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ABSTRACT 

 

This project set out to design a modular security barrier that could be used 

as an expeditionary system for the construction of new secure areas. It would be 

flexible enough to curve, both horizontally and vertically, with the ground along 

the perimeter of the site and still be able to withstand a collision with a 15000 lb 

vehicle travelling at 30 mph. It could then be installed in the ground for permanent 

protection and be able to stop the same size vehicle travelling 50mph within 3’-3”. 

All of the tests performed during this project show that this design could meet that 

desire.  

Testing for this design included parametric studies in the behavior of the 

macrostructure. This included testing how the unit shape and curvature affected 

the performance of the system. After a design was completed based on these 

tests, it was analyzed by finding performance curves. These curves compared the 

displacement of the units with the number of units and their curvature. Next the 

design was refined to improve assembly and constructability and tested for the 

connection forces. Using spring and beam connection models data on the 

connection forces was gathered and used to design how the system would be 

assembled, completing the design. 
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1 INTRODUCTION 

 

With the ever increasing number of attacks on secure areas, there is a 

constant need to investigate new and/or improved ways to keep intruders out. 

One example of how people attempt to infiltrate secure areas is by using a vehicle 

to collide with the physical security system in place. Therefore, there is a need for 

these systems to be robust enough to obstruct large vehicles traveling at high 

velocities. The purpose of this study was to solve some of the problems that 

plague entities attempting to secure an area by designing a modular bollard 

barrier. 

In some cases the physical security system needs to be in place before 

construction starts on a site. This often results in a temporary barrier system that 

is subsequently replaced, adding additional cost to the construction. Moreover, 

most barrier systems are often not very versatile and require more work to install. 

Another obstacle is the transportation of the materials for the construction of the 

aforementioned physical system(s). In light of these issues, the U.S. Department 

of State, Physical Security Division approached the Texas A&M Transportation 

Institute with a project to address them.  

The objective of this project was to produce a design for a modular bollard 

barrier system for expeditionary purposes. This system can be transported as 

individual units, quickly assembled, and left on the ground for a quick physical 

security option. At a later time, a construction crew will be able to return and 
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permanently install the units in the ground for a stronger barrier. The system can 

also accommodate curved and sloping ground. 

To fully define this project the U.S. Department of State issued a set of 

requirements for the resulting system. These are: 

1) The horizontal curvature of the system must have as small a curve 

radius as possible 

2) The bollard is to remain 3’ 3” tall after the unit is installed in the ground 

with 8” of cover 

3) A P2 (Table 2-2) rating or better for an M30 (Table 2-1) crash test with 

the units arranged on the ground 

4) A P1 (Table 2-2) rating for an M50 (Table 2-1) crash test with the units 

embedded in the ground 

A system meeting these criteria would be capable of protecting secure areas. With 

the criteria set, it was important to determine what had previously been done to 

provide a starting point for the design. It was also important to validate the use of 

finite element modeling program LS-DYNA as an appropriate tool for gathering 

data for designing a system.  
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2 LITERATURE REVIEW 

 

2.1 Testing Standards 

To standardize testing to evaluate the performance of security barriers, 

ASTM published ASTM Standard F2656. The standard tests combine vehicle 

weight, the speed at impact, and the tests’ designation, as shown in Table 2-1. It 

also describes the test site, the soil conditions, the test vehicles, how any 

additional weight is to be added to the test vehicle, as well as how the penetration 

of the test vehicle is measured. Finally, the penetration rating is given according 

to how the penetration measurement falls on Table 2-2. The tests and ratings 

used in this work all follow this standard (ASTM 2015). 
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Table 2-1 - Impact Condition Designations (ASTM 2015) 

 

 

Table 2-2 - Penetration Ratings (ASTM 2015) 
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2.2 Similar Products 

Shallow mount bollard systems have a short base, reducing the amount of 

excavation needed, while still providing adequate protection. Below are 

descriptions of shallow mount bollard designs that are currently available. 

APEX Fabrication & Design, INC. sells an M30/P1 rated shallow-mount 

security bollard that has the option for removable bollards. This rating was given 

based on the standardized test (Table 2-1 above) carried out and the system’s 

resultant performance rating (Table 2-2 above). The design consists of steel 

bollards connected to steel W-flange beams embedded in concrete, as shown in 

Figure 2-1. The advantages of this product is that the bollards and beams are sold 

as units so the customer can make this barrier as wide as they want to. Also, the 

removable bollard option allows the barrier to be temporary or permanent (APEX 

2016). 

 

 

Figure 2-1 - APEX SFB-M30 / SRB-M30 Shallow Bollard Isometric View (APEX 2016) 
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Calpipe Security Bollards sells an M30/P1 (Table 2-1/Table 2-2) rated fixed 

shallow-mount bollard. Their design has the bollard connected to two steel W-

shapes providing a wider base for the unit. The drawings can be seen in Figure 

2-2. Another advantage to this product is that the customer can order any number 

of units and install them on any spacing (Calpipe 2016). 

 

 

Figure 2-2 - Calpipe Fixed Shallow Mount Bollard (Calpipe 2016) 
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Ameristar Security Products sells an M50/P1 (Table 2-1/Table 2-2) rated 

shallow-mount bollard. The system consists of a series of prefabricated units 

where the bollard is connected to either a T shaped or straight shaped steel base. 

An example of the T-shaped unit is shown in Figure 2-3. The advantages of this 

unit include the sturdier M50 rating, the ease of assembling the units and the 

elimination of concrete reinforcing steel. However, this design also requires a 

concrete pour and is a permanent fixture (AMERISTAR 2014).  

 

 

Figure 2-3 - Ameristar Shallow Mount Anti-Ram Bollard T-Shaped Unit (AMERISTAR 2014) 

 

EL-GO Team Security Systems developed a bollard security barrier that 

allows for curvature. It consists of a series of modular units connected by arms 

bolted to the units. Each unit is made up of a welded steel frame with two bollards 

connected to it, as shown in Figure 2-4. The advantages of this design are that 
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the units can achieve any curvature desired. In addition, the units have a 

removable bollard option so the barrier can be temporary (EL-GO 2012). 

 

 

Figure 2-4 - EL-GO Team Shallow Mount Bollard Artist Rendering (EL-GO 2012) 

 

These existing designs, offer many different sets of dimensions and 

configurations for further exploration. They demonstrate it is possible to create a 

shallow mount security bollard that is M50/P1 (Table 2-1/Table 2-2) rated provided 

that it is strong enough. They also show that curvature can be accomodated. 

These products provide good information for the design of the new bollard system 

developed in this study. 
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2.3 Finite Element Modeling 

In the past, designing security barriers was an expensive trial and error 

process. Engineers would create a design based on simplified mathematical 

models, build their design and then test it. After the test they would change the 

design based on its performance and retest the new design. This cycle would 

continue until the engineers obtained the performance they sought, budgetary 

constraints ended the revision process. Today, finite element modeling (FEM) is 

used extensively to predict the behavior of complex dynamic systems at a fraction 

of the cost of full scale crash testing. This section reviews and discusses how FEM 

simulation has been used to design different vehicle impact systems. 

In 2007, the journal Engineering Failure Analysis published a paper by M. 

Borovinšek, comparing the results of FEM simulations with real crash test results 

to justify the use of computer simulation in the process of developing roadside 

safety barriers. Comparisons were made between two sets of results using two 

different methods. The first method was by visual comparison where snapshots 

of the simulation and photos of the test were compared for similarity (see Figure 

2-5). The second method was by comparing numerical results from both tests. To 

do this, an accelerometer was placed inside the test vehicle in both the real and 

simulated tests. The accelerations in three principle directions were recorded and 

combined into a dimensionless parameter, named the Acceleration Severity Index 

(ASI). The results from the second method are shown in the graph below Figure 

2-6). The paper concluded that FEM simulations using LS-DYNA was an 
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acceptable method for developing roadside safety systems because the 

maximum ASI parameter for the simulation was within a 10% margin of error 

(Borovinšek, Vesenjak et al. 2007). 

 

 

Figure 2-5 - Visual Comparison of Test Results (Borovinšek, Vesenjak et al. 2007) 
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Figure 2-6 - Calculated ASI Parameter over Time (Borovinšek, Vesenjak et al. 2007) 

 

In 2014, a presentation was made by D. Marzougui for the International 

LS-DYNA Users Conference comparing. The simulated vehicles used were 

created and verified by the National Crash Analysis Center. The barrier was 

modeled using rigid shell elements in the shape of the real barrier, assuming that 

the concrete wouldn’t deform or deflect under crash conditions. Three different 

verification methods were used for the simulations. The first method was a visual 

comparison between the crash tests and the models. The second was a 

comparison of the measurements of the roll, pitch, and yaw calculations as shown 

in Figure 2-7. This was done to make sure the model vehicle behaved similarly to 

the real vehicle in the crash test. The third verification method used was to look at 

the energy calculations of the simulations and verify their accuracy. An example 
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of the data output is shown in Figure 2-8. The presentation concluded that there 

was good correlation between the simulation data and measurements from the 

crash test. It also concluded that the use of LS_DYNA for FEM simulations is a 

valid way to predict the outcome of crash tests crash tests, and simulations for 

two different vehicles impacting a concrete barrier (Marzougui, Kan et al. 2014). 

 

 

Figure 2-7 - Example Comparison of Roll, Pitch, and Yaw Measurements (Marzougui, Kan et al. 
2014) 
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Figure 2-8 - Example LS_DYNA Energy History Output (Marzougui, Kan et al. 2014) 

 

Finally, Hasan Mohammed had a paper published in the KSCE Journal of 

Civil Engineering about simulation assessment of a concrete barrier design. The 

purpose of the model was to determine whether the barrier would absorb the 

impact, and not necessarily to see if the concrete would fail. For this reason, the 

barrier was modeled as rigid concrete with piecewise linear plastic steel bars. The 

vehicle model used in this paper was also from the National Crash Analysis 

Center. The comparison between the simulation and the crash test included a 

visual comparison and an analytical comparison. The visual comparison in this 

paper was identical to the ones performed in the two previous papers. The 

analytical evaluation compared the horizontal accelerations in two principle 
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directions between the model and the real test. This comparison can be viewed 

in Figure 2-9. Mohammed’s paper also concluded the LS-DYNA simulations 

provide a good estimate of the behavior of a vehicle under crash conditions, and 

can provide a cursory prediction of a barrier’s performance against standard 

criteria (Mohammed and Zain 2016). 

 

 

Figure 2-9 - Acceleration Comparison (Mohammed and Zain 2016) 
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Based on these three papers, it was concluded that FEM simulations using 

LS-DYNA are a valid means to predict behavior of the system under development 

in this study. However, care is needed in the construction of the barrier model to 

ensure that its behavior correctly reflects the events in a real crash test. It is also 

known that, a good vehicle model will be key to analyzing performance against 

standard criteria. Finally, any product resulting from this design must be subjected 

to a full scale crash test before it can be formally rated and offered as a 

commercial product  
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3 EARLY MODEL DEVELOPMENT 

 

The FEM simulations for the study and design for this security bollard 

system were built from scratch. Before testing could begin on how the different 

parameters would affect the performance of the system, several models were 

generated to verify the accuracy of the parts of the units. This section describes 

the evolution of the model so that it could be used with confidence in testing the 

large scale parameters of the bollard system. 

The first models were created to produce a bollard model that is strong 

enough to resist the impact of a heavy vehicle moving at high speeds. The bollard 

was modeled as a cylindrical shell made of an elastic steel material. The 

dimensions of the bollard were made similar to those systems studied in the 

literature review. To verify if the bollard was modeled correctly, an impact 

simulation was needed. For this purpose, a rigid steel box was created and given 

an initial velocity to impact the bollard. The dimensions of the box were 3’-3”x3’-

3”x2’ and the velocity set at 20mph. The box was constrained so that it would only 

move in the direction of impact. The setup is shown in Figure 3-1. 
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Figure 3-1 - Steel Box Impacting Bollard 

 

With the bollard model verified, the next step was to create a simple model 

to simulate the vehicle impact without using a full vehicle model. This allowed the 

initial data to be acquired for the units without the computational expense of using 

a full vehicle model. This surrogate vehicle model consisted of the same size box 

with a plate connected to it with springs (See Figure 3-2).  
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Figure 3-2 - Basic Crash Vehicle Model Impacting Bollard 

 

The weight and initial velocity of the block was adjusted to meet ASTM Standard 

F 2656-07 Table 2-1, Condition Designation M50. The spring stiffness was 

adjusted to give a compression in the spring similar to that of the crushing distance 

of real vehicles. It was also adjusted to give a force on the bollard similar to the 

impact of a real crash. 

The stiffness of the springs was found using the test data from the TTI 

report “DOS K12 Testing and Evaluation of the Shallow-Mount Bollards” through 

the energy method (Alberson and Menges 2007). The assumption was made that 

all of the kinetic energy of the mass would be put into the potential energy for the 

spring, leading to the equation: 
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1

2
∗ 𝑚 ∗ 𝑣2 =

1

2
∗ 𝑘 ∗ 𝑥2   

where: 

m = the mass of the vehicle (14940lbm) 

v = the velocity of the vehicle just before impact (50mph) 

x = the crush of the exterior of the vehicle (60”) 

k = the stiffness of the spring model 

 

The equation was solved and divided by the number of springs being modeled. 

The final stiffness for the four springs modeled was found to be 2.06k/in each. 

The springs were modeled as nonlinear so that they would remain compressed 

after impact, mimicking the behavior of a real vehicle during impact. This was 

done so that they would better simulate a crashing vehicle. The error between 

the model and the real test was 24.6% and 0.8% for the peak force and crushing 

distance respectively. As this was created to be a simplified crash model these 

errors were deemed reasonable for testing. 

The next step in the model development was to estimate the size needed 

to model the foundation for the bollard. The same block-spring-plate was used to 

simulate impact. The ground was added into the model as a large rigid plate. The 

foundation was placed on top of the ground with static and dynamic friction values 

of 0.3 and 0.15 respectively. The foundation was modeled as elastic concrete with 

the density including a 20% steel ratio. The dimensions of the foundation were 

changed to keep it from overturning, or gaining excessive velocity when the 
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simplified truck model came to a stop. For these tests it was assumed that the 

upper limit on the foundation’s displacement was 3’-3”. The controlling factor was 

the velocity of the foundation, and the upper limit of the velocity was determined 

by using the following equation: 

 

  ∫ 𝑣 ∗ 𝑑𝑣 =  ∫ 𝑎 ∗ 𝑑𝑥   

where: 

v = the velocity of the foundation (taken from model) 

a = the acceleration needed to stop the foundation within the given distance 

x = the displacement the foundation moves (upper limit is 3’-3”) 

 

From the model, the velocity of the foundation after the vehicle model 

stopped moving was 7.61ft/s which would require a deceleration of 8.83ft/s^2 to 

stop it in 3’-3”. By comparing this deceleration to the acceleration due to gravity, 

the coefficient of friction required to provide this deceleration of the foundation 

was calculated to be 0.274. The mass of the foundation in the model that produced 

these results was 131 780 lbm. The dimensions of the model were based on five 

15’x4’x2’ modular foundations rigidly connected on their long sides. The final 

model used for this test can be seen in Figure 3-3. 
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Figure 3-3 - Foundation Mass Simulation 

 

The next model created was to estimate the approximate forces that the 

connections would need to take. The foundations were modeled as elastic 

concrete with 20% steel reinforcement for mass. The weight of the base of the 

units was 22 kips each. They were 10’-10”x4’x2’ and were rigidly connected by 2” 

long, 2” diameter piecewise linear plastic steel rods. Seven foundations were 

modeled and connected with the bollard rigidly attached at the base to the center 

foundation. The model is shown in Figure 3-4, with the resulting forces shown in 

Table 3-1. 
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Figure 3-4 - Unit Foundations (top) with Numbering Scheme (Bottom) for Shear Forces 

 

A B Shear (k) 

1 2 102.96 

2 3 135.34 

3 4 157.14 
Table 3-1 - Shear Forces Between Units 
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With this last simulation, the model was deemed sufficiently developed to 

start performing parametric tests. The model was divided into modular units with 

the approximate size and weight that would be required to meet the penetration 

requirements. Also, these units were connected together in a way that allows the 

forces between the units to be extracted for study. This model was used to 

examine how large scale parameters would affect the performance of the bollard 

system as a whole.  
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4 TESTING FOR INITIAL DESIGN 

 

The large scale parameters considered in the initial testing included unit 

shape, and curvature. These parameters significantly affected the design for the 

unit, but don’t require much detail to evaluate unit response. That is why these 

simulations were performed so early in the design process and why the base of 

the unit could be a simple box. What follows describes how each of these large 

scale parameters were tested and the resulting data. 

 

4.1 Unit Shape versus Interunit Forces 

These tests were designed to study how the unit shape affected the forces 

connecting the units. They were performed to optimize the shape of the unit for 

the design of the connection forces. The models for all of these tests were created 

to have the same total weight of 22 kips so the displacement of the units and the 

energy dissipation of the impact would be the same across all tests. The density 

of the base remained constant for all tests so an equivalent mass was achieved 

by all of the units having the same volume. Also, the vehicle model had the same 

mass and velocity across all tests. The data collected from each of these tests 

was the axial and shear forces in the steel connectors. There were a total of five 

models created and run, one with rectangular foundations, two with triangular 

foundations, and two with trapezoidal foundations.  
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The first test that was completed was the rectangular unit test. The units 

were 10’-10”x4’x2’ and because of their symmetry only one test was needed for 

this shape. The model configuration and unit numbering scheme are shown in 

Figure 4-1. The peak forces of the simulation are shown in Table 4-1. 

 

 

 

Figure 4-1 - Rectangular Units (Top) with Numbering Scheme (Bottom) for Interunit Forces 
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A B 
Shear Force 

(k) 
Normal Force 

(k) 

1 2 69.69 -40.24 

2 3 135.56 48.56 

3 4 75.31 -28.33 
Table 4-1 - Interunit Forces for Rectangular Units 

 

Next the triangular units were tested. They were modeled as isosceles 

triangles with a base of 8’ and a length of 10’-10”. This resulted in the same volume 

as the rectangular units and thus the same mass. The units were oriented so that 

the system as a whole would remain straight, and because of this the mass 

distribution of the units was not symmetric. To circumvent this problem, two tests 

were run, one in each direction, and the forces collected. The two tests’ 

orientations and numbering schemes are shown in Figure 4-2 and Figure 4-3, with 

their results reported in Table 4-2 and Table 4-3. 
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Figure 4-2 - Triangular Units Configuration 1 (Top) with Numbering Scheme (Bottom) for 
Interunit Forces 

 

A B Shear (k) Normal (k) 

1 2 153.55 -258.53 

2 3 160.74 -142.53 

3 4 74.41 -80.71 
Table 4-2 - Interunit Forces for Triangular Units Configuration 1 
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Figure 4-3 - Triangular Units Configuration 2 (Top) with Numbering Scheme (Bottom) for 
Interunit Forces 

 

A B Shear (k) Normal (k) 

1 2 197.61 -249.54 

2 3 119.15 -233.80 

3 4 79.81 63.62 
Table 4-3 - Interunit Forces for Triangular Units Configuration 2 

 

Finally, the trapezoidal unit tests were performed. The foundations were 

modeled as isosceles trapezoids, with a short end of 2’, a long end of 6’ and a 
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length of 10’-10”. The volume and mass of these units match those of the 

triangular and rectangular units. The units were oriented so that the system as a 

whole would remain straight, and as a result the mass distribution of the units was 

asymmetric similar to the triangular units. Two tests were run for this unit shape 

as well, one in each direction, and the forces compared to the rest of the tests. 

The two tests’ orientations and numbering schemes are shown in Figure 4-4and 

Figure 4-5, with their results in Table 4-4 and Table 4-5. 

 

 

 

Figure 4-4 - Trapezoidal Units Configuration 1 (Top) with Numbering Scheme (Bottom) for 
Interunit Forces 
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A B Shear (k) Normal (k) 

1 2 194.46 -42.04 

2 3 139.38 82.51 

3 4 79.81 -27.43 
Table 4-4 - Interunit Forces for Trapezoidal Units Configuration 1 

 

 

 

Figure 4-5 - Trapezoidal Units Configuration 2 (Top) with Numbering Scheme (Bottom) for 

Interunit Forces 

 

A B Shear (k) Normal (k) 

1 2 189.74 -81.61 

2 3 126.57 -87.23 

3 4 89.47 -37.54 
Table 4-5 - Interunit Forces for Trapezoidal Units Configuration 2 
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It was observed that the rectangular units resulted in the lowest shear and 

normal forces. This was likely a result of the shear plane of the connections being 

parallel to the direction of impact. As the angle between the shear plane of the 

connections and the direction of impact increases there is more interaction 

between the shear and axial forces of the connections. This can be seen in the 

increase in force from the rectangular to the trapezoidal to the triangular units. 

From these results, it was decided that the base of the units would be rectangular 

in shape.  

 

4.2 Curvature versus Interunit Forces 

The next set of concept models explored how the foundations interacted 

when configured for horizontal and vertical curvature. To achieve the desired 

curvatures the units were modeled as trapezoids. Each curve had a unique 

trapezoidal unit model that was tailored specifically to meet that curve. However 

the mass of all of the units remained the same. The unit numbering scheme is 

shown in Figure 4-6. 

 

 

Figure 4-6 – Curvature Configuration Numbering Scheme 
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The curvatures used were from the American Association of State Highway 

and Transportation Officials’ (AASHTO) Manual for Assessing Safety Hardware 

(MASH). For the horizontal curvature, curves for created for 30mph and 50mph, 

for elevations of 4% and 6% each. The units were tapered in the direction of the 

impact to the proper angle for the curve, and then rotated so that each side was 

parallel with the side of the unit adjacent to it. The curve radii for the horizontal 

curvature were 250’, 926’, 231’, and 833’ (American 2009). The bollards of the 

system lined up with these curve radii and were impacted by the simple vehicle 

crash model. Each horizontal curve underwent two tests, one with the vehicle 

model impacting the units toward the center of curvature (COC) and one away 

from the COC. Plan views of the model configurations are shown in Figure 4-7 

and Figure 4-8. The peak forces in the connections of the units are displayed in 

Table 4-6.  
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Figure 4-7 - Horizontally Curved Units Impact towards the COC 

 

 

Figure 4-8 - Horizontally Curved Units Impact away from the COC 
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Horizontal Curvature 

A B 

4% elevation, 30mph, 250ft radius 

Toward the COC Away from the COC 

Shear Force (k) Normal Force (k) Shear Force (k) Normal Force (k) 

1 2 116.46 36.65 117.81 32.37 

2 3 80.94 -69.92 80.04 53.73 

3 4 52.61 61.38 64.52 -39.79 

  

A B 

4% elevation, 50mph, 926ft radius 

Toward the COC Away from the COC 

Shear Force (k) Normal Force (k) Shear Force (k) Normal Force (k) 

1 2 183.23 -26.53 187.50 66.10 

2 3 125.00 -31.03 133.09 15.78 

3 4 73.29 -11.08 66.55 18.64 

  

A B 

6% elevation, 30mph, 231ft radius 

Toward the COC Away from the COC 

Shear Force (k) Normal Force (k) Shear Force (k) Normal Force (k) 

1 2 118.26 46.31 118.26 87.90 

2 3 79.36 -49.01 81.16 71.49 

3 4 56.43 71.04 65.20 52.83 

  

A B 

6% elevation, 50mph, 833ft radius 

Toward the COC Away from the COC 

Shear Force (k) Normal Force (k) Shear Force (k) Normal Force (k) 

1 2 205.49 27.43 204.36 15.18 

2 3 131.07 14.66 130.40 -17.49 

3 4 88.35 19.11 88.80 -24.28 
Table 4-6 - Interunit Forces for Horizontal Curve Configurations 

 

For vertical curvature, curves were created for passing distance, stopping 

sight, and sag, each for 30mph and 50mph. The curvature for the models were 

achieved by tapering the units in the vertical direction to the proper angle for the 

curve. The units were then rotated so that each side was parallel with the side of 

the unit adjacent to it. The model configuration for the passing distance and 
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stopping sight cases can be seen in Figure 4-9 with the peak forces in the 

connections of the units are displayed in Table 4-7.  

 

 

Figure 4-9 - Vertically Curved Units – Passing Distance and Stopping Sight 

 

Vertical Curvature 

A B 

Passing Distance 

30mph 50mph 

Shear (N) Normal (N) Shear (N) Normal (N) 

1 2 116.23 46.54 19.33 -23.61 

2 3 93.30 41.37 144.56 21.04 

3 4 55.98 62.28 86.33 16.88 

  

A B 

Stopping Sight 

30mph 50mph 

Shear (N) Normal (N) Shear (N) Normal (N) 

1 2 114.88 74.64 210.88 33.95 

2 3 75.99 46.76 152.65 13.11 

3 4 36.65 26.30 83.63 22.48 
Table 4-7 - Interunit Forces for Vertically Curved Units - Passing Distance and Stopping Sight 
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The model configuration for the sag case is shown in Figure 4-10 with the 

peak forces in the connections of the units are displayed in Table 4-8. 

 

 

Figure 4-10 - Vertically Curved Units - Sag 

 

A B 

Sag 

30mph 50mph 

Shear (N) Normal (N) Shear (N) Normal (N) 

1 2 117.81 -85.66 196.27 22.28 

2 3 80.49 70.37 131.74 14.21 

3 4 57.78 -55.53 84.53 14.12 
Table 4-8 - Interunit Forces for Vertically Curved Units - Sag 

 

The purpose of these tests was to determine if there was any relationship 

between the curvature of the units and the interunit forces. The results show in 

the horizontal direction the larger curve radii have larger connection forces, and 
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the curvature in the vertical had relatively no affect. From this it was concluded 

that the worst case for the connection design was when the units were in a straight 

line. 

 

4.3 Initial Design 

With these tests completed an initial design was proposed. From the unit 

shape tests it was decided that the units would be rectangular. The curvature tests 

showed that the straight configuration of the units was the worst case. A significant 

challenge for the initial design was keeping the units rectangular while still allowing 

for curvature. In addition, the units still need to be strong enough to stop a moving 

vehicle, while remaining flexible enough to curve. With the main impact forces 

being transferred from the bollard to the base unit, a large moment is created. 

Because of these issues, was decided the units would be given a flange type 

geometry. The base unit would be made up of large steel plates with two webs in 

the center. The plates on the top and bottom of the unit make it strong against 

moments, as well as allow for flexibility by having the plates of each unit overlap 

with the ones next to it. The two webs contain the bollard to the middle of the base 

and allow the base to be filled for additional mass. To allow for flexibility, the 

connections in the units would be slotted holes for the bolts. A drawing of the initial 

design is shown in Figure 4-11. 
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Figure 4-11 - Initial Design Details Drawing 



39 
 

5 UNIT DISPLACEMENT TESTS 

 

With an initial design (Figure 4-11) in hand, another series of simulation 

tests were undertaken to examine the following issues: (i) system performance as 

the number of units increased, and (ii) the effects of curvature in the system on 

performance. The performance measure used in these was a comparison of 

displacement of the units caused by impact. To reduce the run time in these tests, 

each simulation was terminated before the units came to rest. Instead, the 

simulations were run until the units’ velocities converged and the whole system 

was moving at the same speed. From there the total displacement was 

determined by adding the displacement of the units at the time of the converged 

velocities to the remaining stopping distance. The stopping distance was found 

using the equation: 

 

 𝑥 =
𝑣2

2𝑔𝜇
+ 𝑥0  

where: 

x = stopping distance 

x0 = unit displacement at velocity convergence 

v = system velocity after convergence (taken from model) 

g = gravitational acceleration (32.2ft/s) 

μ = coefficient of friction 
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This equation is derived from the work energy theorem. Two different coefficients 

of friction, 0.4 and 0.7, were used in these simulations since they are reasonable 

bounds on typical field conditions. It was important not only to look at performance 

of the system as it lengthened but also as the friction value changed.  

For this series of tests, revised versions of prior models were created. The 

new unit models were created to the dimensions of the initial design, but using 

shell elements for the steel plates and solid elements for concrete. The initial solid 

element bolt models resulted in runtime errors, so they were modeled using 

springs. The revised models provided more detailed information on the behavior 

of the system and its materials. To further enhance the quality of these 

simulations, a model of a single unit truck (SUT) validated by TTI was used to 

represent the conditions of the required ASTM standard test. This new model 

allowed the observation of the interaction between the bases of the units with the 

tires of the truck, as well as how the vehicle would crush on impact with the bollard. 

The modular unit model and SUT model are shown in Figure 5-1 and Figure 5-2 

respectively. 
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Figure 5-1 - Unit Model for Displacement Curve Testing 

 

 

 

Figure 5-2 - SUT Model 
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5.1 Number of Units versus Displacement 

The first round of tests in this series examined the number of units versus 

displacement for the extreme curvature cases considered, which included a 

horizontal curvature and two vertical curvature cases. Each case had 14 tests run, 

seven numbers of units each with the two different friction coefficients. The 

number of units tested began with three units and increased by two units with 

each new test. Testing started with the units oriented in a straight line, the results 

of which can be seen in Figure 5-3. 

 

 

Figure 5-3 - Number of Units vs Displacement for Straight Configuration 
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The next condition examined was the extreme horizontal curvature. Each 

units was placed in such a way that it was angled 5° with respect to the units next 

to it. This created a curve with a radius of 45’-10”. Only one impact direction was 

tested since the mass of the system and the interaction of the units were the only 

behavior being observed. It was believed the orientation of the units would not 

have had a significant impact on the results. The final curves are shown in Figure 

5-4. 

 

 

Figure 5-4 - Number of Units vs Displacement for 5° Curved Configuration 

 

The next configuration examined was the vertical curvature of the units in 

a downward direction. The units for this test were modeled so that each unit was 
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angled 6° in the vertical direction with respect to the ones next to it. This 

orientation was called the downward direction because the center point of the arc 

made up by the units is above the units. The results of these tests are shown in 

Figure 5-5.  

 

 

Figure 5-5 - Number of Units vs Displacement for Downward 6° Vertical Curvature 

 

The last configuration examined was the vertical curvature of the units in 

an upward direction. The units for this test were modeled so that each unit was 

angled 6° in the vertical direction with respect to the ones next to it. This 

orientation was called the upward direction because the center point of the arc 
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made up by the units is below the units. The results of these tests are shown in 

Figure 5-6.  

 

 

Figure 5-6 - Number of Units vs Displacement for Upward 6° Vertical Curvature 

 

 The results of this test are in agreement with all of the cases. The 

displacement of the units decreases nonlinearly as the number of units increase 

in the system. Also the displacements with respect to the friction coefficients is 

converging. From these two observations it was reasoned that there was a point 

where the displacement was not going to decrease further with the increase in the 

number of units. However, more testing would be needed to find that point. 
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5.2 Curvature versus Displacement 

In addition to the effect of the number of units on displacement, the 

curvature of the designed units versus displacement was needed to further 

quantify performance. Three curvatures were considered; horizontal, vertical 

downward, and vertical upward. Each of these cases were modeled as before but 

the angles between the units changed. The tests were run between 0° and the 

maximum considered case (5° for horizontal and 6° for both vertical cases) at 1° 

intervals. The results of these tests are shown in Figure 5-7, Figure 5-8, and 

Figure 5-9 respectively. 

 

 

Figure 5-7 – Unit Horizontal Curvature vs Displacement 
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Figure 5-8 - Unit Vertical Downward Curvature vs Displacement 

 

 

Figure 5-9 - Unit Vertical Upward Curvature vs Deflection 
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The results of these simulations suggest there is little to no change in the 

displacement for horizontal curvature, while both vertical curvatures are rather 

insensitive. The change in the vertical curvature can be explained by the change 

in the friction forces due to the angle. The normal forces between the units and 

the ground changed with the angle causing the friction forces to change and thus 

the displacement. The horizontal curvature had the same normal force regardless 

of how angled the units were to each other, which was why there was no change 

there. Because these changes were so small, they were not considered in design.  

 

5.3 Design Changes 

After completion of these refined model tests, it was evident that this design 

was workable. However, if was felt some changes were necessary for the purpose 

of constructability. The first change that was implemented was the shortening of 

the units. Initially they were to be 9’ long, but because sheets of steel are only 

available in 8’ cuts the units were shortened to length of 8’. The second change 

was the use of a HSS rectangular tube in the unit. The original design of the units 

were made up of six steel plates welded together. To decrease fabrication costs, 

the two web plates were replaced with an HSS 10x14x5/8” rectangular steel tube. 

The top and bottom plates could now be stitch welded to the HSS tube and the 

end plates welded to close in the center. The next change in the design decreased 

the number of fasteners at each corner to one, as well as only have the units 

connected by the top plates. These were implemented to make the assembly of 
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the system easier. Also, it was decided the bolts would be made up of B7 threaded 

rods or others equivalent or greater in strength. This reduced the size of the 

connections as much as possible. In addition to the changes, a new design 

consideration was introduced. 

After studying the displacement versus number of units curves, it was 

decided a new possibility should be explored. This new consideration was the 

possible use of the units without a concrete fill. This would allow the units to be 

placed temporarily in an area and then later removed and reused, with the same 

ease of transport as the original units. With this new usage possibility, it was 

important that new tests be run to determine its feasibility. It was also important to 

include the last change to the design, which was to include a bolted connection 

between the unit and the bollard. With these design changes finalized testing 

resumed. 

 

5.4 Number of Units versus Penetration 

After the design was altered, the performance of the units needed to be 

tested again. The models were updated to reflect the changes in the design and 

simulations were run. There were a few changes in these tests. Because the 

curvature had such a small impact on displacement, it would not be tested again. 

All additional tests would be performed with the units in a straight line. The second 

change was time to measure the performance of the units based on the 

penetration measurements outlined in ASTM Standard F2656. The penetration 
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for this type of system is the distance the front of the truck bed reached past the 

back side of the bollard. A P1 and P2 rating is given to a system that stops the 

test vehicle in 3’-3” and 23’, respectively. It was also decided the tests would 

include systems with a larger numbers of units in an attempt to capture the leveling 

of the curve. Finally, to keep from increasing the number of tests, the two unit step 

was abandoned for a 4 unit step. There was also a new design consideration to 

review; the units without a concrete fill. 

The first set of tests were performed with the concrete fill in the units. The 

number of units in each test started with 5, and then increased to 9, 13, 17, 25, 

33, and 41. This was done for two reasons. The first was so that the curve would 

level out and the minimum penetration found. The second was to determine how 

many units would be effected by a vehicle crashing into the system. The results 

of the tests are shown in Figure 5-10.  
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Figure 5-10 - Number of Units vs Penetration for Units Filled with Concrete 

 

It was concluded that for these models the number of units effected by the crash 

was infinite. There were three reasons for this. Firstly, the design of the units was 

strong enough to pass the forces onto the next unit with no damage to itself, 

except for the units directly impacted by the vehicle. Secondly, the connections 

were modeled as pinned springs between the units to simplify them for testing. 

This method caused the connection model to be more rigid than the design. Finally 

the units were modeled as resting on the ground, meaning the only restraining 

force was friction. 

The next tests run explored the behavior of the units when not filled with 

concrete. The number of units for each test was the same. The results of these 

tests are shown in Figure 5-11. 
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Figure 5-11 - Number of Units vs Penetration for Empty Units 

 

As expected, these results were similar those of the concrete filled unit 

simulations. The reason the graph levels out later is because the mass per unit is 

lower. While the mass does not affect the energy dissipation after impact, it does 

affect the amount of velocity the units have after impact, thus resulting in higher 

penetrations.  
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6 CONNECTIONS 

 

The last key component of the design needing more in depth study was the 

connections for the units. This was delayed until the end of the process for two 

reasons. First, confirmation of the design worked on a large scale was needed. 

There was no point in performing detailed design of the connection if the 

macrostructure of the units might change. The second reason was due to 

problems with the connections in the initial design testing. The first step was to 

determine the worst case scenario for the connection forces. Data from previous 

tests showed that the worst case for the interunit forces was with the units 

connected in a straight line. Simulations were completed with two different bolt 

models; spring models and beam models. 

 

6.1 Spring Connection Tests 

The spring model tests were completed to determine the trend in the 

connections forces as the number of units increased. The bolts were modeled as 

linear springs pinned to the unit, producing only axial force in the spring. Having 

only a single unidirectional force made it easier to see how the number of units 

impacted the connection forces. There were two subsets of simulations, those 

with concrete fill in the units and those without. These models were identical to 

the penetration versus number of units curves from the previous round of testing. 

The only change for these tests was the output included specific data about the 
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spring forces to more accurately determine the maximum forces. The results for 

the units with and without concrete are shown in Figure 6-1 and Figure 6-2 

respectively. 

 

 

Figure 6-1 - Number of Units vs Connection Forces for Units Filled with Concrete 
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Figure 6-2 - Number of Units vs Connection Forces for Empty Units 

 

From the graphs it was noted that the 17 unit models yielded the highest 

connection forces. However, there was concern the maximum force of 500 kips, 

would require at least a 2.3” diameter bolt. Concerned that the simple axial force 

model might underestimate the forces involved, a more refined connection model 

was introduced. The information from this force trend was utilized with the more 

accurate connection model tests to reduce the time spent on simulations. Another 

conclusion resulting from these graphs was the connection forces’ lack of 

dependence on whether or not the unit was filled with concrete. The data, with 

and without concrete fill, follow the same curve, and have the same maximum. 
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The lack of dependence meant that it would be sufficient to run the beam 

connection tests only on the units without the concrete fill.  

 

6.2 Beam Connection Tests 

The next tests were run with the connections modeled as beams rigidly 

attached to the units. As discussed previously, only the case of the units without 

the concrete fill was tested. This allowed data for both the unit-to-unit and bollard-

to-unit connections to be collected simultaneously. The output of the simulations 

was modified to include the beam forces in both connections. 

In each case, the maximum loading ratio was found for both the bollard 

connections and the interunit connections. This was done by taking the sum of 

the forces divided by the nominal capacities. The maximum loading ratio used to 

determine if the bolt would hold under the test conditions. The maximum Von 

Mises stress was also recorded to verify that the loading ratio was accurate. These 

results were recorded for all test cases. 

This round of testing was used to determine the bolt sizing for the 

connections. All of the previous tests showed that the plate had sufficient strength 

at the connection point, so how the bolt holes were designed was not a concern. 

The testing with the spring bolt model showed that the bolts needed to be on the 

larger end of the available bolt sizes, the two largest standard bolt sizes were 

tested; 1.5” diameter bolts and 2” diameter bolts. Each test configuration ran both 

of these cases.  
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The first test model included 17 units with a coefficient of friction of 0.4 

because that was the case that yielded the highest force in the spring bolt tests. 

The second model also had 17 units, but had a coefficient of friction value of 0.7. 

This was done to ensure the increase in friction did not increase the connection 

forces. The third case included 33 units lined up to verify the connection forces 

with the increase in the number of units. The final case included 33 units, but with 

the units on the ends fully constrained. This was done to ensure that the largest 

connection forces were captured, by making the connections transfer the full force 

to the ends of the units without the units gaining any momentum. The results of 

all of these tests can be seen in Table 6-1. 

 

Beam Connection Data 

No of units Bolt Dia Friction 
Max Von 

Mises (ksi) 
Max Loading 
Ratio - Pipe 

Max Loading 
Ratio - Unit 

17 1.5 0.4 215.67 2.032 0.511 

17 2 0.4 156.06 1.166 0.35 

17 1.5 0.7 220.75 2.179 0.613 

17 2 0.7 151.71 1.259 0.426 

33 1.5 0.4 215.38 2.002 0.862 

33 2 0.4 156.93 1.165 0.534 

33+ 1.5 0.4 223.79 2.106 0.872 

33+ 2 0.4 163.60 1.214 0.591 
Table 6-1 - Beam Connection Tests Data 

 

The results from these tests show that there was a discrepancy between 

the spring and beam bolt models. The data showed the bolts were under more 

stress with 33 units than with 17. It also showed that the increase in friction values 
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did increase the connection forces. This difference was likey the result of 

resonance in the 17 unit model that was dampened out with the increased number 

of units. This also may have been the cause behind the difference in the trends 

with the friction values.  

 

6.3 Connection Design 

The results from the beam connection tests provided suitable data for 

designing the connections. The tests showed that the 1.5” diameter bolts were 

suitable for the interunit connections while the 2” diameter bolts were just about 

enough to hold the bollard in place. The tests did show that the maximum loading 

ratio for the 2” diameter bolts was greater than the one for the bollard connections, 

however it was deemed sufficient for two reasons. The first reason was that the 

bolts would not be as rigid as modeled so the resulting stresses may not have 

been as high in the fully detailed model. The second reason was that the plate 

might deform under the loading which would also result in slightly lower forces on 

the bolt. With the bolt sizes decided, the holes in the units needed to be designed. 

The driving idea behind the design of the holes for the bolts was the 

curvature of the units. In all of the previous tests the areas in the plates where the 

bolts were connected did not deform at all, so it was assumed that the steel plate 

was strong enough for the bolts. The bollard connection was designed first. There 

were to be slotted holes cut into the HSS tube and the bollard to allow the bollard 

to remain vertical while the base tilted. The hole was 1.25” long to allow for an 
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angle up to 5°. The connections of the units were designed next with the same 

curvature considerations in mind. It was decided that the holes for the connections 

be but into both the top and bottom plates. This was to make fabrication of the 

units easier as well as allow the units to be angled along their length. It was also 

decided that one side of the plate have a regular sized hole while the other had 

curved slotted holes. This was so that the units could still curve horizontally, but 

they could also be curved vertically without the need for washers on both sides of 

the connection. The curved slotted holes were design in such a way that their 

center of curvature was at the center of the bollard and projected 5° in both 

directions. They were also oversized by 1/2” to allow for the vertical curvature. 

The only washers for the connections were 1/2” plate washers for the slotted holes 

to ensure that the bolts did not slip through. With this, the connections completed 

the design was finished.  
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7 DESIGN VERIFICATION 

 

With the connections designed the units were completely detailed and 

ready for verification. Prior to this point the models for each of the tests had been 

simplified to gather the data needed for design. For these final two simulations, 

the units were modeled with as much detail as possible. 

The unit models that were refined included the connections, sand fill, and 

bollard freedom. The holes for the bolts were included in the plates, the HSS tube 

and the bollard. The washers were modeled as shell elements like the plates and 

had contact with them. The bolts were modeled as beam segments with null shell 

elements rigidly constrained to them at cross sections. The beam elements were 

for the stiffness of the bolt, while the null elements were there to provide the 

contact between the bolt and the plate. The assumption was made that the bolt 

would bend in such a way that the cross section would not deform, which was why 

the ends of the beams were rigidly constrained to the ends of the null shells. To 

properly simulate any deformation in the beams due to loading each beam and 

null shell element was very short. A picture of the bolt model is shown in Figure 

7-1. 
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Figure 7-1 - Bolt Model for Design Verification 

 

Modeling the sand fill for the units was challenging. The difficulty with 

modeling the sand fill was that most property data on sand is gathered using 

compressed samples. However the sand fill was assumed to be loosely packed 

and thus wouldn’t have the same density or bulk modulus. Utilizing a NASA report 

on the LS_DYNA modelling of soils (Thomas and Chitty 2011) it was decided to 

use the MAT-5 Soil and Foam material card for the sand. The sand was modeled 

as a solid with this material card. To avoid difficulty in modeling the geometry of 

the sand and including a contact card it was decided that solid elements of the 

sand would share nodes with the HSS tube and bollard where there was contact. 

In this way the sand would still behave as if there was contact between them but 

without increasing the simulation time by adding in a contact card. 
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After the models were complete with the details described above and 

displayed in Figure 7-2, the complete units were tested. The beam connection 

tests showed that the most stress on the bollard and unit bolts was during the 33 

unit test with the ends anchored. For this reason a similar test was performed 

here. 31 units were modeled in a straight line with the end units fully constrained 

on the outside. The simulation was run for almost the full duration of the crash, 

but stopped just before the end due to supercomputer run time restraints. The 

results of the test are shown in Table 7-1. 

 

 

Figure 7-2 - Fully Detailed Unit Model 
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Maximum Bolt Stress, Strain, and Unit Penetration 

Max Von Mises Stress 
(ksi) 

Max Plastic Strain 
Penetration 

(ft) Unit 
Bolts 

Bollard 
Bolts 

Unit 
Bolts 

Bollard 
Bolts 

104.423 120.566 0 0.125 11.910 
Table 7-1 - Horizontal Ground Test Results 

 

Finally, there was some concern with the increased size of the hole for the 

bollard because the extra flexibility might allow the truck to continue moving after 

the impact with the barrier. The size of the hole for the bollard was adjusted for 

the plate and HSS tube to the size specified in the design. This was particular 

concern for the case when the units would be at a five degree incline with the 

vehicle traveling downhill. For this reason, a five degree incline test was performed 

with the general horizontal ground case. The results can be seen in Table 7-2. 

 

Maximum Bolt Stress, Strain, and Unit Penetration 

Max Von Mises Stress 
(ksi) 

Max Plastic Strain 
Penetration 

(ft) Unit 
Bolts 

Bollard 
Bolts 

Unit 
Bolts 

Bollard 
Bolts 

77.404 134.822 0.000 0.141 11.812 
Table 7-2 - 5° Downhill Incline Test Results 

 

As can be seen from the results the design of the modular bollard barrier 

passed these simulation tests. The slotted holes for the interunit connections gave 

the system much more flexibility than the simplified models, resulting in a finite 

number of units being engaged. The oversized hole for the bollard caused the 
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system to vault the truck upwards, however the system slowed the truck down 

enough that it came back down on top of the system. This allowed some additional 

penetration but did stop the truck within the desired limits for this case. 
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8 CONCLUSION 

 

8.1 Research Summary 

This project set out to design a modular security barrier that could be used 

as an expeditionary system for the construction of new secure areas. It would be 

flexible enough to curve, both horizontally and vertically, with the ground along 

the perimeter of the site and still be able to withstand a collision with a 15000 lb 

vehicle travelling at 30 mph. It could then be installed in the ground for permanent 

protection and be able to stop the same size vehicle travelling 50mph within 3’-3”. 

All of the tests performed during this project show that this design could meet that 

desire.  

This system is made up of interconnecting modular units bolted together to 

make up a physical barrier that is able to stop a 15000 lb truck traveling 30mph 

within 12 ft. It is able to do this with the unit resting on the ground. Each unit is 

able to rotate in any direction up to 5° while the bollard remains vertical. This gives 

it flexibility to be able to curve along with the ground with less groundwork than 

other systems. Further, with the bollard designed to be a separate piece from the 

base of the units, it allows the units to be much more efficiently transported. The 

units can be stacked while the bollards can be bundled separately. Finally, both 

the literature review and the testing indicate that once fully installed the system 

will be able to stop the truck moving at 50mph within 3’-3”.  
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8.2 Future Tasks 

While testing has shown positive results, there is still much to be done 

before this design can be called complete and put on the market. Further testing 

needs to be done to include full design curvature tests, permanently installed unit 

tests, and off-center crash tests. Under the idealized rigid connection tests for the 

displacement curves in Section 5.2 the curvature did not affect the performance 

of the system. However, the slotted hole connections will behave very differently 

and need to be reviewed to ensure the system meets the penetration 

requirements for the curvature designed. The reason the permanently installed 

units need to be tested further is that while the testing and literature review 

indicate that the units will meet the requirements, there is no conclusive tests 

indicating that they will.  

The last issue with the tests performed in this study is that they focused on 

the scenario where the vehicle impacted the center bollard. This was acceptable 

for these tests because of they were done to gather data for the design. With the 

design completed it is important to test how the system will react when the vehicle 

does not impact at the center. The off center crash will give the system angular 

as well as linear momentum and will need to be addressed if the units are to ever 

be used in a case where they are not assembled in a closed shape. One possible 

solution for this would be to somehow fix the units to the ground, but that was not 

within the scope of this research. 
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Other thoughts for design that were outside the scope of this research was 

the need to include pedestrian trip hazards and requirements set forth by the 

American Disabilities Act. Once finished these units could be placed in areas 

where pedestrian traffic might have to walk over them. In this case the layering of 

the units and the bolts would present a tripping hazard for anyone trying to access 

the other side of the barrier. This is why it will be important to look at ways to cover 

and/or minimize these extrusions. Also, if these units were ever to be used in the 

United States (or other countries with a similar law) then the units would need to 

be design to allow disabled peoples to be able to get over them somehow in 

addition to everyone else. 

Finally, after everything else has been considered, real life crash tests need 

to be performed before this design can be put on the market. FEM simulation is a 

very useful tool for research and design, but no simulation can match the accuracy 

of a real life, full scale crash test. The tests would potentially need to cover a 

variety of numbers of units, curvatures, and positioning on and in the ground but 

that will need to be decided once the issues presented above have been 

addressed and testing criteria established. 
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APPENDIX 

 

No of Units vs Displacement - Straight 

# of Units 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

3 24.90 15.27 

5 15.90 10.36 

7 10.74 7.28 

9 6.90 4.72 

11 4.87 3.36 

13 3.55 2.59 

15 3.11 2.37 
Table A-1 - Numbering of Units vs Displacement for Straight Configuration 

 

No of Units vs Displacement - Curved (5°) 

# of Units 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

3 25.31 15.39 

5 14.66 9.10 

7 9.69 6.23 

9 7.07 4.73 

11 4.72 3.12 

13 3.77 2.62 

15 3.12 2.27 
Table A-2 - Number of Units vs Displacement for 5° Curved Configuration 
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No of Units vs Displacement - Curvature (6°) 

# of Units 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

3 27.15 16.99 

5 14.83 9.49 

7 9.93 6.40 

9 7.93 5.37 

11 5.87 4.07 

13 4.59 3.17 

15 3.17 2.33 
Table A-3 - Number of Units vs Displacement for Downward 6 Vertical Curvature 

 

No of Units vs Displacement - Curvature (6°) 

# of Units 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

3 25.84 16.15 

5 15.68 10.06 

7 10.19 6.76 

9 6.56 4.44 

11 5.06 3.56 

13 3.72 2.65 

15 2.89 2.13 
Table A-4 - Number of Units vs Displacement for Upward 6 Vertical Curvature 
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Curvature vs Displacement 

Curvature (°) 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

0 6.90 4.72 

1 7.40 5.01 

2 6.89 4.72 

3 6.97 4.77 

4 6.99 4.79 

5 7.07 4.73 
Table A-5 - Unit Horizontal Curvature vs Displacement 

 

Vertical Curvature (Downward) vs 
Displacement 

Curvature 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

0 6.90 4.72 

1 7.05 4.58 

2 7.55 5.08 

3 7.45 5.06 

4 7.51 5.07 

5 7.56 5.13 

6 7.93 5.37 
Table A-6 - Unit Vertical Downward Curvature vs Deflection 
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Vertical Curvature (Upward) vs Displacement 

Curvature 
Final 

Displacement 
mu=0.4 (ft) 

Final 
Displacement 

mu=0.7 (ft) 

0 6.90 4.72 

1 7.11 4.84 

2 7.25 4.77 

3 6.98 4.52 

4 6.89 4.47 

5 6.78 4.51 

6 6.56 4.44 
Table A-7 - Unit Vertical Downward Curvature vs Deflection 

 

No of Units vs Penetration 

# of Units 
Penetration 
(ft) mu=0.4 

Penetration 
(ft) mu=0.7 

5 5.446 0.066 

9 -0.656 -3.248 

13 -2.789 -4.560 

17 -3.642 -4.659 

25 -3.740 -4.954 

33 -3.937 -5.085 

41 -4.199 -5.151 
Table A-8 - Number of Units vs Penetration for Units Filled with Concrete 
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No of Units vs Penetration 

# of Units 
Penetration 
(ft) mu=0.4 

Penetration 
(ft) mu=0.7 

5 11.811 3.740 

9 3.051 -0.886 

13 -0.623 -3.215 

17 -2.100 -3.970 

25 -2.395 -3.970 

33 -2.592 -4.199 

41 -2.723 -4.528 
Table A-9 - Number of Units vs Penetration for Empty Units 

 

Connection Forces (kips) 

No Units mu=0.4 mu=0.7 

5 394.892 365.556 

9 467.577 479.628 

13 480.350 499.243 

17 499.873 481.681 

25 459.852 449.036 

33 463.390 445.463 

41 463.306 438.079 
Table A-10 - Number of Units vs Connection Forces for Units Filled with Concrete 

 

Connection Forces (kips) 

No Units mu=0.4 mu=0.7 

5 378.750 368.553 

9 415.267 433.486 

13 487.699 487.879 

17 501.208 477.509 

25 456.605 437.592 

33 486.049 464.273 

41 468.644 459.905 
Table A-11 - Number of Units vs Connection Forces for Empty Units 

 


