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ABSTRACT 

 

The premise of this work is the development, validation, and application of a methodology to forecast 

production data in unconventional reservoirs where variable rate and pressure drop producing conditions 

are typically observed.  In unconventional reservoirs, it is not common practice to maintain or even arrive 

quickly upon a constant flowing bottomhole pressure which is the primary assumption for the application 

of traditional time-rate decline curve analysis.  As a result, the application of traditional time-rate relations 

to these cases yields misleading results at best. 
 

The methodology presented herein involves the application of the rigorous convolution/superposition 

theory traditionally relied upon for pressure transient or production analysis.  Empirical pressure drop 

normalized rate decline relations are utilized as a proxy for analytical models in the convolution integral 

and superposed with either measured or calculated flowing bottomhole pressure drop data for the well(s) 

in question.  The ability to incorporate non-linearities such as compressible gas flow and pressure 

dependent permeability is investigated using pseudopressure transformations and the limitations are 

outlined clearly. 
 

A three step workflow consisting of diagnostics, model calibration, and production forecasting is first 

developed before ultimately being validated and applied for a number of simulation and field data cases.  

The diagnostic stage of the workflow provides the foundation for the proceeding analysis by providing 

insight into prevailing performance signatures for the well in question.  The primary tool for achieving this 

is the so called “qDb” plot, which is referenced throughout the work.  Incorporation of diagnostics 

minimizes non-uniqueness and guides model parameter selection for the second stage of the workflow.  

Ultimately, production is forecast into the future according to any number of defined pressure drawdown 

schedules. 
 

The validation examples in this work successfully demonstrate the workflow for a range of oil and gas 

cases with and without pressure dependent permeability introduced into the system.  In each of the cases, 

the data was synthetic and was generated by a commercial simulator using unstructured Voronoi gridding.  

Validation was achieved using a total of five decline models that are relied upon throughout the work and 

detailed in dedicated Appendices.  
 

Application examples were chosen to reflect representative field cases where the author has found the 

methodology to be useful from a practical standpoint.  Each example aims to emphasize a different 

problem and outline the strength and limitations of the methodology applied to each.  It is here noted that 

the primary weakness of the methodology is its ability to handle cases with high degrees of non-linearity.  



 

iii 

 

This is evident when forecasting a high-pressure/high-temperature shale gas well where drawdowns are 

very high. 
 

The work is rounded out with the conclusion that the approach introduced herein provides a useful tool for 

quickly forecasting production under variable pressure drop conditions for both producing and 

undeveloped wells.  The methodology is particularly useful for scenarios where more detailed analytical 

and numerical modeling techniques may not be feasible analysis options due to data or time limitations. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Introduction 
 

Decline curve analysis, generally defined as the process of extrapolating only time-rate production data 

into the future using an empirical mathematical model is one of the most commonly used techniques for 

estimating ultimate recovery from a producing well or reservoir.  Arps’ (1945) exponential and hyperbolic 

decline models, the most commonly used decline models within the petroleum industry, are applied by 

calibrating a set of model parameters controlling the forecast shape until a best fit of the prevailing 

flowrate trend is achieved and appropriate application of these models is subject to the following list of 

assumptions adapted from Lee and Wattenbarger (1996): 
 

 The extrapolation of a curve (i.e. rate-time model) through the historic production data is an adequate 

representation of future production trends. 
 Current operating conditions and field development will continue without substantial changes which 

may affect the model extrapolation into the future. 
 The well is producing from an unchanging drainage area with no-flow boundaries (i.e. boundary 

dominated flow). 

 The well is producing against a constant bottomhole flowing pressure. 
 

Production from conventional reservoir systems often occurs according to the above assumptions; 

however, most of them are violated in low to ultra-low permeability systems where there is a lack of 

historical analogs and considerable uncertainty regarding long-term well performance.  Each of the points 

deserves attention in its own right, but the final point forms the focus of this work, specifically in the 

context of unconventional reservoirs where extended periods of variable pressure drawdown conditions 

are common due to choke management practices, pump capacity limitations, concerns about 

geomechanical effects, and prevailing market conditions.  The primary goal is to present a workflow for 

incorporating flowing pressures into a traditional decline curve analysis workflow thus providing a simple 

forecasting technique for wells exhibiting variable pressure drop conditions that would otherwise require 

more rigorous analytical or numerical model based production analysis. 
 

The aim of this work is achieved by using the superposition principle used in analytical model based 

production analysis with pressure drop normalized empirical decline curve relations serving as an 

approximation of the unknown constant pressure rate response.  A three step process consisting of data 
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diagnostics, history matching using superposition, and production forecasting is thoroughly developed 

allowing consistent application.  The methodology is first validated using a series of synthetic examples 

generated with a reservoir simulator where the system under consideration is known.  It is noted that the 

methodology is able to adequately capture the sustained rate trends for cases with and without non-

linearities using pseudopressure transformations where appropriate. Following validation, select oil and 

gas field examples are analyzed demonstrating practical applications. 
 

1.2 Objectives 
 

The primary objectives of this work are: 
 

 To develop and validate a methodology combining the superposition principle and empirical constant 

pressure rate solution approximations enabling the incorporation of flowing pressures into decline 

curve analysis workflows. 
 To extend the workflow to incorporate nonlinearities in the form of compressible gas flow and 

pressure dependent permeability while documenting any potential limitations. 
 To demonstrate the technique applied to unconventional well production cases exhibiting variable-

rate/variable-pressure drop conditions. 
 

1.3 Statement of the Problem 
 

Production forecasting in low to ultra-low permeability unconventional reservoir systems presents many 

challenges to the practicing engineer.  In addition to having a limited understanding of the flow physics 

governing these complex systems, many of the traditionally used techniques for forecasting in 

conventional systems render themselves invalid.  This is especially true when care is not taken when 

applying empirical decline relations which, at the time of this writing, are the industry standard for 

forecasting production for reserve evaluations. 
 

Particular care is warranted when applying the most commonly used decline model, namely the Arps’ 

decline relation.  This statement is justified by carefully observing the list of assumptions outlined in 

section 1.1 where an argument can be made that each point is violated in unconventional systems.  A lack 

of historical analogs, uncertainty regarding flow regime changes and timing, and a limited understanding 

of the contacted drainage area make it challenging to establish confidence that any particular model 

adequately represents future production behavior.  Furthermore, choke management strategies, re-

stimulation of wells, infill drilling, and artificial lift installations, among other practices, lead to constantly 

evolving field developments which makes comparing forecasts from year-to-year a challenge.  Extremely 

low permeabilities coupled with multi-stage hydraulic fracture treatments lead to long term transient linear 
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flow regimes which is in stark contrast to the boundary dominated flow requirement outlined in Arps’ 

original work. The reality of long term transient flow amplifies the non-uniqueness of the curve fitting 

procedure.  Each of the above points deserves attention in its own right; however, the assumption of a 

constant bottomhole flowing pressure is the primary focus of this work. 
 

The introduction of practice based approaches, such as the so-called modified hyperbolic relation and a 

slew of modern decline relations, have all been developed to mitigate some of the problems associated 

with forecasting time-rate production data in unconventional systems.  Most of these models were 

developed to address specific flow regimes or operational conditions and at this stage all must be 

considered empirical relationships.  Full theoretical treatment of five such models is provided in 

Appendices A through E.  While the petroleum literature is replete with such “built-for-purpose” models, 

minimally addressed are in-depth workflows aiming to incorporate flowing pressures into a 

straightforward empirical decline curve analysis process.  This is particularly important, regardless of the 

empirical model chosen, due to the common practice of managing pressure drawdown in unconventional 

wells which leads to a period of sustained production rates and violates a key assumption of decline curve 

analysis.  Figure 1.1, shown below, depicts such a case for an unconventional shale oil well. 
 

 

 
Figure 1.1 — Time-Rate-Pressure Production Data for Illustrative Development Case 

 

 

Reasons for managing the pressure drawdown are wide ranging and are often due to surface facility 

limitations, pump capacity, the impact of in-situ stress on completion integrity, concerns about fluid 
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property changes, and prevailing market conditions to name a few.  The most commonly employed 

method for forecasting this well with an aim of estimating remaining reserves would be to observe the 

time-rate data on a semi-log plot and vary the parameters of the modified hyperbolic Arps’ decline 

relations (either manually or using a regression routine) until an adequate match is reached.  Figure 1.2 

demonstrates this process where two widely different time-rate decline curve matches are overlain on the 

oil production data shown previously.   
 

 

 
Figure 1.2 — Illustrative Development Case ─ Oil Flowrate and Potential Rate Forecasts 

 

 

Table 1.1 below summarizes the model results and recovery values for the time-rate examples shown 

above.  The range of both parameters and estimated ultimate recovery (EUR) values exhibited by the two 

production forecasts, both of which could be argued to be correct based upon only this semi-log plot of 

rate-time, illustrates the non-uniqueness of this exercise.  It is clear in this case that using the semi-log plot 

in isolation has to potential to provide misleading production forecasts.   
 

 

Table 1.1 — Illustrative Development Case ─ Time-Rate Decline Curve Analysis Results 
 

  
qi  

 
Di 

 
b 

 
Dlim 

 
EUR30yr  

Decline Model 
 

(STB/D) 
 

(1/D) 
 

(dim.less) 
 

(percent/year) 
 

(Mstb) 
EXP 

 
475  0.0014  -  -  336 

M.HYP 
 

475  0.0016  1.3  10  899 
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Non-uniqueness is an unfortunate fact of life in reservoir engineering which is inherently an inverse 

problem, meaning we know inputs and outputs but have to try and characterize the system governing the 

observed response.  This non-uniqueness is compounded by the short production history and the lack of 

clear decline trends as a result of the choke management practices for many wells.  The workflow 

presented herein is intended particularly to address the practical need to forecast production from wells 

exhibiting variable pressure drawdown early (e.g. a few weeks to a few years) in the life-cycle of the well 

using easily taught and applied decline curve concepts. 
 

The stated aims are achieved through a combination of Duhamel’s principle (i.e. convolution integral), 

which provides the theoretical foundation for analytical model-based production analysis techniques, and 

pressure drop normalized formulations of empirical decline relations presented in the petroleum literature.  

The former part of the combination, namely the convolution integral, provides the fundamental reservoir 

engineering principle utilized in this work and is presented below in a time-step discretized form. 
 

( ) ))()(( 1
1

,, 1 −
=

−∆−∆=∑ − ku

u

k
cpwfwf ttqpptq

kk
 ......................................................................................... (1.1) 

 

where wfp∆ corresponds to the flowing bottomhole pressure drop at a particular time step and cpq  

typically corresponds to an analytical solution to the diffusivity equation describing flow in porous media 

assuming a constant pressure at the sandface for the well in question.  The primary assumption in this 

work involves the convolution kernel, or cpq , in Equation 1.1.  Instead of relying upon constant pressure 

rate solutions to the diffusivity equation (i.e. analytical models) the assumption is made that empirical 

relations utilized for standard decline curve analysis workflows can be normalized by a pressure drop term 

and serve as adequate proxies for the constant pressure rate response, cpq , in the convolution integral.  

Equations 1.2 through 1.6 below provide these relations for the hyperbolic (HYP), power-law exponential 

(PLE), stretched exponential (SEM), Duong (DNG), and logistic growth (LGM) models, respectively. 
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 ................................................................................. (1.6) 

 

Combining equation 1.1 with equations 1.2 through 1.6 allows for the incorporation of pressure drop 

changes throughout time into a decline curve analysis workflow.  The end result of the methodology is the 

ability to history match rate changes that occur as a result of pressure changes and forecast future 

production trends based on various prescribed future pressure schedules.  As the convolution integral 

assumes linearity, special consideration is given to pseudopressure transformations to at least partially 

linearize systems exhibiting gas production and pressure dependent permeability. 
 

Figure 1.3 depicts the end result of the variable pressure decline curve workflow using the power-law 

exponential decline relationship which is fully derived in Appendix B.  Two separate pressure 

extrapolation profiles were used to demonstrate the methodologies ability to incorporate different pressure 

drawdown assumptions when forecasting production.  Tables 1.2 and summarizes the results for the 

power-law exponential decline model where it can be seen that the model parameters are in line with what 

may be expected for wells flowing against a constant bottomhole pressure and the estimated ultimate 

recovery values are heavily dependent upon the pressure profile assumption chosen. 
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Figure 1.3 — Illustrative Development Case ─ Pressure Extrapolations and Power-Law 

Exponential Rate Forecasts 
 

 

 

 

Table 1.2 — Illustrative Development Case ─ Power-Law Exponential Variable Pressure Decline 

Curve Results 
 

  
(q/∆p)i 

 
Di 

 
n 

 
D∞ 

 
EUR30yr  

Decline Model 
 

(STB/D/psia) 
 

(1/D) 
 

(dim.less) 
 

(1/D) 
 

(Mstb) 
PLE                 
(pwf forecast #1) 

 
0.375 

 
0.52 

 
0.25 

 
- 

 
479 

PLE                 
(pwf forecast #2) 

 
0.375 

 
0.52 

 
0.25 

 
- 

 
701 

 

 

 

 

1.4 Validation and Application 
 

A complete development of the workflow in question is provided in the proceeding sections.  Simulation 

examples, where the inputs and outputs of the reservoir system(s) being analyzed are known, validate the 

technique.  Proof-of-concept is proven using a black oil simulation with no introduced non-linearities.  

Subsequently, the method is extended to accommodate non-linearities in the form of compressible gas 

flow and pressure dependent permeability.  Each simulation is constructed in a manner reflective of typical 

unconventional oil and gas systems. 
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Following validation, application examples are demonstrated using field production data from various 

unconventional plays.  The workflow is strictly followed to demonstrate repeatability and practical 

limitations.  The assumptions are clearly outlined and demonstrated for all of the application examples. 
 

1.5 Summary and Conclusions 
 

Incorporation of flowing pressures into decline curve analysis techniques is achieved by developing a 

complete workflow consisting of diagnostics, decline model calibration, and forecasting based on a 

prescribed future pressure drawdown.  The technique is found to be an effective and easily applied method 

to quickly forecast wells exhibiting variable pressure drop conditions.  The workflow is particularly 

applicable to unconventional oil or gas production where constant bottomhole flowing pressures are 

typically not quickly achieved and the effect of different pressure extrapolation assumptions on the 

forecast behavior is desired for reserves forecasting or operational planning. 
 

A diagnostic and differentiation procedure to assess the applicability of the method as a whole, evaluate 

the consistency of the production data, identify the presence of any non-linearities, and determine 

prevailing flow regimes is outlined as a necessary first step of the workflow.  Specialized plots and 

numerical differentiation routines are used to achieve these goals.  The convolution integral typically used 

for analytical model based production analysis and pressure transient analysis provides the fundamental 

reservoir engineering principle for the workflow.  The main assumption of the work is that a pressure drop 

normalized empirical decline relation is a valid approximation of an analytical solution to the diffusivity 

equation and may thus serve in its place as the convolution kernel for superposition calculations.  The 

chosen model is calibrated using diagnostic “qDb” plots and, after achieving an appropriate match of the 

data, production is forecasted assuming any number of pressure extrapolation realizations. 
 

The workflow is validated using a series of synthetic examples meant to emulate typical unconventional 

production systems.  Cases with and without non-linearities are analyzed in order to investigate possible 

extension and limitations of the method.  Following validation, the method is demonstrated for a variety of 

field cases.  Limitations when using pseudo-pressure transformations, particularly those incorporating 

pressure dependent permeability, are noted for high pressure drawdown cases.  Widespread applicability 

of the workflow for unconventional production systems is suggested through the validation and field 

examples. 
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CHAPTER II  

LITERATURE REVIEW 

 

The overall objective of this work is the development of a methodology for forecasting production data 

from unconventional reservoir systems exhibiting nearly constant production rates due to continuously 

declining pressure drop conditions early in the life of a well.  Prior to discussing the work to date 

addressing that particular problem, a discussion of both classical and modern developments related to 

time-rate decline curve analysis as well as semi-analytical/analytical model based production analysis is 

warranted in order to provide a foundation for the developments proposed.  Special emphasis will be 

placed on practical techniques for forecasting production data in unconventional reservoir systems.  The 

literature reviewed in this work is categorized according to the following subsections: 
 

 Time-Rate Decline Curve Analysis 
 Semi-Analytical/Analytical Model Based Production Analysis 

 Variable-pressure Decline Curve Analysis 
 

2.1 Time-Rate Decline Curve Analysis 
 

Decline curve analysis (DCA), or the extrapolation of only time-rate production data into the future, is one 

of the most commonly used techniques in the petroleum industry to estimate ultimate recovery (EUR) for 

producing wells.  Various techniques for forecasting production data have been proposed and applied 

since the early twentieth century; however, in the modern sense of the word decline curve analysis refers 

to the calibration of a time-rate model to a single well (or multiple wells) and extrapolating production to 

an abandonment limit yielding an estimate of ultimate recovery.  This section provides an overview of 

classical decline curve analysis as a means of forecasting production data in conventional plays and 

modern techniques developed specifically to address production forecasting challenges in unconventional 

reservoir systems. 
 

Lewis and Beal (1918) were among the first practitioners to recognize the importance of developing 

dependable, quick, and easily applied forecasting methods for estimating reserves early in the life of a well 

or field.  In pursuit of this goal the authors examined available data from two different Oklahoma fields 

and observed that the percentage rate decline versus time data exhibited power-law trends, or straight-

lines, when plotted on logarithmic coordinates.  They concluded that this straight line behavior, along with 

plots of cumulative percentage decline, could be used to adequately forecast future production.  The 

authors acknowledged the use and outlined the limitations of reserve estimates via volumetric techniques, 
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analogy methods, and production curve forecasting.  Interestingly, the authors also provided an early look 

into probabilistic forecasting by examining the statistical nature of their forecast results. 
 

Cutler (1924) later provided an extensive overview of production forecasting techniques during the 

1920’s.  Similar to Lewis and Beal, he observed the decline behavior of a large number of wells produced 

with little or no production curtailment.  His primary deduction was that the percentage rate decline was 

often variable which contrasted with the constant behavior observed by Lewis and Beal.  He concluded 

that the rate decline could be modeled by a mathematical equation of the hyperbolic class by shifting 

production data through trial and error until a straight line trend is established. 
 

The concepts of the loss-ratio and loss-ratio derivative were introduced by Johnson and Bollens (1927) 

giving the observations of prior authors a mathematical context.  The definition of the loss-ratio is 

presented below as: 
 

dttdq
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Where 1/D(t) is the loss-ratio, q(t) the flowrate, and t production time.  By extension, the derivative of the 

loss-ratio is defined as follows: 
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In this case b represents the derivative of the loss-ratio.  Their forecast approach involved tabulating these 

ratios using finite difference numerical differentiation, extrapolating the corresponding trend according to 

the observed ratio behavior, and back-calculating the future rate profile.  The authors confirmed the 

observations of prior engineers by mentioning that the ratio trends often display power-law behavior.  

These revelations provide a crucial piece of the foundation for both classic and modern decline curve 

analysis techniques. 
 

Prior to Arps’ (1945, 1956) seminal works, the majority of the effort in the realm of production forecasting 

was focused on plotting rate, cumulative production, or associated ratio data in various coordinate systems 

searching for an easily extrapolated straight line behavior.  Arps formally synthesized prior work by 

defining the now ubiquitous exponential and hyperbolic declines in mathematical terms for both rate 

versus time and rate versus cumulative production expressions.  The rate versus time exponential decline, 

using modern nomenclature, is given below as: 
 

[ ]tDqtq ii −= exp)(  ............................................................................................................................... (2.3) 
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where qi is the initial flowrate of the model and Di represents the initial nominal decline rate.  This 

equation is the mathematical manifestation of the constant percentage decline concept alluded to by prior 

researchers.  In other words, Eq. 5 was derived based on observations by Arps and others that the loss 

ratio, defined by Equation 2.1, exhibited near constant behavior.  Additionally, Arps also provided the 

following formulation of the rate versus time hyperbolic decline which is shown below. 
 

( ) b
i

i

tbD
qtq 11

)(
+

=  ............................................................................................................................... (2.4) 

 

where the b parameter represents the Arps’ hyperbolic decline exponent.  This equation provides a 

mathematical basis to the apparent hyperbolic nature, or the observed deviation from a constant percentage 

decline behavior noted by Cutler (1924).  The hyperbolic derivation was based on an observation that the 

loss-ratio derivative, defined by Equation 2.2, exhibited constant behavior for some wells.  As a result a 

single b factor is used to describe the production decline throughout the history of a well when using the 

hyperbolic model in its traditional sense. 
 

In conjunction with his derivations, Arps formally outlined a set of assumptions governing the practical 

applicability of the exponential and hyperbolic relations.  The list below, adapted from Lee and 

Wattenbarger (1996), summarizes these assumptions: 
 

 The extrapolation of a curve (i.e. rate time model) through the historic production data is an adequate 

representation of future production trends. 
 Current operating conditions and field development will continue without substantial changes which 

may affect the model extrapolation into the future. 
 The well is producing from an unchanging drainage area with no-flow boundaries (i.e. boundary 

dominated flow). 

 The well is producing against a constant bottomhole flowing pressure. 
 

In addition to these formal assumptions Arps noted that the hyperbolic b parameter should range between 

0 and 1 due to the unbounded nature when the hyperbolic exponent is greater than or equal to unity. 
 

In direct contrast to Arps’ prior suggestions that the hyperbolic b exponent should fall between 0 and 1, 

Maley (1985) demonstrated that a b value greater than unity could adequately fit production data from 

tight gas wells.  This observation, while strictly empirical, can be confirmed as one of the first addressing 

and questioning, the applicability of classical decline curve analysis for unconventional reservoirs.  The 

author also noted that care must be taken to avoid unreasonable estimates of ultimate recovery due to the 

unbounded nature of the mathematical model. 
 



 

12 

 

Rushing et al. (2007) delved further into the topic of forecasting production data in tight reservoirs as part 

of a comprehensive simulation study where they observed that extrapolating rates during transient flow 

using an unbounded hyperbolic equation (b > 1) resulted in significant overestimates of estimated ultimate 

recovery (EUR).  As an additional point of significance, they also observed that the b value tended to 

decrease as a function of time.  These observations were further elaborated on in the work of Lee and Sidle 

(2010) which discussed the significance of these observations as they relate to reserve estimation. 
 

An in depth discussion of the cause of b-parameters greater than unity is warranted due to its direct 

relevance to the challenge of forecasting production data in unconventional reservoir systems.  Okouma et 

al. (2012) provide a comprehensive discussion on the practical aspects of decline curve analysis in 

unconventional reservoirs where horizontal wells with large multi-stage fracture stimulations are the 

development norm.  The authors note that these wells typically exhibit linear, bi-linear, or multi-fractured 

flow signatures early on in their productive lives.  The following equation corresponds to linear flow 

which is characterized by a half slope trend when production rate versus time is plotted on logarithmic 

coordinates.  Linear flow is indicative of very high conductivity fractures. 
 

t
atq LF=)(  ........................................................................................................................................... (2.5) 

 

where aLF is a lump linear flow model parameter.  Similarly, quarter slope trends in raw data are often 

indicative of bi-linear flow resulting from low or very low conductivity fractures.  The following equation 

summarizes this behavior. 
 

4
)(

t
atq BLF=  ......................................................................................................................................... (2.6) 

 

where aBLF is a lump bi-linear flow model parameter.  The authors also mentioned occasional third slope 

behavior when analyzing field data and termed this the multi-fracture flow regime.  The equation 

describing this regime is as follows. 
 

3
)(

t
atq MFF=  ......................................................................................................................................... (2.7) 

 

where aMFF is a lump multi-fracture flow model parameter. 
 

Observing Eqs. 7, 8, and 9 it is immediately evident that each is a power-law representation of the rate as a 

function of time.  The practical implications are realized by showing that Arps’ hyperbolic relation (Eq. 

2.4) can be reduced to a power-law equation for certain circumstances.  Okouma et al. (2012) made the 
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following observations, showing that Arps’ hyperbolic equation could be reduced to the power-law 

relations presented above. 
 

 Substituting b=2 into Eq. 2.4 (assuming bDit >> 1) yields the linear flow relation (Eq. 2.5). 

 Substituting b=4 into Eq. 2.4 (assuming bDit >> 1) yields the bi-linear flow relation (Eq. 2.6). 

 Substituting b=3 into Eq. 2.4 (assuming bDit >> 1) yields the multi-fracture flow relation (Eq. 2.7). 
 

These observations help explain why Arps’ hyperbolic relation often adequately fits production data from 

fractured wells early in their production history.  The authors acknowledge that the hyperbolic relation can 

still be used as a practical tool as long as proper care is taken to constrain the relation to avoid excessive 

resource estimates. 
 

Robertson (1988) introduced the so called modified hyperbolic decline which, at the time of this writing, is 

by far the most used method of constraining hyperbolic models with b-parameters greater than unity.  This 

method is a practice based approach where early transient production data is fit using Eq. 2.4 with an 

appropriate b-parameter and at a later period in time an exponential tail, or terminal decline, is spliced to 

the hyperbolic portion to force the rate to eventually reach zero and bound the forecast.  This method is a 

useful and practical method for constraining recovery estimates; however, there is a great deal of 

ambiguity surrounding the magnitude and switch point when applying the exponential tail.  Without 

proper care, future recovery can be grossly over or under estimated. 
 

The power-law exponential decline, which assumes that the b-factor trend (i.e. derivative of the loss-ratio) 

declines as a function of time, was derived by Ilk et al. (2008, 2009) in an attempt to better model fracture 

dominated flow in low/ultra-low permeability reservoirs.  The rate versus time formulation is provided 

below. 
 

]ˆexp[ˆ)( tDtDqtq n
ii ∞−−=  .................................................................................................................. (2.8) 

 

where iq̂  is the initial rate coefficient, iD̂  the decline coefficient, n the time exponent, and ∞D  the 

terminal decline coefficient.  Similar to Arps’ models, the authors’ derivation was based on observed 

behaviors of the loss-ratio (Eq. 2.1) and derivative of the loss-ratio (Eq. 2.2).  Specifically, the model 

assumes that each decreases as a power-law function with time (i.e. straight line on a log-log plot).  This 

observation is in-line with the early time flow regime behaviors that predominate in many fractured wells 

producing from unconventional formations.  In an attempt to model the transition from transient (e.g. 

linear, bi-linear, etc.) flow to boundary dominated or depletion type flow the power-law exponential 

decline includes a terminal decline coefficient ( ∞D ) which forces the model to gradually transition to an 

exponential decline at later times. 
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Valkó (2009) later introduced the stretched exponential decline as part of a large scale database study of 

monthly production data from the Barnett Shale.  While derived independently, the stretched exponential 

model and power-law exponential model are essentially the same aside from the inclusion of the ∞D  term 

included in the power-law exponential decline.  The functional form of the stretched exponential decline 

model also finds use across scientific disciplines including modeling aftershock decay for electrical 

engineering applications [Kohlrausch (1854) and Kisslinger (1993)].  The rate-time formulation for the 

stretched exponential model is given below: 
 

]/(exp[ˆ)( n
i tqtq )−= t  ......................................................................................................................... (2.9) 

 

where iq̂  is the initial rate coefficient, n the time exponent, and τ the time coefficient.  While still 

empirical, the stretched exponential equation is essentially an infinite sum of exponential declines which 

could be thought to define the model in terms of fundamental reservoir engineering principles. 
 

Duong (2011) developed his namesake model in a specific attempt to describe long-term linear flow 

performance.  The rate time formulation of his model is displayed below. 
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where q1 is the initial rate coefficient and mDng and aDng are additional model parameters.  Duong’s model 

aims to model long term transient linear flow behavior and the author proposed a systematic methodology 

for calibrating the model parameters.  Specifically, Duong’s methodology utilizes a best-fit power law 

relation of the rate-cumulative ratio (q/G for gas production cases and q/N for oil) versus time data to 

establish the aDng and mDng from the intercept and slope, respectively. 
 

Clark et al. (2011) proposed a decline curve model in the form of a generalized logistic growth model of 

the hyperlogistic class [Blumberg (1968)].  The authors noted the utilization of logistic growth functions 

for applications ranging from new product market penetration to the biomedical sciences.  The formulation 

presented relies on the assumption that cumulative production grows logistically to a previously known or 

estimated initial hydrocarbon volume in-place.  The rate versus time formulation presented below was 

obtained by taking the derivative of the cumulative production model proposed by the authors. 
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where K is the carrying capacity, which in this case is a proxy for the hydrocarbon initially in place.  The 

remaining two parameters are nLGM, which is the time exponent, and aLGM which is a model parameter.  

This model is analogous to the power-law and stretched sponential models shows good results when 

applied to transient flow regimes and decent results when attempting to model transitional flow regimes. 
 

At this point each of the models presented above, with the exception of Arp's exponential decline, must be 

considered empirical.  Each tends to focus on a particular flow regime or production characteristic (e.g. 

power-law flow regimes, boundary dominated flow, long-term linear flow, etc.) and all are subject to 

numerous assumptions.  The most important assumption, common to all of the models, addressed in this 

work is that of a constant bottomhole flowing pressure throughout the life of the well.  The 

aforementioned Okouma et al. (2012) reference provides an outstanding overview of the practical 

application of each of the time-rate decline models presented here.  Additionally, a development of each of 

the models is included in the Appendices. 
 

2.2 Model Based Production Analysis 
 

Advances to empirical rate-time decline curve analysis methods presented in the previous section have 

come in the form of semi-analytical, analytical, and numerical model based production analysis (e.g. type 

curves, simulation software packages, etc.).  Both approaches attempt to estimate ultimate recovery, 

resources in-place, and, whenever possible, well/reservoir characteristics governing production.  Various 

authors have attempted to include the effect of variable rates and pressures into type curve analysis while 

software aided model based production analysis handles variable pressure drop conditions by using the 

convolution integral.  Both topics will be addressed throughout this section. 
 

While type-curves have long been utilized for the analysis of pressure transient data, their application as a 

means to forecast time-rate production data was introduced by Fetkovich (1980).  The author introduced 

and applied a composite type-curve by splicing together analytical solution stems for the transient flow 

regime and the empirical hyperbolic decline solutions presented by Arps to model boundary dominated 

performance trends.  Perhaps most importantly, the authors also provided an analytical derivation for the 

exponential decline and noted that this solution was common to both sides (i.e. transient and boundary 

dominated flow) of their proposed type-curve.  Camacho and Raghavan (1989) attempted to show, with 

some degree of success, that the hyperbolic stems could be derived analytically for solution gas drive 

wells under boundary dominated flow.  It is worth noting that Fetkovich’s type curve assumes a well 

producing against a constant bottomhole flowing pressure in a bounded circular reservoir, although a re-

initialization technique is proposed to account for variable pressure drop conditions. 
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Carter (1985) and Fetkovich et al. (1987) both extended the original Fetkovich paper to account for 

compressible gas flow. In their work, Fetkovich et al. used pressure-squared and pseudopressure 

transformations along with their original plotting functions to partially linearize the system thus allowing 

for the application of the liquid solutions to gas production scenarios [Wattenbarger and Ramey (1968) 

and Al-Hussainy et al. (1966)].  Carter, on the other hand, developed an independent type curve and 

thoroughly elaborated on the dependence of gas production on the magnitude of pressure drawdown which 

was briefly noted in the original Fetkovich work [Fetkovich (1980)].  The authors also note that the onset 

of boundary dominated flow was a necessary pre-requisite to partially avoid non-uniqueness of type-curve 

matches during the transient flow regime. 
 

In order to completely linearize gas production systems, Fraim and Wattenbarger (1987) introduced a 

pseudotime definition accounting for changes in fluid properties with declining average reservoir pressure.  

The authors expanded upon previous pseudotime definitions where gas viscosity and compressibility were 

evaluated at the flowing bottomhole pressure [Agarwal (1979) and Lee and Holditch (1982)].  

Pseudopressure and their pseudotime corrections were then used to apply the liquid Fetkovich type curves 

to gas production data.  The authors also mentioned that pressure drop normalized rate data provided an 

adequate proxy for constant bottomhole pressure conditions as long as pressures were smoothly changing 

so as not to introduce excessive transient spikes. 
 

Blasingame and Lee (1986) provided work attempting to use decline curve analysis as a tool for 

establishing reservoir characteristics for homogeneous, naturally fractured, and hydraulically fractured 

systems using the concepts of reservoir limits testing.  There work relied on the analytical foundations of 

the exponential decline and is limited to wells producing a single phase (i.e. oil, gas, or water) against a 

constant bottomhole pressure and exhibiting boundary dominated flow.  The authors later extended their 

work to systems producing under variable-rate/variable-pressure conditions using the concept of material 

balance time and material balance pseudotime for oil and gas production [Blasingame and Lee (1986, 

1988)].  These works provide the foundation for the development of a series of type curves and diagnostic 

plots used for modern model based production analysis. 
 

In order to mitigate one of the main practical hindrances of type curve analysis, namely non-uniqueness 

when matching solution stems to data, Blasingame et al. (1989) introduced the pressure integral and 

integral derivative diagnostic functions to assist in the analysis of noisy well tests.  In follow up works, 

Blasingame et al. (1990) and Blasingame et al. (1991) thoroughly demonstrating the application of these 

plotting functions for various well/reservoir configurations.  McCray (1990), and subsequently 

Blasingame et al. (1991), extended the integral and integral derivative techniques to the analysis of noisy 

production (i.e. time-rate-pressure) data.  As a result of these works the authors developed a set of type 
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curves based on pressure drop normalized rate and material balance time and successfully demonstrated 

the ability of their methodology to handle variable-rate and pressure production under boundary 

dominated flow. 
 

Formalized workflows, application examples, and unified type curves of the integral and integral 

derivative functions are provided in a string of subsequent works.  Palacio and Blasingame (1993) 

extended the concepts to include material balance pseudotime and demonstrated the applicability of the 

liquid solution type curves for gas production cases.  Doublet et al. (1994) provided a thorough 

demonstration of the application for oil production using both simulated and field production data.  

Additional type curve developments have been introduced for horizontal wells, various water influx 

scenarios, multi-well reservoir systems, fractured wells, and elliptical flow [Shih and Blasingame (1995), 

Doublet and Blasingame (1995), Marhaendrajana and Blasingame (2001), Agarwal et al. (1999), Pratikno 

et al. (2003), and Amini et al. (2007)].  The type-curve developments proposed in these works are 

extensively utilized in software aided analytical model-based production analysis packages. 
 

Model-based production analysis, at its core, is based on analytical solutions to the diffusivity equation set 

up for a various well/reservoir conditions.  The diffusivity equation for radial flow – a second order partial 

differential equation – is given below: 
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where r is the radial distance measured perpendicular to the wellbore, p pressure, ϕ porosity, μ viscosity, ct 

the total compressibility, and k the permeability of the system.  Solutions to this equation assuming a 

constant rate inner boundary condition form the theoretical basis for pressure transient analysis while 

solutions based on a constant pressure inner boundary condition provide the same for production analysis.  

Both of these solutions can be related using Laplace transformation identities.  For scenarios where 

variable-rate and variable-pressure drop conditions prevail Duhamel’s principle, or the convolution 

integral, is used to generate the variable-rate pressure and variable-pressure rate response [Duhamel 

(1833)].  The convolution integral for the variable rate pressure response is given below as: 
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where Δpwf is the bottomhole pressure drop as a function of time and p’cr is the unknown derivative of the 

constant-rate pressure solution.  Similarly, the variable pressure rate integral is given below as: 
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( ) ( ) ( ) ttt dqtptq
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where q’cp is the derivative of the unknown constant pressure rate solution.  It must be noted that the 

rigorous application of the convolution integral requires system linearity.  Linearizing transformations are 

required in order to apply Eqs. 2.13 and 2.14 to cases where non-linearities prevail (i.e. gas flow, 

multiphase production, geomechanical effects introducing pressure dependent permeability, non-Darcy 

flow, etc.).  The most commonly used methods to do so, which are the aforementioned normalized 

pseudopressure and pseudotime, utilize Kirchoff transformations to account for changing gas properties as 

functions of pressure [Al-Hussainy et al. (1966), Fraim and Wattenbarger (1987)].  The definition for 

normalized pseudopressure is as follows: 
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where ppn is the normalized pseudopressure, z is the real gas deviation factor, and the subscript r denotes a 

reference condition.  The definition for pseudotime is given below as: 
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where p  is the average reservoir pressure of the system.  We note here the difficulty encountered when 

applying Eq. 2.16 to unconventional reservoir systems where estimates of average reservoir pressure are 

rarely available due to the unfeasibility of long-term build-up tests in systems characterized by ultra-low 

permeability. 
 

In practice, model-based production analysis consists of calibrating model parameters, or solution 

variables (i.e. effective fracture half length, permeability, formation thickness, etc.), to generate relevant 

response functions using the superposition concepts outlined above.  In other words assumed constant-rate 

pressure solutions are superposed with discrete rate changes and constant-pressure rate solutions are 

superposed with discrete pressure changes in order to generate variable-rate or variable-pressure responses 

in an attempt to history match the actual production data from a well.  One of the main challenges an 

analyst faces is the issue of non-uniqueness.  To address this, diagnostic plotting functions such as the 

“log-log plot” and Blasingame plot, which utilize the pressure integral and pressure integral derivative 

concepts discussed previously, and type curves are utilized to help guide the model calibration process.  It 

is also worthwhile to mention that a thorough assessment of all available data (e.g. PVT reports, 

completion records, production notes, etc) should be performed as part of a diagnostic workflow in order 
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to ensure the greatest amount of consistency during the history matching process.  Ilk (2010) provides a 

thorough overview of such a diagnostic process in addition to well performance analysis techniques in 

unconventional reservoir systems. 
 

The number of parameters involved in the modelling process depends on the model used.  Various models, 

or analytical solutions to the diffusivity equation, are readily available in the petroleum engineering 

literature and only those particularly relevant to the analysis of unconventional reservoir systems will be 

reviewed.  As a starting point we must first realize and concede that we have only a rudimentary 

understanding of the complex production mechanisms and flow characteristics of unconventional 

reservoirs where we are dealing with permeability values on the order of 10-500 nd and pore throats 

approaching the size of the produced hydrocarbon molecules [Nelson (2009)]. 
 

For tight gas applications, vertically fractured well solutions are often utilized in accordance with the 

common completion technique used when developing these reservoirs.  Ilk et al. (2007a) provide 

numerous field examples using analytical elliptical flow solutions to evaluate the effectiveness of 

waterfrac techniques.  Their work expands on the list of fractured well and elliptical flow solutions already 

mentioned [Agarwal et al. (1999), Pratikno et al. (2003), and Amini et al. (2007)]. 
 

Attempting to address the uncertainty inherent in the analysis of unconventional reservoir systems 

Wattenbarger et al. (1998) and, concurrently, El-Banbi and Wattenbarger (1998) formalized the linear 

flow concept frequently relied upon to analyze fractured wells exhibiting long periods of transient linear 

flow.  The authors created Cartesian plots of reciprocal production rate versus square root of time where 

an initial straight line trend is attributed to predominating linear flow.  The slope of a best fit line through 

an initial flow trend is used to garner an estimate of the effective drainage area, or the so called stimulated 

reservoir volume (SRV).  Deviations from the linear flow trend are attributed to fracture interference, 

geomechanical effects, SRV depletion, or skin effects.  Best-fit intercepts not passing through the origin 

are attributed to lower fracture conductivity and skin effects.  Numerous works in the petroleum literature 

have extended these concepts and outline comprehensive workflows to facilitate easy application to field 

production data. 
 

The model upon which many other models are based, and which is often times used for the analysis of 

production data from shale oil and gas formations, is the simple multi-fractured horizontal well solution.  

van Kruysdijk and Dullaert (1989) were among the first to develop an analytical solution for multi-

fractured horizontal wells by using the boundary element method.  They noted the presence of an initial 

period of linear flow during which hydrocarbons flow from the formation to the fracture face in a 

perpendicular direction, followed by a period of compound linear flow due to the onset of fracture-to-

fracture interference, and finally a period of pseudoradial flow.  Soliman et al. (1990) addressed some of 
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the primary technical concerns when attempting to drill, complete, and produce a horizontal well with 

multiple hydraulic fracture stages.  They developed an analytical solution as part of their investigation into 

the optimal number of fracture stages, appropriate wellbore placement, and the effect of fracture geometry 

as a result of formation stresses.  Larsen and Hegre (1991, 1994) developed constant wellbore rate 

solutions for a variety of fracture conductivities, shapes, and configurations.  Additionally, the authors 

present solutions to modeling open-hole completions where flow into the wellbore and fractures occurs 

simultaneously.  The second work thoroughly discusses the progression of flow regimes expected for a 

typical multi-fractured horizontal well.  The flow regimes mentioned for a multi-fractured horizontal well 

with circular transverse fractures were fracture radial flow, radial-linear flow, formation linear flow, and, 

finally, pseudoradial flow.  There are numerous other horizontal well solutions available in the petroleum 

literature in addition to the references reviewed here [Guo and Evans (1993), Horne and Temang (1995), 

Chen and Raghavan (1997), Raghavan et al. (1997)]. 
 

Ozkan et al. (2009) presented the so called tri-linear flow solution for modelling multi-fractured horizontal 

well completions.  This model assumes the presence of an inner reservoir, or SRV area, the footprint area 

of which is bounded by the effective fracture half-length and the lateral length of the well.  The model also 

assumes an outer reservoir zone.  The three linear flow paths that give the model its name occur from the 

outer reservoir linearly into the inner reservoir, from the inner reservoir linearly to the fracture face, and 

within the fracture linearly to the wellbore.  This solution is useful when trying to account for additional 

flow contribution outside a minimally contacted stimulated reservoir volume or SRV.  In addition to the 

usual challenges posed by non-uniqueness, difficulty arises when trying to characterize the model 

parameters of the outer reservoir zone. 
 

2.3 Variable-Pressure Decline Curve Analysis 
 

As mentioned previously, there is limited treatment of methodologies to incorporate variable pressure drop 

conditions into empirical decline curve workflows.  While analytical or numerical modeling rigorously 

incorporates variable rate and pressure behavior using the convolution integral, the data to support the 

modeling effort is often not available and the process could be prohibitively time consuming due to the 

vast number of wells typical of unconventional field development.  On the other hand, empirical models 

are easy to implement, easy to tie to an economic model, and widely understood by development 

stakeholders ranging from engineers and managers or operating companies, investment professionals, and 

regulatory bodies.  The challenge, as outlined in section 2.1, is the reality that they assume a constant 

bottomhole pressure which is often not the case.  As a result of the strength and weaknesses of both 

approaches there is a clear need for methodologies to incorporating pressures into a straightforward 
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empirical decline curve workflow to estimate reserves and field development planning for wells exhibiting 

variable pressure behavior early in their lives. 
 

Lacayo and Lee (2014) proposed one such solution which involves forecasting the pressure drop, or 

pseudopressure drop, normalized rate data into the future using modified decline curve relations.  They 

provided a workflow to establish a rate forecast by assuming a pressure profile into the future and back 

calculating the expected production rate from the forecasted pressure drop normalized rate trend.  Their 

rationale for this approach is that pressure drop normalization of the rate data provides an adequate 

approximation to the constant pressure rate response.  This assumption is regularly used in the industry 

when diagnosing performance trends and most acknowledge the necessity of consistent data and smoothly 

varying rates and pressures as a requirement for the assumption to be meaningful.   
 

Ilk and Blasingame (2013) and Collins et al. (2014) provide the foundational basis for this work.  In the 

former, the authors postulated that combining empirical decline curve analysis with superposition theory 

could provide a means to incorporate pressure into decline curve analysis techniques.  They demonstrated 

the applicability for a single high-pressure/high-temperature shale gas well using the hyperbolic decline 

model and the power-law exponential decline model.  The latter work extended the prior to include 

validation examples using a variety of simulation examples and an extended suite of decline models.  In 

both cases, potential limitations surrounding non-linearities were documented. 
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CHAPTER III  

DEVELOPMENT OF THE METHODOLOGY 

 

The primary deliverable of this work is the development of an easily followed and practically applicable 

workflow for incorporating variable pressure drop operating conditions into traditional decline curve 

analysis approaches.  This section introduces the theoretical foundations of the proposed workflow and 

illustrates in detail the development case presented in Chapter I of this document in order to provide a 

visual foundation.  A framework consisting of three primary steps, listed below, forms the structure of the 

section and appropriate consideration and discussion will be dedicated to handling particular complexities 

expected in practical analysis. 
 

 Production Data Diagnostics 
 Model Calibration 

 Production Forecasting 
 

3.1 Production Data Diagnostics 
 

The first step prior to beginning any production analysis procedure is a guided diagnostic analysis 

integrating all available data relevant for achieving a specified engineering question.  This data may 

include, but is not necessarily limited to, time-rate-pressure production data – all fluid phases and 

bottomhole pressure being preferred – in addition to any auxiliary data that a given data collection 

program allows (e.g. PVT reports, vertical and/or horizontal logs, DFIT analysis, completion reports, etc.).  

The problems addressed and the outcomes expected are dictated on a case-by-case basis and may include 

data quality control, identification of prevailing flow regimes, monitoring of fluid phase ratios, and 

assessment of the impact of operational changes, to name a few. 
 

With the need for a clear engineering goal in mind, it is here stated that the most critical outcome of 

production diagnostics in the context of this work is to gain an understanding of the characteristic reservoir 

signature of the individual well being analyzed.  This understanding will be expressed by way of both 

quantitative and qualitative deductions all of which should lead to a clearly outlined conjecture prior to 

moving on to further stages of the analysis.  The primary tools to achieve these tasks are plots of time, 

rate, and pressure production data along with so-called “qDb” plots of the reciprocal of the loss-ratio, D(t), 

the loss ratio derivative, b(t), and the pressure drop normalized production data.  Each of these tasks will 

be addressed in the proceeding paragraphs. 
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The starting point for the diagnostic analysis of each of the cases presented in this work will begin with a 

semi-log plot of the major hydrocarbon phase flowrate and any available flowing pressure measurements 

(surface or bottomhole) versus production time.  Diagnosing whether flowing pressures are variable or 

constant is a primary point of investigation.  Additionally, data consistency, or whether pressure and rate 

changes agree with each other, is of primary importance for reasons that will be expanded upon in the 

following section.  Figure 3.1, included below, depicts such a plot for the development example that will 

be followed throughout this section. 
 

 

 
Figure 3.1 — Time-Rate-Pressure Production Data for Illustrative Development Case 

 

 

It is clear from observing Figure 3.1 that the development example data set is highly consistent and the 

flowing pressure data is variable as opposed to constant, making this a wonderful illustrative example of a 

case where the methodology being developed is directly applicable.  This basic quality control plot will 

also help when assessing operational changes such as installation or changes of wellbore tubulars or 

artificial lift.  This has important implications when converting flowing surface pressure measurements to 

bottomhole values using either flow correlations or nodal analysis.  As a final point, pressure drop 

normalization of the rate data forms a key pillar of the entire methodology, and as such, it is necessary to 

establish an estimate of the initial reservoir pressure at this stage of the workflow. 
 

Following the initial data review described and depicted above, we move on to generating a modified 

version of the “qDb” plot introduced by Ilk et al. (2008, 2009).   When this concept was introduced by Ilk 
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et al. as an integrated diagnostic and calibration tool, the reciprocal of the loss-ratio, D(t), and the loss-

ratio derivative, b(t), — the equations defined by Johnson and Bollens (1918) are included below — were 

calculated from the rate data alone using the differentiation scheme introduced by Bourdet (1989).  
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By observing the raw rate data and the calculated derivative streams, deductions related to the reservoir 

signature can be made to better guide the model fitting process while somewhat mitigating the issue of 

non-uniqueness. 
 

The utility of Eqs. 3.1 and 3.2, in relation to this work, is limited due to the assumption that the rate data 

alone accurately reflects the reservoir signature of the well subject to a single constant pressure drawdown.  

This is limiting for the cases of interest in this work such as the example provided in Figure 3.1 where the 

pressure drop is highly variable with time.  Addressing this limitation, it is proposed that the pressure drop 

normalized rate signature be observed for diagnostic purposes to approximate the equivalent constant 

pressure rate response.  This, of course, is an approximation limited to smoothly varying rates and 

pressures but as a practice this technique is widely used throughout the industry.  Accordingly, Eqs. 3.1 

and 3.2 are modified below to account for this transformation. 
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It is important to note here that rates must be normalized by real gas pseudopressures for incompressible 

flow in order to satisfy system linearity for superposition (the subject of the following section) and extract 

meaningful signatures when calculating derivative trends.  In addition to compressible flow, additional 

non-linearities, such as geomechanical effects in the formation, are believed to be prevalent in 

unconventional systems.  For this work these effects are captured by incorporating a pressure dependent 

permeability term in the pseudopressure definition when appropriate.  The following two equations 

represent the above described forms of pseudopressure transformations respectively. 
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where k(p) is a placeholder for a functional relationship between permeability and pressure.  Tables or 

custom functions can be used depending upon the availability of geomechanical lab data, however; in their 

absence correlations will suffice.  For this work the exponential relationship proposed by Yilmaz and Nur 

(1991) and defined below is used exclusively to represent k(p). 
 

)()( wfi pp
iekpk −−= γ  .............................................................................................................................. (3.7) 

 

where ki represents the initial permeability of the system and γ is the permeability modulus defining the 

shape of the functional relationship.  The limitations of the practical applications of Eqs. 3.6 and 3.7 will 

be discussed thoroughly in the validation and application chapters of this document. 
 

Having discussed the theoretical foundations behind the modified “qDb” plot, which is the ultimate 

deliverable of the diagnostic step of this workflow, we now turn to the calculation procedure itself and 

present the result for the development example.  Observing Eqs. 3.3 and 3.4, it is clear that a numerical 

differentiation routine must be relied upon to obtain the derivative signature of the raw pressure drop 

normalized rate signature.  It must be noted here that some degree of regularization or data cleaning is 

likely required as numerical differentiation tends to accentuate any noise in the raw data.  This will be 

covered in more detail in the application examples. 
 

In this work, both the weighted finite difference routine proposed by Bourdet (1989) and a smoothing 

spline algorithm presented in a work by D.S.G. Pollock are used to calculate the derivative terms in order 

to.  The purpose for using both techniques is to provide an estimate of the D(t) and b(t) signatures using 

two completely different numerical routines providing an additional element of trend granularity.  This 

provides a degree of comfort given that the field production data tends to be riddled with noise and the 

pressure drop normalized rate data itself is only an approximation of the unknown constant pressure rate 

solution of the well.  Figure 3.2 below depicts the completed modified “qDb” plot for the development 

example. 
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Figure 3.2 — Modified “qDb” Diagnostic Plot for Illustrative Development Case 

 

 

The plot presented above provides a high degree of insight into the well performance for a particular case.  

As mentioned previously, the pressure drop normalized rate data provides an approximation for the 

constant pressure rate signature of the well with different slope trends providing insight into the prevalent 

flow regime(s).  For instance, a half-slope would indicate linear flow while any departure would indicate a 

loss of productivity that would need further investigation to identify (e.g. well interference, reservoir 

boundaries, geomechanical effects, etc.). 
 

The derivative terms, D(t) and b(t), are calculated from the edited pressure drop normalized rate stream 

using a degree of smoothing indicated by L and λ for the Bourdet and Spline routines, respectively.  The 

signatures provide further verification of the prevalent flow regimes trends and aid in model choice and 

parameter calibration.  For instance, in this well we see that after a period of well cleanup indicated by a 

slope less than one-half in the pressure drop normalized rate data, we see the establishment of what 

appears to be an approximate half-slope, indicative of linear flow.  Theoretically this should correspond to 

a b(t) signature of approximately two.  When we observe the calculated b(t) signature we see that indeed 

there is some stabilization of the data around two; however, one could interpret the overall trend as 
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declining throughout time suggesting a behavior more appropriate for a model such as the power-law 

exponential decline or logistic-growth model.  The following section will work through this model fitting 

process in its entirety. 
 

3.2 Model Calibration 
 

The discussion no proceeds to the primary analysis portion of the workflow, namely superposing a 

calibrated pressure drop normalized decline curve model with a wells pressure drop history.  As a starting 

point, the discussion necessarily begins with a brief theoretical discussion of model-based production 

analysis theory (i.e. well testing and rate-transient analysis) which is reliant upon analytical solutions to 

the diffusivity equation and the superposition integral.  The diffusivity equation in radial coordinates, 

presented previously, is again included below. 
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Solutions to this, or any other, second order partial differential equation require the selection of two 

boundary conditions and an initial condition.  Pressure transient and production analysis, in general, 

concern themselves with solutions based on the specification of inner boundary and outer boundary 

conditions based on the wellbore and the reservoir properties and geometry, respectively.  The inner 

boundary condition is the primary interest of this work and as a general rule, solutions (or models) are 

based on the assumption of either a constant sandface rate or a constant bottomhole flowing pressure.  The 

solutions are relatable in the Laplace domain with the solutions subject to a constant rate traditionally 

being used for well-test analysis and the solutions subject to a constant wellbore pressure being used for 

production analysis.  As outlined in Chapter 2 of this document, there is no shortage of available models in 

the petroleum literature representing various wellbore configurations (e.g. fractured wells, horizontal 

wells, etc.), reservoir phenomena (e.g. dual porosity, stimulated rock volume (SRV) models, 

homogeneous, etc.), and reservoir boundary conditions (e.g. infinite acting, faults, boundary dominated 

flow, etc.). 
 

Stand-alone analytical solutions are limited in practical application due to the assumption of a constant 

wellbore producing condition (rate or pressure) throughout the producing life of the well.  In their paper, 

van Everdingen and Hurst (1949) first comprehensively addressed the case of variable producing 

conditions for the handling wells producing from a reservoir with an active aquifer influx.  The authors 

utilized the convolution integral, previously introduced, to apply standard analytical solutions to variable 

rate/pressure production data.  The convolution integral formulated for modeling both continuously 

varying pressures and rates are presented below, respectively. 
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where pcr represents a constant-rate pressure solution to the diffusivity equation and qcp represent a 

constant pressure rate solution to the diffusivity equation.  Given that continuous reading of rate and 

pressure data are not practically available, the continuous formulations are presented below in discretized 

form allowing the modeling of step changes in rate and pressure. 
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Eqs. 3.11 and 3.12 form the theoretical foundation for modern model based pressure transient and 

production analysis where analytical model parameters (e.g. permeability, effective fracture half length, 

etc.) are calibrated iteratively based on diagnostic guidance in order to obtain a history match of the 

measured field data.  It is crucial to note that the superposition principle is rigorous meaning that exact 

inputs yield exact outputs which justifies the data consistency efforts put forth in the foundational 

diagnostic analysis.  A further caveat to application of the superposition principle is system linearity which 

only applicable for slightly compressible fluid flow.  The pseudopressure transformation outlined in Eqs. 

3.5 and 3.6 will be used to partially linearize the system for handling compressible flow or pressure 

dependent permeability, respectively. 
 

It is important to emphasize that Eq. 3.12 is the primary fundamental reservoir engineering principle relied 

upon in this work.  Already noted, however, is that the convolution integral only forms half of the 

methodology.  To reiterate, the ultimate goal is the development of a methodology to incorporate variable 

pressure producing conditions into traditional decline curve analysis techniques which rely on constant 

bottomhole flowing pressures.  In this work, the methodology is developed and demonstrated for the 

modified hyperbolic, power-law exponential, Duong, and logistic growth decline curve relations which are 

provided below for reference and developed thoroughly in Appendices A through E. 
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While the above five models are exclusively focused upon in this work, it is important to note that any 

rate-time expression or tabulated rate-time data could be used as an alternative within the same workflow 

framework.  The primary assumption of this entire work involves a slight modification of Eqs. 3.13 

through 3.17.  Particularly, it is assumed that pressure drop (or pseudopressure drop) normalization of the 

empirical models provides a valid approximation of an appropriate constant pressure rate analytical 

solution for the system under consideration.  This assumption is presented mathematically as follows. 
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At this point it must be noted, that the assumed validity of Eqs. 3.18 through 3.22 as proxy models for 

analytical solutions may provide challenges.  It is suspected that this assumption will prove adequate for 

cases where predominate flow regimes are evident; however, the empirical nature of the decline curve 
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relations cannot be emphasized enough and as such it is not expected that these relations will be able to 

adequately model complex flow scenarios (i.e. changing flow regimes, highly non-linear systems, etc.) in 

all cases.  This will, of course, be investigated throughout the validation and application examples. 
 

With the above assumptions in mind, Eqs. 3.18 through 3.22 can theoretically be substituted into Eq. 3.12 

as the constant pressure rate equivalent convolution kernel.  Doing so yields the following five expressions 

for modeling rate data exhibiting variable pressure drop conditions using solely decline curve relations. 
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Beyond the assumptions listed above, it is emphasized that, irrespective of their simplicity, the use of Eqs. 

3.18 through 3.22 in the convolution integral assumes that the parameters themselves have some sort of 

physical meaning.  This can only be explained at this point by considering the empirical parameters to be 

lump parameter approximations of the well and reservoir variable present in analytical solutions.  Finally, 

the need for consistent, high quality, data for any time-rate-pressure analysis utilizing the convolution 

principle is duly noted.  While not specifically useful as an analysis tool when data is inconsistent, the 

methodology still provides a degree of utility as a first order surveillance tool to check for data 

consistency. 
 

Moving past the theoretical elements, the analysis process itself consists of calibrating a chosen decline 

model(s) using the rate-time history in conjunction with the modified “qDb” diagnostic plot described in 

the previous section.  The pressure drop normalized rate, D(t), and b(t) data are matched by varying the 

model parameters for each model until an adequate match is achieved on the diagnostic plot.  The D(t) 
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model trends are described mathematically for the hyperbolic, power-law exponential, stretched 

exponential, Duong, and logistic growth decline models as follows. 
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Similarly, the b(t) model trends are describe by the following mathematical expressions. 
 

btb =)( ............................................................................................................................................... (3.33) 
 

( )2ˆ
)1(ˆ

)(
n

i

n
i

ntDtD

ntnDtb
+

−
=

∞

 ........................................................................................................................ (3.34) 

 

( )
n

n

nt
ntb t−

=
1)(  .................................................................................................................................. (3.35) 

 

[ ]
[ ]2)(

m

mm

mtat

tatmttb
−

−
=  ........................................................................................................................... (3.36) 

 

2

222

])1()1([
)1()1(2)1()( n

nn

tnna
tntnanatb

++−
++−−−

= ......................................................................................... (3.37) 

 

Once a match on the modified “qDb” diagnostic plot is achieved, the pressure drop normalized rate model 

as a function of time is superposed with the pressure drop data as a function of time in order to generate a 

model of the measured rate response subject to variable rate conditions in the wellbore.  Small adjustments 

of the model parameters may need to be made in order to match the rate-time history as a part of an 

iteration process.  Figure 3.3 below provides a cartoon illustration of the superposition concept that is 

described above mathematically. 
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Figure 3.3 — Cartoon Schematic of the Developed Calibration and Superposition Process 
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Finally, we demonstrate the introduced process for the development case followed thus far in this chapter.  

Each of the introduced models is calibrated in turn in order to establish a simultaneously valid match of 

the data trends on the modified “qDb” diagnostic plot and the rate versus time data plot.  The model 

parameters for each are provided below in Table 3.1. 
 

 

Table 3.1 — Illustrative Development Case ─ Variable Pressure Decline Curve Model Parameter 

Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(STB/D/psi) or 
(STB/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  0.187  0.025  1.700  10 
PLE  0.375  0.520  0.250  0 
SEM  0.375  13.68  0.250  - 
DNG  0.220  1.100  1.110  - 
LGM  77.00  250.0  0.800  - 

 

 

Figures 3.4 and 3.5, presented below, demonstrate that an adequate match was obtainable using all five of 

the models using the parameters listed above.  As mentioned previously, some degree of iteration may be 

required in order to achieve an appropriate match across all plots and the exercise is likely to be non-

unique. 
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Figure 3.4 — Calibrated “qDb” Diagnostic Plot for Illustrative Development Case (All Models 

Shown) 
 

 

 
Figure 3.5 — History Match Plot Honoring Historical Rate Data (All Models Shown) 
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3.3 Production Forecasting 
 

The final step of the workflow is to forecast the future production of the well in question.  In order to do 

this, the concepts introduced in the last step are again used; however, the engineer must provide a pressure 

drawdown schedule based on the assumed operating conditions for the well into the future.  This is 

identical in practice to the forecasting approach when performing model-based production analysis using 

analytical or numerical models.  In fact, the ability to do so using empirical decline curves is a major 

advantage of the workflow over traditional decline curve techniques which assume a constant bottomhole 

pressure and more advanced model-based techniques which may require data that isn’t readily available.  

This is especially useful when quick sensitivities investigating the effect of different pressure management 

practices into the future are desired early in the producing life of the well before a well has reached a 

constant drawdown and when a constrained and calibrated simulation model may not be feasible. 
 

In practice, this is the simplest step in the workflow as no further analysis is required.  In order to generate 

a time-rate forecast for the well in question the engineer simply provides a hypothetical pressure versus 

time profile after the last historic pressure point and the calibrated model, or models, are re-convolved 

with the new pressure data containing the historic pressure data and the projected pressure trend.  Figure 

3.6 below depicts the forecasting results for the power-law exponential history match for the case analyzed 

throughout this chapter. 
 

 

 
Figure 3.6 — Illustrative Development Case ─ Pressure Extrapolations and Power-Law 

Exponential Rate Forecasts 
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In the plot above, two different pressure drawdown assumptions were considered into the future where we 

clearly see differences in the resulting rate projections.  The first drawdown case was a simple 

extrapolation of the last historic pressure until an abandonment limit where we can see that the projected 

rate trend immediately began falling off of the historical rate data which is being sustained by the variable 

pressure drawdown to date.  The second drawdown assumption gradually reduces the flowing bottomhole 

pressure until a constant value of 2,000 psia is reached.  The result of this pressure assumption is to 

maintain the rates for some time into the future.  An additional point worthwhile point to note is that the 

history match depicted in Figs. 3.4 and 3.5 has not been lost due to imposing pressure schedules into the 

future.  Finally, the resulting parameters and EUR values are summarized in Table 3.2 below. 
 

 

Table 3.2 — Illustrative Development Case ─ All Models Forecasting Results 
 

  pwf Forecast #1  pwf Forecast #2 

  
EUR30yr  

 
EUR30yr  

Decline Model 
 

(Mstb) 
 

(Mstb) 
M.HYP 

 
513 

 
767 

PLE  479  701 
SEM  479  701 
DNG  603  880 
LGM  337  518 
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CHAPTER IV  

VALIDATION OF THE METHODOLOGY 

 

The aim of this chapter of the work is to provide a series of straightforward validation examples using the 

workflow developed in Chapter III.  For each of the cases, synthetic pressure data was generated from an 

assumed near-constant rate trend using a finite element simulator with unstructured Voronoi gridding.  

The model parameter inputs, variable pressure decline results, and potential limitations are thoroughly 

discussed for each case in turn.  The structure of the section is as follows. 
 

 Black Oil Validation Example 
 Gas Validation Example 

 Gas Validation Example considering Pressure Dependent Permeability 
 

4.1 Black Oil Validation Example 
 

The first example is the simple case of a black oil producing at a near constant rate from an infinite acting 

system defined using the well and reservoir property inputs described in Table 4.1.  The model inputs 

were chosen to mirror typical values determined when characterizing shale/tight-oil systems using model-

based production analysis (i.e. inverse modeling).  The pressure response to the near constant rate was 

limited to less than a year where the last historic flowing pressure remains high in order to demonstrate the 

history matching and forecasting capacity of the workflow for a case that has yet to reach a constant line 

pressure.  
 

 

Table 4.1 — Validation Example #1 ─ Reservoir and Fluid Property Inputs for Simulated Data 
 

  Reservoir Properties: 
 Net pay thickness, h = 200 ft 
 Formation permeability, k = 900 nD 
 Wellbore radius, rw = 0.3 ft 
 Formation compressibility, cf = 3 x 10-6 psi-1 
 Porosity, ϕ = 0.1 (fraction) 
 Initial reservoir pressure, pi = 9,000 psi 
 Oil saturation, So = 1.0 (fraction) 
 Skin factor, s = 0.00 (dimensionless) 
 Reservoir Temperature, Tr = 212 °F 
 

  Fluid Properties: 
 Oil specific gravity, γo = 0.8 (water = 1) 
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  Hydraulically Fractured Well Model Parameters: 
 Fracture half-length, xf = 250 ft 
 Number of fractures, nf = 25 
 Horizontal well length, Lw = 5,000 ft 
 

  Production Parameters: 
 Last flowing pressure, psi = 4,673 psi 
 Producing days, t = 247 days 

 

 

The simulated production data used for this example is depicted below in Figure 4.1.  The rate and 

pressure trends are representative of what would be expected from an unconventional oil well flowing 

against managed drawdown conditions.  The goal is to apply the variable pressure decline curve analysis 

workflow to this data for each of the five models outlined in chapter III and forecast the production into 

the future using two different pressure drawdown assumptions.  The black oil scenario was chosen as a 

starting point due to a lack of significant non-linearities that would require pseudopressure transformations 

to utilize the superposition expression in Eq. 3.12. 
 

 

 
Figure 4.1 — Validation Example #1 ─ Simulated Black Oil Time-Rate-Pressure Production Data 

 

 

Observation of the stand-alone rate and pressure measurement data is not enough to provide significant 

insight into the well performance for this case.  The underlying assumption of the methodology relies upon 

the pressure drop normalized rate signature of the well providing an adequate approximation for the 

constant pressure rate response of the well in question.  This assumption holding true, we are able to 
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identify prevailing flow regimes and calculate the diagnostic plotting functions, D(t) and b(t) which 

ultimately inform us about well performance and aid in model calibration.  Figure 4.2 below depicts the 

modified “qDb” plot which consists of the pressure drop normalized flowrate and calculated derivative 

diagnostics for this validation example. 
 

 

 
Figure 4.2 — Validation Example #1 ─ Modified “qDb” Diagnostic Plot 

 

 

The pressure drop normalized rate trend and diagnostic responses in Figure 4.2 are very consistent and 

well behaved which is to be expected from simulated data.  Given the low permeability, infinitely 

conductive fractures, lack of reservoir boundaries and short time frame for the simulation history, the well 

should be exhibiting linear flow.  This is indeed verified by the observation of a half-slope on the log 

cycles for the pressure drop normalized rate data and the corresponding stabilization of the loss-ratio 

derivative trend near a value of two.  Departures from the linear flow regime, if present, are potentially 

indicative of a number of things including, but not limited to, fracture interference, phase changes, 

pressure dependent permeability, reservoir boundaries, or a combination of a number of factors. 
 

Slope ≈ 1:2 

b(t) ≈ 2 
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Our knowledge of the well and reservoir properties of the system, which in this case is fully defined, and 

our diagnosis of the resulting production data are what allow us to validate or invalidate the keystone 

assumption that the pressure drop normalized rate data provides an accurate representation of the constant 

pressure rate solution of the well.  Having validated this assumption for this example, the plotting 

functions in Figure 4.2 are used to calibrate the model parameters for the empirical expressions in Eqs. 

3.18 through 3.22 and Eqs. 3.28 through 3.37.  The results of the diagnostic calibration are shown below in 

Figure 4.3 for each of the five models focused on in this work. 
 

 

 
Figure 4.3 — Validation Example #1 ─ Calibrated “qDb” Diagnostic Plot (All Models Shown) 

 

 

It is observed that each of the models adequately captures each of the diagnostic signatures in Fig. 4.3.  

Other than very early times, it is noted that each of the models nearly overlays the others for the historical 

period of the data.  Deviations in the models only manifest themselves in the forecasts when the different 

mathematical characteristics begin to prevail.  Table 4.2 below summarizes the parameter results for each 

of the models where a small D∞ value is imposed for the power-law exponential model to emphasis the 

only difference between it and the stretched exponential model.  This term will only be included if the data 

signature justifies for the remainder of the cases in this work. 
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Table 4.2 — Validation Example #1 ─ Variable Pressure Decline Curve Model Parameter Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(STB/D/psi) or 
(STB/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  2.95  3.000  2.000  10 
PLE  28000  10.1  0.044  2.5e-5 
SEM  28000  1.495e-23  0.044  - 
DNG  1.2  0.56  1.03  - 
LGM  900  355  0.5  - 

 

 

While the model parameters are adjusted on the diagnostic calibration plot, the rate history is 

simultaneously matched by superposing a calibrated pressure drop normalized rate decline model with the 

actual pressure drop data.  Eqs. 3.23 through 3.27 are the mathematical representations for this procedure 

and Figure 4.4 below presents the final result for each of the calibrated models.  It is reiterated that the 

history matching process is iterative and simultaneous across the three diagnostic trends, the rate data, and 

any other diagnostic trends that may be applicable for a particular case.  This is a necessary measure to 

guide parameter selection and minimize non-uniqueness. 
 

 

 
Figure 4.4 — Validation Example #1 ─ History Match Plot Honoring Historical Rate Data (All 

Models Shown) 
 

 

Having calibrated each of the models and sufficiently history matching the rate versus time data, which we 

must always return to, we now turn to forecasting future production.  The primary goal, and as a result one 
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of the main strengths, of the workflow presented is the incorporation of pressures into the decline curve 

analysis process.  The result of this is the ability to impose any pressure drawdown schedule when 

forecasting future production of a well.  For this example, the last historic pressure is high at nearly 5,000 

psia which is far from what is typically expected when pressure stabilize for shale oil wells.  For this 

example, we demonstrate that forecasting capability of the procedure by imposing two separate pressure 

drawdowns, namely one assuming the last historic pressure for the remainder of the life of the well and 

one where the pressure is driven down to 2,000 psia where the pressure is then maintained to 30 years of 

production time.  Figure 4.5 depicts the forecasting results for the power-law exponential model according 

to both pressure schemes and Table 4.3 summarizes the estimated ultimate recovery (EUR) values for all 

models. 
 

 

 
Figure 4.5 — Validation Example #1 ─ Pressure Extrapolations and Power-Law Exponential Rate 

Forecasts 
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Table 4.3 — Validation Example #1 ─ Forecasting Results for All Models 
 

  pwf Forecast #1  pwf Forecast #2 

  
EUR30yr  

 
EUR30yr  

Decline Model 
 

(Mstb) 
 

(Mstb) 
M.HYP 

 
857 

 
1,400 

PLE  770  1,236 
SEM  831  1,328 
DNG  864  1,384 
LGM  873  1,387 

 

 

Clearly, the choice of drawdown schedule for this case has a significant impact on the 30 year estimated 

ultimate recovery (EUR).  The forecasted rate departs from the historical sustained rate trend almost 

immediately if the last historic pressure is maintained throughout the remaining life of the well without 

any additional drawdown.  The imposition of additional pressure drawdown over time creates an 

incremental wedge of increased production where the rate is projected to maintain the sustained trend.   
 

While this is admittedly an extreme example to validate the methodology, the average increase from each 

of the models is high at approximately 60 percent.  The ability to forecast pressure into the future allows 

the analyst to attempt to describe the shape and the magnitude of production differences due to operational 

changes to a well in the future.  This type of analysis is something that is traditionally limited to more 

technically rigorous analytical or numerical methods as traditional decline curve analysis disregards 

pressure. 
 

It is concluded here that the methodology is successfully validated for single phase oil production 

scenarios.  The potential limitations for such scenarios are as follows. 
 

 Inconsistent or poorly collected data will make analysis difficult or impossible. 
 The analysis carries all of the limitations of the empirical models regarding their physical assumptions 

regarding flow regimes and their associated basis functions. 

 The empirical models are described by three or four arbitrary parameters that do not contribute to 

reservoir characterization efforts. 
 

4.2 Dry Gas Validation Example 
 

For this example, pressures were simulated subject to imposed near constant gas rates.  The goal is to 

validate the methodology for incompressible gas flow.  As with analytical pressure transient analysis and 

model-based production analysis, appropriate pseudopressure transformations (Eq. 3.5) are required to 
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linearize, or partially linearize, the system to allow the application of superposition (Eq. 3.12).  The system 

is fully defined and the simulation inputs are summarized in Table 4.4. 
 

 

Table 4.4 — Validation Example #2 ─ Reservoir and Fluid Property Inputs for Simulated Data 
 

  Reservoir Properties:  
 Net pay thickness, h = 200 ft 
 Formation permeability, k = 750 nD 
 Wellbore radius, rw = 0.3 ft 
 Formation compressibility, cf = 3 x 10-6 psi-1 
 Porosity, ϕ = 0.05 (fraction) 
 Initial reservoir pressure, pi = 8,000 psi 
 Gas saturation, Sg = 1.0 (fraction) 
 Skin factor, s = 0.01 (dimensionless) 
 Reservoir Temperature, Tr = 212 °F 
 

  Fluid Properties: 
 Gas specific gravity, γg = 0.7 (air = 1) 
 

  Hydraulically Fractured Well Model Parameters: 
 Fracture half-length, xf = 200 ft 
 Number of fractures, nf = 16 
 Horizontal well length, Lw = 5,000 ft 
 

  Production Parameters: 
 Last flowing pressure, psi = 4,383 psi 
 Producing days, t = 500 days 

 

 

The simulated production data used for this example is depicted below in Figure 4.6.  The rate and 

pressure trends approximate unconventional gas wells flowing against managed drawdown conditions.  

The production history is slightly longer that the black oil case presented previously at 500 days.  As 

before, the last historic flowing bottomhole pressure is significantly higher than a typical line pressure 

value to demonstrate the forecasting capacity of the methodology. 
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Figure 4.6 — Validation Example #2 ─ Simulated Dry Gas Time-Rate-Pressure Production Data 

 

 

Continuing with our methodology, we must approximate the constant pressure rate signature of the well by 

normalizing by pressures, or in this case pseudopressures.  The definition introduced by Al-Hussainy et al. 

(1966) and reproduced as Eq. 3.5 is used to calculate the initial and flowing pseudopressures from the 

flowing pressure trend knowing the PVT properties of the reservoir gas.  Having performed these 

transformations, we now plot the pseudopressure drop normalized gas rates along with the D(t) and b(t) 

derivative trends calculated using both of the differentiation algorithms used throughout this work.  Figure 

4.7 below depicts the modified “qDb” plot displaying each of the aforementioned plotting functions. 
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Figure 4.7 — Validation Example #2 ─ Modified “qDb” Diagnostic Plot 

 

 

Consistency is again expected and observed as a result of the simulated data.  The presence of the imposed 

skin effect is evident early time where the pseudopressure drop normalized rate trend is less that the half-

slope expected by linear flow.  It is also noted that the b(t) trend is slightly declining as a function of time 

and the D(t) trend is nearly a straight line on log-log coordinate suggesting power-law flow regimes are 

prevalent over the history of this well.  This would suggest that the power-law exponential or stretched 

exponential may be more appropriate models that the modified hyperbolic which assumes a constant b(t) 

behavior and boundary dominated flow.  This information is critical when calibrating the decline models 

and their diagnostic functions which are depicted below in Figure 4.8. 
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Figure 4.8 — Validation Example #2 ─ Calibrated “qDb” Diagnostic Plot (All Models Shown) 

 

 

Each of the models is calibrated to honor the diagnostic signatures in Fig. 4.8.  As before, the primary 

differences in the models do not appear until sometime after the historic production period of the well.  

The calibrated models are, in this case, convolved with the pseudopressure drop as opposed to the pressure 

drop in order to history match the gas rate as a function of time trend.  This process is iterative and 

simultaneous across all diagnostic plots Table 4.5 and Figure 4.9 summarize the model parameters and 

depict the history match for each model respectively. 
 

 

Table 4.5 — Validation Example #2 ─ Variable Pressure Decline Curve Model Parameter Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(MSCF/D/psi) or 
(MSCF/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  1.3  0.020  2.25  7.0 
PLE  13.5  1.800  0.118  - 
SEM  13.5  6.87e-3  0.118  - 
DNG  1.8  0.970  1.069  - 
LGM  2500  700.0  0.70  - 
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Figure 4.9 — Validation Example #2 ─ History Match Plot Honoring Historical Rate Data (All 

Models Shown) 
 

 

The workflow continues to forecasting following the establishment of adequately calibrated models.  Two 

separate pressure drawdown schedules are imposed for this example, one using the last historic flowing 

bottomhole pressure and one assuming additional pressure drawdown until a flowing bottomhole pressure 

of 1,500 psia is achieved.  It is important to note that the imposed pressure drawdowns must be converted 

to pseudopressures just as the historical pressures.  Once this is done, the calibrated models are re-run 

through the superposition equation using the imposed pressure schedules to calculate the rate forecast for 

each sensitivity.  Figure 4.10 depicts the forecast results for the power-law exponential decline model and 

Table 4.6 summarizes the EUR results for each model and pressure sensitivity. 
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Figure 4.10  — Validation Example #2 ─ Pressure Extrapolations and Power-Law Exponential Rate 

Forecasts 
 

 

 

 

Table 4.6 — Validation Example #2 ─ Forecasting Results for All Models 
 

  pwf Forecast #1  pwf Forecast #2 

  
EUR30yr  

 
EUR30yr  

Decline Model 
 

(Bscf) 
 

(Bscf) 
M.HYP 

 
10.0 

 
17.1 

PLE  10.3  16.3 
SEM  10.3  16.3 
DNG  10.6  16.8 
LGM  9.0  14.3 

 

 

The imposition of additional pressure drawdown again has a significant effect on the rate forecast and 

recovery magnitude with the average uplift again at approximately 60 percent.  It is concluded here that 

the methodology is successfully validated for single phase gas production scenarios.  The potential 

limitations for such scenarios are as follows. 
 

 Inconsistent or poorly collected data will make analysis difficult or impossible. 
 The analysis carries all of the limitations of the empirical models regarding their physical assumptions 

regarding flow regimes and their associated basis functions. 
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 The empirical models are described by three or four arbitrary parameters that do not contribute to 

reservoir characterization efforts. 

 Calculation of pseudopressures requires knowledge of the PVT characteristics of the system which 

should be available but often are not. 

 Pseudopressures only partially linearize the system leaving some uncertainty surrounding the true 

constant pressure rate signature of the well. 
 

4.3 Dry Gas Validation Example Considering Pressure Dependent Permeability 
 

For this example, we again generate pressure as a result of an assumed near constant gas rate profile; 

however, in this example we include the effect of pressure dependent permeability to approximate a case 

where geomechanical effects influence the well performance.  A numerical simulator with unstructured 

Voronoi gridding is again used and the permeability is solved for at each time step according to the 

functional relationship provided by Eq. 3.7.  The simulation inputs are completely summarized in Table 

4.7 below. 
 

 

Table 4.7 — Validation Example #3 ─ Reservoir and Fluid Property Inputs for Simulated Data 
 

  Reservoir Properties: 
 Net pay thickness, h = 200 ft 
 Formation permeability, k = 900 nD 
 Wellbore radius, rw = 0.3 ft 
 Formation compressibility, cf = 3 x 10-6 psi-1 

 Permeability Modulus, γ = 4 x 10-4 psi-1 
 Porosity, ϕ = 0.05 (fraction) 
 Initial reservoir pressure, pi = 8,000 psi 
 Gas saturation, Sg = 1.0 (fraction) 
 Skin factor, s = 0.01 (dimensionless) 
 Reservoir Temperature, Tr = 212 °F 
 

  Fluid Properties: 
 Gas specific gravity, γg = 0.7 (air = 1) 
 

  Hydraulically Fractured Well Model Parameters: 
 Fracture half-length, xf = 250 ft 
 Number of fractures, nf = 16 
 Horizontal well length, Lw = 5,000 ft 
 

  Production Parameters: 
 Last flowing pressure, psi = 5,545 psi 
 Producing days, t = 500 days 

 

 

The imposed rates and resulting pressures are depicted below in Figure 4.11.  The rate and pressure trends 

are very similar to those seen in Validation Example #2 and support the reality that well performance 

cannot be assessed using standalone plots of rate and pressure versus time.  The goal in this example is to 
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apply the variable pressure decline curve analysis workflow to this data for each of the five models 

outlined in chapter III and forecast the production into the future using two different pressure drawdown 

assumptions.  Potential limitation from using pseudopressure transforms to linearize the effects of 

incompressible gas flow and pressure dependent permeability will be assessed. 
 

 

 
Figure 4.11  — Validation Example #3 ─ Simulated Dry Gas Time-Rate-Pressure Production Data 

 

 

From a diagnostic standpoint, we know that the system was defined with pressure dependent permeability 

in place to produce dry gas.  As a result, we must transform the raw flowing bottomhole pressure data and 

the initial static reservoir pressure to normalized pseudopressures using Eq. 3.6 as a first step towards 

diagnosing the approximate constant pressure rate signature of the well.  It is noted that this expression is 

exactly the same as the pseudopressure definition proposed by Al-Hussainy et al. (1966) and defined in 

Eq. 3.5; however, the permeability is left inside the integral as a pressure dependent term as opposed to 

assuming constancy. 
 

The evaluation of the pseudopressure integrals, namely Eqs. 3.5 and 3.6, require that each of the pressure 

dependent terms have a functional form either analytical or empirical.  The fluid property terms, namely 

the gas viscosity and deviation factor, are defined either by laboratory tests of reservoir fluids (i.e. PVT 

reports) or well established correlations.  To evaluate Eq. 3.6 for this example, a relationship describing 

permeability, a rock property, as a function of pressure must be imposed based on geomechanical lab tests 

or correlations.  In this example, Eq. 3.7, which is an exponential correlation introduced by Yilmaz and 
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Nur (1991), was used to generate the pressures in the simulator and is thus used for the pseudopressure 

calculations. 

 

Since the initial permeability and the permeability modulus, which describes the degree of pressure 

dependency for the permeability, are known for this synthetic system we use these as inputs.  It is here 

noted that this is a potential limitation for field applications where these two parameters are typically not 

known a priori.  Once these transformations are calculated, we again plot the pseudopressure drop 

normalized gas rates along with the D(t) and b(t) derivative trends calculated using both of the 

differentiation algorithms used throughout this work.  Figure 4.12 below depicts the modified “qDb” plot 

displaying each of the aforementioned plotting functions. 
 

 

 
Figure 4.12  — Validation Example #3 ─ Modified “qDb” Diagnostic Plot 

 

 

As with the other simulated validations examples, data consistency is observed.  The slight skin effect is 

evident at early times where the slope is shallower than the half-slope indicating the expected linear flow 

signature.  The reciprocal of the loss-ratio, D(t), can be interpreted to be a straight line, or power-law, 

trend on the logarithmic scales.  Similarly, the loss-ration derivative, b(t), trend can again be interpreted to 
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be declining slightly as a function of time.  The two different differentiation algorithms provide differing 

degrees of granularity that will aid in model calibration.  The fully calibrated diagnostic functions for all 

five of the models are depicted below in Figure 4.13. 
 

 

 
Figure 4.13  — Validation Example #3 ─ Calibrated “qDb” Diagnostic Plot (All Models Shown) 

 

 

A match across each of the diagnostic signatures is achieved for all the decline models considered in this 

work.  Interestingly, the only significant difference between the models is due to the terminal decline 

imposed after some time for the modified hyperbolic relation.  The remainder of the models overlay each 

other throughout the historic portion of the future projected by the model.  Having matched the diagnostic 

functions, the calibrated models are convolved with the pseudopressure drop data in order to history match 

the flowing gas rates as a function of time.  Table 4.8 and Figure 4.14 summarize the model parameters 

and rate versus time history matches for all of the models. 
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Table 4.8 — Validation Example #3 ─ Variable Pressure Decline Curve Model Parameter Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(MSCF/D/psi) or 
(MSCF/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  3.33  0.15  2.95  7.0 
PLE  490  5.00  0.05  - 
SEM  490  1.05e-14  0.05  - 
DNG  3.35  0.77  1.02  - 
LGM  35000  6000  0.68  - 

 

 

 

 

 
Figure 4.14  — Validation Example #3 ─ History Match Plot Honoring Historical Rate Data (All 

Models Shown) 
 

 

Two separate pressure drawdown schedules are again used to forecast the future rates for each of the 

history matched decline models.  The first forecasting scenario, illustrated in green in Figure 4.15 

represents the scenario where the last historic bottomhole pressure of 5,545 psia was assumed for the 

remainder of the 30 year assumed well life.  The second pressure extrapolation scenario entails driving the 

bottomhole flowing pressure down to approximately 3,000 psia before stabilizing for the remainder of the 

30 year production life of the well.  These two pressure extrapolations are meant to illustrate two possible 

operational decisions for the well going further and the effect of each on the potential gas flowrate. 
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It is important to note that prior to utilizing superposition for the forecast, the pressure extrapolation needs 

to be converted to normalized pseudopressures just as the historical pressures were.  Once the chosen 

pressure sensitivities are established and transformed, the calibrated pseudopressure drop normalized 

empirical models are superposed with the pseudopressure drop schedules.  Figure 4.15 depicts the forecast 

results for the power-law exponential decline model and Table 4.9 summarizes the EUR results for each 

model and pressure sensitivity. 
 

 

 
Figure 4.15  — Validation Example #3 ─ Pressure Extrapolations and Power-Law Exponential Rate 

Forecasts 
 

 

 

 

Table 4.9 — Validation Example #3 ─ Forecasting Results for All Models 
 

  pwf Forecast #1  pwf Forecast #2 

  
EUR30yr  

 
EUR30yr  

Decline Model 
 

(Bscf) 
 

(Bscf) 
M.HYP 

 
7.67 

 
10.91 

PLE  9.26  12.41 
SEM  9.26  12.41 
DNG  9.34  12.52 
LGM  9.27  12.44 
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As with the other validation examples, the choice of pressure extrapolation schedule impacts the rate 

forecast; however, the magnitude EUR uplift at thirty years is less at an average of 36 percent across all 

models compared to the 60 percent for the first two validation cases.  It is concluded here that the 

methodology is successfully validated for single phase gas production scenarios. 
 

While not specifically addressed in a separate validation model, it is noted here that this example serves to 

validate the methodology for oil cases with pressure dependent permeability as well.  The pseudopressure 

transformation necessary is indeed less complex than the gas production case presented here due to the 

lack high levels of pressure dependency for the reservoir fluid properties.  The pressures are simply 

modified to include the effect of permeability degradation as a function of pressure.  An oil scenario with 

pressure dependent permeability will be analyzed in the application examples in Chapter V. 
 

The potential limitations for such scenarios are as follows. 
 

 Inconsistent or poorly collected data will make analysis difficult or impossible. 
 The analysis carries all of the limitations of the empirical models regarding their physical assumptions 

regarding flow regimes and their associated basis functions. 

 The empirical models are described by three or four arbitrary parameters that do not contribute to 

reservoir characterization efforts. 

 Calculation of pseudopressures requires knowledge of the PVT characteristics of the system which 

should be available but often are not. 

 Pseudopressures only partially linearize the system leaving some uncertainty surrounding the true 

constant pressure rate signature of the well. 

 The inclusion of pressure dependent permeability in the pseudopressure formulation requires a priori 

knowledge of the initial permeability of the system and the functional relationship describing the 

permeability loss with depletion both of which are typically unknowns for field application scenarios. 
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CHAPTER V  

APPLICATION OF THE METHODOLOGY 

 

The chapter seeks to apply the developed and validated variable pressure decline methodology to a 

number of practical application cases.  The production data for the example cases comes from shale plays 

around the world and each case is unique in terms of reservoir properties, fluid type, and completion 

practices.  Special attention is payed to frame each case in a practical sense that can aid in decision making 

from an operational or field development standpoint to highlight the strength of the workflow in everyday 

analysis.  As important as the strengths, the limitations and weaknesses will be thoroughly addressed. 
 

Each shale play is unique in terms of well performance and there are an endless number of reservoir 

engineering problems associated with each.  The following list provides a summary of the structure of this 

chapter and the problems that will be addressed in each example. 
 

 Shale Oil Well Near Constant Flowing Pressure 
 Shale Oil Well with High Frequency Bottomhole Pressure Measurements 

 High-Pressure/High-Temperature Shale Gas Well 

 Type Curve Workflow Incorporating Multi-well Diagnostics 
 

5.1 Shale Oil Well Near Constant Flowing Pressure 
 

This first application example walks through the analysis of a shale well producing oil as the major phase.  

Figure 5.1 below depicts the historical oil rate and calculated bottomhole flowing pressures as a function 

of time.  The aim of this example is to follow the proposed workflow with the aim toward answering a 

question surrounding potential artificial lift uplift.  The well in question is a horizontal well completed 

with multiple hydraulic fracture stages.  There are no other producing wells expected to be influencing the 

performance of this well. 
 

As noted above, the depicted consists of the primary oil phase production data along with the calculated 

bottomhole flowing pressure.  Bottomhole pressures were calculated from surface pressure measurements 

using commonly flow correlations; however, it should be noted that this can be a problematic exercise and 

bottomhole gauges or nodal analysis are preferred if time, data, and budget permits.  The benefits of high 

frequency bottomhole pressure measurements are well documented throughout the petroleum literature 

and this technique similarly benefits from such quality data. 
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Figure 5.1 — Application Example #1 ─ Time-Rate-Pressure Production Data (Shale Oil Well) 

 

 

The first step of this analysis process, and any well performance analysis technique utilizing flowing rate 

and pressure measurements (e.g. pressure transient analysis, rate-transient analyisis), is to assess data 

consistency.  In particular, we are looking to ensure that changes in pressure result in a sensible change in 

rate (i.e. pressure drop corresponds to an increase or maintenance of rate).  It is important to identify any 

periods of inconsistent data to avoid analyzing artifacts in the data that represent measurement, reporting, 

or instrumentation errors as opposed to the true reservoir signature.  In Figure 5.1 above, the data appears 

to be highly consistent across the historic period of the data and, as such, difficulties applying the 

superposition principle are not expected. 
 

Moving forward with the diagnostic process, we must construct the pressure drop normalized rate 

signature to assess the prevailing flow regimes for this production case.  This signature will help us to 

identify any non-linearities that may be present such as pressure dependent permeability caused by 

geomechanics.  Figure 5.2 depicts the modified “qDb” plot with the pressure drop normalized rate, 

reciprocal of the loss-ratio, and loss-ratio derivative plotted on logarithmic scales.  Considerations when 

calculating the derivative diagnostic trends will be discussed in proceeding paragraphs. 
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Figure 5.2 — Application Example #1 ─ Modified “qDb” Diagnostic Plot (Shale Oil Well) 

 

 

Observing the raw pressure drop normalized flowrate data, represented by the gray points in Figure 5.2, it 

is apparent that there is a reasonable degree of noise in the data that is likely not representative of the true 

reservoir signature of the well.  The primary goal of the diagnostic analysis for this workflow is to identify 

this trend and calculated the corresponding derivative diagnostics that will guide the model calibration 

process.  It is imperative that the signature is filtered across a variety of plots prior to calculating the 

derivative trends using the Bourdet and Spline algorithms used in this work as numerical differentiation 

tends to propagate noise. 
 

In this particular example, power-law flow regime trends (e.g. linear flow, bi-linear flow, etc.) are 

expected given the extremely low permeability of the matrix rock coupled with the hydraulic fracture 

treatment.  The straight line trend imposed on Figure 5.2 represents a power-law trend with a slope near 

one half.  The half-slope trend indicates an infinite conductivity fracture signature and the slight departure 

at early times in the production history can be explained as a result of flow back after the fracture 

stimulation.  The green points lying close to the identified flow-regime signature are filtered and used in 

the numerical differentiation algorithms to calculate D(t) and b(t). 
 

(1:2) 
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Following the diagnostic stage of the workflow, we move to the model calibration process.  To reiterate, 

Eqs. 3.18 through 3.22 and Eqs. 3.28 through 3.37 summarize the diagnostic model functions for each of 

the five decline models utilized in this work.  Figure 5.3 depicts the calibrated diagnostic functions for 

each of the empirical decline models. 
 

 

 
Figure 5.3 — Application Example #1 ─ Calibrated “qDb” Diagnostic Plot (Shale Oil Well) 

 

 

At first glance, it is clear that each of the models provide an adequate match of the diagnostic plotting 

functions over the historical data period.  It is worthwhile to note here that the power-law exponential 

(PLE), stretched exponential (SEM), and logistic growth (LGM) models all assume a continued 

degradation of the b(t) trend seen in the data.  The modified hyperbolic (M.HYP) and the Duong (DNG) 

model are more aggressive in their b(t) assumptions due to the limitation in the former to a single constant 

b factor and the applicability of the later to long-term linear flow.  The modified hyperbolic model is 

distinctive from the others due to its instantaneous switch to an exponential decline after approximately 

2,700 days.  Disregarding this switch to an exponential decline, it is clear that the PLE, SEM, and LGM 

models are more conservative in their flow-regime assumptions than the M.HYP and DNG models in this 

particular case. 
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After calibrating the diagnostic models, we superpose the calibrated pressure drop normalized rate versus 

time function for each model with the pressure drop data for the well.  It is noted here that a few iterations 

may be required to adequately calibrate the diagnostic functions and the oil flowrate history.  Table 5.1 

summarizes the model parameters for each model match while Figure 5.4 depicts the final calibrated 

model match of the rate versus time data. 
 

 

Table 5.1 — Application Example #1 ─ Variable Pressure Decline Curve Model Parameter 

Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(STB/D/psi) or 
(STB/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  0.180  0.05  2  7 
PLE  0.435  0.81  0.2  -` 
SEM  0.435  2.868  0.2  - 
DNG  0.150  1.1  1.1  - 
LGM  160.0  300  0.63  - 

 

 

 

 

 
Figure 5.4 — Application Example #1 ─ History Match Plot Honoring Historical Rate Data (Shale 

Oil Well) 
 

 

The final step for this application example involves forecasting future production considering two 

different bottomhole flowing pressure extrapolations.  The first extrapolation considers extrapolation at the 
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last historic pressure of 2,275 psia which would reflect one artificial lift option, while the other option 

considers a system that is expected drive down the flowing pressure to a constant maintained value of 

approximately 560 psia.  The incremental production differences between the two different options may be 

desired in order to justify the cost of installation of one system over the other.  Each of the models was 

forecasted using the two different pressure extrapolations and the 30 year estimated ultimate recovery 

(EUR) values are summarized in Table 5.2.  The power-law exponential forecasts for each pressure 

extrapolation case are shown in Figure 5.5. 
 

 

 
Figure 5.5 — Application Example #1 ─ Pressure Extrapolations and Power-Law Exponential Rate 

Forecasts 
 

 

 

 

Table 5.2 — Application Example #1 ─ Forecasting Results for All Models 
 

  pwf Forecast #1  pwf Forecast #2 

  
EUR30yr  

 
EUR30yr  

Decline Model 
 

(Mstb) 
 

(Mstb) 
M.HYP 

 
692 

 
875 

PLE  598  746 
SEM  598  746 
DNG  717  898 
LGM  576  722 
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The scenario considering a pressure extrapolation to a flowing bottomhole pressure of 560 psia adds 

approximately 25 percent to the thirty year estimate ultimate recovery.  It is clear from Figure 5.5 that the 

pressure extrapolation resulted in an incremental wedge of production above the forecast generated using 

the last historic pressure.  The two forecasts are nearly parallel after both cases reach a constant 

bottomhole flowing pressure.  This case represents a simple example, absent of substantial non-linearities, 

where the variable pressure decline curve forecasting technique provides a framework to quickly and 

easily provide forecasts incorporating the effect of pressure which would otherwise require analytical or 

numerical modeling. 
 

5.2 Shale Oil Well with High Frequency Bottomhole Pressure Measurements 
 

The following example emphasizes the value of continuously measured flowing bottomhole pressure data.  

The well in question is a multi-fractured horizontal well producing oil from a shale play thought to exhibit 

geomechanical effects with depletion (e.g. pressure dependent permeability).  This belief is justified by 

model based production analysis, pressure transient tests, and laboratory core testing.  As a result of this 

belief, the example requires that pressures are transformed to pseudopressures in order to satisfy the 

linearity condition necessary for the application of superposition. 
 

The field development in this particular shale field is in its early stages and the development decisions 

often require answers at a pace that may prohibit analytical and numerical techniques requiring significant 

data integration and carrying a significant deal of non-uniqueness due to the lack of production history.  

The variable-pressure decline curve workflow could provide a framework to make quick forecasts to make 

development decisions and justify operational practices.  It is particularly valuable in this case as the 

flowing bottomhole pressure is significantly above the constant drawdown pressure reached in more 

mature wells after the installation of artificial lift.  Figure 5.6 presents the first 75 days of oil flowrate and 

measured bottomhole flowing pressure data. 
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Figure 5.6 — Application Example #2 ─ Time-Rate-Pressure Production Data (Shale Oil Well) 

 

 

Observing Figure 5.6, we see a clear period through approximately 15 days where the well is cleaning up 

following the fracture treatment.  After the cleanup period, the oil rates are at a sustained level for the 

remainder of the 75 day production history.  For a consistent data signature, this oil flowrate signature 

should correspond to a declining flowing pressure trend.  Observing the pressure and rate trends, it appears 

that the data is highly consistent which is expected as a result of the high frequency bottomhole pressure 

gauge in this well. 
 

From a data quality standpoint, this well meets the requirements for time-rate-pressure analysis 

techniques.  Given the goal of this work, we will demonstrate the variable-pressure decline workflow but 

analytical and numerical production analysis could also be applied.  Since geomechanical effects are 

highly suspected in this reservoir, we chose to incorporate pressure dependent permeability into the 

analysis.  Since the superposition technique is relied upon, incorporating pressure dependent permeability 

requires linearization of the system using pseudopressures.  Pseudopressures are calculated from the 

pressure data and the exponential function presented in Eq. 3.7 is used to describe the degradation of 

permeability with depletion.  Unfortunately, this necessitates an a priori assignment of an initial 

permeability and the permeability modulus describing the severity of the exponential degradation function. 
 

Through a combination of laboratory core measurements, diagnostic fracture injectivity test (DFIT) 

results, and model-based production analysis on more mature wells, an initial permeability and 

permeability modulus of 0.0055 md and 4.0e-4 psi-1 were assigned.  Once the functional form of Eq. 3.7 is 
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defined we can perform the pseudopressure transformation by integrating said function with the measured 

bottomhole pressure data.  This data is then used to plot the pseudopressure drop normalized rate trend and 

the D(t) and b(t) derivative signatures which are calculated using both the Bourdet and Spline 

differentiation algorithms.  Each of these plotting functions is shown in Figure 5.7. 
 

 

 
Figure 5.7 — Application Example #2 ─ Modified “qDb” Diagnostic Plot (Shale Oil Well) 

 

 

Isolated in green are all of the pseudopressure drop normalized rate data points following the flowback 

period lasting approximately 15 days.  These points where chosen as the portion of the data believed to be 

representative of the prevailing reservoir signature for this well absent any effects from the flowback of 

the water injected as part of the stimulation treatment.  The signature observed is approximately equal to a 

one-third slope on the log cycles which has been suggested to be indicative of multi-fracture flow which 

may be caused by the intersection of multiple sets of vertical and horizontal fractures (Okouma et al. 

2012).  This isolated signature is the only portion of the data that is used to calculate the D(t) and b(t) 

derivative signatures using the Bourdet and Spline algorithms.  An approximate trend around b(t) equal to 

three is consistent with the third slope signature observed in the normalized production data. 
 

(1:2) 
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Having assessed the consistency of the data and calculated the diagnostic plotting functions, we now aim 

to calibrate the various decline models used throughout this work.  The diagnostic functions in Figure 5.7 

provide the guidance for calibrating the models by adding additional insight into the reservoir signature 

beyond a simple semi-log plot of rate versus time production data.  Figure 5.8, below, shows the 

calibrated diagnostic matches for each of the five models focused on in this work. 
 

 

 
Figure 5.8 — Application Example #2 ─ Calibrated “qDb” Diagnostic Plot (Shale Oil Well) 

 

 

Each of the five models provides an adequate match of each of the diagnostic functions.  It is clear that 

each model honors the third slope trend throughout the production history of the well and into the future 

for varying lengths of time depending on the fundamental assumptions of the model in question.  Table 

5.3 summarizes the final model parameters corresponding to the model matches depicted in Figure 5.8.  It 

is worthwhile mentioning that the calibration process is non-unique and iterative.  The ultimate goal is to 

establish a history match of the rate versus time production data by convolving the calibrated diagnostic 

models with the measured pressure drop data. 
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Table 5.3 — Application Example #2 ─ Variable Pressure Decline Curve Model Parameter 

Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(STB/D/psi) or 
(STB/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  0.40  0.2  3  10 
PLE  7.70  3.0  0.08  0.0001 
SEM  7.70  1.086e-6  0.08  - 
DNG  0.38  0.75  1.01  - 
LGM  240  480  0.75  - 

 

 

 

 

 
Figure 5.9 — Application Example #2 ─ History Match Plot Honoring Historical Rate Data (Shale 

Oil Well) 
 

 

The model matches shown in Figure 5.9 represent the fully calibrated rate versus time matches through 

the first 75 days of production history.  The history match for each model is very good throughout both the 

flowback and established flow period after 15 days.  This example is a wonderful illustration of the utility 

of measured bottomhole flowing pressures when performing any type of production analysis relying on 

pressure data.  The quality of the rate and especially pressure data greatly facilitate the analysis process 

and leave open the possibility for more detailed techniques such as analytical and numerical modeling. 
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Given the short production history of this well, a constant flowing bottomhole pressure has yet to be 

established.  It is common practice in this reservoir to manage the pressure drawdown as long as possible 

to mitigate proppant embedment, crushing, and fines migration that are detrimental to production.  

Forecasts of future well performance are, however, still required for reserves booking and field 

development planning.  Forecasting using traditional decline curve analysis assumes that the flowing 

pressure is constant and the rate signature of the well may only be sustained for a limited time frame 

making forecasts prone to severe over or under estimates.  As elaborated upon throughout this work, the 

variable pressure decline technique allows for any flowing pressure schedule to be assumed into the future 

and the resulting rate curves for a number of sensitivities may be compared. 
 

The horizontal well in this particular case was one of the first drilled to test this particular field which to 

date had been exploited using primarily vertical fractured wells.  The completion design was also slightly 

changed from a few previous horizontal wells and the data collection program was rigorous in order to 

facilitate characterization efforts.  The variable pressure methodology was useful in providing a quick 

sensitivity analyzing the effect of increased pressure drawdown on the resulting rate projection in order to 

make quick decisions on whether to make further completion and/or field development changes in a rapid 

development environment.  Figure 5.10 shows the result of the power-law exponential projections 

assuming a constant flowing bottomhole pressure of 5,000 psia (i.e. last historic flowing pressure) and 

continued drawdown to a constant flowing bottomhole pressure of 2,000 psia.  Table 5.4 summarizes the 

EUR results for each of the five decline models. 
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Figure 5.10  — Application Example #2 ─ Pressure Extrapolations and Power-Law Exponential Rate 

Forecasts 
 

 

 

 

Table 5.4 — Application Example #2 ─ Forecasting Results for All Models 
 

  pwf Forecast #1  pwf Forecast #2 

  
EUR30yr  

 
EUR30yr  

Decline Model 
 

(Mstb) 
 

(Mstb) 
M.HYP 

 
754  922 

PLE  631  806 
SEM  896  1,085 
DNG  1,289  1,480 
LGM  538  702 

 

 

It is clear from the production forecast that only a slight increase in future performance is modeled as a 

result of quite a bit of additional pressure drawdown through time.  This is a result of the imposition of 

pressure dependent permeability in the pseudopressure calculation and will be elaborated upon completely 

in Application Example #3 in the following section.  For this particular case, the variable pressure 

forecasting methodology provided a quick justification and forecast that provided backing for continuing 

horizontal well development in this particular field.  It was done in conjunction with more detailed 

modeling and provided a quick and valuable look into future production performance while honoring flow 

regimes and well performance diagnostics under a variable pressure operating environment. 
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5.3 High-Pressure/High-Temperature Shale Gas Well 
 

The application example worked through in this section details an analysis case producing from a high-

pressure/high-temperature shale gas reservoir.  The high reservoir pressures and nanodarcy matrix 

permeabilities necessitate high producing pressure drawdowns for commercial flowrates.  As a result of 

this reality, geomechanical effects are known to prevail in this reservoir which results in degradation in 

well productivity over time.  To mitigate these geomechanical effects, it is common practice for operators 

to choke wells for as long as possible in order to minimize fracture closure, proppant crushing, pressure 

dependent permeability changes, and to meet facilities constraints.  Figure 5.11 below depicts nearly a 

year of production history for the well in question. 
 

 

 
Figure 5.11  — Application Example #3 ─ Time-Rate-Pressure Production Data (Shale Gas Well) 

 

 

It is clear that the pressure drawdown is being highly regulated when observing the calculated flowing 

bottomhole pressures in Figure 5.11.  Another point to note is that the drawdown is approaching 6,100 

psia from an initial reservoir pressure of 10,730 psia which is already quite a bit higher than the other two 

application examples discussed so far.  The pressure management has so far led to a highly sustained rate 

signature which could be mistaken as an exponential decline if observed solely on a semi-log rate versus 

time plot. 
 

As mentioned before, it is a commonly held belief that this reservoir experiences changes in effective 

permeability with pressure as a result of the high drawdown management.  This introduces a non-linearity 
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into the system which necessitates linearization using pseudopressure transformations for analytical 

solutions (relied upon in this example) or nonlinear simulation models.  Equations 3.6 and 3.7 are used to 

calculate the normalized pseudopressure values for this example where the initial permeability, ki, and the 

permeability modulus, γ, must be known or estimated a priori to any analysis.  In effect they become 

additional history match parameters without some sort of constraining laboratory data and their 

incorporation is not without limitation which will be discussed as this example develops. 
 

Continuing with the workflow presented throughout this work, we now calculate the pseudopressure drop 

normalized rate plotting functions, quality control the data to determine the true reservoir signature, and 

differentiate using the Bourdet and smoothing spline routines to establish the D(t) and b(t) diagnostic 

signatures for the well.  For calculating the pseudopressures, an initial permeability, ki, of 900 nanodarcy 

and a permeability modulus, γ, of 5.25 x 10-4 psia-1 were assumed based on model based production 

analysis results for other wells in this area.  Figure 5.12 below represents the modified “qDb” plot which 

has served as the final diagnostic step throughout the work. 
 

 

 
Figure 5.12  — Application Example #3 ─ Modified “qDb” Diagnostic Plot (Shale Gas Well) 

 

 

(1:2) 

(1:1) 
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The first thing that stands out from the diagnostic signatures presented in Fig. 5.12 are the clear power-law 

(straight-line) signatures of both the D(t) and b(t) plotting functions.  Furthermore, it is noted that the 

pseudopressure drop normalized rate trend is highly consistent with minimal data points excluded from the 

differentiation calculations.  The dashed green lines on the plot represent one-half and unit slope trends 

indicative of changing flow regimes through time with the half-slope indicative of an infinite conductivity 

fracture signature and the departure away from the half-slop represents a continuous loss of productivity as 

a result of interfracture interference, pressure dependent permeability, well interference, or reservoir 

boundaries to name a few.  It is important to note that this degradation in productivity corresponds with a 

continuous decline in the b(t) trend. 
 

Having completed a base level diagnostic analysis, we move forward with the calibration phase of the 

variable pressure decline curve analysis workflow.  The calibration process is again guided by the 

diagnostic model functions which are summarized by Eqs. 3.28 through 3.37.  Ultimately, this is again an 

iterative process where simultaneous matches of the diagnostic plotting functions and the rate versus time 

production data are achieved.  Figure 5.13 and Table 5.5 represent the final calibrated model matches and 

their associated model parameters. 
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Figure 5.13  — Application Example #3 ─ Calibrated “qDb” Diagnostic Plot (Shale Gas Well) 

 

 

 

 

Table 5.5 — Application Example #3 ─ Variable Pressure Decline Curve Model Parameter 

Results 
 

  
(q/∆p)i or (K/∆p)i  

 
Di or t or a 

 
n or b or m 

 
Dlim or D∞ 

Decline Model 
 

(MSCF/D/psi) or 
(MSCF/psi) 

 
(1/D) 

 
(dim.less) 

 

(percent/year) 
or (1/D) 

M.HYP  4.80  0.015  0.9  7 
PLE  22.0  0.80  0.25  - 
SEM  22.0  2.44  0.25  - 
DNG  11.5  1.18  1.13  - 
LGM  1340  0.7  75  - 

 

 

The model matches achieved across the diagnostic plotting functions are adequate in capturing the history 

of the well to date with the exception of the modified hyperbolic function at early time.  This is to be 

expected given that we clearly see a declining b(t) trend where the hyperbolic model assumes a constant b 

factor with time.  After achieving the calibrated diagnostic matches, the pressure drop normalize rate 
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functions, represented by Eqs. 3.13 to 3.17, are convolved with the pressure drop data to match the gas 

flowrate history.  This is the final step prior to forecasting production.  The matches are represented 

visually in Figure 5.14. 
 

 

 
Figure 5.14  — Application Example #3 ─ History Match Plot Honoring Historical Rate Data (Shale 

Gas Well) 
 

 

Just as with the “qDb” plot in Figure 5.13, adequate matches are achieved across the flowrate history for 

each of the five models.  The modified hyperbolic model was unable to match all portions of the 

production history which again is a result of the assumption of a single b factor trend.  This result agrees 

with the diagnostic trends and matches shown in Figure 5.13.  Having achieved adequate history matches, 

the final step is to forecast gas rates into the future.  Figure 5.15 presents the forecasting results for four 

sensitivities. 
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Figure 5.15  — Application Example #3 ─ Pressure Extrapolations and Power-Law Exponential Rate 

Forecasts 
 

 

A surprising result of this particular analysis exercise was the minimal influence on the projected gas 

flowrates as a result of substantial additional pressure drawdown with time.  The dashed lines in Figure 

5.15 depict the imposed pressure drawdown schedules for each of the four forecast sensitivities for this 

application example.  The corresponding solid colored lines are the rate forecasts for each pressure 

sensitivity.  Clearly there is minimal difference between the rate forecast profiles.  Table 5.6 tabulates the 

thirty year ultimate recoveries which also confirm the minimal difference in forecast behavior. 
 

 

Table 5.6 — Application Example #3 ─ Forecasting Results for All Models 
 

  
pwf Forecast 

#1  
pwf Forecast 

#2 
 pwf Forecast 

#3 
 pwf Forecast 

#4 

  
EUR30yr  

 
EUR30yr   EUR30yr   EUR30yr  

Decline Model 
 

(Bscf) 
 

(Bscf)  (Bscf)  (Bscf) 
M.HYP 

 
4.95  4.99  5.01  5.02 

PLE  4.45  4.49  4.51  4.52 

SEM  4.45  4.49  4.51  4.52 

DNG  5.92  5.98  6.00  6.01 

LGM  4.28  4.32  4.34  4.34 
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The lack of impact on the rate projection as a result of almost 3000 psia of additional drawdown came as a 

surprise during this analysis and further investigation was warranted to determine the limitation.  The 

initial hypothesis was that the incorporation of pressure dependent permeability with a fairly high 

permeability modulus (γ = 5.25 x 10-4 psia-1) was minimizing the effect of the additional pressure drop 

when the pressure and scheduled pressure forecast were converted to normalized pseudopressures.  In 

order to investigate this, a plot of pressure drop versus pseudopressure drop for varying permeability 

modulus values was created and is shown below in Figure 5.16. 
 

 

 
Figure 5.16  — Application Example #3 – Pressure Drop Versus Pseudopressure Drop Incorporating 

Pressure Dependent Permeability 
 

 

Observing Figure 5.16 our hypothesis begins to move towards a conclusion.  It is noted that as the 

permeability modulus governing the pressure dependent permeability function increases in magnitude, the 

relationship between pressure drop and pseudopressure drop loses a good deal of linearity compared to the 

standard pseudopressure represented by the γ = 0.00 psia-1 case.  As a matter of fact, aside from very low 

pressure drop values and correspondingly low permeability moduli, the pseudopressure formulation does 

not linearize the system completely at all.  Furthermore, after a certain point in time, the curvature of the 

relationship is so severe that significant additions in pressure drop correspond to unsubstantial additions in 

pseudopressure drop which explains the forecasting phenomena discussed previously and illustrated in 

Figure 5.15 (e.g. 3000 psia pressure drop increase corresponds to approximately 75 psia increase in 

pseudopressure drop). 
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The use of pseudopressure transformations including pressure dependent permeability is clearly a 

limitation for the variable pressure decline curve methodology for cases with significant pressure 

drawdown and pronounced geomechanical effects.  In fact, it is noted here that this is a limitation that is 

not limited solely to the variable pressure decline curve methodology but any relying upon the 

superposition equation (e.g. analytical models).  Further linearization using pseudotime, direct 

formulizations, semi-analytical solutions, and/or numerical (i.e. non-linear) model based analysis are all 

potentially viable solutions for handling situations such as the one described above. 
 

5.4 Type Curve Workflow Incorporating Multi-well Diagnostics 
 

The final application example in this work is different in that it utilizes production data diagnostics for a 

group of producing wells along with variable pressure decline methodology to assign potential type well 

profiles for undeveloped locations in a field development plan.  This is admittedly a complex problem and 

the identification of analogous wells, normalizations for sometimes dramatic changes in completions 

practices, and changes in development well spacing are all topics that influence the ultimate shape of the 

production profile and the number of potential well locations across a particular acreage position.  This 

example aims to demonstrate a potential application workflow using a small group of wells where a 

change in pressure management policy from the former policy of producing against a constant bottomhole 

pressure is being evaluated for economic benefit.  In depth discussion on the complex topics listed above 

is beyond the scope of this work and they will thus be addressed sparingly.  
 

As before with our single well analysis examples, production diagnostics forms the foundation of all 

analysis steps to be performed later.  The most critical aspect of production diagnostics in this particular 

case is to gain an understanding of the characteristic behavior(s) of the wells included in the dataset in 

order to make an informed decision regarding the most likely well performance signature for a new well 

drilled and completed in an analogous manner.  The benefit of using the variable-pressure decline curve 

techniques presented throughout this work coupled with multi-well diagnostics is the ability to incorporate 

a number of potential drawdown regimes to allow for more realistic rate profiles with time and to facilitate 

economic analysis to justify specific drawdown practices. 
 

The first step toward developing a type curve is to identify an analogous well group to allow for 

meaningful investigation into the characteristic performance signature through time.  These analogous 

well groups are often subsets of a larger group of wells across an operator’s acreage position or across a 

regional setting.  It is here stated that these subsets are established by like fluid type, completion practices, 

completion horizon, start of production, geologic similarity or any other division required by the problem 

at hand.  Figures 5.17 and 5.18 below depict the gas flowrate and calculated bottomhole flowing pressure 

for the eight well analogous group used for this example. 
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Figure 5.17  — Application Example #4 ─ Gas Flowrate Versus Production Time (Analogous Well 

Group) 
 

 

 

 

 
Figure 5.18  — Application Example #4 ─ Calculated Bottomhole Pressure Versus Production Time 

(Analogous Well Group) 
 

 

As described above, the analogous group chosen for this example was established primarily due to 

geographic proximity in a pervasive regional geological setting, nearly identical fluid properties, and 
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nearly identical completion practices.  Rate differences between the wells are clear when observing Figure 

5.17 and are likely due to differences local rock quality, completion execution efficiency, slight 

differences in lateral lengths, and differences in flowing bottomhole pressure management through time.  

Observing Figure 5.18, it is also clear that there are indeed variances in bottomhole flowing pressure 

management practices with the older wells arriving at the approximate 1,000 psia constant line pressure 

fairly quickly while the drawdown for the newer wells is being managed to maintain the gas flowrates at a 

shallower decline trend. 
 

It is important to investigate the characteristic well performance trend for the analogous group of wells by 

observing the data signatures across a range of specialized diagnostic plots.  In this particular example, we 

are particularly interested in the flow regimes exhibited and the timing associated with any changes.  In 

order to achieve this goal we create logarithmic plots of pseudopressure drop normalized gas flowrate 

versus production time and material balance time which are presented below on the left and right hand 

side of Figure 5.19.  It is important in this particular example to plot pseudopressure normalized rates in 

this particular case in order to directly compare wells produced against differing bottomhole flowing 

pressures to wells produced against a constant bottomhole flowing pressure.  The two separate time 

plotting functions provide different degrees of resolution with the latter specifically meant to interpret 

boundary dominated flow which is indicated by a unit slope in the data. 
 

 

 
Figure 5.19  — Application Example #4 ─ Pseudopressure Drop Normalized Gas Flowrate Versus 

Production Time (left) and Material Balance Time (right) 
 

 

Based on the above plots our story and strategy for defining the shape of our type curve profile begins to 

gain some clarity.  While we still observe differences in productivity between the individual well 

signatures, it is clear that there are similarities in the flow regime signatures through time.  After a brief 

cleanup period following fracture stimulation, each well exhibits a power-law (e.g. linear flow) flow 
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regime followed by a gradual departure after some period of time.  While this generality can be made by 

observing the plots in Figure 5.19, we still have yet to explain the differences in performance.  A common 

practice to attempt to identify performance drivers between otherwise analogous wells is to normalize the 

production data by specific metrics.  Figure 5.20 below is one such plot.  
 

 

 
Figure 5.20  — Application Example #4 ─ Pseudopressure Drop Normalized Gas Flowrate Versus 

Production Time (left) and Material Balance Time (right) ─ Normalized by Gp,6 months 
 

 

Figure 5.20 is identical to Figure 5.19 with the exception that the data signatures for each well have been 

normalized by their respective 6 month cumulative production value.  While an in depth discussion of the 

limitless number of normalizations possibilities is beyond the scope of this work, we must still try and 

address the rationale behind choosing 6 month cumulative production as a normalization parameter 

beyond it producing a convenient result.  For the purposes of this work it is put forth that the cumulative 

production normalization is simply a “lump parameter” that serves as a proxy for localized reservoir 

heterogeneity, slight fluid property differences, differences in lateral length, etc., all of which would drive 

the 6 month cumulative production for a particular well.  It is noted that this practice somewhat 

“collapses” the data signatures that we observed in Figure 5.19 into two unique groups.  These two 

groups, while somewhat difficult to see in Figure 5.20, are further clarified below in Figure 5.21. 
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Figure 5.21  — Application Example #4 ─ Comparison Between Pressure Drop Normalized Gas 

Flowrate Signatures 
 

 

One group, colored black, consists of the older wells producing at or near a constant bottomhole flowing 

pressure from inception while the other, colored red, is composed of those producing against a variable 

bottomhole flowing pressure.  Based on Figure 5.21, it is clear that the wells being drawdown managed 

have a slightly different performance signature from the wells producing against a constant bottomhole 

pressure.  Given that the goal of this exercise is to develop type curves for various potential pressure 

drawdown schedules for future wells, we would like to focus on the well group identified in red in Figure 

5.21.  The variable bottomhole pressure subset consists of four of the eight wells all of which are isolated 

in Figure 5.22. 
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Figure 5.22  — Application Example #4 ─ Power-law Exponential Characteristic Profile Match for 

Variable pwf Well Group 
 

 

After identifying the subset of wells that are representative of the problem at hand, we proceed to defining 

a general type curve shape using the logarithmic plot of pseudopressure normalized gas flowrate 

normalized by 6 month cumulative production versus production time shown above.  For this example the 

power-law exponential rate profile was chosen due to its characteristic basis function that models a 

declining b-factor with time which is a widely documented phenomena in unconventional oil and gas 

reservoirs.  It must be emphasized that any model could be substituted in place of the power-law 

exponential relation.  Figure 5.22 above depicts the power-law exponential type well profile and the 

parameters are summarized below in Table 5.7. 
 

 

Table 5.7 — Application Example #4 ─ Variable Pressure Type Curve Model Parameter Results 
 

  
(q/∆p)i 

 
Di 

 
n  

 
D∞ 

Decline Model 
 

(MSCF/D/psi) 
 

(1/D) 
 

(dim.less) 
 

(1/D) 
PLE  15.4  0.825  0.27  - 
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As with the single well analysis examples, the final step of the variable pressure decline curve workflow is 

to forecast production according to a specified pressure schedule.  For the individual well scenarios, we 

were observing the pressure drawdown behavior to-date and speculating on potential changes into the 

future to generate a corresponding rate profile.  For this exercise, the aim is to generate potential rate 

profiles reflective of different drawdown practices implemented from inception.  In Figure 5.23 seven 

different pressure extrapolation scenarios are depicted ranging from a constant bottomhole pressure the 

second the well comes on-line to a managed drawdown of only an average of 2.5 psia/D.  This range was 

chosen to reasonably reflect the range exhibited by the analogous well dataset shown in Figure 5.18. 
 

 

 
Figure 5.23  — Application Example #4 ─ Pressure Drawdown Schedule Sensitivities 

 

 

Having defined the pressure drawdown sensitivity scenarios, the final step is to convolve the pressure drop 

data streams (pi = 5,400 psia) with the general type well profile shown in Figure 5.22. The result of this 

exercise is seven different rate versus time production profiles with differences resulting from the various 

pressure assumptions.  The results are displayed graphically in Figure 5.24 and the thirty year estimated 

ultimate recoveries are tabulated in Table 5.8. 
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Figure 5.24  — Application Example #4 ─ Gas Flowrate Versus Production Time (Type Well Rate 

Forecasts) 
 

 

 

 

Table 5.8 — Application Example #4 ─ Variable Pressure Type Curve Forecasting Results 
 

  
PLE EUR30yr  

 Pressure Forecast Sensitivity 
 

(Bscf) 
 pwf Forecast #1 (constant) 

 
2.12 

 pwf Forecast #2 (50 psia/D)  2.11  
pwf Forecast #3 (20 psia/D)  2.11  
pwf Forecast #4 (12.5 psia/D)  2.11  
pwf Forecast #5 (7.5 psia/D)  2.11  
pwf Forecast #6 (5 psia/D)  2.11  
pwf Forecast #7 (2.5 psia/D)  2.11  

 

 

The first thing to note from the results presented above is the constancy in thirty-year recovery values 

regardless of the pressure drawdown assumption.  This is an interesting result that is expected when it is 

realized that regardless of how the pressure drawdown is managed, a maximum drawdown of 4,400 psia is 

eventually achieved and maintained for a fairly extended period of time.  While this scenario arrives at the 

same ultimate recovery for our simple scenario, which assumes dry gas, it is noted that we ignore realities 

such as fluid property changes, field development changes, or major operational changes that may be 
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present in more complex reservoir settings all of which may impact the EUR achievable as a result of 

different pressure drawdowns. 
 

The second point to note is the behavior of the rate versus time profiles in Figure 5.24 resulting from the 

superposition calculations.  It is clear that the more aggressive drawdown scenarios achieve higher initial 

rates quicker while the more conservative pressure drawdown scenarios sacrifice higher initial rates for a 

sustained period of moderate rates.  At later times, after a constant bottomhole flowing pressure of 1,000 

psia is achieved, all of the rate profiles converge onto a fairly unified decline trend.  This result is 

interesting as it provides a specific input for the economic question posed in the problem statement of this 

example.  Based on the specific corporate objectives of the operator in question, the pros and cons of the 

different potential profile shapes can be analyzed quantitatively without resorting to more detailed forward 

modeling approaches.  The strength of the methodology ultimately lies in its foundation being based on 

observed well performance signatures during the production diagnostics stage of the workflow. 
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CHAPTER VI  

SUMMARY AND CONCLUSIONS 

 

 

6.1 Summary 
 

The author believes that the developed variable-pressure decline curve technique is a valuable tool for 

quickly evaluating and forecasting wells where operating conditions preclude the use of traditional decline 

curve analysis and data or time constraints limit more advanced modeling measures.  Reserves estimation, 

field development decision making, and operational sensitivities are all practical problems where the 

methodology fills a needed void left by other analysis techniques. 
 

The methodology was fully validated using synthetic data generated using a commercial reservoir 

signature for oil and gas cases with and without pressure dependent permeability effects.  The simulated 

systems were constrained to mimic the authors experience from analyzing unconventional wells using 

model based production analysis.  The synthetic exercises provided validation for the type of field 

production scenarios that the technique could comfortably be applied to. 
 

Application examples sought to address a few of the potential operational and field development problems 

that the methodology applies to (e.g. artificial lift, undeveloped type curves, early time high-frequency 

data, etc.).  The techniques adequately captured the prevailing well performance behavior for each of the 

four application examples and strengths and weaknesses were outlined for each.  Special emphasis is 

placed on the importance of adequate diagnostic investigation, consistent data with a preference for high 

resolution bottomhole pressure measurements, and caution when analyzing systems with a significant 

degree of non-linearity. 
 

6.2 Conclusions 
 

The following section summarizes the conclusions are made based on the results of this work.  The 

conclusions are organized based on the methodology, validation, and application aspects of the work. 
 

The methodology was presented in a three step approach that is broadly applicable across a range of 

application scenarios.  Five pressure drop normalized empirical decline models were used as proxies for 

traditional analytical constant pressure rate solutions in the convolution integral.  It is concluded that the 

applicability and effectiveness of the analysis technique is reliant upon thorough production diagnostics 

and data consistency.  The analysis procedure itself is somewhat non-unique but model calibration and 
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forecasting are achievable with a reasonable degree of confidence by relying upon the presented “qDb” 

diagnostic plot along with traditional semi-log data representations. 
 

The examples considered relied upon synthetic data generate from a “known” system where the goal was 

to bracket the applicable bounds of the techniques proposed.  Single phase oil and gas cases with and 

without pressure dependent permeability were considered with the systems exhibiting non-linearities using 

traditionally applied pseudopressure transformations to linearize the system as is required for 

superposition.  For each of the synthetic cases tested an adequate match and forecast was achieved; 

however, some limitations were noted as additional non-linearities increased system complexity.  It is 

concluded that the methodology is applicable for a wide range of scenarios observed in unconventional 

reservoirs. 
 

Field production cases were selected to represent practical scenarios where the techniques proposed 

facilitate a solution.  Artificial lift decision making, early time monitoring of high-frequency rate and 

pressure measurements, high-pressure/high-temperature gas production, and field development planning 

were all addressed as individual examples.  It is here that a key limitation for high-drawdown wells 

exhibiting pressure dependent permeability established. 
 

6.3 Recommendations for Future Work 
 

The following is a list of recommendations for continuing this research: 

 Extend the methodology to enabled monitoring of variable rate pressure responses using the same, or 

similar, empirical proxy models.  Equating the constant pressure rate response proxies to a constant 

rate pressure response in the Laplace domain is a starting point. 

 Defend the “physical” meaning of the empirical proxies by correlating model parameters with well 

and reservoir information.  This may not to lead to a global solution defining any given relationship 

but is likely to lead to localized insight. 

 Extend the methodology to address additional non-linearities such as multi-phase flow, reservoir 

boundaries, well-interference, etc. 
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NOMENCLATURE 

 
aDng  Model coefficient for the Duong time-rate model, D-1 

aLGM  Model coefficient for the Logistic Growth time-rate model, D-1 

b  Arps' decline exponent (hyperbolic time-rate relation), dimensionless  

cf  Reservoir compressibility, psi-1 

ct  Total system compressibility, psi-1 

D  Reciprocal of the loss ratio, D-1 

Dlim  Terminal decline constant for the exponential time-rate relation, D-1 

Di  Initial decline constant for the exponential and hyperbolic time-rate relations, D-1 

iD̂   Decline coefficient for the Power-Law Exponential time-rate model, D-1 

D∞  Terminal decline coefficient for the Power- Law Exponential time-rate model, D-1 

EUR  Estimated ultimate recovery, Bscf or Mstb 

h  Net formation thickness, ft 

γg  Specific gas gravity, dimensionless (air 1) 

γo  Specific oil gravity, dimensionless (water 1) 

γ  Permeability Modulus, psi-1 

k  Formation permeability, md  

ki  Initial Formation permeability, md 

K  Carrying Capacity for the Logistic Growth time-rate model, Bscf or Mstb 

(K/Δp)i  Initial rate coefficient for the variable pressure logistic growth model (time-rate-pressure), 

Mscf/D/psi or Stb/D/psi 

Lw  Horizontal Well length, ft 

mDng  Time exponent for the Duong time-rate model, dimensionless 

n  Time exponent for the Power-Law and Stretched Exponential time-rate models, dimensionless 

nf  Number of hydraulic fractures, dimensionless 

nLGM  Time exponent for the Logistic Growth time-rate model, dimensionless 

ϕ  Porosity, fraction 

p  Pressure, psia 

Δpwf  Bottomhole pressure drop, psi 

pcr  Constant-rate pressure solution, psia/Stb/D or psia/Mscf/D 

pi  Initial pressure, psia 

ptf  Surface pressure, psia 

q  Production rate, Mscf/D or Stb/D 

qcp  Constant-pressure rate solution, Mscf/D/psia or Stb/D/psia 
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qi  Initial rate for the exponential and hyperbolic time-rate models, Mscf/D or Stb/D 

iq̂   Initial rate coefficient for the Power-Law and Stretched Exponential time-rate models, Mscf/D 

or Stb/D 

q1  Initial rate coefficient for the Duong time-rate model, Mscf/D or Stb/D 

(q/Δp)i  Initial rate coefficient for the variable pressure decline model (time-rate-pressure), Mscf/D/psi or 

Stb/D/psi 

r  Distance in radial coordinates, ft 

rw  Wellbore radius, ft 

Sg  Oil saturation, fraction 

So  Oil saturation, fraction 

S  skin factore, dimensionless 

Tr  Reservoir Temperature, °F 

t  Production time, days 

τ  Time coefficient for the Stretched Exponential time-rate model, D-1 

µg  Viscosity, cp 

xf  Effective fracture half length, ft 

z  gas-law deviation factore, dimensionless 
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APPENDIX A  

ARPS' DECLINE CURVE RELATIONS 

 

This section aims to fully derive the base Arps' (1945) exponential and hyperbolic decline relations.  

Additionally, the modified hyperbolic proposed by Robertson (1988) is outlined.  A schematic "qDb plot" 

and a brief time-rate application example is included demonstrating the rate and derivative behavior of 

each model. 
 

For orientation, it is noted that the derivations of both the exponential and hyperbolic decline relations 

were based on empirical observations of the loss-ratio and loss-ratio derivative originally proposed by 

Johnson and Bollens (1927).  The mathematical definitions pertaining to both are provided below.  

Numerical procedures for calculating the derivative of noisy production data are necessary and the 

Bourdet (1989) technique and a smoothing spline technique are relied upon in this work. 
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where q is flowrate in volume per unit time t, D(t) is the decline rate as a function of time expressed as a 

percentage decline per unit time, and b(t) is the dimensionless loss ratio derivative as a function of time. 
 

Prior to deriving and applying any decline relation it is crucial to understand all of the limitations from 

both a theoretical and practical standpoint.  First, it must be understood that Arps’ hyperbolic decline is an 

empirical relation meaning it was derived based on an observed data behavior.  The exponential decline 

was originally derived based on empiricism; however, it can be derived rigorously for the case of pseudo-

steady state production of a slightly compressible fluid against a constant sandface pressure.  With this in 

mind, Arps’ provided the following practical criteria when applying the exponential or hyperbolic decline 

relations. 
 

 The extrapolation of a curve (i.e. rate-time model) through the historic production data is an adequate 

representation of future production trends. 
 Current operating conditions and field development will continue without substantial changes which 

may affect the model extrapolation into the future. 
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 The well is producing from an unchanging drainage area with no-flow boundaries (i.e. boundary 

dominated flow). 

 The well is producing against a constant bottomhole flowing pressure. 
 

A.1 Derivation of Arps' Exponential Decline Relation 
 

Arps provided a mathematical derivation of the constant percentage decline, or exponential decline based 

on observations of the loss ratio defined as Eq. A.1.  He used a simple finite difference calculation in order 

to calculate the derivative term resulting in a behavior similar to that observed in Fig. A.1 where the D(t) 

was assumed to be approximately constant. 
 

 

 

Figure A.1 — Schematic of the Constant Behavior of the Loss-Ratio Characterizing Arps’ 

Exponential Decline 
 

 

Rearranging Eq. A.1, we obtain a mathematical relationship describing D(t) as: 
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tdq

tq
tD )(

)(
1)( −=  ............................................................................................................................. (A.3) 

 

Based on the observed constant behavior of D(t) similar to that shown in Fig. A.1, Eq. A.3 can be 

rearranged and the D(t) term replaced by a constant as shown below: 
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where Di is the initial decline expressed as a percentage decline per unit time.  For simplicity in derivation 

the (t) notation was dropped.  Separating the variables in Eq. A.4 we obtain: 
 

dtD
q
dq

i−=  ......................................................................................................................................... (A.5) 

 

Integrating both sides of Eq. A.5 as follows: 
 

∫∫ −=
t

i
tq

q
dtD

q
dq

i 0

)(
 ............................................................................................................................. (A.6) 

 

where qi refers to the initial rate at time zero in volume per unit time.  In order to complete the integral on 

the left hand side (LHS) of Eq. A.6 the definition of a natural logarithm is recalled: 
 

[ ] ∫=
x

x
dxx

1
ln  ....................................................................................................................................... (A.7) 

 

where x serves as a generic placeholder variable.  Utilizing the definition in Eq. A.7 the integration is 

completed as follows: 
 

[ ] t
i

tq
q tDq

i 0
)(ln −=  ................................................................................................................................ (A.8) 

 

Substitution of the limits of integration yields: 
 

[ ] [ ] )0(ln)(ln −−=− tDqtq ii  ................................................................................................................. (A.9) 
 

We again recall a logarithmic identity before proceeding in our derivation: 
 

[ ] [ ] 







=−

y
xyx lnlnln  .......................................................................................................................... (A.10) 
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where y serves as an additional generic placeholder variable.  Using Eq. A.10, the LHS of Eq. A.9 

simplifies to arrive at the following form: 
 

tD
q

tq
i

i
−=







 )(ln  ................................................................................................................................. (A.11) 

 

Exponentiation both sides of Eq. A.11 yields: 
 

[ ]tD
q

tq
i

i
−= exp)(  ............................................................................................................................... (A.12) 

 

The final time-rate form of Arps’ exponential decline is obtained by a simple rearrangement of Eq. A.12: 
 

[ ]tDqtq ii −= exp)(  ............................................................................................................................ (A.13) 
 

Eq. A.13 is now differentiated to obtain the model behavior of D(t) and b(t).  The model and data behavior 

of these trends can be calibrated against each other in order to obtain a time-rate match between Eq. A.13 

and a particular data series.  We will use Eq. A.1 to calculate D(t) the definition of which is as follows: 
 

dttdq
tq

tD /)(
)(

)(
1

−=  .............................................................................................................................. (A.1) 

 

Rearranging Eq. A.1 and substituting Eq. A.13 for the rate terms we obtain: 
 

[ ] [ ]{ }tDq
dt
d

tDq
tD ii

ii
−

−
−= exp

exp
1)(  ............................................................................................ (A.14) 

 

Performing the derivation yields the following: 
 

[ ]
[ ]tDq

tDqDtD
ii

iii

−
−

=
exp

exp
)(  .................................................................................................................... (A.15) 

 

Cancelling like terms yields the relation for the decline as a function of time.  As expected, the equation 

below is in agreement with the observation shown in Fig. A.1. 
 

iDtD =)(  .......................................................................................................................................... (A.16) 
 

In order to calculate the loss ratio derivative, or b(t), Eq. A.2 is used. 
 



 

98 

 









=

)(
1)(
tDdt

dtb  ................................................................................................................................. (A.2) 

 

Combining Eq. A.16 and Eq. A.2 yields: 
 









=

iDdt
db 1  ...................................................................................................................................... (A.17) 

 

Completing the derivative of the constant term on the right hand side (RHS) we obtain the following 

relationship for b(t): 
 

0)( =tb .............................................................................................................................................. (A.18) 
 

All of the equations up until this point in the derivation are concerned with the modeling of time-rate data 

based on the assumption of a constant bottomhole flowing pressure.  In keeping with the aim of this work, 

namely incorporating pressure data into decline curve analysis, the variable pressure form of the 

exponential decline is provided below.   
 

The discrete form of the convolution integral is used to account for variations in bottomhole flowing 

pressure as a function of time.  A complete development of the superposition equation is included in 

Appendix F.  The final mathematical form is provided below: 
 

( ) ))()(( 1
1

,, 1 −
=

−∆−∆=∑ − ku

u

k
cpwfwf ttqpptq

kk
 ..................................................................................... (A.19) 

 

where Δpwf is the bottomhole pressure drop in units of pressure at a specific point in time and qcp denotes a 

constant pressure rate solution which is traditionally obtained by solving the diffusivity equation for a 

particular well and reservoir configuration.  This work makes the assumption that the constant pressure 

rate signature of a well is accurately represented by the pressure drop normalized rate behavior of that 

well.  If this assumption holds, it is proposed that this data trend can be modeled using a pressure drop 

normalized form of an empirical time-rate decline relation serving as the unknown constant pressure rate 

solution in Eq. A.19.  The pressure drop normalized form of the exponential decline is provided below: 
 

[ ]tD
p

q
tp

tqtq i
i

cp −







∆

=
∆

≈ exp
)(

)()(  .................................................................................................... (A.20) 

 

Finally, combining Eq. A.19 and Eq. A.20 the superposition form of the exponential decline is obtained: 
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1,, )(exp)(
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 .................................................................. (A.21) 

 

As before, the characteristic behaviors of D(t) and b(t) are desired.  The definition of the loss-ratio in Eq. 

A.1 assumes that production is against a constant bottomhole flowing pressure.  When variable pressure 

drop conditions prevail, pressure drop normalized rates should be differentiated as opposed to rates.  

Performing this modification yields: 
 

dttptqd
tptq

tD /))(/)((
)(/)(

)(
1

∆
∆

−=  .............................................................................................................. (A.22) 

 

Substituting Eq. A.20 into Eq. A.22: 
 

[ ] [ ]{ }tDpq
dt
d

tDpq
tD ii

ii
−∆

−∆
−= exp)/(

exp)/(
1)(  ........................................................................ (A.23) 

 

Evaluating the derivative term: 
 

[ ]
[ ]tDpq

tDpqDtD
ii

iii

−∆
−∆

=
exp)/(

exp)/(
)(  ........................................................................................................... (A.24) 

 

Finally, cancelling like terms yields: 
 

iDtD =)(  .......................................................................................................................................... (A.16) 
 

Similarly modifying Eq. A.2 for pressure drop normalized rates yields the following form of the loss-ratio 

derivative: 
 









∆
∆

−=







=

dttptqd
tptq

dt
d

tDdt
dtb

/))(/)((
)(/)(

)(
1)(  ................................................................................... (A.25) 

 

Combining Eqs. A.16 and A.25 yields  
 









=

iDdt
dtb 1)(  .................................................................................................................................. (A.17) 

 

Finally, the b(t) expression is defined as follows: 
 

0)( =tb .............................................................................................................................................. (A.18) 
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It is important to note that the derivative terms arrived at using the pressure drop normalized rate form and 

the time-rate form are identical.  This is a result of the assumption that pressure drop normalization of rate 

data adequately transforms the variable pressure signature of the well to the equivalent constant pressure 

signature.  This has important implications from a diagnostic standpoint and allows the derivative trends to 

guide calibration regardless of whether time-rate or time-rate-pressure decline methods are utilized. 
 

A.2 Derivation of Arps' Hyperbolic Decline Relation 
 

Arps observed that the loss-ratio (i.e. D(t)) was not always constant.  To investigate, he differentiated the 

loss-ratio again using a simple finite difference calculation where he observed near constant loss-ratio 

derivative trends similar to that seen in Fig. A.2.  This observation forms the empirical foundation of 

Arps’ hyperbolic decline. 
 

 

 
Figure A.2 — Schematic of the Constant Behavior of the Loss-Ratio Derivative Characterizing 

Arps’ Hyperbolic Decline. 
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In order to obtain a mathematical definition of the hyperbolic decline we begin with the definition of the 

loss-ratio derivative: 
 









−=

dttdq
tq

dt
dtb

/)(
)()(  ........................................................................................................................ (A.2) 

 

Dropping the function of time notation and assuming a constant b(t) as shown in Fig. A.2: 
 

b
dtdq

q
dt
d

−=







/

 .............................................................................................................................. (A.26) 

 

Separating variable and taking the indefinite integral of both sides: 
 

∫∫ −=







dtb

dtdq
qd
/

 ....................................................................................................................... (A.27) 

 

Evaluating the integral on the LHS and RHS we arrive at the following: 
 

Cbt
dtdq

q
−−=

/
 ............................................................................................................................... (A.28) 

 

where C is a constant of integration.  Recalling our definition of the loss ratio provided by Eq. A.1 and 

substituting into Eq. A.28 yields: 
 

Cbt
D

+=
1  ........................................................................................................................................ (A.29) 

 

Assuming a boundary condition where D(t=0) = Di and solving Eq. A.29 for the constant of integration: 
 

C
Di

=
1  .............................................................................................................................................. (A.30) 

 

Substituting Eq. A.30 into Eq. A.29: 
 

iD
bt

dtdq
q 1
/

−−=  ............................................................................................................................. (A.31) 

 

Rearranging yields: 
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tbD
D

dt
dq

q i

i

+
−=

1
1  .............................................................................................................................. (A.32) 

 

If we again separate variables we obtain: 
 

dt
tbD

D
q
dq

i

i

+
−=

1
 ............................................................................................................................. (A.33) 

 

Taking the definite integral of both sides gives: 
 

dt
tbD

D
q

dq t

i
i

tq

qi
∫∫ +

−=
0

)(

1
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In order to complete the integration on the RHS we introduce the following variable of integration: 
 

tbDz i+=1  ....................................................................................................................................... (A.35) 
 

where z is a variable of substitution.  Additionally, we calculate the derivative of the variable of 

substitution as follows: 
 

ibD
dt
dz

=  ........................................................................................................................................... (A.36) 

 

Rearranging yields: 
 

dz
bD

dt
i

1
=  ....................................................................................................................................... (A.37) 

 

In order to correctly integrate using the variable of substitution we need to transform the limits of 

integration as follows: 
 

1)0( ==tz  ........................................................................................................................................ (A.38) 
 

tbDttz i+== 1)(  ............................................................................................................................. (A.39) 
 

Substituting Eqs. A.35, A.37, A.38, and A.39 into Eq. A.34 we obtain the following expression: 
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Removing the constant terms from the integral and cancelling we obtain: 
 

∫∫
+

−=
tbDtq

q

i

i z
dz

bq
dq 1

1
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In order to complete the integral terms we again recall the definition of a natural logarithm: 
 

[ ] ∫=
x

x
dxx

1
ln  ....................................................................................................................................... (A.7) 

 

Completing the integration yields the following: 
 

[ ] [ ]tbD
b

q i
tq

qi
+−= 1ln1ln )(  ................................................................................................................ (A.42) 

 

Prior to substitution the limits of integration we recall the following properties of logarithms: 
 

[ ] [ ] 







=−

y
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[ ] [ ]yxxy lnln =  .................................................................................................................................. (A.43) 
 

Using the identities in Eqs. A.10 and A.43, Eq. A.42 simplifies as follows: 
 

( ) 







+=







 −
bi

i
tbD

q
tq 1
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Exponentiating both sides yields: 
 

( ) b
ii tbDq

tq
11

1)(
+

=  ............................................................................................................................ (A.45) 

 

Finally, rearranging Eq. A.45 yields the time-rate formulation of Arps’ hyperbolic relation. 
 

( ) b
i

i

tbD
qtq 11

)(
+

=  ............................................................................................................................ (A.46) 

 

The forms of D(t) and b(t) are again desired in order to aid in model calibration.  In order to calculate D(t) 

we begin with the equation of the loss-ratio provided below: 
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Rearranging and substituting Eq. A.46 into Eq. A.1: 
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Again recalling our variable of substitution and its derivative: 
 

tbDz i+=1  ....................................................................................................................................... (A.35) 
 

ibD
dt
dz

=  ........................................................................................................................................... (A.36) 

 

For the moment we substitute Eq. A.35 into Eq. A.47: 
 













−=
−

bb z
dt
dztD

11

)(  ........................................................................................................................ (A.48) 

 

In order to carry out the derivation we utilize the chain rule defined as: 
 

dt
dz

dz
dq

dt
dq

=  ....................................................................................................................................... (A.49) 

 

Applying the chain rule to the RHS of Eq. A.48: 
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)(  .................................................................................................................... (A.50) 

 

Substituting the derivative of the variable of substitution shown in Eq. A.36 yields: 
 

dz

zd

zbDtD

b

b
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−
1

1

)(  .................................................................................................................... (A.51) 

 

Evaluating the derivative term: 
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bDtD  .......................................................................................................................... (A.52) 

 

In order to proceed we define the following identity: 
 

yxyx zzz +=  ...................................................................................................................................... (A.53) 
 

Utilizing the above identity we obtain: 
 

1
11

)( −−
= zzzDtD bb
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Rearranging and substituting the z variable defined in Eq. A.35: 
 

)1()1(

)1(
)( 1

1
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ii
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=  .............................................................................................................. (A.55) 

 

Finally, cancelling like terms yields the decline parameter as a function of a time relation for Arps’ 

hyperbolic relation. 
 

)1(
)(
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The definition of the loss-ratio derivative is the basis for the b(t) relation: 
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)(
1)(
tDdt

dtb  ................................................................................................................................. (A.2) 

 

Combining Eq. A.56 and Eq. A.2 we arrive at: 
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Rearranging the derivative term: 
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Evaluating the derivatives on the RHS yields the expected constant b(t) relation forming the foundation of 

the hyperbolic relation. 
 

btb =)( .............................................................................................................................................. (A.59) 

 

In order to develop a time-rate-pressure form of Arps’ hyperbolic decline we again begin with the discrete 

form of the convolution integral as follows: 
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kk
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The assumption for the development of the variable pressure decline curve analysis form is that pressure 

drop normalization of rates provides a proxy for the constant pressure decline behavior of a well.  

Accordingly, pressure drop normalization of the hyperbolic decline, provided below, is assumed to be an 

adequate equivalent constant pressure decline model for substitution into Eq. A.19. 
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Substituting Eq. A.60 into Eq. A.19 yields the variable pressure decline relation presented in this work. 
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In the interest of space the mechanics of the D(t) and b(t) differentiation will not be shown for the variable 

pressure decline relation.  As shown for the exponential decline it works out that the derivative behavior is 

identical to that of the time-rate form of the hyperbolic relation provided by Eq. A.56 and Eq. A.59. 
 

A final point of practical importance is the unbounded nature of the hyperbolic equation when the b 

parameter is greater than unity.  It is well documented that production from low-permeability formations 

tends to exhibit decline trends indicative of higher b values thus opening up the risk of overestimating the 

ultimate recover from these reservoirs.  Numerous alternative time-rate models (presented in the following 

appendices) have been developed to address this challenge; however, the most common approach is the so 

called modified hyperbolic introduced by Robertson (1988).  The modified hyperbolic is a practice based 

approach in which the exponential decline is spliced as a tail after an initial hyperbolic segment at a 

specified switch time.  The piecewise time-rate and pressure drop normalized rate expressions are provide 

below. 
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The modified hyperbolic decline is a useful practical tool to avoid overestimating reserves in low-

permeability formations; however, the timing and magnitude of the exponential tail is generally an 

ambiguous decision.  As a result of this reality, the modified hyperbolic has the potential for both under 

and overestimates if particular care is not taken in its application. 
 

A.3 Hyperbolic Type Plots and Application Example 
 

The aim of this section is to provide a cartoon schematic showing the diagnostic behavior of Arps' 

hyperbolic decline and to demonstrate a simple application example using a variety of plots to aid in 

model calibration.  The first objective is addressed in this appendix, as well as the remaining time-rate 

model appendices, by using a type plot of the "qDb" behavior.  This plot for Arps' hyperbolic and 

modified hyperbolic models is provided below as Fig. A.3. 
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Figure A.3 — Schematic Type Plot of “qDb” Model Behavior for Arps’ Hyperbolic and Modified 

Hyperbolic Decline  
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The model parameters governing the shape of Arps’ decline models need to be calibrated in order to 

generate a forecast of future production performance.  Unfortunately non-uniqueness in match calibration 

is an unfortunately reality for all production analysis techniques and decline curve analysis is no 

exception.  In order to mitigate this issue, it is recommended that a suite of diagnostic plots is used as 

opposed to solely rate versus time analysis.  These additional plots provide further match confirmation and 

help to ensure that the calibrated model honors well performance characteristics such as prevailing flow 

regime(s).  Included below in Fig. A.4 is an example of such an approach applied to a field production 

scenario where the hyperbolic model is calibrated across a suite of plots.  The corresponding rate-time and 

rate-cumulative matches are shown in Fig. A.5 and A.6. 
 

 

 

  
Figure A.4 — Diagnostic Suite Demonstrating Hyperbolic Time-Rate Model Calibration 

Methodology  
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Figure A.5 — Calibrated Modified Hyperbolic Rate Versus Production Time Match 

 

 

 

 

 
Figure A.6 — Calibrated Modified Hyperbolic Rate Versus Cumulative Gas Production Match 
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APPENDIX B  

POWER-LAW EXPONENTIAL DECLINE CURVE RELATION 

 

This section aims to fully derive the power-law exponential relation introduced by Ilk et al. (2008).  A 

schematic "qDb plot" and a brief time-rate application example is included demonstrating the rate and 

derivative behavior of the model.  As with the Arps’ (1945) relations, the derivation of the power-law 

exponential model was based on a base relationship established as a result of observations of the loss-ratio 

trend on logarithmic coordinates.  The mathematical definitions of the loss-ratio and loss-ratio derivative, 

introduced by Johnson and Bollens (1927), are included below. 
 

dttdq
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−=  .............................................................................................................................. (B.1) 
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where q is flowrate in volume per unit time t, D(t) is the decline rate as a function of time expressed as a 

percentage decline per unit time, and b(t) is the dimensionless loss ratio derivative as a function of time. 
 

It is important to note that this relationship was derived as a result of a study analyzing the merits and 

limitations of using Arps’ hyperbolic relationship for fractured low-permeability tight gas wells.  The 

model utilizes a best-fit power-law trend of the loss-ratio as a function of time, D(t), which decays to a 

constant behavior, or exponential decline at late times using a limiting term (i.e. D∞).  The model was 

derived with the goal of creating a “unifying” model relying upon diagnostic relationships for model 

calibration and providing enough flexibility to model transient, transitional, and boundary dominated flow.  

From a physical standpoint, the model must be considered entirely empirical at this point in time. 
 

B.1 Derivation of the Power-Law Exponential Decline Relation 
 

Ilk et al. (2008) provided a mathematical derivation of the power-law exponential decline based on 

observations of the loss ratio data defined as Eq. B.1.  There basis function differed from that of the 

exponential or hyperbolic decline in that they defined a decaying power-law function with a constant 

behavior at relatively late times.  The authors introduced the so called “qDb” plot, which is extensively 

utilized in this work, to simultaneously depict the rate, loss-ratio, and loss-ratio derivative trends and guide 

model calibration.  The basis function from which they began their derivation is provided below. 
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)1(
1)( ntDDtD −−

∞ +=  ......................................................................................................................... (B.3) 
 

where D1 is the decline constant at time unit 1, n is the time exponent, t is time, and D∞ is the limiting 

decline at infinite time.  Rearranging Eq. B.1, we obtain a mathematical relationship describing D(t) as: 
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1)( −=  ............................................................................................................................. (B.4) 

 

Combining Eq. B.4 with the basis function for D(t) provided by Eq. B.3, we arrive at the expression 

below: 
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For simplicity in derivation the (t) notation was dropped.  Separating the variables in Eq. B.5 we obtain: 
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Integrating both sides of Eq. B.6 as follows: 
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where iq̂  refers to the initial rate intercept at time zero and has a different interpretation than qi used in 

Arps’ models.  In order to complete the integral on the left hand side (LHS) of Eq. B.7 the definition of a 

natural logarithm is recalled: 
 

[ ] ∫=
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dxx

1
ln  ....................................................................................................................................... (B.8) 

 

where x serves as a generic placeholder variable.  Utilizing the definition in Eq. B.8 the integration is 

completed as follows: 
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Substitution of the limits of integration yields: 
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We again recall a logarithmic identity before proceeding in our derivation: 
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where y serves as an additional generic placeholder variable.  Using Eq. B.11, the LHS of Eq. B.10 

simplifies to arrive at the following form: 
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Exponentiation both sides of Eq. B.12 yields: 
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The final time-rate form of power law exponential decline utilizes a single variable, iD̂ , in place term 

representing the division of D1 and n.  This variable has a different interpretation from Di used in the Arps’ 

models and is defined as follows: 
 

n
DDi

1ˆ = ............................................................................................................................................ (B.14) 

 

Combining Eqs. B.13 and B.14 we arrive at the final rate versus time formulation for the power-law 

exponential decline model. 
 

[ ]tDtDqtq n
ii ∞−−= ˆexpˆ)(  ................................................................................................................ (B.15) 

 

The authors proposed the use of the reciprocal of the loss-ratio, D(t), and loss-ratio derivative, b(t), data 

trends to calibrate the model parameters for forecasting production.  We have D(t), namely the basis 

function, and we have derived the rate versus time model, q(t), but we still need to determine the loss-ratio 

derivative behavior.  In order to determine the b(t) behavior we recall Eq. B.2 which is the definition of the 

loss-ratio derivative. 
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Combining Eq. B.2 and substituting Eq. B.3 for the D(t) term we obtain: 
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where the iD̂  term is used and the equation is rearranged for simplicity.  To complete the derivation, we 

now define a substitution variable, x, as follows: 
 

1ˆ −
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intDDx  .............................................................................................................................. (B.17) 
 

Combining Eqs. B.16 and B.17, we obtain: 
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In order to carry out the derivation we utilize the chain rule defined as: 
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Applying the chain rule to the RHS of Eq. B.19: 
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Recalling our variable of substitution from Eq. B-17 and taking the derivative we obtain: 
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Completing the derivative in Eq. B.20 and substituting for our dummy variable, x, we arrive at the 

following expression: 
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In an effort to simplify the expression, we expand the numerator and denominator terms: 
 

212222

222

ˆ2ˆ
ˆˆ

)(
∞∞

−−

−−

++

−
−=

DDDntDtn
DntDtntb

i
n

i
n

i
n

i
n

 .......................................................................................... (B.23) 

 

In order to simplify we recall the following property of exponents: 
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where z, a, and b are all placeholder variables.  Using this identity, we can simplify Eq. B.23 to the 

following: 
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Multiplying both the numerator and denominator by 1/t2 yields the following: 
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Simplifying the denominator of the above expression: 
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Cancelling like terms, simplifying the polynomial expressions, and distributing the negative to the 

numerator provides the fully simplified b(t) expression for the power-law exponential model. 
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All of the equations up until this point in the derivation are concerned with the modeling of time-rate data 

based on the assumption of a constant bottomhole flowing pressure.  In keeping with the aim of this work, 
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namely incorporating pressure data into decline curve analysis, the variable pressure form of the power-

law exponential decline is provided below.   
 

The discrete form of the convolution integral is used to account for variations in bottomhole flowing 

pressure as a function of time.  A complete development of the superposition equation is included in 

Appendix F.  The final mathematical form is provided below: 
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where Δpwf is the bottomhole pressure drop in units of pressure at a specific point in time and qcp denotes a 

constant pressure rate solution.  This work makes the assumption that the constant pressure rate signature 

of a well is accurately represented by the pressure drop normalized rate behavior of that well.  If this 

assumption holds, it is proposed that this data trend can be modeled using a pressure drop normalized form 

of an empirical time-rate decline relation serving as the unknown constant pressure rate solution in Eq. 

B.28.  The pressure drop normalized form of the power-law exponential decline is provided below: 
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Finally, combining Eq. B.28 and Eq. B.29 the superposition form of the power- law exponential decline is 

obtained: 
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When calibrating the model parameters for the superposition expression shown in Eq. B.30, we desire the 

behavior of D(t) and b(t) much as we did for the simple rate versus time expression.  These will be 

calculated using the following modified expressions for the loss-ratio and loss-ratio derivative. 
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Recalling our expressions for D(t) and b(t) provided by B.3 and B.27 we note that they are independent of 

the initial rate term.  As a result, the derivative terms arrived at using the pressure drop normalized rate 
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form and the time-rate form are identical.  This is a result of the assumption that pressure drop 

normalization of rate data adequately transforms the variable pressure signature of the well to the 

equivalent constant pressure signature.  This has important implications from a diagnostic standpoint and 

allows the derivative trends to guide calibration regardless of whether time-rate or time-rate-pressure 

decline methods are utilized provided the constant pressure rate approximation assumption is adequate. 
 

B.2 Power-Law Exponential Type Plots and Application Example 
 

The aim of this section is to provide a cartoon schematic showing the diagnostic behavior of the power-

law exponential decline and to demonstrate a simple application example using a variety of plots to aid in 

model calibration.  The first objective is addressed in this appendix by using a type plot of the "qDb" 

behavior for the power-law exponential model provided below as Fig. B.1. 
 

 

 
Figure B.1 — Schematic Type Plot of “qDb” Model Behavior for the Power-Law Exponential 

Decline  
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The model parameters governing the shape of power-law exponential decline model need to be calibrated 

in order to generate a forecast of future production performance.  Unfortunately, non-uniqueness in match 

calibration is an unescapable reality for all production analysis techniques and decline curve analysis is no 

exception.  In order to mitigate this issue, it is recommended that a suite of diagnostic plots is used as 

opposed to solely rate versus time analysis.  These additional plots provide further match confirmation and 

help to ensure that the calibrated model honors well performance characteristics such as prevailing flow 

regime(s).  Included below in Fig. B.2 is an example of such an approach applied to a field production 

scenario where the power-law exponential model is calibrated across a suite of plots.  The corresponding 

rate-time and rate-cumulative matches are shown in Fig. B.3 and B.4. 
 

 

 

  
Figure B.2 — Diagnostic Suite Demonstrating Power-Law Exponential Model Calibration 

Methodology  
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Figure B.3 — Calibrated Power-Law Exponential Rate Versus Production Time Match 

 

 

 

 

 
Figure B.4 — Calibrated Power-Law Exponential Rate Versus Cumulative Gas Production Match 
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APPENDIX C  

STRETCHED EXPONENTIAL DECLINE CURVE RELATION 

 

This section aims to fully derive the stretched exponential relation introduced by Valkó (2009).  A 

schematic "qDb plot" and a brief time-rate application example is included demonstrating the rate and 

derivative behavior of the model.  As with each of the decline relations presented in the appendices, the 

derivation of the stretched exponential model must be considered entirely empirical.  In contrast to the 

Arps’ decline relations and the power-law exponential, this model was introduced as a “statistical 

expression” to model data on a large scale across the Barnett shale gas formation.  Additionally, its 

derivation was not based on empirical observations of the loss-ratio and loss-ratio derivative trends as the 

Arps’ and power-law exponential relations were.  While derived independently, this model is 

mathematically identical to the power-law exponential relation when the limiting term, D∞, is set equal to 

zero. 
 

Valkó’s original introduction of this model proposed an application workflow for this model analogous to 

many type curve shifting routines in well test, production, and decline curve analysis.  The primary pursuit 

of the workflow was a straight line on a dimensionless plot of recovery potential (defined in the paper as 

the one minus the recovery factor) versus dimensionless cumulative production.  The model parameters 

were adjusted accordingly to achieve this goal.  It is the opinion of the author that this model has found the 

most enduring usage for per well reserves forecasts across the industry, aside from the modified forms of 

Arps’ models.  It is important to note, however; that the original intent of the model was to analyze 

performance indicators at a much broader level (i.e. basin wide) than typical reserves studies performed on 

an individual well basis. 
 

C.1 Derivation of the Stretched Exponential Decline Relation 
 

Valkó (2009) provided the conceptual introduction of the stretched exponential decline relation including 

proposed applications and a summary of all of the relevant mathematical expressions.  The defining 

expressions are all admittedly empirical, however; the new model was based on a non-autonomous 

differential equation which differed in theoretical form from the Arps’ empirical expressions.  It is noted 

that the defining differential equation has found application across various disciplines to describe decay 

processes analogous to production decline [Kohlrausch (1854) and Kisslinger (1993)].  The defining 

differential equation proposed by Valkó is provided as follows: 
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where τ is a model parameter describing the “characteristic number of periods” and is analogous to the 

half-life concept, q is the flowrate, and n is the time exponent.  We will first derive the rate versus time 

formulation for this expression by solving the differential equation.  We begin by separating variables in 

Eq. C.1: 
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Simplifying the right hand side (RHS) and integrating yields the following: 
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In order to complete the integral on the left hand side (LHS) of Eq. C.3 the definition of a natural 

logarithm is recalled: 
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where x serves as a generic placeholder variable.  Utilizing the definition in Eq. C.4 the integration of Eq. 

C.3 is completed as follows: 
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Simplifying and substitution the limits of integration, we arrive at the following: 
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We again recall a logarithmic identity before proceeding in our derivation: 
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where y serves as an additional generic placeholder variable.  Using Eq. C.7, the LHS of Eq. C.6 simplifies 

to arrive at the following form: 
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Exponentiation both sides of Eq. C.8 yields: 
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The final rate versus time form of the stretched exponential model can be expressed as follows: 
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Valkó (2009) proposed an application methodology utilizing a plot of dimensionless cumulative 

production versus the recovery potential where the parameters are varied in order to achieve a straight line 

trend and project performance.  Keeping with the application methodology advocated throughout the work 

we venture to derive the reciprocal of the loss-ratio, D(t), and loss-ratio derivative, b(t).  These expressions 

will be used on a “qDb” plot to calibrate the model parameters and extrapolate future production.   
 

In order to derive these expressions, we begin with the definition of the loss-ratio: 
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We will first evaluate the derivative term on the RHS of Eq. C.11.  Isolating the derivative term and 

substituting Eq. C.10 yields: 
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Simplifying the derivative:  
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To evaluate the derivative term, we must rely on the following identity for differentiation of exponential 

functions: 
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where x is a dummy variable in this case.  Observing Eq. C.13 we define x in the following manner: 
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Simplifying and taking the derivative of Eq. C.15 we arrive at: 
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Utilizing the mathematical identity in Eq. C.14 and the derivative expression in Eq. C.16, we can express 

the Eq. C.13 as the following: 
 

n

nn

i
nttq

dt
tdq

tt

1
expˆ)( −


















−−=  ........................................................................................................ (C.17) 

 

Having evaluated the derivative term on the RHS of Eq. C.11, we substitute the rate-time definition, q(t), 

expressed by Eq. C.10. 
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Cancelling like terms yields the final expression for the reciprocal of the loss-ratio, or D(t): 
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Continuing the derivation, we now aim to solve for the derivative of the loss-ratio, or b(t), trend.  This is 

expressed mathematically as follows: 
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Substituting Eq. C.19 into Eq. C.20: 
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Rearranging the derivative term and removing constant terms: 
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Carrying out the differentiation yields and simplifying algebraically provides the following final 

expression for the derivative of the loss-ratio for the stretched exponential model: 
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All of the equations up until this point in the derivation are concerned with the modeling of time-rate data 

based on the assumption of a constant bottomhole flowing pressure.  In keeping with the aim of this work, 

namely incorporating pressure data into decline curve analysis, the variable pressure form of the stretched 

exponential decline is introduced below. 
 

The discrete form of the convolution integral is used to account for variations in bottomhole flowing 

pressure as a function of time.  A complete development of the superposition equation is included in 

Appendix F.  The final mathematical form is provided below: 
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where Δpwf is the bottomhole pressure drop in units of pressure at a specific point in time and qcp denotes a 

constant pressure rate solution.  This work makes the assumption that the constant pressure rate signature 

of a well is accurately represented by the pressure drop normalized rate behavior of that well.  If this 

assumption holds, it is proposed that this data trend can be modeled using a pressure drop normalized form 

of an empirical time-rate decline relation serving as the unknown constant pressure rate solution in Eq. 

C.24.  The pressure drop normalized form of the stretched exponential decline is provided below: 
 



 

125 

 


















−








∆

=
∆

≈
n

i

i
cp

t
p

q
tp

tqtq
t

exp
ˆ

)(
)()(  ............................................................................................... (C.25) 

 

Finally, combining Eq. C.24 and Eq. C.25 the superposition form of the exponential decline is obtained: 
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When calibrating the model parameters for the superposition expression shown in Eq. C.26, we desire the 

calculated data behavior of D(t) and b(t) much as we did for the simple rate versus time expression.  These 

will be calculated using the following modified expressions for the loss-ratio and loss-ratio derivative. 
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Recalling our expressions for D(t) and b(t) provided by C.19 and C.23 we note that they are independent 

of the initial rate term.  As a result, the derivative terms arrived at using the pressure drop normalized rate 

form and the time-rate form are identical.  This is a result of the assumption that pressure drop 

normalization of rate data adequately transforms the variable pressure signature of the well to the 

equivalent constant pressure signature.  This has important implications from a diagnostic standpoint and 

allows the derivative trends to guide calibration regardless of whether time-rate or time-rate-pressure 

decline methods are utilized provided the constant pressure rate approximation assumption is adequate. 
 

C.2 Stretched Exponential Type Plots and Application Example 
 

The aim of this section is to provide a cartoon schematic showing the diagnostic behavior of the stretched 

exponential decline and to demonstrate a simple application example using a variety of plots to aid in 

model calibration.  The first objective is addressed in this appendix by using a type plot of the "qDb" 

behavior for the stretched exponential model provided below as Fig. C.1. 
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Figure C.1 — Schematic Type Plot of “qDb” Model Behavior for the Stretched Exponential Decline 

 

 

The model parameters governing the shape of stretched exponential decline model need to be calibrated in 

order to generate a forecast of future production performance.  Unfortunately, non-uniqueness in match 

calibration is an unescapable reality for all production analysis techniques and decline curve analysis is no 

exception.  In order to mitigate this issue, it is recommended that a suite of diagnostic plots is used as 

opposed to solely rate versus time analysis.  These additional plots provide further match confirmation and 

help to ensure that the calibrated model honors well performance characteristics such as prevailing flow 

regime(s).  Included below in Fig. C.2 is an example of such an approach applied to a field production 

scenario where the stretched exponential model is calibrated across a suite of plots.  The corresponding 

rate-time and rate-cumulative matches are shown in Fig. C.3 and C.4. 
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Figure C.2 — Diagnostic Suite Demonstrating Stretched Exponential Model Calibration 

Methodology  



 

128 

 

 
Figure C.3 — Calibrated Stretched Exponential Rate Versus Production Time Match 

 

 

 

 

 
Figure C.4 — Calibrated Stretched Exponential Rate Versus Cumulative Gas Production Match 
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APPENDIX D  

DUONG DECLINE CURVE RELATION 

 

This section aims to fully derive the Duong decline relation introduced by Duong (2011).  A schematic 

"qDb plot" and a brief time-rate application example is included demonstrating the rate and derivative 

behavior of the model.  The defining relationship for this rate versus time model was based on a power law 

trend describing the rate divided by cumulative production plotted as a function of time.  The nature of the 

model is entirely empirical and the original author suggested its applicability for cases exhibiting long-

term linear flow.  The defining relationship forming the foundation of this model is presented below. 
 

mta
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where q is flowrate in volume per unit time t, Q is the cumulative production expressed as a function of 

time, and a and m are model parameters controlling the slope and intercept of the described straight line 

power law expression in logarithmic coordinates. 
 

Along with the defining relation, Duong provided a derivation (which is reproduced here) of the associated 

closed form rate versus time expression and proposed an application methodology using a best fit power-

law trend to define the a and m model parameters.  He speculated on physical causes of the long-term 

linear flow behavior the model is meant to capture and bracketed potential ranges of values for the model 

parameters based on field examples, past references, and perceived physical phenomena.  Finally, he 

provided comparisons to other rate versus time models and suggested appropriate means of truncating his 

forecast. 
 

D.1 Derivation of the Duong Decline Relation 
 

Duong (2011) provided a mathematical derivation of the Duong rate-time relation in general terms based 

on the assumption that the rate-cumulative ratio could be expressed as a general function of time.  Duong 

later went on to propose a defining power-law relationship for this general function.  His derivation is 

reproduced and extended in this section.  The generalized basis function from which Duong began his 

derivation is provided below. 
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where )(tε  is an arbitrary function with independent variable time.  Rearranging Eq. D.1 to isolate the 

cumulative production expression we obtain: 
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Differentiating both sides of Eq. D.3 yields the following: 
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In order to complete the differentiation on the right-hand side (RHS) of Eq. D.4 we present the following 

identity for rate and cumulative production as a function of time: 
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which simply implies that the cumulative production from a well is the area of the curve underneath the 

rate measured as a function of time.  Utilizing this definition we complete the RHS of Eq. D.4: 
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To complete the left-hand side (LHS) of Eq. D.6, we must recall the quotient rule from fundamental 

calculus which is reproduced as follows: 
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where f(x) and g(x) are arbitrary functions of an arbitrary independent variable, x, and the apostrophe 

denotes the first derivative of the functions with respect to x.  Utilizing the above definition where q(t) and 

)(tε  replace f(x) and g(x), respectively, we complete the differentiation of Eq. D.6 below. 
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Expanding the terms on the RHS yields the following differential equation: 
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Separating variables algebraically we obtain the expression below. 
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Integrating both sides from time one to time t: 
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The LHS and the second term of the RHS of Eq. D.10 require the following definition of the natural 

logarithm. 
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where x serves as a generic placeholder variable.  Utilizing the definition in Eq. D.12 the integration of Eq. 

D.11 is partially completed as follows: 
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Substitution of the limits of integration yields: 
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where 1q  is the rate evaluated at time unit one and )1(ε  is the arbitrary function evaluated at time unit 

one.  We again recall a logarithmic identity before proceeding in our derivation: 
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where y serves as an additional generic placeholder variable.  Using Eq. D.15, we can now simplify Eq. 

D.14 to arrive at the following form: 
 



 

132 

 

∫+







=







 t
dttt

q
tq

11
)(

)1(
)(ln)(ln ε

ε
ε  ........................................................................................................... (D.16) 

 

Isolating the integral term and again utilizing the identity presented as Eq. D.15 we simplify Eq. D.16 as 

follows. 
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Exponentiation of both sides of Eq. D.17 and solving for q(t) algebraically provides the following general 

expression for rate as a function of time. 
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Eq. D.18 is the general solution for the Duong model where )(tε  is an arbitrary function describing the 

behavior of the rate as function of time divided by the cumulative production as a function of time.  The 

author of the paper proposed the following power-law expression to describe )(tε , which serves as the 

defining identify of the Duong decline model. 
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The solution of Eq. D.19 at time one and the integral within the exponential on the RHS of Eq. D.18 are 

still needed to arrive at the closed form rate-time solution of the Duong model.  Both of these terms are 

provided below. 
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Combining Eqs. D18 through D.21, we obtain the final rate-time form of the Duong decline model 

proposed in the original paper. 
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As with each of the models used in this work, we desire expressions for the reciprocal of the loss-ratio, 

D(t), and the loss-ratio derivative, b(t).  These expressions will be used along with other diagnostic plots to 

calibrate the Duong model parameters and match the historical production data.  We will begin with the 

derivation of the D(t) equation which requires us to recall the following identity. 
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Combining Eq. D.22 and D.23 we obtain the following: 
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We first isolate and simplify the differentiation component on the RHS of Eq. D.24: 
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To complete the differentiation we must utilize the definition of the product rule of differentiation, 

namely: 
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where f(x) and g(x) are arbitrary functions of an arbitrary independent variable x and the apostrophe 

denotes the first derivative with respect to x.  Observing Eqs. D.25 and D.26 we can define the following 

placeholder functions. 
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To fully complete the differentiation in Eq. D.25 using the product rule we also require expressions for the 

first derivative with respect to time, t.  The expression for )(tf ′  is expressed below 
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In order to differentiate the second substitution function, namely g(t), we recall the definition of the 

derivative of an exponential function below. 
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In our case, x and its derivative with respect to time are defined as follows: 
 

)1(
1

1 −
−

= −mt
m

ax  ............................................................................................................................ (D.31) 

 

mta
dt
dx −=  ........................................................................................................................................ (D.32) 

 

Utilizing Eqs. D.30 through D.32, we can define )(tg ′ as follows: 
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Utilizing the product rule definition in Eq. D.26 and the expressions for the substitution functions defined 

by Eqs. D.27, D.28, D.29, and D.33 we can complete the differentiation in Eq. D.25. 
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Simplifying algebraically, we arrive at: 
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Eq. D.35 represents the completed differentiation for the second term in Eq. D.24.  Combining Eqs. D.24 

and D.35 yields the following for D(t): 
 

[ ]m

mm

mm

atmt
t

m
atq

t
m

atq
tD −−

−−

−−

+−





 −
−





 −
−

−= 1

1
1

1
1

)1(
1

exp

)1(
1

exp
)(  ......................................................................... (D.36) 

 

With a final simplification we arrive at the following simplified final expression for the reciprocal of the 

loss-ratio, D(t), for the Duong model: 
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Having derived the reciprocal of the loss-ratio, D(t), for the Duong model, we now continue with our 

derivation to derive the derivative of the loss-ratio, b(t).  The identity recalled below serves as the starting 

point for this derivation: 
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Substituting the expression for D(t), given by Eq. D.37, into Eq. D.38 yields the following: 
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To complete the differentiation on the RHS or Eq. D.39 we again recall the quotient rule identity 

introduced by Eq. D.7 earlier in this appendix. 
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where f(x) and g(x) again represent arbitrary functions of an arbitrary independent variable x and the 

apostrophe denotes the first derivative of the aforementioned functions.  For this derivation we will let f(x) 

and g(x) be defined as follows. 
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where the arbitrary independent variable x is represented by time, t, for these expressions.  The quotient 

rule identity also requires the first derivatives of Eqs. D.40 and D.41 with respect to time which are 

defined as such: 
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Utilizing the quotient rule definition provided by Eq. D.7, we can complete the derivation on the RHS of 

Eq. D.39 by substitution of Eqs. D.40 through D.43. 
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Aiming to simplify the expression we expand the denominator as follows: 
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Simplifying both the numerator and denominator algebraically: 
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Canceling like terms and factoring the bracketed polynomial yields the following simplified expression for 

the loss-ratio derivative, b(t), for the Duong decline model. 
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All of the equations up until this point in the derivation are concerned with the modeling of time-rate data 

based on the assumption of a constant bottomhole flowing pressure.  In keeping with the aim of this work, 

namely incorporating pressure data into decline curve analysis, the variable pressure form of the Duong 

decline model is provided below.   
 

The discrete form of the convolution integral is used to account for variations in bottomhole flowing 

pressure as a function of time.  A complete development of the superposition equation is included in 

Appendix F.  The final mathematical form is provided below: 
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where Δpwf is the bottomhole pressure drop in units of pressure at a specific point in time and qcp denotes a 

constant pressure rate solution.  This work makes the assumption that the constant pressure rate signature 

of a well is accurately represented by the pressure drop normalized rate behavior of that well.  If this 

assumption holds, it is proposed that this data trend can be modeled using a pressure drop normalized form 

of an empirical time-rate decline relation serving as the unknown constant pressure rate solution in Eq. 

D.48.  The pressure drop normalized form of the Duong decline is provided below: 



 

137 

 

 





 −
−








∆

=
∆

≈ −− )1(
1

exp
)(

)()( 11 mm

i
cp t

m
at

p
q

tp
tqtq  ............................................................................. (D.49) 

 

Finally, combining Eq. D.48 and Eq. D.49 the superposition form of the Duong decline is obtained: 
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When calibrating the model parameters for the superposition expression shown in Eq. B.50, we desire the 

behavior of D(t) and b(t) much as we did for the simple rate versus time expression.  These will be 

calculated using the following modified expressions for the loss-ratio and loss-ratio derivative. 
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Recalling our expressions for D(t) and b(t) provided by D.37 and D.47 we note that they are independent 

of the initial rate term.  As a result, the derivative terms arrived at using the pressure drop normalized rate 

form and the time-rate form are identical (i.e. independent of the initial pressure drop normalized rate).  

This is a result of the assumption that pressure drop normalization of rate data adequately transforms the 

variable pressure signature of the well to the equivalent constant pressure signature.  This has important 

implications from a diagnostic standpoint and allows the derivative trends to guide calibration regardless 

of whether time-rate or time-rate-pressure decline methods are utilized provided the constant pressure rate 

approximation assumption is adequate. 
 

D.2 Duong Type Plots and Application Example 
 

The aim of this section is to provide a cartoon schematic showing the diagnostic behavior of the Duong 

decline and to demonstrate a simple application example using a variety of plots to aid in model 

calibration.  The first objective is addressed in this appendix by using a type plot of the "qDb" behavior for 

the Duong model provided below as Fig. D.1. 
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Figure D.1 — Schematic Type Plot of “qDb” Model Behavior for the Duong Decline 

 

 

The model parameters governing the shape of Duong decline model need to be calibrated in order to 

generate a forecast of future production performance.  Unfortunately, non-uniqueness in match calibration 

is an unescapable reality for all production analysis techniques and decline curve analysis is no exception.  

In order to mitigate this issue, it is recommended that a suite of diagnostic plots is used as opposed to 

solely rate versus time analysis.  These additional plots provide further match confirmation and help to 

ensure that the calibrated model honors well performance characteristics such as prevailing flow 

regime(s).  Included below in Fig. D.2 is an example of such an approach applied to a field production 

scenario where the Duong model is calibrated across a suite of plots.  The corresponding rate-time and 

rate-cumulative matches are shown in Fig. D.3 and D.4. 
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Figure D.2 — Diagnostic Suite Demonstrating Duong Model Calibration Methodology  
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Figure D.3 — Calibrated Duong Rate Versus Production Time Match 

 

 

 

 

 
Figure D.4 — Calibrated Duong Rate Versus Cumulative Gas Production Match 
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APPENDIX E  

LOGISTIC GROWTH DECLINE CURVE RELATION 

 

This section aims to fully derive the Logistic Growth decline relation introduced by Clark et al. (2011).  A 

schematic "qDb plot" and a brief time-rate application example is included demonstrating the rate and 

derivative behavior of the model.  The defining relationship for this rate versus time model is based on a 

logistic growth trend of the cumulative hydrocarbon production towards a carrying capacity term, K.  The 

nature of the model is entirely empirical; however, the authors suggest that the carrying capacity term be 

defined by an estimate of the hydrocarbon in place which lends a degree of physical meaning or constraint.  

The defining relationship forming the foundation of this model is presented below. 
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where Q is the cumulative production expressed as a function of time, and a and n are model parameters 

controlling the functional behavior of the growth equation. 
 

Along with the defining relation, Clark et al. (2011) provided a derivation (which is reproduced here) of 

the associated closed form rate versus time expression and proposed two application methodologies, one 

using a regression routine, and one involving linearizing the defining expressions and solving for the a and 

n model parameters.  Additionally, the authors provided a thorough discussion of generalized logistic 

growth models across a variety of industries and applications.  As a final discussion, the authors provided 

a complete discourse on the statistical ranges and distributions of the model parameters using a large 

database of Barnett Shale wells.  This is highly beneficial to the unfamiliar practitioner as a quality control 

measure once analysis has been complete. 
 

E.1 Derivation of the Logistic Growth Decline Relation 
 

Clark et al. (2011) provided a defining cumulative production relationship and a closed form rate-time 

expression in their original paper.  A complete mathematical derivation of the rate versus time expression, 

the reciprocal of the loss-ratio expression, D(t), and the loss-ratio derivative expression, b(t), is presented 

in this section.  As a necessary starting point we reproduce the fundamental relationship given by Eq. E.1 

below. 
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Our first derivation is that of the rate as a function of time expression.  To begin we define the following 

identity: 
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where q is the flowrate as a function of time, t.  Differentiating both sides with respect to time yields the 

following: 
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Combining Eqs. E.1 and E.3: 
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To complete the differentiation of the bracketed term on the right-hand side (RHS) of Eq. E.4, we must 

recall the quotient rule from fundamental calculus which is reproduced as follows: 
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where f(x) and g(x) are arbitrary functions of an arbitrary independent variable, x, and the apostrophe 

denotes the first derivative of the functions with respect to x.  By observing Eq. E.4, we can define the 

arbitrary functions and their derivatives as follows: 
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Observing the structure of Eq. E.5 and combining Eq. E.4 with Eqs. E.6 through E.9, we obtain the 

following un-simplified expression for flowrate as a function of time. 
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Expanding the numerator term: 
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Simplifying by cancelling like terms in the numerator yields the final closed form rate versus time 

expression presented in the original work. 
 

2

1

)(
)( n

n

ta
tnKatq

+
=

−

 ............................................................................................................................... (E.12) 

 

Continuing our derivation, we next desire an expression for the reciprocal of the loss-ratio, D(t).  We recall 

the following identity to serve as a starting point. 
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Substituting Eq. E.12 into Eq. E.13, we arrive at the following: 
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Simplifying by cancelling like terms yields: 
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Completing the differentiation of the bracketed expression on the RHS of Eq. E.15 again requires the 

quotient rule defined by Eq. E.5: 
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where we redefine the arbitrary substitution functions and their derivatives as follows: 
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Isolating the bracketed term on the RHS of Eq. E.15 and completing the derivation by utilizing the 

quotient rule and Eqs. E.16 through E.19, we arrive at the following expression: 
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Combining Eqs. E.15 and E.20: 
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Simplifying algebraically yields the following final expression for the reciprocal of the loss-ratio, D(t), as 

a function of time: 
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The final step in the derivation process is to obtain an expression of the loss-ratio derivative, b(t).  The 

following identity forms the starting point of the derivation: 
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Substituting Eq. E.22 into Eq. E.23: 
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Completing the differentiation on the RHS of Eq. E.24 requires both the quotient rule identity defined 

previously and the product rule definition.  Both are included below for reference. 
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where p(x) and u(x) are arbitrary functions of an arbitrary independent variable, x, and the apostrophe 

denotes the first derivative of the functions with respect to x.  By observing Eq. E.4, we can define 

arbitrary functions, f(t) and g(t), as follows: 
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We must use the product rule definition provided by Eq. E.25 to obtain the first derivative with respect to 

time, t, for Eq. E.26 and E.27.  Doing so yields the following results. 
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We are now able to complete the differentiation on the RHS of Eq. E.24 by utilizing the quotient rule and 

the expressions defined in Eqs. E.26 through E.29.  The result is the following un-simplified form of the 

loss-ratio derivative expression: 
 

2

1

))1()1((
)1()())()1()1(()( n

nnnnn

tnna
tnntattntatnnatb

++−
++−++++−

=
−

 ....................................................... (E.30) 

 

Simplifying algebraically yields the following final expression for the loss-ratio derivative as a function of 

time for the logistic growth model. 
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All of the equations up until this point in the derivation are concerned with the modeling of time-rate data 

based on the assumption of a constant bottomhole flowing pressure.  In keeping with the aim of this work, 

namely incorporating pressure data into decline curve analysis, the variable pressure form of the Logistic 

Growth decline model is provided below.   
 

The discrete form of the convolution integral is used to account for variations in bottomhole flowing 

pressure as a function of time.  A complete development of the superposition equation is included in 

Appendix F.  The final mathematical form is provided below: 
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where Δpwf is the bottomhole pressure drop in units of pressure at a specific point in time and qcp denotes a 

constant pressure rate solution.  This work makes the assumption that the constant pressure rate signature 

of a well is accurately represented by the pressure drop normalized rate behavior of that well.  If this 

assumption holds, it is proposed that this data trend can be modeled using a pressure drop normalized form 

of an empirical time-rate decline relation serving as the unknown constant pressure rate solution in Eq. 

E.48.  The pressure drop normalized form of the Logistic Growth model is provided below: 
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Finally, combining Eq. E.32 and Eq. E.33 the superposition form of the Logistic Growth model is 

obtained: 
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When calibrating the model parameters for the superposition expression shown in Eq. E.34, we desire the 

behavior of D(t) and b(t) much as we did for the simple rate versus time expression.  These will be 

calculated using the following modified expressions for the loss-ratio and loss-ratio derivative. 
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Recalling our expressions for D(t) and b(t) provided by E.22 and E.31 we note that they are independent of 

the carrying capacity term, K.  As a result, the derivative terms arrived at using the pressure drop 

normalized rate form and the time-rate form are identical (i.e. independent of the initial pressure drop 

normalized carrying capacity).  This is a result of the assumption that pressure drop normalization of rate 

data adequately transforms the variable pressure signature of the well to the equivalent constant pressure 

signature.  This has important implications from a diagnostic standpoint and allows the derivative trends to 

guide calibration regardless of whether time-rate or time-rate-pressure decline methods are utilized 

provided the constant pressure rate approximation assumption is adequate. 
 

E.2 Logistic Growth Type Plots and Application Example 
 

The aim of this section is to provide a cartoon schematic showing the diagnostic behavior of the Logistic 

Growth model and to demonstrate a simple application example using a variety of plots to aid in model 

calibration.  The first objective is addressed in this appendix by using a type plot of the "qDb" behavior for 

the Logistic Growth model provided below as Fig. E.1. 
 

 

 
Figure E.1 — Schematic Type Plot of “qDb” Model Behavior for the Logistic Growth Decline 

Model 
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The model parameters governing the shape of Logistic Growth model need to be calibrated in order to 

generate a forecast of future production performance.  Unfortunately, non-uniqueness in match calibration 

is an unescapable reality for all production analysis techniques and decline curve analysis is no exception.  

In order to mitigate this issue, it is recommended that a suite of diagnostic plots is used as opposed to 

performing solely rate versus time analysis.  These additional plots provide further match confirmation 

and help to ensure that the calibrated model honors well performance characteristics such as prevailing 

flow regime(s).  Included below in Fig. E.2 is an example of such an approach applied to a field 

production scenario where the Logistic Growth model is calibrated across a suite of plots.  The 

corresponding rate-time and rate-cumulative matches are shown in Fig. E.3 and E.4. 
 

 

 

  
Figure E.2 — Diagnostic Suite Demonstrating Logistic Growth Model Calibration Methodology  
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Figure E.3 — Calibrated Logistic Growth Rate Versus Production Time Match 

 

 

 

 

 
Figure E.4 — Calibrated Logistic Growth Rate Versus Cumulative Gas Production Match 
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APPENDIX F  

DERIVATION OF THE CONVOLUTION INTEGRAL 

 

This appendix works through the derivation of both the discrete and continuous forms of the convolution 

equation describing the rate response to variable pressure drop conditions.  The principle of superposition 

is now utilized to describe the rate as a function of time by considering the individual rate responses 

corresponding to the pressure drop steps.  For reference the principle of superposition, as defined in 

Haberman (2004), is stated as follows: 
 

If arbitrary variables u1 and u2 satisfy a linear homogenous equation, then an arbitrary linear 

combination of them, c1u1+c2u2 where c1 and c2 are arbitrary constants, also satisfies the same linear 

homogeneous equation. 
 

The above definition was included to emphasize the need for linearity (or transformations such as 

pseduopressure or pseudotime) when applying the superposition principle.  With the definition above in 

mind we assume a linear system (e.g. slightly compressible oil flow) and proceed to describe the rate as a 

function of time as follows: 
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We now  use a proportionality relation to make the assertion that rate response due to a change in pressure 

drop over a particular interval, qj, is equivalent to the unit rate response had a constant reference pressure, 

pr, been maintained throughout the productive life of the well.  This is expressed mathematically as: 
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For mathematical simplicity we now define a variable, qcp, to represent the constant pressure rate response 

described by the right hand side of Eq. F.2. 
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Combining Eqs. F.2 and F.3 and solving for qj we arrive at: 
 

))(( ,1 jwfijcpj ppttqq −−= −  .............................................................................................................. (F.4) 
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Substituting Eq. F.4 into Eq. F.1 yields the following relation describing the rate response due to variable 

discrete changes in pressure drop. 
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Alternatively Eq. F.5 can be expressed as a summation as follows: 
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The discretized form of the convolution equations presented above is useful in a practical sense by 

resolving the changing pressure drop as a function of time into discrete steps.  From a theoretical 

standpoint, however, we now aim to obtain an integral form describing the rate response as a result of 

continuous pressure drop changes.  Before proceeding the following variables of substitution are 

introduced: 
 

1−= jtt  ............................................................................................................................................... (F.7a) 
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Substituting the variables of substitution and multiplying the right hand side of Eq. F.6 by Δτ/ Δτ yields: 
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We now utilize the definition of a derivative and considering the limit as Δτ approaches zero: 
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Evaluating the limit and simplifying yields the following definition of the convolution integral for 

continuously varying pressure drops. 
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The definition provided by Eq. F.10 varies slightly from that introduced in the body of this work.  We will 

now prove the equivalence of Eq. F.10 and Eq. F.11, the latter of which was introduced in the body of this 

work and is reproduced below. 
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Integration by parts is used to transfer between the two forms of the convolution integral.  The definition 

of integration by parts using dummy variables is as follows: 
 

∫ ∫−= vduuvudv  ............................................................................................................................. (F.12) 

 

For the problem considered here we define the dummy variables u and v along with their derivatives as 

such: 
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Combining Eq. 13 and Eq. 12 and evaluating the equation at its limits yields the following equation. 
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Utilizing our understanding of initial reservoir conditions we know that qcp(0) = 0 and Δpwf(0) = 0.  

Simplifying Eq. F.14 provides the continuous form of the convolution integral used to model rates effected 

by variable pressure drop conditions. 
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