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ABSTRACT

In this dissertation, we develop several novel methods based on or related to least-

squares transport residual for solving deterministic radiation transport problems. For the

first part of this dissertation a nonlinear spherical harmonics (PN ) closure (TPN ) was de-

veloped based on analysis of the least-squares residual for time-dependent PN equations

in 1D slab geometry. The TPN closure suppresses the oscillations induced by Gibbs phe-

nomenon in time-dependent transport calculations effectively. Simultaneously, a nonlinear

viscosity term based on the spatial and temporal variations is realized and used in the ex-

tension to filtered PN method (NFPN ). NFPN determines the angular viscosity on the fly

and potentially fixed the issue existed in linear FPN that filtering strength needs to be pre-

defined by iteratively solving the problem. We further developed another type of NFPN

and demonstrate both of the two NFPN preserve the thick diffusion limit for thermal ra-

diative transfer problems theoretically and numerically.

We also developed several novel methods along with error analyses for steady-state

neutron transport calculations based on least-squares methods. Firstly, a relaxed L1 finite

element method was developed based on nonlinearly weighting the least-squares formula-

tion by the pointwise transport residual. In problems such as void and near-void situations

where least-squares accuracy is poor, the L1 method improves the solution. Further, a non-

converged RL1 still can present comparable accuracy. We then developed a least-squares

method based on a novel contiguous-discontinuous functional. A proof is provided for

the conservation preservation for such a method, which is significant for problems such

as k-eigenvalue calculations. Also, a second order accuracy is observed with much lower

error magnitudes in several quantities of interest for heterogeneous problems compared

with self-adjoint angular flux (SAAF) solution. Lastly, we extended the CD methodology

ii



with 1/σt-weighted least-squares functional to derive a CD-SAAF method and developed

a SN -PN angular hybrid scheme. The hybrid scheme can employ high order SN in regions

with strong transport feature to couple with low order PN in regions with diffusive flux. In

k-eigenvalue calculations, it shows superb accuracy with low degrees of freedom.
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1. INTRODUCTION

The dissertation is mainly composed of works on two topics in radiation transport

calculations. The first topic is about a spherical-harmonics-based angular discretization

method for solving the time-dependent transport equation and thermal photon transport

problems coupled with material heating. The second topic regards solving the steady state

neutron transport equation based on least-squares or related finite elements methods.

For the first half of this dissertation, we will introduce an angular viscosity for the

spherical harmonics method for solving time-dependent radiation transport and thermal

radiative transfer problems inspired by the least-squares transport residual. The second

half of this dissertation is the application of innovations based on the least-squares residual

of finite element methods for solving steady-state neutron transport equation.

Specifically, this dissertation will present discoveries in the following aspects of radi-

ation transport:

• A nonlinear PN closure in general dimension implied by least-squares transport

residual in moment variable space

• The first two nonlinear filtered PN formulations for time-dependent linear transport

and thermal radiative transfer

• A proof for asymptotic preservation of the filtering methods

• A fully implicit solving procedure for the filtered spherical harmonics

• A relaxed L1 finite element method for solving steady-state neutron transport prob-

lems

• A nonlinear weak boundary condition compatible with L1 finite element method
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• A contiguous-discontinuous least-squares (CDLS) finite element solving neutron

transport

• A proof of conservation preservation for CDLS

• A contiguous-discontinuous self-adjoint angular flux (CD-SAAF) differencing scheme

for solving neutronics problems

• A multi-angular coupling scheme based on CD-SAAF

1.1 Deterministic Radiation Transport Methods

There are two common approaches to solving radiation transport problems. Stochastic

or Monte Carlo methods compute the transport of particles with a classical statistical pro-

cedure that samples particle paths that are consistent with the physics. Particles move con-

tinuously in angle. On the other hand, one can employ deterministic methods which solve

the transport equation, a partial differential equation (PDE) defined in seven-dimensional

phase space. In such a case, discretization is necessary for all dimensions in the phase

space. In the work of this dissertation, we restrict ourselves to the deterministic method.

As one of the best known deterministic methods, discrete ordinates method (SN ) has

been actively heavily studied in the past decades for discretization and efficient solving.

In essence, SN relies on solving the transport equation in specific directions given by

angular quadrature and coupling the separated directional information by the scattering

process. However, it has issues when the radiation field possess strong anisotropy and

little scattering. Therein, particle information transmits dominantly in directions defined in

the quadrature causing the flux oscillations in angle. As a consequence, the radiation field

behaves as ray-like distributions in space[1] and thusly it is called “ray-effects". Increasing

number of directions would not necessarily effectively damp the ray-effects, which also

attracts people to develop mitigation techniques to alleviate the solution[2, 3].
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On the other hand, expanding the angular flux with the truncated spherical harmonics

functions constitutes the spherical harmonics (PN ) method. As the spherical harmonics

preserves rotational invariance, it is free from the curse of ray-effects. Also, as a spectral

finite element in angle, it possess the exponential angular convergence when the flux is

smooth in angle. However, with truncating spherical harmonics at a finite order, the trans-

port equation is approximated by a system of wave equations moving at multiple distinct

speeds, also known as wave-effects[4], which brings challenges for solving it and induces

numerous works on the solution techniques[5, 6, 7, 8, 9, 10, 11, 12, 13]. Also, the solu-

tion from PN might suffer from Gibbs phenomenon if angular discontinuities are present.

Consequently, negative angular flux occurs before introducing any spatial approximation

to the PN equations[1]. The focus, of the relevant work herein, is then on finding remedies

to improve the PN solution.

1.2 Filtered Spherical Harmonics

Many previous studies have focused on mitigation of PN negative solution[14, 15, 16,

1, 17, 18, 19]. Among the methods developed, the filtering is specially appealing due

to its robustness, moderate computational cost, easy implementation and plausible ac-

curacy[17, 20]. PN can be derived by minimizing the L2 norm of angular flux error in

moment variable space. By defining a PN minimization problem with the constraint of

an artificial diffusion in angle, one obtains the prototypical filtered spherical harmonics

(FPN ) method[17]. Since then, numerous different types of FPN are proposed and exam-

ined[20, 21, 22]. Despite the success of the FPN method, however, angular diffusion needs

to be predefined, which is cumbersome and requires knowledge of the solution.

In this dissertation, we will first develop nonlinear PN closures developed from mea-

suring the transport residual in moment variable space. During the study of such closures,

we further realize the viscosity part has the same unit as a cross section. What is more im-
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portant is that the viscosity is nonlinear and defined by the solution, inspiring us to develop

a FPN method based upon it.

We will see the test results demonstrating the accuracy of such a nonlinear FPN (NFPN )

method. Moreover, a proof for asymptotic preservation for the proposed methods will be

provided. Last but not least, a Newton-Picard nonlinear time stepping method is developed

and tested with the 2D Marshak wave radiative transfer problem.

1.3 Second Order Forms and Least-Squares Finite Element Methods

In many situations the transport problems are discretized in space by the discontinuous

finite element method (DFEM) because it can robustly handle contact discontinuities in

the solution and it behaves well in diffusive problems. However, DFEMs introduce extra

degrees of freedom (DoF) and are difficult for implementation on unstructured mesh[23].

On the other hand, in order to enable the use of continuous finite element method (CFEM),

a recasting from the transport equation, a first-order PDE, to a second-order PDE is con-

venient[19] to get stability of the scheme. We will call these recast equations second-order

forms, which include the well-known even parity (EP) equation[23, 24], self-adjoint an-

gular flux (SAAF) equation[25] and the more recently developed least-squares transport

equation (LSTE) [26].

Specifically, we are interested in SAAF and LSTE. With CFEM discretization, we will

prove: solving transport equation with least-squares finite element method is equivalent

to CFEM-LSTE and that solving the transport equation with 1/σt-weighted least-squares

finite element method is equivalent to CFEM-SAAF.

1.4 Issue and Remedy in Void and Absorber Transport Problems

It is natural to solve transport equation with DFEM in void. Essentially, it is to solve

linear advection equation with a specific flow direction. Void problems can be difficult

with many second-order forms (including SAAF and EP) due to the presence of the inverse
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cross section. LSTE was then developed to provide a better treatment in void. Yet, it does

not necessarily mean an accurate solution would be produced. In fact, solving multi-D

transport equation in void can be erroneous and solution can be oscillatory and negative

even with DFEM[27]. Solving transport with least-squares finite element using continuous

basis functions can also induce negative flux. We will show that even with fine mesh in

multi-D, angular flux produced with such a method can be negative.

As in data fitting, L2 performs well only when the data is smooth. When discontinu-

ity happens, least-squares generate spurious oscillations by trying to best fit every single

datum[28, 29]. In transport problems this occurs when large residual contributions are

over-corrected by a least-squares discretization. To address this problem, we develop a

method that approximately solves the transport equation using L1 finite element method.

Though L1 has been explored in fluid dynamics area, it has never been employed in neutral

particle transport.

The L1 method developed in this dissertation is based upon a simpler formulation

than the one given by Guermond[30]. Further, we will provide a scheme compatible with

source iteration process, which is necessary since SN angular scheme is used with the

L1 method. The other novelty is that a L1 boundary condition is developed, to enable

incident-boundary problems.

1.5 Second-Order Form Accuracy in Contact Problem

The transport process is mono-directional between collisions. Casting the transport

equation to a second order form, or using least-squares finite element methods, sym-

metrizes the streaming operator and transforms it to a directional Laplacian operator. In-

deed, continuous basis functions can be used to solve the recast equation. However, it

breaks the particle transport causality that how particles move depends on both what is be-

hind and what is in front of the particles. As a consequence, with the presence of material
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interface with cross section changes, solutions in thin side can be affected and distorted by

the thick material, without local mesh refinements around the interface.

An intuition to resolve this issue is to introduce discontinuity on those interfaces. We

will derive such a method by defining a new functional with weakly imposing angular

flux continuity on the interface. Specifically, we will demonstrate such a method conquers

the non-conservative issue of least-squares method in heterogeneous radiation transport.

We further apply the method with 1/σt-weighted least-squares method, which resembles

SAAF formulation within subdomains with doing upwinding on the interfaces. Lastly,

an angular coupling scheme is provided to enable the usage of SN -PN coupling at the

interface.

1.6 Outline

The reminder of this dissertation is organized as the following: In Section 2, we re-

view the governing equations for time-dependent transport, thermal radiative transfer and

steady-state neutron transport equations. We discuss the applications which those equa-

tions fit in. Section 3 developed a PN closure for solving time-dependent transport equa-

tion nonlinearly based on the spatial and temporal variations of the scalar flux. Thereby, we

develop a nonlinear angular viscosity. Section 4 applies the viscosity in solving transport

equation with PN method. From Section 6 through 9, we will focus on developing meth-

ods for solving steady-state neutron transport equation. Specifically, Section 6 derives the

CFEM spatial discretization for LSTE and SAAF. Further, discretizations with (weighted)

least-squares finite element methods will also be introduced. Section 7 developed a non-

linear method based L1 norm minimization of transport residual to improve the solution of

least-squares discretization, especially in void and absorber situations. Section 8 will de-

velop a contiguous-discontinuous least-squares method to address the conservation issue

existing in least-squares method. Inspired by the high accuracy by introducing disconti-
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nuity on material interface, we will develop a similar method based on SAAF formulation

in Section 9. What is more interesting is we will present a SN -PN angular discretization

scheme therein. Section 10 comprises our conclusions on the work presented herein and

outlines our recommendations for the future work in this area.
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2. PROBLEM DEFINITIONS

2.1 Boltzmann Transport Equation For Neutral Particles

When describing the neutral particle transport phenomena, the Boltzmann transport

equation can be written as:

1

V(E)

∂ψ(r⃗, Ω⃗, E, t)

∂t
+ Ω⃗ · ∇ψ(r⃗, Ω⃗, E, t) + σt(r⃗, E, t)ψ(r⃗, Ω⃗, E, t) = q(r⃗, Ω⃗, E, t),

(2.1)

where V(E) is the moving speed of the particle (length/time) for the particle with kinetic

energy of E; angular flux ψ1 is a function of position r⃗ = (x, y, z), direction Ω⃗(µ, φ)

and time t. In total, for a spatially 3D transport problem, the solution lives in a seven-

dimensional phase space. σt is the macroscopic total cross section (length−1) as a function

of r⃗ and E. q represents the total volumetric source rate (particles (energy)/area-time-

energy-steradian), which could consist of fixed source, fission source (neutronics), scatter-

ing source, Planckian source (thermal radiative transfer), etc.

To be complete, an incident boundary condition is applied for incident directions that

n⃗ · Ω⃗ < 0 where n⃗ the outward normal on the boundary ∂D

ψ(r⃗, Ω⃗, E, t) = ψinc(r⃗, Ω⃗, E, t), r⃗ ∈ ∂D, (2.2)

along with an initial condition (IC) for t = 0 s

ψ(r⃗, Ω⃗, E, 0) = ψIC(r⃗, Ω⃗, E). (2.3)

1Note that we use the same notation for both neutron angular flux (particles/area-time-energy-steradian)
and photon intensity (energy/area-time-energy-steradian)
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2.2 Steady State Neutronics Problems

In the neutronics part of this dissertation, we specifically focus on steady state prob-

lems, for which ∂t(·) = 0. In neutronics, the source term q can usually be separated into

fission source, scattering source and fixed source.

2.2.1 Continuous energy equation

With all the sources specified, the Boltzmann equation for neutron transport is ex-

pressed as:

Ω⃗ · ∇ψ(r⃗, Ω⃗, E) + σt(r⃗, E)ψ(r⃗, Ω⃗, E)

=

∞∫
0

dE ′
∫
4π

dΩ′ σs(r⃗, Ω⃗
′ → Ω⃗, E ′ → E)ψ(r⃗, Ω⃗, E) (2.4)

+
χ(E)

4π

∞∫
0

dE ′ νσf(r⃗, E
′)ϕ(r⃗, E ′) +

Q(r⃗, E)

4π
,

where the scalar flux ϕ(r⃗, E, t) is defined by:

ϕ =

∫
4π

dΩ ψ. (2.5)

χ is the fission spectrum (energy−1) and a probability function so that:

∞∫
0

dE χ(E) = 1. (2.6)

ν(r⃗, E) stands for mean number of neutron produced per fission reaction event and the

σf(r⃗, E) represents the macroscopic fission cross section (length−1). They are normally

combined as a single variable νσf denoting the average number of fission-induced neu-
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trons produced per collision event[3]. σs is scattering cross section which somehow rep-

resents the likelihood of a neutron getting scattered in a collision event (length−1/energy-

steradian). Scattering plays a crucial rule in neutronics that it transfers energy and mo-

mentum of a neutron without absorbing it and the physics behind it is quite complicated,

especially in the thermal neutron energy range in thermal neutron reactors[31, 32, 33, 34].

The fixed volumetric source (particles/volume-energy) is denoted by Q.

2.2.2 Multigroup and one-group approximation

Deterministic transport methods require discretizing every component in the seven-

dimensional phase space, including energy. The multigroup treatment is a commonly used

technique to discretize the transport equation in energy[35]. Essentially, the whole energy

range is divided into several groups with energy boundaries E0, · · · , EG starting from the

highest neutron energy (E0) accounted in the calculations, where G is the user-defined

total group number. Integrating Eq. (2.4) over the gth group range (Eg+1, Eg], one finds:

Ω⃗ · ∇ψg + σt,gψg =
G∑

g′=0

∫
4π

dΩ′ σs,g′→g(r⃗, Ω⃗
′ → Ω⃗)ψ′

g(r⃗, Ω⃗
′)

+
χg

4π

G∑
g′=0

νσf,gϕg′ +
Qg

4π
(2.7)

where

ψg =

Eg∫
Eg+1

dE ψ, (2.8)

χg =

Eg∫
Eg+1

dE χ, (2.9)
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Qg =

Eg∫
Eg+1

dE Q, (2.10)

and

ϕg =

Eg∫
Eg+1

dE ϕ. (2.11)

And ideally, the cross sections are defined as:

σt,g =

Eg∫
Eg+1

dE σtψ

ψg

, (2.12)

νσf,g =

Eg∫
Eg+1

dE νσfϕ

ϕg

, (2.13)

and

σs,g′→g =

Eg∫
Eg+1

dE

Eg′∫
Eg′+1

dE ′ σs(E
′ → E)ψ(E ′)

ψg′
. (2.14)

However, these definitions rely on the solution, ψ, which is undesired. Instead, one would

replace the ψ with the weighting function ω well approximating the solution[36, 33, 37,
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38]. Thereby, we have:

σt,g =

Eg∫
Eg+1

dE σtω(E)

ωg

, (2.15)

νσf,g =

Eg∫
Eg+1

dE νσfω(E)

ωg

, (2.16)

and

σs,g′→g =

Eg∫
Eg+1

dE

Eg′∫
Eg′+1

dE ′ σs(E
′ → E)ω(E ′)

ωg′
. (2.17)

where

ωg =

Eg∫
Eg+1

dE ω(E) (2.18)

A further approximation is the one-group approximation where there is only one group

in the whole energy range (G=1), i.e.

Ω⃗ · ∇ψ(r⃗, Ω⃗) + σt(r⃗)ψ(r⃗, Ω⃗) =

∫
4π

dΩ′ σs(r⃗, Ω⃗
′ → Ω⃗)ψ(r⃗, Ω⃗)

+
1

4π
νσf(r⃗)ϕ(r⃗) +

Q(r⃗)

4π
. (2.19)
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2.2.3 Operator forms

The transport equation is composed of different operators on the solution. Therein, the

equation shrinks to a form of several operators. For simplicity, we restrict the derivations

to one-group neutron transport equation

Lψ = Sψ + Fψ +
Q

4π
, (2.20)

where

L = Ω⃗ · ∇+ σt, (2.21)

Sψ(Ω⃗) =

∫
4π

dΩ′ σs(Ω⃗
′ → Ω⃗)ψ(Ω⃗′), (2.22)

and

Fψ =
1

4π
νσf

∫
4π

dΩ ψ. (2.23)

The operator form for non-fissile materials is given by

Lψ = Sψ +
Q

4π
. (2.24)
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2.2.4 k-eigenvalue calculations

In steady-state eigenvalue calculations for fission reactors, it is common to include an

effective multiplication constant keff[39], which measures the equilibrium between neu-

trons produced and removed[40].

Ω⃗ · ∇ψ(r⃗, Ω⃗, E) + σt(r⃗, E)ψ(r⃗, Ω⃗, E) = (2.25)
∞∫
0

dE ′
∫
4π

dΩ′ σs(r⃗, Ω⃗
′ → Ω⃗, E ′ → E)ψ(r⃗, Ω⃗, E) +

1

keff

χ(E)

4π

∞∫
0

dE ′ νσf(r⃗, E
′)ϕ(r⃗, E ′).

The corresponding multigroup approximation is expressed as:

Ω⃗ · ∇ψg + σt,gψg =
1

keff

G∑
g′=0

∫
4π

dΩ′ σs,g′→g(r⃗, Ω⃗
′ → Ω⃗)ψ′

g(r⃗, Ω⃗
′) +

χg

4π

G∑
g′=0

νσf,gϕg′ .

(2.26)

Moreover, when G=1, we have the one group approximation:

Ω⃗ · ∇ψ(r⃗, Ω⃗) + σt(r⃗)ψ(r⃗, Ω⃗) =

∫
4π

dΩ′ σs(r⃗, Ω⃗
′ → Ω⃗)ψ(r⃗, Ω⃗) +

1

keff

1

4π
νσf(r⃗)ϕ(r⃗),

(2.27)

or equivalently, the operator form:

Lψ = Sψ +
1

keff
Fψ. (2.28)
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2.3 Thermal Radiative Transfer

2.3.1 Thermal radiative transfer (TRT)

For TRT, the thermal photon is strongly coupled with the material. In such a situation,

the source q is a Planckian source. The problem is described by a radiation transport

equation for the radiation intensity ψ (energy/area-time-energy-steradian) and a material

energy equation[7, 19, 4] for the material temperature T (keV):

1

c

∂ψ

∂t
+ Ω⃗ · ∇ψ + σtψ =

1

4π
σsϕ+ σaB, (2.29a)

Cv
∂T

∂t
=

∞∫
0

dE σa (ϕ− 4πB) , (2.29b)

where c is the speed of light (length). Cv is the specific heat capacity (energy/volume-

temperature). B is the Planckian (energy/-area-time-energy-steradian) and expressed as:

B =
2E3

h3c2
[exp (E/kT )− 1]−1 (2.30)

Integrating the radiation transport equation over all the energy leads to the gray (one-

group) approximation[41]. The gray approximation is applied to all the TRT problems in

this dissertation. By integrating the Planckian B over all the energies, we will have:

∞∫
0

dE B =
acT 4

4π
. (2.31)

Then the gray radiative transfer equation with material equations is

1

c

∂ψ

∂t
+ Ω⃗ · ∇ψ + σtψ =

1

4π
σsϕ+

1

4π
σaacT

4, (2.32a)
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Cv
∂T

∂t
=

∞∫
0

dE σa
(
ϕ− acT 4

)
. (2.32b)

Often, due to the insignificance of the scattering in TRT problems[42], we neglect the

scattering to further simplify the radiation equation in Eq. (2.32a):

1

c

∂ψ

∂t
+ Ω⃗ · ∇ψ + σaψ =

1

4π
σaacT

4 (2.33)

2.3.2 Linear time-dependent transport equation

Radiation transport itself in TRT is difficult even without the material coupling[43].

The time-dependent linear radiation transport equation is usually used as a substitute to

TRT by introducing scattering and fixed sources:

1

V

∂ψ(r⃗, Ω⃗, t)

∂t
+ Ω⃗ · ∇ψ(r⃗, Ω⃗, t) + σt(r⃗)ψ(r⃗, Ω⃗, t) =

Q(r⃗, t)

4π
+

1

4π
σs(r⃗)ϕ(r⃗, t). (2.34)

2.4 Angular Approximations for Deterministic Transport

2.4.1 Legendre expansion of scattering

Though the scattering depends on both the incident and outgoing angles, we usually

assumes the dependence is only on the scattering angle µ0 = Ω⃗′ · Ω⃗. The double scatter-

ing cross section is azimuthally isotropic[36] so the cross section can be expanded using

Legendre moments of the cross section:

σs(r⃗, Ω⃗
′ → Ω⃗) =

σs(r⃗, µ0)

2π
=

Ns∑
l=0

2l + 1

4π
σs,l(r⃗)Pl(µ0), (2.35)

where Ns is the truncated order of maximum anisotropy of scattering used in transport

calculations.
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With the Legendre expansion, it is straightforward to prove that Legendre moments of

the cross section σl and spherical harmonics Y m
l is the eigenpair of the scattering opera-

tor[25], i.e.:

SY m
l = σlY

m
l . (2.36)

2.4.2 Truncated spherical harmonics (PN ) method

By expanding the angular flux as a linear combination of a series of spherical harmon-

ics with the expansion coefficients, also called moments ϕml , the angular flux in general

dimensions can be written as:

ψ(r⃗, Ω⃗) =
∞∑
l=0

l∑
m=−l

ϕml Y
m
l (Ω⃗), (2.37)

where ϕml =
∫
4π

dΩ Ȳ m
l (Ω⃗). The above expansion is exact in angle. The expansion in real-

world calculations, however, goes along with a truncation approximation with involving

spherical harmonics to a certain order. Generically assuming truncation occurs to l = N ,

then the PN expansion is re-expressed as:

ψ(r⃗, Ω⃗) ≈
N∑
l=0

l∑
m=−l

ϕml Y
m
l (Ω⃗). (2.38)

In 3D, |m| ≤ l and there are (N + 1)(N + 2) moments in total involved in the PN

expansion. In 2D, there are (N + 1)(N + 2)/2 relevant moments[5, 6, 7, 19]. In 1D,

total moment number is N + 1. By introducing the expansion into the transport equation,

one could derive the PN equations, as introduced in Appendix A. One could also derive

second-order forms of transport equations in moment forms, such SAAF-PN equation, as

briefly described in Appendix B.
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2.4.3 Discrete ordinates (SN ) method

The other angular discretization scheme we consider is the SN method, which es-

sentially approximate the angular integration over the whole sphere by using numerical

quadrature rules. Specifically, as a collocation method in angle[2], all the directions are

located as the quadrature abscissae. Namely[3]:

∫
4π

dΩ f(Ω⃗) ≈
M∑

m=1

wmf(Ω⃗m). (2.39)

Further, in SN approximation, the scattering operation turns into the following form

for a specific direction[3]:

Sψ =
Ns∑
l=0

2l + 1

4π
σl

l∑
m=−l

ϕml Y
m
l (Ω⃗m), (2.40)

and the moments are approximated using the quadrature rule.
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3. RESIDUAL INDICATED MOMENT CLOSURES IN CARTESIAN GEOMETRY*

3.1 Background and Motivations

Though PN has the spectral convergence in angle for smooth data and is ray-effect

proof, it suffers from negative radiation densities, which is prohibited in TRT problems that

it will drive material temperature to be negative and crash the simulation[17]. The reason is

that such a spectral method suffers from Gibbs phenomenon when simulating angular flux

discontinuous in angle[17]. It is actually true not only for PN , but also for any other linear

closure, such as DN closure. In order to mitigate the negativity, nonlinear closure must be

developed[12, 7]. Examples include the entropy based closures[15, 44] and positive PN

closure[14]. While eliminating the negative radiation densities, those methods, however,

are computationally intensive due to solving dual problems from the nonlinear process

every time step.

As a matter of fact, no analysis has been put on the closure effects on the transport

residual in the moment variable space. The section, therefore, starts off exploring the

effects of the angular closures on the least-squares measure of transport residual in moment

space. Thereby, two nonlinear closures will be derived. The resulting closures are more

damp the oscillatory solution nonlinearly based on the solution while remains relatively

computational effective.

*Part of this section is adapted from “Moment Closures Based on Minimizing the Residual of the PN

Angular Expansion in Radiation Transport" by Weixiong Zheng and Ryan G. McClarren, 2016. Journal of
Computational Physics[1] Copyright 2016 Elsevier. The author exercises his right granted by the copyright
agreement to use the published journal article for inclusion in the dissertation as scholarly use.
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3.2 Derivation of the Method

3.2.1 Error functional derivation of the PN equations

To simplify the analysis, we begin with an energy-independent transport equation for

neutral particles in slab geometry given by [35]

1

v

∂ψ(x, µ, t)

∂t
+ µ

∂

∂x
ψ(x, µ, t) + σtψ(x, µ, t) =

Q

2
+
σsϕ

2
. (3.1)

In this equation the angular flux of particles is given by ψ(x, µ, t) with units of particles per

area per time. Our notation is standard with x ∈ R being the spatial variable, µ ∈ [−1, 1]

as the cosine of the angle between the slab normal and the direction of flight, and t as the

time variable. The macroscopic total and scattering interaction cross-section with units of

inverse length is given by σt and σs, respectively. The scalar flux, ϕ(x, t), defined as

ϕ(x, t) =

1∫
−1

dµψ(x, µ, t). (3.2)

In order to solve Eq. (3.1) one needs to apply discretizations in space, angle, and time.

In this work we focus on the angular discretization, in particular we will expand the angular

dependence in Legendre polynomials as

ψ(x, µ, t) =
∞∑
l=0

Clϕl(x, t)Pl(µ), (3.3)

where the Legendre polynomials are given by

Pl(µ) =
1

2ll!

dl

dµl
[
(µ2 − 1)l

]
. (3.4)
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Here, ϕl(x, t) is an expansion function, and Cl is a normalization constant given by

Cl =

(∫ 1

−1

dµPl(µ)Pl(µ)

)−1

. (3.5)

This technique is known as the Pn method, and generalizes to general three-dimensional

geometries by making the expansion functions spherical harmonics [35].

The typical way that the expansion functions and normalization constants are generated

is via a Galerkin procedure where one assumes a Legendre expansion of the angular flux,

plugs it into the transport equation, and integrates the result against different Legendre

polynomials. An alternative derivation involves defining a error functional measuring the

difference of angular flux, ψ and the spherical-harmonics-reconstructed angular flux using

an expansion that is truncated beyond the l = N moment, ψ̄N [17]. We define the errror

functional as the integrated square of the difference between the true angular flux and the

truncated expansion:

Γ1(µ) =

1∫
−1

dµ (ψ − ψ̄N)
2, (3.6)

where

ψ̄N(µ) =
N∑
l=0

Clϕl(x, t)Pl(µ). (3.7)

In order to minimize the functional in Eq. (3.7), one forces ∂Γ1/∂ϕl = 0, leading to the

expansion coefficients being given by

ϕl =

1∫
−1

dµψ(x, µ, t)Pl(µ). (3.8)

Using this definition for the expansion coefficients, we take a certain Legendre poly-
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nomial and integrate it with the transport equation, Eq. (3.1), over µ to get:

1

v

∂

∂t
ϕl +

l

2l + 1

∂ϕl−1

∂x
+

l + 1

2l + 1

∂ϕl+1

∂x
+ (σt − σsδl,0)ϕl = Qδ0,l, l = 0, 1, · · ·N (3.9)

This system is not closed in the sense that the equation for the N th moment includes

the N + 1 moment, which is not included in our truncated expansion. A common closure

is to set ϕN+1 = 0. Thereafter, the closed PN equation system can be described as:

1

v

∂

∂t
ϕl +

l

2l + 1

∂ϕl−1

∂x
+

l + 1

2l + 1

∂ϕl+1

∂x
(1− δN,l)

+ (σt − σsδ0,l)ϕl = Qδ0,l, l = 0, 1, · · · , N. (3.10)

These equations are the standard PN equations. We will now change the derivation to

use a functional that minimizes the residual in the transport equation given a particular

expansion.

3.2.2 A functional based on the squared-residual

Rather than basing the functional on the squared difference between the expansion and

the true solution, one could also measure the squared residual of the PN approximation as:

Γ({ϕl′ : l′ = 0, · · · }) =
1∫

−1

dµ R2, (3.11)

where R is the residual computed when the expanded flux to order N is plugged into

the transport equation with an isotropic source. For simplicity, we consider the pure ab-

sorber problem (though removing this restriction leads to the same results) leading to the
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definition of residual as

R =

(
1

v
∂t + µ∂x + σt

) N∑
l′=0

2l′ + 1

2
ϕl′Pl′(µ)−

Q

2
. (3.12)

In order to minimize the functional Γ, we focus on finding moment sets which make

∂Γ/∂ϕl = 0 for all l. Through this path, we could gain an insight into the impact on the

residual due to the closure.

Taking the functional derivative of Eq. (3.11) leads to:

∂Γ

∂ϕl
= (2l + 1)σt

1∫
−1

dµ RPl(µ) + (2l + 1)
∂

∂ϕl

[
∂

∂x
ϕl

] 1∫
−1

dµ RµPl(µ)+

(2l + 1)
1

v

∂

∂ϕl

[
∂

∂t
ϕl

] 1∫
−1

dµ RPl(µ). (3.13)

Note that for l ≤ N , the following identity holds

1∫
−1

dµ RPl(µ) =
1

v
∂tϕl +

l

2l + 1

∂ϕl−1

∂x
(1− δ0,l) + σtϕl +

l + 1

2l + 1

∂ϕl+1

∂x
−Qδ0,l. (3.14)

Comparing Eq. (3.14) with Eq. (3.10), one sees that the integral is equal to zero, i.e.

1∫
−1

dµ RPl(µ) = 0, l ≤ N. (3.15)

Also, by using recurrence relation of Legendre polynomial, one has:

1∫
−1

dµ RµPl(µ) =
l

2l + 1

1∫
−1

dµ µPl−1(µ)R +
l + 1

2l + 1

1∫
−1

dµ µPl+1(µ)R. (3.16)
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Therefore, Eq. (3.13) can be rewritten as:

∂Γ

∂ϕl
= (2l + 1)

(
σt +

1

v

∂

∂ϕl

[
∂

∂t
ϕl

]) 1∫
−1

dµ RPl(µ)+

∂

∂ϕl

[
∂

∂x
ϕl

]l 1∫
−1

dµ RPl−1(µ) + (l + 1)

1∫
−1

dµ RPl+1(µ)

 . (3.17)

When l < N , plugging Eq. (3.15) back into Eq. (3.17) leads to:

∂Γ

∂ϕl
= 0, l < N. (3.18)

That is, all of the PN equations minimize the squared-residual for ϕl for all l < N . This

is why the omission of the scattering term does not affect our results: the scattering term

only appears in the l = 0 equation. It is in the l = N equation where the closure enters.

We will now explore what that equation tells us.

For l = N , the same substitution, omitting the algebraic process, results in:

∂

∂ϕN

[
∂

∂x
ϕN

] 1∫
−1

dµ RPN+1(µ)

 . (3.19)

Therefore, expanding the integral term in Eq. (3.19) gives us the final expression for the

N th order functional derivative:

∂Γ

∂ϕN
= (N + 1)

∂

∂ϕN

[
∂

∂x
ϕN

](
1

v
∂tϕN+1 +

N + 1

2N + 3

∂ϕN
∂x

+σtϕN+1 +
N + 2

2N + 3

∂ϕN+2

∂x

)
. (3.20)

This equation can tell us the impact of a closure on the residual: to this equation we can

substitute in a closure and see how it effects the derivative of the squared residual.
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3.2.3 Discussion on two conventional closures

Zero closure

Introducing the zero closure (ϕM = 0, M > N ) into Eq. (3.20) gives the following:

∂Γ

∂ϕN
= (N + 1)

∂

∂ϕN

[
∂

∂x
ϕN

]
N + 1

2N + 3

∂ϕN
∂x

. (3.21)

This equation indicates that the squared-residual will be minimized only if the spatial

derivative of ϕN is zero. This restriction is not expected to be satisfied in general problems.

Diffusive closure

Levermore et al. suggested a diffusive closure which takes a form similar to Fick’s law

for the relationship between ϕN+1 and ϕN [45]:

ϕN+1 = − 1

σt

N + 1

2N + 3
∂xϕN . (3.22)

They, therein, name the corresponding system DN in the sense that the closure is essen-

tially taking the definition of diffusion to a high-order closure. Also, Oh and Holloway in-

dependently derived a low order D2 method for transient problem by assuming the closed

moment ϕN+1 is time-independent such that one could directly gain the Fick’s law-like

relationship in Eq. (3.22)[46]. They name the method P3QS, short for P3 quasi static, be-

cause of the approximation used to find the closure.

Substituting Eq. (3.22) into Eq. (3.20), we get:

∂Γ

∂ϕN
= (N +1)

∂

∂ϕN

[
∂

∂x
ϕN

](
− N + 2

2N + 3

1

v
∂t

(
1

σt
∂xϕN

)
+

N + 2

2N + 3

∂ϕN+2

∂x

)
. (3.23)

This result indicates where the DN closure might be accurate. It will minimize the

squared-residual when the time derivative of ϕN is zero and when the spatial derivative
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of the ϕN+2 is zero. We cannot know for a general problem what the derivative of ϕN+2

will be. Nevertheless, we can predict when transients have died out in a particular problem.

In such an occasion we predict that the DN closure will be superior to the zero closure be-

cause the derivative of the ϕN+2 moment impacts the residual, rather than the ϕN moment

in the zero closure.

3.2.4 Two new closures

Approximations on higher moments

Equation (3.20) indicates that we should seek a closure such that:

1

v
∂tϕN+1 +

N + 1

2N + 3

∂ϕN
∂x

+ σtϕN+1 +
N + 2

2N + 3

∂ϕN+2

∂x
= 0, (3.24)

which is equivalent to introducing a higher order PN approximation without changing

the truncation order. The closure, leading to zero functional derivative in moment space,

would potentially lead to a minimized residual of the PN approximation. However, this

is not feasible practically since truncating at a certain order N would lead to the loss of

information of higher orders, e.g. ϕN+2. The value of Eq. (3.24) is that it indicates how

one could close the system to minimize the residual in moment space.

Formally, we can rewrite Eq. (3.24) to implicitly define a closure as

ϕN+1 = − 1

σt +
∂tϕN+1

vϕN+1

+
(N + 2)

(2N + 3)ϕN+1

∂xϕN+2

N + 1

2N + 3
∂xϕN . (3.25)

A moment-limited closure

The closure indicated by Eq. (3.25) shares a similar form with diffusive closure, except,

there are additional terms added to correct the closure. Though it is still a formal closure

since it depends on the value of ϕN+1 and ϕN+2, it implies adding spatial and temporal
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flux limiters to the diffusive closure could help minimize ∂Γ/∂ϕN . Therefore, we propose

the following closure:

ϕN+1 = − 1

σt +

∣∣∣∣∂tϕ0

vϕ0

∣∣∣∣+ ∣∣∣∣α∂xϕNϕ0

∣∣∣∣
N + 1

2N + 3
∂xϕN . (3.26)

A desirable feature is that if a proper α is used, one could prove that this form limits

the magnitudes of the closure as follows:

|ϕN+1| =
1

σt +

∣∣∣∣∂tϕ0

vϕ0

∣∣∣∣+ α

∣∣∣∣∂xϕNϕ0

∣∣∣∣
N + 1

2N + 3
|∂xϕN | (3.27)

≤ 1

α

∣∣∣∣∂xϕNϕ0

∣∣∣∣
N + 1

2N + 3
|∂xϕN | =

N + 1

α(2N + 3)
|ϕ0|

For instance, fixing α at (N + 1)/(2N + 3) would result in:

|ϕN+1| < |ϕ0| (3.28)

That is similar to the situation of limiting current to the scalar flux to stabilize the

system in moment space. We, therefore, name this approach the moment-limited diffusive

(MLD) closure.

A modification: transient PN closure

The moment limited closure could be modified to use ϕ0, instead of ϕN in the closure.

Specifically, the modified closure is expressed as:

ϕN+1 = − 1

σt +

∣∣∣∣∂tϕ0

vϕ0

∣∣∣∣+ ∣∣∣∣α∂xϕ0

ϕ0

∣∣∣∣
N + 1

2N + 3
∂xϕN (3.29)
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There are two motivations for this choice. On one hand, this selection is to make a form

similar to a high order extension of flux-limited diffusion with an additional constraint on

the temporal evolution of the solution (i.e. the ∂tϕ0 term). Moreover, in multidimensional

problems ϕ0 is the only moment that is a scalar, making the extension to full spherical

harmonics closures straightforward. In contrast, extending MLDN to multi-D requires

individual estimates of the spatial limiters for each single (N + 1)th moment equation.

For instance, for MLD3 in 2D with moments generated from complex-value spherical

harmonics, four different spatial limiters need estimating, and the situation is worse as N

is increased. This is another motivation for the simpler closure in Eq. (3.29).

To minimize the residual, the parameter α would depend on the unknown angular flux

distribution. For simplicity, we fix the α in Eq. (3.29) to a constant. Though the central

theme is similar to the MLD model in that one adjusts the diffusivity nonlinearly based on

the solution, we have not been able to prove that the closure limits the magnitude of ϕN+1

to be less than the scalar flux.

The test results in the following sections demonstrate this modification improves the

accuracy in the transients that arise when a majority of the particles in the system have not

had a collision. We, therefore, name the model the transient PN closure (TPN ).

Closure effects on residual functional derivative

By introducing the MLDN or TPN closures, the functional derivative in Eq. (3.20) can

be written as:

∂Γ

∂ϕN
=

(N + 1)(N + 2)

2N + 3

∂

∂ϕN

[
∂

∂x
ϕN

](
−1

v
∂t

(
1

σt + ν
∂xϕN

)
+

ν

σt + ν
∂xϕN + ∂xϕN+2

)
(3.30a)

MLDN : ν =

∣∣∣∣∂tϕ0

vϕ0

∣∣∣∣+ ∣∣∣∣α∂xϕNϕ0

∣∣∣∣ (3.30b)
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TPN : ν =

∣∣∣∣∂tϕ0

vϕ0

∣∣∣∣+ ∣∣∣∣α∂xϕ0

ϕ0

∣∣∣∣ . (3.30c)

Adding flux or moment limiters does not necessarily minimize the residual functional. In

fact, Eq. (3.30) automatically adjusts the functional derivative based upon the solution. In

occasions where the spatial derivative of the solution tends to be large, 1/(σt + ν) goes to

be zero while ν/(σt+ν) limits to one. Eq. (3.30) has the limit of PN ’s functional derivative.

When the solution is smooth and slowly varying in time, ν tends to be small and Eq. (3.30)

limits to DN . In effect, the closures improve the DN method during transients and preserve

the beneficial properties of that closure in the steady limit.

Generalization of TPN models

The form of the TPN closure is similar to the Larsen-type flux limited correction to

radiation diffusion[47] with an additional time derivative term. The form of a Larsen flux

limiter allows the impact of the limiter to be adjusted by making the terms in the closure

weighted by a power, rather than using a linear sum. We can perform the same adjustment

to our model by writing

ϕN+1 = − 1

σ̃

N + 1

2N + 3
∂xϕN (3.31a)

σ̃ =

(
σnt +

∣∣∣∣ 1

vϕ0

∂tϕ0

∣∣∣∣n + ∣∣∣∣α∂xϕ0

ϕ0

∣∣∣∣n) 1
n

(3.31b)

Typically, the value of n is set to be one or greater, though recent work has demonstrated

that there are problems where n < 1 can give improved solutions [48]. It is then of interest

to test the effects from different powers n on our closure.

3.2.5 Multi-D extension of TPN closure

DN equations

The DN model is identical to PN up to the (N − 1)th moment equations. Dropping

off the time derivative terms of the (N + 1)th moment equations of PN+1 system, one can
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easily find:

ϕmN+1 = − 1

σt

∑
χ=x,y,z

∑
l′,m′

Al′,m′

χ,N+1,m∂χϕ
m′

l′ , |m| ≤ N + 1 (3.32)

Plugging Eq. (3.32) into the relevant moment equations up to Order N will then lead to

the DN system. Note that Eq. (3.32) illustrates that DN is equivalent to adding a diffusive

correction to the PN−1 system[45].

TPN closure

It is straightforward to extend modify the DN model to be TPN by adding a correction

term ν to the denominator of Eq. (3.32):

ϕmN+1 = − 1

σt + ν

∑
χ=x,y,z

∑
l′,m′

Al′,m′

χ,N+1,m∂χϕ
m′

l′ , |m| ≤ N + 1 (3.33a)

ν ≡
(∣∣∣∣∂tϕ0

0

vϕ0
0

∣∣∣∣+ α
∥∇ϕ0

0∥
|ϕ0

0|

)
. (3.33b)

3.3 Numerical Details

The 1D MLDN and TPN closures are implemented with the diamond difference for

spatial discretization and a semi-implicit scheme as detailed below. At present only TPN

closure is extended to multi-D applications with discontinuous Galerkin finite element

method (DFEM) in space and semi-implicit scheme in time.

3.3.1 1D implementation

For our closures the highest order moment we keep in our system is N with N even.

WithN even, there areN first-order PDEs and one second-order PDE. This requiresN+2

total boundary conditions or N/2+ 1 conditions on each boundary in 1-D. We can use the
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standard Marshak conditions in this case where on the left boundary we satisfy

1∫
0

dµψL
inc(µ)Pl(µ) =

N∑
i=0

ciϕi −
cN+1

σt +

∣∣∣∣∂tϕ0

vϕ0

∣∣∣∣+ α

∣∣∣∣∂xϕkϕ0

∣∣∣∣
N + 1

2N + 3
∂xϕN ,

l = 1, 3, .., N + 1, , (3.34)

where k is equal to 0 or N , and ci =

∫ 1

0

dµ Pl(µ)Pi(µ). The conditions at the right

boundary are the same except the integral is over µ ∈ [−1, 0].

For a spatial discretization we use the diamond difference method with unknowns that

live at cell edges. For a uniform mesh with cell width h, the semi-discrete equations

become

h

v
∂tϕl,i +

l

2l + 1

(
ϕl−1,i+1/2 − ϕl−1,i−1/2

)
+

l + 1

2l + 1

(
ϕl+1,i+1/2 − ϕl+1,i−1/2

)
+ h (σt,i − σs,iδ0,l)ϕl,i = Ql,iδ0,lh, l = 0, · · · , N − 1 (3.35a)

h

v
∂tϕN,i +

N

2N + 1

(
ϕN−1,i+1/2 − ϕN−1,i−1/2

)
+ hσt,iϕN,i

− N(N + 1)

(2N + 1)(2N + 3)

(
∂xϕN,i+1/2

σ̃i+1/2

−
∂xϕN,i−1/2

σ̃i−1/2

)
= 0 (3.35b)

σ̃i = σt,i +

∣∣∣∣∂tϕ0,i

vϕ0,i

∣∣∣∣+ α

∣∣∣∣ϕk,i+1/2 − ϕk,i−1/2

hϕ0,i

∣∣∣∣ , (3.35c)

where k is either 0 or N , and

∂xϕl,i+1/2 =
ϕl,i+1 − ϕl,i

h
, (3.36a)

ϕl,i =
1

2

(
ϕl,i+1/2 + ϕl,i−1/2

)
, l = 0, · · · , N, (3.36b)
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σ̃i+1/2 =
1

2
(σ̃i+1 + σ̃i) . (3.36c)

The time discretization we use is semi-implicit that we evaluate all terms in Eq. (3.35)

at time level n + 1 (i.e., backward Euler) except σ̃, which is evaluated explicitly at level

n. This makes each time step a linear solve. If we implicitly update σ̃, each step would

require a nonlinear solve.

3.3.2 2D TPN implementation

Previously, DN has been discretized in space by the streamline diffusion continuous

finite element method[45] and finite volume method[46, 49] in space. We choose a vari-

ant of the DFEM finite element method in this work mainly for its preservation of the

asymptotic diffusion limit. In particular, we apply the local discontinuous Galerkin (LDG)

method, which was developed for time dependent convection-diffusion equation[50]:

∂u

∂t
+∇ · F(u) +∇a(x, y, z)∇u = 0. (3.37)

In the LDG method, one introduces an auxiliary variable q⃗, such that Eq. (3.37) can be

rewritten as:
∂u

∂t
+∇ · F(u) +∇ · q⃗ = 0, (3.38a)

q⃗ = a(x, y, z)∇u. (3.38b)

3.4 Numerical Results

All 1D tests in this section are performed with MATLAB[51]. The 2D TPN closure is

implemented with the C++ open source finite element library deal.II[52]. The results for

the plane source problem, two-beam problem and the Reed’s problem will be presented

for 1D closures and 2D TPN test results will be presented with line source problem.
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3.4.1 Plane source test problem

The medium in the plane source problem is a pure scatterer (σt = σs = 1). At time

t = 0, there is a pulsed source in the middle of an infinite slab. The initial condition is

ψ(z, µ, 0) =
δ(z)

2
. (3.39)

An analytic solution to the transport equation for this problem is available in the bench-

mark suite AZURV1[53]. The solution has a wavefront at z = ±vt. The number of

particles in the wavefront decays over time so that after enough time the wavefront has a

negligible magnitude. Therefore, late in time the solution is a smooth due to the scatter-

ing of particles from the initial pulse. Also, both the DN and PN methods approximate

the transport solution well at late times (e.g., t = 10 in Figure 3.1a), whereas early on in

the transient neither can capture the analytic solution. This is predicted by the analysis in

Section 3.2.3 because early in time the spatial and time derivatives of the solution are not

small. At x = 0 the D6 solution is closer to the analytic solution than the P7.

In the solution at earlier times (see Fig. 3.1b) there are spikes that are the numerical

representation of waves of uncollided particles. Since the time dependent PN system is a

hyperbolic wave equation system, particles moves in several discrete wave speeds. The

consequence is that the solutions will have N + 1 spikes, analytically represented by a

Dirac delta function. These artifacts from the PN (and DN ) discretization are known as

wave effects[4].

Comparison of MLDN and linear closures

In the results below, unless otherwise noted, we use a value of α = 2/3. Later, we

discuss this choice.

In Figure 3.2 we compare MLD and the diffusive closure on the plane source problem.
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Figure 3.1: Examples of PN and DN in plane source problem. Notice that early in time the
discrete wave speeds in the PNand DN solutions.

At an early time, Figure 3.2a, the wave effects are greatly reduced in the MLD6 model

relative to D6 and P7. Furthermore, the solution away from the waves is much closer to

the transport solution. At later time, Figure 3.2b, the wave effects in P7 and D6 are still

present whereas the MLD6 solution has the overall shape of the transport solution with

small oscillations near the D6 waves.

Comparison of MLDN and TPN

We next compare the two models developed in this paper. At t = 1s in the plane

source problem, as shown in Figure 3.3, with both N = 6 and 8, the TPN model gives

results closer to the transport solution than the MLDN model.

At 5s after the pulse, it is seen that in Figure 3.4, both closures do not produce artificial

waves in the solution to the degree that DN or PN solutions do. The MLDN and TPN

results basically agree to the transport solution in the middle except the solution near the

wavefronts in the ±5 cm. At the wavefront none of these methods captures the solution
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Figure 3.2: MLDN and linear closure solutions to the plane source problem at different
times.
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Figure 3.3: MLDN and TPN comparison at 1 s.

correctly.

In summary, both the MLDN and TPN closures effectively damp the unphysical modes
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(large spikes), which leads to relatively accurate solutions for the transport problem during

short-time transients. Moreover, on every problem we have tested, the TPN method was

superior to the MLDN method. Henceforth, we will focus on this method.
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Figure 3.4: MLDN and TPN comparison at 5s.

The impact of spatial and temporal terms in the model

To further investigate the importance of different terms in the closure, we individually

turn on/off different derivatives in the closure. It is observed that, at 1 s in the plane source

problem in Figure 3.5a using only the spatial derivative term in the closure makes the

solution flat in the middle and, as a result, too low. On the other hand, merely using the

temporal derivative terms retains a better flux profile in the slab center, while the artificial

spikes are not yet dampened effectively as with spatial limiter at later times in Figure

3.5b. Note that the moving modes propagate further than those with the spatial limiter.

Therefore, we conclude that both derivative terms in the closure contribute to the accuracy
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Figure 3.5: Illustration of the impact of the spatial and temporal derivative terms in the
TPN closure.

of the model.

Impact from Power n of TPN models

It is observed that for low order TPN approximations, varying the power n does adjust

the dissipation in the solution. As illustrated in Figure 3.6, the originally proposed value,

n = 1 retains the correct value near x = 0. Simultaneously, n = 2 makes the solution

flatter. On the other hand, reducing n to 1/3 amplifies the dampened spikes and makes the

solution more similar to the even PN flux profile in that it has a stationary mode at x = 0.

It would suggest small powers should be avoided. Yet, all solutions agree with each other

when the transient is passed. We have also observed that with increasing N the solution

becomes less sensitive to the power n for n > 1.

Spatial derivative coefficient α

In our initial derivation of the TPN model we surmised that the value of α should be

between 1/3 and 1 because it appears in a similar way to the coefficients of the PN Ja-
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Figure 3.6: Effects from different power n on the in Eq. (3.31b).

cobian. Since these coefficients range from 1/3 through 1, we therefore used the median

value 2/3.

We present a limited parameter study for α in Figure 3.7. Therein, the flux profiles

vary in several respects. With the smallest value shown, α = 1/3, the solution is much

closer to the DN solution: the solution is too low in the middle, and the wave effects are

amplified. On the other hand, increasing α to 1 appears to amplify and spread the waves

in the solution in addition to increasing the solution near x = 0 too much.

Compared with 1/3 and 1, 2/3 provides the most accurate and least oscillatory result

among the three choices. We have performed more studies using many more values of α

and found that α values of 0.5 through 0.7 are comparable to the 2/3 solution.

3.4.2 Two-beam problem

The second test problem is a highly absorbing problem with isotropic incident angular

fluxes on both sides of a slab. The scattering ratio, c = σs/σt, of the medium is 0.1.

The original test problem is in steady state[44]. We, however, run this problem in time-
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Figure 3.7: Effects from different coefficients α in the closure. With α = 0 the spatial
derivative of the scalar flux has no impact on the closure.

dependent mode to see how different methods approach the steady state solution. These

results are shown in Figure 3.8.

Both TPN and DN converge to the reference solution at 10 s. Theoretically, incident

particles from different sides of the slab are not supposed to meet before t = L/(2v) = 5

s. Yet, D2 artificially moves particles faster than their physical speeds, making the solution

greater than 10−8 at x = 0 as early as t = 2s. On the other hand, the TP2 model retains a

sharper wavefront and as a result the solution at x = 0 is below 10−8 until 5 s.

Though the incident flux is isotropic on the boundary, the angular flux gradually turns

to become strongly anisotropic and form a beam-like distribution in the middle of the slab

due to the strong absorption. This beam-like behavior of the angular flux is a potential

challenge for the model. Some closure models, such as the entropy based closure model

(MN ), have difficulty in resolving the beam. For the MN method, it tends to have artifi-

cial shock in the middle (Ref. [15, 44]). It is also suspected in Ref. [15] that this shock

could possibly caused by small errors when solving minimization problem governing the

MN method. Fortunately, the TPN model does not have the artificial shock in this problem.
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Figure 3.8: Comparison between TP2 and D2 (P3QS) solutions to two-beam problem.

3.4.3 Reed’s problem

The last test problem in this work is Reed’s problem [54]. It contains several regions

with largely varied properties including strong pure absorbers, voids, strong source and

material discontinuities.

The numerical example in Figure 3.9 is TP4 and D4 solutions of Reed’s problem. In

voids, in order to make the diffusive closure well-posed, an artificial absorption ζ is cho-

sen:

σ′
t = σt + ζ, (3.40)

where ζ is a small number, which is fixed at 10−8. For the TPN model we only need a

correction when σ̃ is zero, (i.e., in voids when then the scalar flux is constant in space and

time). The correction we use is

σ̃′ = σ̃ + ζ, (3.41)

We use 800 cells in the discretization for D4, D6, and TP4. The SN solutions are cal-

culated with cell centered difference using 16,000 cells. We observe that TP4 retains an
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Figure 3.9: Reed’s problem solved with D4, TP4, and D6 compared with S32.

accuracy comparable to D6 and S8. As a comparison, D4 displays comparable accuracy to

S6. Given that in 1-D slabs, SN+1 gives identical solutions to PN , this result is evidence

that the DN and TPN models improve the solution as indicated by our residual analysis.

As our analysis also predicts, the TPN solution is superior to both DN and PN .

Overall, as illustrated in Figure 3.10, the pointwise errors from TP4 are comparable

to D6 and smaller than those from D4 method in most regions especially for regions with

large errors (> 10−2). We also observe that the boundary treatment in Eq (3.34) brings

about 0.8% of error, slightly higher than D4. However, the global L1 norm of error for D4

(estimated based on the fine-mesh S32 solution) is 0.129 and is larger than that of TP4,

which is 0.061. For comparison, the D6 solution has an error of 0.066.

3.4.4 2D line source problem

The line source problem is a 2D variation of the plane source problem in 1D slab

geometry. The problem is an infinite, pure scattering medium (σt = σs = 1) with no
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Figure 3.10: Errors as a function of space in Reed’s problem.

(a) Analytic transport (b) S8

Figure 3.11: 2D line source problem at t = 1 s with transport and SN .

source. The initial condition is given by[53]:

ψ(x, z, Ω⃗, 0) =
δ(x)δ(z)

4π
. (3.42)

S8 result in Figure 3.11b is achieved from Ref. [17]. The analytic solution is shown in
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Figure 3.11a from the benchmark code AZURV1[53]. PN , DN and TPN results in Figures

3.12 and 3.13 are achieved with ∆t = 0.02 s and ∆x = 0.02 cm, respectively. The wave-

front at r =
√
x2 + z2 = vt, essentially a moving delta function, will induce oscillations

and negative scalar fluxes in PN and DN methods as illustrated in Figures 3.12a and 3.12b.

Meanwhile, for this streaming dominated problem, SN results have strong ray-effects as in

Figure 3.11b. On the other hand, TP2 solution presents plausible results in Figure 3.13a.

Increasing the angular order to TP6 will further improve the solution as illustrated in Figure

3.13b.
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Figure 3.12: 2D line source problem at t = 1 s with DN and PN .

Unlike the 1D TPN model, multi-D TPN models for different angular orders do not

have a single coefficient α, therefore, the results shown in Figure 3.13 are obtained with

different coefficients. Figures 3.14a and 3.14b presents the diagonal lineout plots of TP2,

and TP6 with different α. Changing the α for each angular order can effectively change

the results, as observed in 1D. Unfortunately, the “optimal" values for different angular

orders are different, e.g. while α = 0.1 would lead to relatively accurate TP2 results, the
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“optimal" α changes 1.5 for TP6.
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Figure 3.13: 2D line source problem at t = 1 s.
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Figure 3.14: TP6 results with different α.

2D PN , DN and TPN are solved with (semi-)implicit discretization in time and DG/LDG
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method in space. A GMRES solver is used with the Jacobi preconditioner. A comparison

of timings for TPN and linear closures is made in Table 3.1. Simulations were run on a

Mac mini with Intel i7-3615 processor and 16GB 1600MHz DDR3 RAM.

Table 3.1: Timings for line source problem at 1s.

P3 TP2 D2

Setup+assembly time [s] 6.9 7.4 7.2
Estimate+assemble limiter time [s] 0 16.5 0
Solving+preconditioning time [s] 124.6 215.6 562.8

Total CPU time [s] 131.5 228.5 570.0
P5 TP4 D4

Setup+assembly time [s] 20.6 19.5 18.5
Estimate+assemble limiter time [s] 0 28.3 0
Solving+preconditioning time [s] 383.5 482.0 1308.8

Total CPU time [s] 404.1 529.8 1327.3
P7 TP6 D6

Setup+assembly time [s] 43.7 42.4 43.0
Estimate+assemble limiter time [s] 0 153.2 0
Solving+preconditioning time [s] 734.5 760.4 2424.7

Total CPU time [s] 778.1 956.0 2467.7

With LDG method, DN and TPN have the same number of degrees of freedom (DoFs)

as PN+1 with the same basis functions used on the same mesh. The overall CPU time

of TPN is much shorter than DN . The hypothesis is that the DN model sets the time de-

pendence of ϕmN+1 to be zero, forcing particles in that mode to move with infinite speed.

This makes DN model physically ill-posed in time dependent problems. Numerically, the

ill-posedness causes the degradation of the preconditioning efficiency.

On the other hand, though TP2’s solving time is around 73% higher than P3, TP6’s

solving time is comparable to P7. The correction brought by flux limiters affects not only

the physical properties as discussed in 1D scenarios, but also the computational proper-
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ties. Overall, we conclude TPN would be comparably efficiently solved as PN in multi-D

applications.

3.5 Summary

In this section, we analyzed the effects on the PN approximation residual caused by

different closures. We provide a new explanation of the reasons the conventional PN and

PN with diffusive closure has issues in transient simulations, such as the pulsed plane

source problem in 1D and line source problem in 2D. Based on the analysis, we proposed

two novel closures, the “moment-limited" closure for 1D and “transient” PN closure in 1D

and 2D. The results we presented indicate that, relative to other linear closures, our new

closures perform better on a variety of problems, including the notorious plane source

problem and line-source problem.

Last but not least, it can be realized that the ideas behind the TPN model could be

used in other transport models. For instance, this type of closure could be applied to the

simplified PN method [55].
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4. NONLINEAR FILTERED MOMENT CLOSURE FOR SIMULATING

TIME-DEPENDENT RADIATION TRANSPORT

4.1 Introduction

In Section 3, the TPN closure, a nonlinear PN closure, is proposed for solving time

dependent linear radiation transport equation with PN expansion in angle. Indeed, it over-

comes several difficulties in PN and improves it: the TPN model alleviates the negative

solutions where PN suffers from Gibbs phenomenon[17]. Also, as a modified diffusive

closure, it improves the DN closure by setting the boundedness of the solution and in-

creasing the implicit solver efficiency.

However, there are realizable downsides found in multi-D test problems. While TPN is

quite efficient for high order PN in 1D and low order PN in general dimension, it does not

perform consistently when extending to high order PN in multi-D. Therein, the solution

is quite sensitive to the multiplier applied to the nonlinear viscosity. Also, as increasing

the PN order, boundedness of the model observed in 1D tests is weakened and negative

solution manifests.

Despite the issues mentioned above, TPN still has its significance that it derives a non-

linear viscosity that would provide a mechanism to enable the PN angular model to be

adjusted in light of the solution. In fact, efforts have been put on angular viscosity to

improve PN model. The prototypical angular viscosity is yet implemented in a filter ini-

tially proposed by McClarren and Hauck[17]. Several other filtering models or solving

techniques are then developed thereafter[21, 22, 18]. Such a method, in essence, is equiv-

alent to adding artificial anisotropic scattering in the moment system. With a carefully

prescribed viscosity, the filtering presents plausibly accurate results where PN solution is

either erroneous or negative.
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An intuition is then to combine the idea of filtering and the nonlinear viscosity devel-

oped in previous section. Such a combination, on one hand, might fix the issue existing in

high order TPN ; on the other hand, would rather provide an automatic prescription of the

amount of artificial scattering used in the filtering.

4.2 Theory

4.2.1 Minimization view of multi-D PN expansion

Appendix A introduces how PN equations are formulated: by testing the transport

equation, with expanding angular flux as a linear combination of finite orders of spherical

harmonics, using spherical harmonics up to order l = N in angular space, one obtains a

series of equations for the expansion coefficients, also called the moments. In fact, the

PN method may also be viewed as a finite element method in angle. The derivation can

also come from minimizing least-squares angular error. For multi-D PN , the derivation

is identical to 1D slab geometry (see Eq. (3.6)) except the angular basis is changed from

Legendre polynomial to spherical harmonics. Let us define the least-squares measure of

PN angular flux errors in angle as the following functional:

ΓPN
=

∫
4π

dΩ (ψPN
− ψ)2 . (4.1)

Minimizing the functional above, we recover the PN projection:

ϕml =

∫
4π

dΩ ψ(Ω⃗)Ȳ m
l (Ω⃗), (4.2)

which is identical to the relationship gained from utilizing the orthogonality in Eq. (A.2).

The PN equations can then be generated by performing the integration
∫
4π

dΩ (·)Ȳ m
l (Ω⃗) to

transport equation.
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4.2.2 Linear filtering overview

Angular penalty based filtering

As a spectral method in angle, PN attains the exponential convergence for smooth an-

gular flux. When discontinuity manifests in angle, however, a truncated PN expansion suf-

fers from Gibbs phenomenon and consequently oscillation and negativity occur to angular

flux before introducing any spatial discretization. To damp those artifacts, McClarren and

Hauck introduce artificial diffusion in angle, namely:

ΓFPN
=

∫
4π

dΩ (ψFPN
− ψ)2 + α

∫
4π

dΩ
(
∇2

Ω⃗
ψFPN

)2
, (4.3)

where α is a penalty coefficient and

ψFPN
=
∑
l,m

Y m
l ϕ

m
l,FPN

. (4.4)

By recognizing ∇2
Ω⃗
Y m
l = −l(l + 1)Y m

l , we can minimize Eq. (4.3) and approach:

ϕml,FPN
=

ϕml
1 + αl2(l + 1)2

. (4.5)

In order to preserve thick diffusion limit, α is argued to be defined as

α =
c∆t

∆xN2

1

(σtL+N)2
(4.6)

With spatial and temporal discretizations, the filtering is equivalent to adding the fol-

lowing viscosity νl to the lth moment equations:

νl =
l2(l + 1)2

c∆tl2(l + 1)2 +∆xN2(σtL+N)2
, l = 1, · · · , N, (4.7)
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That being said, a viscosity term D is inserted into the PN equation system shown in Eq.

(A.3):

1

c

∂ϕ⃗

∂t
+
∑

χ=x,y,z

Aχϕ⃗+ (Σt − S+D) ϕ⃗ = Q⃗, (4.8)

where D = diag(0, ν1Ib1 , · · · , νNIbN ).

Variations

Despite the success in damping angular oscillations, the viscosity in Eq. (4.7) does

not have a proper continuum limit as ∆x,∆t → 0[17]. In fact, with shrinking the mesh

and time steps, the filter becomes ill-defined. Yet, it illuminates that adding a viscosity in

moment equations is resembling introducing angular diffusion. Since then, other works

alternatively defines viscosity without such a minimization rationale to overcome PN ’s

issue. As an example, Olson[22] proposed the following variation:

νl = σeff

(
l

N

)k
, l = 1, · · · , N, (4.9)

where k is a coefficient chosen by modeler. σeff is an effective cross section. In fact,

Frank et al. proposed this viscosity independently in another way and name it exponential

filter due to the way of their formulation[20]. Radice, on the other hand, examined four

filters[21]. Ahrens proposed another filter in order to gain a better transition when changing

the PN order[56]. Overall, these variations obtain accuracy enhancements compared with

PN in a wide range of test problems, as observed in the prototypical filtering.

Related issues

A potential issue for the filters developed in previous works[17, 22, 21, 18, 56] is that

they are “linear". It means the viscosity is unrelated to the radiation field information.
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However, in problems with thin-thick contact interface where shadows might form, the

filtering globally applied in the problems would bring in over diffusion of the solution.

Though strategies such as defining localized filter[18] overcomes this shortcoming, it re-

quires knowledge of the problem and solution and cannot easily be generalized.

Besides, the preservation of thick diffusion limit for the linear filters, except McClar-

ren’s, is not taken into account. Adding viscosity to the first moment equations without

caution might break the the preservation, which is crucial for simulating TRT problem

with thick materials.

4.2.3 Constructing a nonlinear filter

Formulation

In Section 3, while defining a PN closure, we realized that the change to the cross

section in the closure takes a similar form with the limiter in flux limited diffusion, which

possesses the unit of a cross section. A more favorable property is that the factor is de-

termined on the fly based on the solution variations in space and time. This naturally fit

in the filtering method as our expectation. Then we propose to construct a nonlinear filter

based on the facts above as1:

νl = cN

(
l

N

)k (∣∣∣∣∂tϕ0
0

ϕ0
0

∣∣∣∣+ ∥∇ϕ0
0∥

|ϕ0
0|

)
, l = 2, · · · , N (4.10a)

D = diag (0, 0Ib1 , ν2Ib2 , · · · , , νNIbN ) (4.10b)

We leave the filtering out of the first moment equation such that the thick diffusion limit

can be preserved, as will be discussed in Section 5.

1k is fixed at 3 in the dissertation. The effects of changing k is referred to the work in [18].
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Significance and issue

We expect the angular dissipation is added only when necessary. The calculation of

such a viscosity, unlike other nonlinear moment method such as positive PN [14] or the

entropy based MN requiring solving the dual problems[49, 15], which is computationally

intensive and complex, is simple and scalable[1], making the real-world application more

approachable.

Still, the viscosity has the coefficient cN not determined We would rather leave it prob-

lem dependent. For problems tested in this section, cN is set to be 0.5 ∼ 1, which accom-

plishes the work well. Indeed, it is the disadvantage. But it also gives modeler freedom

to tune the strength of the nonlinear filtering. On the other hand, the nonlinear filtering

adds flexibility of assigning the value to cN . Even with improperly large value of cN for

transient problems such as the line-source test, NFPN would produce acceptably accurate

solution when the solution varies slowly in space and time.

4.3 Discretizations and Implementation

Spatially discretization is carried out by using DFEM with bilinear basis in considera-

tion for the preservation of thick diffusion limit (see Section D.1). In time, a semi-implicit

integrator which treats the viscosity explicitly using information from previous time steps

while engaging backward Euler method for the other parts, as described in Section 3. In

Section 5, when interfacing the radiation with material coupling, a fully implicit scheme

is realized to ensure the stability.

4.4 Numerical Results

The testing codes for this section are implemented with the C++ based open source

finite element library deal.II[52]. The results for the line source problem, checkerboard

problem and simplified Hohlraum problem will be presented.
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(a) D14 (b) P21

Figure 4.1: 2D line source problem at t = 1 s with linear closures.

4.4.1 Line-source test problem

The line-source problem is tested again. As shown in Figures 3.12a and 3.12b, low

order linear closures like PN and DN would produce notorious oscillations. Factually,

simply increasing the order of linear closures does not ensure the convergence to transport

solution, as illustrated in Figures 4.1b and 4.1a, which are for P21 and D14. Graphically,

with NFP9 (see Figure 4.2a), the scalar flux agrees with transport solution in most part of

the domain except around the wavefront that some oscillations occur. Increasing the order

to 15 (see Figure 4.2b) gives more accurate results with a smeared wavefront, which seems

to be due to the effects from low order time accuracy.

Figure 4.3 presents diagonal line-out plots for comparison. With increasing the or-

ders, NFPN presents consistent but increasingly more accurate results compared with the

transport. It illustrates that it overcomes the difficulty of extending to high angular orders

appearing in TPN .

As described in Section 4.2.3, NFPN would be robust in sense of tuning the coefficients

cN . Due to the definition of the NFPN viscosity, it tends to vanish when radiation field
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(a) NFP9 (b) NFP15

Figure 4.2: 2D line source problem at t = 1 s with NFPN .
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(a) P21 and D14.
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Figure 4.3: Diagonal line-out plots.

varies slowly in time and space, which is the case for line-source problem when t = 5

s. Figure 4.4a gives an example of using tuned coefficients to obtain plausible solutions

for both linear and nonlinear FPN . As shown in Figure 4.4b, when increasing the properly

tuned coefficients by 400% times, the solution from NFPN is still acceptable, yet FPN
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presents the over-diffused solution.
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(b) Results comparison when increas-
ing filtering strengths by 400%.

Figure 4.4: Line source problem results at t = 5 s.

4.4.2 Checkerboard problem

(a) Layout (b) S50 Reference solution

Figure 4.5: Checkerboard problem layout and reference solution at t = 3.2 s.
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The checkerboard problem, which is from part of a reactor core[6], appears to be a

challenge for angular discretization schemes. The white block in Figure 4.5a is with a

strong absorber, the light blue blocks are thin scatterings and red blocks are absorbers2.

When particles collide in scatterers and leak out into absorbers, “communication" between

particles is shut down and particles stream, which forms angular discontinuity. On one

hand, since particles lack collisions, ray effects manifest in SN solutions (see Figures 4.6a

and 4.6b). Even increasing SN order to 50, rays can still be seen (e.g. around x = 0 and

z = 3.5 in Figure 4.5b). On the other hand, PN , as a spectral method in angle suffering

from Gibbs phenomenon, produce negative solutions in the absorbers (see Figures 4.7a

and 4.7b).

(a) S8 (b) S12

Figure 4.6: SN solution for checkerboard problem.

Meanwhile the NFPN gives good estimation of the scalar flux in the domain (Figure

4.8a and 4.8b). Particles going through absorbers are decoupled with other particles and

solely stream forward. It then forms shadows in the absorbers and thusly the angular dis-

2Material properties are given in [6].
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(a) P7 (b) P11

Figure 4.7: PN solutions for checkerboard problem at t = 3.2 s.

continuity. In the NFPN cases, adding proper amount of angular viscosity helps alleviate

the solution and wipe out the negativities.

(a) NFP7 (b) NFP11

Figure 4.8: Checkerboard problem NFPN solutions at t = 3.2 s. k = 3 and cN = 1.
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4.4.3 Simplified Hohlraum problem

When simulating radiative transfer, there exists interfaces between thin and thick ma-

terials. A simplified Hohlraum problem with thin scattering in the duct (σt = σs = 0.1)

and thick material in walls and the central block (σt = 100, σs = 30) is used to test NFPN

in such a situation. A unit isotropic incident boundary is imposed on the left side of the

domain (see Figure 4.9a for the layout and 4.9b for a reference solution using S60).

(a) Hohlraum layout (b) S60

Figure 4.9: Simplified Hohlraum problem layout and reference solutions at t = 2 s.

Since radiation moves faster in the thin material (the duct) than in the thick material

(the central block), it forms a shadow on the right side of the central block. Consequently,

SN shows great ray-effects (Figures 4.11a and 4.11b). On the other hand, the shadow drags

the radiation field obtained from PN to be negative. At the same time, PN solution presents

negative scalar flux in both the duct and central block (see Figures 4.12a and 4.12b). Even

increasing the order to 23 does not make the negative solution vanish (Figure 4.10).

As a comparison, we also present two result for NFPN with N = 11 (see Figure 4.13a)

and N = 17 (see Figure 4.13b). With introducing the nonlinear filtering process, the
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Figure 4.10: P23 solution for simplified Hohlraum problem

(a) S12 (b) S18

Figure 4.11: SN solution for simplified Hohlraum problem at t = 2 s.

negative solution existed in PN is eliminated effectively.

Line-out plots are drawn in the duct and along the walls at x = 0.25, 0.75 and 0.95 cm

as illustrated in Figures 4.14. NFPN presents accurate and positive results in both cases.

Positivity is crucial for the multi-physics prototype of this problem that PN ’s negative

radiation field crashed the simulation due to the induced negative material temperature[17].

We also notice that NFPN is not flawless. It presents overshooting on the walls on the right

hand side. It might be due to the over-diffusion from the viscosity overestimation that too

much angular diffusion is added at certain spots so particles keep colliding therein. Yet,
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(a) P11 (b) P17

Figure 4.12: PN solution for simplified Hohlraum problem at t = 2 s.

(a) NFP11 (b) NFP17

Figure 4.13: NFPN solution for simplified Hohlraum problem at t = 2 s.

unlike the negativity, increasing PN order effectively removes that (See line-out plot for

NFP17 in Section E.1).

4.5 Summary

In this section, we developed an nonlinear filtered spherical harmonics method for

simulating radiation transport based on the nonlinear viscosity developed in Section 3.

Overall, the nonlinear filtering method is promising that it somehow infer the filter strength
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(d) Solutions along x = 0.95 cm

Figure 4.14: Line-out plots for Hohlraum problem.

in light of the solution. It shows effectiveness when solving the time-dependent transport

equations.

Without touching the first moment, indeed, the NFPN preserves the diffusion limit.

Nevertheless, it does not claim the nonlinear filtering cannot be put into the first moment

equation properly. In Section 5, we will present another NFPN formulation for TRT prob-

lems and provide the proof for the statement of preserving the thick diffusion limit.
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5. ASYMPTOTIC ANALYSIS OF NONLINEAR FILTERED PN AND RADIATIVE

TRANSFER APPLICATIONS

5.1 Introduction

In Section 4, we proposed a filtered spherical hamonics method. In this section, we first

provide another formulation for the nonlinear filter. Thereafter, we will provide asymptotic

analysis for linear FPN , NFPN proposed in Section 4 and the new formulation of NFPN 1.

At last, we extend the NFPN methods to radiative transfer with providing proper implicit

time integration method.

5.2 Asymptotic Analysis for FP1 Methods

5.2.1 FP1 forms and scaling

When performing asymptotic analysis to FPN , higher moments would not affect if

the system preserves diffusion limit or not. Therefore, analysis on the FP1 reflect the

asymptotics of the methodology.

Generically, we can write the filtered P1 system for gray radiation in 1D slab geometry

as following:
1

c

∂ϕ0

∂t
+
∂ϕ1

∂x
+ σaϕ0 = σaacT

4, (5.1a)

1

c

∂ϕ1

∂t
+

1

3

∂ϕ0

∂x
+ (σa + ν1)ϕ1 = 0, (5.1b)

Cv
∂T

∂t
= σa(ϕ0 − acT 4), (5.1c)

We follow the scaling developed for thermal radiative transfer by Morel[41]:

1

c

∂

∂t
→ ϵ2

1

c

∂

∂t
and

∂

∂x
→ ϵ

∂

∂x
, (5.2)

1We will name the NFPN developed in Section 4 Type-I NFPN and call the new formulation developed
in this section Type-II NFPN .
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then the scaled system is expressed as:

ϵ2
1

c

∂ϕ0

∂t
+ ϵ

∂ϕ1

∂x
+ σaϕ0 = σaacT

4, (5.3a)

ϵ2
1

c

∂ϕ1

∂t
+ ϵ

1

3

∂ϕ0

∂x
+ (σa + ν1)ϕ1 = 0, (5.3b)

ϵ2Cv
∂T

∂t
= σa(ϕ0 − acT 4), (5.3c)

At the same time, a power expansion about ϵ to ϕ0, ϕ1, T and T 4 is performed, i.e.:

ϕ0 =
∞∑
n=0

ϕ
(n)
0 ϵn (5.4)

ϕ1 =
∞∑
n=0

ϕ
(n)
1 ϵn (5.5)

T =
∞∑
n=0

T (n)ϵn (5.6)

T 4 =
∞∑
n=0

T 4(n)ϵn (5.7)

Note that coefficients in Eqs. (5.6) and (5.7) are clearly related, but we de-relate them until

needed as suggested by Morel[47].

5.2.2 PN and Type-I NFPN

By substituting the expanded quantities in previous section into the scaled equations,

we obtain a hierarchical set of equations with the expansion coefficients. In particular, the
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O(ϵ0) equations, with recognizing ν1 = 0, are:

ϕ
(0)
0 = acT 4(0) (5.8a)

σaϕ
(0)
1 = 0 (5.8b)

The O(ϵ) equations arising from Eq. (5.3) are:

∂

∂x
ϕ
(0)
1 + σaϕ

(1)
0 = σaacT

4(1) (5.9a)

ϕ
(1)
1 = − 1

3σa

∂

∂x
ϕ
(0)
0 (5.9b)

In fact, it is straightforward to see the similar property in O(ϵ2) equations with similar

procedure:

ϕ
(2)
1 = − 1

3σa

∂

∂x
ϕ
(1)
0 (5.10)

That being said, P1 and Type-I NFP1 in time dependent TRT problem preserve thick

diffusion limit up to O(ϵ2). Further, since higher order moments does not affect diffusion

limit, Pn with ∀N > 1 preserves thick diffusion limit.

5.2.3 Type-II NFPN and asymptotic analysis

Avoiding tweaking first moment equation as in Type-I NFPN does preserve thick dif-

fusion limit. However, that does not necessarily state that no filtering can be incorporated

in the first moment equation. Inspired by Larsen’s flux limited diffusion, we propose a

new angular viscosity as the following:

νl =

√
σ2
a + (νl,χ)

2 + (νl,t)
2 − σa, l = 1, · · · , N, (5.11)
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where

νl,t = cN (l/N)k
∣∣∣∣∂tϕ0

0

cϕ0
0

∣∣∣∣ (5.12)

and

νl,χ = cN (l/N)k
∥∇ϕ0

0∥
|ϕ0

0|
(5.13)

Accordingly, the scaled viscosity is expressed as:

νl =
√
σ2
a + ϵ2ν21,χ + ϵ4ν21,t − σa (5.14)

Specifically for l = 1, we expand the scaled viscosity with Taylor series and obtain:

ν1 = −ϵ
2

2

ν21,χ
σa

+O(ϵ4), (5.15)

whence the viscosity is O(ϵ2). Thereby, we then shall see the correct Fick’s law for O(ϵ1)

equations, i.e.,

ϕ
(1)
1 = − 1

3σa

∂ϕ
(0)
0

∂x
(5.16)

In order to examine the diffusion limit to O(ϵ2), we rewrite the scaled first moment

equation and end up getting:

ϕ1 = − ϵ2∂tϕ1

c
√
σ2
a + ϵ2ν21,χ + ϵ4ν21,t

− ϵ∂xϕ0

3
√
σ2
a + ϵ2ν21,χ + ϵ4ν21,t

(5.17)
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Expand the square root with Taylor-series, we find:

ϕ1 = −
ϵ2
(
1 + ϵ2ν1,χ

2σa
+O(ϵ4)

)
cσa

∂tϕ1 −
ϵ
(
1 + ϵ2ν1,χ

2σa
+O(ϵ4)

)
3σa

∂xϕ0 (5.18)

Then for O(ϵ2), we obtain:

ϕ
(2)
1 = − 1

3σa

∂ϕ
(1)
0

∂x
(5.19)

Consequently, the Type-II NFP1 preserves thick diffusion limit up toO(ϵ2) and so does

Type-I NFPN , ∀N > 1.

Why ν1 = 0 in Type-I NFPN

Following the procedure above, one will derive the following with O(ϵ2) equations:

ϕ
(2)
1 = − 1

3σa

∂ϕ
(1)
0

∂x
+
ν1,χ
3σ2

a

∂ϕ
(0)
0

∂x
,

which states that Type-I NFPN will not preserve diffusion limit to O(ϵ2) with nonzero ν1.

5.3 A Fully Implicit Solver

Section 3 and 4 employ a semi-implicit time integrator for solving linear transport

equation. However, when solving TRT problems, nonlinearly, a fully implicit solver is

favored, especially for where there is a thin-thick contact interface that cross sections may

vary by many orders. We then present a Newton-Picard iterative scheme for solving the

NFPN equations in TRT.
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5.3.1 Fully implicit scheme

Let us denote the NFPN for multi-D TRT problems by the following:

1

c

∂ϕ⃗

∂t
+∇ · F⃗ + (σa +D) ϕ⃗ = Q⃗(T 4) (5.20a)

Cv
∂T

∂t
= σa

(√
4πϕ0

0 − acT 4
)
, (5.20b)

where

D = D

(
σa(T ),

∂ϕ0
0

∂t
,∇ϕ0

0

)
and Q⃗(T 4) =

(
acT 4

√
4π
, 0, · · · , 0

)⊤

(5.21)

A backward Euler time stepping method for unknowns at Step n (n = 1, · · · ) can then

easily formulated as:

1

c

ϕ⃗n
∆t

+∇ · F⃗n + (σan +Dn) ϕ⃗ = Q⃗(T 4
n) +

1

c

ϕ⃗n−1

∆t
(5.22a)

Cv
T n

∆t
= σan

(√
4πϕ0

0n − acT 4
n

)
+ Cv

Tn−1

∆t
, (5.22b)

Newton’s method is used for treating the emission source Q⃗(T 4). The details can be

found in [41]. For every Newton iteration l, the viscosity are approximated as:

(
1

c

∂tϕ
0
0

ϕ0
0

)
n

≈
ϕ0
0
l − ϕ0

0n−1

∆tϕ0
0
l

and

(
∥∇ϕ0

0∥
ϕ0
0

)
n

≈ ∥∇ϕ0
0
l∥

ϕ0
0
l

(5.23)

5.4 Numerics

5.4.1 2D Marshak wave problem

We provide test results for the 2D variation of Marshak wave problem as a demonstra-

tion for the fully implicit solver. The cross section σa = σt = 10/T 3 (cm−1) with T in
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Figure 5.1: P3 Trad distribution at 1 ns in 2D Marshak problem.

(a) Type-I NFP3 (b) Type-II NFP3

Figure 5.2: 2D Marshak test at t = 1 ns.

units of keV. And the heat capacity Cv = 0.3 GJ/cm3-keV. Since the solution is diffusive,

PN can also be used in the simulation. To ensure stability ∆x = 0.01 cm with ∆t = ∆x/c.

In such a calculation, the cross section around the cold-hot contact interface can vary over

8 orders. In both NFPN calculations, cN = 0.5 and a upper bound of 50σt is set for the

limiters.
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We examine the material temperature Tmat and radiation temperature Trad = (ϕ/ac)1/4.

For P3 (Figure 5.1) and two NFP3 (see Figure 5.2). With the line-outs in Figure 5.3, we

clearly see agreements of all methods for both quantities of interest. The results demon-

strate that both types of NFPN preserves thick diffusion limit as predicted in the analysis.
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Figure 5.3: 2D Marshak test line-outs at t = 1 ns.
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6. LEAST-SQUARES TRANSPORT AND SELF-ADJOINT ANGULAR FLUX

EQUATIONS AND DISCRETIZATIONS

6.1 Introduction

Previous sections focus on angular discretization using spherical harmonics for time-

dependent radiation transport. In this section, we will focus on spatial discretization of

steady-state neutron transport equation.

Since the Boltzmann transport equation is a first-order PDE in space, the continuous

finite element method (CFEM) cannot be directly used without special stabilization treat-

ment. Though the discontinuous finite element method (DFEM) has been widely used to

solve the transport equation, it has some known or not-so-well-known drawbacks. Besides

the higher DoF count than CFEM, it has the difficulty of efficiently performing sweeps

with unstructured meshes[23].

In order to make use of CFEM, a common approach is to cast the first-order trans-

port equation to a second-order PDE. Well known examples include the even parity equa-

tion[24, 23, 57] and self-adjoint equations1[25, 23]. More recently, Hansen, et al. derived a

second-order form by multiplying transport residual by the adjoint transport operator[26].

On the other hand, one could employ the least-squares finite element method (LS-

FEM) using continuous basis functions with or without a 1/σt weighting. By defining a

(weighted) least-squares (LS) transport residual functional in discrete function space and

minimizing the functional, one obtains the (weighted) LS the formulation. Such least-

squares formulations resemble the CFEM discretization to the second-order forms men-

tioned above, which can be demonstrated by simply manipulating the weak form.

In this section, we will first derive the CFEM discretization to SAAF and LSTE. There-
1There are two forms of self-adjoint equations. The one used in this dissertation is the source iteration

compatible form.
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after we derive discretization of first-order transport equation with reciprocal cross sec-

tion weighted and unweighted least-squares finite element and illustrate the equivalence to

CFEM-SAAF and CFEM-LSTE, respectively.

6.2 CFEM Disretizations

The second-order forms of transport equations can be discretized with CFEM due to

the symmetrization of the streaming operator into a directional Laplacian operator. We

will derive the CFEM derivation specifically for LSTE and SAAF in this section.

6.2.1 CFEM-LSTE

Hansen, et al. derived the LSTE by multiplying the transport equation by the adjoint

transport operator, i.e.:

L†Lψ = L†
(
Sψ +

Q

4π

)
(6.1)

Discretizing such an equation with CFEM is equivalent to finding the solution ψ in

finite element space V , such that ∀v ∈ V , the following weak form holds:

∫
D

dr⃗ vL†Lψ =

∫
D

dr⃗ vL†
(
Sψ +

Q

4π

)
. (6.2)

With adjoint properties, such a weak form can be re-expressed as:

∫
4π

dΩ

∫
D

dr⃗ LvLψ +

∫
4π

dΩ

∫
∂D

ds n⃗ · Ω⃗v
(
Lψ −

(
Sψ +

Q

4π

))

=

∫
4π

dΩ

∫
D

dr⃗ Lv
(
Sψ +

Q

4π

)
, (6.3)

Requiring transport equation to be fulfilled, i.e. Lψ −
(
Sψ + Q

4π

)
= 0, on the boundary
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leads to the interior weak form2:

∫
4π

dΩ

∫
D

dr⃗ LvLψ =

∫
4π

dΩ

∫
D

dr⃗ Lv
(
Sψ +

Q

4π

)
. (6.4)

Unfortunately, there is no direct way imposing an incident boundary condition. Zhang

applied strong boundary condition in a radiative transfer work[57]. More recently, a weak

boundary condition from penalty method is proposed, with which the least-squares formu-

lation resembles CFEM-SAAF in non-void homogeneous problems[58]. In this work, we

will use this weak boundary condition for solving LSTE:

∫
4π

dΩ

∫
D

dr⃗ LvLψ +

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ vψ =

∫
4π

dΩ

∫
D

dr⃗ Lv
(
Sψ +

Q

4π

)
+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ vψinc. (6.5)

6.2.2 CFEM-SAAF

For a specific discrete function space V , using CFEM to solve SAAF is equivalent to

finding solution ψ ∈ V , such that ∀v ∈ V , we have

∫
D

dr⃗

∫
4π

dΩ v

(
−Ω⃗ · ∇ 1

σt
Ω⃗ · ∇ψ + σtψ

)

=

∫
D

dr⃗

∫
4π

dΩ v

((
Sψ +

Q

4π

)
− Ω⃗ · ∇Sψ + q

σt

)
, (6.6)

2For CFEM-LSTE Sψ will be treated as source to be compatible with source iteration with SN calcula-
tions. We then prefer to put Sψ in the linear form on right hand side.
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by performing integration by part, and recognizing −Ω⃗·∇ψ+Sψ+ Q
4π

σt
= ψ on boundary, we

approach:

∫
4π

dΩ

∫
D

dr⃗

(
Ω⃗ · ∇v 1

σt
Ω⃗ · ∇ψ + σtvψ

)
+

∫
4π

dΩ

∫
∂D

ds n⃗ · Ω⃗vψ

=

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds

(
v

(
Sψ +

Q

4π

)
+ Ω⃗ · ∇v

Sψ + Q
4π

σt

)
. (6.7)

With the boundary condition in Eq. (2.2), we would transform the weak formulation into

the following form3:

∫
D

dr⃗

∫
4π

dΩ

(
Ω⃗ · ∇v Ω⃗ · ∇ψ − Sψ

σt
+ v (σtψ − Sψ)

)
+

∫
∂D

ds

∫
n⃗·Ω⃗>0

n⃗ · Ω⃗vψ

=

∫
D

dr⃗

∫
4π

dΩ

(
vq + Ω⃗ · ∇v q

σt

)
+

∫
∂D

ds

∫
n⃗·Ω⃗<0

n⃗ · Ω⃗vψinc (6.8)

6.3 (Weighted) Least-Squares Finite Element Discretization

6.3.1 Unweighted least-squares finite element discretization

Least-squares discretization of PDEs starts off defining proper least-squares function-

als with a proper trial space. Suppose we have a trial space V with a function ψ spanned

by basis in V . Then the least-square functional could be defined as:

ΓLS =

∫
4π

dΩ

∫
D

dr⃗ (Lψ − qs)
2 +

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ (ψ − ψinc

)2
, (6.9)

3We prefer to put the Sψ in the bilinear form of CFEM-SAAF since we would use both SN and PN

angular discretizations on this weak form.
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where qs = Sψ + Q
4π

. Minimizing such a functional in V leads to the weak formulation:

finding ψ in V , such that ∀v ∈ V , the following equation holds:

∫
4π

dΩ

∫
D

dr⃗ LvLψ +

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ vψ =

∫
4π

dΩ

∫
D

dr⃗ Lv
(
Sψ +

Q

4π

)
+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ vψinc. (6.10)

Equation (6.10) is identical to (6.5), i.e. solving transport equation using least-squares

finite element is identical to solving CFEM-LSTE.

6.3.2 Weighted least-squares (WLS) finite element discretization

Similar to least-squares, we define a least-squares functional weighted by 1/σt:

ΓWLS =

∫
4π

dΩ

∫
D

dr⃗
1

σt
(Lψ − qs)

2 +

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ (ψ − ψinc
)2
. (6.11)

Consequently, we obtained another least-squares weak formulation after minimizing the

functional above:

∫
4π

dΩ

∫
D

dr⃗ Lv 1

σt
Lψ +

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψ =

∫
4π

dΩ

∫
D

dr⃗ Lv
(
Sψ + Q

4π

)
σt

+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc. (6.12)

In addition, it is straightforward to demonstrate the resulting weak form is identical to
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CFEM-SAAF. By expanding L, Eq. (6.12) is transformed into:

∫
4π

dΩ

∫
D

dr⃗
(
Ω⃗ · ∇v + σtv

) 1

σt

(
Ω⃗ · ∇ψ + σtψ

)
+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψ =

∫
4π

dΩ

∫
D

dr⃗
(
Ω⃗ · ∇v + σtv

) (Sψ + Q
4π

)
σt

+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc.

(6.13)

Recognize that further expansion with integration by part would transform the Eq. (6.13)

to:

∫
4π

dΩ

∫
D

dr⃗

(
Ω⃗ · ∇v 1

σt
Ω⃗ · ∇ψ + vσtψ

)

+

∫
4π

dΩ

∫
∂D

ds n⃗ · Ω⃗vψ +

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψ = (6.14)

∫
4π

dΩ

∫
D

dr⃗
(
Ω⃗ · ∇v + σtv

) (Sψ + Q
4π

)
σt

+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc.

Cancel the incoming part of the underlined integrals, we obtain:

∫
4π

dΩ

∫
D

dr⃗

(
Ω⃗ · ∇v Ω⃗ · ∇ψ − Sψ

σt
+ v (σtψ − Sψ)

)
+

∫
n⃗·Ω⃗>0

dΩ

∫
∂D

ds n⃗ · Ω⃗vψ

=

∫
4π

dΩ

∫
D

dr⃗

(
vq + Ω⃗ · ∇v q

σt

)
+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc, (6.15)

That being said, solving transport equation with 1/σt-weighted least-squares finite element

is identical to solving SAAF using CFEM.

6.4 Summary

The main contribution in this section is that we illustrate the resemblances between
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CFEM discretizing second-order forms and solving transport equation using (weighted)

least-squares finite element method. Deriving least-squares like methods from minimizing

functionals forms the basis for the following sections in this dissertation.
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7. RELAXED L1 FINITE ELEMENT METHOD FOR SOLVING NEUTRONICS

PROBLEMS

7.1 Introduction

In Section 6, we derived least-squares finite element methods solving neutron trans-

port equation. While it can be equipped with continuous basis, difficulty still arises in

certain situations. In general dimensions, with under resolved mesh, problems with strong

absorber can induce oscillations and thusly negative solutions[59, 60]. Moreover, in multi-

D situations, void or near-void situations can also induce negativity, even for first order

transport with DFEM[61]. Even without oscillations, void can induce low accuracy of the

least-squares method. Yet, in real-world problems, like shielding problems, those situa-

tions are usual and inevitable, which inspires the development of other methods.

For least-squares method, one of causes of the oscillations is that the L2 norm of trans-

port residual overestimates the contribution from large residual components. Like least-

squares fitting in data analysis, when trying to fit every single data point, the fitting princi-

ple would overweight the contribution from outliers, leading to erroneous and oscillatory

results[29, 28].

One of the remedies is to introduce other norms of the transport residual. Previously,

Jiang developed the iteratively reweighted least-squares (IRLS) method for linear advec-

tion[28]. The prototypical IRLS is to use some power of the inverse residual as the weight

for least-squares method. For simplicity the sum of solution change to some power in

each cell is used instead. The rationale behind it is that such a method would resemble L1

norm induced method. For discontinuous boundary condition, such a method is extremely

accurate in interior of the domain. However, Lowrie et al.[62] found that IRLS does not

propagate information properly so that if the incident boundary condition is smooth, IRLS
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can give erroneous results that large gradients of the solution can be mistakenly treated

as discontinuity. Lowrie demonstrated the IRLS is not a L1 method, which is thereafter

assigned to the cause of erroneous results for problems with smooth solutions.

In a more recent work, by developing efficient nonlinear solving techniques, Guer-

mond approximated the L1 solution for several problems in fluid dynamics[30]. The L1

method is demonstrated to be accurate in problems where least-squares has difficulty and

can well interpret smooth solution in contrast to Lowrie’s findings about IRLS[62].

Inspired by Guermond, in this section, we introduce a relaxed L1 method for solv-

ing neutron transport equations. Such a method is designed to be a relaxed version of L1

method in the sense that L1 finite element will be used only when point residual becomes

higher than certain criteria otherwise the least-squares method is used. Essentially, it is

equivalent to adding L1 regularization to a least-squares method. Additionally, account-

ing for the presence of scattering, the scheme is designed to be compatible with source

iteration and acceleration techniques like diffusion synthetic acceleration (DSA)[63].

7.2 Derivation in L1 Norm

7.2.1 Smoothed L1 norm and L1 finite element

The derivation starts off defining the following functional as L1 norm of transport

residual R = Lψ − qs:

ΓL1(ψ) =

∫
4π

dΩ

∫
D

dr⃗ |R(ψ)| (7.1)

A suitable finite element method would be developed by minimizing the functional above.

As introduced in Section 6, we introduce a small perturbation ϵv, we obtained a perturbed
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functional:

ΓL1(ψ + ϵv) =

∫
4π

dΩ

∫
D

dr⃗ |R(ψ + ϵv)| (7.2)

However, the functional is not differentiable at the points where R = 0. To overcome the

non-differentiation, Guermond[30] introduced a replacement of the functional equipped

with a quite complex nonlinear solving method. On the other hand, Zheng and McClar-

ren[60, 59] derived the L1 functional with a smoothed substitution, which is quite straight-

forward.

For arbitrary small number ζ , one should recognize the approximation:

|R| ≈
√
R2 + ζ2 (7.3)

Figure 7.1 shows the example illustrating the smoothing effects brought by the approx-

imation for different values of ζ . With decreasing ζ ,
√
x2 + ζ2 converges to |x| rapidly.

What can be expected is with ζ goes to zero,
√
x2 + ζ2 has the limit of |x|.

Introduce Eq. (7.3) back into (7.2) and then we obtain a differentiable approximation

perturbed L1 norm functional:

ΓL1(ψ + ϵv) ≈
∫
4π

dΩ

∫
D

dr⃗
√
R(ψ + ϵv)2 + ζ2 (7.4)

To minimize the functional, we expect the first derivative to be zero, i.e.

lim
ϵ→0

∂ΓL1

∂ϵ
=

∫
4π

dΩ

∫
D

dr⃗
Lv(Lψ − qs)√

R2 + ζ2
= 0 (7.5)

Taking the limit ζ → 0, the smoothed L1 expression approaches the L1 weak formulation
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Figure 7.1:
√
x2 + ζ2 vs |x| for different ζ values.

as
√
R2 + ζ2 → |R|:

∫
4π

dΩ

∫
D

dr⃗
Lv(Lψ −

(
Sψ + Q

4π

)
)

|R|
= 0, (7.6)

or equivalently,

∫
4π

dΩ

∫
D

dr⃗
LvLψ
|R|

=

∫
4π

dΩ

∫
D

dr⃗
Lv
(
Sψ + Q

4π

)
|R|

. (7.7)

Apparently, solving the weak formulation requires evaluation of residual, which is calcu-

lated with the solutions. Thus, the L1 finite element method is nonlinear.
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7.2.2 A L1 boundary condition

In 1D applications, least-squares weak boundary is used. However, in multi-D calcu-

lations, such a boundary condition causes stability problems for incident boundaries. A

hypothesis is the norms measuring residuals on boundary and interiors should be consis-

tent. Hence, developing an appropriate boundary condition is a necessity.

Similar to the interior functional, we can define a L1 boundary functional on boundary,

namely

Γb,L1 =

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ ∣∣ψ − ψinc
∣∣ , (7.8)

where λ is a cross section related multiplier and defined as:

λ =


σt, σt > 0

1.0, otherwise

(7.9)

A boundary weak form as the following can be achieved through a similar minimization

process shown in Section 7.2.1:

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ vψ

|ψ − ψinc|
=

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc

|ψ − ψinc|
(7.10)
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7.2.3 L1 and relaxed L1 weak forms

Whence we have the complete L1 finite element weak formulations:

∫
4π

dΩ

∫
D

dr⃗
LvLψ
|R|

+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ vψ

|ψ − ψinc|

=

∫
4π

dΩ

∫
D

dr⃗
Lv
(
Sψ + Q

4π

)
|R|

+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc

|ψ − ψinc|
(7.11)

Due to the assumption of letting ζ vanish, the weak form above is not an approximated

but exact L1 finite element formulation. However, solving such an weak form can be

extremely challenging especially when residual in the problem varies by several orders.

Instead, we propose a relaxed L1 formulation. Such a formulation is composed such that

in regions with moderate to large residuals, L1 is executed, or least-squares method is used

otherwise. As a result, we attain the weak form with a relaxation factor θ:

∫
4π

dΩ

∫
D

dr⃗
θLvLψ

max(θ, |R|)
+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ θvψ

max(θ, |ψ − ψinc|)

=

∫
4π

dΩ

∫
D

dr⃗
θLv

(
Sψ + Q

4π

)
max(θ, |R|)

+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds λ
∣∣∣n⃗ · Ω⃗

∣∣∣ θvψinc

max(θ, |ψ − ψinc|)
(7.12)

It is quite flexible to choose a θ. The effects of varying it will be illustrated in Section

7.4.1. Normally, we choose to use θ to be 0.01 ∼ 0.1|R|max (Herein, |R|max denotes the

maximum absolute residual of all directions.). Smaller θ can be used, yet, the efficiency of

linear solves would be degraded without gaining much more accuracy.

When implementing, the residuals are evaluated on each spatial quadrature points for

every single direction. This is one of the drawbacks of this method that it requires storing

or performing on-the-fly calculations of the pointwise residuals. Three-point and five-point
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Gauss quadrature have been applied. Both presents quite similar solutions.

7.3 Scheme and Other Details

Unfortunately, the RL1 is nonlinear so an appropriate nonlinear scheme is necessary in

order to solve Eq. (7.12). Such a scheme is equivalent to pointwisely weighting the least-

squares formulation with θ/max(θ, |R|). Hitherto, similar reweighting schemes have only

been developed to solve equations in fluid dynamics community[28, 30]. When solving

neutronics problems, the scattering phenomena adds more complexity into the problem.

In fact, the motivation of incorporating scattering terms into the source is such that scat-

tering is treatable with source iteration as regular least-squares. Based on the assumption

that least-squares can approximate the solution roughly well[28], the nonlinear scheme

writes as:

1. Calculate pointwise residuals for Nonlinear Iteration (NI) l from NI l − 1;

2. Update the weak form Eq. (7.12);

3. Solve Eq. (7.12) with source iteration;

4. Given a nonlinear tolerance tol, check nonlinear convergence e = ∥ϕl−ϕl−1∥
∥ϕl∥ :

(a) If e < tol, stop.

(b) else, go to Step 1.

In the source-iteration step, DSA is utilized.

The motivation behind developing a RL1 boundary was from the observation that os-

cillations happen on boundary when using LS boundary condition with RL1 in interior for

incident-boundary problems, especially for the cases that incident boundary condition is

only applied partially on a boundary.
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Further, Lowrie[62] point out the IRLS developed by Jiang[28] is not a minimizer

of L1 residual functional. The consequence is such that in advection problems with dis-

continuous incident boundary, the method provides perfect accuracy while the solution is

erroneous when the boundary is smooth and continuous. We found the reason is to be

IRLS utilized a cell-wise weighting. In situations where projection of real solution could

vary much in a single cell, the weightings for different spots in a cell, however, are sup-

posed to be distinct. In this work, we use pointwise weighting on quadrature points, which

fixes the issue existed in IRLS.

7.4 Numerics

All tests in this section was carried out with C++ Open source library deal.II[52].

Four test problem will be performed. The first one is a single direction transport in void

(void problem). The second one is mono-directional (the most grazing direction in S4

quadrature) transport an absorber with partially applied but smooth boundary condition

(smooth boundary problem). Further, two classic tests for void treatment will be presented

(Ackroyd and dog-leg problems[64, 56]). Last but not least, two convergence tests will be

included.

7.4.1 Void problem

Radiation transport in void is a challenge with a wide ranges of methods[27, 61, 64].

Even with conventional linear discontinuous method, numerical artifacts can still mani-

fest[27]. In void, the Boltzmann equation essentially describes a linear advection process

that particles only stream in individual directions. Therefore, with SN angular discretiza-

tion, particles never “talk" in different directions. It forms a discontinuity in cross-wind

direction as a result. Schemes such as LS which is continuous in space, might raise arti-

facts without being able to well handle the discontinuity. Figure 7.2a shows a example of

LS for solving void transport (0.5×0.5 cm square). The unit incident boundary condition
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(a) LS result in void. (b) RL1 result in void.

Figure 7.2: LS and RL1 method comparison in void transport problem.
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Figure 7.3: LS and RL1 boundary condition comparison.
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Figure 7.4: Line-outs (y = 0.2 cm) for different θ/|R|max.

is applied only on part of the boundary. LS presents oscillatory results along the radiation

(see the cyan part). Also, LS has overshoot that by 7% for the maximum flux. As a com-

parison, Figure 7.2b gives a non-negative flux profile with unit flux for as the maximum in

interior.

The other emphasis is on the boundary condition. Figure 7.3 gives a comparison be-

tween RL1 boundary condition and LS boundary condition used with RL1 interior weak

form. LS boundary presents oscillatory and negative solutions while allowing discontinu-

ity solution. On the other hand, RL1, by smearing a little, gives accurate representation of

the analytic boundary flux.

The void test above is performed with θ/|R|max = 0.01. In fact, it is quite robust in

terms of varying θ. As the line-outs (y = 0.2 cm) shown in Figure 7.4, by using a large θ
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(the one with θ/|R|max = 0.1), RL1 is able to effectively damp the oscillations around the

discontinuous solution. Further reducing θ such that θ/|R|max ≤ 0.01 present graphically

consistent results. Therefore, for the rest of the tests in this section, we choose to set

θ/|R|max = 0.05.
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Figure 7.5: Boundary results comparison for smooth boundary problem.

7.4.2 Smooth boundary problem

Unlike the void problem with discontinuous boundary condition, we use a sine-like

boundary condition which is C1 continuous in this test with the same geometry. An ab-

sorber is used instead (σt = 1 cm−1). The direction is the most grazing direction in a S4

quadrature set. We compare the behavior of different schemes on the bottom boundary

and right boundary in Figure 7.5.

With converged RL1 (red line), one would see no difference graphically except the

little smearing in Figure 7.5b. Moreover, without convergence but with only one or two
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layers of reweighting, RL1 can still deliver acceptable results (orange dash line and green

line).
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Figure 7.6: Ackroyd problem configuration.

(a) Results across the void. (b) Results on boundary.

Figure 7.7: Ackroyd problem line-out plots.
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7.4.3 Ackroyd test

The Ackroyd problem[64, 65] is a heterogeneous problem with the central block and

outer shield to be with high scattering ratio (σt = 0.2, σs = 0.19). The gap between two

blocks is a void (see Figure 7.6 for a quarter of the problem geometry). The whole problem

is symmetric about x-axis and y-axis. We examine a line-out in going through the void

(Figure 7.7a) and another one on the boundary (Figure 7.7b). In both cases RL1 (green

lines and green dash lines) follows well with the fine mesh LS results (black lines), while

LS presents solution with noticeably larger error in the graph norm.
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(a) A quarter configuration.

(b) LSS8 solution with 840x1080 cells.

Figure 7.8: Configuration and LSS8 solution with 840x1080 cells for dog-leg problem.

7.4.4 Dog-leg test

Last but not least, we present a crooked pipe (dog-leg shaped) test. Since the geometry

is symmetric about x-axis and y = 18 cm, only a quarter of geometry is shown in Figure
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(a) Results along y = 15 cm. (b) Results along y = 6 cm.

Figure 7.9: Dog-leg problem line-out plots.

7.8a. Figure 7.8b presents the reference solution with 840×1080 cells. In the source and

absorber σa = σt = 0.5. A unit volumetric source is used in the calculation.

Figure 7.9a draws a line-out along y = 15, across the source surface. It is noticed

that with coarse mesh (56×72 cells), RL1 (green line) follows the reference well while LS

(red line) is away from the reference solution. Meanwhile, when refining (280×360 cells),

both methods agree with the reference.

Figure 7.9b presents the comparison along y = 6 cm, going across the bottom absorber

surface. We observe some improvements from using RL1 method for both coarse mesh

and fine mesh. Yet the effects is not as significant as what is produced around the source

region. The bottom line is it does not degrade the solution.

7.4.5 Convergence tests

We first test the L1 error of the angular flux in void problem. As illustrated in Figure

7.10, both LS and RL1 hold half order convergence. In addition, non-converged RL1 also
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improve the solution from LS1.
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Figure 7.10: Void problem convergence test.

The other test is an S2 uniformly incident problem on the whole bottom boundary with

an absorption σt = 1.0 cm−1. We examine the L1 error of scalar fluxes. The angular

flux in one direction are drawn in Figures 7.11a and 7.11b. In the homogeneous absorber

problem LS is oscillatory while RL1 is oscillation free. Examining the convergence tests

in Figure 7.12 we found both LS and RL1 have poor convergence rates in such a case.

Asymptotically, LS has a convergence of quarter-th order. RL1 has a similar behavior but

with lower error magnitudes.

1h stands for mesh size.
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(a) LS. (b) RL1.

Figure 7.11: Angular flux distributions in incident convergence test.
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Figure 7.12: Incident absorber scalar flux errors.
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8. GLOBALLY CONSERVATIVE CONTIGUOUS DISCONTINUOUS

LEAST-SQUARES FINITE ELEMENT METHOD

8.1 Introduction

Section 6 derives least-squares finite element method for solving transport equation. It

is valuable when solving with SN angular discretization and source iteration that system

for each direction is symmetric positive definite. An additional benefit is that continuous

basis functions can be used for discretization.

However, when used in problems, such as k-eigenvalue problems, where global con-

servation is important, a conservative treatment must be applied[58]. Another downside of

using least-squares method, which is also true for other second order forms of transport

equations, is that particle causality is not preserved correctly.

8.2 A Contiguous-Discontinuous Least-Squares Discretization

8.2.1 The contiguous discontinuous least-squares (CDLS) functional and weak for-

mulation

The LS formulation symmetrizes the streaming operator so CFEM can be applied in the

discretization. However, it does not have global conservation in heterogeneous problems

where cross sections are not space-independent over the whole domain, which is crucial

in k-eigenvalue problems. Also, with the presence of thin-thick material interface, the

accuracy of scalar flux degrades.

The intuition is to solve using least-squares in subdomains where cross sections are

constant, i.e. without the presence of material interface, and transferring angular flux on

interfaces in a sweep way. In such a case, solution will be continuous within subdomains

and discontinuous on interfaces. In fact, we can derive the desired method in the same
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procedure deriving LS method described in Section 6. To start, we define a functional in

the following form:

ΓCDLS =
1

2

∑
Di

∫
4π

dΩ

∫
Di

dV (Liψi − qsi)
2 +

1

2

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

dV σt

∣∣∣n⃗ · Ω⃗
∣∣∣ (ψ − ψinc)2

+
1

2

∑
Di

∑
Fij

∫
n⃗i·Ω⃗<0

dΩ

∫
Fij

ds σti

∣∣∣n⃗i · Ω⃗
∣∣∣ (ψinc

i − ψinc
j )2, (8.1)

where Fij is the interface between Di and any contiguous subdomain Dj. Accordingly, the

variational problem turns to: find ψi in a polynomial space V such that ∀vi ∈ V ,

∑
Di

∫
4π

dΩ

∫
Di

dV Livi (Li − Si)ψi +
∑
Fij

σti

∫
n⃗i·Ω⃗<0

dΩ

∫
Fij

ds
∣∣∣n⃗i · Ω⃗

∣∣∣ vi (ψi − ψj)


+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ vψ (8.2)

=
∑
Di

∫
4π

dΩ

∫
Di

dV Livi
Qi

4π
+

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds σt

∣∣∣n⃗ · Ω⃗
∣∣∣ vψinc

Compared with ordinary LS method, CDLS does not enforce the continuity on subdo-

main interface. That gives the possibility of combining least-squares method and transport

sweeps. One could solve the transport equation by using LS in each subdomain individu-

ally and perform the sweeps on the interface. This is an advantage over ordinary transport

sweeps. For unstructured mesh, it is easier to perform LS calculations than to use transport

sweeps in the sense of implementation. The 1D implementation is done in this hybrid way.

8.2.2 Subdomain-wise and global conservations

LS does not possess global conservation in heterogeneous problems. However, we

can demonstrate that CDLS is conservative not only globally, but also on each subdomain

individually.
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Figure 8.1: Generic multi-region problem for illustration of global conservation for CDLS.

Taking all the test functions to be unity, i.e. vi = 1, a conservative scheme with appro-

priate boundary conditions is expected to retain zero balance1, i.e.,

∫
n⃗·Ω⃗>0

dΩ

∫
∂D

ds |n⃗ · Ω⃗|ψ −
∫

n⃗·Ω⃗<0

dΩ

∫
∂D

ds |n⃗ · Ω⃗|ψinc +

∫
D

dV (σaϕ−Q) = 0, (8.3)

where Q =

∫
4π

dΩ q.

Take vi = 1 to Eq. (8.2), we see

Livi = Ω⃗ · ∇vi + σtivi = σti (8.4)

To simplify the notation, we consider a infinite slab with only two subdomains (see

1In fact, one would instead expect a round-off balance, which is related to the machine precision.
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Figure 8.1), within each the cross sections are constants. Consequently, Eq. (8.2) is turned

to be

∫
4π

dΩ

∫
D1

dV σt1

(
(L1 − S1)ψ1 −

Q1

4π

)
+

∫
n⃗1·Ω⃗<0

dΩ

∫
F1

ds σt1

∣∣∣n⃗1 · Ω⃗
∣∣∣ (ψ1 − ψinc

1

)
(8.5)

+

∫
4π

dΩ

∫
D2

dV σt2

(
(L2 − S2)ψ2 −

Q2

4π

)
+

∫
n⃗2·Ω⃗<0

dΩ

∫
F2

ds σt2

∣∣∣n⃗2 · Ω⃗
∣∣∣ (ψ2 − ψinc

2

)
+

∫
n⃗1·Ω⃗<0

dΩ

∫
Γl

ds σt1

∣∣∣n⃗1 · Ω⃗
∣∣∣ (ψ1 − ψ2) +

∫
n⃗2·Ω⃗<0

dΩ

∫
Γr

ds σt2

∣∣∣n⃗2 · Ω⃗
∣∣∣ (ψ2 − ψ1) = 0

Define

jini (r⃗) :=

∫
n⃗i·Ω⃗<0

dΩ
∣∣∣n⃗i · Ω⃗

∣∣∣ψi and jouti (r⃗) :=

∫
n⃗i·Ω⃗>0

dΩ
∣∣∣n⃗i · Ω⃗

∣∣∣ψi, (8.6)

then

∫
4π

dΩ

∫
Di

dV

(
Liψi − Siψi −

Qi

4π

)
=

∫
∂Di

ds (jouti − jini ) +

∫
Di

dV (σaiϕi −Qi) (8.7)

96



Plug Eq. (8.7) back into (8.5) and rearrange, leading to:

σt1

∫
F1

+

∫
Γl

 ds (jout1 −��j
in
1 ) + σt1

∫
D1

dV (σa1ϕ1 −Q1)

+σt2

∫
F2

+

∫
Γr

 ds (jout2 −@@j
in
2 ) + σt2

∫
D2

dV (σa1ϕ2 −Q2)

+σt1

∫
D1

+

∫
Γl

 ds��j
in
1 − σt1

∫
F1

ds

∫
n⃗1·Ω⃗<0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ψinc
1 (8.8)

−σt1
∫
Γl

ds

∫
n⃗1·Ω⃗<0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ψ2(Γr) + σt2

∫
D2

+

∫
Γr

 ds@@j
in
2

−σt2
∫
F2

ds

∫
n⃗2·Ω⃗<0

dΩ
∣∣∣n⃗2 · Ω⃗

∣∣∣ψinc
2 − σt2

∫
Γr

ds

∫
n⃗2·Ω⃗<0

dΩ
∣∣∣n⃗2 · Ω⃗

∣∣∣ψ1(Γl) = 0

Denote balances of D1 and D2 by B1 and B2 we then have a weighted balance equa-

tion:

σt1B1 + σt2B2 = 0, (8.9)

where

B1 =

∫
F1

+

∫
Γl

 ds jout1 +

∫
D1

dV (σa1ϕ1 −Q1) (8.10)

−
∫
F1

ds

∫
n⃗1·Ω⃗<0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ψinc
1 −

∫
Γl

ds

∫
n⃗1·Ω⃗<0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ψ2(Γr),
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and

B2 =

∫
F2

+

∫
Γr

 ds jout2 +

∫
D2

dV (σa2ϕ2 −Q2) (8.11)

−
∫
F2

ds

∫
n⃗2·Ω⃗<0

dΩ
∣∣∣n⃗2 · Ω⃗

∣∣∣ψinc
2 −

∫
Γr

ds

∫
n⃗2·Ω⃗<0

dΩ
∣∣∣n⃗2 · Ω⃗

∣∣∣ψ1(Γl).

Apparently, for all nonzero σt1 and σt2, in order to make Eq. (8.9) true, one must have:

B1 ≡ 0 and B2 ≡ 0, (8.12)

which claims the conservations within each subdomain.

In addition, since B1 and B2 are zero, therefore

B1 +B2 ≡ 0 (8.13)

Note that

∫
Γl

ds jout1 −
∫
Γr

ds

∫
n⃗·Ω⃗<0

dΩ |n⃗ · Ω⃗|ψ1(Γl) (8.14)

=

∫
Γl

ds jout1 −
∫
Γl

ds

∫
n⃗·Ω⃗>0

dΩ |n⃗ · Ω⃗|ψ1(Γl) = 0,

and

∫
Γr

ds jout2 −
∫
Γl

ds

∫
n⃗·Ω⃗<0

dΩ |n⃗ · Ω⃗|ψ2(Γr) (8.15)

=

∫
Γr

ds jout2 −
∫
Γr

ds

∫
n⃗·Ω⃗>0

dΩ |n⃗ · Ω⃗|ψ2(Γr) = 0.
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As a consequence,

B1 +B2 =

∫
F1

ds jout1 +

∫
D1

dV (σa1ϕ1 −Q1)−
∫
F1

ds

∫
n⃗·Ω⃗<0

dΩ |n⃗ · Ω⃗|ψinc
1 (8.16)

+

∫
F2

ds jout2 +

∫
D2

dV (σa2ϕ2 −Q2)−
∫
F2

ds

∫
n⃗·Ω⃗<0

dΩ |n⃗ · Ω⃗|ψinc
2 = 0

Hence, the CDLS scheme is subdomain-wise and globally conservative if the cross

section is subdomain-wise constant (and nonzero).

8.3 Numerical Results

The implementation is carried out by the C++ Open source finite element library

deal.II[52]. In all tests, we also include results from solving the globally conservative

self-adjoint angular flux (SAAF) equation with CFEM as a comparison[25, 66].

8.3.1 Modified Reed’s problem

A modified Reed’s problem is used[54]. The material properties are listed in Table 8.1.

By using S8 in angle, the result comparison is presented by Figure 8.2. 48 cells are used

for CFEM-LS, CFEM-SAAF and CDLS calculations. Specifically, the interfaces are set

at x = 3, 5, 6 cm which are where the material interfaces reside.

The reference is made from CFEM-SAAF with 8000 cells. Without enough refine-

ments, solutions for CFEM-SAAF and CFEM-LS are distorted in the thin absorber (x ∈

(3, 5) cm). Also, the accuracy in the source region x ∈ (2, 3) cm. However, CDLS,

through adding a few extra DoFs on the material interfaces and therefore introducing dis-

continuities, CDLS fits the 8000 cells reference with merely 48 cells graphically well.

To better fit the thick regions, methods with CFEM tends to “sacrifice" the thin-region

solution. On the other hand, CDLS scheme chooses to break the continuity on the inter-
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faces and add one extra DoF at one interface per direction. The gain is thin regions, away

from the interfaces, scalar flux is recovered and thus accurate.

Table 8.1: Material configuration for modified Reed’s problem.

x [cm] (0,2) (2,3) (3,5) (5,6) (6,8)
σt [cm−1] 1 1 0.005 5 50
σs [cm−1] 0.9 0.9 0 0 0

Q 0 1 0 0 50

Figure 8.2: Modified Reed’s problem result comparison.

8.3.2 Two-region absorption problem

The second test problem is a 1D slab pure absorber problem. There is a unit incident

angular flux on left boundary of the slab. No source appears in the domain. σt = 0.1 cm−1
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for x < 1 cm or σt = 10 cm−1 otherwise.
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Figure 8.3: Two-region absorption results comparison with LS, SAAF and CDLS.

As illustrated in Figure 8.3, due to the existence of the thin-thick material interface, the

LS solution in thin material is heavily affected by trying to fit the thick-region solution,

using more cells is not effectively improving the LS solution. SAAF, on the other hand,

present better solution with the same DoF counts. One reason would be due to the presence

of the 1/σt weight to the streaming operator, the effects from the thick material is weak-

ened. But both schemes does not have correct particle causality. Nevertheless, breaking

the continuity results in accurate solution in thin material even with merely 16 cells in total

(see Figure 8.3a). Increasing the total number of cells improves the solution in the thick

material as well (see Figure 8.3b). When calculating the leakage error as shown in Figure

8.4, one observes that CDLS has a second order convergence rate, yet, with noticeably

lower error magnitudes.

Moreover, the absolute values of global balances are examined (see Table 8.2). As

expected, LS presents large balances. Refining the mesh does lower the balance, the ef-
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Figure 8.4: Leakage errors at right boundary.

fectiveness is doubtable. On the other hand, CFEM-SAAF gives round-off balance as

expected. The results for CDLS demonstrate the global conservation as claimed in previ-

ous sections.

Table 8.2: Absolute global balance with different methods.

Cell numbers 20 40 80 160 320
LS 4.232 × 10−1 3.213 × 10−1 1.782 × 10−1 1.715 × 10−1 2.474 × 10−2

CFEM-SAAF 2.958 × 10−14 8.958 × 10−14 1.311 × 10−13 6.392 × 10−13 2.808 × 10−12

CDLS 1.074 × 10−13 3.834 × 10−13 7.462 × 10−13 1.045 × 10−11 1.352 × 10−12

8.3.3 One group iron-water problem

The last test is modified from a iron-water shielding problem[67] used to test accuracy

of numerical schemes in relatively thick materials (see the configuration in Figure 8.5a).
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S2 is used in angular discretization. The quantity of interest is the absorption rate in iron

shield. The reference is with CFEM-SAAF using 1200x1200 cells. As shown in Figure

8.5, LS and SAAF presents similar spatial convergence rates. However, LS presents lower

accuracy than CFEM-SAAF with the presence of material interface between iron and wa-

ter. On the other hand, by setting two interfaces between iron and water and introducing

extra DoFs on the interfaces, CDLS presents roughly the same spatial convergence but

much lower error magnitudes than CFEM-SAAF and ordinary LS.

(a) Problem configuration.
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Figure 8.5: Iron water problem.

8.4 Summary

In this section, we proposed a contiguous-discontinuous least-squares discretization

method for solving neutron particle transport. Such a method resembles least-squares dis-

cretization in each subdomain of the problem. Yet, additional interface term appears to

alleviate the solution and retain the subdomain-wise and global conservation by introduc-

ing discontinuity on the material interfaces.
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Since CD methodology allows the discontinuity on the subdomain interface, different

angular schemes, e.g. SN and PN can be used in different subdomains. In fact, with

borrowing the CD concept, such an angular hybridation scheme has been implemented in

MOOSE based application Rattlesnake as its multiscale capability[68, 69], which will be

introduced in Section 9.
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9. CONTIGUOUS DISCONTINUOUS DISCRETIZATION OF SELF-ADJOINT

ANGULAR FLUX EQUATION AND ANGULAR HYBRIDATION SCHEMES

9.1 Introduction

Section 8 introduced a novel least-squares finite element method solving neutron trans-

port method. Such a method, unlike ordinary least-squares method, is globally conserva-

tive if total cross section in each contiguous subdomain is constant, which is significant

for k-eigenvalue problems for neutronics. Also, it is observed that there is a noticeable in-

crease in accuracy with allowing the discontinuity of angular flux on the interface between

contiguous subdomains by paying the price of a few extra interface DoFs.

Nevertheless, the obtainment of conservation is restricted by having constant cross

section in each single subdomain. Issues would arise from this restriction. In high fidelity

calculations without homogenizing the materials, numerous interfaces are needed setting

up even for assembly calculations, which is exhausting and complex.

The enhancement in accuracy, however, signifies having discontinuity existing on con-

tiguous subdomain interfaces. Section 6 illustrates having reciprocal total cross section

weighted least-squares formulation illustrates CFEM-SAAF, which is globally conserva-

tive in heterogeneous problems. Thusly, an intuition is to introduce contiguous disconti-

nuity when discretizing the transport equation with weighted least-squares finite element.

Therein, the resemblance of CFEM-SAAF in each subdomain can be realized. What would

be expected is that even non-constant cross sections are used in each subdomain, conser-

vation in each subdomain can still be preserved such that global conservation is obtained.

Due to the nature of the method, we name it contiguous-discontinuous (CD)-SAAF.

In this section, we will derive the proposed method. Moreover, we will demonstrate

CD-SAAF method resembles CFEM-SAAF in subdomains with upwinding on subdomain
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interfaces. Last but not least, we develop an angular hybridation scheme allowing the cou-

pling between SN and PN on different sides of an interface utilizing CD-SAAF methodol-

ogy.

9.2 Theory: Angularly Continuous Weak Forms

9.2.1 Contiguous-discontinuous (CD) weighted least-squares functional

Formulations

Let us start off defining the functional as follows:

ΓCD−SAAF =
1

2

∑
Di⊂D

∫
4π

dΩ

∫
Di

dr⃗
1

σti
(Li −

(
Siψi +

Qi

4π

)
)2

+
1

2

∑
Di⊂D

∑
Fij

∫
n⃗i·Ω⃗<0

dΩ

∫
Fij

ds
∣∣∣n⃗i · Ω⃗

∣∣∣ (ψi − ψj)
2 (9.1)

+
1

2

∫
n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ (ψ − ψinc)2,

where Fij is the interface between Di and contiguous subdomain Dj and n⃗i is the outward

normal of subdomain Di on the interface. Again, the scattering source in the underlined

part is rather treated as part of volumetric source as the WLS functional in Section 6. It

then leads to the following contiguous-discontinuous weak formulation formulation: find

ψ ∈ Vi ⊂ V , i = 1, · · · such that ∀vi ∈ Vi ⊂ V , i = 1, · · ·

∑
Di⊂D

∫
Di

dr⃗

(
Ω⃗ · ∇vi

1

σt
Ω⃗ · ∇ψi + σtviψi − vi

(
Siψi +

Qi

4π

)
− Ω⃗ · ∇vi

Siψi +
Qi

4π

σt

)

+
∑
Di⊂D

∑
Fij

∫
Fij

ds

 ∫
n⃗i·Ω⃗>0

dΩ
∣∣∣n⃗i · Ω⃗

∣∣∣ viψi −
∫

n⃗i·Ω⃗<0

dΩ
∣∣∣n⃗i · Ω⃗

∣∣∣ viψj

 (9.2)

+

∫
n⃗·Ω⃗>0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψ −
∫

n⃗·Ω⃗<0

dΩ

∫
∂D

ds
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc = 0.
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Intuitively, the formulation above resembles CFEM-SAAF within the subdomains and

on domain boundaries but differ from it on interfaces. By the formulation above, when

assembling the system, every subdomain interface needs visiting twice. We then name the

resulting scheme CD-SAAF in the rest of the report.

Upwinding flux on the interface

It can be demonstrated that the mechanism allowing interface discontinuity is essen-

tially the upwinding. To reveal that, we would visit every face only once but visit both

sides simultaneously when assembling. The new assembly strategy is identical to the orig-

inal interface formulation except the logics differs.

We isolate the interface terms and denote them as I . Let F stand for the interface of two

contiguous subdomains generically represented by D1 and D2. Let n⃗1 and n⃗2 are outward

normal vectors of D1 and D2, respectively, then the interface term can be rewritten as:

I =

∫
Γ

ds

∫
n⃗1·Ω⃗>0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ v1ψ1 −
∫
Γ

ds

∫
n⃗1·Ω⃗<0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ v1ψ2

+

∫
Γ

ds

∫
n⃗2·Ω⃗>0

dΩ
∣∣∣n⃗2 · Ω⃗

∣∣∣ v2ψ2 −
∫
Γ

ds

∫
n⃗2·Ω⃗<0

dΩ
∣∣∣n⃗2 · Ω⃗

∣∣∣ v2ψ1. (9.3)

By recognizing n⃗1 = −n⃗2, Eq. (9.3) can be shortened as:

I =

∫
Γ

ds

∫
n⃗1·Ω⃗>0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ (v1 − v2)ψ1

+

∫
Γ

ds

∫
n⃗1·Ω⃗<0

dΩ
∣∣∣n⃗1 · Ω⃗

∣∣∣ (v2 − v1)ψ2 (9.4)

Thereafter, it is clear the equation above is identical to the classic upwinding formula-
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tion:

I =

∫
Γ

ds

∫
4π

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ [v]ψ+ (9.5a)

[v] := v+ − v−, (9.5b)

where ψ± are the upwind and downwind angular flux with respect to direction Ω⃗.

9.2.2 Compact weak forms of CFEM-SAAF and CD-SAAF

To simplify the notations, we define the inner products with generic functions a and b:

(a, b)Di
=

∫
4π

dΩ

∫
Di

dr⃗ a⊤b (9.6a)

< a, b >E=

∫
F

ds a⊤b, (9.6b)

< a, b >+
E =

∫
n⃗·Ω⃗>0

dΩ

∫
F

ds |n⃗ · Ω⃗|a⊤b, (9.6c)

< a, b >−
E =

∫
n⃗·Ω⃗<0

dΩ

∫
F

ds |n⃗ · Ω⃗|a⊤b, (9.6d)

where E generically represents the interior or boundary face and n⃗ is the outward

normal vector of the element.
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The weak formulation of CD-SAAF is then re-expressed as:

∑
Di⊂D

[(
Ω⃗ · ∇vi,

1

σti
Ω⃗ · ∇ψi

)
Di

+ (vi, σtiψi)Di

−
(
vi,

(
Siψi +

Qi

4π

))
Di

−

(
Ω⃗ · ∇vi,

(
Siψi +

Qi

4π

)
σti

)
Di

]
(9.7)

+
∑
F

∫
4π

dΩ⃗
∣∣∣n⃗ · Ω⃗

∣∣∣ ⟨[v] , ψ+⟩F + ⟨v, ψ⟩+∂D −
⟨
v, ψinc

⟩−
∂D = 0,

where F is the interface between any two contiguous subdomains.

More specifically, the weak form can be separated as bilinear form bCD−SAAF(v, ψ)

and linear form lCD−SAAF(v) such that b(v, ψ) = l(v):

bCD−SAAF(v, ψ) =
∑
Di⊂D

[(
Ω⃗ · ∇vi,

1

σti
Ω⃗ · ∇ψi

)
Di

+ (vi, σtiψi)Di
− (vi, Siψi)Di

−
(
Ω⃗ · ∇vi,

Siψi

σti

)
Di

]
+
∑
F

∫
4π

dΩ⃗
∣∣∣n⃗ · Ω⃗

∣∣∣ ⟨[v] , ψ+⟩F + ⟨v, ψ⟩+∂D (9.8a)

lCD−SAAF(v) =
∑
Di⊂D

[(
vi,

Qi

4π

)
Di

+

(
Ω⃗ · ∇vi,

Qi

4πσti

)
Di

]
+ ⟨v, ψ⟩−∂D (9.8b)

As a comparison, compact CFEM-SAAF weak form, identical to Eq. (6.8), is:

bCFEM−SAAF(v, ψ) =

(
Ω⃗ · ∇v, 1

σt
Ω⃗ · ∇ψ

)
D
+ (v, σtψ)D − (v,Sψ)D

−
(
Ω⃗ · ∇v, Sψ

σt

)
D
+ ⟨v, ψ⟩+∂D (9.9a)

lCFEM−SAAF(v) =

(
v,
Q

4π

)
D
+

(
Ω⃗ · ∇v, Q

4πσt

)
D
+
⟨
v, ψinc

⟩−
∂D (9.9b)
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Apparently, they are almost identical except that CD-SAAF possesses an extra inter-

face upwinding term.

9.3 Angular Discretizations

9.3.1 Redefine the upwinding

Classic upwinding definition is with respect to specific direction, which brings diffi-

culty when treating PN interface conditions. Therefore, we redefine the upwinding. In

the redefinition, we always specify a master and a slave subdomains. For instance, we

always set SN and PN subdomains to be master and slave, respectively, when we have an

SN -PN interface. We fix the normal vector to be pointing from master subdomain to slave

subdomain. Further, we have some new definitions accordingly:

ψ∓ = lim
s→0+

ψ(r⃗ ∓ sn⃗) and JvK = v− − v+, (9.10)

that being said, ψ− is always fixed to be the master angular flux. Consequently, the up-

winding in Eq. (9.5a) can be redefined as:

I =

∫
F
ds

 ∫
n⃗·Ω⃗>0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ JvKψ− −
∫

n⃗·Ω⃗<0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ JvKψ+


=
⟨JvK , ψ−⟩+

F −
⟨JvK , ψ+

⟩−
F (9.11)

9.3.2 SN -SN coupling

Discretization with SN in both subdomains is straightforward with the surface inner

product:

I =
∑

n⃗·Ω⃗m>0

wm

∣∣∣n⃗ · Ω⃗m

∣∣∣ ⟨JvmK , ψ−
m

⟩
F −

∑
n⃗·Ω⃗m<0

wm

∣∣∣n⃗ · Ω⃗m

∣∣∣ ⟨JvmK , ψ+
m

⟩
F (9.12)
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9.3.3 PN -PN couplings

There would be a necessity by setting up an interface between two PN schemes1.

Direct coupling

Define the PN expansion of angular flux with the real-valued spherical harmonics:

ψ(Ω⃗) = R⃗⊤(Ω⃗)
−→
Φ , (9.13)

where R⃗⊤(Ω⃗) and
−→
Φ are column vectors of spherical harmonics and moments, respec-

tively. In addition to the L+ defined previously, let us further define the L− matrix:

L− =

∫
n⃗·Ω⃗<0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ R⃗(Ω⃗)R⃗⊤(Ω⃗) (9.14)

Plug Eqs. (B.8c) and (9.14) into Eq. (9.11), we shall see

I =
⟨
v⃗−,L+−→Φ−

⟩
F
+
⟨
v⃗+,L−−→Φ+

⟩
F
−
⟨
v⃗+,L−−→Φ−

⟩
F
−
⟨
v⃗−,L+−→Φ+

⟩
F

=

⟨Jv⃗K , (L+ − L−){−→Φ}+
L+ + L−

2

r−→
Φ

z⟩
F

(9.15)

where
{−→
Φ
}
=
(−→
Φ+ +

−→
Φ−
)
/2.

Riemann solver based coupling

It is clear that the formulation above is similar to the upwinding in PN -DFEM. The

difference is PN -DFEM upwinding is based on the eigenstructure of streaming matrices

while Eq. (9.15) is not. An alternative is then to perform eigenvalue decomposition and

reformulate the upwinding in an eigenstructure based way. The cause of the difference is

that the original formulation for upwinding is for transport equation before discretized in

1For formulation about SAAF-PN scheme, see Appendix B
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angle while the eigenstructure based method is the upwinding after PN angular discretiza-

tion has been introduced.

That being said, the interface weak form should be rewritten as:

I =

∫
n⃗·Ω⃗>0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ ⟨JvK , ψ̃⟩
F
−
∫

n⃗·Ω⃗<0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ ⟨JvK , ψ̃⟩
F
, (9.16)

where ψ̃ is the “proper" angular flux that needs to be specified. Expand all the angular flux

with PN method, we have:

I(v⃗−, v⃗+, Φ̃) =
⟨
v⃗−,
(
L+ − L−) Φ̃⟩

F
−
⟨
v⃗+,
(
L+ − L−) Φ̃⟩

F
. (9.17)

To know how to perform upwinding for L+ − L−, we need to know the eigenstructure of

it. Since L+ − L− is symmetric, eigenvalue decomposition brings

(
L+ − L−) = UΛU⊤, (9.18)

where Λ is the diagonal matrix whose diagonal elements are the eigenvalues of L+ − L−.

U is a matrix whose columns are the eigenvectors of L+ − L−. Before proceeding, we

separate Λ to be Λ+, which contains only the positive eigenvalues of Λ, and Λ−, which

contains the absolute values of negative eigenvalues. Accordingly, we have:

Λ = Λ+ − Λ−. (9.19)
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With the separation, the interface weak form can be transformed to

I =
⟨
v⃗−,UΛ+U⊤−→Φ−

⟩
F
−
⟨
v⃗−,U

∣∣Λ−∣∣U⊤−→Φ+
⟩
F

(9.20)

−
⟨
v⃗+,UΛ+U⊤−→Φ−

⟩
F
+
⟨
v⃗+,U

∣∣Λ−∣∣U⊤−→Φ+
⟩
F
.

Similarly, the weak form can be re-expressed in a upwinding way:

I =

⟨Jv⃗K , (M+ −M−){−→Φ}+
M+ +M−

2

r−→
Φ

z⟩
F

(9.21)

Note

M+ −M− = UΛ+U⊤ −UΛ−U⊤ = U(Λ+ − Λ−)U⊤ = UΛU⊤ = L+ − L−, (9.22)

therefore

I =

⟨Jv⃗K , (L+ − L−){−→Φ}+
M+ +M−

2

r−→
Φ

z⟩
F
. (9.23)

At the end, the upwinding differs from the original upwinding in the dissipation part.

If we further proceed, we know:

M+ +M− = UΛ+U⊤ +UΛ−U⊤ = U(Λ+ + Λ−)U⊤ =
∑
k

r⃗k |λk| r⃗⊤k , (9.24)

where (λk, r⃗k) is the kth eigenpair of L+−L−. Introduce this back to (9.23), we will have

the upwinding represented by Roe type Riemann solver:

I =

⟨Jv⃗K , (L+ − L−){−→Φ}+

∑
k

r⃗k |λk| r⃗⊤k

2

r−→
Φ

z⟩
F

(9.25)
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Differentiations and consistency

The original type of upwinding for PN -PN coupling is performed before doing an-

gular integration while the eigenstructure based upwinding is performed after projecting

transport equation into spherical harmonics function space. Intuitively, the solutions from

these two method are expected to be different. In fact, for the original type of upwinding,

one performs half-range integral in angle for each side of an interface, which naturally

resembles a Marshak boundary condition on the boundary[16]. Meanwhile, the Riemann

type of upwinding resembles the “ghost cell" boundary condition[7, 6] on the interface.

Fundamentally, such a boundary condition is a Mark type boundary condition as it trans-

mits the boundary information outside current subdomain in characterized directions and

speed, based on the eigenstructure of streaming matrix, into the subdomains. However,

the consistency appears when increasing the PN angular order as the angular error from

truncating spherical harmonics vanishes.

9.3.4 SN -PN coupling

SN -PN interface is chosen to be formulated in a similar way to SN -SN . Factually, it is

much easier to reconstruct angular flux in discrete directions in SN quadrature using PN

moments than the reverse way to keep the compatibility of DoFs from different subdo-

mains.

We always choose SN to be the master subdomain such that the normal vector n⃗ is

always fixed to be from SN to PN . We separate the weak form into four different terms

based on what the weight and basis functions are, i.e.

I = ISN−SN + ISN−PN
+ IPN−SN + IPN−PN

. (9.26)

By performing all the angular integration with the quadrature identical to the SN sub-
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domain, we can specifically write all four terms as:

ISN−SN =
∑

Ω⃗m·n⃗m>0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ v−m, ψ−
m

⟩
F
, (9.27)

ISN−PN
= −

∑
Ω⃗m·n⃗m<0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ v−m, ψ+
m

⟩
F

= −
∑

Ω⃗m·n⃗m<0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ v−m, R⃗⊤(Ω⃗m)
−→
Φ+
⟩
F
, (9.28)

IPN−SN = −
∑

Ω⃗m·n⃗m>0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ v+m, ψ−
m

⟩
F

= −
∑

Ω⃗m·n⃗m>0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ R⃗⊤(Ω⃗m)v⃗
+, ψ−

m

⟩
F
, (9.29)

IPN−PN
=

∑
Ω⃗m·n⃗m<0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ v−m, ψ−
m

⟩
F

=
∑

Ω⃗m·n⃗m<0

wm

⟨∣∣∣n⃗ · Ω⃗m

∣∣∣ R⃗⊤(Ω⃗m)v⃗
−, R⃗(Ω⃗m)

−→
Φ−
⟩
F
, (9.30)

9.3.5 Diffusion-diffusion coupling

Coupling between two diffusion schemes are favored in the case that scalar fluxes in

contiguous subdomains are diffusive. Unlike high order couplings, the coupling between

two diffusion schemes is rather to borrow the methodology developed for DFEM-diffusion

that penalizes the jump of the scalar flux value and gradient[70]. The difference from

DFEM-diffusion is that herein CFEM is still engaged to discretize the diffusion equation

within each subdomain. We only apply the penalty method on the interface. We arbitrarily
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choose one subdomain as the master subdomain and as always fix the normal vector n⃗

pointing from master to slave. Further, every quantity belonging to master/slave subdo-

main will be given a superscript “∓". The definition of penalty coefficient is given by[70]:

κ = max

(
p−(p− + 1)

D−

h−
+ p+(p+ + 1)

D+

h+
,
1

4

)
, (9.31)

where p is the polynomial order; D is diffusion coefficient, h is the length of the cell

orthogonal to interface, which is defined as h = 2A
L

where A is the element area and

L is the element edge length on the interface. Thereafter, the interface bilinear form is

formulated as:

I = ⟨JvK , κ JϕK⟩F + ⟨{D∂nv} , JϕK⟩F + ⟨JvK , {D∂nϕ}⟩F , (9.32)

where ∂nϕ = n⃗ · ∇ϕ.

9.4 Numerical Tests

Most numerical tests in this section are carried out with Rattlesnake the MOOSE based

application, as a new realization of its multiscale functionality, which allows different

angular schemes to couple in different subdomains divided from the whole domain[68,

69]. Part of the results for SN -SN method were obtained by implementation with the C++

open source finite element library deal.II[52].

Test results for SN -SN , PN -PN and SN -PN couplings will be presented.

Reed-like problem will be presented for all three schemes[54]. In the process of de-

veloping all the couplings, Reed-like problem was always used in tests and found to be

extremely useful. As a multi-region heterogeneous problem, it easily triggered errors

from the way we set up interfaces and splitted boundaries for different schemes. As a

heterogeneous problem with nonsmooth solution, one could quickly tell if a developing
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scheme/formulation is correct.

For SN -PN coupling, a eigenvalue problem named “poison problem" will be presented.

Essentially, it is an 2D thick square pure absorber surrounded by thin fuel meat. Strong

absorption makes CFEM-SAAF-SN hard to have an accurate estimation of keff even with

many layers of spatial refinements.

Also, a more realistic problem, i.e. the KAIST-3A 2D test problem will be presented

for SN -PN calculation.

9.4.1 SN -SN

Reed’s problem

The first test is the Reed’s problem for SN -SN coupling as illustrated in Figure 9.1. S16

is used in the calculation. In the void, the void treatment is utilized so that conservation

is preserved[66]. What is surprising is that in void, the flux profile is flat to round-off

level, which means with void treatment, the subdomain-wise conservation is achieved.

However, CFEM-SAAF-SN with void treatment does not possess this property. In fact,

with under-resolved mesh, CFEM-SAAF-SN would present oscillations around the right

interface in void. By detaching subdomains with different materials, the subdomain-wise

particle causality is fixed.

Two-region test

The second test is a two-region absorber test as used in Section 8. Figure 9.2a presents

the comparison of the flux profiles with 16 cells for both CFEM-SAAF-S4 and CD-SAAF-

S4. With the additional DoFs on the interface, the scalar flux in the thin material is com-

puted accurately while CFEM-SAAF’s result is highly distorted in the thin material. Fig-

ure 9.2b is the relative error of the leakage rate on the right side for different schemes.

We also compared the least-squares method (LS) S4 with the other two. Fixing up the

causality not only brings accurate scalar flux profile in thin material, but also affects the
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Figure 9.1: Reed’s problem for SN -SN coupling

accuracy of boundary leakage.
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(a) Scalar flux profiles.
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Figure 9.2: Two-region absorber test for SN -SN coupling.

Iron-water shielding problem

Iron-water problem is re-used as an spatial accuracy demonstration for SN -SN . S2

is used in angle. To make a reference, 1200x1200 cells are used for CFEM-SAAF-SN .

When measuring the absorption rate error in iron, we found both methods roughly have
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second-order spatial convergence rates (see Figure 9.3). Yet, CD-SAAF delivers lower

error magnitudes for all cell sizes as observed in the iron-water test for CDLS.
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Figure 9.3: Error of absorption rates in iron vs cell numbers along one direction.

9.4.2 PN -PN

Modified Reed’s problem

The modified Reed’s problem in the rest of the report is such that in void, a thin ab-

sorber (σt = 0.01) is used instead. Mesh is refined enough such that all the errors we see

in Figure 9.4 are reasoned to be mainly from angular discretization. The P1-P1 presents

discontinuous solution on the interfaces. This seems to be the results of the scheme trying

to better fit the flux shape without increasing angular space in subdomains. Instead, the

solution is detached on the interfaces. The Roe solver (“CD-SAAF-PN : Riemann" shown

in the legends) presents similar discontinuous solution on interfaces. However, increasing

angular order from P1 to P5, we observe the discontinuity on the interfaces tend to vanish

and all schemes tend to be consistent.

If we check the error of integral flux at the spots where schemes differ most (i.e. x ∈
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(a) CD-SAAF-P1 with different upwindings. (b) CD-SAAF-P5 with different upwindings.

Figure 9.4: Modified Reed’s problem with different order PN angular disretizations

(2, 3) cm), we see the error magnitudes are lowered significantly based on the reference

of S110 (see Figure 9.5). However, with increasing angular orders, all scheme errors go to

zero.
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Figure 9.5: Modified Reed’s problem absorption rate errors for multiple schemes for x ∈
(2, 3) cm.
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Figure 9.6: Reed’s problem for SN -PN coupling

9.4.3 SN -PN

Reed’s problem

Reed’s problem is the first test used as a demonstration of SN -PN functionality. As seen

in Figure 9.6, green dots are for the hybridation of S16 for x ∈ (3, 6) cm and P5 elsewhere.

The hybridation presents an accurate scalar flux profile in most regions. However, the

scalar flux level in void is lower than the reference, which is from the CFEM-SAAF-S16.

Apparently, high angular accuracy is required not only in void, but also in the subdomains

contiguous to it in order to attain an accurate solution. Therefore, a relatively high order

PN , P13, is placed as a buffer layer for x ∈ (2, 3) cm between P5 and S16. The purple tri-

angles are for the new solution. As expected, the solution in void is correct by introducing

the “buffer".

Quasi-1D modified Reed’s problem

As spherical harmonics is the only set of angular basis which is rotationally invariant,

SN with angular quadrature in multi-D would never be equivalent to PN method. The
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Figure 9.7: Quasi 1D modified Reed’s problem for SN -PN coupling compared with mortar
implementation of multiscale

discrepancy between these two method cause oscillations around coupling interface when

coupling is realized by strongly enforcing angular flux continuity, as what mortar finite

element delivers[68]. A further check beyond the 1D test is then necessary. Therefore, a

modified Reed’s problem is employed and extended to 2D. By making the upper and lower

boundaries of a rectangular domain to be reflective, a 2D variation of modified Reed’s

problem is created. Along x axis, the setting is the same as 1D modified Reed’s problem.

Figure 9.7 presents the scalar flux for a hybrid scheme between P3 (x ∈ (3, 5) cm) and

S4 (elsewhere). Without angular smoothing around the coupling interfaces, which are

necessary for mortar implementation of Rattlesnake multiscale capability, we still observe

smooth solution in the domain. No obvious oscillation is seen around the interfaces.

Figure 9.8a is a line plot along axis for y = 0.5 cm. Mortar and CD-SAAF solutions

are produced using 4x32 cells. The reference is made with CFEM-SAAF-S4 with 2 more

layers of uniform refinement. CD-SAAF agrees with mortar solution in most regions but

has much higher accuracy in the thin absorber, where mortar solution is distorted a lot by

thick materials around. A sanity check is also performed that lines along y axis around

the SN -PN interfaces are drawn out in Figure 9.8b. Graphically, scalar flux is flat and no

oscillation manifests around the interfaces.
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(a) Line plot for y = 0.5 cm.
(b) Line plots along y direction around SN -
PN interfaces.

Figure 9.8: Line plots for quasi 1D modified Reed’s problem.

Poison problem

The “poison" problem is an eigenvalue problem characterized by a strong absorber in

the middle of a 2D domain and thin fuel meat surrounding the poison. With the presence

of the strong absorber, CFEM-SAAF-S16 needs a lot of refinement to get a converged keff .

With 9 layers of uniform refinement2, CFEM-SAAF-S16 gives a keff of 0.89880. We see

slow convergence when increasing refinement layers in Table 9.1.

Table 9.1: keff results for CFEM-SAAF-S16 with different layers of uniform refinements.

Refinement layers 5 6 7 8 9
keff 0.89675 0.89723 0.89779 0.89856 0.89880

However, with setting an interface between the two materials, S16-S16 gives 0.89878

(see Table 9.2) with merely five layers of uniform refinement. The trade off is the slight

increase of DoFs from the interface.
2The total DoFs is over 150 million with CFEM-SAAF-S16.
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Table 9.2: keff results for SAAF-S16 in absorber coupled with different angular schemes in
fuel meat, with 5 layers of uniform refinements.

Coupled schemes S16 P1 P2 P3 P4

keff 0.89878 0.89852 0.89882 0.89879 0.89879
Coupled schemes P5 P6 P7 P8 P9

keff 0.89879 0.89879 0.89879 0.89879 0.89879

Table 9.3: KAIST-3A group structure.

Group number Energy ranges [eV]
0 1.353× 106 − 2× 107

1 9.119× 103 − 1.353× 106

2 3.928− 9.119× 103

3 0.6251− 3.928
4 0.1457− 0.6251
5 0.05692− 0.1457
6 0− 0.05692

More importantly, with using PN schemes in fuel instead, we gain comparable keff

value with merely P2 in the fuel, which is a big saving in sense of total DoFs. This is

the whole purpose of developing SN -PN coupling that we aim to gain reasonable accuracy

with small amount of DoFs.

2D KAIST-3A test

Last but not least, the 2D KAIST3A small full-core PWR problem[71], is used as a

real-world test. The configuration and initial meshing (i.e. without any spatial refinement)

are shown in Figures 9.9a and 9.9b, respectively. The group structure is listed in Table

9.3. Different orders of PN are assigned to the reflector (dark green), while S8 are used

otherwise. The main purpose is to show coupling low order PN with high order SN would

not sacrifice the accuracy.

Table 9.4 listed a comparison between S8-PN with three layers of uniform refinements.
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(a) Configuration of 2D KAIST-3A problem. (b) KAIST-3A problem starting mesh.

Figure 9.9: KAIST-3A geometry and meshing.

Table 9.4: keff comparisons between CD-SAAF-S8-PN and CFEM-SAAF-S8 with 3 layers
of uniform refinements. The reference keff from CFEM-SAAF-S8 with 4 layers of uniform
refinements is 0.96877.

Schemes S8 S8-P1 S8-P3 S8-P5 S8-P7

keff 0.96858 0.96843 0.96860 0.96859 0.96859
keff − kref [pcm] -19 -34 -17 -18 -18

A reference solution is from CFEM-SAAF-S8 with 4 layers of uniform refinements3.

Figures 9.10 and 9.11 present comparisons between S8 and S8-P1 for fast and thermal

groups, respectively. With using P1 in reflector, the maximum thermal scalar flux differs

from CFEM-SAAF-S8 by less then 0.1%. What is more important, as demonstrated in the

quasi-1D modified Reed’s problem, no instability is induced around the interface between

high order S8 and the low order P1. By increasing the PN order from 1 to 3, the keff is

comparably accurate as CFEM-SAAF-S8 with the same layers of refinements.

3The reference scalar fluxes for all groups from CFEM-SAAF-S8 with 4 layers of uniform refinements
are presented in Appendix C.
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(a) CFEM-SAAF-S8. (b) CD-SAAF-S8-P1.

Figure 9.10: Comparison for fast fluxes (g=0).

(a) CFEM-SAAF-S8. (b) CD-SAAF-S8-P1.

Figure 9.11: Comparison for thermal fluxes (g=6).
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10. CONCLUSIONS AND RECOMMENDATIONS

10.1 Concluding Remarks

10.1.1 Nonlinear filtering with residual indicated viscosity

By analyzing the least-squares residual in moment variable space, we developed a

nonlinear transient PN closure. The TPN closure essentially is a modified diffusive clo-

sure with flux limiters added to the total cross section. Testing with 1D problems shows

plausible accuracy. In 2D applications, however, TPN shows to be sensitive to the coeffi-

cients. But it does provide a nonlinear viscosity which we applied to the nonlinear filtered

PN method in this dissertation.

10.1.2 Nonlinear filtered PN methods

We applied the viscosity realized in development of TPN method to the filtered PN

method. Unlike the TPN method, NFPN shows the robustness in a wide range of multi-D

test problems for time-dependent linear transport.

We also developed another NFPN formulation in which the viscosity shares a similar

form of the viscosity in Larsen’s flux limited diffusion. For both forms, we gave a proof for

the asymptotic preservations. We further provide a fully implicit scheme for TRT applica-

tions. Tests on the Marshak problem demonstrated the method efficacies and numerically

proves that both formulations preserve the thick diffusion limit.

10.1.3 Relaxed L1 method for solving neutron transport in near-void situations

We have provided a nonlinear relaxed L1 method solving neutron transport equation

effectively accurately in void and near-void situations. By defining a L1 norm of trans-

port residual in finite element space, we derived a L1 finite element method. Besides, to

be compatible with the L1 method, we derived a L1 boundary condition. The resulting
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method delivers effectively non-oscillatory results in void and near-void problems where

least-squares can produce oscillations and negativity. Also, we showed the consistent RL1

boundary condition is necessary to obtain reasonable results on the incident boundary.

10.1.4 Contiguous discontinuous finite element methods for solving neutronics

CDLS method

By breaking the regular least-squares method into subdomain-wise definitions where

within each subdomain total cross section is nonzero constant. We provided a proof for

the obtainment of subdomain-wise and global conservation in heterogeneous system. The

developed interface condition fixed the non-conservative issue existing in ordinary least-

squares methods. In an iron-water shielding problem, it shows a second order spatial con-

vergence but with much lower error magnitude compared with CFEM-LSTE and CFEM-

SAAF. Overall, the CDLS method is very promising for non-void neutron transport calcu-

lations.

CD-SAAF method

We also applied the CD methodology to the 1/σt- weighted least-squares finite ele-

ment and through a lengthy derivation, we found the resemblance to CFEM-SAAF within

each subdomain and a upwinding flux on the interfaces. Thusly, we call the resulting

method “CD-SAAF". We naturally exploited the discontinuity by applying different an-

gular discretization schemes on different sides of an interface. It turns out for k-eigenvalue

calculations, such SN -PN coupling scheme can deliver comparable accuracy with CFEM-

SAAF-SN while using much less degrees of freedom. And the scheme has been imple-

mented in the MOOSE based application Rattlesnake in INL[69].
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10.2 Recommendations

10.2.1 NFPN formulations

The NFPN formulations developed in this work are successful in the sense of infer-

ring part of the viscosity nonlinearly based on the solution. Nevertheless, there are two

issues remain. The first one is a principle to find a proper cN . We found that cN is rather

problem-dependent. Further, larger cN would always ensure the simulation running yet

adding inappropriately large angular diffusion. An attractive direction for for future ex-

ploration is then find a solution dependent method to determine cN such that cN will be

tuned automatically as well as νl.

10.2.2 Efficient solving technique for RL1 method

Despite the easily understandable formulation of RL1, the solving efficiency is not

ideal. On the other hand, though one might derive a Newton-like algorithm for solving in

L1 norm, correctly formulating the Jacobian would be quite complex, exhausting and of

poor understandability. Part of the reason for the solving inefficiency is that the nonlinear

iteration is executed only when the linear iteration is converged. One possibility to over-

come the shortcoming is to use Jacobian-free Newton Krylov method (JFNK)[72]. In such

a case, the source iteration solving is evolved with the nonlinear solve, without explicitly

giving the Jacobian, which is necessary for Newton’s method.

10.2.3 Conservative treatment for CDLS in void

In void, as proved by Section 8, CDLS is not globally conservative. In near void

situation, though CDLS is conservative, it is not clear if the σt weighted interface condition

is appropriate in the sense of not degrading the preconditioning and linear solving process.

An appropriate treatment in void and near-void is then necessary.
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10.2.4 Efficient k-eigenvalue calculations with CDLS in highly heterogeneous prob-

lems

CDLS is of value due to the preservation of conservation and high accuracy. However,

difficulty arises from implementation perspective. In order to have conservation preserved,

constant cross sections within each subdomain is requested. In real-world reactor calcula-

tions, such a setting can be troublesome. Without homogenization, every single material

within a fuel pin requests an individual subdomain. Even with homogenization, one still

have to cautiously set up subdomains. An example is the KAIST-3A test that one needs

at least 10 individual subdomains with the presence of 10 different homogenized pins.

Effects of using less subdomains needs further research.

10.2.5 Acceleration techniques for CD-SAAF k-eigenvalue calculations

For large-scale full-core calculations, acceleration techniques like nonlinear diffusion

acceleration (NDA) is necessary to speed up convergence for k-eigenvalue calculations[58].

For CD-SAAF, since discontinuity is only imposed on predefined interfaces, it might be

not proper to use CFEM-NDA. Implementation of consistent NDA is necessary but sup-

posed to be relatively trivial in Rattlesnake since coupling between diffusion has been

successfully developed.

130



REFERENCES

[1] W. Zheng and R. G. McClarren, “Moment closures based on minimizing the resid-

ual of the {PN} angular expansion in radiation transport,” Journal of Computational

Physics, vol. 314, pp. 682 – 699, 2016.

[2] J. E. Morel and J. M. McGhee, “A Hybrid Collocation-Galerkin-SN method for Solv-

ing the Boltzmann Transport Equation,” Nuclear Science and Engineering, vol. 101,

no. 1, pp. 72–87, 1999.

[3] J. C. Stone, Adaptive Discrete-Ordinates Algorithms and Strategies. PhD thesis,

Texas A&M University, 2007.

[4] T. A. Brunner, “Forms of Approximate Radiation Transport,” Tech. Rep.

SAND2002-1778, Sandia National Laboratory, 2002.

[5] T. A. Brunner and J. P. Holloway, “Two-dimensional time dependent Riemann

solvers for neutron transport,” Journal of Computational Physics, vol. 210, no. 1,

pp. 386 – 399, 2005.

[6] T. A. Brunner, Riemann Solvers for Time-Dependent Transport based on the

Maximum Entropy and Spherical Harmonics Closures. PhD thesis, University of

Michigan, 2000.

[7] R. G. McClarren, Spherical Harmonics Method for Thermal Radiation Transport.

PhD thesis, University of Michigan, 2007.

[8] R. G. McClarren and R. B. Lowrie, “The effects of slope limiting on asymptotic-

preserving numerical methods for hyperbolic conservation laws,” Journal of

Computational Physics, vol. 227, no. 23, pp. 9711 – 9726, 2008.

131



[9] R. McClarren, J. P. Holloway, T. Brunner, and T. Mehlhorn, “Implicit riemann solvers

for the pn equations,” in Computational Methods in Transport, pp. 457–467, Springer

Berlin Heidelberg, 2006.

[10] R. G. McClarren, J. P. Holloway, and T. A. Brunner, “A p1 benchmark for time depen-

dent thermal radiative transfer,” Tech. Rep. LA-UR-07-1203, Los Alamos National

Laboratory (LANL), 2007.

[11] R. G. McClarren, J. P. Holloway, T. A. Brunner, and T. A. Mehlhorn, “A quasilinear

implicit riemann solver for the time-dependent p n equations,” Nuclear science and

engineering, vol. 155, no. 2, pp. 290–299, 2007.

[12] R. G. McClarren, J. P. Holloway, and T. A. Brunner, “On solutions to the p n equa-

tions for thermal radiative transfer,” Journal of Computational Physics, vol. 227,

no. 5, pp. 2864–2885, 2008.

[13] T. A. Brunner, R. McClarren, and J. P. Holloway, “Establishing an asymptotic dif-

fusion limit for riemann solvers on the time-dependent pn equations,” Tech. Rep.

SAND2005-0947C, Sandia National Laboratories, 2005.

[14] C. D. Hauck and R. G. McClarren SIAM J. Sci. Comput, vol. 32, no. 5, pp. 2603–

2626, 2010.

[15] C. D. Hauck, “High-order entropy-based closures for linear transport in slab geome-

try,” Commun. Math. Sci, vol. 9, no. 1, pp. 187–205, 2011.

[16] T. A. Brunner and J. P. Holloway, “One-Dimensional Riemann Solvers and the Max-

imum Entropy Closure,” Journal of Quantitative Spectroscopy& Radiative Transfer,

vol. 69, pp. 543–566, 2001.

[17] R. G. McClarren and C. D. Hauck, “Simulating radiative transfer with filtered spher-

ical harmonics,” Physics Letters A, vol. 374, no. 22, pp. 2290 – 2296, 2010.

132



[18] V. M. Laboure, R. G. McClarren, and C. D. Hauck, “Implicit filtered {PN} for high-

energy density thermal radiation transport using discontinuous galerkin finite ele-

ments,” Journal of Computational Physics, vol. 321, pp. 624 – 643, 2016.

[19] V. M. Laboure, Improved Fully-Implicit Spherical Harmonics Methods for First and

Second Order Forms of the Transport Equation using Galerkin Finite Element. PhD

thesis, Texas A&M University, 2016.

[20] M. Frank, C. D. Hauck, and K. Küpper, “Diffusion, P1, and other approximate forms

of radiation transport,” Communication in Mathematical Sciences, vol. 14, no. 5,

pp. 1443–1465, 2016.

[21] D. Radice, E. Abdikamalov, L. Rezzolla, and C. D. Ott, “A new spherical harmon-

ics scheme for multi-dimensional radiation transport i. static matter configurations,”

Journal of Computational Physics, vol. 242, pp. 648 – 669, 2013.

[22] G. L. Olson, “Spherical Harmonic Solutions of the Radiation Transport Equation

Using Angle-dependent Artificial Scattering to Decrease Oscillations,” Tech. Rep.

LA-UR-12-22927, Los Alamos National Laboratory, Los Alamos, NM, 2012.

[23] C. J. Gesh, Finite Element Methods for Second Order Forms of the Transport

Equation. PhD thesis, Texas A&M University, 1999.

[24] C. J. Gesh and M. L. Adams, “Finite Element Solutions of Second-order Forms of the

Transport Equation at the Interface Between Diffusive and Non-Diffusive Regions,”

in M&C 2001, 2001. Salt Lake City, Utah, United States.

[25] J. E. Morel, “A Self-Adjoint Angular Flux Equation,” Nuclear Science and

Engineering, vol. 132, no. 3, pp. 312–325, 1989.

[26] J. Hansen, J. Peterson, J. Morel, J. E. Ragusa, and Y. Wang, “A Least-Squares Trans-

port Equation Compatible with Voids,” Journal of Computational and Theoretical

133



Transport, vol. 43, pp. 374–401, Feb. 2015.

[27] P. G. Maginot, J. E. Morel, and J. C. Ragusa, “A non-negative moment-preserving

spatial discretization scheme for the linearized boltzmann transport equation in 1-d

and 2-d cartesian geometries,” Journal of Computational Physics, vol. 231, no. 20,

pp. 6801 – 6826, 2012.

[28] “Non-oscillatory and non-diffusive solution of convection problems by the iteratively

reweighted least-square finite element method,” Journal of Computational Physics,

vol. 105, pp. 108 – 121, 1993.

[29] W. Zheng and R. G. McClarren, “On Variable Selection and Effective Estimations

of Interactive and Quadratic Sensitivity Coefficients: A Collection of Regularized

Regression Techniques,” in M&C2015, 2015. Nashville, TN, United States.

[30] J. L. Guermond, “A finite element technique for solving first order pdes in lp,” SIAM

J. Numer. Anal, vol. 42, no. 2, pp. 714–737, 2004.

[31] W. Zheng and R. G. McClarren, “Emulation-Based Calibration for Parameters in

Parameterized Phonon Spectrum of ZrHx in TRIGA Reactor Simulations,” Nuclear

science and engineering, vol. 183, no. 1, pp. 78–95, 2016.

[32] W. Zheng and R. G. McClarren, “Physics-Based Uncertainty Quantification for ZrHx

Thermal Scattering Law,” in ANS Winter Meeting 2013, vol. 109, pp. 743–745.

[33] W. Zheng, “Physics-based uncertainty quantification for zrhx thermal scattering law,”

Master’s thesis, Texas A&M University, December 2013.

[34] W. Zheng and R. G. McClarren, “Effective Physics-Based Uncertainty Quan-

tification for ZrHx Thermal Neutron Scattering in TRIGA Reactors,” in

PHYSOR 2014 International Conference, vol. 109, pp. 743–745.

134



[35] G. I. Bell and S. Glasstone, Nuclear Reactor Theory. Princeton, NJ: Krieger Pub Co,

3rd ed., 1985.

[36] W. Zheng and R. G. McClarren, “Semi-analytic benchmark for multi-group free-

gas legendre moments and the application of gauss quadrature in generating thermal

scattering legendre moments,” Annals of Nuclear Energy, vol. 85, pp. 1131 – 1140,

2015.

[37] R. E. MacFarlane and D. W. Muir, “The NJOY Nuclear Data Processing System

Version 91,” Tech. Rep. LA-12740-M, Los Alamos National Laboratory, 1994.

[38] R. E. MacFarlane, D. W. Muir, R. M. Boicourt, and A. C. Kahler, “The NJOY Nu-

clear Data Processing System, Version 2012,” Tech. Rep. LA-UR-12-27079, Los

Alamos National Laboratory, 2012.

[39] Y. Azmy and E. Sartori, Nuclear Reactor Physics. Palookaville, USA: Spinger,

2nd ed., 2007.

[40] W. M. Stacey, Nuclear Computational Science: A Centry in Review. New York,

USA: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.

[41] J. E. Morel, B. T. Adams, T. Noh, J. M. McGhee, T. M. Evans, and T. J. Urbatsch,

“Spatial discretizations for self-adjoint forms of the radiative transfer equations,”

Journal of Computational Physics, vol. 214, no. 1, pp. 12 – 40, 2006.

[42] Ya. B. Zeldovich and Yu. P. Raizer, Physics of shock waves and high-temperature

hydrodynamic phenomena. New York, USA: Academic Press, 1966.

[43] C. D. Hauck and R. G. McClarren, “A Collision-Based Hybrid Method for

Time-Dependent, Linear, Kinetic Transport Equations,” MULTISCALE MODEL.

SIMUL., vol. 11, no. 4, pp. 1197–1227, 2013.

135



[44] T. A. Brunner and J. P. Holloway, “One-dimensional Riemann solvers and the maxi-

mum entropy closure,” Journal of Quantitative Spectroscopy and Radiative Transfer,

vol. 69, no. 5, pp. 543 – 566, 2001.

[45] M. Schäfer, M. Frank, and C. D. Levermore, “Diffusive Corrections to PN Approxi-

mations,” Multiscale Modeling & Simulation, vol. 9, no. 1, pp. 1–28, 2011.

[46] K. S. Oh and J. P. Holloway, “A Quasi-static Closure for 3rd Order Spherical Har-

monics Time-Dependent Radiation Transport in 2-D,” in M& C 2009, 2009.

[47] J. E. Morel, “Diffusion-limit asymptotics of the transport equation, the P1/3 equa-

tions, and two flux-limited diffusion theories,” Journal of Quantitative Spectroscopy

and Radiative Transfer, vol. 65, no. 5, pp. 769–778, 2000.

[48] R. G. McClarren and T. K. Lane, “A Flux-Limited Diffusion Method for Simulating

Radiative Shocks,” in ANS Winter Meeting 2012, vol. 107, pp. 557–559, ANS, 2012.

San Diego, CA, November.

[49] C. K. Garrett and C. D. Hauck, “A Comparison of Moment Closures for Linear

Kinetic Transport Equations: The Line Source Benchmark,” Transport Theory and

Statistical Physics, vol. 42, no. 6-7, pp. 203–235, 2013.

[50] B. Cockburn and C.-W. Shu, “The Local Discontinuous Galerkin finite element

method for convection-diffusion systems,” SIAM J. Numer. Anal., vol. 35, pp. 2440–

2463, 1998.

[51] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.,

2010.

[52] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Tur-

cksin, and T. D. Young, “The deal.II library, version 8.2,” Archive of Numerical

Software, vol. 3, 2015.

136



[53] B. D. Ganapol, R. S. Baker, J. A. Dahl, and R. E. Alcouffe, “Homogeneous in-

finite media time-dependent analytical benchmarks,” Tech. Rep. LA-UR–01-1854,

Los Alamos National Laboratory, 2001.

[54] W. Reed, “New difference schemes for the neutron transport equation,” Nucl. Sci.

Eng. 46: No. 2, 309-14, 1971.

[55] R. G. McClarren, “Theoretical Aspects of the Simplified Pn Equations,” Transport

Theory and Statistical Physics, vol. 39, no. 2-4, pp. 73–109, 2011.

[56] C. Ahrens and S. Merton, “An Improved Filtered Spherical Harmonic Method for

Transport Calculations,” in M& C 2013, 2013.

[57] Y. Zhang, Even-parity SN Adjoint Method Including SPN Model Error and Iterative

Efficiency. PhD thesis, Texas A&M University, 2014.

[58] J. R. Peterson, H. R. Hammer, J. E. Morel, J. C. Ragusa, and Y. Wang, “Conser-

vative Nonlinear Diffusion Acceleration Applied to the Unweighted Least-squares

Transport Equation in MOOSE,” in M&C2015, 2015. Nashville, TN, United States.

[59] W. Zheng and R. G. McClarren, “Non-oscillatory Reweighted Least Square Finite

Element Method for SN Transport,” in ANS Winter Meeting 2015, vol. 113, pp. 688–

691.

[60] W. Zheng and R. G. McClarren, “Non-oscillatory Reweighted Least Square Finite El-

ement for Solving PN Transport,” in ANS Winter Meeting 2015, vol. 113, pp. 692–

695.

[61] P. Maginot, J. Morel, and R. J. E.an, “A positive non-linear closure for the sn equa-

tions with linear-discontinous spatial differencing,” 2009. Saratoga Springs, New

York, United States.

137



[62] “On the numerical solution of conservation laws by minimizing residuals,” Journal

of Computational Physics, vol. 113, no. 2, pp. 304 – 308, 1994.

[63] R. E. Alcouffe, “Diffusion Synthetic Acceleration Methods for Diamond-

Differenced Discrete-Ordinates Equations,” Nuclear Science and Engineering,

vol. 64, pp. 344–355, 1977.

[64] R. T. Ackroyd, J. G. Issa, and N. S. Rivait, “Treatment of Voids in Finite Element

Transport Methods,” Prog. Nucl. Energy, vol. 1 and 2, pp. 85–89, 1986.

[65] C. Drumm, “Spherical harmonics (pn) methods in the sceptre radiation transport

code,” in M&C 2015, 2015. Nashville, TN, United States.

[66] Y. Wang, H. Zhang, and R. C. Martineau, “Diffusion Acceleration Schemes for Self-

Adjoint Angular Flux Formulation with a Void Treatment,” Nuclear Science and

Engineering, vol. 176, no. 2, pp. 201–225, 2014.

[67] C. L. Castrianni and M. L. Adams, “A Nonlinear Corner-Balance Spatial Discretiza-

tion for Transport on Arbitrary Grids,” Nuclear Science and Engineering, vol. 128,

no. 3, pp. 278–296, 1998.

[68] S. Schunert, Y. Wang, M. D. DeHart, and R. C. Martineau, “Hybrid PN -SN Cal-

culations with SAAF for the Multiscale Transport Capability in Rattlesnake,” in

PHYSOR 2016.

[69] Y. Wang, S. Schunert, M. DeHart, R. Matineau, and W. Zheng, “Hybrid PN -SN

With Lagrange Multiplier and Upwinding for the Multiscale Transport Capability in

Rattlesnake,” Progress in Nuclear Energy, 2016. submitted on Sep.

[70] Y. Wang, Adaptive Mesh Refinement SOlution Techniques for the Multigroup SN

Transport Equation Using a Higher-order Discontinuous Finite Element Method.

PhD thesis, Texas A&M University, 2009.

138



[71] N. Z. Cho, “Benchmark Problem 3A: MOX Fuel-Loaded Small PWR Core (MOX

Fuel with Zoning) (7 Group Homogenized Cells).” http://nurapt.kaist.

ac.kr/benchmark/kaist_ben3a.pdf. Accessed: 2016-10-08.

[72] “Jacobian-free newtonkrylov methods: a survey of approaches and applications,”

Journal of Computational Physics, vol. 193, no. 2, pp. 357 – 397, 2004.

[73] P. Roe, “Approximate riemann solvers, parameter vectors, and difference schemes,”

Journal of Computational Physics, vol. 43, no. 2, pp. 357 – 372, 1981.

139

http://nurapt.kaist.ac.kr/benchmark/kaist_ben3a.pdf
http://nurapt.kaist.ac.kr/benchmark/kaist_ben3a.pdf


APPENDIX A

DISCONTINUOUS FINITE ELEMENT DISCRETIZATION FOR PN EQUATIONS

A.1 PN angular discretization

The spherical harmonics expansion is expressed as:

ψ(Ω⃗) =
∑
l≤N,m

ϕml Y
m
l (Ω⃗) (A.1)

For DFEM-PN , orthonormal spherical harmonics are used, namely:

∫
4π

dΩ Ȳ m′

l′ (Ω⃗)Y m
l (Ω⃗) = δll′δmm′ (A.2)

The spherical harmonics can be either complex or real-valued.

Introduce the truncated PN expansion and perform the integration
∫
4π

dΩ Ȳ m
l (Ω⃗)(·) to

the transport equation1, one would gain

1

c

∂ϕ⃗

∂t
+
∑

χ=x,y,z

∇χAχϕ⃗+ (Σt − S) ϕ⃗ = Q⃗, (A.3)

where

Aχ =

∫
4π

dΩ e⃗χ · Ω⃗Y⃗ Y⃗ ⊤, Y⃗ =
(
Y 0
0 , · · · , Y N

N

)⊤
(A.4)

Q⃗ =

(
Q√
4π
, 0, · · · , 0

)⊤

(A.5)

1Ȳ m
l represents the conjugate spherical harmonics
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Σt = diag(σt, σtIb1 , · · · , σtIbN ), (A.6)

S = diag(σ0, σ1Ib1 , · · · , σt − σNIbN ), (A.7)

and Ibi represents identity matrix for the block of l = i. Eq. (A.7) can be easily proved

by utilizing Eq. (2.36). For 3D calculations, there are (N + 1)(N + 2) moments. For 2D

calculations, by dropping the y-axis dependence, all the moments are real and there are

only (N + 1)(N + 2)/2 relevant moments[6].

A.1.1 Complex-valued form

The complex-valued spherical harmonics[35, 7, 5, 6] is expressed as

Y m
l (Ω⃗) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (µ)eimµ (A.8)

where the associated Legendre polynomial Pm
l is defined as:

Pm
l (µ) =


(1−µ2)m/2

2ll!
dl+m

dµl+m (µ2 − 1)l, 0 ≤ m ≤ l

Pm
l = (l−|m|)!

(l+|m|)!P
|m|
l , −l ≤ m < 0

(A.9)

Testing the transport equation with ȳml , we approach the 3D complex-valued PN equations:

1

c

∂ϕml
∂t

+
1

2

∂

∂x

(
−Cm−1

l−1 ϕ
m−1
l−1 +Dm−1

l+1 ϕ
m−1
l+1 + Em+1

l−1 ϕ
m+1
l−1 − Fm+1

l+1 ϕm+1
l+1

)
+

1

2
i
∂

∂y

(
Cm−1
l−1 ϕ

m−1
l−1 −Dm−1

l+1 ϕ
m−1
l+1 + Em+1

l−1 ϕ
m+1
l−1 − Fm+1

l+1 ϕm+1
l+1

)
(A.10)

+
∂

∂z

(
Aml−1ϕ

m
l−1 +Bm

l+1ϕ
m
l+1

)
+ σtϕ

m
l = σsϕ

0
0δl0δm0 +

Q√
4π
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Aml =
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Bm
l

(l −m)(l +m)

(2l + 1)(2l − 1)

Cm
l =

(l +m+ 1)(l +m+ 2)

(2l + 3)(2l + 1)
Dm
l

(l −m)(l −m− 1)

(2l + 1)(2l − 1)
(A.11)

Em
l =

(l −m+ 1)(l −m+ 2)

(2l + 3)(2l + 1)
Fm
l

(l +m)(l +m− 1)

(2l + 1)(2l − 1)

In 2D calculations, by dropping the y-axis dependence and recognizing all the imagi-

nary parts of the moments are zero, we can have the equations for m ̸= 0:

1

c

∂ϕml
∂t

+
1

2

∂

∂x

(
−Cm−1

l−1 ϕ
m−1
l−1 +Dm−1

l+1 ϕ
m−1
l+1 + Em+1

l−1 ϕ
m+1
l−1 − Fm+1

l+1 ϕm+1
l+1

)
+

∂

∂z

(
Aml−1ϕ

m
l−1 +Bm

l+1ϕ
m
l+1

)
+ σtϕ

m
l = 0, (A.12)

and the equation for m = 0:

1

c

∂ϕ0
l

∂t
+

∂

∂x

(
E1
l−1ϕ

1
l−1 − F 1

l+1ϕ
1
l+1

)
+

∂

∂z

(
A0
l−1ϕ

0
l−1 +B0

l+1ϕ
0
l+1

)
+ σtϕ

0
l = σsϕ

0
0δl0 +

Q√
4π
δl0. (A.13)

A.1.2 Real-valued form

By defining the constant Cml =
√

2l+1
4π

(l−m)!
(l+m)!

Y m
l (Ω⃗) =



√
2Cml Pm

l (µ) cos(mφ), 0 < m ≤ l ≤ N

C0
l P

0
l (µ), 0 ≤ l ≤ N, m = 0

√
2C|m|

l P
|m|
l (µ) sin(|m|φ), 0 < −m ≤ l ≤ N,

(A.14)

one could either perform analytic integration to get the coefficients in Eq. (A.3) as in Sec-

tion A.1.1 (see [20] for details), or construct an angular quadrature to accurately integrate

as described in [21].
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A.2 Weak Formulation

Discretizing PN equation with DFEM leads to a weak form composed as the following:

finding ϕ⃗ ∈ V , such that ∀v⃗ ∈ V , the following holds

a(v⃗, ϕ⃗) = avol(v⃗, ϕ⃗) + aedge(v⃗, ϕ⃗) + aboundary(v⃗, ϕ⃗) = 0 (A.15)

A.2.1 Volumetric weak forms

avol(v⃗, ϕ⃗) =

∫
D

dr⃗

(
−
∑
χ

∇χv⃗
⊤Aχϕ⃗+ v⃗⊤ (Σt − S) ϕ⃗− v⃗⊤Q⃗

)
(A.16)

A.2.2 Interior edge weak form using Riemann solver

When assembling the edge weak forms, we visit once per edge. The interface flux is

specified with upwinding flux. Thereby:

aedge(v⃗, ϕ⃗) =
∑

E∈Fint

∑
χ

∫
E

ds |e⃗χ · n⃗|
q
v⃗⊤

y(
Aχ

{
ϕ⃗
}
+

|Aχ|
2

r
ϕ⃗
z)

, (A.17)

where

r
ϕ⃗
z
= ϕ⃗+ − ϕ⃗− and

{
ϕ⃗
}
=
ϕ⃗+ + ϕ⃗−

2
(A.18)

and ϕ⃗± are the upwind/downwind fluxes2. |Aχ| is the dissipation matrix prescribed by

the eigenstructure of streaming matrix Aχ. There are two typical ways of formulating the

dissipation matrix. One is to use Roe matrix[73], which solve exactly for the Riemann

2Note the upwinding definition is the ad hoc definition, differing from those in Section 9 with the same
notations.
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problem of PN [7, 6]. However, Roe matrix is complex and not sparse, degrading the

implicit solves. Alternatively, a Lax-Fridrichs numerical flux, which is a diagonal matrix

with the maximum eigenvalue of Aχ can be used. In fact, as the maximum eigenvalues of

Aχ for all PN orders have the limit of 1, an identity matrix is used in this dissertation as

suggested in [18].

A.2.3 Boundary weak form with ghost cells

Ghost cell[7, 5, 6, 46] formulation is used to impose incident boundary condition. By

assuming the boundary information is isotropic over the whole 4π solid angle, one could

then calculate the boundary moments in a straightforward way:

ϕ⃗b =
(√

4πψinc, 0, · · · , 0
)

(A.19)

Therefore, the weak form can be specified by splitting boundary into two types. One

type is exterior boundary is on the upwind side, i.e. e⃗χ · n⃗ < 0 and the other wind is

exterior boundary on the downwind side, i.e. e⃗χ · n⃗ < 0. Thereby, the weak form writes

as:

aboundary(v⃗, ϕ⃗) =
∑
χ

∫
∂D

ds

−
∑
e⃗χ·n⃗>0

|e⃗χ · n⃗|
2

v⃗⊤
(
Aχ

(
ϕ⃗b + ϕ⃗

)
+ |Aχ|

(
ϕ⃗b − ϕ⃗

))

+
∑
e⃗χ·n⃗<0

|e⃗χ · n⃗|
2

v⃗⊤
(
Aχ

(
ϕ⃗b + ϕ⃗

)
+ |Aχ|

(
ϕ⃗− ϕ⃗b

)) (A.20)

Though the ghost cells some inaccurately presumes isotropy on boundary condition,

the Riemann solver adjust the amount of information necessary to transmit into the interior

so it is still accurate. In case more legit boundary condition is desired, [18] presents a

Marshak boundary condition and can be used instead.
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APPENDIX B

PN ANGULAR DISCRETIZATION OF SELF-ADJOINT ANGULAR FLUX

EQUATION

B.1 Introduction

Due to the fact SAAF-PN is engaged in Section 9, we introduce the SAAF-PN angular

scheme combined with CFEM formulation. Note that SAAF-PN involved in this work is

the source-iteration compatible form of SAAF. When solving this form of SAAF with PN ,

the system is not symmetric positive definite. However, compared with the other form of

SAAF, this form avoid the singularity in pure scatterer.

Different from the spherical harmonics introduced in APPENDIX A, the spherical

harmonics in this appendix is orthogonal but non-orthonormal, following the convention

of Rattlesnake[68, 69]. However, it possesses the property that the corresponding zeroth

moment is equal to scalar flux without any scaling.

The final aim of this appendix is to provide brief but clear way of constituting the

SAAF-PN formulation.

B.2 Weak Formulation

B.2.1 Non-orthonormal PN Expansion

Since the zeroth moment is different from the one from using orthonormal spherical

harmonics, we use capital case of ϕml to represent the moment from using non-orthonormal

spherical harmonics. Denote the non-orthonormal spherical harmonics by Rm
l (Ω⃗), then

relationship to real-valued orthonormal basis is:

Rm
l (Ω⃗) =

1√
4π
Y m
l (Ω⃗) (B.1)
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Then the PN projected angular flux can be reconstructed as:

ψ(Ω⃗) =
∑
l≤N,m

Rm
l (Ω⃗)lmΦm

l , (B.2)

Differing from Appendix A, here we attain the following equity:

Φ0
0 = ϕ. (B.3)

We further let R⃗(Ω⃗) =
(
R0

0(Ω⃗), · · · , RN
N (Ω⃗)

)
, then Eq. (B.2) can be rewritten as:

ψ(Ω⃗) = R⃗⊤(Ω⃗)Φ⃗ (B.4)

B.2.2 PN projection

Let us re-arrange the integration in Eq. (6.15) as:

∫
D

dr⃗

∫
4π

dΩ

(
Ω⃗ · ∇v Ω⃗ · ∇ψ − Sψ

σt
+ v (σtψ − Sψ)

)
+

∫
∂D

ds

∫
n⃗·Ω⃗>0

dΩ n⃗ · Ω⃗vψ

=

∫
D

dr⃗

∫
4π

dΩ

(
v
Q

4π
+ Ω⃗ · ∇v Q

4πσt

)
+

∫
∂D

ds

∫
n⃗·Ω⃗<0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ vψinc (B.5)

Before proceeding, we will define the diagonal normalization matrix:

N =

∫
4π

dΩ R⃗(Ω⃗)R⃗⊤(Ω⃗) =
1

4π
I (B.6)

where I is an identity matrix. Introduce the PN expansion to v and ψ, we will be able to

transform the weak form to the following formulation: find ϕ ∈ V such that ∀v ∈ V the
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following equation holds:

∫
D

dr⃗

(∑
χ

∑
γ

∇χv⃗
⊤ 1

σt
Tχ,γ∇γΦ⃗ + v⃗⊤ (Σt − S)NΦ⃗−

∑
χ

∇χv⃗
⊤NAχ

1

σt
SΦ⃗

)
(B.7)

+

∫
∂D

ds v⃗⊤L+Φ⃗ =

∫
D

dr⃗

(
v⃗⊤Q⃗+

∑
χ

∇χv⃗
⊤ 1

σt
AχQ⃗

)
+

∫
∂D

ds v⃗⊤J⃗inc,

where

Tχ,γ =

∫
4π

dΩ ΩχΩγR⃗(Ω⃗)R⃗
⊤(Ω⃗), χ, γ = x, y, z, (B.8a)

Q⃗ =

∫
4π

dΩ R⃗(Ω⃗)
Q

4π
, (B.8b)

L+ =

∫
n⃗·Ω⃗>0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ R⃗(Ω⃗)R⃗⊤(Ω⃗), (B.8c)

J⃗inc =

∫
n⃗·Ω⃗<0

dΩ
∣∣∣n⃗ · Ω⃗

∣∣∣ R⃗(Ω⃗)ψinc(Ω⃗). (B.8d)

Angular integrals in Eq. (B.8) can be accurately obtained by using angular quadratures.
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APPENDIX C

KAIST-3A REFERENCE SOLUTION WITH 4 UNIFORM REFINEMENTS

Figure C.1: ϕ for the zeroth group.
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Figure C.2: ϕ for the first group.
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Figure C.3: ϕ for the second group.
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Figure C.4: ϕ for the third group.
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Figure C.5: ϕ for the fourth group.
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Figure C.6: ϕ for the fifth group.

153



Figure C.7: ϕ for the sixth group.
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APPENDIX D

CHECKERBOARD ERROR PLOTS

D.1 Checkerboard problem solution errors at t = 3.2 s

Based on S50 reference, we plot the errors in Figure D.1 from multiple methods pre-

sented in Section 4. It can be seen that while being accurate in the source region, SN

solutions present noticeably large errors in away from the source. Yet, besides the neg-

ativities, PN presents relatively large errors around the central source region. NFPN , on

the other hand, decrease the PN error around the source region while attains comparable

accuracy with PN away from the source.
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(a) S8 vs. S50 (b) S12 vs. S50

(c) P7 vs. S50 (d) P11 vs. S50

(e) NFP7 vs. S50 (f) NFP11 vs. S50

Figure D.1: Solution errors based on S50 reference at t = 3.2 s.
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APPENDIX E

SIMPLIFIED HOHLRAUM PROBLEM

E.1 NFP17 line-out plots

This section presents line-out plots for NFP17 in simplified Hohlraum problem.
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(a) Solutions along z = 0.15 cm
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(d) Solutions along x = 0.95 cm

Figure E.1: Line-out plots for Hohlraum problem.
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