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ABSTRACT 
 

Carbonate rocks have complex heterogeneities that result from syn- and post-depositional 

stressors. These heterogeneities invariably affect the movement of fluid through the formation. When 

considering an acid treatment procedure, care must be taken to optimize the acid concentration and 

pumping schedule to encourage the formation of wormholes. Despite the abundance of carbonate 

formations (60% of conventional reserves), there is little consensus on the effect of physical formation 

properties related to acidizing efficiency. This study characterizes the pore-size distribution for 

different carbonate rocks and evaluates how the optimum pore-volume to breakthrough, PVbt,opt, and 

the optimal interstitial flux, vi,opt, are related to various physical properties of the rock.  

The pore-size distributions evaluated in this study are constructed with micro-computer 

tomography (micro-CT) imaging, a non-invasive X-Ray imaging technique pioneered in the medical 

field. Micro-CT is improved over medical CT because it can scan at higher energies and higher 

resolution. In this work, resolution for scanned samples are from 5-8 µm/voxel and sample sizes are 

approximately 1cm3. From the raw data, image processing is applied to distinguish pore space from the 

surrounding matrix. Object counter software is used to identify and measure individual pores, which 

can then be organized into a pore-size distribution. This study finds that the shape of the pore-size 

distribution is influenced by the type of carbonate rock, where the primary difference between scanned 

samples is their pore structure. Statistical parameters are calculated by fitting a lognormal distribution 

function to each sample’s pore-size distribution.  

 
 
 
 
 
 
 
 
 



iii 
 

ACKNOWLEDGEMENTS 
 

I would like to thank my committee chair, Dr. Ding Zhu, and my committee members, Dr. A. 

Daniel Hill and Dr. Yuefang Sun, for their guidance, support, and patience throughout the course of 

this research. 

Thanks to my friends, colleagues, and department faculty and staff for making my time at Texas 

A&M University a memorable experience. I would especially like to thank Kai Dong for his early 

guidance when I first arrived to the University, Haoran Cheng and Jordan Etten for contributions to 

experimental portions of this work, and Don Conlee for support with micro-CT scanning and software 

advice. I also extend my gratitude to the Acid Stimulation Research Program (ASRP) partners for their 

financial support during the course of this research. 

Finally, I would like to thank my family for their love, advice, and constant support through 

some difficult times during my studies at Texas A&M University.  

 

 

 

 

 

 
 

 

 

 

 

 



iv 
 

NOMENCLATURE 
 

A Cross-sectional area of core, cm2  

B Formation volume factor, dimensionless, RB/STB 

Cv Coefficient of variation, dimensionless  

d Wormhole diameter, cm  

df Fractal dimension, dimensionless  

f Porosity field fluctuation, dimensionless 

h Reservoir thickness, ft 

k Permeability, md 

L Wormhole length, cm 

pe Reservoir pressure, psi 

pwf Bottomhole flowing pressure, psi 

PVbt Pore volumes to breakthrough 

PVbt,opt Optimum pore volumes to breakthrough, dimensionless  

NDa Damkohler number, dimensionless 

NPe Peclet number, dimensionless 

q Volumetric flow rate, cm3/min  

re Wellbore drainage radius, ft 

rw Wellbore radius, ft 

s Skin factor, dimensionless  

vi Interstitial velocity, cm/min 

vi,opt Optimum interstitial velocity, cm/min 

x Pore diameter, μm 

Greek 

κ Overall dissolution rate constant cm/s 
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ϕ Porosity, dimensionless  

ϕ0 Initial porosity, dimensionless 

𝜂𝜂  Viscosity, cp 

μ Lognormal distribution location parameter, dimensionless 

σ Lognormal distribution shape parameter, dimensionless 

ψ Pore growth rate (cm/min)     
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CHAPTER I  

BACKGROUND AND LITERATURE REVIEW 

1.1 – Background: Carbonate Matrix Acidizing 

Matrix acidizing is a well stimulation technique applicable to both sandstone and carbonate 

formations in which acids are pumped into the reservoir below fracture pressure in an effort to remove 

near-wellbore damage. In carbonate formations, acidizing is additionally effective due to the highly 

reactive nature of calcite with strong acid, such as HCl. Under correct conditions, this reactivity 

facilitates the creation of high-conductivity channels extending far beyond the near-wellbore region. 

These channels are called wormholes, which act as low-resistance pathways through which fluids can 

be produced more effectively than through non-stimulated matrix. Wellbore damage can originate from 

a variety of sources such as fines migration, scale buildup, or perforation damage. These near-wellbore 

damages, regardless of their origin, can be grouped into a concept called skin factor, which acts as a 

limiting pressure drop at the wellbore.   

For a well operating under steady-state conditions, the radial inflow function for porous media 

is displayed in oilfield units as Eq 1.1.  

𝑃𝑃𝑒𝑒 − 𝑃𝑃𝑤𝑤𝑤𝑤 = 141.2𝑞𝑞𝑞𝑞𝑞𝑞
𝑘𝑘ℎ

�𝑙𝑙𝑙𝑙 𝑟𝑟𝑒𝑒
𝑟𝑟𝑤𝑤

+ 𝑠𝑠� ...................................................................................... (1.1) 

 

Where (Pe –Pwf) is the pressure difference between the bottomhole and surface (psi), q is the 

volumetric flow rate in STB/d, 𝜂𝜂 is fluid viscosity in cp, k is permeability in md, h is the vertical height 

of the pressure head in ft, re is the extent of the drainage radius in ft, rw is the wellbore radius in ft, B is 

the formation volume factor, which can vary with different oils and converts STB into res bbl, and s is 

the aforementioned skin factor (unitless).  

Rearranged to show the effect of parameters on q, the production flow rate, Eq 1.2 is formed 

𝑞𝑞 = 𝑘𝑘ℎ(𝑝𝑝𝑒𝑒−𝑝𝑝𝑓𝑓)
141.2𝐵𝐵𝐵𝐵 (ln𝑟𝑟𝑒𝑒𝑟𝑟𝑤𝑤

+𝑠𝑠)  
 ......................................................................................................... (1.2) 
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One takeaway from Eq 1.2 is that a negative value of skin increases production yield, q, if all 

other variables remain equal. Well stimulation is a broad technique to reduce the skin factor thereby 

increasing productivity of damaged wells. Another observation is the semi-logarithmic nature of the 

above equations, which means the effects of skin damage are greatly magnified closer to the wellbore.  

Due to the high surface reaction rate between HCl and carbonate, mass transfer limits the 

overall reaction kinetics. This leads to a non-uniform etching pattern as acid is injected, and thus 

couples the dissolution pattern to the acid injection rate. The unique shape of a wormhole at a given 

injection rate depends on the rock pore structure.  Field studies have shown wormholing to be an 

effective method for reducing skin factor (Glasbergen et al., 2009; Economides et al., 2012). Selected 

acidized carbonate reservoirs in the Middle East and North Sea have reported an average post-acidizing 

skin of -4, which suggests wormhole penetration of up to 20 ft and significant production enhancement 

(Furui et al., 2010). 

As mentioned, acid injection rate plays an important role in wormhole formation and thus a 

science has grown around attempting to understand wormhole propagation and optimize field 

treatments. The relationship between dissolution structure and acid flow rate is such that there exists an 

optimum injection rate at which wormholes form. This is called the optimal acid injection rate, and can 

be visualized on an acid efficiency curve, such as the one presented in Fig. 1.1. Pore volumes to 

breakthrough (PVbt) is defined as the volume of acid required to channel through a core, divided by the 

volume of pores in the core. In other words – the amount of acid needed to break through the core, 

measured in pore volumes. Note a global minimum on the plot, which indicates the minimum acid 

volume (PVbt,opt) for core breakthrough takes place at a characteristic interstitial acid velocity, vi,opt. The 

interstitial velocity is related to the injection velocity and is an average of the acid velocity within the 

porous rock.  



3 
 

 

Figure 1.1: Acid efficiency curve showing optimum point. This occurs where both x and y-axis values (vi,opt and 
PVbt,opt, respectively) are at a minimum. The datapoints are fit using the Buijse & Glasbergen method to 
determine the optimum parameters.  (Modified from Dong et al., 2012) 

 

If interstitial velocity is lower than the optimum, a significant amount of acid is wasted before 

breakthrough is achieved. This is shown by the steep slope of the curve labeled “1” in Fig. 1.1 (note 

the log-log axes). Above vi,opt, (label “3”) the slope is significantly decreased, but still not optimum. 

Since determining the optimum rate is difficult, common field practice is to inject acid at the maximum 

allowable rate below the fracture pressure of the formation.   

1.2 – Literature Review 

The following section provides a review of literature pertinent to the field of matrix acidizing 

and digital analysis of micro-CT imaging of geologic media.  
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1.2.1 – Pore Enlargement and Wormhole Formation Models 

One of the important impacts on acidizing performance is the pore structure of the rock. As 

acid is injected, it flows naturally into the highest-permeability regions. A dissolution reaction occurs 

and the pore structure is changed in a complex manner. Macro-scale properties, such as porosity and 

permeability, are altered during the dissolution process. To study this process more closely, Schechter 

and Gidley (1969) modeled the evolution of pore-size distribution and the permeability enhancement 

of rock resulting from surface reaction. They mathematically defined a rock model as a bundle of 

capillary tubes, which were allowed to enlarge and merge as dissolution proceeded. Input parameters 

include the pore-size distribution of the rock, which was discovered to have a large influence on the 

pore-growth process. The study concluded that larger pores have mass-transfer limited kinetics, which 

causes them to grow more quickly than smaller pores. Smaller pores do not readily receive acid and 

thus are reaction-limited. The pore growth functions from this study, and importance of the pore-size 

distribution, influenced subsequent authors to publish carbonate acidizing models based on similar 

principles. 

Hung et al. (1989), produced a capillary tube-based model that described wormhole tip 

propagation as a strong function of injection rate, diffusion coefficient (for radial flow), and fluid loss 

along the wormhole walls. They concluded that wormhole length increases with injection rate, 

wormhole competition has an effect on growth rate, and they further suggested that large pores are most 

important in formation of wormholes. This model requires the pore-size distribution as an initial 

condition. Some limitations include that the model is only applicable for mass-transfer limited systems, 

capillary tubes are not allowed to collide, and the acid concentration at the wormhole tip is assumed to 

be the same as the concentration in the wellbore.  

Hoefner & Fogler (1989) used a network model to simulate wormhole formation. In actuality, 

the network model is similar to previously-mentioned capillary tube models. They concluded that 

wormholes form only in diffusion/mass-transfer limited reactions. They also found that wormhole 
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formation is governed by the Damkohler number: defined as the ratio of net rate of dissolution to the 

rate of transport by convection. The net rate of dissolution is the rate of mass transfer for mass-transfer 

limited systems, or the rate of surface reaction for reaction-rate limited systems. This network model 

(and others in general), while showing good agreement with experimental results, cannot be scaled to 

even core-scale without requiring enormous computational power.  

Later work by Fredd & Fogler (1998, 1999) investigated a wide range of fluid/mineral systems 

including dissolution of calcite by strong acids, weak acids, and chelating agents. They concluded that 

the formation of wormholes is governed by the Damkohler number for all fluid/mineral systems 

involved. The Damkohler approach is advantageous because it can be applied to mixed-kinetics 

reactions, unlike previous models which assumed mass-transfer limited kinetics. As quantitatively 

defined by Fredd & Fogler, the Damkohler number is shown in Eq. 1.3 

𝑁𝑁𝐷𝐷𝐷𝐷 =  𝜋𝜋 𝑑𝑑 𝐿𝐿 𝜅𝜅
𝑞𝑞

 ................................................................................................................... (1.3) 

Where q is the flow rate in the wormhole, d and L are diameter and length of the wormhole, 

respectively, and к is the overall dissolution rate constant. This constant is a function of various 

transport and reaction processes, and includes within it whether the reaction is mixed-kinetics, mass-

transfer limited, or reaction-limited. 

Wang et al. (1993), extended the work of Schechter & Gidley (1969) by using their pore-growth 

functions to define a transition pore size. Pores larger than this size exhibit mass-transfer limited 

kinetics and thus follow a growth function that allows them to become wormholes as dissolution 

progresses. The transition pore size is a function of the Damkohler number, mean pore length, and 

permeability. Smaller pores are defined by a separate growth function, and are not able to form 

wormholes until they reach the transition pore size (Fig. 1.2).  
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This study concluded that an optimum injection rate exists at which wormholing occurs, and 

this optimum depends on minerology, acid concentration, and reaction temperature. Again, this model 

emphasizes the importance of large pores and thus requires the pore-size distribution to determine how 

a rock will react to acidizing. The Wang et al. model is capable of predicting the optimum injection rate 

required for wormholing in linear corefloods, but cannot estimate the required acid volume (PVbt,opt). It 

also cannot be applied to monitor skin evolution during treatment.  

Huang et al. (1997) improved the transition-pore approach presented by Wang et al. (1993) by 

including a fluid loss model (based on Hung et al., 1989) and the effect of fluid competition on 

wormhole tip propagation. The main application for this was to upscale the Wang et al. (1993) model 

to field-scale. According to the Huang et al. (1997) study, the observed optimal acid flux from 

experiments compared well with values predicted by the transition pore theory model. This model has 

similar limitations to the original Wang et al. (1993) model.  

Figure 1.2: Two pore growth functions with transition point shown. The A2 function is mass-transfer limited, and 
pores following this function can become wormholes. (Wang et al., 1993) 
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Daccord et al. (1989) studied patterns of water injected into plaster to simulate a radial 

wormhole propagation process. They quantified wormholes by their equivalent hydraulic length, and 

demonstrated the fractal nature of wormhole structures formed under mass-transfer limited conditions. 

This model is fundamentally different from those previously mentioned due to consideration of the 

entire wormhole structure as fractals. The model shows that propagation of wormholes in radial systems 

is a function of the Peclet number NPe(-1/3), injected volume, and the fractal dimension (df). Peclet 

number is defined as the ratio of acid convection to diffusion. Their model only applies to mass-transfer 

limited systems, but does predict the existence of an optimum injection rate. The Daccord et al. (1989) 

model also predicts that a narrow pore-size distribution increases the width of acidized channels and 

these channels become more homogeneously etched (See Fig. 1.3) compared to a rock with a wider 

pore-size distribution.    

 

 

Figure 1.3: Numerical simulations by Daccord et al. (1989) show the effect of pore-size distribution width on 
dissolution pattern. This image is from the linear application of the Daccord et al. model. Similar results were 
found for the radial case. (Daccord et al., 1989) 
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 Depending on what one wishes to accomplish with a model (monitor skin evolution during 

treatment, wormhole propagation estimate, or dissolution structure simulation), some models prevail in 

usefulness over others and model combinations are also possible. This section has described briefly 

some of the important models in matrix acidizing, with an emphasis on those that utilize pore-size 

distribution in some fashion. The next section will focus on optimal acidizing conditions (PVbt,opt & 

vi,opt), models that estimate these parameters, and how heterogeneity and other pore-structure effects 

may influence the acidizing procedure. For a more detailed categorization and review of matrix 

acidizing models, the reader is referred to Fredd & Miller (2000) and Akanni & Nasr-El-Din (2015).  

1.2.2 – Prediction of Optimum Flux and Pore-Volumes to Breakthrough 

The presence of an optimum acid flux (vi,opt) and acid volume (PVbt,opt) has encouraged many 

studies in this area attempting to predict these values. Numerous studies have published findings 

illustrating the existence of the optimum condition (Wang et al., 1993; Fredd & Fogler, 1998; Bazin, 

2001; and Buijse & Glasbergen, 2005). Factors affecting the location of the optimum point include 

temperature, acid type, and rock minerology. 

Buijse & Glasbergen (2005) developed a semi-empirical model which requires the results of 

laboratory experiments to define an optimum interstitial velocity and corresponding pore-volume to 

breakthrough. The advantage of this semi-empirical approach is that the model is relatively simple in 

nature, with all complex rock/fluid dependencies contained in a parameter calculated from experimental 

data. The main output of the model is a curve-fit of experimental acidizing results, which can easily be 

used to find the optimum conditions. The disadvantage of this approach is that lab corefloods (or 

published literature) must be available for any and all fluid/mineral systems to be investigated. The 

Buijse & Glasbergen (2005) model was modified in a later study to account for radial and spherical 

flow and to allow for upscaling to field conditions (Furui et al., 2010). 

A separate class of model has recently been developed called a two-scale continuum model. 

The 2D application of this model was demonstrated by Panga et al. (2005), which simulates reaction 
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and transport mechanisms of wormholing in carbonates. The two scales indicated by the model are 

Darcy-scale and pore-scale. Pore-scale phenomena are coupled to macroscopic variables (such as Darcy 

velocity) and structure-property relationships (such as porosity vs. permeability) to account for the 

relationship between pore and Darcy-scale. The pore-scale parameters are ultimately modeled by a 

dimensionless variable called the Thiele modulus (defined as the ratio of diffusion time to reaction 

time), which is coupled to a Damkohler-based model for core-scale characteristics. Full mathematical 

details of the model, which is limited to linear flow and two dimensions, can be found in Panga et al. 

(2005). The model was used to investigate the impact of heterogeneity on acidizing results. Porosity of 

each simulation grid cell is defined by summing a random number to global, averaged porosity of the 

medium. The random numbers are chosen based on a uniform distribution. Changing the bounds of the 

uniform distribution affects the limits of the porosity function, and thus the spatial heterogeneity of the 

simulated medium. This is shown mathematically in Eq. 1.4   

𝜙𝜙 = 𝜙𝜙0 + 𝑓𝑓 ..................................................................................................................... (1.4) 
 

In other words, each simulation grid cell is assigned a porosity, ϕ, based on a global porosity 

ϕ0, plus a uniformly-distributed fluctuation function, f.  Based on this definition of heterogeneity, the 

model predicts higher degrees of branching at higher heterogeneities (i.e., wider bounds on the uniform 

distribution function, f). Results are shown in Fig. 1.4. Conclusions are in accordance with previously-

discussed simulations by Daccord et al. (1989) on the effects of pore-size distribution width on 

dissolution shape (Fig. 1.3).  
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Figure 1.4: Porosity profiles at different injection velocities with fluctuations in initial porosity distribution. 
Cases a-e have a wider porosity distribution (f=[-0.15,0.15]), compared with cases f-j (f=[-0.05,0.05]). The 
degree of fluctuation in porosity distribution is uniformly distributed in both cases, and used as a measure of 
rock heterogeneity.  (Panga et al., 2005). 

 

An important observation is that, based on this model, changing heterogeneity magnitude 

affects wormhole structure/branching but does not change the category of dissolution pattern (conical, 

ramified, uniform, etc.) at a given injection rate. An acid efficiency curve generated for the above case 

indicates almost identical PVbt,opt and vi,opt for both variations of heterogeneity magnitudes. Thus, a 

conclusion of this study is that the magnitude of heterogeneity affects wormhole branching, but its 

influence on optimum conditions is negligible. This model was extended to the radial case by Kalia & 

Balakotaiah (2006) and similar results were found.  

Maheshwari et al. (2013) extended the continuum model to 3D, and found similar effects of 

heterogeneity on dissolution shape and optimum acidizing properties. Heterogeneity in this case was 

modeled the same way as in the original Panga et al. (2005) paper, with a uniformly-distributed random 



11 
 

modifier to a global average porosity (Eq. 1.4). Also in this study, the effect of medium permeability 

was studied. This permeability is similar to the typical “average” permeability value measured for a 

given rock. Results of the simulation are shown in Fig. 1.5. Note that PVbt,opt increases while vi,opt 

decreases as permeability rises.  

 

 

Figure 1.5: Effect of initial permeability (к) on the optimum injection rate and pore volumes to breakthrough. 
The insert shows the effects of к on optimum values of both PVbt and vi (Maheshwari et al., 2013). 

 

Liu et al., (2012) extended the Panga et al. (2005) model by comparing the effect of the 

heterogeneity magnitude measured with a uniform distribution versus a normal distribution. Results of 

this simulation are shown in Fig. 1.6 
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Figure 1.6: Simulated acid efficiency curves for two different porosity generation methods using the two-scale 
continuum model of Panga et al. (2005). “Da” is the Damkohler number. (Liu et al., 2012). 

 

As can be clearly seen, choice of porosity distribution influences the PVbt,opt and Damkohler 

number. Note that the Damkohler number is inversely proportional to vi, as shown in Eq. 1.3, where q 

in that equation is proportional to vi. Thus, while results from the original two-scale continuum model 

seem to indicate that heterogeneity magnitude negligibly affects optimum conditions, the choice of 

distribution on which porosity is modeled may explain this result. Different rocks exhibit different 

porosity distributions, so the effect of pore structure on optimum conditions still holds true.  

Ziauddin & Bize (2007) took an alternative approach to investigating heterogeneity effects by 

assigning carbonates into several reservoir rock types based on their geological features. Attempts to 

classify rocks has a long history, and the classification scheme adopted in this study is similar to the 

one by Lucia et al. (1999). Ziauddin & Bize (2007) found that carbonates grouped into a certain rock 

type had unique acidizing efficiency curves compared to carbonates assigned to other groups. This 
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opens the possibility of forgoing explicit modeling and instead using geological categorizations to 

estimate optimal conditions. While categorization systems seem promising, the process is labor-

intensive (requiring manual analysis of thin-sections) and the complexity of carbonates do not lend 

themselves well to clear-cut categorization. Furthermore, the differences in displayed acid efficiency 

curves as a function of rock type are questionable (see Fig. 1.7). Despite this, rocks in different 

categories were found to show different dissolution patterns at a given injection rate which further 

suggests the importance of pore structure on both dissolution pattern and optimum conditions. 15 wt.% 

HCl was used in this study for all dissolution tests. In a separate plot, Winterset, Indiana, and Texas 

Cream limestone permeability evolution during acidizing versus porosity was found to be significantly 

different for these three rock types. Permeability evolution in Indiana and Winterset Limestones 

increased rapidly, while the Texas Cream plot shows hardly any permeability evolution during the 

acidizing process, again suggesting the importance of pore structure in acidizing performance. The 

reader is referred to Ziaudden & Bize (2007) for more details on rock characterization methods.  

 

 

Figure 1.7: Acid efficiency curves for different carbonate rock categories. Four categories are shown in the 
image, but six are defined in the study (Ziaudden & Bize, 2007). 
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Izgec et al. (2010) investigated the effect of large-scale heterogeneities (vugs) on optimum 

acidizing parameters of carbonate cores. This study found that acid propagates more efficiently (lower 

PVbt,opt) through carbonate cores as the vug porosity fraction increases. Two measures of heterogeneity 

were used in this study. One is the coefficient of variation, Cv, which is proportional to the standard 

deviation as a fraction of the mean porosity of each CT slice. The value of Cv should remain about the 

same for each CT slice for homogenous cores, while vuggy cores are represented by drastic changes in 

the Cv value. A second measure of heterogeneity used was the variogram, which takes into account 

spatial correlation of pores along the core. A higher value of variability indicates a higher degree of 

spatial correlation (i.e. a value of zero indicates spatial randomness). These two measures, along with 

computed tomography analysis, were used to conclude that acid preferentially followed the path of the 

vug system as it channeled through the core. This result emphasizes the importance of spatial aspects 

of the pore system in carbonate acidizing. The study by Izgec et al. (2010) also attempted to construct 

an acid efficiency curve from the vuggy carbonate cores, but ultimately was unable to find the optimum 

values. Results from corefloods of vuggy carbonates are shown in Fig. 1.8. Izgec postulated that the 

optimum flux (vi,opt) was much lower than those observed in homogeneous rocks, and thus the injection 

rates used in his experiments were too high to find this optimum on the plot.  
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Figure 1.8: Acid efficiency curve for vuggy calcite (orange points). Data from Wang et al. (1993) and Buijse & 
Glasbergen (2005) plotted for comparison. No optimum conditions were found for vuggy calcite. (Izgec et al., 
2009) 

 

Etten et al. (2015) performed a study attempting to determine the effect of permeability on 

optimum acidizing conditions. In this study, efficiency curves were generated for limestone core 

samples of four different permeabilities, ranging from 6 md to 239 md. Three of the core sets were 

Indiana limestone, while a fourth of intermediate permeability (33 md) was Desert Pink limestone. 

Acidizing results fitted with the Buijse & Glasbergen model are shown in Fig. 1.9. Permeability was 

found to be logarithmically proportional to PVbt,opt, regardless of rock type. The values of vi,opt increase 

with permeability up to the 239 md sample, at which point the optimum flux decreases to a lower value. 

Since determining the value of optimum conditions requires many acidizing experiments, it is important 

to ensure permeability and porosity values remain relatively constant for each curve. In the Etten et al. 

(2015) study, this condition is met for the lower-permeability samples but the 239 md conditions have 

a standard deviation of 132 md among the 6 cores used to create the breakthrough curve. This adds 
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uncertainty to the values of optimum conditions for the 239 md sample. Other than simple permeability 

and porosity measurements, no further attempts at quantifying rock heterogeneity were made in this 

study. 

 

Figure 1.9: Acid efficiency curves for four core sets fit with the Buijse & Glasbergen model. Three of the core 
sets were Indiana Limestone, while a fourth (33md) was Desert Pink limestone. (Etten et al., 2015).  

 

Zakaria et al. (2015) performed a study to predict the acidizing performance of various 

carbonates based on differences in their pore structure connectivity. This difference was quantified by 

measuring concentration of an effluent tracer after injection of the tracer through the core. Higher 

concentrations of the tracer in the effluent was said to mean the rock has higher comparative flow 

capacity, which was subsequently compared with core acidizing performance via acidizing efficiency 

curves. Residence time of tracer in the rock was also used as a quantitative measure of acidizing 

performance. For acidizing performance tests, 15 wt.% HCl was used. Carbonates with higher 

heterogeneity were found to have a larger flowing fraction, and thus a higher PVbt,opt. It is not clear if 

there is a difference between flowing fraction and permeability, which is known to increase with PVbt,opt 
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as shown in Bazin (2001) and Etten et al. (2015). In any case, the study concludes that pore-scale 

heterogeneity has a significant impact on optimum acidizing conditions.  

While current models can predict optimum conditions at lab-scale, upscaling to field-scale still 

presents problems. One manifestation of this is the dependency of optimal properties on core size for 

linear acidizing experiments. Research by Dong (2012) indicates a critical length at which point the 

vi,opt parameter is no longer affected by the length of the core (See Fig. 1.10). 

 

 

Figure 1.10: Core-size effect on optimum flux. The dependency is noted up to a certain core length, after which 
the optimum value stabilizes (Dong, 2012) 

 

In addition to core length, core diameter also has an effect on optimum properties. Furui et al., 

(2010) showed that vi,opt and PVbt,opt decrease as the core diameter increases. While the reasons for core-

size dependency on optimum parameters are not entirely understood, Dong (2012) postulates that it is 

due to wormhole competition effects, while Buijse (2000) found similar results but concluded that the 

dependency was due to boundary effects of the core itself. Nevertheless, it is clear that optimum 

acidizing parameters are sensitive to a variety of factors, including properties of the rock, fluid, flow 

geometry, reservoir geometry, and pore structure.  
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1.2.3 – Micro-CT Image Acquisition and Digital Image Processing  

Pioneered in the medical field in the 1970s, computed tomography (CT) has a long history of 

research behind it. The main designation between medical CT and micro-CT is the higher energy used 

in the latter process, which would expose patients to unhealthy amounts of radiation. Higher energy 

allows for higher magnification, hence the “micro” designation. CT scanners work in principle by 

emitting X-rays at a target (the sample) while a receiver behind the sample measures the attenuation of 

the X-rays as they pass through the sample material. Since X-ray attenuation is density-dependent, a 

greyscale image is output where high-density objects are shown as bright, and low-density objects (such 

as air or liquid-filled pores) show up darker. The output greyscale image provides a relative measure 

of the sample density, though in micro-CT there is no equivalent to the Hounsfield scale where a precise 

density can be determined based on greyscale values. For application to petroleum engineering, the 

idea is to segment air-filled pore spaces from the rock matrix, thus acquiring a map of the rock pore 

structure.  

While this may sound simple in rocks with clearly-defined boundaries such as sandstones, 

carbonates are much more challenging to segment properly. There are a few reasons for this. Firstly, 

the subsurface geology of carbonate formations often erases easily defined boundaries between matrix 

and pore space. Additionally, carbonates tend to contain a microporosity element that is below the 

resolution of micro-CT scanners, assuming a reasonable sample size (1 cm3) is desired to be imaged. 

Thus, the boundary between pores and matrix is often blurred and post-process filtering is required to 

enhance contrast for accurate segmentation. In this work, “segmentation” refers to the process of 

differentiating between pore and matrix space in the sample.  

  Ruzyla (1986) provided an early review of methods for quantifying pore-scale features from 

digital images. Key topics discussed in this work are the process of image binarization, calculation of 

digital porosity, construction of pore-diameter distributions, and measures for quantifying pore shapes. 

While this study used thin-sections to discuss the aforementioned topics, the results remain important 
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for 3D images from micro-CT and image processing in general. Of the aforementioned subjects 

discussed, one of the most important is the binarization procedure. Binarization refers to the process of 

reducing a greyscale image, which contains 255 shades of grey for an 8-bit image, to a binary image – 

one that contains only two colors, or intensity values. The result of an ideal binarization procedure 

should highlight pore space as one of the two colors and matrix space the other color. A binary image 

is an important starting point for image analysis, and some macro-scale features, such as porosity, can 

be directly calculated from the binary image. From now on, we define pore space as black and matrix 

space as white in a binary image. In this case, the porosity of an image can simply be defined as the 

ratio of black pixels to white pixels. In a 3D object, a pixel becomes a voxel and the porosity 

measurement is attained in the same manner. The process of binarization is not straightforward. The 

procedure will often use the greyscale histogram as a means to properly segment pores from matrix. 

They greyscale histogram is a plot of pixel grey levels versus their frequency in an image. An idealized 

grey-level histogram is shown in Fig. 1.11. 
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Figure 1.11: Grey-scale histogram clearly showing the difference in grey level intensities between matrix and 
pore space (Ruzyla, 1986) 

 

Not shown in Fig. 1.11, but ever-present in digital imaging, is the impact of noise on the 

histogram. Noise may show up as a separate peak on the greyscale histogram, or as a widened base of 

the pore or rock peaks. Reduction of noise by digital filtering will be discussed later. Notice in Fig. 

1.11 the presence of a “threshold” grey value, defined somewhere between the peaks of pore space and 

rock grains. The binarization procedure involves setting this threshold greyscale value such that pore 

space and rock grains are entirely segmented. In reality, greyscale histograms are not as idealized as 

shown above and setting the threshold value is more difficult, especially in carbonates.  

Ruzyla (1986) also compared cumulative pore-size distributions of several different rock types 

(carbonates, dolomites, and sandstones) and found that the distribution shapes differed both for 

different rock types, and different samples within a certain rock type. Pore shapes were quantified in 

each rock type according to a parameter called Form Factor, related to pore surface area and curvature. 

Pore shape can also be quantified by aspect ratio, or as a normalized shape factor where a perfect sphere 
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has a value of 1. In general, quantifying shapes of irregular objects, such as pores, is challenging. 

Multiple measures exist even for pore diameter, including Feret diameter - which measures the longest 

line segment that can fit within the irregular body – or equivalent diameter, defined as the diameter of 

the largest inscribed sphere that fits within the pore space. Equivalent diameter tends to underestimate 

the true pore diameter, but is more computationally efficient than Feret diameter, which requires up to 

32 measurements per pore in 3-dimensional space. In the current work, Feret diameter is the chosen 

method due to its increased accuracy and ability to handle measuring irregular shapes. Modern post-

process filters used in this work will be described in more detail in Chapter II.  

1.2.3.a - Thresholding Algorithms and Binarization  

 Sezgin & Sankur (2004) provide a comprehensive review of 40 image thresholding methods 

for image processing. The full results of this study will not be described here; however each method 

was quantitatively evaluated for segmentation accuracy. In general, thresholding techniques can be 

categorized as global or local (Iassonov et al., 2009). Local methods depend on the spatial variation of 

greyscale values within the image, while global methods take into consideration the greyscale 

histogram of the entire image (or image stack, in 3D cases). This makes global methods more suitable 

for 3D volumes, such as those output from micro-CT scans. Because of the large number of algorithms 

considered in the Sezgin & Sankur study, and the different ways in which they work, comparing the 

results is non-trivial. As such, five different criteria were used to determine algorithm effectiveness. 

Ultimately, Otsu cluster thresholding (Otsu, 1979), a global histogram-based method, was found to be 

adequate in all cases considered. Despite this conclusion, the Sezgin & Sankur (2004) study did not 

specifically apply any algorithms to micro-CT scans of geologic media.  

A study by Iassonov et al. (2009) compared Otsu thresholding against other methods 

specifically for the purpose of segmenting micro-CT scans of geologic media. Methods were scored 

based on porosity measurements and visual inspection of the results. They concluded that Otsu 

thresholding was superior to other methods for the purpose of consistently segmenting geological media 
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in an accurate manner. They also concluded that pre-processing steps were essential to accurate 

segmentation. In addition to the aforementioned study, the Otsu method has been widely used in the 

literature (Ji et al., 2012; Gharbi & Blunt, 2012; Andrä et al., 2013) and is the method used in this study. 

The Otsu method is described briefly in the following paragraph. 

In Otsu’s method, the greyscale histogram is divided into two regions, black and white, 

separated by a threshold (similar to the histogram shown in Fig. 1.11). The threshold is determined by 

minimizing the variance between greyscale values of the voxels above and below the evaluated 

threshold. The greyscale threshold is iteratively searched along the histogram until a value is reached 

where the aforementioned variance reaches a minimum value. A limitation of Otsu’s method is that it 

tends to underestimate the porosity of carbonates with dual porosity, such as Indiana Limestone (Ji et 

al., 2012). Dual porosity is defined as a rock having two distinct sets of pore sizes, otherwise categorized 

as a macro and micro porosity. Microporosity is below the resolution of micro-CT imaging, but is still 

effective in promoting fluid flow so it contributes to the laboratory-measured porosity. To overcome 

this limitation, Ji et al. (2012) modified the Otsu (1979) technique by segmenting the greyscale 

histogram into three separate regions: solid, microporous, and macroporous. Although the theoretical 

basis for the Ji et al. (2012) method is sound, and Indiana Limestone does exhibit microporosity, a 

separate study (Freire-Gormaly et al., 2015) found that the difference between porosity derived from 

Otsu and Ji et al. methods in Indiana Limestone was negligible (13±1% and 14±5 % porosity for each 

method, respectively). Additionally, Otsu thresholding porosity values were found to agree well with 

laboratory results in the current work. Thus, the original Otsu procedure is used henceforth whenever 

“thresholding” is mentioned in the subsequent sections of this work.  

1.2.3.b – Post-Binarization Procedures & Morphological Operations 

Binarization procedures are not perfect, and many artifacts may still remain even after correct 

segmentation. These artifacts are mostly seen in the form of small pore specks in the matrix space, or 

holes in the pore space. An example of each from this study is shown in Chapter II, specifically Figs. 
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2.7 and 2.9. These artifacts, only a few pixels wide, are due to noise or incomplete segmentation and 

are unphysical. If left untreated, these artifacts will eventually be labeled as small pores (in the case of 

specks), or cause problems with pore identification and connectivity measurements (in the case of 

holes). For example, the presence of small specks will artificially inflate the pore count, significantly 

reduce the average pore diameter, and affect numerous other measurements that depend on pore size. 

Thus, it is important to remove these artifacts and to recreate the pore and matrix space as accurately 

as possible to ensure correct labeling of individual pores in subsequent steps. Common ways of dealing 

with these types of artifacts in the image processing literature are called morphological operations 

(Haralick et al., 1987). Specifically, erosion and dilation are the most important of these operations. 

Erosion refers to the reduction of the perimeter of each pore element by a desired pixel amount. In this 

work, 1 pixel is used in all cases. Dilation refers to the opposite of erosion, whereby one pixel is added 

to the edges of each binarized pore section. Erosion and dilation are most always used together. The 

process of erosion followed by dilation is called an “opening” procedure. While at first glance an 

opening procedure (whereby 1 pixel is subtracted then added to all pore space edges) may seem a 

fruitless operation, in fact the output of the operation is different from the input. The purpose of the 

operation is to eliminate small, unphysical noise of a specific size (in this case 1 pixel). The advantage 

of this morphological operation is that specks and holes are eliminated while pore shape is maintained. 

This is best explained by visual example, as seen in this work in the figures mentioned above. Another 

example of the opening procedure, unrelated to this work, is shown below in Fig. 1.12 
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Figure 1.12: Input image (left) prior to a morphological opening operation. Output image (right) maintains the 
figure of interest’s shape while removing speckle noise. Holes within the figure would also be removed from the 
image by this procedure. (OpenCV-Python Documentation, 2014) 

 

1.2.3.c – Pore Labeling and Measurements 

The final image processing step before pore measurements can be made is identification of the 

actual pores. Like binarization, this process is non-trivial and heavily dependent on the algorithms used 

and the quality of segmentation and filtering performed in the previous steps. In this study, the input to 

the labeling process (which involves a series of algorithms) is a binary image and the output is a 

“labeled image” – an image file that has individual pores identified and separated from each other. As 

always, this process is complicated further by consideration of pore boundaries in 3D. More information 

about the specific process used in this study can be found in Chapter II. 
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1.3 – Problem Statement 

While pore-size distributions have been investigated as a way to categorize rocks, recent digital 

computing advances allow accurate recreation of the rock pore network. This reconstruction permits 

computation of pore sizes and many other measures, assuming correct pore segmentation can be 

attained.  

This work investigates how the pore-size distribution of a given carbonate rock changes the values 

of optimum acidizing parameters (PVbt,opt and vi,opt).  

 

1.4 – Research Objectives 

The purpose of this study is to characterize pore-size distributions from carbonate rocks and to 

relate them to optimum wormholing conditions values (PVbt,opt and vi,opt) measured from linear 

corefloods. Trends from these relationships may give insights into more accurate models or help to 

reduce the need for lab experimental measurements of optimal conditions. Optimum acidizing 

parameters are also compared against pore measurements taken from image analysis. 
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CHAPTER II  

METHODOLOGY  

This section outlines the procedures undertaken in the present study to address the research 

objectives and problem statement posed above. 

2.1 – Core Acidizing 

Core acidizing was carried out at room temperature with 15 wt.% HCl on limestone cores (1-

inch diameter by 6-inch length). The apparatus used to carry out acidizing procedures is shown in Fig. 

2.1. The pressure drop across the core is monitored until breakthrough occurs. Pressure transducers 

output the measurements to a computer running LABVIEW software. A backpressure regulator is used 

to keep CO2 generated from the calcite-HCl reaction in solution. A recent study found that allowing the 

CO2 to come out of solution can slow down wormhole propagation, so regulation of backpressure is an 

important feature of the setup (Cheng et al., 2016). To determine optimum acidizing parameters, 

multiple acid corefloods must be completed at various injection rates for a given rock type. A sufficient 

number of corefloods are required until the optimal conditions are identified and an acid efficiency 

curve can be plotted. The curve is then fit with the Buijse & Glasbergen model to calculate optimum 

parameters (PVbt,opt and vi,opt). More details on the acidizing apparatus, determination of breakthrough 

based on pressure drop, and curve-fitting procedures can be found in Izgec et al. (2010) and Etten et al. 

(2015).  
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Figure 2.1: Experimental setup for core acidizing experiments. Acid is injected from the top of the core and 
pressure is monitored to determine when breakthrough occurs. A backpressure regulator is used to keep CO2 
from acid reaction in solution. (Izgec et al., 2010).  

 

2.2 – Sample Preparation for Micro-CT Scanning 

Samples for micro-CT scanning are significantly smaller than the 1 in. x 6 in. cores used in 

coreflooding. These cores are too large to be scanned with micro-CT, and medical CT (which allows 

for larger core-size samples) does not provide the resolution needed to perform pore-scale analysis of 

rock structure. Thus, two separate scales of rock samples are needed: cores for acidizing and samples 

for micro-CT analysis. To maintain consistency across these two scales, micro-CT samples were cut 

from the same block in the same orientation as the cores used for acid testing. This consideration was 

especially important with Travertine samples which showed high degrees of permeability anisotropy 

due to geological lamination. Cores and scanned samples were both cut parallel to the bedding to 

maintain consistency in the case of Travertine, since natural laminations in the rock prevented core 

breakthrough when acidized perpendicular to the bedding. Table 2.1 lists the micro-CT samples studied 
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in this work, along with a naming convention that will henceforth be used in this study to refer to each 

sample. Each sample is named based on the type of limestone followed by a number representing its 

permeability. Samples within the same rock type are distinguished by their differing permeabilities. 

The permeabilities listed are measured from cores which are subsequently acidized to generate 

efficiency curves. In the case of Desert Pink, only one acid efficiency curve was created while two 

separate samples were scanned with micro-CT. Thus, the permeability (and optimum parameters) of 

the Desert Pink samples are the same. 

 

Table 2.1: List of samples scanned using micro-CT in the current study. 

Micro-CT Samples Scanned Sample Reference Name 

Desert Pink 1 (33md) DP1-33 

Desert Pink 2 (33md) DP2-33 

Indiana Limestone 1 (6md) Indi-6 

Indiana Limestone 2 (8md) Indi-8 

Indiana Limestone 3 (10 md) Indi-10 

Indiana Limestone 4 (239 md) Indi-239 

Travertine 1 (70md) Trav-70 

Travertine 2 (600md) Trav-600 

 

 
All samples for scanning were cut into 1cm3 cubes, except for the Indi-8 sample, which was 

approximately 0.5 cm3. The size of the sample affects the scanning resolution, as described in the next 

section. Prior to scanning, the micro-CT samples were tested for their porosity. The method first 

involved measuring the volume and dry weight of each sample. The samples were then soaked in water 

overnight and the wet weight was measured. Porosity was calculated as the difference between wet and 

dry weight divided by the sample volume. Porosity of the micro-CT samples mostly matched well with 
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porosity of the acidized cores, but this was not always the case. Table 2.2 compares the porosity of 

acidized cores with micro-CT sample porosity attained by the method described above. Note that the 

creation of acid efficiency curves requires multiple corefloods at different injection rates, so the listed 

core porosity is an average of all cores used to create the curve. The total number of cores used to create 

each curve is also listed. 

 

Table 2.2: Comparison of porosity measured for cores and micro-CT samples for each rock 
type. 

Rock Sample Average Core Porosity (%) Micro-CT Sample Porosity (%) 
 

DP1-33 25 (9 samples) 30 

DP2-33 25 (9 samples) 38 

Indi-6 15 (11 samples) 19 

Indi-8 15 (6 samples) 15 

Indi-10 11 (6 samples) 13 

Indi-239 16 (6 samples) 23 

Trav-70 7 (4 samples) 17 

Trav-600 9 (4 samples) 8 

 
 
 

Table 2.2 shows that the DP2-33, Indi-239, and Trav-70 samples showed significant 

differences in porosity between core and micro-CT samples. For the most part, this is attributed to the 

effect of pore-structure heterogeneity which can be especially prevalent in high-permeability rocks like 

Travertine and Indi-239. Discrepancies between core porosity and micro-CT porosity are investigated 

further in Chapter IV. The porosity measured from the micro-CT samples is used for all correlations 

and subsequent analyses, since binary micro-CT images must be compared to the porosity of the 

scanned sample.  

 



30 
 

2.3 – Micro-CT Scanning Parameters    

Micro-CT scans of sample rocks were performed at the Texas A&M Department of Petroleum 

Engineering. The model of scanner is a Phoenix Nanotom, manufactured by General Electric. As 

mentioned, the sample size for each rock type was 1cm3, except for the Indi-8 which was significantly 

smaller. This allowed the Indi-8 sample to be scanned at a higher resolution, at the expense of sample 

volume. Scanning resolution ranged from 5-8 microns per voxel. Care was taken to ensure the aspect 

ratio of voxels for each sample equaled 1, indicating the same resolution in the x, y, and z directions. 

Table 2.3 lists the resolution of each sample.  

 

Table 2.3: Resolution of each sample from micro-CT scanner. 

Rock Sample Resolution (µm/voxel) 

DP1-33 8 

DP2-33 7.2 

Indi-6 6.5 

Indi-8 5 

Indi-10 6.5 

Indi-239 8 

Trav-70 7.6 

Trav-600 7.5 

  
 

2.4 – Image Processing 

Unlike the medical CT scanner at Texas A&M Department of Petroleum Engineering, the 

micro-CT scanner does not provide methods for analysis of raw images. Thus, all processing of images 

was performed with open-source software. Specifically, a modified version of the software ImageJ, 

called FIJI, was used for image analysis (Schindelin et al., 2012). ImageJ has seen extensive use in the 
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field of biology, for which it was initially developed to analyze microscopy images. While the fields of 

geology and petroleum engineering tend to use professional analysis software (especially Avizo, by 

FEI Systems), ImageJ and FIJI are used frequently for studies where such premium software is 

unavailable. FIJI contains all the features of standard ImageJ software, but is modified with many 

plugins to make it more useful for analysis of 3D image stacks, such as those output from micro-CT. 

As the software is open-source, the plugins used come from many different developers which are 

credited accordingly in this thesis as they are mentioned. The main caveat when using such software is 

that there is no oversight to ensure accuracy or complete functionality of the plugins.  Despite this 

stipulation, ImageJ and FIJI are widely regarded as the best free software for image analysis, mostly 

due to the extensive community support and availability of a wide variety of plugins.  

In an effort to control the effect of resolution differences, the total digital volume to be analyzed 

was normalized across each sample. While the actual micro-CT samples were each 1cm3 (except Indi-

8, which was 0.5cm3), the variability of noise and other CT scanner parameters means that the entire 

sample volume cannot be used for image analysis. Notably, edge artifacts were prominent near the top 

and bottom of each sample. Computing power limitations also must be considered during any digital 

analysis procedure. Fig. 2.2 shows the volume normalization procedure visually. 
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Figure 2.2: Visualization of how digital sample volume is normalized to 0.5cm3 to ensure 
comparability for pore count measurement. The Indi-8 sample is excluded from this normalization as 
only 0.133cm3 of good-quality digital volume was available for analysis. 

 

The maximum volume that could be digitally analyzed, considering noise and artifacts across 

all samples, was 0.5 cm3. Again, the exception is the Indi-8 sample. Since this sample was smaller than 

the others, only 0.133 cm3 of the digital sample was usable for analysis. In theory, the only measurement 

this should affect is the number of resolved pores (pore count). All other measurements, including pore-

size distributions, are normalized across the sample and frequencies are measured as a percent of overall 

pores. Even so, the digital volume of all other samples was normalized to 0.5 cm3 to ensure consistency 

across pore measurements, including the pore count, which is an interesting value in itself and will be 

investigated in Chapter IV.  

While every possible effort has been made to retain accuracy of results in this thesis, it must be 

noted that the software used was not written for complex segmentation of porous media and cannot 

Not usable due to edge 
effects (specific volume 
affected by artifacts differs 
among samples)  

Physical sample (red 
cube) = 1cm3 

Area usable for digital 
analysis normalized 
across samples = 
0.5cm3 

0 
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compete with the feature set available in premium software specifically tailored to analysis of 

geological media. At the end of this section is a visual representation of the image processing pipeline 

where the effects of filtering on images and greyscale histograms are shown. 

2.4.1 – Filtering of Raw Data 

Raw images from micro-CT vary in quality, but must always be post-processed before further 

analysis. In this study, the post-processing steps were normalized between all samples. Specific pre-

binarization processes used were windows & level adjustment and a median blur 3D filter. These 

procedures are outlined below in more detail. 

2.4.1.a – Window & Levels Adjustment  

This is the first adjustment made to the raw micro-CT output images and is a standard feature 

of ImageJ. In Figs. 2.3 and 2.4, an example is shown of pre and post-processed images from this study. 

This adjustment allows the user to decide which greyscale intensities to include or discard in the image. 

Image contrast is affected by this selection. The adjustment is not necessarily an objective process, but 

generally, the “Auto” feature in ImageJ does an excellent job of selecting optimal window and level 

values. By experimenting with the sliders present in the software, and with the aid of the greyscale 

histogram visualization, the user selects values that optimally enhance pore-matrix contrast while 

reducing unwanted artifacts and noise.  

 
2.4.1.b – Median Blur 3D Filter 
 

 This filter is applied to a greyscale image. It works by replacing a pixel’s greyscale value with 

the median of intensity values of neighbor pixels. The neighborhood radius is defined by the user, and 

is kept constant at 2 pixels throughout this study. This filter helps reduce pore surface roughness while 

maintaining the pore volume and also eliminates speckle noise (intensity outliers). It is important to 

remove this type of noise because in subsequent steps, these speckles may incorrectly be labeled as 
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small pores. The 3D nature of this filter means that it can be applied to an entire stack of images. This 

is also a filter that comes standard with FIJI. 

2.4.2 – Binarization Process 

The thresholding algorithm used in this study for binarization is the one developed by Otsu 

(1979), which is a global, histogram-based procedure. Application of the Otsu method was performed 

through the built-in “Thresholding” option in FIJI. The binarization process is different from some of 

the aforementioned filters as it is more subjective, or a “semi-automatic” process. The Otsu algorithm 

chooses a threshold it defines as optimum, but the user can adjust sliders to add or remove areas of the 

screen that may not be correctly selected. FIJI dynamically overlays areas of threshold selection onto 

the greyscale image, so the user is easily able to adjust sliders as necessary with the objective being to 

fully include the pore space of the image while disregarding matrix space. In some cases, it is not 

entirely possible to include all pore space without including some matrix space. A common artifact 

present in Otsu thresholding are “speckles” or “holes”, which are small-pixel areas incorrectly 

segmented in the matrix or pore space, respectively.  

Notice that even after thresholding there are a number of areas where noise is still present (Figs. 

2.6 and 2.7). If left this way, this noise would eventually be categorized as small, unconnected pores. 

A large number of these pores would significantly alter the mean pore diameter values and other 

measurements. Noise is present in both the matrix area, as single pixel pores, and in the pore area, as 

places where holes exist that are unphysical. To remove these small inconsistencies, mathematical 

morphology procedures are used, as described in Chapter I. Specifically, an “opening” procedure is 

used to remove the artifacts, which consists of an erosion followed by dilation procedure. The width of 

opening used is a conservative 1 pixel, as a balance must be struck between removing unwanted artifacts 

and avoiding the removal of legitimate small pores and holes. Figs. 2.8 and 2.10 show the result after 

application of morphological procedures to the binarized images.    
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2.4.3 – Pore Identification, Labeling and Measurements 

Pore labeling is performed by the 3D Objects Counter plugin in FIJI (Bolte & Cordelieres, 

2006). The input to the plugin is a stack of binarized images and the output is the same binarized stack, 

but with individual pores labeled. Labeling of pores includes consideration of 3D connectivity of the 

pore network which is present in the binary image stack. As previously discussed, this process is non-

trivial and one of the more complex areas of computer science research. The 3D Objects plugin does 

not allow the user to alter the labeled pore network, and there are certainly limitations to the algorithms 

used compared to the more advanced features present in premium software.  

As mentioned, the user has no control over how the objects are labeled and how connectivity 

is defined. The only other inputs (in addition to the binary stack) is a selection of measurements to be 

performed on each labeled object. There are many selectable measurements, and the ones specifically 

used in this study are presented in Chapter III. 

2.4.4 – Image Processing Pipeline 

The full image processing pipeline is shown in this section for Trav-600 (Figs. 2.3 – 2.8). This 

visualization is presented as a summary of the above explanations. The steps shown in this section were 

completed for each of the 8 rock samples analyzed. Also note that while only a single image is shown 

in the following section, for each sample the process is performed on the entire image stack (i.e. in 3D).  
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Figure 2.3: Raw image output (after cropping) from micro-CT and associated intensity histogram. No post-
processing has been applied. Note since the image is 16-bit greyscale, there are more than 255 grey values (as 
would be present in an 8-bit image). 

 

 

Figure 2.4: Window & Level selection altered to enhance contrast and remove unwanted grey values from the 
image. The histogram height is reduced (and width increased) due to the Window/Level selection reassignment. 
Note on both ends of the histogram there are pure black (0 intensity value) and pure white (65535 intensity value 
for 16-bit images). Note the introduction of speckle noise. 
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Figure 2.5: Median filter applied to reduce speckle noise. Note the change in histogram shape, indicating pore 
(left peak) and matrix space (right peak) 
 

Threshold 
selection 

Figure 2.6: Otsu thresholding algorithm being applied. Note the red rectangle selecting the threshold in the 
valley between the two peaks (recall Fig. 1.11). 
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Figure 2.7: Binary image after application of Otsu thresholding at above value. A few things to note: 1. Noise 
within the pore-space (holes). 2: Histogram only shows two intensities at extremes of the axis. 3. During 
binarization, the image is converted to 8-bit greyscale. This reduces the intensity scale to 0-255. 

 

 

Figure 2.8: Opening procedure (erode followed by dilate) closes holes while maintaining the pore morphology. 
In a noisier image, speckles in the matrix space would also be reduced. Especially note the large middle pore. 
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To better illustrate the abilities of the opening procedure, a binary image of Indi-10 is shown 

pre-and post-opening (Figs. 2.9 and 2.10, respectively). 

 

 

Figure 2.9: Indi-10 binary image (pores in white) after Otsu thresholding. 

 

Trav-600 was a simpler image to segment as the pores are quite large and image quality good. 

Indi-10 is shown above (Fig 2.9) with all filtering completed up to the erosion + dilation (opening) 

procedure. Despite the median 3D speckle-reduction filter, there is prominent noise in the matrix area 

after Otsu thresholding. Below is the same image after the opening step. 



40 
 

 

 

Figure 2.10: Indi-10 binary image after morphological opening (pores in white). 

 

Note the reduction in matrix-space speckles while maintaining the shape of the pores. A 

balance must be struck between removing noise while still keeping legitimate small pores. Thus, the 

opening procedure is set to only remove holes or speckles that are 1 pixel in size. Computation of mean 

pore diameter of Indi-10 in Fig. 2.9 vs. Fig. 2.10 produces vastly different results: 26 μm vs. 48 µm.  
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2.5 – Pore-Size Distribution Construction 

After measurements have been performed on individual pores by the object counter software, 

the results of pore diameter are organized into a frequency distribution. Because the resolution is 

different for each sample (due to optimization of micro-CT scanner parameters during scanning), the 

minimum pore size able to be resolved for each sample is slightly different. This is somewhat noticeable 

when comparing distributions, but the variation is very small.  

Due to the large number of pores present in each sample, frequency distributions are created 

by sorting pores into distinct bins along the x-axis that encompass a range of pore sizes. There are a 

number of methods for determining an appropriate bin width, and each method can give different 

results. In general, a bin width must be selected that presents an adequate visualization of the data 

without presenting too much, or too little detail. For more information on choice of histogram bin width, 

the reader is referred to Wand (1997).  Note that the samples have differing maximum pore diameters, 

so the total distribution length along the x-axis is not the same for each distribution. In this work, care 

is taken to ensure bin widths are similar across all sample pore-size distributions to ensure 

comparability.     

The resolution difference is negated on the y-axis by normalizing each distribution. Instead of 

showing the exact number of pores falling within each bin, the percent of the total number of pores is 

shown. By performing this calculation, the distribution is normalized and made comparable to other 

samples of differing resolutions. 

The standard way of displaying a frequency plot is either a bar-graph histogram or a scatter 

plot with markings at the determined frequency for each bin. In this work, the scatter plot is used with 

smoothed lines connecting the points to better show the shape of the plot (see Fig. 3.2 for an example 

from this study). This method allows for easier comparison of different samples. Frequency 

distributions are plotted in both semi-log and log-log axes. The semi-log plot shows the familiar bell-

shaped curve, while the log-log plot is qualitatively helpful because it highlights the presence of very 
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large pores that have a low frequency of occurrence. In the semi-log plots, these pores often do not 

have sufficient frequency to be seen at all.  

This thesis focuses on fitting the semi-log visualization with a lognormal distribution equation. 

The lognormal distribution equation used for fitting is  

)
2σ

μ)(ln(x)exp(
2πx

1P(x)
2

2

2

−
−=

σ
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Where x is the pore diameter and μ and σ are used as fitting parameters. MATLAB’s 

distribution fitting application is used to automatically generate µ and σ values that optimize the fit of 

the lognormal distribution to the semi-log visualization of pore-size data. These two variables affect 

the shape of the lognormal distribution in different ways. The µ variable, often called the location 

parameter, is related to the mean, median, and mode of the distribution and thus the location of the peak 

value along the x-axis. The other fitting variable, σ, is sometimes called the shape parameter as it affects 

the height and sharpness of the distribution peak. This variable is related to the skewness and kurtosis 

of the distribution. The distribution variance is affected by both μ and σ values. By taking these two 

variables together and using them to fit the distribution, an optimal curve fit can be attained by altering 

the shape and peak location of the function to fit the pore-size distribution. Pore-size distributions and 

fitted values are shown in Chapter III of this work.  
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CHAPTER III 

 RESULTS 

This section displays results gained from experimental work of this study, including optimum 

wormholing parameters from acid coreflooding and results from image analysis of the micro-CT 

scanned rock sample pore structures. 

3.1 – Core Acidizing 

Optimum parameters for each rock type are shown in Table 3.1. Determination of these 

parameters required at least 4 acidized core samples to complete the acid efficiency curve. The data 

points were then fit with the Buijse & Glasbergen (2005) model to determine optimum parameters.  

 

Table 3.1: Optimum parameters for each rock type as determined by acidizing coreflood tests. 

Rock Sample Optimum Pore Volumes To 
Breakthrough (PVbt,opt) 

Optimum Interstitial Flux 
(vi,opt, cm/min) 

DP1-33 0.64 3.25 

DP2-33 0.64 3.25 

Indi-6 0.34 1.60 

Indi-8 0.34 1.56 

Indi-10 0.58 2.92 

Indi-239 0.75 2.25 

Trav-70 0.49 24.5 

Trav-600 0.70 20.0 

 

 

Note that PVbt,opt increases with permeability across both Indiana Limestone and Travertine 

rock samples. The values of vi,opt do not show a clear trend, as the value decreases at large permeabilities 

in both Travertine and Indiana Limestone samples. Indiana Limestone (excluding Indi-8) and Desert 
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Pink optimum values were determined by Etten et al., (2015). Travertine and Indi-8 efficiency curves 

were created specifically for this study. 

3.2 – Image Processing  

Table 3.2 compares porosity derived from micro-CT images binarized using Otsu thresholding 

with porosity measured directly from the 1 cm3 samples. The process of measuring laboratory-

determined porosity of samples is discussed in Chapter II. Note that the listed micro-CT porosity 

results are those measured from the 1 cm3 samples, and are not the same as those measured from 

acidized core samples. The latter comparison was discussed previously and is shown in Table 2.2.  

 

Table 3.2: Comparison of porosity derived from lab experiments and image analysis. 

Rock Sample Micro-CT Sample Porosity (%) Image Analysis 
Porosity (%) 

DP1-33 30.0 28.0 

DP2-33 37.6 36.8 

Indi-6 19.0 13.2 

Indi-8 15.0 13.6 

Indi-10 12.6 12.0 

Indi-239 22.7 21.3 

Trav-70 17.4 16.3 

Trav-600 8.3 8.0 

 

 

From the above table, it is clear that the porosity measured from binary images thresholded 

with the Otsu algorithm match well with the sample porosity measured in lab. Fig. 3.1 plots the values 

against each other for a visual representation of the porosity comparison. 
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Figure 3.1: Comparison of lab-derived porosity measurements of micro-CT samples versus image-derived 
porosity calculated from binary images after Otsu thresholding. 

 

A summary of measurements relating to pore size are shown in Table 3.3  

 

Table 3.3: Measured parameters from image analysis of each rock type relating to pore size. 

Rock Sample Mean Pore 
Diameter (μm) 

Median Pore 
Diameter (μm) 

Mean Pore 
Volume (μm3) 

Median Pore 
Volume (μm3) 

DP1-33 72.1 44.4 521,911 10,997 

DP2-33 97.3 39.8 1,171,980 8,885 

Indi-6 17.4 13.0 66,763 1,373 

Indi-8 16.5 10.0 65,398 3,747 

Indi-10 47.8 34.7 66,267 4,939 

Indi-239 62.8 40.2 391,674 7,269 

Trav-70 62.4 40.4 488,854 8,014 

Trav-600 116.2 54.4 3,945,680 19,502 
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When attempting to describe sample pore size with a single number (i.e. mean or median), it 

appears that the median number is the best figure to use. As previously discussed, noise inherent in the 

imaging and post-processing steps can drastically affect the mean values. For example, notice that while 

DP1-33 and DP2-33 are the same rock with equal permeability, the mean pore diameter is quite 

different between them. This difference lessens when observing the median pore diameter value. The 

same can be said about the pore volume measurements for Desert Pink samples. Some difference is still 

expected between the pore size values between these two samples because of the difference in porosity 

of DP1-33 and DP2-33 (30% vs. 38%, respectively). Using the median value reduces the effect of very 

large or small pores on the value of interest. Thus, for heterogeneous rocks with wide pore variance, 

the mean may be more appropriate. Ideally, both values should be attained along with the pore-size 

distribution to more accurately decide which value is suitable.  

For Indiana Limestone, the pores trend towards increasing size as the permeability increases. 

The Indi-6 and Indi-8 samples are very close in pore diameter, permeability, porosity, and optimum 

acidizing parameters. Note that the pore diameter increases sharply from the Indi-8 to the Indi-10 

samples. This corresponds with an increase in PVbt,opt values (from 0.34 to 0.58, respectively). The 

optimum flux, vi,opt, also increases from the Indi-8 to Indi-10 sample (from 1.56 to 2.92 cm/min). These 

trends will be explored further in Chapter IV.   

The Travertine samples show an increase in all measures of pore size as permeability increases 

from Trav-70 to Trav-600. This occurs despite the higher porosity of the Trav-70 sample (17%) 

compared to the Trav-600 sample (9%).  

3.3 Pore-Size Distributions 

In this section, pore-size distributions are first shown for each sample individually with semi-

log and log-log axes. Next, samples of the same rock type are compared by overlaying the distributions 

onto one plot. Finally, the plots of rock types with similar optimum acidizing values are compared to 

determine how these parameters affect pore-size distribution shape.   
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3.3.1 – Pore-Size Distributions for Each Rock Type 

In this section, pore-size distributions are presented for each sample. Plots are shown for each 

sample in both semi-log and log-log plotting styles. Semi-log plots emphasize the shape of the 

distribution along the area of most frequently-occurring pore diameter, while log-log plots encompass 

the entire distribution of pore sizes within the sample and show larger pores with a low-frequency of 

occurrence. The presence of such pores may not appear on semi-log axes, but they do affect 

measurements relating to mean pore diameter and pore volume gathered from the image analysis 

dataset. At the end of this section, after plots are presented, analysis of the results will be presented. 

Further in-depth discussion is reserved for Section 3.3.2, which compares pore-size distributions of 

different samples plotted on the same graph. 
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3.3.1.a – Desert Pink 1 (DP1-33) 

Fig. 3.2 shows frequency plots on semi-log and log-log axes of the DP1-33 sample. 

 

 

Figure 3.2: DP1-33 pore-size distribution on semi-log (left) and log-log (right) axes 

 

3.3.1.b – Desert Pink 2 (DP2-33) 

Fig. 3.3 shows frequency plots on semi-log and log-log axes of the DP2-33 sample. 

 

 

Figure 3.3: DP2-33 pore-size distribution on semi-log (left) and log-log (right) axes. 
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3.3.1.c – Indiana Limestone 6md (Indi-6) 

Fig. 3.4 shows frequency plots on semi-log and log-log axes of the Indi-6 sample. 

 

 

Figure 3.4: Indi-6 pore-size distribution on semi-log (left) and log-log (right) axes. 

 

3.3.1.d – Indiana Limestone 8md (Indi-8) 

Fig. 3.5 shows frequency plots on semi-log and log-log axes of the Indi-8 sample. 

 

 

Figure 3.5: Indi-8 pore-size distribution on semi-log (left) and log-log (right) axes. 
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3.3.1.e - Indiana Limestone 10md (Indi-10) 

Fig. 3.6 shows frequency plots on semi-log and log-log axes of the Indi-10 sample. 

 

 

Figure 3.6: Indi-10 pore-size distribution on semi-log (left) and log-log (right) axes. 

 

3.3.1.f – Indiana Limestone 239md (Indi-239) 

Fig. 3.7 shows frequency plots on semi-log and log-log axes of the Indi-239 sample. 

 

 

Figure 3.7: Indi-239 pore-size distribution on semi-log (left) and log-log (right) axes. 
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3.3.1.g - Travertine 70md (Trav-70) 

Fig. 3.8 shows frequency plots on semi-log and log-log axes of the Trav-70 sample. 

 

 

Figure 3.8: Trav-70 pore-size distribution on semi-log (left) and log-log (right) axes. 

 

3.3.1.h - Travertine 600md (Trav-600) 

Fig. 3.9 shows frequency plots on semi-log and log-log axes of the Trav-600 sample. 

 

 

Figure 3.9: Trav-600 pore-size distribution on semi-log (left) and log-log (right) axes. 

 

Figs. 3.2 – 3.9 show semi-log and log-log graphs of computed pore-size distributions for each 

rock. There are several things to note from these distribution results. Firstly, the distributions for Indi-

6 and Indi-8 do not show the characteristic bell shape on semi-log axes. This is because the smallest-

resolved pore size is also the size with the highest frequency, which is not the case for the other 

distributions. Secondly, in the log-log plots some samples show a distinct secondary plateau or peak, 
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especially DP2-33. This may indicate the presence of vugs within the sample, or the bimodal nature of 

the pore structure. The value of the log-log plots is that they can show these large pore diameters that 

are present within the rock but not seen on the semi-log plot due to the low frequency of occurrence.  

3.3.2 – Pore-Size Distribution Comparisons 

In this section, semi-log and log-log distributions are superimposed onto one plot for the same 

rock type. The x-axis maximum value has been reduced from 10,000 in the above section to 1,000 to 

allow for better comparison of the distribution shape. In the semi-log plot, large pores with small 

frequency are difficult or impossible to distinguish. The log-log plots are better for visualizing these 

large pores, which will have an impact on the image analysis measurements such as those listed in 

Table 3.3. As in the previous section, first the comparison plots will be displayed and a discussion of 

results will follow for each rock type. 

In the second part of this section, pore-size distribution plots of different rock types with similar 

optimum values are compared to identify qualitative trends in these distributions.  
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3.3.2.a – Desert Pink Limestone Comparison 

Fig. 3.10 shows a comparison of pore-size distributions for both Desert Pink samples (DP1-33 

and DP2-33) plotted on semi-log axes. 

 

 

Figure 3.10: Desert Pink pore-size distribution comparison on semi-log axes 

 

Fig. 3.11 shows a comparison of pore-size distributions for both Desert Pink samples plotted on log-
log axes. 

 

 

Figure 3.11: Desert Pink pore-size distribution comparison on log-log axes 
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Fig. 3.10 shows that for the largest frequency of pores (from 10-100 µm), the distributions are 

very similar. This is to be expected as the two rocks are of the same type, albeit with different porosity. 

Fig. 3.11 shows that the DP2-33 sample has a section of larger pores in the 200-1000 μm range 

compared with DP1-33. This secondary peak is explained by the higher porosity of DP2-33 (38%) 

compared with DP1-33 (30%). Since the distributions are very similar in Fig. 3.10, the higher porosity 

is most likely due to contribution of these larger pores in the DP2-33 sample. The secondary peak also 

explains the large discrepancy in mean pore size and volume for DP2-33, shown in Table 3.3. Note 

that while the peak is more pronounced for DP2-33, the DP1-33 sample also shows a distinct plateau 

around the same pore diameter range. 

3.3.2.b – Indiana Limestone Comparisons 

Since four separate Indiana Limestone samples are analyzed in this work, a number of 

comparison plots will be presented. For convenience, Table 3.4 below reiterates the physical properties 

and optimum parameters of the four samples. Since the pore-size distributions are measured from 

digital binary images, the porosity listed is that from the digital analysis. As shown in Fig. 3.1, the 

difference between lab-measured and digital porosity is negligible.  

 

Table 3.4: Indiana Limestone physical properties and optimum acidizing parameters. 

Rock Sample Image Porosity (%) PVbt,opt vi,opt (cm/min) 

Indi-6 13.2 0.34 1.60 

Indi-8 13.6 0.34 1.56 

Indi-10 12.0 0.58 2.92 

Indi-239 21.3 0.75 2.25 
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3.3.2.c - Indiana Limestone 6md vs. 8md 

The Indi-6 and Indi-8 samples are similar in all regards: permeability, porosity, PVbt,opt, vi,opt, 

mean pore diameter and mean pore volume. Thus, it should be expected that the pore structure – and 

thus pore-size distributions – are similar. Fig 3.12 shows a comparison of pore-size distributions for 

Indi-6 and Indi-8 samples on semi-log axes. 

 

 

Figure 3.12: Indi-6 and Indi-8 pore-size distribution comparison on semi-log axes. 
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Fig. 3.13 shows a comparison of pore-size distributions for Indi-6 and Indi-8 samples on log-

log axes. 

 

 

Figure 3.13: Indi-6 and Indi-8 pore-size distribution comparison on log-log axes. 
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the mean pore diameter for Indi-8 (16.5 um) is slightly lower than that of the Indi-6 sample (17.4 um). 

Both samples show an almost identical slope on the log-log plot until around 200 μm, where they both 

plateau before decreasing again at the largest pore sizes. Since the distributions for the two samples and 

other parameters are very similar, only the Indi-6 sample will be used for subsequent comparisons with 

higher-permeability Indiana Limestone samples.   
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3.3.2.d – Indiana Limestone 6md vs. 10md 

Fig 3.14 shows a comparison of pore-size distributions for Indi-6 and Indi-10 samples on 

semi-log axes. 

 

 

Figure 3.14: Indi-6 and Indi-10 pore-size distribution comparison on semi-log axes. 
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Fig. 3.15 shows a comparison of pore-size distribution for Indi-6 and Indi-10 samples on log-

log axes. 

 

 

Figure 3.15: Indi-6 and Indi-10 pore-size distribution comparison on log-log axes. 
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3.3.2.e – Indiana Limestone 10md vs. 239md 

Fig. 3.16 shows a comparison of pore-size distribution for Indi-10 and Indi-239 samples on 

semi-log axes. 

 

 

Figure 3.16: Indi-10 and Indi-239 pore-size distribution comparison on semi-log axes. 
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Fig. 3.17 shows a comparison of pore-size distribution for Indi-10 and Indi-239 samples on 

log-log axes. 

 

 

Figure 3.17: Indi-10 and Indi-239 pore-size distribution comparison on log-log axes. 
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Figure 3.18: Indi-6, Indi-10, and Indi-239 pore-size distribution comparison on semi-log axes. 

 

Fig. 3.19 shows a comparison of pore-size distributions for Indi-6, Indi-10, and Indi-239 

samples on log-log axes. 

 

 

Figure 3.19: Indi-6, Indi-10, and Indi-239 pore-size distribution comparison on log-log axes. 
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Trends discussed in the previous sections remain in the comparison of the three Indiana 

Limestone samples. As mean pore size and PVbt,opt increase, the location of the peak in the semi-log 

plot moves to the right, and on the log-log plot the frequency of larger pores remains higher. One note 

is that despite the consistent trend of rightward peak movement in the semi-log plot, the height 

(frequency) of the mode value does not have a consistent trend. Although it is tempting to relate the 

decreased interstitial flux values to the reduction in peak height (2.92 cm/min for Indi-10 and 2.52 

cm/min for Indi-239), the Indi-8 sample has the highest frequency of small pores and yet the lowest 

vi,opt (1.60 cm/min). 

3.3.2.g - Travertine Limestone Comparison 

Fig. 3.20 shows a comparison of pore-size distributions for Trav-70 and Trav-600 samples on 

semi-log axes. 

 
 

 

Figure 3.20: Travertine pore-size distribution comparison on semi-log axes. 
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Fig. 3.21 shows a comparison of pore-size distributions for Trav-70 and Trav-600 samples on 

log-log axes. 

 

 

Figure 3.21: Travertine pore-size distribution comparison on log-log axes. 
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PVbt,opt compared with the Trav-70 sample (0.70 vs. 0.49) and a lower vi,opt (20.0 cm/min vs. 24.5 

cm/min, respectively). 

3.3.2.h – Pore-Size Distribution Comparison Between Different Rock Types  

In this section, a comparison of DP1-33, Indi-239, and Trav-600 is made to observe the 

differences in pore-size distribution among carbonates with different pore structure but similar PVbt,opt 

values. This comparison is shown in Fig. 3.22 on semi-log axes. The optimum breakthrough values of 

the rocks, ordered as they are listed above (and top-to-bottom on the Fig. 3.22 legend), are 0.64, 0.75, 

and 0.7.   

 

 

Figure 3.22: Comparison of rocks with similar PVbt,opt (DP1-33, Indi-239, and Trav-600) on semi-log axes. 
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Fig. 3.23 shows a comparison of pore-size distribution for rocks with similar PVbt,opt values 

(DP1-33, Indi-239, Trav-600) on log-log axes. 

 

 

Figure 3.23: Comparison of rocks with similar PVbt,opt (DP1-33, Indi-239, and Trav-600) on log-log axes. 
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plotted samples. This suggests that pore diameter is more closely related to PVbt,opt than pore volume, a 

concept which will be explored further in Chapter IV.  

Unfortunately, in this study there are no two samples of different rock types that share similar 

values of vi,opt. The two closest values in the study are between Indi-6 and Indi-8. Considering different 

rock types, the closest values are between Indi-10 (2.92 cm/min) and Desert Pink (3.25 cm/min). Fig. 

3.24 shows a comparison of these distributions on semi-log axes. 

 

 

Figure 3.24: Comparison of rocks with similar vi,opt (Indi-10 and DP1-33) on semi-log axes. 
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Fig. 3.25 shows a comparison of rocks with similar vi,opt values (Indi-10 and DP1-33) on log-
log axes.  

 

 

Figure 3.25: Comparison of rocks with similar vi,opt (Indi-10 and DP1-33) on log-log axes. 
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subsequent sections of this thesis.  
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3.4 – Lognormal Fitting of Pore-Size Distributions 

In this section, each of the semi-log pore-size distributions is fit with the lognormal function 

shown in Eq. 2.1, with variables μ and σ altered to obtain an optimum fit. Values of μ and σ are 

displayed in Table 3.5, as determined by the distribution fitting toolbox in MATLAB.  

 

Table 3.5: Optimum values of fitted parameters and associated standard error as calculated by 
the distribution fitting toolbox in MATLAB. 

Rock Sample μ parameter σ parameter μ  Standard 
Error 

σ Standard 
Error   

DP1-33 3.97 0.588 0.00123 0.00087 

DP2-33 4.03 0.827 0.00219 0.00155 

Indi-6 2.54 0.512 0.00053 0.00038 

Indi-8 2.59 0.531 0.00107 0.00076 

Indi-10 3.65 0.513 0.00066 0.00047 

Indi-239 3.88 0.540 0.00114 0.00081 

Trav-70 3.88 0.530 0.00138 0.00098 

Trav-600 4.25 0.824 0.00826 0.00584 

 

As can be seen from the standard error sections of the table, the lognormal fitting was in general 

very accurate. However, the curve fitting toolbox did have problems reaching the peak values of the 

pore-size distributions, especially for those with very high frequency peaks such as Indi-6 and Indi-8. 

Correlations of the values shown in Table 3.5 versus optimum acidizing parameters will be explored 

in Chapter IV. In addition to the optimum fitted values shown above, other information can be gained 

from the fitted lognormal distribution. These parameters include the mean, median, mode, variance, 

skewness, and kurtosis of the fitted distribution. Note that the values of mean and median calculated 

here are not necessarily the same as those listed in previous sections, as in Table 3.3. The previous 

values are calculated strictly from datasets of labeled pores, while values calculated from the fitted 
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distribution depend on the accuracy of the fit. Table 3.6 lists parameters calculated from the fitted 

distribution. 

 

Table 3.6: Parameters calculated from pore-size distribution fit. 

Rock Sample Mean Median Mode Variance Skewness Kurtosis 

DP1-33 63.2 53.1 37.6 1649 2.46 9.63 

DP2-33 79.0 56.1 28.3 6120 3.40 36.7 

Indi-6 14.4 12.6 9.7 62 2.28 6.32 

Indi-8 15.3 13.3 10.1 77 2.32 7.01 

Indi-10 44.1 38.6 29.7 586 2.28 6.36 

Indi-239 56.2 48.6 36.3 1070 2.34 7.39 

Trav-70 55.8 48.4 36.6 1009 2.32 6.99 

Trav-600 98.3 70.0 35.5 9386 3.38 36.1 

 

Other than the standard error value listed in Table 3.5, another way to measure accuracy of 

distribution fit is to plot the distribution mean pore diameter versus the mean pore diameter calculated 

from image analysis. This plot is shown below in Fig. 3.26. 
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Figure 3.26: Comparison of mean pore diameters calculated from fitted distribution versus calculated from 
imaging analysis.  

 

As can be seen from the above plot, the mean pore diameters show excellent agreement, further 

verifying the accuracy of the lognormal fit. We also can observe the mode value of the fitted 

distribution, which represents the pore diameter at which the frequency is highest. This value 

corresponds well to the location of the peaks of semi-log distributions in Sections 3.3.1 and 3.3.2 of 

this thesis. For example, observe Fig. 3.18, the comparison of Indi-6, Indi-10, and Indi-239, and 

compare it with listed mode values in Table 3.6. Notice that the mode value increases with Indiana 

Limestone permeability, and that mode values of Indi-6 and Indi-8 are virtually identical. This is 

consistent with the Indiana Limestone pore-size distribution comparison. Additionally, note that the 

mode values listed for Travertine samples are very similar, same as in Fig. 3.20, which compares 

Travertine distributions. Finally, the rocks with similar PVbt,opt compared in Fig. 3.22 (DP1-33, Indi-

239, and Trav-600) also share similar mode values (37.6, 36.3, and 35.5, respectively), in accordance 

with the plot.  

Further analysis of fitted distribution parameters and their relationship with optimum acidizing 

values will be shown in Chapter IV.  
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CHAPTER IV 

 DISCUSSION 

This chapter will focus on applying results from Chapter III to determine useful correlations 

with optimum acidizing parameters. The first section shows that permeability and porosity are not 

enough to determine such a relationship on their own. Subsequent sections use values determined from 

fitted pore-size distributions to attempt to correlate optimum acidizing parameters with other 

measurable variables. 

4.1– Permeability and Porosity Correlations 

This section shows that for the samples considered in this study, optimum acidizing parameters 

do not show good correlations with either permeability or porosity. This conclusion leads to further 

investigation of other parameters that may allow more accurate prediction of optimum wormholing 

conditions.  

4.1.1 – PVbt,opt Correlation with Permeability and Porosity 

 
Fig. 4.1 shows a comparison of optimal pore volumes to breakthrough plotted against 

permeability and porosity of samples used in this study. 

 

a) b)  
Figure 4.1: Comparison of PVbt,opt vs. a) permeability and b) porosity 
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Observing Figs. 4.1a and 4.1b, we find no good correlation between optimum pore-volumes 

to breakthrough and either permeability or porosity. As has been discussed previously, there does 

appear to be a trend of increasing PVbt,opt with permeability, but the linear fit proposed in Fig 4.1a is far 

from satisfactory with an R2 value of 0.3. Using a logarithmic asymptotic fit for the permeability 

correlation gives a better R2 value of 0.6, but there does not appear to be any physical reason that PVbt,opt 

should reach an asymptote as permeability increases. Thus, we cannot be sure which fit is appropriate 

but in either case the fit is not ideal and prediction of PVbt,opt from permeability values remains difficult. 

It is worth mentioning that Etten et al., (2015) applied a logarithmic trendline for the comparison in 

Fig. 4.1a, however her study only included 3 Indiana Limestone samples and one Desert Pink sample. 

In her study there was no justification for use of a logarithmic fit except that it provided the highest R2 

value. In general, PVbt,opt appears to increase with porosity, but no clear trend is discernable according 

to Fig. 4.1b. Although the result is not shown, there is no clear trend of permeability vs. porosity for 

the rock types used in this work. 

4.1.2 – vi,opt Correlation with Permeability and Porosity 

Fig. 4.2 shows a comparison of optimal interstitial flux versus permeability and porosity of 

samples used in this study. 

 

a) b)  
Figure 4.2: Comparison of vi,opt vs. a) permeability and b) porosity.   
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The correlations for vi,opt are even less observed than those for PVbt,opt. The high optimum flux 

values of the Travertine samples at both low (70 md) and high (600 md) permeability illustrate that a 

consistent trend between permeability and optimum flux is not present between the rock types discussed 

in this study, as seen in Fig. 4.2a. Similarly, porosity alone is inadequate to accurately predict changes 

in vi,opt, as shown in Fig. 4.2b.   

4.2 – Fitted Parameter Correlations  

The purpose of the above section is to show that neither porosity nor permeability alone is 

sufficient to accurately predict changes in optimum acidizing parameters across different carbonate 

types. The following section considers correlations between optimum parameters and the fitted 

variables, μ and σ (see Eq 2.1), calculated from the pore-size distributions and listed in Table 3.5. Since 

the pore-size distribution encompasses a description of the entire rock sample, rather than just a single 

average value such as permeability or porosity, the idea is that these fitted variables may yield better 

correlations to optimum acidizing parameters. The assumption made here is that PVbt,opt and vi,opt are 

controlled by pore structure, which is a concept widely reviewed in Chapter I and Chapter II of this 

work.   

4.2.1 – PVbt,opt Correlation (μ and σ) 

Fig. 4.3 shows the location parameter, μ, from the fitted distribution plotted against optimum 

pore volumes to breakthrough. The plot is fit with an exponential trendline. 
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Figure 4.3: PVbt,opt plotted against lognormal fitted parameter μ (exponential trendline).  
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gives a high R2 value of 0.80. Regardless, there is a clear positive correlation between the two variables 

that is better than trends with porosity or permeability alone (see Fig. 4.1). Thus, we can already see 

that using the pore-size distribution as a method of quantifying the entire rock structure is a superior 

method than just an average value of permeability or porosity alone. Fig. 4.4 shows PVbt,opt plotted 

against the shape parameter, σ.   
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Figure 4.4: PVbt,opt plotted against lognormal fitted parameter σ (linear trendline). 

 

The shape parameter is related to the skewness and kurtosis of the fitted distribution. These 

parameters effect the y-axis height (frequency) of the mode value, and the steepness of the distribution 

tails.  It is also somewhat related to the variance. There is no direct correlation between PVbt,opt and σ 

as shown in Fig. 4.4. In general, the shape parameter values are very close to each other except for two 

outliers, which are DP2-33 and Trav-600 (Table 3.5). These are the samples with the highest mean 

pore volume, mean pore diameter (Table 3.3), skewness, and kurtosis (Table 3.6). Recall that the 

distribution of DP2-33 was unique in that it featured a prominent secondary peak especially apparent 

on the log-log axes (Figs. 3.3 and 3.11). Even if these outlier σ values are removed, there remains no 

trend between the remaining values of shape parameter when compared with PVbt,opt. Also note that 

while not shown in this work, there are no adequate trends between either μ or σ and permeability or 

porosity.  
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4.2.2 – vi,opt Correlation (μ and σ) 

Fig. 4.5 shows vi,opt plotted against the location parameter, μ, generated from each fitted 

lognormal distribution. 

 

 

Figure 4.5:  vi,opt plotted against lognormal fitted parameter μ (exponential trendline). 

 

Fig. 4.6 shows vi,opt plotted against the shape parameter, σ, generated from fitted distributions. 

 

 

Figure 4.6:  vi,opt plotted against lognormal fitted parameter σ (exponential trendline). 
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A correlation between vi,opt and fitted distribution variables remains elusive, as no acceptable 

correlation is found in Figs. 4.5 and 4.6. The large variation in optimal flux values, especially for Trav-

70 and Trav-600 (24.5 and 20.0 cm/min, respectively) make finding an acceptable correlation difficult. 

However, even without these large outliers, no trend is seen for either shape or location parameter. The 

correlation in Fig. 4.6 is slightly better (R2 of 0.4 with an exponential trendline), which at least indicates 

that vi,opt is more affected by distribution shape (skewness and kurtosis) than by the location (mean, 

median, and mode pore size), which could be useful information for future study. 

4.3 – Fitted Distribution Parameter Comparison 

While the previous section dealt with correlations relating optimum fitted parameters and 

acidizing results, additional information is also available from the fitted distribution: namely the mean, 

median, mode, skewness, and kurtosis of the distributions. These values are presented in Table 3.6 As 

mentioned in previous sections, the location parameter is related to the mean, median, and mode, while 

the shape parameter is related to the skewness and kurtosis. Variance is related to both parameters. Note 

that mean and median pore diameters in this section are calculated from the fitted distribution, not from 

the actual digital pore data. This decision is discussed in more detail in Chapter III and a plot 

confirming mean diameter similarity presented in Fig. 3.26. 

4.3.1 – PVbt,opt Correlation (Mean, Median, Mode, Skewness, Kurtosis, and Variance) 

In this section, all plots will be presented first and discussion will follow afterwards. Fig. 4.7 

shows PVbt,opt plotted against the mean, median, and mode pore diameters as calculated from the fitted 

lognormal distribution. Each plot in Fig 4.7 is fit with a power-law trendline. 
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a) b) c)  

Figure 4.7: PVbt,opt vs. a) mean pore diameter, b) median pore diameter, and c) mode pore diameter (all fit with 
power-law trendlines).  

 

Fig. 4.8 shows PVbt,opt plotted against the fitted distribution skewness, kurtosis, and variance. 

Trendlines used are as follows: linear for skewness plot, power-law for kurtosis plot, and logarithmic 

for the variance plot. 

 

a) b) c)   

Figure 4.8: PVbt,opt vs. fitted distribution a) skewness (linear trendline), b) kurtosis (power-law trendline), and c) 
variance (logarithmic trendline). 

 

As seen in Fig. 4.7, consistently excellent correlations are found between PVbt,opt and mean, 

median, and mode pore size. This is consistent with both qualitative pore-size distribution results and 

location parameter correlation results as shown in Fig. 4.3 (since location parameter is most related to 

the three parameters in Fig 4.7). It is clear that the optimum breakthrough condition across all rock 

types presented in this study is correlated positively with pore size. Figs. 4.8a and 4.8b show poor 
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correlations with kurtosis and skewness values, which are better described by the shape parameter. 

Recall Fig. 4.4, which showed a weak correlation between shape parameter and PVbt,opt.  

On the other hand, Fig. 4.8c shows a good correlation with variance, but only if the trendline 

used is either power-law or logarithmic. Using a linear trendline results in an R2 value of just 0.3, so 

the authenticity of the trend is unclear. Variance is a measure of the difference between the smallest 

and largest pores, so it could be logically used as a measure of heterogeneity of the rock sample with 

regard to pore size. While not plotted here, variance values in this work have a positive correlation with 

permeability (also a rough measure of heterogeneity) across all rock types, showing an R2 value of 0.6 

with a linear trendline.  

 As discussed in Chapter I, highly heterogeneous and permeable rocks tend to require more 

acid to breakthough, indicating higher PVbt,opt values and confirming the trend seen in Fig. 4.8c. 

However, Izgec et al. (2009) presented results that showed vuggy carbonates with large-scale 

heterogeneities had very low optimum breakthrough values. Thus, we cannot make a final conclusion 

regarding the variance value’s effect on PVbt,opt from the results presented.   

4.3.2 – vi,opt Correlation (Mean, Median, Mode, Skewness, Kurtosis, and Variance) 

This section presents results similar to the previous one, but instead with correlations relating 

to the optimum interstitial flux. Again, mean and median values used are from distribution fitting, not 

from image analysis. Plotted results will be presented, followed by a discussion. Fig. 4.9 shows vi,opt 

plotted against the mean, median, and mode pore diameters as calculated from the fitted lognormal 

distribution. Each plot in Fig 4.9 is fit with an exponential trendline. 
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a) b) c)  

Figure 4.9:  vi,opt vs. a) mean pore diameter, b) median pore diameter, and c) mode pore diameter (all fit with 
exponential trendlines). 

 

Fig. 4.10 shows vi,opt plotted against the fitted distribution skewness, kurtosis, and variance. 

Trendlines are not plotted on any graph since no acceptable trend is found in any case regardless of the 

type of fit used. 

 

a) b) c)  

Figure 4.10:  vi,opt vs. fitted distribution a) skewness, b) kurtosis, and c) variance. No acceptable trends are 
found. 

 

As seen from Figs. 4.9 and 4.10, a prominent trend relating optimum flux to distribution 

parameters has not been revealed. While the mean, median, and mode trends in Fig. 4.9 show a better 

R2 value than that of the location parameter plot (Fig. 4.5), the fit is not ideal and is questionable without 

inclusion of the high-value Travertine samples. Without these, the exponential trend is no longer 
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acceptable and the R2 value drops. The skewness, kurtosis, and variance graphs (Fig. 4.10) do not show 

any trend and so a trendline has not been plotted. 

In Chapter III, a consistent qualitative trend for vi,opt based on pore-size distribution shape 

could not be attained. The only noticeable trend is that the optimum velocity seems to drop when 

approaching high permeability samples, such as from Indi-10 to Indi-239 (2.92 cm/min vs. 2.25 

cm/min, respectively) and from Trav-70 to Trav-600 (from 24.5 cm/min to 20.0 cm/min). However, at 

lower permeability, such as Indi-6, Indi-8, and Indi-10, the interstitial flux rises. It could be that the 

interstitial flux is actually related to permeability, but core acidizing at high permeability/heterogeneity 

is difficult to maintain the same pore structure amongst all cores required for the efficiency curve. This 

is especially noted in the Etten et al. (2015) study, where standard deviation of permeability among 

Indi-239 cores was 132 md. While the average core permeability in that study was 239 md among 6 

cores, the measured permeability ranged from 131md – 480md for these cores used to create the 

efficiency curve. It is possible that this affected the vi,opt measurement for the “239 md” cores, which is 

the value used in this current work (2.25 cm/min). A similar argument could be made for Travertine 

cores, considering the high permeability anisotropy of this rock type. In any case, a final conclusion 

based on the presented data cannot be made relating vi,opt to pore-size distribution parameters.              

4.4 – Image Analysis Comparison – Additional Measures 

This section compares some additional results of digital analysis with optimum acidizing 

parameters. While not the specific focus of this study, these measurements are easily taken by the image 

analysis software and remain interesting comparisons. In this section, pore count, interfacial area, and 

mean and median pore volume will be compared to both PVbt,opt and vi,opt. Table 4.1 shows pore count 

and interfacial area calculated for each rock type. Recall in Chapter II that the digital pore volume 

analyzed was normalized to 0.5cm3 for all samples (Fig. 2.2). The exception is Indi-8, which did not 

have enough digital data to reach this volume, so it is excluded from the pore count plots.  
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Interfacial area is calculated as the total surface area of the interface between pores and matrix 

space, similar to perimeter but measured for a 3D volume. Since this is represented as a sum of surface 

areas of each pore in the sample, it is also affected by analysis volume and the Indi-8 sample is excluded.  

 

Table 4.1: Pore count and interfacial area measurements for samples with normalized volumes. 

Rock Sample Pore Count Total Interfacial Area 
(cm2) 

DP1-33 230,213 99 

DP2-33 142,521 117 

Indi-6 922,140 58 

Indi-10 596,009 41 

Indi-239 225,442 57 

Trav-70 147,724 36 

Trav-600 9,939 9 

 
 

Note that when observing the values in each column of Table 4.1, it is possible to infer some 

information about the pore structure of the sample. For example, Indi-6 and Indi-239 samples both 

show similar total interfacial areas. However, the pore count is vastly different. Thus, the main 

contribution to pore surface area in Indi-6 is small pores, but the contribution in Indi-239 is from fewer, 

but much larger pores. This is confirmed qualitatively by observing the pore-size distribution shapes, 

and quantitatively by observing mean or median volume values for each sample (Table 3.3). 

4.4.1 – Pore Volume Comparisons 

In this section, mean and median volume measurements are compared with optimum acidizing 

parameters. See Table 3.3 for values of these measurements. Fig. 4.11 shows plots of PVbt,opt versus 

mean and median pore volume. Both of these plots are fit with logarithmic trendlines.   
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a) b)  

Figure 4.11: PVbt,opt vs. a) mean pore volume and b) median pore volume (both fit with logarithmic  trendlines).  

 

Optimum pore volume to breakthough shows good correlations in the above plots, especially 

the median pore volume (Fig. 4.11b). This is not entirely surprising, as pore volume tends to increase 

with pore diameter, which was earlier concluded to be positively related to PVbt,opt.  

Fig. 4.12 shows plots of vi,opt versus mean and median pore volume, both fit with exponential 
trendlines.  

 

a) b) 

Figure 4.12: vi,opt vs. a) mean pore volume and b) median pore volume (both fit with exponential trendlines). 

 

While Travertine samples remain outliers in the vi,opt plots, a positive correlation is noticeable 

in both comparison cases, especially the in the case of the non-Travertine samples. These plots are some 

of the better-correlated ones for optimum flux, according to the R2 value.   
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4.4.2 – Pore Count Comparisons 

Pore counts are listed in Table 4.1 and plotted against optimum acidizing parameters in Fig. 

4.13 below. 

 

a)  b)  

Figure 4.13: Pore count comparisons for a) PVbt,opt (linear trendline) and b) vi,opt (power-law trendline).  

 

Both charts show a decrease in optimum conditions as pore count increases. However, the 

magnitude of change is much different. In the PVbt,opt case, a linear trend is observed while in the vi,opt 

case an power-law decrease is observed. In both cases, the R2 values are fairly low for the given 

trendline, but a clear inverse relationship is observed, especially in the case of Fig. 4.13a. A possible 

explanation for the optimum breakthrough trend is that as pore count rises, permeability tends to 

decrease. This trend was found in the pore count results shown in Table 4.1 across both Travertine and 

Indiana Limestone samples. For a given sample volume, a large pore count indicates small, discrete, 

unconnected pores. These samples have a lower permeability compared with samples with fewer large 

pores, and so the optimum breakthrough is lower since the acid can more easily find a preferred path 

in low-permeability samples.  An explanation for optimum flux is more difficult, since there are not 

any conclusive trends in this paper from which to make a convincing argument. Since interstitial flux 

is inversely related to the area available for flow, a larger pore count could indicate either a higher 

porosity or a larger area available for fluid flow. Thus, according to the vi equation (Eq 4.1), either of 

these conditions may indicate a smaller value of optimum interstitial flux.  
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4.4.3 – Interfacial Area Comparisons 

Fig. 4.14 shows plots of optimum acidizing parameters (PVbt,opt and vi,opt) versus interfacial 
area.  

 

a) b)  

Figure 4.14: Interfacial area comparison with a) PVbt,opt and b) vi,opt (power-law trendline).  

 

Optimum pore-volumes to breakthough show no discernable trend when compared with 

interfacial area. On the other hand, Fig. 4.14b shows an inverse relationship between interfacial area 

and optimum interstitial flux. This plot looks very similar to Fig. 4.13b, and since pore count is 

oftentimes related to interfacial area, a similar explanation for the vi,opt relationship in the previous case 

may explain the trend seen in Fig. 4.13b. 

4.5 – Comments on Methodology 

A unique aspect of this study was the use of two separate scales for experiments and 

comparison of results between these scales. Core-scale acidizing was performed to determine the 

optimum wormholing parameters, while small cubes were scanned with micro-CT to ultimately label 

individual pores and create pore-size distributions. As seen in Table 2.2, there is a discrepancy seen 

between the porosity of cores and some micro-CT samples. Specifically, the micro-CT porosities of 

Trav-70, Indi-239, and DP2-33 samples were significantly higher than the average core porosity to 
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which they were compared. For convenience, Table 4.2 lists these three samples and shows the porosity 

discrepancy. Also listed are the number of cores used to create the efficiency curve, and thus the number 

of cores which the porosity is averaged over. 

 

Table 4.2: Comparison of samples with high porosity variation between sample scales 

Rock Sample Average Core Porosity (%) Micro-CT Sample Porosity (%) 
 

DP2-33 25 (9 samples) 38 

Trav-70 7 (4 samples) 17 

Indi-239 16 (6 samples) 23 

 

The explanation for the porosity discrepancy for Trav-70 and Indi-239 can be attributed to 

imprecise cutting of the sample cube. As can be seen in Fig. 4.15, chips of the rock face and corners 

were removed during drilling, which caused the bulk volume to be underestimated when calculating 

porosity. Due to this, calculated porosity of the cubes is higher than it should be. 

 

 

Figure 4.15: Indi-239 and Trav-70 samples show chips and wear along their surfaces.  



87 
 

In the case of DP1-33, the cube was cut precisely, however by using the micro-CT image stacks 

to look inside the rock, a large vug was found. This can also be seen in the log-log pore-size distribution 

comparison (Fig. 3.11). This large internal chamber is an anomaly, but due to the small size of the cube 

it had a large effect on increasing the porosity of the sample. In general, small samples will tend to 

show larger porosity values than large samples. This is because anomalous effects (such as drill 

chippings or internal chambers) have a larger effect on porosity for a smaller-size volume (Ehrenberg, 

2007). Fig. 4.16 displays a plot from Ehrenberg’s work (2007) comparing small 1 in. x 1 in. plug 

porosities with whole core porosities.  

 

 

Figure 4.16: Size-dependency of porosity measurements from 1 in. diameter plugs vs. 3 in. diameter cores 
(Ehrenberg, 2007).  

 

Fig. 4.17 shows a similar plot to the one above from the current study, with core porosity on 

the x-axis and micro-CT sample porosity on the y-axis. While the extreme values of DP-2, Trav-70, 

and Indi-239 have been explained above, note that in general the porosity of smaller samples is larger 

than for the cores, which matches the work of Ehrenberg (2007). 
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Figure 4.17: Micro-CT sample porosity vs. acidized core porosity. The plot shows that porosity measured for 
small samples tends to be higher than for larger scale samples in the current study. 

 

The higher porosities present in the micro-CT samples would likely have little effect on the 

semi-log representations of pore-size distributions presented in the study. As seen in the Desert Pink 

comparison (Fig. 3.10), despite the large increase of porosity of DP2-33 over DP1-33, (38% vs. 30%, 

respectively) the semi-log comparison of the two rocks remain virtually identical. It is only in the log-

log comparison (Fig. 3.11) that we see the effect of the large vug in the DP2-33 sample. Observing 

Table 3.5, we see that the μ value for the two Desert Pink samples is very similar. The σ parameter, on 

the other hand, does change dramatically from DP1-33 to DP2-33. This indicates that changes in 

porosity affect the shape parameter more than the location parameter, which could be why there is a 

better correlation between μ parameter and PVbt,opt that with the σ parameter. Since no correlations were 

found between vi,opt and either μ or σ, we cannot say with certainty what the effect would be on the vi,opt 

correlation. 
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CHAPTER V 

 CONCLUSIONS AND RECOMMENDATIONS 

5.1 – Conclusions  

This study presents core acidizing data and pore-size distributions constructed from image 

analysis of digital micro-CT scans of various carbonate rock samples. In addition to qualitative 

comparison of pore-size distributions, a lognormal function was used to fit the distributions and 

optimize two variables, μ and σ, which were subsequently plotted against optimum acidizing parameters 

to search for useful correlations. The third part of this study compares measurements on individual 

pores derived from image analysis to enhance understanding of relationships between pore-scale 

features on optimum acidizing parameters. The conclusions of the study can be summarized as follows: 

1. Pore structure of carbonate rocks affects optimum acidizing conditions and the effects of 

different pore structures can be visualized digitally by constructing pore-size distributions and 

comparing them qualitatively.   

2. The image processing pipeline used in this work, including Otsu thresholding and Median blur 

3D filtering, is sufficient to process raw Micro-CT images of resolutions ranging from 5 – 8 

μm/voxel. 

3. Rock pore-size distributions are sufficiently described by a lognormal distribution function, 

and fitting of this function can yield variables that show better correlations with optimum 

acidizing parameters than permeability or porosity alone.  

4. Optimum pore-volumes to breakthough is positively correlated with pore size across all rock 

types studied in this work. Similarly definitive conclusions for optimum flux could not be 

made. 

5. Micro-CT scanning combined with digital image analysis can yield pore-scale measurements 

difficult or impossible to obtain with conventional methods.   
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5.2 – Recommendations  

 After completion of this study, the following recommendations are made for future work in 

this field. The following points also encompass some limitations to the current study. 

1. Open-source software used in this study was not specifically designed to quantify pores in 

complex geological media. If future studies are to be performed with the intent of constructing 

reliable, reproducible results, investment into premium software must be made. 

2. This study was limited to pore-size distribution and analysis of simple pore measurements. 

Undoubtedly, optimum acidizing parameters are also related to heterogeneity and pore 

connectivity. Such measurements or processes (Euler number calculation, connected 

component labeling, nearest neighbor analysis) were attempted in this study with the open-

source software available, but sufficient results were not obtained. To further enhance 

understanding of acidizing parameters, the means to perform connectivity analysis are 

absolutely necessary (see recommendation #1). 

3. Future work relating to this thesis should focus on intermediate permeability samples, 

especially for Travertine and Indiana Limestone. Care must be taken in the acidizing process 

to minimize variance of core permeability for creation of acid efficiency curves to ensure the 

most accurate optimum parameters are obtained. 

4. The procedures performed in this thesis should be extended to other carbonate rock types, such 

as Texas Cream Chalk and Winterset Limestone (at a range of permeabilities) to confirm or 

refute the results found in this study. Specifically, more data is needed to determine how 

optimum flux correlates to various pore-scale measures.   
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