding 

measurement standard deviation will be referred to as Freq. of  err > 3σ. 

4) Costs 

The values of objective functions evaluated after convergence are referred here as 

Costs. For comparing, the costs get from three-phase state estimator are divided by 3. The 

value of the cost is compared against the corresponding Chi-square test threshold in order 

to detect bad data.  Chi-square test thresholds are looked up from Chi-square distribution 

table as 139 for the single phase and 127 (383/3) for the three-phase estimation cases.  

Those values greater than threshold are noted in the tables. 

6.6  Results of Sensitivity Simulations 

All of the cases mentioned in section 6.4   are simulated and compared according to 

the procedure shown in Fig. 24.  The detailed results of estimation will be presented for 

case T1 (table I), and for brevity only the corresponding indices calculated for the other 

cases will be shown. In these tables, all the voltage magnitudes will be given in per-unit 

and phase angles in degrees. 
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6.6.1 Non-transposed Cases 
In the first two cases: case T1 and case T2, the loads are balanced but the 

transmission lines are non-transposed. Table XXIII shows all three estimation results for 

case T1. The indices of these two cases are presented in Table XXIV and Table XXV, 

respectively. 

Note that, the use of single phase (phase A) measurements to estimate the state of a 

system operating under unbalanced conditions, may lead to some bias in the state 

estimate. However, for both cases T1 and T2, Chi-square test thresholds are not hit, i.e. 

modeling errors due to the non-transposed lines are not detected by the estimator.   

 

 
TABLE XXIII 

 ESTIMATED STATES OF CASE T1 
Estimate1 Estimate2 Estimate3 Bus No. 

|V| Ang.  |V| Ang. |V| Ang. 
1 1.060 0.00 1.054 0.00 1.060 0.00 
2 1.043 -5.40 1.039 -5.45 1.043 -5.40 
3 1.020 -7.58 1.017 -7.67 1.020 -7.58 
4 1.011 -9.33 1.009 -9.44 1.011 -9.33 
5 1.009 -14.27 1.008 -14.39 1.009 -14.27 
6 1.009 -11.11 1.007 -11.25 1.009 -11.11 
7 1.001 -12.92 0.999 -13.08 1.001 -12.92 
8 1.009 -11.87 1.008 -12.01 1.009 -11.87 
9 1.049 -14.09 1.048 -14.22 1.049 -14.09 

10 1.043 -15.64 1.041 -15.81 1.043 -15.64 
11 1.080 -14.07 1.081 -14.26 1.080 -14.08 
12 1.054 -14.91 1.054 -15.09 1.054 -14.90 
13 1.068 -14.94 1.068 -15.16 1.068 -14.94 
14 1.039 -15.82 1.038 -15.91 1.039 -15.82 
15 1.035 -15.84 1.035 -16.03 1.035 -15.84 
16 1.041 -15.46 1.040 -15.59 1.041 -15.46 
17 1.037 -15.79 1.036 -15.94 1.037 -15.79 
18 1.025 -16.45 1.025 -16.68 1.025 -16.45 
19 1.023 -16.57 1.022 -16.79 1.023 -16.57 
20 1.027 -16.37 1.026 -16.60 1.027 -16.37 
21 1.030 -16.07 1.029 -16.24 1.030 -16.07 
22 1.031 -16.06 1.030 -16.23 1.031 -16.06 
23 1.025 -16.26 1.025 -16.40 1.025 -16.26 
24 1.019 -16.43 1.018 -16.57 1.019 -16.43 
25 1.015 -16.08 1.014 -16.09 1.015 -16.08 
26 0.997 -16.35 0.999 -16.53 0.997 -16.35 
27 1.020 -15.61 1.019 -15.58 1.020 -15.61 
28 1.005 -11.73 1.004 -11.87 1.005 -11.73 
29 0.999 -16.88 0.998 -16.73 0.999 -16.88 
30 0.987 -17.75 0.985 -17.61 0.987 -17.75 
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TABLE XXIV 

 COMPARISON INDICES OF CASE T1 
Maximum 
Mismatch 

Freq. of  err 
>3σ CaseT1 

Bad 
Data 
No. |V| Ang. |V| Ang. 

Cost 

Estimate1 0 - - - - 101.3 
Estimate2 0 0.005 0.238 0 9 117.0 
Estimate3 0 4E-5 0.002 0 0 49.3 

 

 
TABLE XXV 

 COMPARISON INDICES OF CASE T2 
Maximum 
Mismatch 

Freq. of  err 
>3σ CaseT2 

Bad 
Data 
No. |V| Ang. |V| Ang. 

Cost 

Estimate1 0 - - - - 97.9 
Estimate2 0 0.018 0.393 1 28 123.5 
Estimate3 0 3E-4 0.031 0 0 41.5 

 

 

6.6.2 Unbalanced Cases 
Cases L1-L4 assume fully transposed transmission lines but unbalanced loads. Table 

IV shows the results for case L1. The results appear similar to the ones reported for case 

T2, which corresponds to a very extreme form of asymmetry as compared to a relatively 

mild unbalance (10%) of case L1. When the degree of unbalances increases, the errors 

will increase significantly. Table XXVI shows the results for cases L1-L4, where the cost 

function for case L4 exceeds the bad data detection threshold based on the Chi-square 

test.  Hence, in this situation the state estimator may incorrectly identify some 

measurements as bad and discard them to further deteriorate the accuracy of the 

estimator. 
 

 

TABLE XXVI 
 COMPARISON INDICES OF CASE L1 

Maximum 
Mismatch 

Freq. of  err 
>3σ CaseL1 

Bad 
Data 
No. |V| Ang. |V| Ang. 

Cost 

Estimate1 0 - - - - 90.6 
Estimate2 0 0.011 0.455 0 6 125.9 
Estimate3 0 4E-5 5E-4 0 0 42.5 
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TABLE XXVII 

 INFLUENCE OF UNBALANCED LOADS 
Maximum 
Mismatch 

Freq. of  err 
>3σ CaseL1 

Bad 
Data 
No. |V| Ang. |V| Ang. 

Cost 

L1 0 0.011 0.455 0 6 125.9 
L2 1 0.017 0.868 12 29 127.5 
L3 0 0.025 1.103 19 29 131.1 
L4 4 0.030 1.243 24 29 159.1* 

*: This value exceeds Chi-square test threshold. 

 
 

Fig. 25 shows how the error increases with the severity of unbalances. 

 

 
 

 
Fig. 25.  Relative error caused by unbalances with different degrees 

 
 

It is evident from these simulation results that the effect of non-transposed lines is less 

than that of load unbalances, on the state estimates.  Fig. 26 and Fig. 27 show the effects 

of non-transposed lines (case T2) and unbalanced loads (case L4) on the voltage 

magnitude and phase angle estimates respectively.  In both figures, the curve labeled as 

estimate1, is the true state while the one labeled as estimate2 represents the estimate. The 
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mismatches between these two curves reflect the error caused by the assumptions. 

 
 

(a) 

(b) 
 

Fig. 26.  Influences of asymmetric and unbalances on voltage magnitudes 
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(a) 

(b) 
 

Fig. 27.  Influences of asymmetric and unbalances on voltage angles 
 

The inlfuence of asymmetric on Voltage Angles (CaseT2)

-20.00

-18.00

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

0 5 10 15 20 25 30

Bus No.

A
ng
.

Estimate1

Estimate2

The inlfuence of unbalances on Voltage Angles (CaseL4)

-20.00

-18.00

-16.00

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

0 5 10 15 20 25 30

Bus No.

A
ng
.

Estimated1

Estimated2



  114 

  

6.7  Conclusion of the Sensitivity Studies 

The results of the sensitivity studies have been illustrated in the previous section. It is 

demonstrated that under certain cases, the use of single-phase state estimator may lead to 

significant biases in the solution due to existing asymmetries or load unbalances. The 

simulation results also indicate a higher sensitivity of the system state to loading 

unbalances than to asymmetries in the transmission line conductor configurations. That is 

to say, under the assumption of symmetrical lines, a good approximation cab be obtained. 

Motivated by this observation, a new sequence domain three-phase state estimation 

algorithm is developed in this chapter. The main idea of this method is to model the 

power system in positive-negative-zero sequence domain. Transform the three-phase 

measurements into the sequence domain. Run the WLS (Weighted Least Square) 

estimator for each sequence separately and convert the computed results back to the 

phase domain. Utilizing this method, we can get three-phase solution by conducting three 

independent single-phase state estimations. Due to the nonlinear relation between the 

computation time and system size for the WLS state estimation algorithm, this method is 

expected to have better efficiency compared with the conventional algorithm. The 

detailed procedure and implementation of this method will be described in the following 

section. 

A current injection method (CIM) formulated in rectangular coordinates is utilized to 

further increase the efficiency. The advantage of using current injection method in power 

flow or state estimation problems is discussed in many papers. It will be faster than 

Newton-Raphson (NR) or fast-decoupled (FD) algorithm [71]-[72]. In addition, 

formulating the network equations in rectangular coordinates makes the Jacobian and the 

gain matrix constant, thus reduces the computation time. 

6.8  Development of the Sequence Domain Three-Phase State Estimation 

In unbalanced three-phase power system analysis, it is customary to use sequence 

transformations in order to simplify the computations. This idea can also be introduced to 

state estimation. By transformation of the phase domain measurements into sequence 

domain and utilizing the positive, negative and zero sequence domain circuits, it is 
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possible to transform three-phase state estimation problem into three single-phase state 

estimation problems, thus to reduce the computation time.  

6.8.1 General Procedure 
Equation (63) describes the relation between the phase domain system states and 

sequence domain system states. 

63 012VTVabc ⋅=                                                        (63) 

where: 

( )T
cbaabc vvvV ,,= is the three-phase voltage vector in phase domain; 

( )TvvvV 210012 ,,= is the voltage vector in sequence domain. The subscripts 0,1 and 2 

represent zero, positive and negative domains, respectively. This naming convention will 

be used in the sequel. 

Let T  be the Edith Clarke’s transformation matrix [73] given by: 

64 
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Among several well-known transformation matrices, Clarke’s matrix has some 

desirable properties. It is real and orthogonal. For symmetrical lines, Clarke’s matrix 

produces the exact solution while for unsymmetrical lines it produces a very good 

approximation [74]. 

Phase domain measurements can be transformed to sequence domain by the inverse 

Clarke’s transformation as below 

65 abcZTZ ⋅= −1
012                                                   (65) 

where: 

( )T
cbaabc zzzZ ,,= is phase domain measurement; 

( )TzzzZ 210012 ,,= is transformed sequence domain measurement; 

1−T  is the inverse of Edith Clarke’s transformation matrix. 
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Similar to single-phase state estimation, the system equations in positive, negative 

and zero sequence domains are given by: 

66 
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                                                  (66) 

For convenience, the linear model is used for all three sequences here. 

The first step of the sequence domain state estimation algorithm is utilizing single-

phase state estimation algorithm to find the solutions for positive, negative and zero 

domain, using the transformed sequence measurements obtained from (65) and the 

sequence domain system equations given by (66). After that three-phase solution can be 

calculated by (63). 

6.8.2 Phase Angle Reference 
Any state estimation program needs a reference bus. For single-phase state 

estimation, the angle of the reference bus will be set to zero. Whereas in three-phase state 

estimation, we consider the reference bus is balanced and its angles will be set to (0o, -

120o, 120o). In the proposed sequence domain state estimation, we need to take into 

account not only the angle reference inside each sequence circuit, but also the angle 

references between them.  Equation (67) can be used to find the angle references between 

different component models. 

67 )( 1
012

abcrefjMea
abcref eVTangleref −⋅⋅= −

− θ                                   (67) 

where: 

( )Trefrefrefref 210012 ,,= is the reference angle vector in sequence domain; 

( )Tmea
cref

mea
bref

mea
aref

Mea
abcref vvvV −−−− = ,, is three-phase voltage magnitude measurement vector 

for reference bus; 
Too

abcref )120,120,0( 0−=−θ  is three-phase voltage angle vector for reference bus. 

It is easily to see that the angle references between different sequence circuits are 

nothing but the voltage angle vector for the reference bus in the sequence domain and 

they are constant for a given measurement scan. Their values rely on the voltage 

magnitude measurements for reference bus. In order to reduce the computation error, the 
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reference bus must be chosen from those buses which have high accuracy voltage 

magnitude measurements.  

6.8.3 Consideration for Measurements Transformation 
Conventional state estimation utilizes three kinds of measurements: power injections, 

power flows and bus voltage magnitudes. In sequence domain state estimation, they need 

to be transformed into sequence domain by (65). It is not possible to transform power 

measurements, including power injections and power flows, into different sequence 

components directly. The state estimation algorithm utilizing current injection method 

can solve this problem. Firstly, the power measurements will be transformed to current 

measurements in the phase domain. After that, the current measurements in different 

sequence components can be calculated by (65). The current injection state estimation 

process in each sequence will use these converted current measurements to estimate the 

system states. The detailed procedure of transforming power measurements to current 

measurements will be addressed later in this chapter.  

Voltage angles are not measured in most of the practical power system.  Voltage 

magnitude measurements cannot be transformed to sequence domain without the voltage 

angle measurements. In order to apply (65) on voltage magnitude measurements, 

artificial phase measurements are introduced and their values are set to the estimated 

voltage angle values after each iteration. Simulation results show that this technique 

produce satisfactory performance. On the other hand, different kinds of phasor 

measurement units (PMU) have been installed in power system during the recent decades 

[75]-[76]. Phase measurements can also be acquired directly by these new devices. The 

introduction of phase measurement in this method may improve the efficiency and 

accuracy. However, this issue will not be further discussed in this dissertation. 

6.8.4 The Jacobian Matrix 
The Jacobian matrix is not required to be constant in a conventional state estimation 

program. For instance, the Jacobian matrix will change together with the system states if 

Newton-Raphson method is used. However, in sequence domain state estimation, the 

state variables may be very close to zero in certain sequence circuits, such as in the zero 

and negative sequence. If some of the Jacobian matrix elements depend on these 

variables, the whole matrix will become ill-conditioned. In our study, the current 
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injection method with rectangular coordinates equations is utilized to make the Jacobian 

matrix constant, thus to avoid this situation.    

6.9  Basic Formulation and Current Injection Method 

The state estimation formulation based on current injections, instead of power 

measurements, is described in this section. All the measurement equations will be 

formulated in rectangular coordinates.  

6.9.1 Measurement Equations for the Current Injection Method 
In the current injection method the relation between the measurements and the state 

variables is linear, as shown in (66). For convenience, here only the equations for one 

sequence will be given and the sequence subscripts will be ignored. 

Equation (66) can be written in detail as: 
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where: 

yx VV , are the real and imaginary part of the voltage measurements; 

yx injIinjI , are the real and imaginary part of the current injection measurements 

calculated from power injection measurements; 

yx flowIflowI , are the real and imaginary part of the line current measurements 

calculated from power flow measurements; 

fe, are the real and imaginary part of the system state. 

ε  is the measurement errors 

Note here that the Jacobian matrix ( H ) is constant for fixed network topology. 

The WLS estimate for the sequence states will be given by: 

69 ZRHG
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where: 

H is the Jacobian matrix obtained from (68); 

Z is the measurement vector; 

R is the covariance matrix for measurement vector; 

HRHG T 1−=  is the gain matrix. 

6.9.2 Measurement Transformation 
The phase domain measurements are power injections, power flows and voltage 

magnitude. They must be transformed to generate the measurement vector used in (68). 

1) Power injection measurement 

Three-phase power injection measurement can be transformed to three-phase current 

injection by: 

70 [ ]*/)( cali
abciinjiinj

i
abc VjQPinjI −

−− +=                                  (70) 

where: 
i
abcinjI is the three-phase current injection vector on bus i ; 

iinjiinj QP −− ,  are real and reactive power injection measurement on bus i ; 

cali
abcV −  is the computed three-phase voltage vector on bus i . 

Using (65) i
abcinjI  can be transformed into sequence domain and its rectangular form 

will be given by yx injIinjI , vector in (68). 

2) Power flow measurement 

Three-phase power flow measurement can be transformed to three-phase line current 

by: 

71 [ ]*/)( cali
abciflowiflow

i
abc VjQPflowI −

−− +=                                 (71) 

where: 
i
abcflowI is the three-phase corresponding line current vector of measurement i ; 

iflowiflow QP −− ,  are ith real and reactive power flow measurement; 

cali
abcV −  is the computed three-phase voltage vector of the sending-end bus of power 

flow measurement i . 
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Using (65) abc
iflowI can be transformed into sequence domain and its rectangular 

form will be given by yx flowIflowI , vector in (68). 

3) Voltage magnitude measurement 

Three-phase power flow measurement can be transformed to sequence domain by: 

72 )( )(1
012

cal
abcVanglemea

abc
mea eVTV ⋅⋅= −                                      (72) 

where: 
meaV012  is corresponding voltage vector in sequence domain; 

1−T  is the inverse of Clarke’s transformation matrix shown in  (64); 
mea

abcV  is the three-phase voltage magnitude measurement; 

cal
abcV  is the calculated three-phase voltage vector. 

The rectangular form of meaV012  will be given by yx VV , vector in (68). 

6.9.3 Transformation of Measurement Weights 
In conventional state estimation, the weights of measurements are set to the inverse of 

corresponding measurement variances directly. However, in sequence domain state 

estimation, the weights of the computed measurements need to be determined by the 

statistical transformation of the original measurements’ covariance matrix.   

More attention must be paid to the weights of imaginary part of voltage 

measurements. From (72), we can see that the computed angle values are used to get the 

real and imaginary part of voltage measurements. Those artificial phase measurements 

are introduced without variance information. One solution for this problem is to set lower 

weights to the imaginary part of voltage measurements. Test results show that setting the 

weights of imaginary part of voltage measurement as 1/10th – 1/5th of other measurements 

can produce a satisfactory results.   

6.9.4 Jacobian Matrix Elements 
The elements of the Jacobian matrix for voltage measurements and current injection 

measurements in (68) are given by the following equations:  
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where: 

injinj jbg + is the corresponding element in the nodal admittance matrix; 

For the sending-end bus, the elements corresponding to line current measurements are 

given by: 
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While for the receiving-end bus, the elements corresponding to line current 

measurements are given by: 
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where: 

flowflow jbg + is the line admittance; 

flowc is the line susceptance. 

6.10  Implementation 

6.10.1 Iterative Procedure 
A prototype program utilizing the sequence domain state estimation method was 

developed. The flow chart of this program is given in Fig. 28.  
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The power system is given in detailed three-phase model. Clarke’s transformation is 

used to generate the sequence networks. Then the procedure developed in the above 

sections is run iteratively until convergence to get the full detailed three-phase solution 

for the given system. 

 

 
 

 
Fig. 28.  Flow chart of sequence domain state estimation 
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All the transformers in the system are assumed to have Y-Y grounded connection. 

The zero component network of this kind of transformer will have the same connectivity 

as the other two sequence components. Other types of transformer connections can be 

accounted for but not done here in this work. 

6.10.2 Observability Analysis 
When sufficient measurements are available, the state vector of the whole system can 

be obtained by state estimation. In this case, the network is said to be observable. The 

conventional numerical observability analysis based on triangular factorization of the 

gain matrix can be applied in the sequence domain state estimation with little 

modification. If any zero pivots are encountered during the factorization of any gain 

matrix, it indicates that the state of the corresponding bus is not observable. This 

numerical observability algorithm can also be extended to suggest additional meter 

placement.  

6.11  Test Results for Sequence Domain State Estimation 

The proposed sequence domain state estimation method was tested on different IEEE 

testing systems. Section 6.3  describes how to generate the full three-phase simulation 

data based on IEEE testing systems. In order to simulate the real power system, Gaussian 

noises are added to all measurements.  

6.11.1 Simulation Results for Balanced System 
A full balanced system based on IEEE 30 bus system is used in this case. The 

estimated states of proposed method and conventional three-phase state estimation 

method [62] are compared. The results are shown in Fig. 29 and Fig. 30. 

The profiles of voltage magnitudes and angles show that the estimated states obtained 

from the proposed method and the conventional three-phase method match closely. 
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Fig. 29.  Voltage magnitude profiles  (balanced case) 
 

 
 

Fig. 30.  Voltage angle profiles  (balanced case) 
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Fig. 31.  Voltage magnitude profiles (unbalanced case) 

 

 
 

Fig. 32.  Voltage angle profiles (unbalanced case) 
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6.11.2 Simulation Results for Unbalanced System 
In this case, unbalanced loads are introduced. The loads in phase A are set to 60% of 

other two phases. We also get the estimated states by proposed method and conventional 

three-phase state estimation method. The results are shown in Fig. 31 and Fig. 32. 

Fig. 31 and Fig. 32 shows that for the unbalanced case, the proposed method can also 

produce very good results. 

6.11.3 Improved Efficiency 
By profiling the running time of the prototype program, we can see that the time spent 

on transformation between phase domain and sequence domain is trivial compared to the 

time spent on WLS algorithm. One can conclude that the total time consuming in this 

method approximate to 3 times the single-phase state estimation method. This claims a 

great improvement. 

The prototype program was tested in different sizes’ systems.  The iteration numbers 

and approximate computation times for those systems are shown in Table XXVIII(The 

computer used to run the program has a P3 866 inter CPU. Prototype program was 

developed in matlab6.0. The tolerance for converge is 0.0001 for both magnitude and 

angle). 
 
 

TABLE XXVIII 
 ITERATION NUMBERS AND COMPUTATION TIMES 

Bus No. 4 14 30 57 118 
Meas. No. 72 288 606 1152 2490 
Iter. No. 5 6 7 6 6 

Times (Sec.) 0.015 0.040 0.080 0.190 0.360 
 
 
 

The relationship of measurements numbers and computation times is shown in Fig. 

33. 
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Fig. 33.  Relationship of measurement numbers and computation times 
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may lead to significant biases in the solution due to existing asymmetries or load 

unbalances.    

A novel state estimation approach for unbalanced transmission systems is also 

presented in this chapter. The system is assumed to be full symmetrical, thus can be 

represented by three independent sequence component models. Full detailed three-phase 

measurements are transformed to sequence domain. Single-phase state estimation can be 

run independently in each sequence domain. The estimated results are transformed back 

to a-b-c domain to get the three-phase solution. Current injection method and rectangular 

coordinates equations are also used to further improve the efficiency.  

This approach was successfully tested in several systems with different sizes. While 

limited work is also done on bad data processing aspects of this method, further work is 

needed in order to fully address the issues of bad data detection/identification in three-

phase state estimation. 
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CHAPTER  VII 

CONCLUSIONS 

The implementation of a two-stage state estimation algorithm capable of topology 

error identification is discussed in chapter II. A concise substation model and the 

minimum required extra data set needed to run the two-stage state estimation are defined. 

With these data structures, a conventional state estimator is updated to support the two-

stage algorithm. 

Chapter III investigates the part of the two-stage state estimation algorithm involving 

the suspect bus identification procedure following the first stage estimation. Several 

possible strategies are developed and comparatively tested by using a topology error 

library that is created for this purpose based on IEEE 30 bus test system. The 

performance of each method is evaluated by simulations using this library.  

For those cases where status of the CB is assumed to be open while it is actually 

closed (type2 and type3), most of the methods can identify the suspect buses correctly. 

On the other hand, for the opposite scenarios, not all of the methods show equally good 

performance. However, one of the developed methods appears to remain robust by 

performing consistently well under all studied scenarios. This method is the main 

contribution of this study and is expected to enhance the performance of the two-stage 

topology error identification method significantly. 

Chapter IV describes a novel remote measurement calibration technique. The 

measured values are related to the true values by the relationship functions. The detailed 

formulation of including the coefficients of these functions in a normal state estimation 

problem is presented. The coefficients will be estimated along with the system state and 

used to calibrate the measurements. This technique can also be implemented as off-line 

mode and formulate several snapshots together to suppress the influence of random errors. 

Moreover, observability of those coefficients under low redundancy measurement 

configuration is discussed. The pseudo-coefficient-measurements are introduced to solve 

the numerical problem. This method is tested on different sizes IEEE systems. The 

simulation results show that the proposed calibration procedure can improve the 

performance of state estimation even under low redundancy condition. 



  130 

  

A systematical solution for estimation of measurement random error variances is 

described in Chapter V. An initialization process and a recursively updating process 

realize the auto tuning of the measurement weight in state estimation. The simulation 

result shows successful performance. 

Two different estimation methods are studied together. The current method (Method 1) 

has better performance while is time consuming. The proposed simplified method 

(Method 2) is very efficient and can get satisfied result. Moreover, compare to method 1, 

method 2 is much easier to be implemented in a practical system. 

Chapter VI investigates the effects of unbalanced loads and non-transposed 

transmission lines on the solution of the positive sequence state estimation problem.  A 

number of simulations are carried out using varying degrees of unbalance among the 

three phases of bus loads as well as the mutual coupling between pairs of phase 

conductors.  The simulation results indicate a higher sensitivity of the system state to 

loading unbalances than to asymmetries in the transmission line conductor configurations.  

It is also demonstrated that under certain cases, the use of single-phase state estimator 

may lead to significant biases in the solution due to existing asymmetries or load 

unbalances.    

A novel SE approach for unbalanced transmission systems is also presented in this 

chapter. The system is assumed to be full symmetrical, thus can be represented by three 

independent sequence component models. Full detailed three-phase measurements are 

transformed to sequence domain. Single-phase SE can be run independently in each 

sequence domain. The estimated results are transformed back to a-b-c domain to get the 

three-phase solution. Current injection method and rectangular coordinates equations are 

also used to further improve the efficiency.  

This approach was successfully tested in several systems with different sizes. While 

limited work is also done on bad data processing aspects of this method, further work is 

needed in order to fully address the issues of bad data detection/identification in three-

phase state estimation. 

7.1  Summary of Contributions 

In conclusion, the main contributions of this dissertation are: 



  131 

  

1. A two-stage state estimation algorithm for topology error identification on a 

conventional state estimator is implemented. The substation model and the 

minimum extra data structure are designed. A program with friendly user 

interface and program interface is developed; 

2. A comprehensive suspected area identification method for two-stage state 

estimation is proposed. Topology errors library for evaluating the performance 

of different methods is created; 

3. A remote measurement calibration algorithm and a systematical calibration 

procedure are developed; 

4. A systematical method to estimate the standard deviation of the measurements, 

which result in an auto-tuning process for measurement weights is proposed; 

5. The influences of the imbalances of power networks on the conventional 

positive state estimation process are studied. A novel three-phase state 

estimation algorithm is developed and preliminary testing is carried out.  

7.2  Future Work 

We can never claim our work is finished. There is still a lot of room for further 

developments. In the future, our research work can be improved in the following 

directions: 

1. The proposed methods/processes should be tested on practical power systems. 

Owing to lack of data from practical systems, all the proposed methods are 

only tested on simulated systems. The two-stage state estimation algorithm, the 

comprehensive method for suspected area identification, and process of remote 

measurement calibration and auto-tuning of the measurement weights are 

needed to be tested in practical systems in the future before their practical 

application; 

2. Further research on the new sequence domain three-phase state estimation 

algorithm. The presented method did not completely address the issues of bad 

data detection/identification, angle reference between different sequences, etc, 

which can be studied in the future.  
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