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ABSTRACT

This dissertation describes and shows results from two projects which focused on in-

vestigating and improving current methods of numerical weather prediction. First, we

show a new data assimilation (DA) approach that produces a global analysis that is en-

hanced by information from multiple regions of a limited area model (LAM). The en-

hancement is introduced by blending the model states from the global and regional models

and using the blended state to compute the innovations (the difference between the obser-

vations and their predicted value). The approach is tested by an implementation on the US

Navy’s operational global data assimilation system and global and limited area numerical

weather prediction models. The resulting system is evaluated by month long analysis-

forecast experiments. It is found that REG DA can provide improved global forecasts

with the largest improvements observed for Hurricane Sandy and frontal passages over the

central plains. This result suggests that operational NWP centers that produce both global

and regional forecast products could potentially improve their global forecasts without a

significant increase in computational resources by implementing the proposed approach.

Next, we employ local linear, spatial spectral, and Lorenz-curve based diagnostics to

investigate the dynamics of uncertainty in global numerical weather forecasts in the NH

extratropics. The diagnostics are applied to ensembles in the THORPEX Interactive Grand

Global Ensemble (TIGGE). The initial growth of uncertainty is found to be the fastest at

the synoptic scales (zonal wave numbers 7-9) most sensitive to baroclinic instability. At

later forecast times, the saturation of uncertainties at the synoptic scales and the longer

sustainable growth of uncertainty at the large scales lead to a gradual shift of the wave

number of the dominant uncertainty towards zonal wave number 5. At the sub-synoptic

scales, errors saturate as predicted by Lorenz’s classic theory. While the ensembles cap-
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ture the general characteristics of the uncertainty dynamics efficiently, there are locations

where the predicted magnitude and structure of uncertainty have considerable time-mean

errors. In addition, the magnitude of systematic errors in the prediction of the uncertainty

increases with increasing forecast time. These growing systematic errors are dominated

by errors in the prediction of low frequency changes in the large scale flow.
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1. INTRODUCTION∗

This dissertation focuses on improving the current state of numerical weather predic-

tion (NWP) by developing and implementing a new data assimilation (DA) method and

investigating the dynamics of forecast uncertainty in state of the art global ensemble fore-

cast systems from the leading NWP centers around the world. Improvements in NWP

are incremental and this new DA technique called Regionally Enhanced Global (REG)

DA would allow for global weather forecast models to see an incremental improvement

without a significant increase in computational resources. The second half of this disser-

tation focuses on how well the leading ensemble forecast systems are able to capture the

magnitude and space of forecast uncertainty.

Most major numerical weather prediction centers of the world produce both global

and limited area model (LAM) forecast products. Focusing on smaller domains than their

global counterparts, LAMs can operate at higher resolutions for the available finite compu-

tational resources. The assumption is that the higher resolution LAM can provide accurate

forecasts of the atmospheric state at the scales that are smaller than those that the coarser

resolution global model can resolve for a limited time (up to about 2-3 day) in the interior

of the LAM domain. The goal of this project is to formulate and test a global DA approach,

REG DA, that can take advantage of this presumed useful forecast information about the

smaller scales.

Previous studies with highly idealized Lorenz models of the atmospheric dynamics

demonstrated the potential for improvement of both the global and limited area analyses

and forecasts by preparing the global and limited area analyses concurrently by a unified

∗Parts of Section 1 are reprinted with permission from “Forecast Uncertainty Dynamics in the THORPEX
Interactive Grand Global Ensemble (TIGGE)" by M. Herrera, I. Szunyogh, and J. Tribbia, 2016. Monthly
Weather Review, 144, 2739-2766, Copyright 2016 by the American Meteorological Society.
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state estimation (data assimilation) process (Yoon et al., 2012; Kretschmer et al., 2015).

These idealized studies were motivated by the mixed results of the first attempt to incor-

porate higher resolution limited area model information into the global data assimilation

process (Merkova et al., 2011). That study used operational models of the National Cen-

ters for Environmental Prediction (NCEP) and the research data assimilation system of

Szunyogh et al. (2008). The results showed that further research was necessary to refine

the technical approach for the introduction of the limited area forecast information into

the global data assimilation process. The present study is the first attempt since that of

Merkova et al. (2011) to test the concept on operational models. The technical approach

used is similar but not completely identical to that of Kretschmer et al. (2015). In essence,

the limited area forecast information is utilized in the computation of the innovations (the

differences between the observations and their predicted values), but does not affect the

global background state estimate updated by the assimilation of the observations.

To test the new approach, we use the U.S. Navy’s operational global and limited area

models, and global data assimilation system. The global model is the Navy Global En-

vironment Model (NAVGEM) (Hogan et al., 2014), a spectral transform model opera-

tionally run at a resolution of T425. The regional model is the Coupled Ocean/Atmosphere

Mesoscale Prediction System (COAMPS) (Hodur, 1997), using the Navy’s standard con-

figuration without ocean/atmosphere coupling. COAMPS is implemented operationally

on more than 80 limited area domains over the world, with a varying horizontal resolu-

tion from 25km to 500m. The global data assimilation system of NAVGEM, the Naval

Research Laboratory Atmospheric Variational Data Assimilation System - Accelerated

Representer (NAVDAS-AR), is a four-dimensional variational (4D Var) data assimilation

scheme (Xu et al., 2005; Rosmond and Xu, 2006). Implementation of the REG DA system

would allow for the Navy to combine the DA systems of NAVGEM and COAMPS, reduc-

ing the run time by eliminating the need for DA for each individual limited area domain,
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and improving both the global and regional analyses.

Data assimilation produces the initial conditions of numerical weather forecasts by

a statistical interpolation of the atmospheric observations (e.g. Szunyogh, 2014). Thus

the initial conditions have an inherently random error component, which we will call the

analysis uncertainty. The amplification of the analysis uncertainty by the chaotic dynamics

of the atmosphere would lead to an inevitable growth of the magnitude of the forecast

uncertainty, even if models were perfect replica of the atmosphere. Because models are

not perfect and use statistical considerations to account for processes at the unresolved

scales, model errors and model uncertainty also contribute to the forecast uncertainty.

In perhaps the most influential paper ever written on the dynamics of forecast error

(uncertainty) growth, Lorenz (1969b) investigated the role of scale interactions in the er-

ror growth process. He argued that forecast errors saturated, predictability was lost, at

increasingly larger scales as forecast time increased. Lorenz’s results were most recently

revisited by Tribbia and Baumhefner (2004), Rotunno and Snyder (2008), and Durran and

Gingrich (2014). Tribbia and Baumhefner (2004) augmented Lorenz’s description of the

process by adding that in the extratropics the dominant errors asymptoted to the baro-

clinically active scales, where they then grew exponentially. Rotunno and Snyder (2008)

replaced the original two-dimensional vorticity equation in Lorenz’s model by the surface

geostrophic equation. They pointed out that the rapid downscale propagation of errors at

the mesoscales played an important role in the rapid saturation of the forecast errors at

the smaller scales. Durran and Gingrich (2014) extended this argument to emphasize that

synoptic scale errors, even if they had small magnitude, led to a rapid saturation of the

errors at the smaller scales.

In their ensemble based predictability studies, Kuhl et al. (2007), and Satterfield and

Szunyogh (2010, 2011) (hereafter reffered to collectively as KSS) observed the same spec-

tral evolution of the forecast uncertainty as Tribbia and Baumhefner (2004). They also
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found that a 40-80 member ensemble of forecasts was efficient in capturing the dominant

synoptic scale patterns of forecast uncertainty. The present study extends the investiga-

tions of KSS to the THORPEX Interactive Grand Global Ensemble (TIGGE), which is

comprised of operational global ensemble forecast data from the major operational cen-

ters. The primary objective of the study is to verify that the findings of KSS also hold for

the operational ensemble forecast systems. The results shown later strongly suggest the

affirmative. The secondary objective is to provide information about the performance of

the operational ensemble forecast systems.
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2. REGIONALLY ENHANCED GLOBAL DATA ASSIMILATION

2.1 The Concept Of REG DA

Baek et al. (2006) argued that an efficient approach to account for model errors due to

differences between the model attractor and the true attractor in data assimilation was to

modify the observation function h(x) as

h(x)→ h(x− b), (2.1)

where b was a time dependent estimate of the model error in the model state x. The

general idea was that in cases where the model error was due to difference between the

attractors, it was more advantageous to account for the effects of model errors in the com-

putation of the innovations than to push the background from the model attractor towards

the true attractor. Baek et al. (2006) estimated the unknown b by the method of state

augmentation. Baek et al. (2009) pointed out that the approach was closely related to the

techniques used for the correction of the state dependent observation bias in the practice

of data assimilation. Baek et al. (2009) made this argument by considering the effects of

differences between the model orography and the true orography in the data assimilation

process. The differences between the orographies lead, for instance, to state dependent

errors in the prediction of the surface pressure, which are obvious examples of errors due

to differences between the model attractor and the true attractor. These errors can be effi-

ciently accounted for by modifying the observation function as

h(x)→ h(x) + c, (2.2)

where h(x) is now the observation function for the surface pressure observations and c is
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the state dependent surface pressure bias. That is the correction of the entire state by b can

be replaced by the correction of the predicted value of the observations, h(x), by c, which

can formally be written as

h(x− b) ≈ h(x) + c. (2.3)

The state dependent bias c can also be estimated by the method of state augmentation.

A similar argument can be made in connection with the correction of the bias of radi-

ance observations. In that case, h(x) is a radiative transfer model and experience shows

that the observations cannot be gainfully assimilated without a bias correction in the form

of Eq. 2.2. There are strong indications (personal communication, Massimo Bonavita of

ECMWF), however, that the observation bias correction algorithms correct as much for

the effects of errors in x (the model prediction of the state) as for biases in the radiance

observations or the radiation transfer models.

In the approach proposed here, the high resolution limited area forecast information

plays the role of b. For instance, due to the higher resolution, more realistic orography

of the limited area model, the use of LAM information is expected to lead to a better

interpretation of the surface pressure and radiance observations.

2.2 Formulation For An Incremental 4D-Var

Our goal is to obtain an estimate (analysis) xag of the global atmospheric state, where

the components of the discrete state vector xag are defined by a model representation of the

atmospheric state. We assume, that in addition to the global model, we also have access

to a limited area model that can add resolution and accuracy to the global model forecast

in a limited area domain. To simplify notation, we assume in this section that limited area

model information is available for the entire globe.

We define the regionally enhanced global state vector xe by
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xe = (1− α)I(xg) + αx` (2.4)

where I is the linear operator that maps the lower resolution global model state xg to the

higher resolution of the limited area model, x` is the high resolution state vector whose

components are provided by the limited area models, and 0 ≤ α ≤ 1 is a (possibly location

dependent) blending coefficient. Notice that the dimension of xe is higher than that of xg.

Let hg(·) and he(·) be the observation functions operating on xg and xe, respectively.

Under the assumption that xe is a more accurate representation of the atmospheric state

than xg, he(xe) is expected to be a more accurate prediction of the observations than

hg(xg). Thus the effect of the change

hg(xg)→ he(xe) (2.5)

of the observation function of a global data assimilation scheme is analogous to that of

Eq. (2.1).

In the incremental formulation of 4D-Var, the increment δxg is defined by

δxg(tj) = xg(tj)− xbg(tj), (2.6)

where tj, j = 0, . . . , N , are the times at which observations are available for the assimila-

tion time window, and xbg is the global background state. The analysis

xag = xbg + δxag (2.7)

at time t0 is obtained by computing the analysis increment δxag = δxg(t0) that minimizes
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the cost function (e.g. Szunyogh, 2014)

J [δxg(t0)] = [δxg(t0)]T Pb−1δxg(t0)+

N∑
j=0

[δyo(tj) + Hg(tj)Mg(t0, tj)δxg(t0)]T×

R−1
tj

[δyo(tj) + Hg(tj)Mg(t0, tj)δxg(t0)] ,

(2.8)

and adding the result to the background xbg. In Eq. (2.8), the expression in the square

brackets of the second(observation) term stands for yo(tj) − h [xg(tj)]. The equality of

the two expressions,

yo(tj)− hg [xg(tj)] = δyo(tj) + Hg(tj)Mg(t0, tj)δxg(t0), (2.9)

follows from

xg(tj) = Mg(t0, tj)δxg(t0), (2.10)

δyo(tj) = yo(tj)− hg
[
xbg(tj)

]
, (2.11)

and

hg [xg(tj)] ≈ hg
[
xbg(tj)

]
+ Hg(tj)δxg(tj), (2.12)

where Hg(tj) is the linearization of hg [xg(tj)] about xbg(tj). Mg(t0, tj) represents the

linearized model dynamics between times t0 and tj for the nonlinear state space trajectory

associated with the initial condition xbg(t0).

Equation (2.8) describes the cost function minimized by the inner loop of the algo-

rithm. When multiple steps of the outer loop are taken, the nonlinear trajectory is recom-

puted at the beginning of each step of the outer loop, using the updated background from

the previous step as initial condition. This involves recomputing Hg(tj), for the updated
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values of xg(tj).

2.2.1 The Effect Of Replacing hg(xg) By he(xe)

The analogue of Eq. (2.9) for he(xbe) is

yo(tj)− he [xe(tj)] = δey
o(tj) + He(tj)Me(t0, tj)δxe, (2.13)

where

δey
o(tj) = yo(tj)− he

[
xbe(tj)

]
, (2.14)

and the linearization He(tj) of he [xe(tj)] about xbe(tj) satisfies

he [xe(tj)] ≈ he
[
xbe(tj)

]
+ He(tj)δxe(tj), (2.15)

where

δxe(tj) = xe(tj)− xbe(tj)

= (1− α)I
[
xg(tj)− xbg(tj)

]
+ α

[
x`(tj)− xb`(tj)

]
.

(2.16)

Introducing the notation

δx`(tj) = x`(tj)− xb`(tj), (2.17)

Eq. (2.16) can be written as

δxe(tj) = (1− α)Iδxg(tj) + αδx`(tj). (2.18)

With the help of Mg(t0, tj) and M`(t0, tj), where the latter represents the linearization of

the limited area dynamics about the nonlinear trajectory x`(tj), Eq. (2.18) can be written
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as

δxe(tj) = (1− α)IMg(t0, tj)δxg(t0) + αM`(t0, tj)δx`(t0). (2.19)

Because the right-hand side of Eq. (2.19) is a linear mapping of δxe(t0), Eq. (2.19) can

also be written as

δxe(tj) = Me(t0, tj)δxe(tj), (2.20)

where Me(t0, tj) is the operator that represents the linear mapping. This result shows that

the proposed model error correction can be implemented by replacing Mg(t0, tj)δxg by

Eq. (2.19) and Hg by He in the cost function by Eq. (2.8). That is, the new cost function

is

J [δxg(t0)] = [δxg(t0)]T Pb−1δxg(t0)+

N∑
j=0

[δey
o(tj) + He(tj)Me(t0, tj)δxe(t0)]T×

R−1
tj

[δey
o(tj) + He(tj)Me(t0, tj)δxe(t0)] .

(2.21)

The second (observation) term of the cost function depends on the control variable δxg

through Eq. (2.18), which shows that δxe(t0) is a function of δxg. Notice that the resolu-

tion of the analysis increment produced by this cost function is the same as that produced

by the original cost function.

2.2.2 Implementation Without Using The Regional TLM Ml(t0, tj)

According to Eq. (2.19), the implementation of the model correction algorithm re-

quires the integration of the TLM for both the global and the limited area model. Next we

show that in practice the algorithm can be implemented such that it requires the integra-

tion of only the global TLM. Notice that the evaluation of IMg(t0, tj)δxg(t0) in Eq. (2.19)

requires an integration of the global TLM and the subsequent interpolation of the result to
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a higher resolution. While the operators I and Mg(t0, tj) do not commute formally, the

order of the two operations they represent can be reversed by first interpolating δxg(t0) to

a higher resolution and then integrating the TLM at that higher resolution. For the time be-

ing, we keep the notation Mg(t0, tj) for the higher resolution TLM dynamics and rewrite

Eq. (2.19) as

δxe(tj) = (1− α)Mg(t0, tj)Iδxg(t0) + αMl(t0, tj)δxl(t0). (2.22)

Then, we assume that the higher resolution global TLM also provides an acceptable ap-

proximation to Ml(t0, tj), which leads to

δxe(tj) ≈ (1− α)Mg(t0, tj)Iδxg(t0) + αMg(t0, tj)δxl(t0) = Mg(t0, tj)δxe(t0) (2.23)

by making use of Eq. (2.18). Comparing Eqs. (2.20) and (2.23) yields

Me(t0, tj) ≈Mg(t0, tj). (2.24)

In other words, the model error correction can be implemented by propagating the incre-

ment of the regionally enhanced global state vector by the higher resolution global TLM

and apply the observation function to the result in the inner loop of the data assimilation.

2.3 Implementation On NAVGEM And COAMPS

The implementation of REG DA on the Navy’s operational global and limited area

model, and global data assimilation system has the following top level steps:

1. preparation of short-term global (NAVGEM) forecast,

2. preparation of short-term regional (COAMPS) forecast.
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3. interpolation of both the NAVGEM and the COAMPS forecast fields onto a common

high-resolution grid,

4. formation of the composite state,

5. 4D-Var computation of the analysis increment,

6. preparation of the analysis.

The key steps of REG DA are steps 3 and 4, which blend xg from the global model and

x` from the limited area model into a single state xe. To form the innovations according

to Eq. (2.13), a composite state is needed for each time tj of the observation time window.

Because the observation time window of NAVDAS-AR is six hours, centered around the

analysis time, the data assimilation time window spans the period from forecast time 3 h to

forecast time 9 h from the previous analysis time. NAVGEM and COAMPS both provide

hourly output, so a composite state is created for each of the six hours of the observation

time window.

The common grid used for the blending of the global state and the limited area states

has to have a resolution similar to that of the limited area model, because otherwise the

data assimilation system could not take advantage of the higher resolution forecast infor-

mation provided by the limited area model. Both the global and the limited area model

fields have to be interpolated onto this common global grid. Because NAVGEM is a spec-

tral transform model, there are two options for the interpolation of the NAVGEM fields

onto the common grid. The first option is to transform the spectral fields onto the Gaus-

sian grid of NAVGEM, then use an interpolation technique for the gridded fields, such as a

cubic spline interpolation. The second option is to first prepare a higher resolution spectral

representation of the fields by zero padding, that is, by adding higher wave number com-

ponents with zero spectral coefficients to the original spectral representation of the fields,
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then transforming the fields onto a higher resolution Gaussian grid. We found that while

this second method did not introduce any noticeable noise into the interpolated fields, the

first method introduced noise that had a magnitude similar to that of the COAMPS fields

in the blended state when a weight of α = 0.1 was used in Eq. (2.4) (Figure B.1). This

experience motivated the use of the second method in all of our analysis-forecast experi-

ments.

Because COAMPS is a finite-difference model, which represents the fields on a grid

in all phases of the model computations, the interpolation of the COAMPS fields require

a grid-space interpolation. There are two main parts of this interpolation: the horizon-

tal interpolation and the vertical interpolation. We use a nearest neighbor approach for

the horizontal interpolation. The vertical interpolation is more involved, because the two

models have different vertical coordinates. In particular, NAVGEM uses a hybrid sigma-

pressure coordinate with a pressure-based definition of sigma; σ = p
ps

, where ps is the

surface pressure. The coordinate transitions gradually from pure sigma at the Earth’s sur-

face to pure pressure at the top of the model atmosphere (Hogan et al., 2014). COAMPS,

in contrast, uses a height-based sigma coordinate, σ = H (z − zs) / (H − zs), where zs is

the terrain height and H is the depth of the model atmosphere. The vertical interpolation

is performed after completion of the horizontal interpolation of the COAMPS fields on the

height-based sigma surfaces of the model to the horizontal location of the grid points of

the common grid. The hybrid sigma-pressure coordinate of each grid point is computed

based on the horizontally interpolated COAMPS pressure and surface pressure fields. For

this calculation, the horizontally interpolated surface pressure field is corrected for the

difference between the orography of NAVGEM and the orography of COAMPS at each

horizontal grid point location. The procedure follows that of Baek et al. (2009); that is, the

corrected surface pressure p̂s is obtained by
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p̂s = ps × eg∆z/RdT , (2.25)

where ps is the original surface pressure, g is standard gravity (9.8 m s−1), ∆z is the terrain

difference between the two models, Rd is the gas constant for dry air (287 J kg−1 K−1),

and T is the mean temperature of the |∆z| deep (hypothetical) atmospheric layer, which

we estimate by

T = Ts +
1

2
γ∆z. (2.26)

In Eq. (2.26), γ is the standard atmosphere lapse rate (6.5 × 10−3K m−1), and Ts is the

surface temperature. Because the temperature is available only for the model levels, we

estimate the surface temperature by

Ts = T1

(
1− γRlnσ1

g + 1
2
γRlnσ1

)
(2.27)

where σ1 and T1 are the values of sigma and the temperature, respectively, at the lowest

NAVGEM model level. Fig. B.2 illustrates the effect of the correction for the orography

difference on the COAMPS surface pressure field. The figure shows that the correction

efficiently removes the direct effect of the orography difference on the surface pressure.

The remaining differences reflect differences in the evolution of the atmospheric flow be-

tween the two models, which, at least in part, may be the result of the indirect effects of

the orography differences..

After the computation of the hybrid sigma-pressure coordinate of each grid point for

the horizontally interpolated COAMPS fields, the COAMPS fields are interpolated linearly

onto the hybrid sigma-pressure surfaces of NAVGEM. A seemingly problematic aspect of

this interpolation is that it does not allow for the computation of the COAMPS fields at

locations where the NAVGEM vertical coordinate is associated with a pressures that is
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higher than the pressure at the lowest COAMPS vertical level. (This is the situation at

locations where the orography is lower in NAVGEM than in COAMPS.) At such locations

the interpolation introduces discontinuities into the COAMPS fields. In REG DA, these

discontinuities do not pose a problem, because the interpolated fields are used only for the

computation of the value of observation function and the vertical position of an observation

cannot fall below the COAMPS orography.

The final step is the computation of the blended fields. In each experiment described

in this thesis, we use a single value of the blending coefficient for all COAMPS domains.

Approaching the lateral boundaries and the top of the COAMPS model atmosphere, α

is gradually tapered to zero to avoid introducing discontinuities into the analysis of the

atmospheric fields at the boundaries.

An example of the virtual potential temperature analysis increment produced by our

system is shown in Figure B.3 for the model level nearest to the surface. The top panel is

the increment from a control run of NAVGEM without using information from the regional

model (equivalent to using α = 0.0). The middle panel is the increment for α = 0.3

(30% blend) and the bottom panel is the difference between the two fields. The difference

between the two increments is constrained to the limited area domains.

2.4 Experiment Design

Three types of experiments are discussed in this paper: a control experiment, a “blend

skip" control experiments, and the experiments that use nonzero blending coefficients (Ta-

ble A.1). The control experiment is carried out with the standard configuration of the

global forecast system, but at a reduced resolution of T119, with the computations of the

inner loop of NAVDAS-AR done at resolution T47. The implementation of the REG DA

experiments is summarized by Figure B.4: NAVGEM is run at a horizontal resolution of

T119, COAMPS at 32 km, and the resolution of the common grid is T319. The blend
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skip experiment is a control experiment in which the REG DA system is used, but with-

out creating a blended state (Figure B.5). This experiment is equivalent to a REG DA

experiment that uses α = 0 for the blending coefficient. The purpose of this experiment is

twofold. First, it allows for the evaluation of the effects of the interpolation schemes of the

REG DA implementation on the analyses and forecasts: had the analyses and forecasts of

the “blend skip” experiment been less accurate than those of the control experiment, the

negative effects of the interpolation errors would reduce or even overwhelm, the potential

positive effects of REG DA. Second, it allows for a clearer assessment of the effects of the

COAMPS forecast information on the analyses and forecasts than the control experiment,

because unlike the control experiment, it carries out the calculations of the inner loop of

NAVDAS-AR at the same T119 resolution as the REG DA experiments.

The same three limited area domains are used in all experiments (Figure B.6): a North

American (CON) domain, a Northeast Pacific (NEPAC) domain, and a European (EUR)

domain. We chose these particular regions, because they provide a representative sample

of limited area domains routinely used by the U.S. Navy. The analyses of all experiments

are obtained by continuously cycling NAVDAS-AR for the period from 00 UTC October

1, 2012 to 00 UTC November 1, 2012. An analysis is prepared every 6 h and we assimilate

all observations that were assimilated by the U.S. Navy in real time FNMOC.

2.5 Results

This section consists of three parts, each describing a different sets of verification

diagnostics. The first set of diagnostics measure the stability of the REG DA system, the

second set evaluates the general forecast performance of the approach for the 120 forecasts

hours, while the third set focuses on its performance for tropical cyclones.
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2.5.1 Cycling Diagnostics

These diagnostics are used to verify that the implementation of REG DA has no ad-

verse effects on the qualitative behavior of NAVDAS-AR. We first examine the speed of

convergence of the algorithm to find the minimizer of the cost function, as a significant in-

crease of the number of inner loop iterations required for convergence or a complete lack

of convergence would indicate a failure of REG DA. The number of iterations required

to achieve the prescribed level of reduction of the cost function is shown in Figure B.7

for all three types of experiments. The blend skip and 30% REG DA configurations of

NAVDAS-AR require only 10 additional iterations, which can be explained by the in-

creased resolution of the TLM. We expect this small difference in the number of iterations

to completely disappear once the operational resolutions are used. Another way to diag-

nose the speed of the convergence is to plot the residual after each iteration of the inner

loop. The results shown for this diagnostic in Fig. B.8 confirm that REG DA has minimal

effect on the speed of convergence.

The next set of diagnostics investigate the effects of REG DA on atmospheric balance

between the mass and wind fields in the analyses. These diagnostics are particularly im-

portant, because intuition suggests that blending forecast fields from two different models

may weaken the balance between the mass and wind fields. The standard approach of nu-

merical weather prediction to quantify the degree of the lack of balance in the atmospheric

initial conditions is to compute the surface pressure tendencies in the forecasts for the

first few forecast hours: large surface pressure tendencies at short forecast times indicate

a rapid adjustments of the mass field, that is, a lack of balance in the initial conditions.

The surface pressure tendency tends to be slightly larger for the first few time steps of

model integration even for a state-of-the-art data assimilation system. While this is also

the case for NAVDAS-AR (left panel of Fig. B.9), neither the interpolation errors and the
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increased resolution of the inner loop (middle panel), nor the blending of COAMPS fore-

cast information (right panel) leads to a further increase of the magnitude of the surface

pressure tendencies. In short, REG DA does not weaken the atmospheric balance in the

initial conditions.

2.5.2 Forecast Diagnostics

The following diagnostics focus on the forecast performance for the first 120 forecast

hours (first five forecast days). Each forecast is verified against the ECMWF analysis valid

at the particular forecast time. One of the main diagnostics discussed is the mean-square-

error (MSE) that we calculate in two different ways: we either average the estimates of

the errors over all the forecasts to produce a map of the spatial distribution of the typical

magnitude of the errors, using the formula

εT =
1

T

T∑
t=1

(xft − xvt )2, (2.28)

where T is the number of forecasts, xft is the forecast at time t, and xvt is the verifying

analysis; or average over both space and time to describe the typical magnitude of the

error by a single number for each forecast lead time, using the formula,

ε =
1

NT

T∑
t=1

N∑
i=1

(xfti − xvti)2, (2.29)

where N is the number of grid points. The MSE can be decomposed into a variance and

a square mean (bias) component. We also use this decomposition to gain further insight

into the behavior of the forecast errors in the different experiments.

We will refer to the first type of diagnostic that we show as impact diagnostics. These

diagnostics show the MSE difference between two experiments in terms of percentages.

For instance, when a REG DA experiment is compared to the control experiment, the
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impact diagnostics are computed by

MSEcontrol −MSEREG DA

MSEcontrol
× 100, (2.30)

where MSEcontrol is the MSE for a particular forecast variable of the control experiment,

while MSEREGDA is the MSE for the same forecast variable of the REG DA experiment.

The difference is always taken such, that a positive value of the diagnostic indicates fore-

cast improvement, while a negative value indicates forecast degradation due to REG DA.

Figure B.10 is the first of the series of figures that show impact diagnostics. It shows

the diagnostics for the geopotential height forecasts of the control experiment and the

blend skip control experiment. The different panels show the results for different regions:

the left panel for the entire Northern Hemisphere (NH), while the next three panels for

the three limited area domains. The results indicate that the forecasts of the blend skip

control experiment are clearly more accurate than the forecasts of the control experiment.

That is, the improvements due to the higher resolution of the calculations of the inner loop

in the blend-skip experiment definitely outweigh the degradation that may arise due to

interpolation errors.

The format of Fig. B.11 is the same as that of Fig. B.10, but it compares geopotential

height forecasts of the control and the 30% REG DA experiment. Similar to the forecasts

of the blend-skip control experiment, the forecasts of the 30% REG DA experiment are

clearly more accurate in general than those from the control experiment. This result shows

that the introduction of COAMPS model information into the data assimilation process

does not lead to forecast degradations that would outweigh the improvements due to the

higher resolution inner loop, but it does not prove that COAMPS forecast information

added to the positive effects. That question can be addressed by comparing the forecasts

of the REG DA experiments to those from the blend-skip experiment. The next four figures
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(Figs. B.12-B.15) show the impact diagnostics for that comparison.

The format of Figs. B.12-B.15 is similar to that of Figs. B.10 and B.11, except that

they have two rows of panels: the top shows the results for the 30% blend experiment

and the bottom row for the 100% blend experiment. Fig. B.12 is directly comparable to

Figs. B.10 and B.11, as it also shows results for the 500-hPa geopotential height. The

results shown in this figure suggest that the introduction of COAMPS information has a

generally positive impact on the analyses and ensuing forecasts in the lower troposphere

(below 500 hPa), and a more mixed impact in the upper troposphere and above. The

results are also more positive at the longer forecast times (beyond about 36-48 hours). The

contrast between the short and longer term forecast performance is particularly striking

for the 100% blend experiment. In addition, while the 30% blend leads to similarly large

improvements as the 100% blend for certain levels and forecast times, it leads to much

more modest degradations for the others. There are also noticeable differences between

the results for the different domains: the results are more positive for the North American

and Northeast Pacific domains than for the European domain.

The impact diagnostics for the temperature (Figure B.13) and the two components of

the horizontal wind vectors (Figures B.14 and B.15), show both some similarities and some

differences compared with the results for the geopotential height. The most important

similarity is the higher ratio of the number of improved diagnostics to the number of

degraded diagnostics for the 30% blend experiment than for the 100% blend experiment.

Most importantly, the forecasts of the two components of the wind for the entire NH have

smaller errors in the 30% blend experiment than in the blend skip experiment at almost

all vertical levels and forecast times. In addition, while the patterns of improvements and

degradations are less clustered in the diagrams for the temperature than for the geopotential

height, the improvements for the temperature and the wind components are less confined

to the lower troposphere than for the geopotential height.
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Figures B.16 and B.17 show the difference between the spatiotemporally averaged

diagnostics for the blend-blend skip control experiment and the REG DA experiments.

These two figures show results for the geopotential height at the 850 hPa and 500 hPa

level, respectively. Each curve shows results for a different verification (forecast) domain

and positive values indicate improvements due to REG DA. The results suggest a general

picture in which the analysis impact of REG DA is nearly neutral (slightly positive or

negative), but as forecast time increases, its forecast impact becomes increasingly more

positive. The forecast improvements peak at about 72-96 h forecast time. The one ex-

ception to the hitherto described general behavior is the behavior of the curves for the

European region at both 850 hPa and 500 hPa for the 100% blend and at 500 hPa for the

30% blend. These curves indicate degradations due to REG DA. These degradations are

strong enough to lead to a degradation for the entire NH domain at 120 h forecast lead

time.

Should the overall positive results shown so far be considered a strong evidence that

REG DA works as we hoped? Scientists usually answer such questions by trying to esti-

mate the probability that the dominantly positive results were produced by random chance

alone. The usual approach to estimate this probability is to do a statistical significance

test. Unfortunately, as it was pointed out in a recently released statement (Wasserstein

and Lazar, 2016) of the American Statistical Association (ASA), p-values computed by a

statistical significance test do not measure the probability that the results were produced

by random chance alone. Instead, the p-values can indicate how incompatible the data are

with the statistical model specified in the test. In the same statement, ASA suggested using

methods that emphasize estimation over testing. This motivates us to follow the approach

of Roh et al. (2013, 2015) by using box plots rather than significance testing to investigate

the strength of our evidence for the usefulness of REG DA. Figures B.18 and B.19 show

box plots that correspond to the MSE curves of Fig. B.16 and B.17. The bottom and top
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of each box represents the first and third quartiles respectively, the line in between is the

median value, and the marker is the mean. The top and bottom whiskers are the maximum

and minimum values within 1.5 times the inner quartile range, and any values that fall out-

side this range are considered outliers and shown as plus (+) symbols. The mean values

shown in Figs. B.18 and B.19 at the different forecast lead times are the same as the MSE

values shown in Figs. B.16 and B.17.

A positive value of the median in a box plots indicates that more forecasts were im-

proved than degraded by REG DA, while a negative value indicates that more forecasts

were degraded than improved. Thus, when both the mean and the median are positive,

the MSE was reduced, in part because more forecasts were improved than degraded. A

pair of a positive mean and a negative median indicates that large forecast improvements

at a fewer times offset the effects of the more frequent but smaller magnitude degrada-

tions at the other times. For the 30% blend experiments (the top panels of Figs. B.18 and

B.19), both the mean and the median are positive for the NH at forecast times equal to

or longer than 36 h. Except for the European region, the statistics behave similarly in the

limited area domainsas in the NH. For the 100% blend experiments (the bottom panels of

Figs. B.18 and B.19), the results are somewhat less positive. For instance, for the entire

NH in the 36 h-120 h forecast range, while typically both the mean and the median indicate

forecast improvements, the median is negative at the 72 h lead time and both the median

and the mean are negative at the 120 h lead time for the 500 hPa geopotential height. The

other statistics depicted by the box plots also indicate that REG DA performed better for

the 30% blend than the 100% blend, as the distribution of changes in the forecast errors is

more skewed in the direction of positive values (improvements due to REG DA).

Next, we show results (Figures B.20 and B.21) for the decomposition of MSE into

error variance and square mean error (bias),
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MSE = V ar +Bias2. (2.31)

The square bias is a measure of the magnitude of systematic errors in the forecasts, but it

should be kept in mind that in a relatively small sample of forecasts a very few forecasts

with large errors can also contribute to the bias. The error variance is the average magni-

tude of the transient component of the errors. The two figures show that while differences

in the error variance drive the differences in MSE at the 850 hPa level, differences in both

the error variance and the bias contribute the MSE difference at the 500 hPa level. That is,

the MSE reduction due to REG DA below the 500 hPa level (Fig. B.12) is the result of a

reduction of the magnitude of the transient component of the errors. The two figures also

show that the degradation of forecast accuracy due to REG DA in the European region,

which is particularly well pronounced for the 100% blend experiment, is the result of an

increase of the magnitude of systematic errors.

Hitherto the focus has been on investigating averages over specific regions. Next, we

turn our attention to the examination of the spatial structure of the errors for selected fore-

cast variables at a specific level and forecast time. For example, Figure B.22 shows the

MSE for the 1000 hPa geopotential height field at analysis time: ECMWF analyses rather

than a depiction of the differences between the errors of our analyses: at the locations

where the values are positive, on average, the 30% blend REG DA analyses are more sim-

ilar to the ECMWF analyses than the blend-skip analyses, where the values are negative,

the blend-skip analyses are more similar to the ECMWF analyses. The top left panel of

the figure is the MSE for the blend skip control experiment. It shows that the DA has

difficulties near to the surface in areas of high orography. The figure also indicates higher

errors along the tropical cyclone paths over the Atlantic in the North American domain.

The top right panel is the MSE difference for the forecasts of the blend skip control and the
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30% REG DA experiment, in which positive values indicate improvements and the nega-

tive values indicate degradations due to REG DA. REG DA has the largest forecast impact

in regions of high orography and most of the changes in forecast accuracy are confined

to the North American and Northeast Pacific domains. In addition to the improvement in

mountainous regions, there are clear improvements along the paths of the tropical cyclones

in the North American domain. The decomposition of MSE into a variance and the square

bias component is shown by the bottom two panels. These panels show that the reduction

of MSE due to REG DA is dominantly the result of a combination of bias reduction in

the Rocky Mountain region, and a reduction of the magnitude of the transient errors in the

mountainous regions of western North America and along the paths of the two Atlantic

tropical cyclones.

To illustrate the vertical structure of the diagnostics shown in Fig. B.22, Fig. B.23

shows them at several levels for the North American domain. The figure shows that the

bias reduction over the Rocky Mountains extends well into the upper troposphere, the

reduction of the error variance in the mountainous regions is confined to the atmospheric

layer below 925 hPa, and the reduction of the error variance for the tropical cyclones is

restricted to the layer below 500 hPa.

Figure B.24 shows the evolution of the 500 hPa diagnostics from Fig. B.23 with fore-

cast time. Except for the improvements in the regions along the paths of the tropical

cyclones, the MSE reduction due to REG DA disappears at forecast time 12 h, just to

reappear at 24 h and further amplify at the later times. This behavior is the result of a tem-

porary increase of the bias at 12 h lead time that offsets the reduction in error variance. It is

unclear whether the temporary increase of bias is an artifact of the verification method due

to errors in the verifying data, or the result of a transient adjustment process in the model.

The fact that a similar increase of the bias is not observed at analysis time, at which the

same verifying analyses are used, suggests that the latter explanation is more likely.
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The same series of diagnostics that have just been shown for the geopotential height

(Figs. B.22, B.23, and B.24) are also shown for the wind components (Figs. B.25, B.26,

and B.27), and the air temperature (Figs. B.28, B.29, and B.30). The first set of figures

shows that the improvements of the wind forecasts are overwhelmingly due to the reduc-

tion of transient forecast errors. The second set of figures suggests that the changes in the

accuracy of the temperature forecasts above the 700 hPa level are negligible (Fig. B.29),

the changes of forecast accuracy are the largest, but somewhat mixed near the surface, and

clearly positive at 850 hPa.

One particularly interesting feature in Fig. B.30 is the large reduction of bias over

the central plains that rapidly grows with increasing forecast time. An inspection of the

individual forecasts that contributed to this result revealed that the large bias correction

was due to the systematic improvement of the prediction of frontal passages in the region.

An example for such an improved forecast is shown in Fig. B.31.

2.5.3 Tropical Cyclone Verification

The results shown earlier suggested that REG DA significantly improved the forecasts

of tropical cyclones that passed through the North American domain. This motived a

more careful examination of the forecasts of the tropical cyclones. It turned out that the

forecast improvements due to REG DA were all associated with forecasts of Hurricane

Sandy, as the effects of REG DA on the forecasts of Hurricane Rafael, the other tropical

cyclone in our sample of forecasts, were essentially neutral. To determine the location of

Hurricane Sandy within the global model, we use NAVGEM’s internal vortex tracker. This

information, as well as the verification is passed to the Developmental Testbed Center’s

(DTC) Model Evaluation Tools - Tropical Cyclone (MET-TC) program to produce the

forecast error statistics of this section. MET-TC uses Best Track data from the National

Hurricane Center for the estimation of the position and intensity errors. The results for
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the track and intensity errors are presented by box plots. Unlike the box plots shown

earlier (Figs. B.18 and B.19), which showed the distribution of the difference between the

errors of the different experiments, these box plots show the distribution of the errors for

each experiment next to each other. We note that a similar format to show the statistical

distribution of the track and intensity forecast errors was used before by Holt et al. (2013,

2015).

Figure B.32 shows the box plots for the track errors. In this figure the results for the

forecasts started at different times are grouped together by forecast lead time. While the

track error generally increases with lead time, the errors remain nearly constant between

lead times 48 h and 96 h. While the errors of the three experiments behave similarly at

short lead times, the two REG DA experiments develop a small but clear advantage over

the blend-skip experiment by 72 h: the mean and median errors are smaller and the entire

distribution of the errors is shifted toward the smaller values for the REG DA experiments.

The results are somewhat mixed at 84 h lead time ( the mean and the largest errors are

smaller for the REG DA experiments, but the median and the smallest errors are smaller

for the blend-skip experiment) the clear advantage of the REG DA experiments return

once the errors start to grow again: at lead time 120 h, the mean, the median, and the first

and third quartiles are all shifted toward the lower errors for the REG DA experiments. As

for the comparison of the 30% and 100% blend experiments, the latter leads to generally

larger track error reduction.

Next, we decompose the track errors into an along track error component, and an

orthogonal component called the cross track error, as shown in Fig. B.33. Notice that

the value of either of the two error components can be negative. A forecast is better

than another with respect to these measures, if their absolute value is smaller. The box

plots for the along track error and the cross track error are shown in Fig. B.34 and B.35,

respectively. While the along track analysis errors tend to be negative for the blend-skip
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experiment, they are more evenly distributed between the negative and positive errors for

the REG DA experiments, leading to a reduction of both the median and the mean error.

By lead times 84 h and 96 h, the two REG DA experiments develop a clear advantage

over the blend-skip experiment. Beyond that time the along track movement of Sandy

becomes too fast in the model, turning the advantage of the REG DA experiments at 96 h

lead time into a disadvantage by 108 h. The cross track errors are very similar for the three

experiments up to lead time 84 h, but at 96 h and 120 h the two REG DA experiments have

a clear advantage over the blend skip experiment.

REG DA greatly improves the accuracy of the analyses of the intensity of Sandy by

shifting the entire distribution of the analysis errors for the mean sea level pressure towards

smaller values. While most of the error reductions due to REG DA gradually diminish by

48 h, the REG DA forecasts maintain a small advantage at the later lead times.
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3. FORECAST UNCERTAINTY IN THE THORPEX INTERACTIVE GRAND

GLOBAL ENSEMBLE (TIGGE)∗

3.1 The TIGGE Data Set

We provide a general description of the TIGGE data set and briefly discuss the tech-

niques that the centers use to represent the effects of initial condition and model uncertain-

ties.

3.1.1 The Data Set

The TIGGE data set is a collection of global ensemble forecasts from the major NWP

centers, (Bougeault and Coauthors, 2010; Swinbank and Coauthors, 2016). The goal of

TIGGE is to provide ensemble data to support both academic research and operational

product development. The forecasts are collected in real time and made available to the

scientific community by the archiving centers in an easily accessible uniform format.

We analyze data from the following forecast centers:

• European Centre for Medium-Range Weather Forecasts (ECMWF)

• US National Centers for Environmental Prediction (NCEP)

• UK Met Office (UKMO)

• China Meteorological Administration (CMA)

• Japan Meteorological Agency (JMA)

• Korean Meteorological Administration (KMA)

∗Section 3 is reprinted with permission from “Forecast Uncertainty Dynamics in the THORPEX Interac-
tive Grand Global Ensemble (TIGGE)" by M. Herrera, I. Szunyogh, and J. Tribbia, 2016. Monthly Weather
Review, 144, 2739-2766, Copyright 2016 by the American Meteorological Society.
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• Meteorological Service of Canada (CMC)

• Météo-France

We do not consider data from two of the NWP centers, the Australian Bureau of Mete-

orology (BoM) and the Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), that

provide data to the TIGGE data set: data was not available from the BoM ensemble for

the time period of this study, while CPTEC discovered an error in their ensemble and was

planning to regenerate the data.

3.1.2 Initial Condition Perturbations

The degrees of freedom of the dynamics of an operational model is orders of mag-

nitude larger than the operationally attainable number of ensemble members. The fore-

cast centers have addressed this challenging aspect of ensemble forecasting by developing

techniques for the generation of initial condition perturbations that efficiently represent

the growing part of the analysis (initial condition) errors. Table A.2 shows a list of the

ensemble generation techniques of the different centers.

The bred vector method, (Toth and Kalnay, 1993, 1997), which was originally devel-

oped and implemented at NCEP, is currently used by CMA and KMA. To create the bred

vectors, the analysis is randomly perturbed and the full non-linear model is run for a short

period (eg. six hours) for both the control (unperturbed) and perturbed analyses. The

control forecast is subtracted from the perturbed forecasts and the resulting perturbations

are rescaled to the magnitude of the initial perturbations. The cycle is repeated by adding

the rescaled perturbations to the next analysis. After several days of "breeding", growing

patterns dominate the spatio-temporal evolution of the perturbations.

Another type of initial condition perturbations, which is used by ECMWF, JMA, and

Météo-France are known as (right) singular vectors (Buizza et al., 1993; Molteni and

Palmer, 1993; Mureau et al., 1993); these vectors are the initial perturbations that grow
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fastest with respect to a preselected norm and optimization (forecast) time. For the en-

sembles included in this study, the norm is a quadratic norm with energy dimension (e.g.,

Buizza et al., 1993) and the optimization time is 48 h forecast hour. The Météo-France

ensemble uses a combination of singular vectors and evolved singular vectors, where the

evolved singular vectors are created such that the analysis time, for which the initial per-

turbations are created, coincides with the end of the optimization period. The evolved

singular vectors are hoped to represent analysis uncertainties that were likely to grow in

the analysis cycles of the immediate past. ECMWF also used evolved singular vectors

in the past, but by the time of the present study they have switched to using an ensem-

ble of data assimilations (EDA) to account for the error growth during the previous data

assimilation cycles (Buizza et al., 2008). To create these perturbations, observations are

perturbed randomly in accordance with their presumed error statistics in the data assimi-

lation system; each set of perturbed observations is assimilated into a different ensemble

member.

The method currently used for the generation of ensemble perturbations at NCEP is

similar to the generation of bred vectors, but it uses information from the data assim-

ilation system to determine a spatio-temporally varying rescaling factor. This method is

called Ensemble Transform with Rescaling (ETR) and was developed by Wei et al. (2008);

ensemble perturbations valid for the analysis time are obtained through an ensemble trans-

form of a previous set of forecast perturbations, taking into account the observation error

statistics and centering the perturbations on the analysis.

The UK Met Office uses a local Ensemble Transform Kalman Filter (ETKF) to gener-

ate their perturbations, (Bishop et al., 2001; Wang and Bishop, 2003; Bowler and Mylne,

2009). The largest difference between the ETKF and the ETR methods is that the ETKF

produces an ensemble of full analyses rather than an ensemble of rescaled perturbations.

The analysis perturbations, which are obtained by taking the difference between the mem-
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bers of the analysis ensemble and the mean of the analysis ensemble, are added to the

operational 4D-Var analysis to obtain the ensemble of perturbed initial conditions. Lastly,

CMC uses an Ensemble Kalman Filter (EnKF) to generate the analysis ensemble. Unlike

at UKMO, their ensemble is centered on the mean analysis produced by the EnKF.

3.1.3 Model Error Parameterization Techniques

In addition to chaotic model dynamics acting on uncertain initial conditions, model

errors also contribute to the forecast error growth. Model errors affect the forecasts con-

tinuously during the entire forecast period. They also contribute to the initial conditions

uncertainty through the forecast phase of the analysis cycles.

The main sources of model errors are thought to be the parameterization schemes

for the sub-grid processes. One technique to account for these sources is the method of

Stochastically Perturbed Parameterization Tendencies, SPPT (Buizza et al., 1999; Palmer

et al., 2009). This technique perturbs the total contribution of the parameterized processes

to the tendency of the state variables in the model. Another technique is to use different pa-

rameterization schemes for the same processes, or to use different values of the prescribed

parameters of the parameterization schemes. This approach is known as the multi-physics

technique (Berner et al., 2011; Houtekamer, 2002).

The effects of uncertainties injected at the smallest resolved scales cannot be directly

simulated by the models, because the interactions between those scales and the larger

scales are distorted by the models: some scale interactions are explicitly eliminated by

the truncation strategies, while others are eliminated by dampening the smaller scale mo-

tions. Time integration schemes also contribute to the diffusiveness of the models at scales

where nature is not diffusive. An approach to make the representation of the effect of up-

scale propagating uncertainties by the ensemble more realistic, called Stochastic Energy

Backscattering (SKEB), was introduced and described by Shutts (2005, 2013); Berner
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et al. (2009); Bowler et al. (2009); Charron et al. (2010); Tennant et al. (2011). One other

method used to account for this uncertainty is called Stochastic Time Tendency Perturba-

tions (STTP), Hou et al. (2008). Whereas SKEB focuses on subgrid scale error, STTP

adds stochastic forcing at all scales. Since SPPT/multi-physics and SKEB/STTP simulate

different aspects of model error dynamics, they can be used in conjunction. This practice

is followed at both ECMWF and CMC.

3.2 Local Diagnostics

An ensemble forecast provides a flow (synoptic situation) dependent prediction of the

probability distribution of the forecast uncertainty. We focus on examining the mean and

the covariance matrix of the predicted probability distribution. The significance of the

covariance matrix of the distribution is that it describes both the structure and the magni-

tude of the predicted uncertain flow features. In addition, under the assumption that the

probability distribution of the uncertainty is Gaussian, the mean and the covariance matrix

together provide a complete description of the predicted probability distribution.

3.2.1 Local Vectors And Their Covariance

Following the approach of KSS, we define a local state vector xV` to describe the

state in a local atmospheric volume V` centered at model grid point `. The components

of xV` are the grid point variables of the model in V`. We assume the availability of a K-

member forecast ensemble and define the K-member ensemble of local state vectors xkV` ,

k=1,. . . ,K, by the relevant components of the state vectors that represent the ensemble.

Then, a K-member ensemble of local perturbations, Xk
V`

, k=1,. . . ,K, can be defined by

Xk
V`

= xkV` − x̄V` , (3.1)
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where

x̄V` =
1

K

K∑
k=1

xkV` (3.2)

is the local ensemble mean, which is the prediction of the mean of the probability distribu-

tion of the local forecast uncertainty. We note that the same local framework is employed

in the widely used Local Ensemble Transform Kalman Filter (LETKF) data assimilation

scheme (Ott et al., 2004; Hunt et al., 2007; Szunyogh et al., 2005, 2008).

In what follows, we treat all local vectors as column vectors. The prediction of the

local covariance matrix of the forecast uncertainty is

PV` =
1

K − 1

K∑
k=1

Xk
V`

[Xk
V`

]T . (3.3)

The local state vector, the local ensemble perturbations, and the local covariance matrix

can be defined for all locations `, local volumes V`, and forecast times tf , (including

the analysis time, tf = 0). We assume that the spaces spanned by the local ensemble

perturbations are linear spaces. To be precise, we define the space of local ensemble

perturbations SKV`(tf ) by the range of PV`(tf ), and assume that any linear combination of

the local ensemble perturbations is a plausible local perturbation of the atmospheric state.

Because we compute the diagnostics for all locations ` and use a location independent

definition of the local volumes V`, we drop the subscripts from the notation. To further

simplify notation, we also drop the argument tf . For instance, we replace the notation

PV`(tf ) by P.
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3.2.2 Diagnostics For The Predicted Magnitude Of The Uncertainty

3.2.2.1 Optimality Conditions

Our error diagnostics are based on investigating the statistical properties of the differ-

ence

δxt = xt − x̄ (3.4)

between a proxy xt of the true state and the ensemble mean x̄. We treat the values of δxt

computed for the different forecasts, forecast times, and locations as realizations of the

random vector variable δxt. In ensemble forecasting, the difference δxt is usually inter-

preted as an estimate of the error in the ensemble mean forecast. This terminology is fully

justified when the ensemble mean is used as a deterministic forecast of the atmospheric

state. In our interpretation, δxt is an estimate of the difference

εr = xT − xT (3.5)

between the (unknown) true state xT and the (unknown) true mean xT of the probability

distribution of the state given all sources of uncertainty.

The vector εr is a representation of the forecast uncertainty, because if there were no

uncertainties, x̄T would be identical to xT , leading to εr = 0. As the magnitude of the

forecast uncertainty increases with increasing forecast time, x̄T becomes increasingly dif-

ferent from xT , leading to an increase of the magnitude of εr. At the forecast time at which

predictability is completely lost, x̄T becomes identical to the climatological mean state of

the atmosphere and the magnitude of εr converges to the magnitude of the climatological

atmospheric variability (Epstein, 1969; Leith, 1974).

Because

xt = xT + εt, (3.6)
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where εt is the error in the proxy for the true state and

x = xT + εm, (3.7)

where εm is the error in the prediction of the mean, Eq. (5) can be also written as

εr = (xt − εt)− (x− εm) = δxt + (εm − εt). (3.8)

Eq. (8) shows that the estimate δxt of εr has an error of εe = (εm − εt). Similar to x, the

random variables εm, εr and εt depend on the location, the initial time of the forecast, and

the forecast time.

According to its definition, the random variable εr satisfies the condition that

E (εr) = 0, (3.9)

where E(·) is the expected value function. Hence, the estimate δxt of εr should satisfy the

condition

E (δxt) = 0. (3.10)

In addition, because P is considered the prediction of the covariance matrix of εr in en-

semble prediction, the two covariance matrices should also be equal. Because these two

conditions cannot be verified for a single realization of δxt, ensemble forecast verification

techniques investigate whether the behavior of the ensemble forecast system is consistent

or not with these two conditions over a large number of realizations of δxt.
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3.2.2.2 The Magnitude Of The Forecast Uncertainty

The mean square magnitude of the ensemble based estimate of the difference between

the true state and the true mean of the probability distribution of the state is,

TV = E
[
(δxt)

2] = E
(

(δxt)
T δxt

)
. (3.11)

A standard approach for the evaluation of an ensemble forecast system is to verify whether

the mean of the ensemble variance

V S = E (trace(P)) (3.12)

satisfies the approximate equality

V S ≈ TV. (3.13)

This criteria is a necessary condition for trace(P) being an accurate prediction of E [ε2
r]

(the trace of the covariance matrix of εr) under the assumption that εe = 0.

3.2.2.3 The Uncertainty In The Proxy For The True State

The presence of εt is a limitation of any forecast verification technique. In the particu-

lar case of TV , the contribution of εt is not negligible at short (e.g., shorter than 12-48 h)

forecast times, at which its magnitude can be comparable to the magnitude of εr. The

correlations between εt and the error components εm and εr can be reduced to near zero,

even at short forecast times, by the proper choice of xt. For instance, when a time series of

xt is defined by analyses, those analyses should be other than those used for the production

of the verified forecasts.
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3.2.2.4 The Error In The Prediction Of The Mean

A nonzero value of εm is usually expected due to the inevitable presence of systematic

model errors that can lead to a drift of the predicted probability distributions in state space.

In addition, flaws in the design of the ensemble system can also contribute to the error in

the ensemble mean. A testable sufficient condition for εm 6= 0 at the longer forecast times

is M2 = E2 (δxt)� 0. The sufficient nature of this condition can be seen by first making

use of Eqs. (8) and (3.9), which lead to

M = E (δxt) = E (εm)− E (εt) ≈ E (εm) (3.14)

by taking into account that the magnitude of E (εt) is small and its contribution to E (δxt)

can be neglected if tf > 12− 48 h.

Because

TV = Var (δxt) +M2, (3.15)

where Var(·) is the variance function for the time period of verification, E (εm) can con-

tribute to TV . If the climate and the model representation of the climate were both sta-

tionary, for an infinitely long forecast, M would be equal to the mean error in the clima-

tological mean state of the model. However, because forecast verification is usually done

only for a season of a single year and numerical predictions are for finite forecast times,

M typically asymptotes to a value that includes systematic errors in the prediction of the

lower frequency variability of the atmosphere.

3.2.2.5 Lorenz Curves

The evolution of V S, TV , andM for the different TIGGE ensembles will be compared

by figures whose format will be mostly familiar to the reader. The only unusual compari-

son we do is based on fitting Lorenz-curves (Lorenz, 1969a, 1982) to both
√
TV and

√
V S,
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and comparing the parameters of the fitted curves. We parameterize the Lorenz-curves by

the function
dF

dt
= (αF + β)

(
1− F

F∞

)
, (3.16)

which was proposed by Dalcher and Kalnay (1987). Our choice of this particular pa-

rameterization is motivated by the paper Magnusson and Kallen (2013), which used it

successfully to separate the factors that contributed to the improvement of the operational

ECMWF forecasts from 1979 to 2011.

In our application of Eq. (3.16), F is either
√
TV or

√
V S, α is the parameter that

describes the (exponential) growth of F for the linear phase of uncertainty dynamics, and

F∞ is the saturation (asymptotic) value of F at long forecast times. For F =
√
TV , the

parameter β can be considered a static (time-independent) estimate of the contribution

of model errors to the forecast uncertainty tendency, while for F =
√
V S, it can be

considered an estimate of the contribution of the technique used for the representation of

the effect of model errors to the tendency of
√
V S. If β is smaller for

√
TV than

√
V S, the

chosen technique(s) overestimates the contribution of model errors, while if it is smaller

for
√
V S than

√
TV , it underestimates the contribution of model errors.

We emphasize that Eq. (16) is a crude parameterization of the function that describes

the error growth process. It is based on the assumption that the initial error growth process

is linear and nonlinear effects become important only later, once the magnitude of the

errors becomes sufficiently large. While this is a reasonable assumption for the error

growth at the synoptic scales, it is clearly violated by the rapidly saturating errors at the

smaller scale. In addition, earlier studies (e.g. Orrell et al., 2001; Vannitsem and Toth,

2002; Nicolis et al., 2009) also demonstrated that model errors tended to lead to a nonlinear

short term error growth. Hence, Eq. (16) is expected to provide a better description of

the error growth process from the forecast times at which synoptic scale errors become
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dominant; and the estimates of β should be considered a particularly crude estimate.

3.2.3 Diagnostics For The Predicted Structure Of The Uncertainties

The local vector δxt can be decomposed as

δxt = δx
(‖)
t + x

(⊥)
t , (3.17)

where δx(‖)
t is the component of δxt that projects onto SK and x

(⊥)
t is the component that

projects onto the null space of P. Heuristically, the vector δx(‖)
t represents the collection

of uncertain local forecast features that the ensemble is able to capture. Likewise, x(⊥)
t

represents the collection of uncertain local forecast features that the ensemble is unable to

capture. (This interpretation assumes that εe ≈ 0.)

The set of normalized eigenvectors {uk : k = 1, . . . , K−1} associated with the largest

K − 1 eigenvalues of P provide a convenient orthonormal basis to compute δx(‖)
t by

δx
(‖)
t =

K−1∑
k=1

(
[δxt]

Tuk
)
uk. (3.18)

The origin of the local orthogonal coordinate system defined by the basis vectors {uk : k =

1, . . . , K−1} is the local ensemble mean x̄. Heuristically, these basis vectors describe the

structure of the local uncertain forecast features.

The efficiency of SK in capturing δxt can be assessed by comparing

TV S = E
(
‖δx(‖)

t ‖2
)

= E

((
δx

(‖)
t

)T
δx

(‖)
t

)
(3.19)

to TV . TV S always satisfies the relation TV S ≤ TV , with the equality indicating the

ideal situation, in which δxt lies entirely in SK . There are three reasons why TV S can be

smaller than its optimal value of TV . First and most importantly, SK may not provide a
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perfect representation of the space in which εr evolves. Second, the origin may be shifted,

that is, εm 6= 0. Third, εt typically has no significant projection on SK , which reduces

TV S at short forecast lead times.

Finally, it should be noted that there are approaches different than ours to define an

orthogonal basis for the investigation of the evolution of ensemble perturbations. For

instance, Leutbecher and Lang (2014) defined an orthogonal basis by the leading right

singular vectors of the tangent linear version of the model, while Zagar et al. (2015) by

the normal mode functions consisting of vertical structure functions, each associated with

a set of horizontal Hough functions.

3.2.4 Estimation Of The Expected Value

We estimate the expected value by either an average over all forecasts of the same lead

time and all locations ` in the verification region, or an average over all forecasts of the

same lead time. In the former case, the result is a scalar that depends only on the forecast

lead time, while in the latter case, the result is a field of grid point values that depends on

the forecast lead time.

We compute diagnostics for forecasts that were started between 1 January, 2012 0000

UTC and 29 February, 2012 1800 UTC. The diagnostics are computed for the entire fore-

cast range of each ensemble system. Diagnostics that require the estimation of temporal

means are computed by taking averages over all forecasts of equal forecast time. Spa-

tiotemporal means for the NH extratropics are computed by averaging the temporal means

over all locations between 30◦N and 75◦N.

3.3 The Atmospheric Flow

For the time period of our investigation, we describe the synoptic scale transients with

the help of the eddy kinetic energy equation (EKE) and the low frequency transients by

the zonal anomalies of the seasonal mean flow.
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3.3.1 High-Frequency (Synoptic Scale) Transient Components Of The Flow

The EKE equation of Orlanski and Katzfey (1991), also see Orlanski and Chang (1993)

and Chang (2000), is

∂

∂t
〈Ke〉 =

1︷ ︸︸ ︷
−〈∇ · vKe〉

2︷ ︸︸ ︷
−〈∇ · v′φ′〉

3︷ ︸︸ ︷
−〈ω′α′〉

4︷ ︸︸ ︷
−〈v′ · (v′3 · ∇3)vm − v′ · (v′3 · ∇3)v′〉

5︷ ︸︸ ︷
−[ω′Ke]s + [ω′Ke]t

6︷ ︸︸ ︷
−[ω′φ′]s + [ω′φ′]t

7︷ ︸︸ ︷
+〈(Residue)〉 .

(3.20)

In this equation, the prime indicates the eddy component of the state variables and Ke is

the eddy kinetic energy given by

Ke =
1

2
v′ · v′, (3.21)

where v′ is the eddy component of the horizontal wind vector. The symbols∇,∇3, vm and

v′3 denote the horizontal nabla operator, the three dimensional nabla operator, the mean

component of the horizontal wind vector and the eddy component of the three-dimensional

wind vector for pressure vertical coordinate, respectively. Otherwise, the conventional

notation is used for the state variables. The bar denotes a seasonal mean, while the symbol

〈·〉 indicates a vertical average in pressure coordinate system, and [·] indicates a surface

integral across the surface (s) or top (t) of the model atmosphere.

The first term of the right-hand side describes the horizontal eddy kinetic energy trans-

port, the second term is the geopotential flux convergence, the third term is the baroclinic

energy conversion, and the fourth term is the barotropic energy conversion. Term five

describes the vertical eddy kinetic energy transport through the bottom and the top sur-

faces, while term six represents the transport of eddy potential energy through the same
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surfaces. Finally, the last term is the residue term that represents the bulk effect of the

errors of the numerical calculations and all processes unaccounted for by the other terms.

The most important such process is dissipation, which usually makes the residue term

negative. Because not all variables necessary for the computation of the terms of the eddy

kinetic energy equation are available in the TIGGE data set, we use data from the ERA In-

terim reanalysis for the description of the flow. Unlike the previous diagnostics which are

calculated on local volumes, the eddy kinetic energy equation is calculated on the global

grid.

The computation of the terms of the eddy kinetic energy equation starts with a de-

composition of the spatiotemporally evolving atmospheric state variables into a spatially

varying time-mean component and a spatiotemporally evolving eddy component. We com-

pute the time-mean for January-February-March, because even though all forecasts start

in January and February, some of them end in March. The time-mean component of the

geopotential height field at the 500 Pa pressure level is shown in Fig. B.37 for both the

ECMWF and NCEP analyses: the time-mean flow has a dominantly zonal wavenumber

two structure, with negative zonal anomalies in the Pacific and the Atlantic storm track

regions and positive zonal anomalies in the exit regions of the storm tracks.

Figure B.38 shows the time-mean eddy kinetic energy (top left panel) and the time-

mean of the three terms of the eddy kinetic energy that dominate the changes in the time-

mean eddy kinetic energy (other three panels). These terms represent baroclinic energy

conversion (top right panel), barotropic energy conversion (bottom left panel) and the hor-

izontal transport of the eddy kinetic energy (bottom right panel). The largest local maxima

of the eddy kinetic energy are located in the eastern sector of the Pacific storm track.

These maxima are due to the local generation of kinetic energy by baroclinic energy con-

version and the transport of eddy kinetic energy generated upstream by baroclinic energy

conversion.
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Barotropic energy conversion is the (nonlinear) transfer of kinetic energy between the

synoptic scale transients and the seasonal mean flow. Where it is positive, kinetic energy is

transferred to the synoptic scale eddies, while where it is negative, kinetic energy is trans-

ferred to the seasonal mean flow. While kinetic energy is transferred to the seasonal mean

flow in the exit regions of the storm tracks, kinetic energy is transferred to the synoptic

scale eddies over North America and Western Europe.

A comparison of Figs. B.38 and B.37 show the close relationship between the high-

and low-frequency transients: baroclinic energy conversion at the synoptic scales is the

most intense in regions of the negative anomalies of the time-mean flow, while (nega-

tive) barotropic energy conversion from the synoptic to the large scales plays a direct

role in the slow changes of the large scale flow in regions of positive anomalies. These

nonlinear barotropic energy conversion processes control the energy transfer between the

high-frequency transients and the slowly varying large scale flow.

3.4 Results On The Predictions Of The Magnitude Of The Uncertainty

In this section, our attention is focused on studying the relationship between the evolu-

tions of V S, TV , and M in the forecasts. We examine the behavior of both the spatiotem-

porally and the temporally averaged forms of the three diagnostics.

3.4.1 The Evolution Of V S, TV And M2 In The Forecasts

3.4.1.1 Diagnostics Based On Averages Over All Forecasts And Locations

We first examine the evolutions of V S, TV , and M2 in the forecasts qualitatively, with

the help of Figs. B.39 and B.40, which show the evolution of the spatiotemporally aver-

aged version of the three quantities. A common feature of the behavior of the different

ensembles at analysis time is that V S (green curve) tends to be smaller than TV (black

curve). That is, the ensembles have a tendency to underestimate the analysis uncertainty.

This feature is the most pronounced for the JMA ensemble and barely noticeable for the
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CMC ensemble. Because the match between V S and TV for the latter ensemble is essen-

tially perfect at all forecast times between 12 h and 132 h, the slight difference at analysis

time is likely to be due to uncertainty in the proxy for the true state rather than to an

underestimation of the magnitude of the initial uncertainty.

For most ensembles, V S quickly (in about 48-72 forecast hours) asymptotes to TV .

The rapid recovery of the ensemble variance is particularly notable for the JMA ensemble.

The unique short term behavior of this ensemble can be explained by the fact that this is

the only ensemble in TIGGE that is purely based on right singular vector initial condition

perturbations: because the right singular vectors grow very rapidly during the optimization

period, which is 48 h for the JMA ensemble, the magnitude of the analysis perturbations

must be small to avoid over-shooting TV at 48 h forecast time. The ensemble that shows

a somewhat similar behavior, but with a much less severe underestimation of the analysis

uncertainty, is the ECMWF ensemble. The similarity is not by accident; some of the

initial condition perturbations in the ECMWF ensemble are right singular vectors. The

underestimation of the uncertainty in the ECMWF ensemble is much less severe, because

it mixes the right singular vectors with perturbations produced by an ensemble of data

assimilations. The latter perturbations grow much slower than the right singular vectors,

but their initial magnitude is larger, leading to an overall larger magnitude of the analysis

perturbations.

The ensemble for which the gap between V S and TV remains relatively large at all

forecast times is the CMA ensemble. This behavior is most likely due to the feature

of the CMA ensemble that it is one of only two ensembles in TIGGE that does not use

any “parameterization” scheme to continuously increase the magnitude of the evolving

forecast perturbations. The only other TIGGE member that does not “parameterize” the

effects of model uncertainty is the KMA ensemble, but for that ensemble the gap between

V S and TV is smaller than for the CMA ensemble at initial time, which helps at the longer
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forecast times as well.

While there are more pronounced differences in the evolution of M2 (purple curve)

than in the evolution of TV and V S between the different ensembles, there are also some

important similarities: the relative contribution ofM2 to TV is the largest at analysis time,

while M2 is typically an order of magnitude smaller than TV . The shape of the curves

that describe the evolution of M2 suggests that M2 is growing due to systematic errors in

the prediction of the low-frequency transients.

3.4.1.2 Sensitivity Of The Results To The Choice Of The Proxy For The True State

To test the robustness of the diagnostic results shown in Figs. B.39 and B.40 to the

choice of the proxy xt for the true state, we computed some of the diagnostics using anal-

yses from different centers for the definition of xt. An example for the results of these cal-

culations is shown in Figure B.41, which shows the diagnostics for the UKMO ensemble

using ECMWF or NCEP analyses as xt. While the results slightly change quantitatively,∗

the choice of xt has no effect on our qualitative observations about the relationships be-

tween the evolution of the diagnostics.

3.4.1.3 Diagnostics Based On Averages Over All Forecasts

To save space, we show temporally averaged forms of the diagnostics only for se-

lected ensembles. Figures B.42 and B.43 show TV at four different forecast times for the

ECMWF and the CMC ensembles, respectively. We choose these two ensembles, because

while they are among the better performing ensembles, they are generated by using dif-

ferent techniques for the generation of the initial conditions and the representation of the

effects of model errors. As discussed later, the results of our investigation also suggest that

ECMWF and CMC use different tuning conditions for their systems. The two figures show

∗For instance, the underestimation of TV by V S at analysis time for the ensemble is even smaller when
the ECMWF analyses are used as proxy for the true states.
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that the differences between the two systems are the largest at analysis time and rapidly

diminishing with increasing forecast time. These diminishing differences are the result

of the fast growth of TV in the storm track regions in both ensembles. By forecast time

360-h, the forecast uncertainty becomes the largest in the exit region of the Pacific and the

Atlantic storm tracks, where the magnitude of the (positive) zonal anomaly of the time-

mean flow is the largest (see Fig. B.37). This behavior suggests that uncertainties in the

prediction of both the high- and low-frequency transients contribute to the large forecast

uncertainty. As for the differences at analysis time, the large differences in the region of

the Tibetan Plateau and the Himalayas are most likely due to differences in the orography

of the verified and verification data sets. The related local maximum quickly disappears

with increasing forecast time for both ensembles. The more important initial difference

is the markedly lower magnitude of the uncertainty in the storm track regions, especially

over the Pacific, for the CMC ensemble. This initial difference is most likely due to the

larger magnitude of the CMC analysis perturbations.

Figures B.44 and B.45 show V S at four different forecast times for the ECMWF and

the CMC ensembles, respectively. A striking feature of the two figures is their similarity.

In particular, the growth of the ensemble is the fastest in the storm track regions. Both

ensembles clearly underestimate the analysis uncertainty, but the underestimation is more

severe for the ECMWF ensemble. For the CMC ensemble, V S slightly underestimates TV

in the storm track region at all forecast times, but, in general, it correctly captures the main

patterns of uncertainty. For the ECMWF analysis, V S slightly underestimates TV at all

locations at 120 h forecast time, but later there are an increasing number of locations where

it overestimates TV. The most important shortcoming of V S for the ECMWF ensemble is

that at 360-h lead time, its maximum of the Atlantic is shifted westward (from Iceland to

Newfoundland) compared to the related maximum of TV .

To shed some light on the origin of the aforementioned shift, we also plot the evolu-
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tion of M for the ECMWF ensemble (Fig. B.46). The growing component of M , which

becomes dominant by forecast time 360 h, is associated with errors in the prediction of

the zonal anomalies of the time mean-flow, which are shown in Fig. B.37. In particular,

the dipole pattern in the Atlantic region in the lower right panel of Fig. B.46 indicates a

significant error in the prediction of the large scale flow in that region. The fact that the

growing component of M is due to growing systematic errors in the prediction of the large

scale flow is further illustrated by Fig. B.47. This figure takes advantage of the property

of M that it can be written as

M = E (xt)−
1

K

K∑
k=1

E
(
xk
)
. (3.22)

The figure shows E (xt) (black lines) and the K-member ensemble of E
(
xk
)

(grey lines).

M would be zero, if the mean of the grey curves was identical with the black curve.

This ideal situation cannot occur, because the ensemble members do not capture the zonal

anomalies of the large scale flow. Figure B.48, which shows the same type of spaghetti

diagram for four different ensembles at 360 h forecast time, illustrates that the behavior

we have just described is a common shortcoming of all ensemble systems.

3.4.2 Spectral Evolution Of V S And TV In The Forecasts

We illustrate the spectral evolution of the forecast uncertainty and the ensemble spread

with the example of the ECMWF and the CMC ensembles. Figure B.49 shows the spec-

tral evolution of the two quantities for the meridional component of the wind vector at

500 hPa. The left panels show the evolution of the spectral distribution of V S, and the

right panels show the evolution of the spectral distribution of TV for the meridional wind

vector component of the state vector. This figure was obtained by first computing the

zonal power spectra at each latitude within the verification region, then computing the
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meridional average of the zonal spectra.

The evolution of the spectra of TV (right panels) is very similar for the two ensembles.

At analysis time, the two spectra are white, except for a slow drop of the power at the high-

est wave numbers. Initially, the growth is the fastest at wave number 9, but with increasing

forecast time, the maximum power gradually shifts to wave number 4 by forecast time

day 14. This shift of the maximum power toward the lower wave numbers is the result of

the earlier saturation of the power at the wave numbers at which it grows faster initially.

At the sub-synoptic scales (wave numbers larger than about 12-14) the errors saturate as

Lorenz (1969b) described: the steepness of the saturation spectra is k−3, along which the

uncertainty and the spread saturate at increasingly larger scales as forecast time increases.

The difference in the spectra of the ensemble spread between the two ensembles (left

panels) is the largest at analysis time: the shape of the spectra of V S for the ECMWF

ensemble is similar to that of the spectra of TV , but it has significantly less power; while

the shape of the spectra of V S for the CMC ensemble is different from that of the spectra

of TV , but the average power of the V S and TV spectra are more similar than for the

ECMWF ensemble. The evolution of V S captures the generic characteristics of the evolu-

tion of TV for both ensembles. An interesting difference, however, is that at forecast time

day 14, the power has its maximum at wave number 5 rather than wavenumber 4 for both

ensembles.

3.4.3 Qualitative Description Of The Forecast Uncertainty Growth Process

The information provided by Figs B.49, B.42, B.43, and B.46 suggests the following

general description of the forecast uncertainty growth process in the NH extratropics:

1. the initial growth is the fastest at the synoptic scales that are most sensitive to baro-

clinic instability;

2. the growing, and later saturating, synoptic scale features of uncertainty fill the region
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that extends from the entrance region of the Pacific storm track to the exit region of

the Atlantic storm track;

3. because the position and the spatial structure of the storm track regions are con-

trolled by the slowly varying large-scale flow, the low-frequency transients have a

major influence on the spatiotemporal distribution of the forecast uncertainty;

4. as uncertainties start saturating at the scales most sensitive to baroclinic instability,

the wave number of dominant instability gradually shifts towards the larger scales

(lower wave numbers),

5. at the sub-synoptic scales (zonal wave numbers larger than about 12-14), the uncer-

tainty saturates as predicted by Lorenz’s theory.

The diagnostic results for the ensemble spread (Figs B.44, B.45, B.46, and B.49) sug-

gest that all ensemble forecast systems can capture the main characteristics of the error

growth process. Figures B.39 and B.40 show, however, that the differences between the

models, analysis systems, and ensemble generation techniques have important effects on

the accuracy of the quantitative prediction of the uncertainty.

3.4.4 Lorenz-Curve Based Analysis Of The Evolution Of V S And TV With Increas-

ing Forecast Time

3.4.4.1 Estimation Of The Parameters

Obtaining estimates of the parameters of the Lorenz curve requires the availability of

dF/dt at each forecast time. We compute an approximate value of dF/dt (tf ) by the

centered-difference scheme

dF

dt
(tf ) =

F (tf + ∆t)− F (tf −∆t)

2∆t
, (3.23)
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where ∆t =12 h. We compute dF/dt(tf ) for all forecast times tf ≥ 12 h, but we ignore

the first (tf = 12 h) data point when fitting the Lorenz curve for F =
√
TV . The reason

to exclude this data point is that the estimates of both dF/dt and F have a large relative

error due to the error εt in the verification data.

The parameters α, β, and F∞ can be estimated by fitting a second-order polynomial to

the pairs of (F, dF/dt) data using the standard least-square approach for function fitting.

The estimates of α and β are

α = −p2F∞ (3.24)

β = p0, (3.25)

where p2 is the coefficient of the second order term of the fitted polynomial and p0 is the

coefficient of the zeroth order term, while F∞ is the positive root of the fitted polynomial.

3.4.4.2 Comparison Of The Estimated Parameters Of The Lorenz-Curves

The estimated parameters of the Lorenz-curves for the forecast uncertainty (F =
√
TV ) and the ensemble spread (F =

√
V S) are summarized by Table A.3. In addition,

the pairs of (F, dF/dt) values and the fitted curves for four selected ensembles (ECMWF,

NCEP, CMC, JMA) are shown by Fig. B.50 for the forecast uncertainty, and by Fig. B.51

for the ensemble spread. The two figures show that there are some outliers in terms of

the quality of the fit of the curves to the data. In particular, in the upper left panel of

Fig. B.50 the forecast error is significantly overestimated at both 12 h and 24 h forecast

times. Hence, in addition to the data point for 12 h forecast time, the data point for 24 h

forecast time is also excluded from the estimation of the parameters of the Lorenz-curve.

The bottom right panel of Fig. B.51 shows that the curve fitting for the ensemble spread

has also failed. This failure suggests that the rapid initial growth of the SV perturbations
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is inconsistent with the growth process that a Lorenz-curve can describe. The results for

the CMC ensemble (bottom left panel) are also somewhat suspect.

To make the interpretation of the values of α in Table A.3 more transparent, the table

also includes the values of eαt for t = 1 day. This quantity is the daily growth rate of F

for the time range in which the uncertainty dynamics is linear to a good approximation.

For the ECMWF, NCEP, UKMO, and KMA ensembles, the daily linear growth rate for

the forecast uncertainty is 1.5. The same growth rate for the ensemble spread is slightly

lower (1.4) for the ECMWF, UKMO, and KMA ensembles, and slightly higher (1.6) for

the NCEP ensemble. The latter result suggests that the underestimation of TV by V S

in the NCEP ensemble (top right panel of Fig. B.39) is not due to an underestimation of

the linear error growth. The CMC and the CMA ensembles underestimate the linear error

growth to various degrees. (As indicated earlier, the estimation of the parameters for
√
V S

has failed for the JMA ensemble.)

We recall from section 3.4.4.1 that we consider the parameter β a measure of the con-

tribution of model errors to the growth of the forecast uncertainty
√
TV , and a measure

of the contribution of the parameterization of model errors to the ensemble spread
√
V S.

(The model error parameterization techniques used by the ensembles of the different cen-

ters are listed in Table A.2.) Examining the results for β, it should always be kept in mind

that the estimates are particularly sensitive to the errors of curve fitting at the short forecast

times.

The most interesting conclusions that can be drawn about β are the following. An in-

efficient representation of the model error forcing by the ensemble is the most likely main

source of the underestimation of the forecast uncertainty by the NCEP ensemble (top right

panel of Fig. B.39). The good balance between TV and V S in the CMC ensemble (bottom

left panel of Fig. B.39) is the result of a compensation of the underestimation of the linear

error growth by an overestimation of the model error forcing. We note that CMC made
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major changes to their ensemble system, including the representation of model error forc-

ing, in 2013 (recall that our study is for 2012 data). The results of Reynolds et al. (2015)

suggest that those changes led to significant changes in the behavior of the CMC ensemble.

It is highly likely, therefore, that the Lorenz curves would behave differently than reported

here for the current operational configuration of the CMC ensemble. The estimate of
√
TV∞ is an estimate of the saturation level of the forecast uncertainty. All ensembles,

except for the ECMWF ensemble, underestimate this saturation level (
√
V S∞ <

√
TV∞).

For comparison, we also computed the parameters of Lorenz-curves for the more con-

ventional choice of the 500 hPa geopotential height rather than a combination of the virtual

temperature and the two horizontal wind components in the layer between 1000 hPa and

the 200 hPa levels. In these calculations, we computed
√
TV and

√
V S without localiza-

tion. (The expected value was estimated by temporal averaging only.) Because a norm

based on the geopotential height gives much less weight to errors at the smaller scales

than a norm based on energy, the parameters of these Lorenz curves are far less sensitive

to error growth at the smaller scales than those that we described earlier. As expected, we

found the curve fitting more robust for the geopotential height. In particular, we did not

have to exclude data points at the short forecast times and the curve fitting never failed.

The results are summarized in Table 3. The linear error growth is lower than before (1.2

rather than 1.5-1.6) and uniform for the different ensembles. All ensembles do a good job

with capturing this linear growth rate, which suggests that they are all tuned to perform

well for diagnostics based on the 500 hPa geopotential height. The ECMWF ensemble also

correctly simulates the contribution of model errors to the forecast uncertainty (β), while

the NCEP ensemble still underestimates the contribution of model errors to the forecast

uncertainty. Interestingly, the new Lorenz curves suggest that the CMC ensemble greatly

underestimates the contribution of model errors, while the earlier curves indicated that it

greatly overestimated the contribution of model errors. This discrepancy suggests that the
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CMC ensemble introduces the effect of model errors at the wrong scales and/or model

levels. We suspect that the changes made to the CMC system in 2013 greatly reduced this

discrepancy.

3.4.4.3 The Relationship Between d |M | /dt And |M |

We also prepared Lorenz-curve style figures for |M | (Fig. B.52), but without fitting

curves to the pairs of data points. These figures are evidently more dissimilar for the

four ensembles than those for
√
V S and

√
TV . This difference is most likely due to the

fact that model errors can be diverse, while the evolution of
√
V S and

√
TV is primarily

driven by the universal sensitivity of the synoptic scale transients to random perturbations.

In general, the shape of the curves is consistent with our earlier conclusion that the growth

of |M | is dominated by errors in the prediction of low frequency transients.

3.5 Results On Predictions Of The Structure Of Uncertainty

We examine the evolution of TV S in the forecasts by comparing it to the evolution of

TV and V S.

3.5.1 Diagnostics Based On Averages Over All Forecasts And Locations

For the examination of the spatiotemporally averaged form of TV S, we return to

Figs. B.39 and B.40. While comparing the evolution of TV S and TV , it should be kept in

mind, that the two diagnostics must satisfy the relation TV S ≤ TV at all forecast times.

In addition, smaller differences between TV S and TV indicate a better performance of

the ensemble in capturing the local forecast uncertainty.

The generally small differences betweens TV S (red curves) and TV (black curves)

beyond the 48-72 h forecast times for the TIGGE ensembles is in a good agreement with

the behavior that was reported by KSS for a research ensemble. This result confirms that

an ensemble which is operationally attainable in size can efficiently span the local linear
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space of the forecast uncertainty beyond forecast times 48-72 h.

For most ensembles, the asymptotic value of TV S tends to a level that is lower than

the saturation level of TV . The only ensemble that is virtually unaffected by this problem

is the ECMWF ensemble, while the ensemble that it affects most severely is the CMA

ensemble. This result for the ECMWF analysis suggests that it captures all important

forecast uncertainties that develop during the investigated time period.

A small difference between TV S and TV indicates that the ensemble captures the im-

portant uncertain forecast features, but it does not guarantee that the ensemble correctly

captures the magnitude of those uncertainties. That ideal situation is indicated by a small

difference between TV S and V S in addition to the small difference between TV S and

TV . The ECMWF ensemble satisfies this requirement at the forecast times where the dif-

ference between TV S and TV is small. As for the relationship between V S and TV S in

the other ensembles, with the exception of the JMA ensemble, V S tends to overestimate

TV S at the analysis and the short forecast times. In other words, the ensembles com-

pensate for part of the loss of the magnitude that results from not capturing all uncertain

analysis and forecast features by over-inflating the magnitude of the correctly captured

features. For most ensembles, this strategy pays off at later forecast times in the form of a

good match between V S and TV S (NCEP, UKMO and CMA), or between V S and TV

(CMC and KMA). The fact that for the JMA ensemble V S remains smaller than TV S at

all forecast times suggests that the magnitude of the initial perturbations in that ensemble

could be increased somewhat without negative effects on the performance of the ensem-

ble.The CMC ensemble tends to underestimate the magnitude of the uncertainties that it

captures correctly.

A comparison of the two left panels of Fig. B.39 suggests that the outstanding perfor-

mance of the ECMWF ensemble is due to a combination of a faster convergence of TV S

to TV in the first 48-72 forecast hour and a continued convergence beyond those forecast
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times, leading to an almost perfect fit of the two curves beyond forecast time 192 h .

3.5.2 Diagnostics Based On Averages Over All Forecasts

Figures B.53 and B.54 show the spatiotemporal evolution of TV S in the forecasts for

the ECMWF and the CMC ensembles, respectively. The main spatial patterns in these

figures are very similar to those of TV in Figs. B.42 and B.54, but the magnitudes of the

patterns are typically smaller for TV S. This result indicates that the ensembles correctly

predict the regions of main forecast uncertainty, but they do not capture all uncertain fore-

cast features in those regions. The ratio between TV S and TV tends to be smaller for the

CMC than the ECMWF ensemble, which indicates that the CMC ensemble is less efficient

in capturing uncertain forecast features.

A particularly good example for the ensembles capturing a large part of the structure of

the most important local uncertainty is the matching pair of local maxima in TV S and TV

over Iceland for the ECMWF ensemble at forecast time 360 h. This shows that the shift of

the related maximum in the spread (Fig. B.44) is the result of not capturing all uncertain

forecast features over Iceland and overestimating the spread over Newfoundland. Another

example is the local maximum of TV over the northeast Pacific and the related maxima of

TV S and V S. In that case, the maxima of V S is at the right location, but its magnitude

is overinflated, most likely by the representation of the effect of model uncertainty, to

compensate for the loss of spread due to the ensemble not capturing all uncertain forecast

features.

An overinflation of V S in large regions is a general property of the ECMWF ensemble

(Fig. B.55). This result suggests that while the parameters of the algorithms for the rep-

resentation of the effect of model uncertainty can be efficiently tuned to achieve the good

match shown between TV , V S, and TV S (Fig. B.39), but they do not guarantee a near

optimal representation of the local structure of the forecast uncertainty. We note that the
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CMC ensemble does not suffer from a similar problem.
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4. CONCLUSIONS∗

4.1 Regionally Enhanced Global Data Assimilation

Our results demonstrate that REG DA has the potential to improve global forecasts

without a significant increase in computation cost by using already available limited area

forecast information. For an NWP center that prepares operational global and regional

model products, the only extra computations associated with the approach are the interpo-

lation of the model field onto a common grid and the creation of the composite state.

We found that by including COAMPS information in the formation of the innovations,

we were able to improve global forecasts, especially over the North American region,

where the approach led to better prediction of both tropical cyclones and frontal passages.

While the results are more mixed for the Northeast Pacific and European regions, the

overall results for the NH are clearly positive. For the experiments shown in this paper,

the blending weight was kept constant across the different regions, but different weights

could be potentially used to achieve a near optimal performance in all regions.

The inclusion of regional model information in the global data assimilation system led

to improved track forecasts for Hurricane Sandy for both tested values of the blending

coefficients. The speed of the movement of Sandy along its track was better forecast

between 48 h and 96 h, while the cross track error was reduced the most at lead times 96 h

and 120 h.

The next step for this project is to evaluate the system at the operational resolution

of the Navy models. In these future experiments, NAVGEM and COAMPS will be run

at horizontal resolution T425 and 10 km, respectively, the blending will take place on a

∗Parts of Section 4 are reprinted with permission from “Forecast Uncertainty Dynamics in the THORPEX
Interactive Grand Global Ensemble (TIGGE)" by M. Herrera, I. Szunyogh, and J. Tribbia, 2016. Monthly
Weather Review, 144, 2739-2766, Copyright 2016 by the American Meteorological Society.

57



Gaussian grid that corresponds to a spectral resolution T1023, and the inner loop iterations

of NAVDAS-AR will be carried out at resolution of T119.

Since this project started, the Navy has transitioned to using a hybrid 4D-Var system,

which uses an ensemble-based approach to enhance the estimate of the background er-

ror covariance matrix. The REG DA system can easily be implemented within a hybrid

framework, with each global ensemble member having a corresponding regional ensem-

ble member. A composite state can then be created for each ensemble member to find an

ensemble based covariance matrix that can be combined with the static covariance.

In this study, we focused on the investigation of the effects of REG DA on the the

global model forecasts. The analyses produced by the approach can also provide initial

conditions for the limited area model. Our investigation into the effects of REG DA on the

COAMPS forecasts is underway and its results will be reported in a future study.

4.2 Forecast Uncertainty Dynamics In TIGGE

We proposed a description of the forecast uncertainty growth process summarized by

an itemized list in Section 3.4.3, which emphasizes the earlier rapid growth of uncertain-

ties at the synoptic-scales and the later shift of the dominant error growth towards the large

scales in the spatiotemporal evolution of forecast uncertainty. We found that the TIGGE

ensembles were able to capture the main characteristics of the error growth process. The

results also showed, however, that the accuracy of the quantitative prediction of the fore-

cast uncertainty was strongly system dependent. While the best performing ensembles

did well with respect to the spatiotemporally averaged diagnostics, the location dependent

temporally averaged diagnostics revealed that even the best performing ensembles had

large errors in the representation of the local properties of the uncertainty.

A result that was particularly interesting from both a theoretical and a practical point of

view was the typical growth of the error in the prediction of the mean state with increasing
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forecast time. Such a drift of the predicted probability distribution of the state in state space

greatly reduces the utility of the longer range (week 2 and beyond) ensemble predictions.

If the growth of the mean forecast uncertainty is primarily due to shortcomings of the

models and/or the ensemble generation techniques, there is hope that it can be greatly

reduced by refining the models and the ensemble generation techniques. However, if it is

due to some fundamental properties of the atmospheric dynamics, it may turn out to be

a major barrier to the extension of numerical weather forecasts into the sub-seasonal to

seasonal forecast range.

Our analysis showed that the growing errors in the prediction of the mean state were

dominantly due to errors in the prediction of low-frequency changes in the large scale

flow. One school of thoughts suggests that low frequency variability is a manifestation

of the internal (chaotic) variability of the atmospheric dynamics at the large scales (e.g.,

Legras and Ghil, 1985). If this was true and the models fully captured the internal vari-

ability of the atmosphere, the systematic errors in the prediction of the mean state would

not increase with forecast time and the ensembles were able to capture the related fore-

cast uncertainty. Hence, one potential explanation for our result is that the models cannot

fully capture the internal variability of the atmosphere; for instance, due to poor represen-

tation of the atmospheric dynamics in the tropics and/or atmosphere-ocean interactions.

The results of Reynolds et al. (2015), for example, suggest that ensemble forecasts tend

to lose temporal variability with increasing forecast time. Another potential explanation

is that the low frequency variability is not dominated by internal variability of the atmo-

spheric dynamics. In particular, some authors (e.g., Sura et al., 2005) have argued that low

frequency variability may be due to state-dependent variations of stochastic feedbacks.

Such state-dependent stochastic feedback in a long range prediction is provided by the

high-frequency (synoptic-scale) transients.
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Table A.1: Summary of the model parameters of the experiments.

Global
Resolution

Inner Loop
Resolution

Regional
Resolution

Intermediate
Resolution

Blending
Weight

Control T119L50 T47 N/A N/A N/A
Blend Skip T119L50 T119 N/A T319 N/A
REG DA 30% T119L50 T119 32 km T319 0.30
REG DA 100% T119L50 T119 32 km T319 1.00

Table A.2: Ensemble Forecast Systems Included From TIGGE

NWP Center
Representation of
Model Error and

Uncertainty

Initial Perturbation
Strategy

Max
Forecast

Lead Time

Ensemble
Size

ECMWF SKEB/SPPT
Singular Vectors &

EDA
360 Hr

50
Members

NCEP STTP
Ensemble

Transform &
Rescaling

384 Hr
20

Members

UKMO SKEB ETKF 360 Hr
14

Members

CMA None Bred Vectors 240 Hr
14

Members

CMC SKEB/SPPT EnKF 384 Hr
20

Members

KMA None Bred Vectors 240 Hr
23

Members

JMA SPPT Singular Vectors 216 Hr
50

Members

Météo-France Multi-Physics
Singular Vectors &
Evolved Singular

Vectors
72 Hr

34
Members
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α β eαt F∞
[day−1] [J

1
2day−1] (t=1 day) [J

1
2 ]

ECMWF
√
TV 0.39 0.0 1.5 86√
V S 0.32 3.7 1.4 86

NCEP
√
TV 0.39 1.1 1.5 90√
V S 0.46 0.0 1.6 80

CMC
√
TV 0.32 3.0 1.4 91√
V S 0.17* 8.5* 1.2* 88

JMA
√
TV 0.45 0.0 1.6 85√
V S X X X X

UKMO
√
TV 0.38 1.3 1.5 88√
V S 0.32 2.9 1.4 79

CMA
√
TV 0.51 1.3 1.7 91√
V S 0.28 2.6 1.3 80

KMA
√
TV 0.41 0.2 1.5 86√
V S 0.34 2.9 1.4 81

Table A.3: Estimates of the parameters of the Lorenz curves for the different ensembles.
The symbol X indicates parameters for which the estimation process failed, while * indi-
cates estimates that most likely have unusually large errors.
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α β eαt F∞
[day−1] [m day−1] (t=1 day) [m]

ECMWF
√
TV 0.16 1.5 1.2 126√
V S 0.18 1.5 1.2 120

NCEP
√
TV 0.15 3.0 1.2 129√
V S 0.20 0.7 1.2 111

CMC
√
TV 0.13 3.1 1.1 134√
V S 0.18 0.7 1.2 120

JMA
√
TV 0.17 2.7 1.2 118√
V S 0.18 2.3 1.2 106

UKMO
√
TV 0.16 1.5 1.2 126√
V S 0.16 1.7 1.2 108

CMA
√
TV 0.15 3.5 1.2 132√
V S 0.19 0.5 1.2 104

KMA
√
TV 0.18 1.6 1.2 122√
V S 0.18 1.6 1.2 109

Table A.4: Estimates of the parameters of the Lorenz curves for the different ensembles
using 500 hPa geopotential height without localization in the calculation of

√
TV and√

V S.
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Figure B.1: Comparison of the errors of the two options for the interpolations. Shown is
the near surface zonal wind field after an interpolation from T119 to T319 and then back
to T119. The left panel shows the result for option 1, while the right panel shows the result
for option 2 (the method used in all experiments.)
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Figure B.2: Illustration of the difference between the COAMPS and the NAVGEM surface
pressure before and after the correction of the COAMPS surface pressure for the orography
difference. The pressure values are shown along the latitude segment indicated by a black
line in the insert of the top panel. The top panel shows the surface pressure values for
NAVGEM and for COAMPS before and after the correction for the orography difference.
The bottom panel shows the difference between the NAVGEM surface pressure and the
corrected COAMPS surface pressure.
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Figure B.3: Virtual potential temperature analysis increment for the (top) blend skip con-
trol and the (middle) 50% REG DA experiment at the model level nearest to the surface.
The bottom panel is the difference between the two increments.
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Figure B.4: Schematic illustration of the implementation of REG DA on the U.S. Navy’s
model. Each filled circle represents a state vector for a given lead time. For simplicity,
only four time steps are shown here, but in reality the process is continuously cycled for
the entire time period of the experiments.
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Figure B.5: Same as Fig. B.4, except for the blend skip control experiment.
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Figure B.6: The three COAMPS regions used in the experiments.
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reduction of the cost function. Shown are the number of iterations for the control, the
blend skip control, and the 30% and 100% REG DA experiments.
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Figure B.8: The evolution of the residual with the iteration steps. Results are shown (left)
control, (middle) blend skip control, and (right) 30% REG DA experiment. Each line
represents different DA cycles.
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Figure B.9: Global root-mean-square of the surface pressure tendency for the first 12
forecast hours. Shown are the results for (left) control, (middle) blend skip control, and
(right) 30% REG DA experiment.

Figure B.10: Impact diagnostics for the control and the blend skip control experiments for
the geopotential height. Red shades indicate forecasts that are more accurate for the blend
skip control experiment, while blue shades indicate forecasts that are more accurate for
the control experiment.

Figure B.11: Impact diagnostics for the blend skip control and 30% REG DA experiments
for the geopotential height. Red shades indicate forecasts that are more accurate for REG
DA, while blue shades indicate forecasts that are more accurate for the blend skip control.
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Figure B.12: Impact diagnostics for the blend skip control and the (top row) 30% and
(bottom row) 100% REG DA experiments for the geopotential height. Red shades indicate
forecasts that are more accurate for REG DA, while blue shades indicate forecasts that are
more accurate for the blend skip control.

Figure B.13: Same as Fig B.12, except for temperature.
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Figure B.14: Same as Fig B.12, except for the zonal component of the wind.

Figure B.15: Same as Fig B.12, except for the meridonal component of the wind.
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Figure B.16: Evolution of the MSE difference between the experiments for the 850 hPa
geopotential height with forecast lead time. Shown are the results for the comparison
between the blend skip and the (left) 30% blend REG DA experiment and (right) 100%
blend REG DA experiment. Positive values indicate improvement and negative values
indicate degradation due to REG DA.
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Figure B.17: Same as Fig. B.16, except now for the 500 hPa level.
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Figure B.18: Box and whisker diagram for the MSE difference between the blend skip
control and the REG DA experiments for geopotential height at 850 hPa. Each marker
represents the mean of the distribution, the line is the median value, and crosses indicate
outliers.
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Figure B.19: Box and whisker diagram for the MSE difference between the blend skip
control and the REG DA experiments for geopotential height at 500 hPa. Each marker
represents the mean of the distribution, the line is the median value, and crosses indicate
outliers.
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Figure B.20: Evolution of the decomposition of the MSE difference for 850 hPa geopo-
tential height with forecast lead time. Shown are the results for the difference between the
blend skip control and the (top row) 30% blend experiment and (bottom row) 100% blend
experiments for the (left) NH, (second from left) North American domain (second from
right) European domain, (right) Northeast Pacific domain.
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Figure B.21: Same as Fig. B.21, except now for the 500 hPa level.
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Figure B.22: Decomposition of the MSE for the 1000 hPa geopotential height field at
analysis time. Shown are (top left) the MSE for the blend skip control experiment (top
right) the MSE differences for the blend skip control and the 30% REG DA experiment,
(bottom left) the difference between the error variance, and (bottom right) the difference
between square bias. In the three difference figures, red shades indicate improvement and
blue shades indicate degradation due to REG DA.
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Figure B.23: Vertical structure of the decomposition of the MSE difference between the
blend skip control and 30% blend REG DA experiment for geopotential height. The differ-
ent rows show results for different pressure levels, with pressure deceasing from bottom
to top. Shown are (left) the MSE difference, (middle) difference in the square bias and
(right) difference in the variance. Red shades indicate improvement and blue shades indi-
cate degradation due to REG DA.
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Figure B.24: Temporal evolution of the MSE difference between the blend skip control
and 30% blend REG DA experiment for geopotential height. The different rows show
results for different lead times. Shown are (left) the MSE difference, (middle) difference
in the square bias and (right) difference in the variance. Red shades indicate improvement
and blue shades indicate degradation due to REG DA.
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Figure B.25: Decomposition of the MSE for the 1000 hPa zonal wind field at analysis
time. Shown are (top left) the MSE for the blend skip control experiment (top right) the
MSE differences for the blend skip control and the 30% REG DA experiment, (bottom
left) the difference between the error variance, and (bottom right) the difference between
square bias. In the three difference figures, red shades indicate improvement and blue
shades indicate degradation due to REG DA.

88



(a) (b)

Figure B.26: Vertical structure of the decomposition of the MSE difference between the
blend skip control and 30% blend REG DA experiment for the two horizontal components
of the wind. The different rows show results for different pressure levels, with pressure
deceasing from bottom to top. Shown are (left) the MSE difference, (middle) difference
in the square bias and (right) difference in the variance. Red shades indicate improvement
and blue shades indicate degradation due to REG DA.
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Figure B.27: Temporal evolution of the MSE difference between the blend skip control
and 30% blend REG DA experiment for the two horizontal components of the wind. The
different rows show results for different lead times. Shown are (left) the MSE difference,
(middle) difference in the square bias and (right) difference in the variance. Red shades
indicate improvement and blue shades indicate degradation due to REG DA.
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Figure B.28: Decomposition of the MSE for the 1000 hPa air temperature field at analysis
time. Shown are (top left) the MSE for the blend skip control experiment (top right) the
MSE differences for the blend skip control and the 30% REG DA experiment, (bottom
left) the difference between the error variance, and (bottom right) the difference between
square bias. In the three difference figures, red shades indicate improvement and blue
shades indicate degradation due to REG DA.
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Figure B.29: Vertical structure of the decomposition of the MSE difference between the
blend skip control and 30% blend REG DA experiment for air temperature. The different
rows show results for different pressure levels, with pressure deceasing from bottom to top.
Shown are (left) the MSE difference, (middle) difference in the square bias and (right)
difference in the variance. Red shades indicate improvement and blue shades indicate
degradation due to REG DA.
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Figure B.30: Temporal evolution of the MSE difference between the blend skip control
and 30% blend REG DA experiment for air temperature. The different rows show results
for different lead times. Shown are (left) the MSE difference, (middle) difference in the
square bias and (right) difference in the variance. Red shades indicate improvement and
blue shades indicate degradation due to REG DA.
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Figure B.31: A case study of the evolution of the 120 h forecast error. The different rows
show results for individual forecasts initialized starting on (top) October 18th at 12 UTC
and increasing in initialization time towards the bottom. Shown are forecast errors for
(left) the blend skip control (right) REG DA 30% experiment and (middle) the difference
in the absolute value of the error between the blend skip and REG DA 30%.
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Figure B.32: Box and whisker diagram for the Hurricane Sandy track forecast errors. Each
marker represent the mean of the distribution and the line is the median value. The error
for the three experiments is shown as a function of lead time, with the sample size shown
in the bottom panel.
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Figure B.33: Schematic illustration of the decomposition of the track error into an along
track and a cross track component.
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Figure B.34: Box and whisker diagram for the Hurricane Sandy along track forecast error
component. Each marker represent the mean of the distribution and the line is the median
value. The error for the three experiments is shown as a function of lead time, with the
sample size shown in the bottom panel.
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Figure B.35: Box and whisker diagram for the Hurricane Sandy cross track forecast error
component. Each marker represent the mean of the distribution and the line is the median
value. The error for the three experiments is shown as a function of lead time, with the
sample size shown in the bottom panel.
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Figure B.36: Box and whisker diagram for the Hurricane Sandy minimum mean sea level
pressure forecast errors. Each marker represent the mean of the distribution and the line is
the median value. The error for the three experiments is shown as a function of lead time,
with the sample size shown in the bottom panel.
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Figure B.37: Zonal anomalies of the time-mean flow. Color shades indicate the zonal
anomalies for the investigated time period based on the ECMWF (left) analyses and NCEP
(right) analyses, while contours show the time-mean flow (geopotential height) at the
500 hPa level based on the same analyses.
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Figure B.38: The time-mean of the eddy kinetic energy conversion processes for the in-
vestigated time period. Color shades show the time mean of the eddy kinetic energy [J]
(top left), baroclinic energy conversion [J/day] (top right), barotropic energy conversion
[J/day] (bottom left), and horizontal transport of the eddy kinetic energy [J/day] (bottom
right).
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Figure B.39: The evolution of the diagnostics, V S, TV , TV S, and M2 in the forecasts for
four of the ensembles, averaged over the NH extra-tropics and all forecasts started between
January 1, 2012 and February 29, 2012. It should be noted that the models have different
max forecast lead times.
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Figure B.40: The evolution of the diagnostics VS, TV, TVS and M2 in the forecasts for
the remaining four ensembles, averaged over the northern hemisphere extra-tropics and all
forecasts started between between January 1, 2012 and February 29, 2012. It should be
noted that the models have different max forecast lead times.
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Figure B.41: Illustration of the robustness of the results of Figs. B.39 and B.40 to the
choice of the proxy for the true state. The diagnostics are shown for the UKMO ensemble
for the cases, in which the proxy for the true state is defined by (left) the ECMWF analyses
and (right) the NCEP analyses.
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Figure B.42: Spatial distribution of the average forecast uncertainty for the ECMWF en-
semble. Shown are TV (color shades) and the time mean of the geopotential analyses at
500 hPa (contours) at analysis and three different forecast times. Dashes indicate the south-
ern boundary of the region used for the computation of the spatial averages of Figs. B.39
and B.40.
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Figure B.43: Same as Fig. B.42, except for the CMC ensemble
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Figure B.44: Spatial distribution of the average ensemble spread for the ECMWF en-
semble. Shown are V S (color shades) and the time mean of the geopotential analyses at
500 hPa (contours) at analysis and three different forecast times. Dashes indicate the south-
ern boundary of the region used for the computation of the spatial averages of Figs. B.39
and B.40.
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Figure B.45: Same as Fig. B.42, except for the CMC ensemble
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Figure B.46: Spatial distribution of the mean uncertainty for the ECMWF ensemble.
Shown are M (color shades) and the time mean of the geopotential analyses at 500 hPa
(contours) at analysis and three different forecast times. Dashes indicate the southern
boundary of the region used for the computation of the spatial averages of Fig. B.39 and
B.40.
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Figure B.47: Spaghetti diagram for the ensemble of mean forecasts. The mean forecasts
were obtained by averaging each member of the ECMWF ensemble over the investigated
time period. Shown by grey contour lines are the 5350 gpm isohypses for the ensemble
members. The black contour line shows the time-mean of the ECMWF analyses for the
investigated time period.
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Figure B.48: Spaghetti diagrams for select ensemble systems at 360 hr lead time. The
mean forecasts were obtained by averaging each member of the ensemble over the in-
vestigated time period. Shown by grey contour lines are the 5350 gpm isohypses for the
ensemble members. The black contour line shows the time-mean of the ECMWF analyses
for the investigated time period.
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Figure B.49: Spectral evolution of the forecast uncertainty and the ensemble spread for the
meridional component of the wind vector at 500 hPa for the ECMWF and CMC ensembles.
Shown are the meridional averages of the zonal power spectra of the meridional wind
associated with (left) the ensemble spread and (right) the forecast uncertainty. The lowest
curves show the spectra at analysis time, while the other curves show the spectra with 2-
day increments of the forecast time (the top curves are for day 14 forecast time). The red
curve shows the linear regression of the maximum power and the associated zonal wave
number for all of the forecast times.
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Figure B.50: Lorenz curves for the forecast uncertainty (F =
√
TV ) for the ECMWF,

NCEP, CMC, and JMA ensembles.
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Figure B.51: Lorenz curves for the ensemble spread (F =
√
V S) for the ECMWF, NCEP,

CMC, and JMA ensembles.
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Figure B.52: Estimates of d |M | /dt as function of |M | (F = |M |) for the ECMWF,
NCEP, CMC, and JMA ensembles.
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Figure B.53: Spatiotemporal evolution of TV S (color shades) in the ECMWF ensemble
forecasts. Also shown is the time mean of the geopotential analyses at 500 hPa (contours).
Dashes indicate the southern boundary of the region used in the computation of the spatial
averages shown in Figs. B.39.
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Figure B.54: The same as Fig. B.53, except for the CMC ensemble.
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Figure B.55: The spatiotemporal evolution of the local ratio between V S and TV (color
shades) in the ECMWF ensemble forecasts. Also shown is the time mean of the geopoten-
tial analyses at 500 hPa (contours). Dashes indicate the southern boundary of the region
used in the computation of the spatial averages shown in Figs. B.39.
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