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ABSTRACT

Origami provides novel approaches to the fabrication, assembly, and functional-

ity of engineering structures in various fields such as aerospace, robotics, etc. With

the increase in complexity of the geometry and materials for origami structures that

provide engineering utility, computational models and design methods for such struc-

tures have become essential. Currently available models and design methods for

origami structures are generally limited to the idealization of the folds as creases

of zeroth-order geometric continuity. Such an idealization is not proper for origami

structures having non-negligible thickness or maximum curvature at the folds re-

stricted by material limitations. Thus, for general structures, creased folds of merely

zeroth-order geometric continuity are not appropriate representations of structural

response and a new approach is needed. The first contribution of this dissertation

is a model for the kinematics of origami structures having realistic folds of non-zero

surface area and exhibiting higher-order geometric continuity, here termed smooth

folds. The geometry of the smooth folds and the constraints on their associated kine-

matic variables are presented. A numerical implementation of the model allowing for

kinematic simulation of structures having arbitrary fold patterns is also described.

Examples illustrating the capability of the model to capture realistic structural fold-

ing response are provided. Subsequently, a method for solving the origami design

problem of determining the geometry of a single planar sheet and its pattern of

smooth folds that morphs into a given three-dimensional goal shape, discretized as

a polygonal mesh, is presented. The design parameterization of the planar sheet

and the constraints that allow for a valid pattern of smooth folds and approximation

of the goal shape in a known folded configuration are presented. Various testing

ii



examples considering goal shapes of diverse geometries are provided. Afterwards, a

model for the structural mechanics of origami continuum bodies with smooth folds

is presented. Such a model entails the integration of the presented kinematic model

and existing plate theories in order to obtain a structural representation for folds

having non-zero thickness and comprised of arbitrary materials. The model is vali-

dated against finite element analysis. The last contribution addresses the design and

analysis of active material-based self-folding structures that morph via simultaneous

folding towards a given three-dimensional goal shape starting from a planar con-

figuration. Implementation examples including shape memory alloy (SMA)-based

self-folding structures are provided.
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NOMENCLATURE

â Vector having components corresponding to â1, . . . , âNF

Af Austenite finish temperature at zero stress

ai i = 1, 2, 3. Shape memory alloy model parameters associated with the

transformation hardening behavior

âi Asymmetry variable of the ith smooth fold

Ai Total surface area of the rigid faces in the ith edge module prior to face

trimming and edge module trimming

aBi Thickness of the ith layer in a bilayer laminate

ajk Asymmetry variable of the kth smooth fold adjacent to the jth interior

fold intersection

ăjk Asymmetry variable of the kth smooth fold crossed by the path γ̆j(η)

As Austenite start temperature at zero stress

aj Vector having components corresponding to aj1, . . . , ajnj

ăj Vector having components corresponding to ăj1, . . . , ăjpj

b Body force vector

Bj
L Vectors constructed by concatenating the vectors bj1L , . . . ,b

jnj
L

B̆
j

L Vectors constructed by concatenating the vectors b̆j1L , . . . , b̆
jpj
L

bjkL Position vector of the point where the path γj(η) enters the kth fold

adjacent to the jth interior fold intersection

b̆jkL Position vector of the point where the path γ̆j(η) enters the kth fold it

crosses

Bj
R Vectors constructed by concatenating the vectors bj1R , . . . ,b

jnj
R

B̆
j

R Vectors constructed by concatenating the vectors b̆j1R , . . . , b̆
jpj
R
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bjkR Position vector of the points where the path γj(η) exits the kth fold

adjacent to the jth interior fold intersection

b̆jkR Position vector of the point where the path γ̆j(η) exits the kth fold it

crosses

bjk Position vectors of the edge module corners associated with the jth

interior node of the goal mesh

C Fourth-order stiffness tensor

Ĉ Connectivity matrix relating the vertices to the end-points of each fold

centerline

ci0 Reference concentration of the ith chemical species

CB
i i = 1, 2. Non-dimensional constants related to the structural response

of a bilayer laminate

ĉiLj End condition of ĉi(ζ1) for jth-order geometric continuity at ζ1 = −1

c̄iLj Non-dimensional form of ĉiLj

ĉiRj End condition of ĉi(ζ1) for jth-order geometric continuity at ζ1 = 1

c̄iRj Non-dimensional form of ĉiRj

CA Stress influence coefficient of austenite

CEIN Connectivity matrix relating the mesh nodes to the interior edges

ci Concentration of the ith chemical species

ci(ζ1) Fold cross-section parametric curve

ĉi(ζ1) Fold cross-section parametric curve expressed in the basis {êi1, êi2, êi3}

c̄i(ζ1) Non-dimensional form of ĉi(ζ1)

Cj Connectivity matrix used for the identification and ordering of the fold

centerlines incident to the jth interior vertex
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C̆j Connectivity matrix used for the identification and ordering of the folds

crossed by the path γ̆j(η)

CM Stress influence coefficient of martensite

jCMEI Connectivity matrix used for the identification of the interior edges as-

sociated with the jth face of the goal mesh

jCMN Connectivity matrix used for the identification of the nodes associated

with the jth face of the goal mesh

jCNIEI Connectivity matrix used for the identification of the interior edges in-

cident to the jth interior node of the goal mesh

CPS Effective plane stress stiffness matrix

D Shape memory alloy model parameter associated with the stress depen-

dence of the critical thermodynamical force for transformation

D Vector having components corresponding to the design variables

d̃jki i = 1, 2. Change in length of the kth edge of the jth face in the goal

mesh due to face trimming

d̂imn m = 1, 2; n = 1, 2. Changes in length of the edge associated with the

ith edge module due to face trimming

dj Translation constraint vector associated with the jth interior fold inter-

section

DM Third-order tensor of piezomagnetic coefficients

jdmn Vector having components corresponding to dj1mn, . . . , d
jnM
j

mn

d̂mn Vector having components corresponding to d̂1
mn, . . . , d̂

NI
E

mn

DP Third-order tensor of piezoelectric coefficients

E Young’s modulus

E Surface area efficiency
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E Approximation error

E Electric field vector

ei i = 1, 2, 3. Orthonormal vectors used to define the fixed global coordi-

nate system

EB
i Young’s modulus of the ith layer in a bilayer laminate

êij j = 1, 2, 3. Fold-attached orthonormal vectors associated with the ith

smooth fold

EA Young’s modulus of austenite

ei Second-order tensor of expansion due to concentration of the ith chem-

ical species

EM Young’s modulus of martensite

F i0 Reference configuration of the ith smooth fold

F it Current configuration of the ith smooth fold

f i Force vector of the ith point load

Fi Region occupied by the ith smooth fold domain

F i(ζ1, ζ2) Surface parameterization of F it
g Vector associated with the inequality constraints

GT Shear modulus of an active torsional element

gjk Recursively determined vectors accounting for the change in the distance

between the smooth folds boundary rulings in a current configuration

Gn Order of geometric continuity

h Vector associated with the equality constraints

H Magnetic field vector

hB Total thickness of a bilayer laminate

hi Thickness of the ith fold domain
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hjk(ζ1) k = 0, . . . , j. Hermite interpolation polynomials of jth-order

Hmin Minimum transformation strain magnitude for full transformation

Hsat Maximum attainable transformation strain magnitude for full transfor-

mation

Hcur Transformation strain magnitude for full transformation

hi Director vector of the ith smooth fold

Hjk Simplified transformation matrix associated with the kth fold adjacent

to the jth interior fold intersection

H̆jk Simplified transformation matrix associated with the kth fold crossed by

the path γ̆j(η)

I i0 Reference configuration of the ith fold intersection

IBi Area moment of inertia of the ith layer in a bilayer laminate

In Rn×n identity matrix

IT Polar second moment of a circular cross-section

I it Current configuration of the ith fold intersection

k Transformation strain parameter

Kj Discrete Gaussian curvature associated with the jth interior vertex

L Penalty function associated with kinematic constraints

l̂ Vector having components corresponding to the trim lengths l̂1, . . . , l̂NI
E

l̂i Trim length associated with the ith interior edge of the goal mesh

l̃jk Trim length associated with the kth edge of the jth face of the goal mesh

LT Length of an active torsional element

l̃j Vector having components corresponding to the trim lengths associated

with the jth face l̃j1, . . . , l̃jnCj
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ljk Vector with start-point and end-point respectively corresponding to the

points where the path γj(η) enters and exits the face between the kth

and (k + 1)th folds adjacent to the jth interior fold intersection

l̃jk Vector ljk rotated by −ϕ(mjk) about e3

Ljk Transformation matrix associated with the kth fold adjacent to the jth

interior fold intersection

M Moment resultant

M Goal mesh

mB Ratio of the thickness of the layers in a bilayer laminate

MB Moment applied to a bilayer laminate

Mf Martensite finish temperature at zero stress

Ms Martensite start temperature at zero stress

MT Torque applied to an active torsional element

M] Set of trimmed mesh faces

Mj
] jth face of the set of trimmed mesh faces

Mj jth face of the goal mesh

Mj Vector constructed by concatenating the vectors mj1, . . . ,mjnj

M̆
j

Vector constructed by concatenating the vectors m̆j1, . . . , m̆jpj

mjk Vector along the length of the kth fold centerline incident to the jth

interior vertex that emanates from such a vertex

m̆jk Vector along the fold centerline of the kth fold crossed by the path γ̆j(η)

N Axial force resultant

Nadj Number of increments in the step associated with adjusting of fold an-

gles

nB Ratio of the Young’s modulus of the layers in a bilayer laminate
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NB Number of vertices located at the boundary or outside the sheet

Ndof Number of degrees of freedom

NE Number of edges in the goal mesh

N I
E Number of interior edges in the goal mesh

N Ij
E j = 0, 1, 2. Number of interior edges incident to j interior nodes

Nfol Number of increments in the step associated with constant fold angle

guess increments

NF Number of folds in the sheet

NI Number of fold intersections in the sheet

ni i = 1, 2, 3, 4. Transformation hardening exponents

nj Number of fold centerlines incident to the jth interior vertex

nCj Number of corners of the jth face in the goal mesh

nMj Number of faces connected to the the jth interior node in the goal mesh

NM Number of faces in the goal mesh

NN Number of nodes in the goal mesh

N I
N Number of interior nodes in the goal mesh

NP Number of faces in the sheet

n̂ij j = 1, 2. Unit normal vectors of the faces adjacent to the ith interior

edge

njk Unit normal vector of the kth face adjacent to the jth interior node in

the goal mesh

n̄jk Unit normal vector associated with the kth edge incident to the jth

interior node in the goal mesh

n̄M Average valence of the interior nodes in the goal mesh

P i0 Reference configuration of the ith face
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PB Axial force in the active layer of a bilayer laminate

pj Number of folds crossed by γ̆j(η)

p̂ij j = 1, 2, 3, 4. Position vectors of the corner points of the ith smooth fold

in the reference configuration

P it Current configuration of the ith face

P̂
j

j = 1, 2, 3, 4. Vectors constructed by concatenating the vectors

p̂1
j , . . . , p̂

NF
j

Qi(φ) Transformation matrix in homogeneous coordinates associated with a

rotation by φ about an axis aligned to ei

R Residual vector

r̂i1, r̂
i
2 Length parameters associated with the ith smooth fold

RB Radius of curvature of a bent bilayer laminate

Ri(φ) Transformation matrix associated with a rotation by φ about an axis

aligned to ei

rT Radius of the circular cross-section of an active torsional element

Rj Rotation constraint matrix associated with the jth interior fold inter-

section

Rs Vector of residuals associated with fold arc-lengths

Rθ Vector of residuals associated with fold angles

S Fourth-order compliance tensor

ŝ Vector having components corresponding to the fold arc-lengths of the

sheet

s0 Specific entropy at reference state

S0 Sheet reference configuration

ŝi Total arc-length of the ith fold cross-section
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s̄i Non-dimensional total arc-length of the ith fold cross-section

St Sheet current configuration

S? Sheet goal configuration

SA Fourth-order compliance tensor of austenite

SM Fourth-order compliance tensor of martensite

t Time parameter

t Traction vector

t̄ Applied traction vector

T Absolute temperature

T0 Reference absolute temperature

T(b) Transformation matrix in homogeneous coordinates associated with a

translation by vector b

ti(ζ1) Unit tangent vector of the curve ĉi(ζ1)

tol Numerical tolerance

u Displacement vector

ū Applied displacement vector

u0 Specific internal energy at reference state

ui Displacement vector of the point of application of the ith point load

v Velocity vector

V Vector constructed by concatenating the position vectors of all the ver-

tices of the sheet

vf Volume fraction of SMA wires

V̂
1

Vector constructed by concatenating the position vectors of the fold

centerline start-points
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V̂
2

Vector constructed by concatenating the position vectors of the fold

centerline end-points

v̂i1 Position vector of the vertex from which the ith fold centerline emanates

v̂i2 Position vector of the vertex at which the ith fold centerline ends

vj Position vector of the jth vertex

ŵ Vector having components corresponding to ŵ1, . . . , ŵNF

Ŵ Vector having components corresponding to Ŵ1, . . . , ŴNI
E

wB Width of a bilayer laminated beam

WE External work exerted by body forces and boundary tractions

ŵi Current distance between the end-points of the cross-section curve of

the ith fold

Ŵi Length design variable of the ith edge module

ŵ0
i Fold width of the ith fold

ŵE0
i Fold width of the exterior folds in the ith edge module

ŵE?
i Distance between the end-points of the cross-section curve of the exte-

rior folds in the ith edge module at the goal configuration

ŵI0
i Fold width of the interior fold in the ith edge module

ŵI?
i Distance between the end-points of the cross-section curve of the interior

fold in the ith edge module at the goal configuration

WI Internal work

wjk Distance between the end-points of the cross-section curve of the kth

fold adjacent to the jth interior fold intersection

Wjk Length design variable of the kth edge module associated with the jth

interior vertex of the goal mesh
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w̆jk Distance between the end-points of the cross-section curve of the kth

fold crossed by the path γ̆j(η)

w0
jk Fold width of the kth fold adjacent to the jth interior fold intersection

w̆0
jk Fold width of the kth fold crossed by the path γ̆j(η)

ŵ0 Vector having components corresponding to ŵ0
1, . . . , ŵ

0
NF

w0,j Vector having components corresponding to w0
j1, . . . , w

0
jnj

w̆0,j Vector having components corresponding to w̆0
j1, . . . , w̆

0
jpj

wj Vector having components corresponding to wj1, . . . , wjnj

W j Vector having components corresponding to Wj1, . . . ,WjnM
j

w̆j Vector having components corresponding to w̆j1, . . . , w̆jpj

wjk Vector with start-point and end-point corresponding to the points where

the path γj(η) crosses the boundary rulings of the kth fold adjacent to

the jth interior fold intersection

w̃jk Vector wjk rotated by −ϕ(mjk) about e3

x Position vector of a point in the sheet at the current configuration

X Position vector of a point in the sheet at the reference configuration

Ŷ Vector constructed by concatenating the node position vectors

ŷ1, . . . , ŷNN

ỹjk] Position vector of the kth corner of the jth face in the set of trimmed

mesh faces

ŷi Position vector of the ith node in the goal mesh

Ỹ
j

Vector constructed by concatenating the vectors ỹj1, . . . , ỹjn
C
j

ỹjk Position vector of the kth corner of the jth face in the goal mesh

Y t Critical thermodynamic driving force for transformation

Ẑ Vector constructed by concatenating the vectors ẑ1, . . . , ẑN
I
E
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ẑi Vector along the length of the ith interior edge of the goal mesh

Zj Vector constructed by concatenating the vectors zj1, . . . , zjn
M
j

zjk Vector connecting the jth interior node to its kth adjacent node

α Second-order thermal expansion tensor

α Thermoelastic expansion coefficient

αBi Thermoelastic expansion coefficient of the ith layer in a bilayer laminate

αjk Angle between adjacent fold centerlines incident to an interior vertex

βiLj Shape parameter of ĉi(ζ1) arising from the end-condition for jth-order

geometric continuity at ζ1 = −1

βiRj Shape parameter of ĉi(ζ1) arising from the end-condition for jth-order

geometric continuity at ζ1 = 1

γj(η) Closed path enclosing Ij0 and crossing the folds adjacent to Ij0
γ̆j(η) Path connecting the fixed face to the jth face

ε Second-order linearized strain tensor

ε0 Mid-surface strain

εmn Components of the linearized strain tensor in the basis {êi1, êi2, êi3}

εACT Effective actuation strain

εACT Second-order tensor of actuation strains

εEL Second-order tensor of elastic strains

εMS Second-order tensor of strains caused by changes in the material mi-

crostructure

εt Second-order transformation strain tensor

εt0 Second-order pre-strain tensor

εth Second-order tensor of thermoelastic strains
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εt−r Second-order transformation strain tensor at the cessation of forward

transformation

θ̂ Vector having components corresponding to the fold angles of the sheet

θ̂i Fold angle of the ith fold

Θ̂i Dihedral angle of the ith interior edge in the goal mesh

θ̂Li Lower bound for the fold angle domain of the ith fold

θ̂Ui Upper bound for the fold angle domain of the ith fold

θjk Fold angle of the kth fold adjacent to the jth interior fold intersection

θ̆jk Fold angle of the kth fold crossed by γ̆j(η)

θj Vector having components corresponding to the fold angles of the folds

adjacent to the jth fold intersection

θ̆j Vector having components corresponding to the fold angles of the folds

crossed by γ̆j(η)

θ̂tf Vector having components corresponding to the fold angles of the sheet

in the final configuration

θ̂? Vector having components corresponding to the fold angles of the sheet

in the goal configuration

IN
l∆θ̂ Input guess change of the fold angles in the lth fold sequence increment

κ(ζ1) Signed curvature of ĉi(ζ1)

κ̂(ζ1) Curvature of ĉi(ζ1)

¯̂κ(ζ1) Non-dimensional curvature of ĉi(ζ1)

κ̄(ζ1) Non-dimensional signed curvature of ĉi(ζ1)

κG(ζ1) Goal signed curvature of ĉi(ζ1)

κ̄G(ζ1) Goal non-dimensional signed curvature of ĉi(ζ1)

λB Penalty weight for residuals from fold angle bounds

xxi



λd Penalty weight for residuals from translation constraints

Λt
fwd Second-order transformation direction tensor for forward transformation

λR Penalty weight for residuals from rotation constraints

Λt
rev Second-order transformation direction tensor for reverse transformation

Λt Second-order transformation direction tensor

ν Poisson’s ratio

νA Poisson’s ratio of austenite

νM Poisson’s ratio of martensite

ξ Martensite volume fraction

Ξ Field variable

Ξ̄ Applied field variable

ξr Martensite volume fraction at the cessation of forward transformation

ρ Mass density

σ Second-order Cauchy stress tensor

σ̄ von Mises stress

σmn Components of the Cauchy stress tensor in the basis {êi1, êi2, êi3}

σ′ Second order deviatoric stress tensor

σACT Effective actuation stress

τ̂ ij j = 1, 2. Trim angles of the ith edge module

τjk Trim angle of the kth edge module associated with the jth interior node

of the goal mesh

Φt
fwd Transformation function for forward transformation

φjk Corner angle of the kth face adjacent to the jth interior node of the goal

mesh

φ̃jk kth interior corner angle of the jth face in the goal mesh
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Φt
rev Transformation function for reverse transformation

φT Twist angle of an active torsional element

ϕT Total twist angle of an active torsional element

φ′T Spatial derivative of twist angle of an active torsional element along the

longitudinal axis

Φt Transformation function

ϕ(y) Counterclockwise angle from e1 to y ∈ span(e1, e2)

χ Deformation map

ψ̂ Vector having components corresponding to ψ̂1, . . . , ψ̂NI
E

ψ̂i Angular design variable of the ith edge module

ψjk Angular design variable of the kth edge module associated with the jth

interior vertex of the goal mesh

ψj Vector having components corresponding to ψj1, . . . , ψjnM
j

Ω Region occupied by the material body

ωjkl Vector along the intersection axis of the kth and the lth edge modules

associated with jth interior node

∂M Boundary of the goal mesh

∂MI Introduced boundary edges

∂MO Boundary edges corresponding to the outer edges of the goal shape

discretization

∂S0 Boundary of the sheet in the reference configuration

∂Ω Boundary of the region occupied by the material body

∂Ωu Boundary of the region occupied by the material body where displace-

ment boundary conditions are applied
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∂Ωσ Boundary of the region occupied by the material body where traction

boundary conditions are applied

0n Zero vector in Rn

∅ Empty set
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1. INTRODUCTION

1This section provides a literature review of the topics addressed in the subsequent

sections of this dissertation. A review of the classical notions of origami and existing

applications of origami in various engineering fields are presented in Section 1.1. Sec-

tions 1.1.1–1.1.3 specifically address a subset of existing origami structures termed

as self-folding structures [3, 12] and the use of active materials in their develop-

ment. Section 1.2 provides a comprehensive review of existing active material-based

self-folding structures organized by their physical activation field, namely thermal

(Section 1.2.1), chemical (Section 1.2.2), electrical (Section 1.2.3), or magnetic (Sec-

tion 1.2.4). After reviewing existing and potential applications of origami structures,

both with and without self-folding capabilities, Sections 1.3, 1.4, and 1.5 focus on

theoretical and computational efforts addressing the kinematics, structural mechan-

ics, and design of origami structures, respectively. The motivation and objectives

of the work presented in this dissertation are briefly stated in Section 1.6 and the

outline of this dissertation is provided in Section 1.7.

1.1 Origami Structures

Traditionally, the term origami has been primarily associated with the ancient art

of folding paper. The term origami has the Japanese roots oru meaning folded, and

kami meaning paper [13, 14]. Its original purpose was not particularly utilitarian,

but rather recreational and artistic [15]. Specifically, it was and remains the art of

folding sheets of paper into decorative and often intriguing shapes, either abstract

1Portions of this section are reprinted or adapted from [3] E. A. Peraza-Hernandez, D. J. Hartl, R.
J. Malak Jr, and D. C. Lagoudas. Origami-inspired active structures: a synthesis and review. Smart
Materials and Structures, 23(9):094001, 2014. c© IOP Publishing. Reproduced with permission.
All rights reserved. http://dx.doi.org/10.1088/0964-1726/23/9/094001
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in form or representative of realistic objects (e.g. plants, animals). In origami, a

goal shape is obtained from an initially planar sheet exclusively through folding.

Traditionally, a fold is defined for an idealized sheet having negligible thickness as

any deformation (excluding purely rigid body deformations) such that the in-surface

distance between any two points in the sheet is preserved and self-intersection does

not result [16]. Therefore, stretching and tearing are not permitted [16].

Based on such traditional definitions of origami, researchers discovered in the

1970s that an endless number of shapes could in theory be created using conven-

tional origami (initially planar shape, only folds allowed) [14]. These discoveries

enabled new approaches for manufacturing, assembling, and morphing of devices

and structures based on origami principles. This is evident from the increasing at-

tention mathematicians, scientists, and engineers have given to research on origami

during the past four decades [17, 18, 19, 20, 21, 22].

Origami offers engineers novel ways to fabricate, assemble, store, and morph

structures. Potential engineering advantages of origami-inspired structures include

compact storage/deployment capabilities (e.g. airbags [23, 24]), potential for recon-

figurability [25, 26, 27, 28, 29, 30, 31, 32], and reduction in manufacturing complex-

ity [2, 33, 34, 35, 36, 37] (reduced part counts and improved assembly using collapsi-

ble/deployable parts). Moreover, origami principles have been utilized across scales

through their applications ranging from the nano- and micro-scales [38, 39, 40, 41, 42,

43] to deployable structures for space exploration at the macro scale [44, 45, 46, 47].

Other applications of origami-inspired structures include: various space structures

(solar panels, solar sail, telescope lenses [48]), micro-mirrors [49], electronic compo-

nents [50, 51, 52, 53, 54, 55], robots [1, 56, 57, 58, 59, 60, 61, 62, 63], foldable wings

and airplanes [64, 65, 66, 67, 68, 69, 70], foldcore-based structures for improved me-

chanical properties and impact resistance [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81],

2



crash boxes and other energy absorption systems [82, 83, 84, 85], shelters [86, 87, 88,

89, 90, 91], metamaterials [92, 93, 94, 95, 96, 97, 98, 99, 100], microelectromechan-

ical systems (MEMS) [28, 101, 102, 103, 104, 105, 106, 107, 108, 109], biomedical

devices [110, 111, 112, 113, 114, 115], and many others [17, 116, 117]. Representative

examples of such engineering applications are shown in Figures 1.12 and 1.2.

Figure 1.1: Demonstration of unfolding-based expansion of the Bigelow Expandable
Activity Module (BEAM). Obtained from: NASA TV.

For certain origami-inspired engineering applications, it is impractical to exter-

nally apply the mechanical loads necessary to fold a given structure. This is the case

for nano/micro structures or remote applications (e.g. space structures, underwater

robotics, invasive biomedical devices). In such circumstances, self-folding capabili-

2https://blogs.nasa.gov/spacestation/2016/05/28/beam-expanded-to-full-size/
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(a) Robotics [1]

(b) Micro-fabrication and micro-assembly [2]

Figure 1.2: Examples of current and potential applications of origami-inspired struc-
tures: (a) Various origami-inspired robot designs that self-fold due to thermal expan-
sion of polyvinyl chloride (PVC) actuating layers (from Figure 1 of [1], c© 2015 IEEE,
with permission of IEEE, http://dx.doi.org/10.1109/ICRA.2015.7139386); (b)
Demonstrations of micro-fabrication and micro-assembly utilizing self-folding metal-
lic bilayer and trilayer laminates (reprinted from [2] N. Bassik, G. M. Stern, and D.
H. Gracias. Microassembly based on hands free origami with bidirectional curva-
ture. Applied Physics Letters, 95(9):091901, 2009, http://dx.doi.org/10.1063/
1.3212896, with the permission of AIP Publishing).
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ties are essential [3]. A self-folding structure is one that has the capability of folding

and/or unfolding to and/or from a desired shape without the application of mechan-

ical loads [3, 12]. One approach for the development of self-folding structures is to

leverage the use of active materials as agents of fold generation [3, 118, 119]. Active

materials are those that convert various forms of energy into mechanical work [4].

This coupling can be categorized as direct (mechanical response due to field-induced

inelastic strains in the active material) or indirect (mechanical response due to field-

induced change in stiffness or other properties) [120]. In both cases, active materials

allow for the mechanical work required to fold a structure to be obtained through

the application of a non-mechanical field (e.g. thermal, electrical, chemical, etc.).

Certain basic concepts of origami should be briefly introduced prior to the dis-

cussion of origami structures in the remainder of the section. These concepts are

depicted in Figure 1.3. In origami, it is often assumed that the reference configura-

tion of the sheet is planar and having no overlaps [121]. The locations of the folds

in such a planar configuration of the sheet are termed as the fold lines [13, 122] (see

Figure 1.3(a)). Typically, the fold lines are defined by their end-points, termed as

vertices [121]. The sheet regions bounded by the fold lines and the boundary of the

sheet are known as the faces. A fold pattern is a schematic that shows all the fold lines

on a sheet. The fold pattern and the folding sequence (Figure 1.3(b)) determine the

ultimate shape of the sheet. The deformation of a fold is described by the fold angle,

defined as π radians less the signed dihedral angle between the faces joined by a fold

(which generally are assumed planar) [121]. A mountain fold exhibits non-positive

fold angle values while a valley fold exhibits non-negative fold angle values [13]. An

extended discussion and mathematical definitions of the aforementioned concepts is

presented in Section 2 of this dissertation. The following section describes various

approaches for developing self-folding structures.
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Figure 1.3: Schematic of a simple origami airplane illustrating various concepts of
conventional origami: (a) Fold pattern showing fold lines, vertices, faces, and the
boundary of the sheet; (b) Various configurations attained by the sheet under a
given folding sequence.
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1.1.1 Self-folding and Individual Active Fold Concepts

Self-folding is the capability of a structure to fold and/or unfold without the ap-

plication of external mechanical loads [3]. As stated in the preceding section, active

materials can be utilized to develop self-folding structures because such materials

inherently convert other forms of energy into the mechanical work that allows for

folding and, in some cases, unfolding deformations. Active materials are also typi-

cally energy dense and geometrically simple when used as actuators [123, 124, 125].

Physical compactness is an important consideration for self-folding structures since

having a planar reference configuration is often essential.

Concepts for developing individual folds using active materials are provided here

while particular examples follow in Section 1.2. The concepts are divided into two

categories: hinge type and bending type [3]. Most hinge-type active folds are asso-

ciated with one of three actuator concepts: (i) Variable length active rod or spring

connected to the two faces joined by the hinge (Figure 1.4(a)), (ii) active torsional

element attached to the hinge (Figure 1.4(b)), and (iii) active element with preset

folded shape attached to the faces joined by the hinge (Figure 1.4(c)). Throughout

this section, these fold concepts will be referred to as extensional, torsional, and

flexural, respectively.

The extensional concept (Figure 1.4(a)) uses the active material in a rod or

spring form with its two ends attached to the faces connected by the hinge. The

length of the active element dictates the rotation of the hinge. The torsional concept

(Figure 1.4(b)) uses the active material as a torsional spring or rod that provides

twist deformation at the hinge. The twist angle of the active material thus directly

dictates the rotation of the hinge. In the flexural concept (Figure 1.4(c)), the active

material has been manufactured or trained to have a preset folded configuration
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Figure 1.4: Basic concepts for active material-based folds. Hinge type: (a) Exten-
sional (variable length active rod or spring connected to the two faces); (b) Torsional
(active torsional element at the hinge); (c) Flexural (active element with preset folded
shape). Simplified free body diagrams of the hinge-face structure and the active el-
ement are also shown. Bending type: (d) Multilayer laminate comprised of active
and passive layers (the simplest case of a bilayer having one active and one passive
layer is shown); (e) Single layer subjected to a graded activation field.

8



but is then deformed to an initially planar configuration. Upon application of the

activation field, the active material returns to its preset folded configuration and

being bonded to the faces of the passive material, induces the hinge to do the same.

All concepts can be further improved to allow for both mountain and valley folds

by adding corresponding antagonistic active components. In the torsional concept,

this can be achieved by attaching two active torsional elements to the hinge that

generate twist in opposite directions (e.g. [126]). For the extensional and flexural

concepts, it can be achieved by pairs of active elements in opposition to each other

(e.g. on opposite sides of the sheet for the extensional concept). However, mechanical

restrictions may arise since activation of one active element may subject its associated

antagonistic active element to excessive stress or deformation, hindering the folding

operation and possibly leading to material failure. Another challenge is that of

maintaining both sufficient geometric offset and localized/targeted activation field

imposition such that opposing hinge moments do not result.

Other individual fold concepts do not assume the existence of discrete hinge

mechanisms but are rather based on bending caused by the actuation of the active

material. Such concepts are shown in Figures 1.4(d) and 1.4(e). Unlike the hinge-

type fold concepts, the bending-type approaches may offer the advantage of massive

foldability [127] (i.e. folds may be generated at any location or orientation at which

the driving field is applied, unless mechanically restricted). Conversely, the folds are

clearly restricted to pre-determined hinge locations in the hinge-type concepts. In

the remainder of the section, the individual fold concept of Figure 1.4(d) is referred

to as multilayer and that of Figure 1.4(e) as single layer.

The multilayer concept considers self-folding using a laminate comprised of active

and passive layers (see Figure 1.4(d) for an example of a two-layer laminate with one

passive layer and one active layer). A passive layer generates negligible mechanical
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work compared to the active layer under the application of the activation field. When

such a field (thermal, magnetic, etc.) is applied, the active layers are driven to de-

form, generally axially, while the passive layers are not. This difference in expansion

or contraction between the various laminate layers generates bending of the sheet.

This concept can allow for both mountain and valley folds in a manner similar to

that employed for hinge-type folds. Specifically, three-layer designs with two oppos-

ing outer layers of active material separated by a passive material can be used [8].

A significant challenge for such three-layer designs is to isolate the activation field

within only one of the two active outer layers. For this purpose, the middle layer may

serve in another role as an insulator with respect to the activation field, preventing

the field applied to one active layer from reaching the opposing active layer [128].

The single layer concept considers self-folding through bending without hinges

using a single active layer subjected to a graded activation field (Figure 1.4(e)).

Such a gradient generates a non-uniform distribution of actuation strain throughout

the thickness, causing the structure to bend. This design also allows for mountain

and valley folds based on the direction of the activation field gradient. However,

folding using this approach is generally more difficult as compared to the multilayer

concept since it is not practical to maintain gradients in some physical fields (e.g.

temperature) at specific locations for a considerable period of time [129].

It should be noted that folding using active materials is not restricted to the five

concepts presented in this section. Examples of self-folding structures that use other

fold concepts are presented in Section 1.2 (e.g. passive hinged faces with attached

magnetic patches that are manipulated by the direction of the magnetic field without

requiring bending or stretching of the magnetic patches [130, 131]).
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1.1.2 Active Materials for Self-folding Structures

When considering self-folding from a planar reference configuration to a three-

dimensional deformed configuration using active material actuation, several critical

design drivers should be considered: actuation strain, actuation stress, and the ca-

pability of generating and/or manipulating the field that induces deformation in the

active material at the chosen scale. This section provides a simple description of the

relations among activation field, actuation strain, and actuation stress.

To understand how active self-folding structures are developed, constitutive equa-

tions that relate the externally applied fields to the obtained actuation strain are

needed. The following simple expression relates the second-order linearized strain

tensor ε to different fields and applies for a wide range of commonly used active

materials [4, 132, 133, 134, 135]3:

ε = Sσ +α(T − T0) +DPE +DMH +
n∑

i=1

ei(ci − ci0) + εMS, (1.1)

where S is the fourth-order compliance tensor, σ is the second-order Cauchy stress

tensor, α is the second-order thermal expansion tensor, T is the absolute temper-

ature, T0 is the reference absolute temperature, DP is the third-order tensor of

piezoelectric coefficients, E is the electric field vector, DM is the third-order tensor

of piezomagnetic coefficients, H is the magnetic field vector, ei is the second-order

tensor of expansion due to concentration of the ith chemical species, ci is the concen-

tration of the ith chemical species, ci0 is the reference concentration of the ith chemical

species, and εMS is the second-order tensor of strains caused by changes in the mate-

rial micro- and/or nano-structure. This last contribution (εMS) may be altered due

3This additive decomposition of strain is valid only in the case of linearized strains. The work
presented in this dissertation considers such a case.
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to phase transformation [136, 137, 138], variant reorientation [139, 140], change in

the crosslinked structure in certain polymers [141, 142, 143, 144], etc. Such strains

are coupled in certain extent to field variables such as σ, T , H , and E depending

on the considered material.

The total strain ε can clearly be separated into two distinct parts: the strain due

to elastic deformation εEL and the strain due to actuation εACT . This separation is

given as ε = εEL +εACT , where the elastic strain is given by εEL = Sσ. Taking this

into account, the following expression is obtained for the actuation strain:

εACT = α(T − T0) +DPE +DMH +
n∑

i=1

ei(ci − ci0) + εMS. (1.2)

It is observed that there are various possible ways to actuate an active self-folding

structure depending on the active material chosen:

• Use direct coupling by applying fields that induce actuation strain without

modifying the material micro- and nano-structure (e.g. alter the electric field

E to induce actuation strain due to the piezoelectric effect (DPE) or change

the temperature to generate thermal expansion or contraction α(T − T0)) .

• Use direct coupling by applying fields to change the micro- and nano-structure

of the material and alter εMS (e.g. apply temperature changes to induce phase

transformation in an SMA and generate/recover transformation strains [4]).

• Use indirect coupling and apply fields that alter certain material properties

(e.g. use temperature changes to alter the material compliance S and induce

changes in the elastic strains. Examples of indirect coupling are found in [145,

146, 147, 148]).
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1.1.3 Comparative Individual Fold Analysis

In order to make simple assessments for the performance of various active mate-

rials in the active fold concepts described in Section 1.1.1, the actuation strain and

actuation stress for such active materials should be mapped into fold quantitative

responses (e.g. bending or torsional moment, fold angle or radius of curvature at

the fold). Analytical expressions for quantitative responses of a single active fold

can be readily derived for the torsional and multilayer concepts (refer to Figure 1.4)

after making certain simplifying assumptions. The derivation of such expressions is

summarized in Appendix A for the multilayer concept and in Appendix B for the

torsional concept. The influence of secondary material regions or structural compo-

nents (e.g. sensors, connectors) that might be essential in the full physically realized

self-folding structures is not explicitly considered.

Equations relating actuation strain and actuation stress to various fold quantita-

tive parameters are presented in Table 1.1 where RB is the radius of curvature of a

bent multilayer fold, MB is the bending moment applied to a multilayer fold, ϕT is

the total twist angle of an active torsional rod (directly related to the fold angle for

the torsional concept), and MT is the torque applied to an active torsional rod. Those

values are directly or inversely proportional to the active material actuation strain

εACT and actuation stress σACT . The other parameters in the equations shown in

Table 1.1 directly correspond to geometric and/or material parameters or are derived

from them. Considering the multilayer concept, hB is the total laminate thickness,

wB is the width of a laminated beam, and aB1 is the thickness of the active layer.

The parameters CB
1 and CB

2 are dependent on material and geometric parameters of

the layers comprising the laminate and their definitions are provided in Equations

(A.5) and (A.6), respectively. Considering the torsional concept, rT is the radius of
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Table 1.1: Relations among actuation stress and actuation strain and various fold
quantitative parameters.

Fold concept Actuation strain assessment Actuation stress assessment

Multilayer concept
(Appendix A)

εACT =
CB

1 hB
RB

σACT =
MBC

B
2

wBhBaB1

Torsional concept
(Appendix B)

εACT =

√
3 rTϕT
3LT

σACT =
2
√

3MT

πr3
T

a torsional rod of circular cross-section and LT is the length of the rod.

Figure 1.5 and Figure 1.6 provide a comparison of the actuation strain and ac-

tuation stress of common active materials [4] and their performance assessment for

the multilayer and torsional fold concepts, respectively. The bottom axes of both

Figure 1.5 and Figure 1.6 represent the magnitude of the actuation strain εACT and

the left axes represent the magnitude of the actuation stress σACT . The top and

right axes of Figure 1.5 show parameters that assess the material performance as

an active layer in the multilayer concept (Table 1.1). From the plot shown in this

figure, it is observable that ceramic-type active materials (electrostrictive ceram-

ics, magnetostrictive ceramics, and piezoelectric ceramics) may not be suitable for

self-folding systems because they would provide bending radii that are orders of mag-

nitude below other common active materials, though they may do so at much higher

frequencies [149, 150]. The top and right axes of Figure 1.6 show parameters that

assess the material performance in the torsional concept (according to the results of

Table 1.1).

Often, actuation stress limitations may be reduced by the usage of compliant

mechanisms [151, 152, 153, 154, 155, 156]. For instance, shape memory polymers
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Figure 1.5: Active materials performance for the multilayer fold concept. The di-
agram shows typical ranges of actuation strain and actuation stress for different
common active materials [4]. The top and right axes represent parameters related
to the radius of curvature and the bending moment, respectively.

(SMPs) [141, 157, 158], which are shown in Figure 1.5 and Figure 1.6 as having the

lowest actuation stress compared to the other common active materials, have been

demonstrated to be a suitable active material for self-folding (e.g. [159, 160, 161, 162,

163]).

The assessments in Table 1.1 were determined using simplified analytical mod-

els and they serve as simple quantitative estimations of how different materials will

perform in active folds under certain idealizations (e.g. the influence of structural

components such as connectors and sensors on the folding performance is neglected).

To provide with further information regarding the full system integration and ca-

pabilities of active materials within self-folding structures, examples of previously
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Figure 1.6: Active materials performance for the torsional fold concept. The diagram
shows typical ranges of actuation strain and actuation stress for different common
active materials [4]. The top and right axes represent parameters related to the twist
angle and the applied torque, respectively.

demonstrated systems (either through experimentation or highly detailed numerical

simulation) are reviewed in the following section.

1.2 Review of Active Self-folding Structures

Existing examples of self-folding structures classified according to the physical

field that induces the folding deformation are described in this section. The goal is to

provide a systematic view of the state-of-the-art in this important and evolving area.

Thermal, chemical, electrical, and magnetic field-activated self-folding structures are

presented. Tables 1.2 through 1.5 summarize the characteristics of the largest classes

of self-folding systems considered. Examples of each type are classified in terms of
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their fold concept, reversibility of the folds, material system, characteristic sheet

thickness, and current or potential applications.

1.2.1 Thermally-activated Self-folding Structures

Table 1.2 provides a classification of various existing self-folding structures that

are thermally-activated. The design space for thermally-activated morphing struc-

tures is large due to the various methods available for localized supply of heat that

include convection, Joule heating, induction heating [164, 165], radiation [166, 167],

etc. Although there are several ways to alter the temperature in a structure, the

diffusive nature of heat represents a design challenge requiring the consideration of

methods for controlling the spatial distribution of temperature over time (e.g. by

adding thermal insulators to maintain a high temperature concentrated in localized

regions of the self-folding structure).

At the macro-scale, thermally-activated self-folding structures have been based

mostly on SMAs and SMPs. Regarding SMAs, Rus and coworkers [5, 168, 202]

developed a self-folding structure that consisted of a single sheet having repeated

triangular tiles connected by hinges. The pattern of repeated triangular tiles provides

flexibility in the number of shapes towards which the sheet can fold. Thin SMA

foils shape-set to a folded configuration were used to actuate the hinges (using the

flexural fold concept shown in Figure 1.4(c)). Such a structure was shown to be

successful through demonstrations of folding towards different conventional origami

shapes such as a boat or an airplane (Figure 1.7(a)). An and Rus provided a design

and programming guide for self-folding structures of this kind [203].

Another example of SMA-based self-folding structures is the concept of mas-

sively foldable laminated sheet [8, 170, 204, 205, 206, 207]. The concept consists of

a laminated composite with two outer layers of SMA separated by a compliant and

17
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thermally insulating layer (e.g. an elastomer). The outer layers of the SMA may

consist of thin pre-strained SMA films [127, 170, 208] or meshes of pre-strained SMA

wires [8, 10, 209]. With this design, the side of the laminate being heated deter-

mines whether a mountain or valley fold would result. It was shown through finite

element simulations that structures comprised of this laminate are able to self-fold

and form arbitrary three-dimensional structures [169]. Simulations and experimen-

tal demonstrations [210] of such a self-folding structure are shown in Figure 1.7(b).

More recently, SMA-SMP laminated composites based on this concept have been in-

vestigated. Such a shape memory composite is capable of locking in its folded shape

upon a heating/cooling cycle [183].

Kuribayashi and coworkers [110, 172] addressed the design, manufacturing, and

characterization of a self-deployable origami stent. The stent is comprised of a sin-

gle SMA foil with pre-engineered mountain and valley folds. The deployment of

this stent design can be achieved by utilizing the shape memory effect activated at

body temperature or by making use of the pseudoelastic effect [4, 211]. The authors

demonstrated that the stent design successfully deploys as expected. Such a proto-

type is a valuable addition to the extensive list of existing and potential applications

of of SMAs in the biomedical field [212, 213, 214].

Self-folding using SMA actuation has also been used for paper animation. Qi

and coworkers [180, 181] used SMA wire actuators attached to paper in order to

self-fold towards different artistic paper shapes. This study on SMA-actuated paper

animation represents another contribution on the topic of active materials-based

artwork [215, 216]. Self-folding structures can also be potentially applied to other

areas such as flexible display devices [217, 218, 219, 220, 221, 222, 223]. For example

Roudaut and coworkers [178] and Gomes and coworkers [179] proposed new flexible

display designs for mobile devices that can alter their shape via fold-like deformations
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(a)

(b)

Figure 1.7: Examples of thermally-activated self-folding structures: (a) Sheet with
SMA-actuated hinges. An initially planar sheet folds towards an airplane shape [5]
(Reproduced from [5] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E.
D. Demaine, D. Rus, and R. J. Wood, Programmable matter by folding, Proceedings
of the National Academy of Sciences, 107(28):12441–12445, 2010, http://dx.doi.
org/10.1073/pnas.0914069107, by permission of the Proceedings of the National
Academy of Science of the United States of America PNAS); (b) Massively foldable
SMA-based laminate including worm and rolling locomotion examples and self-folded
cube simulations [6]. Experimental demonstrations of such a sheet concept folding
towards a “bowl shape” and an “S-shape” are also shown.
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driven by SMA actuation.

Of course, SMAs are not the only option for thermally-activated self-folding struc-

tures. Shape memory polymers [224] provide higher actuation strains but lower

actuation stresses (see Figures 1.5 and 1.6). One example of thermally-activated

self-folding with SMPs is the work of Demaine and coworkers [159, 160]. They devel-

oped self-folding hinges comprised of SMP, paper, and resistive circuits. In addition,

they presented a model for the torque exerted by such composite hinges that was

experimentally validated.

Light sources have also been used to provide heat to thermally-activated self-

folding structures based on the conversion of light to heat [129], where the ther-

mal energy is then converted to mechanical work. Liu and coworkers fabricated

self-folding structures that employ localized absorption of light cast over a compo-

sitionally homogenous sheet of SMP. The uniform externally applied stimulus (i.e.

unfocused light) generates a focused folding response via localized designed light ab-

sorption [188]. Their approach uses mass-produced materials without the need for

multiple fabrication steps, where the folded regions were defined by the presence of

black ink patterned via a printing process. The polymer regions located beneath

inked areas heat faster than the areas elsewhere and eventually their temperature

increases beyond the glass transition temperature of the SMP. After such a temper-

ature is exceeded, these localized SMP regions actuate and the structure bends. The

reference planar configuration can be recovered by increasing the temperature of the

entire sheet above the SMP glass transition temperature. An extensive review on

self-folding polymeric sheets is provided in [225].

There are various examples of thermally-activated self-folding structures at the

small scales. For instance, Lee and coworkers designed a microgripper that uses SMA

actuation to open and close [191, 192]. Deposited SMA films serve as the outer layers
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of the microgrippers, acting as actuators. Applications for the microgripper include

assembling small parts for manufacturing, minimally invasive tissue sampling, and

remote handling of small particles in extreme environments [191].

As another example, Gracias and coworkers fabricated self-folding structures at

the micro-scale able to perform sequential folding through heating of pre-stressed

hinges using lasers [193]. Their hinges were comprised of Cr/Au-polymer bilayers.

Upon laser radiation, the polymer layer softens and the bilayer bends due to ex-

isting pre-stress generated during the bilayer fabrication process. Kalaitzidou and

coworkers [194, 195] also developed self-folding polymer-metal bilayer structures.

Their self-folding laminated composites were comprised of a polydimethysiloxane

(PDMS [226, 227]) layer and an Au layer. The PDMS layer had a thickness of sev-

eral micrometers while the thickness of the Au layer was in the order of nanometers.

Upon changes in temperature, the bilayer folds or unfolds due to dissimilar thermal

expansion of the materials in the two layers. They also fabricated a PDMS-silicon car-

bide (SiC) bilayer with similar behavior to demonstrate that their micro-fabrication

approach can be applied using any two materials with dissimilar thermal expan-

sions. The ability of the bilayers to capture, transport, and release different solids

was demonstrated indicating their potential application as delivery tubes [195]. A

similar concept was adopted by Ionov and coworkers when fabricating self-folding

bilayers having one layer of polycaprolactone (PCL) and another layer of poly-(N-

isopropylacrylamide) (PNIPAM) [196, 197]. Polycaprolactone is hydrophobic (i.e.

tending to repel/reject water [228]) while the absorptivity of PNIMAN can be re-

versibly changed with temperature by heating/cooling above/below its low critical

solution temperature [196]. This temperature dependent behavior allows PNIPAM

to swell or collapse in the presence of water driven by changes in temperature.
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1.2.2 Chemically-activated Self-folding Structures

Self-folding structures activated by chemical stimulus have also been explored

by multiple researchers. Most of these structures are based on the multilayer fold

concept and utilize the degradation or swelling behavior of certain polymers under the

presence of specific substances or pH level [229, 230]. Examples of these structures

are classified in Table 1.3.

One example of self-folding structures activated through chemical stimulus are the

microtubes fabricated by Kumar and coworkers [231]. They considered a three-layer

laminated composite comprised of PDMS, polystyrene (PS), and poly(4-vinylpyridine)

(P4 VP). The folding mechanism of the microtubes was based on the different amount

of swelling in their comprising polymer layers. Polystyrene demonstrates minimal

water uptake while P4 VP is less hydrophobic and swells in acidic aqueous solu-

tions [231]. A P4 VP layer increases its volume upon swelling and if fixed to a

PS layer, it will cause the polymer laminate to fold. Micro- and nano-tubes fab-

ricated through this method are promising for applications including nano-syringes

for intra-cellular surgery and nano-jet printing [244]. In another work, Shim and

coworkers [238] fabricated robust microcarriers using hydrogel bilayers that exhibit

reversible folding behavior. The bilayer composite consisted of a layer of poly(2-

hydroxyethyl methacrylate-co-acrylic acid), p(HEMA-co-AA), and a layer of poly(2-

hydroxyethyl methacrylate), p(HEMA). Planar structures comprised of this lam-

inated composite were able to fold towards micro-containers by swelling of the

p(HEMA-co-AA) layer triggered by changes in pH.

A similar self-folding bilayer approach was adopted by He and coworkers in

the fabrication of an oral delivery device [236]. The main part of the device con-

sisted of a finger-like bilayer comprised of pH-sensitive hydrogel based on crosslinked
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poly(methyacrylic acid) (PMAA) which swells significantly when exposed to body

fluids, and a second non-swelling layer. Guan and coworkers [239] studied the mag-

nitude of folds achieved by a self-folding bilayer composite as a function of the active

layer composition [239]. In such studies, the active swelling layer was prepared with

a mixture of poly(ethylene glycol methacrylate) (PEGMA) and poly-(ethylene glycol

dimethacrylate) (PEGDMA). By controlling the ratio between the two components

of such an active layer, different magnitudes of folding were achieved.

A self-folding gripper that opens and closes by the actuation of polymer hinges

was fabricated by Gracias and coworkers [241, 242]. The actuation of the polymer

hinges was triggered by their sensitivity to the presence of enzymes, where they utilize

two different polymers with two mutually exclusive enzyme sensitivities. The two

polymers were placed at hinges in such a way that bending in opposite directions is

activated given the appropriate stimulus. When one polymer is selectively degraded

by its associated enzyme, the gripper closes. When the other polymer is degraded

through the action of its own distinct enzyme, its respective hinge bends and the

gripper opens.

1.2.3 Electrically-activated Self-folding Structures

Examples of self-folding structures activated by electrical stimulus are provided in

Table 1.4. The extensive research in dielectric elastomers [245, 246] and electroactive

polymers [247], along with recent advancements in MEMS technologies [248], have

made possible the development of such self-folding structures.

For instance, Frecker and coworkers [130, 249, 250] developed a bending actuator

that consisted of three layers: an active dielectric elastomer layer, a compliant passive

layer, and compliant electrodes. Self-folding structures with dielectric elastomers

based on the extensional concept (Figure 1.4(a)) were developed by Roudaut and
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coworkers for flexible mobile device displays (previously discussed in Section 1.2.1).

Their concept considered bending of a flexible mobile device through contraction and

expansion of a dielectric elastomer actuator connected to two sides of the device [178].

More complex electrically-driven folding motion was demonstrated by Okuzaki

and coworkers, who created a biomorphic robot fabricated by folding a conduct-

ing polymer film [251]. The folding actuation was generated by electrically-induced

changes in the stiffness of the polymer film. Those changes of stiffness were caused

by the absorption and desorption of water vapor molecules driven by the imposed

electrical field. Okuzaki and coworkers demonstrated the feasibility of the concept

by fabricating different prototypes such as an origami robot that moves rectilinearly

with caterpillar-like motion. Such a motion was achieved by repeated expansion and

contraction of its accordion-like body via folding/unfolding of electrically sensitive

Polypyrrole (PPy [256, 257]). At the small scale, Inganäs and Lundström utilized

conducting polymers as actuators within electrically-driven polymer/gold folding bi-

layers [252, 253]. They used conducting PPy as the active layer.

1.2.4 Magnetically-activated Self-folding Structures

Examples of magnetically-activated self-folding structures are classified in Ta-

ble 1.5. Magnetoactive elastomers (MAEs [258]) have been investigated as actuators

for self-folding structures by von Lockette and coworkers [130, 131, 259, 260]. The

MAEs they considered were fabricated by mixing barium ferrite particles into a sili-

cone rubber matrix. Composites consisting of PDMS sheets with MAE patches were

able to achieve locomotion under the application of a time periodic magnetic field.

Additionally, von Lockette and coworkers fabricated a cross-shaped PDMS sheet

with four MAE patches on its sides that was shown to fold into a box induced by a

magnetic field. The four MAE patches experienced translations and rotations driven
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by the magnetic field. However, it should be noted that in this particular exam-

ple, the MAE patches were used only for their ability to be magnetized rather than

for any intrinsic magnetic to mechanical energy conversion. Bowen and coworkers

utilized such a MAE-based self-folding approach to develop bistable origami mecha-

nisms [261, 262, 263].

After just providing a review of origami-inspired active structures, it is evident

that the complexity of self-folding origami structures is large in terms of geometry

and material behavior. Consequently, theoretical modeling and design approaches

for such structures are needed for engineers to provide more and larger developments

in this area. The following sections present a review of previous efforts for modeling

and design of origami structures that can be applied to self-folding origami structures

as well as those without self-folding capabilities.

1.3 Kinematics of Origami Structures

Previously in Section 1.1, conceptual designs for individual folds as well as the

material selection for active self-folding structures were reviewed. Kinematic model-

ing for origami structures, irrespective of the material response or externally applied

loads being used to effect the folding motion, is reviewed in this section.

The study of the kinematics of origami structures is an active research topic and

has been investigated by various researchers [265, 266, 267, 268, 269, 270, 271, 272].

Kinematic modeling and computational simulation of origami structures [265, 273]

permits understanding of their deformation and the development of computational

tools for their design [7, 274, 275]. To develop a kinematic model for origami struc-

tures, three main aspects have to be considered [13, 121, 276]: (i) The geometric

definition of the sheet reference configuration and the associated fold pattern, (ii)

the description of allowable deformations for the sheet, and (iii) the mapping between
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the reference and the current configurations of the sheet. These aspects of kinematic

modeling for origami structures are rigorously addressed in Section 2 while a litera-

ture review is presented in this section.

Two main assumptions have been made in the development of mathematical

models for the kinematics of origami structures to date [121, 265, 266, 276, 277,

278, 279, 280]: that folds are straight creases having zeroth-order geometric conti-

nuity (termed as creased folds), and that planar faces bounded by the folds and the

sheet boundary are rigid (i.e. these faces are neither bent nor stretched, refer to

Figure 1.3). Models having these assumptions have been utilized for the analysis

and design of deployable structures [266, 281, 282, 283, 284, 285, 286, 287, 288] and

mechanisms [289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302].

Many researchers have given significant attention to flat foldable origami [303,

304, 305, 306, 307]. Allowable configurations for flat foldable origami structures are

those in which all the planar faces have parallel normal directions [13, 308, 309, 310].

The imposition of flat foldability constraints in origami structures ensures that these

structures can be fabricated from a planar sheet or, conversely, be deployed towards

a planar configuration. Computational simulation of flat-foldable origami structures

has been explored by Mitani [311, 312]. In the framework provided by Mitani, the fold

pattern is interactively designed by the user and the final flat-folded configuration and

stacking order of the faces is the output. One limitation of such a framework is that

it does not provide intermediate configurations between the reference configuration

and the determined flat-folded configurations.

Flat-foldability highly limits the shapes that can be obtained using origami. Con-

sequently, multiple researchers have developed origami models for which flat foldabil-

ity constraints are not imposed. For example, Belcastro and Hull [121, 276] presented

a model for origami derived by representing the deformation associated with folding
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a crease using affine transformations. Their model provides constraints on the fold

angles allowing for valid configurations as well as mappings between unfolded and

folded configurations. Tachi developed the Rigid Origami Simulator [265, 313] for

the simulation of origami that also considered a set of constraints on the fold angles

analogous to those presented in [121, 276]. Using a similar approach, Tachi also

developed Freeform Origami [314] for the simulation and design of freeform origami

structures represented as triangulated meshes [315]. Also utilizing a kinematic model

based on affine transformations, Ida and coworkers developed a software for interac-

tive origami simulation called Eos [267, 316, 317, 318]. Such a software allows for

visualization and interactive manipulation of origami structures.

Alternatively, structural truss representations [319, 320, 321] have been used for

kinematic modeling of origami wherein the faces of the sheet are triangulated, each

fold and boundary edge end-point is represented by a truss joint, and each fold and

boundary edge is represented by a truss member. The configurations for which the

displacements of the truss joints do not cause elongations of the truss members repre-

sent valid configurations. Such configurations are determined through the null space

of the truss compatibility matrix [322] (i.e. those sets of truss joint displacements

for which the truss member elongations are zero). Additional constraints that allow

the triangulated faces to remain planar are also considered for these models.

As previously mentioned, the majority of origami modeling approaches to date

are based on the assumption of creased folds (see Figure 1.8(a) for an example) that

are straight line segments in the sheet that, upon folding deformation, the sheet has

zeroth-order geometric continuity (G0) at such line segments (i.e. the sheet tangent

plane may be discontinuous at these folds). Curved creased folds are also feasible in

origami (see [323, 324, 325, 326, 327, 328, 329, 330]); nevertheless, the focus of this

work is on origami structures for which curved folds are not allowed because their
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folding deformation induces bending of the faces joined to such folds [324, 331].

The idealization of physically folded structures as sheets having creased folds has

been useful in the modeling and design of several origami-inspired structures in the

past [94, 95, 281, 332, 333]. However, such a simplification may not be appropriate

for structures having non-negligible fold thickness or constructed from materials that

do not provide sufficient strain magnitudes to generate the high curvatures required

for a creased idealization. For these structures, the obtained folded regions may not

be accurately represented as creases but rather as bent sheet regions having higher-

order geometric continuity. These folded regions are termed in this work as smooth

folds. An example of a sheet with smooth folds is shown in Figure 1.8(b). The

geometry of the newly introduced smooth folds is addressed later in Section 2.2.1.

There have been past efforts to model and analyze surfaces that contain bent

and creased folds. Bent and creased surfaces have been modeled using collections

of developable surface subdomains [334, 335, 336, 337, 338, 339]. For instance,

Hwang and Yoon modeled foldable surfaces through bending operations analogous

to wrapping regions of an initially planar surface onto cylindrical and conical sec-

tions [336]. Such advancements allow for the realistic animation and rendering of

combinations of creases and bent regions. However, none of the aforementioned

works [334, 335, 336, 337, 338, 339] has considered constraints on the geometry and

deformation of the bent folded regions that are required to preserve rigid faces as in

analogous origami models, which are essential when fold intersections or holes are

present in the sheet. Such constraints represent one of the main contributions of the

work presented in Section 2.

Modeling the kinematics of origami structures represents the first step towards

fully physical modeling and design of such structures. Previous efforts for modeling

the structural mechanics of origami bodies are reviewed in the following section.
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(a) (b)

Creased folds Smooth folds

Zeroth-order 

continuity (G.)
Higher-order 

continuity (G.)

Figure 1.8: (a) A conventional origami sheet having creased folds of zeroth-order
geometric continuity (G0). (b) A sheet having smooth folds of non-zero surface area
and higher-order geometric continuity (Gn). This figure is adapted from Figure 1
of [7]. Copyright c© 2016 by ASME. Reproduced with permission.
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1.4 Structural Mechanics of Origami Bodies

Modeling the structural mechanics of origami bodies is of special interest in the

engineering community. It allows for the simulation and design of origami structures

taking into account the constitutive behavior of their comprising materials and the

influence of the external environment on the resulting folding response. Furthermore,

such a modeling is needed the development of origami-based applications ranging

from those of structures comprised of passive materials [85, 96, 340, 341, 342, 343,

344, 345] to the more complex structures having active material actuation (reviewed

in Section 1.2).

Schenk and Guest [319] proposed a model for origami structures with elastic

creased folds based on structural truss representations where each fold or boundary

edge end-point is represented by a truss joint, and each fold and boundary edge is

represented by a truss member. Their model introduces torsional spring behavior for

the creased folds to represent their resistance against folding deformation. Qiu and

coworkers adopted such a modeling approach for the analysis of origami carton-type

packages [346, 347]. They numerically explored issues of origami-based packaging and

their model was validated against experimental data. A structural truss approach

was also utilized to simulate the behavior of tessellated origami structures [321] and

structures having fold patterns inspired by tree leaves [348]. Tachi also used a struc-

tural truss model to simulate the elastic behavior of sheets with creased folds by also

idealizing the folds as torsional springs and solving equations of mechanical equilib-

rium under constraints assuring that no fold line or boundary edge is elongated [349].

Nevertheless, representing folds as creases having torsional spring behavior may not

be suitable for structures of significant fold thickness or comprised of materials that

do not exhibit large enough strains to approximate creases (e.g. metal or active
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material-based sheets). In these cases, the folds are properly modeled using plate or

shell representations.

Wheeler and Culpepper [350] recently studied origami structures where the elastic

behavior of bent folds is modeled using Euler-Bernoulli beam theory [351]. Their

work provides a way to assess the failure criteria of such folds, including both failure

stress and buckling criteria. However, in their work the folds are represented as beams

having uniform curvature and comprised of homogeneous linear elastic materials,

which limits the spectrum of origami structures for which the model can be utilized.

Existing finite element analysis (FEA) modeling approaches [352, 353] can be used

directly or be extended for high-fidelity simulation of origami structures. There are

various advantages provided by FEA approaches such as the capability of modeling

structures having arbitrary geometry, materials, and boundary conditions. Struc-

tural finite elements developed on the basis of plate and shell theories [354, 355, 356]

provide a strong option for modeling origami structures which in general have surface-

like geometry. Furthermore, available FEA software packages readily allow for multi-

physical simulation which is needed when considering active self-folding structures

that have couplings among various physical fields (refer to Section 1.1.2).

Origami structures composed of passive materials exhibiting elastic and elasto-

plastic behavior have been previously studied using FEA. Examples include boxes [82,

83, 357] and beams [343, 345, 358, 359] with pre-engineered fold patterns for energy

absorption in transportation systems, and foldcore composites for applications in the

aerospace field [342, 360].

Finite element analysis has also been used as the modeling approach for self-

folding origami structures comprised of diverse active materials. For example, the

folding response of SMA-elastomer composite sheets has been explored using both

continuum finite elements [8, 361] and shell structural elements [362]. A simulation
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example of such a work is provided in Figure 1.9. Ahmed and coworkers performed

multi-physics simulation of origami structures actuated using dielectric elastomers

and MAEs [130]. The aforementioned examples demonstrate the capabilities of FEA

approaches to provide high-fidelity simulation of active origami structures consid-

ering couplings among various physical fields (mechanical-thermal in [8, 361] and

mechanical-electrical-magnetic in [130]).

Although FEA approaches provide significant advantages as previously stated,

they also have drawbacks when applied to the modeling of origami structures. First,

the mathematical insights provided in the classical approaches of origami (e.g. ge-

ometric constructions [270]) are lost in the complexity and generality of FEA. The

kinematic variables associated with FEA models (e.g. displacements and/or virtual

rotations at nodes in displacement-driven FEA) are not generally compatible with

those of conventional origami (e.g. fold angles). Moreover, FEA is generally not com-

putationally efficient which could make it a non-feasible option for modeling origami

structures having high complexity in terms of number of folds and folding sequence.

1.5 Design of Origami Structures

To realize a useful origami structure, designers must consider several issues be-

yond the choice of fold concept (Section 1.1.1) and material (Sections 1.1.2 and 1.1.3).

The motivation for a design problem is to fulfill one or more desired functions. For

example, designers might achieve a storage/deployment functionality for satellite

solar panels using an origami structure. Important considerations are to determine

what is the final folded shape (or shapes, in the case of a reconfigurable structure), to

identify a fold pattern that can achieve the desired shape(s), and a folding sequence

that results in the desired shape(s). Designers must achieve all of this subject to

material failure constraints, system-level failure criteria, and requirements for inter-
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Martensite volume fraction

10.50

Heated 

region

Figure 1.9: Finite element analysis of an SMA mesh-elastomer laminated composite
sheet [8]. The sheet is folded through localized SMA transformation. The contour
shows martensite volume fraction (0: 100% austenite, 1: 100% martensite).

facing the structure with other parts of the system (e.g. mating points). A summary

of such a general design problem is provided in Table 1.6.

Designers need methodologies and tools tailored to each part of the design prob-

lem of origami structures (Table 1.6). The previous sections of this section have

focused primarily on domain knowledge about single fold concepts and the various

active materials available for achieving self-folding behavior. Existing computer-

aided design (CAD) and FEA tools can be used directly or be extended for use in
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Table 1.6: High-level definition of the general design problem for origami structures.

Given Desired design functionality
Find 1. Folded shape(s) that achieve desired functionality

2. Sheet geometry and fold pattern that can produce such
shape(s)

3. Folding sequence in which to execute folds
4. Appropriate fold concept(s) (Section 1.1.1) and detailed

geometry
5. Appropriate material(s) including passive materials and ac-

tive material(s) if self-folding capabilities are required (Sec-
tions 1.1.2 and 1.1.3)

Subject to Failure criteria and interface requirements

the analysis and design of single active or passive folds. However, the challenges of

identifying fold patterns and folding sequences require unique tools and methods.

A review of the prior work on origami design methods in support of these design

activities is provided in this section.

Creating an origami structure having desired characteristics, particularly a de-

sired shape, is known as origami design [9]. Origami design is a challenge encountered

not only by origami artists but also by designers and engineers who apply origami in

various fields. Before obtaining extensive interest from the mathematics, science, and

engineering communities, most origami design was performed through trial and error

or other heuristic approaches based on the intuition of an artist or designer [363].

With the increase in complexity of origami shapes that provide engineering utility,

theoretical and computational approaches for origami design have become essential

for developments in this area of study [3, 13, 363]. As in most kinematic models

for origami structures, current methods for origami design generally consider rigid

faces and creased folds [20, 266]. Although many origami design methods have such
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limitations, they provide useful start-points for addressing the design of more general

origami structures.

Origami design has been studied in the past and it remains an active research

subject [20, 266, 364]. One of the most well-known approaches for origami design

is the tree method [363, 365, 366, 367]. This method has been implemented in a

software package named TreeMaker [368]. The tree method generates a pattern of

creased folds on a squared sheet that allows for the folding of the sheet into a base,

a folded shape whose projection to a plane is the tree line graph of the goal shape.

This planar tree line graph may have arbitrary edge lengths and topology. After the

base is folded, it is left to the designer to execute additional folds in order to closely

approximate the goal shape.

Demaine and coworkers proposed an origami design method for goal shapes repre-

sented as polygons or three-dimensional polyhedral surfaces [13, 369]. The approach

is based on folding a sheet into a thin strip and then wrapping the strip around the

goal shape using creased folds. Various algorithms for wrapping the goal shape were

proposed [370]; these include one that uses any sheet area arbitrarily close to the

goal shape surface area and another that maximizes the width of the strip subject

to certain constraints.

A method for determining the geometry and pattern of creased folds associated

with a planar sheet that can fold towards a goal polyhedral surface is termed as

unfolding polyhedra [13, 371, 372, 373]. The objective in this method is to deter-

mine an unfolding of the goal polyhedral surface [13]. An unfolding is defined as

the flattening of the goal polyhedral surface to a plane such that the surface be-

comes a planar polygon having boundary segments that correspond to cuts made on

the polyhedral surface [13]. Generally, the unfolding must be a single simply con-

nected polygon having no overlaps and the cuts must correspond to edges of the goal
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polyhedral surface. A drawback of this approach is that it has been demonstrated

that there are non-convex polyhedra which do not have unfoldings with the afore-

mentioned characteristics [13]. It also remains an open question as to whether the

method of unfolding polyhedra works for any goal convex polyhedral surface [13].

There is ongoing research on more general unfoldings comprised of multiple dis-

connected polygons or having cuts not limited to the edges of the goal polyhedral

surface [13, 374, 375, 376, 377].

With several examples in nature of origami-like processes [378, 379, 380, 381,

382, 383, 384, 385], bioinspiration has also provided ideas for origami design meth-

ods [386]. For instance, De Focatiis and Guest [387] presented a fold pattern design

approach for deployable structures inspired by a model of deploying tree leaves.

They investigated the effects of combining several corrugated leaf patterns to pro-

duce deployable structures such as solar sails, solar panels, and antennas. Nature-

inspired approaches for fold pattern design have also been proposed by Li and

McAdams [388, 389, 390] where multiple analogies between origami and nature pro-

cesses are utilized.

The currently available computational method for origami design applicable to

the widest range of goal shapes was introduced by Tachi in [9, 391]. In such work,

Tachi presented a method for obtaining a pattern of creased folds in a convex planar

sheet that folds into an arbitrary three-dimensional goal shape represented as a

polygonal mesh [9, 391] (see Figure 1.10). The method is based on the introduction

of regions having two rigid faces and three creased folds placed between any two

faces of the polygonal mesh connected by an interior edge. The creased folds are

used to tuck fold such introduced regions to form the three-dimensional polygonal

mesh starting from a planar configuration [391]. This method is shown to successfully

work on goal polygonal meshes (convex and non-convex) of various complexities in
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terms of number of faces and non-regular connectivity. It is noted that a process

for determining a folding sequence allowing for folding motion from the determined

planar sheet to the goal polygonal mesh was not addressed in [9, 391].

Although the preceding design methods for origami structures and other more

recent ones (see [20, 392, 393, 389, 394, 395, 396, 397]) allow for the design of fold

patterns for goal shapes of various complexities, everyone assumes that the sheet only

contains creased folds. Such a simplification may not be appropriate for structures

having non-negligible thickness or constructed from materials that do not provide

sufficient strain magnitudes for a creased idealization (e.g. metals, glassy polymers,

active materials).

There are a number of works addressing the design of origami structures consid-

ering faces of non-zero thickness but still assuming creased folds [398]. For example,

Tachi proposed a method for designing three-dimensional origami structures com-

prised of non-zero thickness faces connected to one another by creased folds [281, 399].

Zirbel and coworkers [400, 401, 402] addressed the accommodation of thickness in

origami-based deployable arrays, motivated by the need to fold thick panels that

cannot bend during stowing or deployment (e.g. solar panels comprised of brittle

materials). In their work, they propose a method for the modification of fold patterns

originally intended for zero-thickness origami structures to accommodate thick faces

in the context of a deployable space structure. They demonstrate the applicability

of their model using a 1/20th scale prototype of a deployable solar array for space

applications. In another work, Ku and Demaine presented an algorithm to transform

certain flat-foldable fold patterns that assume zero-thickness faces into fold patterns

with similar folded configurations but considering non-zero thickness faces [403, 404].

Requirements on the input flat-foldable fold pattern for the algorithm to generate a

pattern for thick faces are provided in their work.
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Figure 1.10: Screenshots of the graphical user interface of Origamizer showing pat-
terns of creased folds generated for two different goal shapes (left: goal shape, right:
planar sheet with fold pattern). The Origamizer [9] software by Tomohiro Tachi was
obtained from http://www.tsg.ne.jp/TT/software/.
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Akleman and coworkers [169] proposed an extension of the previously described

unfolding polyhedra approach for the consideration of smooth folds (see Figure

1.8(b)). The main contribution of such a work is the process for in-surface thicken-

ing of the folds, which are creased line folds in conventional unfolding polyhedra, to

smooth folds having non-zero surface area. An algorithm to subdivide each obtained

unfolding into smaller quadrilaterals and triangles to generate a finite element mesh

that allows for high-fidelity analysis of the folding (or self-folding) process was also

presented. The feasibility of such an origami design method was tested through sim-

ulation of the SMA actuation-driven self-folding behavior of the generated unfoldings

towards their associated polyhedral goal shapes [169].

1.6 Motivation and Research Objectives

After reviewing the existing and prospective applications origami structures (with

and without self-folding capabilities) in Sections 1.1 and 1.2, it is clear that origami

has the potential to enable new advancements in various fields such as aerospace,

manufacturing, robotics, architecture, etc. To allow or facilitate such advancements,

modeling and design approaches for origami structures are needed and thus there

is ongoing research on the subject. From the literature review on modeling and

design of origami structures presented in Sections 1.3–1.5, it is evident that there

is a gap between realistic folding behavior and existing models and design methods

that mostly focus on conventional origami with creased folds (refer to Figure 1.8(a)).

Therefore, new approaches for origami modeling and design are needed.

The work presented in this dissertation aims to create new models and design

methods for origami structures inspired from those established but allowing for the

consideration of realistic smooth folds. The first objective is to develop a kinematic

model for realistic folding response while retaining the important features that enrich
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conventional origami. To achieve this objective, the concept of origami structures

with smooth folds is introduced. In this concept, the folds are not limited to G0

creases but instead may have non-zero surface area and an arbitrary order of geo-

metric continuity Gn as in the example shown in Figure 1.8(b) (hence named smooth

folds). By considering Gn continuity at the folds, the realistic response of origami

structures based on the bending concepts (Figures 1.4(d) and (e)) can be properly

captured. Important features of conventional origami with creased folds are pre-

served in the newly introduced concept such as having the fold angles as kinematic

variables and the inclusion of rigid faces as in existing origami models.

Another objective is to develop a design method for the newly proposed origami

structures with smooth folds. Specifically, a method for solving the following origami

design problem is desired: given a goal shape represented as a polygonal mesh, find

the geometry of a single planar sheet, its pattern of smooth folds, and a folding

sequence allowing the initially planar sheet to approximate the goal mesh. To achieve

this objective, one of the most general design methods for conventional origami with

creased folds [9] is adapted and extended for the consideration of smooth folds.

The determination of a folding sequence was not addressed in related works such

as [9, 391] and therefore represents another contribution of this dissertation. It is

remarked that G0 creased folds represent a special case of the Gn smooth folds and

are captured as well in the kinematic model and the design method presented in this

dissertation.

A further objective is to develop a model for the structural mechanics of origami

bodies with smooth folds. Such a model allows for the physics-based simulation

of origami structures having folds comprised of arbitrary materials, including active

materials. This objective entails the integration of the presented kinematic model for

origami structures with smooth folds and existing plate theories in order to obtain a
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structural representation for folds having non-zero thickness.

The last objective involves the design and analysis of active material-based self-

folding structures that morph towards arbitrary three-dimensional goal shapes start-

ing from a planar configuration. The developed kinematics, structural analysis, and

design approaches for origami structures with smooth folds presented in this work

are all integrated for the fulfillment of this former objective. Examples including

SMA-based self-folding structures are considered although it is remarked that the

developed design method and its implementation are applicable to self-folding struc-

tures actuated with other active materials.

The outline of this dissertation is presented in the following section. The work

performed to accomplish the aforementioned research objectives is organized in the

sections listed therein.

1.7 Outline of the Dissertation

This dissertation is organized as follows:

• A model for the kinematics of origami structures with smooth folds is pre-

sented in Section 2. The section begins with a summary of the model for

conventional origami with creased folds that is adopted and extended herein

for the consideration of smooth folds. Subsequently, the description of the

proposed model for the kinematics of origami structures with smooth folds is

provided. The section continues with the presentation of an algorithm for the

kinematic simulation of origami structures with smooth folds that is applica-

ble to sheets having arbitrary fold patterns and subject to arbitrary folding

sequences. Lastly, kinematic simulation results highlighting the capabilities of

the present model and its associated numerical implementation are provided.

• In Section 3, the design of origami structures with smooth folds is addressed.
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Specifically, this section presents a method for solving the following origami

design problem: given a goal shape represented as a polygonal mesh (termed

as the goal mesh), find the geometry of a single planar sheet, its pattern of

smooth folds, and a folding sequence allowing the sheet to approximate the

goal mesh. First, a description of such an origami design problem is provided.

The section continues with the design parameterization of the planar sheet

and the constraints that allow for a valid pattern of smooth folds and approx-

imation of the goal shape in a known folded configuration. An algorithm to

determine a folding sequence allowing for the motion between the designed

planar sheet and the configuration that approximates the goal shape is then

outlined. Implementation results considering goal shapes of diverse geometries

are presented at the end of the section.

• In Section 4, the structural mechanics of origami bodies with smooth folds are

addressed. A modeling approach for origami structures comprised of arbitrary

materials is developed on the basis of the kinematics presented in Section 2.

First, a structural representation based on a plate theory utilized to model

smooth folds having non-zero thickness is presented. A model for the struc-

tural mechanics of origami bodies comprised of arbitrary materials is then de-

veloped using such a plate representation. Numerical validation results for such

a model against FEA are provided. The design method presented in Section 3

is then revisited and extended for the design of active self-folding structures

that morph towards arbitrary three-dimensional goal shapes via simultaneous

folding starting from a planar reference configuration.

• Finally, summarizing remarks and suggestions for future work are provided in

Section 5.
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2. KINEMATICS OF ORIGAMI STRUCTURES WITH SMOOTH FOLDS

1Origami provides novel approaches to the fabrication, assembly, and functional-

ity of various structures and devices as reviewed in Section 1. Kinematic modeling of

origami-based objects is essential to their analysis and design. A review of available

kinematic models for origami structures is presented in Section 1.3. As stated in

Section 1.3, two main assumptions have been made in the development of mathe-

matical models for the kinematics of origami structures to date [121, 265, 266, 276,

277, 278, 279, 280]: that folds are straight creases having G0 continuity (termed as

creased folds, refer to Figure 1.8(a) for an example), and that planar faces bounded

by the folds and the sheet boundary are rigid (i.e. these faces are neither bent nor

stretched, refer to Figure 1.3). However, these previous models are not intended for

structures having non-negligible fold thickness or maximum curvature at the folds

restricted by material or structural limitations. Thus, for general structures, creased

folds of merely zeroth-order geometric continuity are not appropriate idealizations of

structural response and a new approach is needed.

In the model for origami kinematics presented in this section, the previously men-

tioned assumption of rigid faces is maintained while the assumption of creased folds

is replaced by the introduction of smooth folds. Smooth folds have non-zero surface

area and exhibit higher-order geometric continuity Gn (refer to Figure 1.8(b) for an

example). The geometry of smooth folds and the constraints on their associated

shape variables are presented. It is noted that the proposed model for origami with

smooth folds includes origami with creased folds as a special case, hence being more

1Portions of this section are reprinted or adapted from [7] E. A. Peraza Hernandez, D. J. Hartl,
and D. C. Lagoudas. Kinematics of origami structures with smooth folds. Journal of Mechanisms
and Robotics, 8(6):061019, 2016. Copyright c© 2016 by ASME. Reproduced with permission.
http://dx.doi.org/10.1115/1.4034299
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general. Important features of conventional origami with creased folds are preserved

in the newly introduced origami with smooth folds including having the fold angles

as kinematic variables. A numerical implementation of the model allowing for kine-

matic simulation of sheets having arbitrary fold patterns and subject to arbitrary

folding sequences is also described. Simulation results are provided showing the ca-

pability of the model to capture realistic kinematic response of origami sheets with

diverse fold patterns.

The outline of this section is as follows: Basic concepts of origami and a review

of the model for origami with creased folds extended in this work are presented in

Section 2.1. Section 2.2 presents the newly proposed model for origami with smooth

folds. It includes the geometric description of smooth folds and the fold pattern,

constraints required for valid configurations, and the numerical implementation of

the model allowing for kinematic simulation of sheets having arbitrary patterns of

smooth folds. Section 2.3 presents simulation results of sheets having diverse fold

patterns that demonstrate the model capabilities and the resulting realistic kinematic

structural response captured by the model. Finally, a summarizing discussion of the

section is provided in Section 2.4.

2.1 Concepts and Review of Origami with Creased Folds

Various concepts of origami and a review of a model for origami with creased

folds are presented in this section for the purposes of developing the novel extensions

proposed in this section.

The modeling approach for origami adopted and extended herein is largely based

on the one presented by Belcastro and Hull in [121, 276]. Firstly, the studied contin-

uum body termed as the sheet and the shape variables associated with the creased

folds in the sheet (e.g. fold angles) are defined. The layout of the folds in the sheet
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(i.e. the fold pattern) is then determined by vertices (start-points and end-points

of the line segments coincident with the creased folds in a planar reference config-

uration) and their connectivity. After the geometric parameters of the fold pattern

are defined, constraints on the fold shape variables required for valid configurations

are described. The configurations that satisfy the stated constraints comprise the

constrained configuration space. Continuous motion of the sheet is achieved by con-

tinuously altering the fold shape variables such that any attained configuration is

contained in the constrained configuration space.

In the present kinematic modeling approach, the required fold pattern data (e.g.

vertex coordinates and fold connectivity) are provided as inputs. Methods for the

design of fold patterns for specific applications are provided in [9, 13, 20, 205, 333, 362,

363, 369, 392, 405]. Additional information on the design of origami structures and

a proposed design method for origami with smooth folds are presented in Section 3.

The simulation of the continuous motion of the sheet is performed sequentially

by updating the values of the fold shape variables using input guess increments and

subsequently apply corrections such that the resulting set of fold shape variables

satisfies the proposed constraints. In this section, input guess increments for the

fold shape variables are arbitrary and not obtained through any specific method.

The determination of folding sequences for designed origami structures with smooth

folds is addressed in Section 3 (refer to Section 3.6). Motion planning in origami for

various other applications is also being addressed by multiple researchers and the

reader is referred to [406, 407, 408, 409, 410] for such works.

To begin, the various concepts of origami previously introduced in Section 1.1

must be formalized. The considered continuum body termed as the sheet is a three-

dimensional, orientable, path-connected surface with boundary. A detailed descrip-

tion of a sheet for origami with creased folds is provided in [13]. For origami with
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creased folds, the sheet is divided into various faces that are connected by straight

edges corresponding to the creased folds. Each face comprising the sheet has the

same aforementioned characteristics of the sheet (i.e. they are three-dimensional,

orientable, path-connected surfaces with boundary).

The orthonormal vectors ei ∈ R3, i = 1, 2, 3, with e3 := e1 × e2 form the basis

{e1, e2, e3} that defines the fixed global coordinate system. The reference config-

uration of the sheet, denoted S0, is defined such that it is contained in the plane

spanned by e1 and e2 with its faces not overlapping each other, except at their

shared boundary edges. Although several applications that utilize origami concepts

do not consider an initially planar, non-overlapping configuration (e.g. [56, 95, 110]),

the reference configuration S0 has such characteristics in this work to agree with

conventional origami modeling approaches [121, 276] and for the sake of simplicity.

The configuration of the faces comprising S0 is denoted P i0 ⊂ S0, i = 1, . . . , NP ,

where NP is the number of faces in the sheet (i.e. S0 =
⋃NP
i=1P i0). The side of S0

with normal e3 is selected as the positive side of the sheet. An example of a sheet in

its reference configuration S0 is provided in Figure 2.1(a).

A current configuration of the sheet is denoted St where the time parameter t

indicates the history of deformation from the reference configuration (t = 0) to a

current configuration (t > 0). Examples of a sheet in the reference configuration

and a current configuration are presented in Figures 2.1(a) and 2.1(b), respectively.

The configuration of the faces comprising St is denoted P it ⊂ St, i = 1, . . . , NP , i.e.

St =
⋃NP
i=1P it . The taken assumption of rigid faces imposes the following constraints

for the configurations St [121, 276]:

Definition 2.1. Valid configuration: A valid current configuration St has the

following characteristics: (i) The faces undergo only rigid deformations (i.e. they
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Figure 2.1: Sheet with creased folds in its reference configuration S0 and a current
configuration St. The planar faces comprising the sheet undergo only rigid deforma-
tions.
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are neither stretched nor bent), (ii) the sheet is not torn (initially joined faces remain

joined) and (iii) the sheet does not self-intersect.

The only non-rigid body deformations of the sheet are thus achieved by rotating

adjacent faces relative to one another along their connecting creased fold in such a

manner that the sheet only attains valid configurations during such deformations.

Therefore, the sheet has G0 continuity at the creased folds.

The configuration of the sheet is fully described by the set of the shape variables

associated with the creased folds. The only shape variable associated with a creased

fold describes the relative rotation between the two faces joined by such a fold and

is denoted as fold angle:

Definition 2.2. Fold angle: The fold angle θ̂i(t) is defined as π radians minus the

dihedral angle between the positive sides of the two faces joined by the ith creased fold.

Schematics showing the concept of fold angle are provided in Figure 2.2. It

is noted in the previous definition that each fold angle is a function of the time

parameter t. Specifically, each fold angle θ̂i(t), i = 1, . . . , NF (where NF is the

number of creased folds in the sheet) is a continuous function with respect to t since

the motion of the sheet must be continuous (see [13]). For the rest of this section,

the dependence of θ̂i on t is taken as implicit to simplify the notation.

To preclude self-intersection of any pair of faces joined by a creased fold, the value

of the associated fold angle must be contained in the interval [−π, π]. The vector

θ̂ ∈ RNF is constructed by collecting the fold angles as follows:

θ̂ =




θ̂1

...

θ̂NF



. (2.1)
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Figure 2.2: Schematics showing unfolded and folded configurations of a creased fold.
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2.1.1 Fold Pattern

The location of the creased folds in S0 is provided in a fold pattern, often referred

to as crease pattern in this context of origami with creased folds [13, 121, 276]. To

describe the fold pattern, the vertices are introduced:

Definition 2.3. Vertices: The vertices are the start-points and end-points of the

line segments coincident with the creased folds in S0. Each vertex has an associated

position vector denoted vj ∈ span(e1, e2).

The number of vertices located at the interior of S0 is denoted NI and the number

of vertices located at ∂S0 (the boundary of S0, see Figure 2.1(a)) is denoted NB.

The vertices are enumerated starting from those located at the interior of S0 (with

corresponding position vectors v1, . . . ,vNI) followed by those located at ∂S0 (with

corresponding position vectors vNI+1, . . . ,vNI+NB). The vector V ∈ R3(NI+NB) is

formed by concatenating the vertex position vectors vj, j = 1, . . . , NI + NB, as

follows:

V =




v1

...

vNI+NB



. (2.2)

The line segment coincident with a creased fold in S0, simply denoted as fold

line, is defined by its start-point and end-point (both points corresponding to ver-

tices by Definition 2.3). As such, to define the fold lines in S0, the matrix Ĉ ∈
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Figure 2.3: Schematic showing faces and folds connected to an interior vertex and
their associated geometric parameters.

{−1, 0, 1}NF×(NI+NB) with elements Ĉij is introduced:

Ĉij =





−1; vj is the position of the ith fold line start-point

1; vj is the position of the ith fold line end-point

0; otherwise, i.e. vj is not connected to the ith fold line

. (2.3)

Let nj, j = 1, . . . , NI , be the number of fold lines incident to each interior vertex

(i.e. those vertices located at the interior of S0). Also let mjk ∈ span(e1, e2),

j = 1, . . . , NI , k = 1, . . . , nj, be the vector along the length of the kth fold line

incident to the jth interior vertex that emanates from such a vertex (see Figure 2.3).

Definition 2.4. The angle between the vector y ∈ span(e1, e2) and e1 that starts at

e1 and is measured in the counterclockwise direction, is denoted ϕ(y) : span(e1, e2)→
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[0, 2π) and is determined as follows2:

ϕ(y) :=





cos−1

(
y

‖y‖ · e1

)
; e2 · y ≥ 0

2π − cos−1

(
y

‖y‖ · e1

)
; e2 · y < 0

. (2.4)

For each interior vertex, its associated vectors mjk, k = 1, . . . , nj, are arranged in

counterclockwise order. Let Mj ∈ R3nj be the vector constructed by concatenating

the vectors mjk, k = 1, . . . , nj, as follows:

Mj =




mj1

...

mjnj



. (2.5)

The matrices Cj ∈ {−1, 0, 1}nj×NF , j = 1, . . . , NI , with components Cj
ki are used

for the identification and ordering of the folds incident to the jth interior vertex and

is defined as follows:

Cj
ki =





1; mjk is a vector along the ith fold line and emanates

from the ith fold line start-point

−1; mjk is a vector along the ith fold line and emanates

from the ith fold line end-point

0; otherwise

. (2.6)

The mapping from the vertex position vectors vj, j = 1, . . . , NI + NB, to the

2‖ · ‖ denotes the 2-norm, i.e. ‖y‖ = (y · y)1/2.
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vectors mjk, k = 1, . . . , nj, is then compactly given as follows3:

Mj =
((

Cj Ĉ
)
⊗ I3

)
V, (2.7)

where In denotes the Rn×n identity matrix.

The face corner angles surrounding each interior vertex are denoted as αjk, j =

1, . . . , NI , k = 1, . . . , nj, and are calculated as follows (see Figure 2.3):

αjk =





ϕ(mj k+1)− ϕ(mjk); k = 1, . . . , nj − 1

2π + ϕ(mj1)− ϕ(mjk); k = nj

. (2.8)

2.1.2 Constraints

Once the geometry of the fold pattern is defined, constraints on the fold shape

variables (corresponding to the fold angles for creased folds) are formulated such that

every current configuration is valid according to Definition 2.14. In addition to con-

straints for valid configurations, developability [315] is also conventionally imposed

in origami. Developability allows a surface to be flattened onto a plane without

stretching or overlapping. A developable surface has zero Gaussian curvature every-

where [414]. Since valid configurations of the sheet consist of planar faces joined at

straight creased folds, the only locations where the Gaussian curvature is non-trivially

zero is at the interior fold intersections. The conventional differential geometry def-

inition of Gaussian curvature as the product of the two principal curvatures is not

valid at G0 interior fold intersection [415] and therefore the discrete Gaussian cur-

3The matrix Kronecker product⊗ is defined as [411, 412, 413]: Y⊗Z : {Rm×n,Rp×q} → Rmp×nq,
where [Y ⊗ Z]ij block

∈ Rp×q = YijZ.
4Self-intersection avoidance is an essential restriction in origami as stated in Definition 2.1.

It remains an open problem to provide constraints on fold angles that would allow for three-
dimensional folded configurations free of self-intersection [13, 276]. This restriction is not considered
in this work.
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vature, denoted Kj, is considered [415, 416, 417]. It is given as 2π radians less the

sum of the face corner angles surrounding each interior fold intersection [418] and it

must be zero for the fold intersection to be developable:

Kj = 2π −
nj∑

k=1

αjk = 0 ∀ j ∈ {1, . . . , NI}. (2.9)

In this work the angles αjk are defined in S0, which is planar and free of face

overlapping, and thus these angles clearly sum to 2π radians for each interior vertex.

Therefore, the developability constraint in Equation (2.9) is satisfied in S0. No

further consideration of this constraint is required since the face corner angles are

constant during the deformation history of the sheet (since the faces undergo only

rigid deformations for valid configurations) and thus they hold their associated values

αjk as defined in S0. As a consequence, developability is assured for any valid current

configuration St.

Non-trivial and important are the constraints on the fold angles that define the

constrained configuration space. The set of constraints for θ̂i, i = 1, . . . , NF , required

for a valid configuration can be formulated as a set of constraints for the fold angles

associated with the folds incident to each interior vertex (assuming that the sheet

has no holes) [281].

The fold angle associated with the kth fold incident to the jth interior vertex is

denoted θjk. The vectors θj ∈ Rnj , j = 1, . . . , NI , are formed by collecting the fold

angles θjk, k = 1, . . . , nj, as follows:

θj =




θj1
...

θjnj



, (2.10)
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and the mapping from the vector θ̂ with elements corresponding to the fold angles

of the sheet (defined in Equation (2.1)) to each vector θj is given as follows:

θj = |Cj|∗ θ̂, (2.11)

where the elements of the matrix Cj are defined in Equation (2.6) and | · |∗ : Rm×n →

Rm×n
≥0 denotes the element-wise absolute value of a matrix where [|Y|∗]ij = |Yij|.

Let R1(φ) ∈ R3×3 be the transformation matrix associated with a rotation by φ

about an axis of rotation aligned to e1:

R1(φ) :=




1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)



, (2.12)

and R3(φ) ∈ R3×3 be the transformation matrix associated with a rotation by φ

about an axis of rotation aligned to e3:

R3(φ) :=




cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1



. (2.13)

The fold angles associated with the folds incident to each interior vertex θjk, k =

1, . . . , nj, must be constrained such that the closed strip of faces joined to every

interior vertex remains closed upon folding deformation [121, 276]. For this purpose,

the following constraint is proposed:

Proposition 2.1. [13, 281] For the initially closed strip of faces joined to the jth

interior vertex to remain closed with each face undergoing a rigid deformation, the
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following constraint must hold:

Rj :=

nj∏

k=1

R1(θjk)R3(αjk) = I3. (2.14)

It is shown in Appendix C that this constraint for origami with creased folds is

a special case of the constraints for origami with smooth folds to be presented in

Section 2.2.3.

Corollary 2.1. (i) If the jth interior vertex has a single incident creased fold, it

allows for a valid configuration if θj1 = 0.

(ii) If the jth interior vertex has two incident creased folds, it allows for a valid

configuration if (ii,1) αj1 6= π, θj1 = θj2 = 0 or (ii,2) αj1 = π, θj1 = θj2.

(iii) If the jth interior vertex has three incident creased folds, it allows for a valid

configuration if (iii,1) αj1 6= π, αj2 6= π, αj3 6= π, θj1 = θj2 = θj3 = 0, or (iii,2)

αj1 = π, θj1 = θj2, θj3 = 0, or (iii,3) αj2 = π, θj2 = θj3, θj1 = 0, or (iii,4)

αj3 = π, θj3 = θj1, θj2 = 0.

Proof. Case (i): The matrix Rj associated with an interior vertex having one incident

creased fold is Rj = R1(θj1)R3(αj1). The angle αj1 is equal to 2π for a single fold

incident to an interior vertex, thus R3(αj1) = I3. This requires R1(θj1) = I3 which

in the domain θj1 ∈ [−π, π] holds true only when θj1 = 0. Cases (ii) and (iii) can

be verified in a similar manner.

Thus, for non-trivial folding motion, any interior vertex must have at least four

incident creased folds. It can be shown that each face in the sheet undergoes a rigid

deformation and no tearing occurs provided the constraint in Equation (2.14) is sat-

isfied for each interior vertex of the sheet (see [121, 276, 419] for details). Therefore,
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the constraints on the fold angles defining the constrained configuration space for a

sheet with creased folds (excluding self-intersection avoidance) are as follows:

Rj = I3 ∀ j ∈ {1, . . . , NI}. (2.15)

For the sake of brevity, the formulation of the mapping from the reference con-

figuration to a valid current configuration, constructed using the set of the shape

variables of all the folds in the sheet, is not included here for origami creased folds

and can be found in [121, 276]. It is reminded that the model for origami with creased

folds reviewed in this section is a special case of the more general model for origami

with smooth folds presented in Section 2.2. Thus, the mapping from reference to

current configurations for origami with smooth folds provided in Section 2.2.4 covers

such a mapping for origami with creased folds.

2.2 Origami with Smooth Folds

The model for origami presented in the preceding section is based on the assump-

tion of creased folds. Such a simplification may not be appropriate for structures

having folds of non-negligible fold thickness or constructed from materials that do

not provide sufficient strain magnitudes to generate the high curvatures needed for

a creased idealization. For such structures, the folded regions may not be accu-

rately represented as creases but instead as bent sheet regions exhibiting higher-

order geometric continuity (termed smooth folds in this work). Modeling of origami-

based morphing of plate structures having significant thickness at the fold regions

requires the arbitrary order of continuity of smooth folds. The present model is

also useful in the kinematic analysis of sheets folded via active material actuation,

where the achievable curvature at the folds is limited by the maximum strain mag-

nitude provided by such active materials [3]. Examples of these active material-
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based origami structures include liquid-crystal elastomer [199, 200], shape memory

alloy [8, 128, 169, 361], dielectric elastomer [249, 250], and optically-responsive poly-

meric self-folding sheets [161, 188, 420], among others [3, 230, 421, 422, 423, 424, 425]

(refer to Section 1.2 for a comprehensive review of active material-based origami

structures). The diverse assumptions regarding strain distributions at the fold re-

gions associated with the implementation of these various materials requires the ar-

bitrary order of continuity considered in this work. A novel model for the kinematic

response of origami structures having smooth folds is presented in this section.

The approach used to develop a model for origami with smooth folds follows that

outlined at the beginning of Section 2.1. First, the sheet and the shape variables as-

sociated with the smooth folds in the sheet are described. The layout of the smooth

folds in the sheet (i.e. the fold pattern) is determined by vertices (start-points and

end-points of the smooth fold centerlines in a planar reference configuration), their

connectivity, and the initial width of each smooth fold. Subsequently, constraints

on the fold shape variables that define the constrained configuration space are de-

rived. The continuous motion of the sheet represents a continuous path in such a

constrained configuration space.

The studied continuum body is denoted as the sheet which is a three-dimensional,

orientable, path-connected surface with boundary (same properties of a sheet in

origami with creased folds, see Section 2.1). For origami with smooth folds, the

sheet is divided into various surface subdomains denoted as faces, smooth folds, and

fold intersections. Every surface subdomain comprising the sheet has the same afore-

mentioned characteristics of the sheet (i.e. they are three-dimensional, orientable,

path-connected surfaces with boundary). Following the notation of Section 2.1, the

orthonormal vectors ei ∈ R3, i = 1, 2, 3, with e3 := e1×e2 form the basis {e1, e2, e3}

that defines the fixed global coordinate system.
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The reference configuration of the sheet is denoted S0 and is defined such that

it is contained in the plane spanned by e1 and e2 with its surface subdomains not

overlapping each other, except at their shared boundary edges. The configuration

of the NP faces, NF smooth folds, and NI fold intersections subdomains in S0 are

denoted P i0, i = 1, . . . , NP , F i0, i = 1, . . . , NF , and I i0, i = 1, . . . , NI , respectively.

Therefore, S0 = (
⋃NP
i=1P i0) ∪ (

⋃NF
i=1F i0) ∪ (

⋃NI
i=1 I i0). The side of S0 with normal e3 is

selected as the positive side of the sheet. An example of a sheet with smooth folds

in its reference configuration S0 is shown in Figure 2.4(a).

Definition 2.5. Valid configuration: A valid current configuration St has the

following characteristics: (i) The faces undergo only rigid deformations, (ii) the

sheet is not torn (initially joined surface subdomains of the sheet remain joined),

and (iii) the sheet does not self-intersect.

The characteristics of a valid configuration provided in Definition 2.5 are the

same as those of a valid configuration for a sheet with creased folds presented in

Definition 2.1. However, it is noted that unlike a sheet with creased folds, a sheet

with smooth folds is also comprised of other surface subdomains besides the faces

(smooth folds and fold intersections) for which bending and stretching are permitted.

Definition 2.6. Smooth folds: The smooth folds are ruled surfaces5 of the follow-

ing form:

F i
t(ζ1, ζ2) = cit(ζ1) + ζ2h

i
t,

dcit(ζ1)

dζ1

· hit = 0, (2.16)

where F i
t(ζ1, ζ2) ∈ R3 is a parameterization of F it . Without loss of generality, the

domains for the parameters ζ1 and ζ2 are taken as the intervals [−1, 1] and [0, 1],

5A ruled surface is formed by the union of straight lines, called the rulings or generators of the
surface [414].
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Figure 2.4: Sheet with smooth folds in its reference configuration S0 and a current
configuration St.
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respectively.

An example of a smooth fold is shown in Figure 2.5. In Definition 2.6, hit ∈

R3 provides the direction of the rulings comprising F it while cit(ζ1) ∈ R3 is the

parametric ruled surface directrix curve that defines the cross-section of F it . The

curve parameterized by cit(ζ1) is contained in a plane orthogonal to hit as stated

in Equation (2.16). It is assumed that ‖hit‖ is constant for all configurations. As

a consequence, the only non-rigid deformations allowed for the smooth folds are

achieved through continuous bending or stretching of its cross-section defined by

cit(ζ1). To simplify the notation, the dependence of F i
t(ζ1, ζ2), cit(ζ1), and hit on t is

taken as implicit for the remainder of the dissertation and these vectors are denoted

as F i(ζ1, ζ2), ci(ζ1), and hi, respectively.

The reference configuration of the smooth folds is simplified here to a rectan-

gular shape and their deformation only includes stretching and bending of the fold

cross-section. However, the model proposed in this section can be extended for the

consideration of folds having a trapezoidal reference configuration (that deform into

conical sections) or folds that exhibit torsional deformation. Such extensions are

recommended for future studies.

Remark 2.1. Deformation of a sheet with creased folds is the special limiting case of

the more general deformation of a sheet with smooth folds. Specifically, creased folds

are obtained when the curve parameterized by ci(ζ1) is degenerated to a single point,

thereby degenerating the smooth fold surface F it to a single straight line segment.

Each smooth fold is joined to a face at each of its two boundary rulings (i.e.

F i(−1, ζ2) and F i(1, ζ2), refer to Figure 2.5). The remaining boundaries of F it
(i.e. F i(ζ1, 0) and F i(ζ1, 1)) are either at the boundary of St or joined to a fold

intersection. A parameterization for the fold intersections (I it , i = 1, . . . , NI) is not
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Figure 2.5: Schematics showing unfolded and folded configurations of a smooth fold,
cf. Figure 2.2.
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provided here. It is noted, however, that the model proposed herein is independent

of the parameterization of I it .

A non-rigid body deformation of the sheet is achieved by rotating pairs of faces

joined to smooth folds relative to one another in such a manner that the sheet only

attains valid configurations during such a deformation. One of the shape variables

associated with a smooth fold describes the relative rotation between the two faces

joined by such a fold and is denoted as fold angle:

Definition 2.7. Fold angle: The fold angle θ̂i(t) is defined as π radians minus the

dihedral angle between the positive sides of the two faces joined to the ith smooth fold.

The dependence of the fold angles on t is left implicit for the remainder of the

dissertation. The vector θ̂ ∈ RNF constructed by collecting the fold angles θ̂i, i =

1, . . . , NF , and is defined in Equation (2.1). Schematics showing the concept of fold

angle for smooth folds are provided in Figure 2.5.

2.2.1 Geometry of Smooth Folds

This section presents the detailed geometrical description of smooth folds. The

conditions required for various orders of geometric continuity and particular formu-

lations for ci(ζ1) are also provided.

The distance between the two end-points of ci(ζ1) with position vectors ci(−1)

and ci(1) in any configuration is denoted ŵi:

ŵi := ‖ci(1)− ci(−1)‖. (2.17)

A schematic of a smooth fold cross-section showing ŵi is provided in Figure 2.6.
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Figure 2.6: Cross-section of a smooth fold. The fold shape variables and the fold-
attached coordinate system are shown.

The vector ŵ ∈ RNF is constructed by collecting the variables ŵi as follows:

ŵ =




ŵ1

...

ŵNF



. (2.18)

The fold width ŵ0
i is the value of ŵi at t = 0. The vector ŵ0 ∈ RNF is constructed

as follows:

ŵ0 =




ŵ0
1

...

ŵ0
NF



. (2.19)

The fold-attached orthonormal vectors êij ∈ R3, i = 1, . . . , NF , j = 1, 2, 3, with

êi3 := êi1 × êi2 form the bases {êi1, êi2, êi3} that define the local fold coordinate sys-

tem of each smooth fold F it . The origin of this coordinate system is located at
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1
2

(ci(−1) + ci(1)). The director vector hi is aligned to êi1 (i.e. hi · êi1 = ‖hi‖) and

(ci(1)− ci(−1)) ∈ span(êi2).

The face adjacent to a smooth fold at the boundary F i(−1, ζ2) makes an angle of

âiθ̂i with −êi2 in the plane spanned by êi2 and êi3 and the face adjacent to a smooth

fold at the boundary F i(1, ζ2) makes an angle of (1− âi)θ̂i with êi2 in such a plane.

This is shown schematically in Figure 2.6. The vector â ∈ RNF is constructed by

collecting the variables âi as follows:

â =




â1

...

âNF



. (2.20)

Let ĉi(ζ1) be the parametric curve ci(ζ1) expressed in the fold coordinate system

of F it :

ĉi(ζ1) =

[
êi1 êi2 êi3

]> [
ci(ζ1)− 1

2

(
ci(−1) + ci(1)

)]
. (2.21)

If ĉi(ζ1) is at least first-order differentiable for ζ1 ∈ [−1, 1], the total arc-length

of the fold cross-section, denoted ŝi, is determined as follows:

ŝi =

∫ 1

−1

∥∥∥∥
dĉi(ζ1)

dζ1

∥∥∥∥ dζ1, (2.22)

and the arc-length coordinate s(ζ1) ∈
[
− ŝi

2
, ŝi

2

]
is determined as follows:

s(ζ1) = − ŝi
2

+

∫ ζ1

−1

∥∥∥∥
dĉi(ζ)

dζ

∥∥∥∥ dζ. (2.23)

The tangent direction of the parametric curve ĉi(ζ1) is determined by the unit

tangent vector ti(ζ1) ∈ span(êi2, ê
i
3) and is defined at the points where ĉi(ζ1) is at
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least first-order differentiable:

ti(ζ1) =

dĉi(ζ1)

dζ1∥∥∥∥
dĉi(ζ1)

dζ1

∥∥∥∥
. (2.24)

The curvature κ̂(ζ1) is defined at the points where ĉi(ζ1) is at least second-order

differentiable:

κ̂(ζ1) =

∥∥∥∥
dĉi(ζ1)

dζ1

× d2ĉi(ζ1)

dζ2
1

∥∥∥∥
∥∥∥∥

dĉi(ζ1)

dζ1

∥∥∥∥
3 , (2.25)

and the signed curvature κ(ζ1) is given as follows6:

κ(ζ1) = κ̂(ζ1) sgn

((
dĉi(ζ1)

dζ1

× d2ĉi(ζ1)

dζ2
1

)
· êi1
)
. (2.26)

The order of geometric continuity of St at the interior rulings of F it is determined

by the order of geometric continuity of ĉi(ζ1), ζ1 ∈ (−1, 1), while that at the joints

with the planar faces adjacent to F it depends on the particular values of ĉi(ζ1) and

its derivatives at ζ1 = ±1. For instance, G0 continuous joints with the faces adjacent

to F it require the following conditions on ĉi(ζ1) at ζ1 = ±1 (refer to Figure 2.6):

ĉi(−1) =




0

− ŵi
2

0




=: ĉiL0
, (2.27)

6The sign function is defined as follows: sgn(y) :=




−1; y < 0

1; y > 0
0; y = 0

.
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ĉi(1) =




0

ŵi
2

0




=: ĉiR0
. (2.28)

Continuity of the unit tangent vector ti(ζ1) at ζ1 = ±1 is required for G1 continu-

ous joints with the planar faces adjacent to F it in addition to G0 continuity [426, 427].

The following values of ti(ζ1) at ζ1 = ±1 are then required for G1 continuity in ad-

dition to those conditions of Equations (2.27) and (2.28):

ti(−1) =




0

cos
(
âiθ̂i

)

− sin
(
âiθ̂i

)



, (2.29)

ti(1) =




0

cos
(

(1− âi)θ̂i
)

sin
(

(1− âi)θ̂i
)



. (2.30)

Therefore, the following conditions on the first derivatives of ĉi(ζ1) at ζ1 = ±1

are required for G1 continuity at the joints with the planar faces adjacent to F it :

dĉi(ζ1)

dζ1

∣∣∣∣∣
ζ1=−1

= βiL1




0

cos
(
âiθ̂i

)

− sin
(
âiθ̂i

)




=: ĉiL1
, (2.31)
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dĉi(ζ1)

dζ1

∣∣∣∣∣
ζ1=1

= βiR1




0

cos
(

(1− âi)θ̂i
)

sin
(

(1− âi)θ̂i
)




=: ĉiR1
, (2.32)

where βiL1
, βiR1

∈ R>0.

Continuity of the curvature vector (or the signed curvature) is required for G2

continuity [427] in addition to G1 continuity. This requires the curvature of ĉi(ζ1) at

ζ1 = ±1 to be zero since F it is connected to planar faces at its boundary rulings. Zero

curvature at the boundary rulings of F it requires the following according to Equation

(2.25):

(
dĉi(ζ1)

dζ1

× d2ĉi(ζ1)

dζ2
1

) ∣∣∣∣∣
ζ1=−1

= 03, (2.33)

(
dĉi(ζ1)

dζ1

× d2ĉi(ζ1)

dζ2
1

) ∣∣∣∣∣
ζ1=1

= 03, (2.34)

where 0n is the zero vector in Rn. Considering Equations (2.31)–(2.34), the following

conditions on the second derivatives of ĉi(ζ1) are needed in addition to the conditions

provided in Equations (2.27)–(2.32) for G2 continuity at the joints with the planar

faces adjacent to F it :

d2ĉi(ζ1)

dζ2
1

∣∣∣∣∣
ζ1=−1

= βiL2




0

cos
(
âiθ̂i

)

− sin
(
âiθ̂i

)




=: ĉiL2
, (2.35)
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d2ĉi(ζ1)

dζ2
1

∣∣∣∣∣
ζ1=1

= βiR2




0

− cos
(

(1− âi)θ̂i
)

− sin
(

(1− âi)θ̂i
)




=: ĉiR2
, (2.36)

where βiL2
, βiR2

∈ R. Conditions on higher-order derivatives of ĉi(ζ1) required for

higher-order geometric continuity can be provided in a similar manner [426, 427].

Figure 2.7 shows schematics of folds having various orders of geometric continuity

and their associated signed curvature fields as functions of arc-length (i.e. κ(s)). If

the curve ci(ζ1) is reparameterized by arc-length s, the following relation between

fold angle θ̂i and the signed curvature field of the fold cross-section holds:

θ̂i =

∫ ŝi
2

+ ε

− ŝi
2
− ε

κ(s) ds, (2.37)

where ε > 0.

2.2.1.1 Fold Shape Examples

Polynomials of the minimum order required to satisfy the previous conditions for

continuity of ĉi(ζ1) and its derivatives at ζ1 = ±1 are used to define this parametric

curve. Hermite interpolation polynomials [428] are used to represent ĉi(ζ1) in this

work. Alternative representations (e.g. Bezier curves) are also applicable as long as

they satisfy the conditions required for the considered order of geometric continuity.

For G1 continuity at the boundary rulings of F it , ĉi(ζ1) is expressed as follows:

ĉi(ζ1) = h30(ζ1)ĉiL0
+ h31(ζ1)ĉiR0

+ h32(ζ1)ĉiL1
+ h33(ζ1)ĉiR1

, (2.38)

where the utilized cubic Hermite interpolation polynomials h3i(ζ1), i = 0, . . . , 3, are
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given as follows:

h30(ζ1) = 1
4
ζ3

1 − 3
4
ζ1 + 1

2
, (2.39)

h31(ζ1) = −1
4
ζ3

1 + 3
4
ζ1 + 1

2
, (2.40)

h32(ζ1) = 1
4
ζ3

1 − 1
4
ζ2

1 − 1
4
ζ1 + 1

4
, (2.41)

h33(ζ1) = 1
4
ζ3

1 + 1
4
ζ2

1 − 1
4
ζ1 − 1

4
. (2.42)

For G2 continuity at the boundary rulings of F it , ĉi(ζ1) is expressed as follows:

ĉi(ζ1) = h50(ζ1)ĉiL0
+ h51(ζ1)ĉiR0

+ h52(ζ1)ĉiL1

+ h53(ζ1)ĉiR1
+ h54(ζ1)ĉiL2

+ h55(ζ1)ĉiR2
,

(2.43)

where the utilized quintic Hermite interpolation polynomials h5i(ζ1), i = 0, . . . , 5,

are given as follows:

h50(ζ1) = − 3
16
ζ5

1 + 5
8
ζ3

1 − 15
16
ζ1 + 1

2
, (2.44)

h51(ζ1) = 3
16
ζ5

1 − 5
8
ζ3

1 + 15
16
ζ1 + 1

2
, (2.45)

h52(ζ1) = − 3
16
ζ5

1 + 1
16
ζ4

1 + 5
8
ζ3

1 − 3
8
ζ2

1 − 7
16
ζ1 + 5

16
, (2.46)
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h53(ζ1) = − 3
16
ζ5

1 − 1
16
ζ4

1 + 5
8
ζ3

1 + 3
8
ζ2

1 − 7
16
ζ1 − 5

16
, (2.47)

h54(ζ1) = − 1
16
ζ5

1 + 1
16
ζ4

1 + 1
8
ζ3

1 − 1
8
ζ2

1 − 1
16
ζ1 + 1

16
, (2.48)

h55(ζ1) = 1
16
ζ5

1 + 1
16
ζ4

1 − 1
8
ζ3

1 − 1
8
ζ2

1 + 1
16
ζ1 + 1

16
. (2.49)

2.2.2 Fold Pattern

The layout of the smooth folds in S0 is presented in a fold pattern. To describe

the fold pattern, the vertices are first introduced:

Definition 2.8. Vertices: The vertices are the start-points and end-points of the

line segments coincident with the centerlines of the smooth folds in S0. Each vertex

has an associated position vector denoted vj ∈ span(e1, e2).

As in Section 2.1.1, the number of vertices located at the interior of S0 is denoted

NI and the number of vertices located at ∂S0 or outside S0 is denoted NB. The

vertices are enumerated starting from those located at the interior of S0 (with cor-

responding position vectors v1, . . . ,vNI) followed by those at the located at ∂S0 or

outside S0 (with corresponding position vectors vNI+1, . . . ,vNI+NB). The vertices in

origami with smooth folds are used only to indicate end-points of the fold centerlines

in S0. The points of the sheet coincident with the vertices in S0 do not occupy any

especial location in St, t > 0. This is in contrast to origami with creased folds where

the points of the sheet coincident with the vertices in S0, that correspond to fold line

end-points, also correspond to fold line end-points in St, t > 0 (see Section 2.1).

Following Section 2.1.1, the vector V ∈ R3(NI+NB) formed by concatenating the

vertex position vectors is provided in Equation (2.2). The definition of the matrix
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Ĉ ∈ {−1, 0, 1}NF×(NI+NB) that identifies which vertices are the start-points and end-

points of the fold centerlines follows that provided in Equation (2.3). Let v̂i1, v̂i2 ∈

span(e1, e2), i = 1, . . . , NF , be the position vectors of the vertices from which each

fold centerline emanates and ends, respectively. The vectors V̂
1
, V̂

2 ∈ R3NF are

constructed by concatenating the vectors v̂i1, v̂i2, i = 1, . . . , NF , as follows:

V̂
1

=




v̂11

...

v̂NF1



, (2.50)

V̂
2

=




v̂12

...

v̂NF2



. (2.51)

The mappings from the collection of all the vertex position vectors V to those

corresponding to the position vectors of the start-points and end-points of the fold

centerlines (V̂
1

and V̂
2
, respectively) are given as follows:

V̂
1

=

(
1
2

(
|Ĉ|∗ − Ĉ

)
⊗ I3

)
V, (2.52)

V̂
2

=

(
1
2

(
|Ĉ|∗ + Ĉ

)
⊗ I3

)
V. (2.53)

The four corner points of F i0 having associated position vectors p̂i1, p̂
i
2, p̂

i
3, p̂

i
4 ∈

span(e1, e2), i = 1, . . . , NF , are then determined as follows:

p̂i1 = v̂i1 − ŵ0
i

2

(
e3 ×

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖

)
+ r̂i1

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖ , (2.54)
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p̂i2 = v̂i2 − ŵ0
i

2

(
e3 ×

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖

)
− r̂i2

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖ , (2.55)

p̂i3 = v̂i2 +
ŵ0
i

2

(
e3 ×

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖

)
− r̂i2

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖ , (2.56)

p̂i4 = v̂i1 +
ŵ0
i

2

(
e3 ×

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖

)
+ r̂i1

v̂i2 − v̂i1

‖v̂i2 − v̂i1‖ , (2.57)

where r̂i1, r̂
i
2 ∈ R and the resulting fold length orthogonal to the width direction must

be positive:

‖v̂i2 − v̂i1‖ − r̂i1 − r̂i2 > 0 ∀i ∈ {1, . . . , NF}. (2.58)

The geometric parameters that define the corner points of F i0 are shown in Fig-

ure 2.8.

The vectors P̂
j ∈ R3NF , j = 1, . . . , 4, are constructed by concatenating the vectors

p̂ij, i = 1, . . . , NF , as follows:

P̂
j

=




p̂1
j

...

p̂NF
j



. (2.59)

As in Section 2.1.1, let nj, j = 1, . . . , NI , be the number of fold centerlines

incident to each interior vertex (i.e. those vertices located at the interior of S0).

Also let mjk ∈ span(e1, e2), j = 1, . . . , NI , k = 1, . . . , nj, be the vector along the

length of the kth fold centerline incident to the jth interior vertex that emanates

from this vertex. The vectors mjk, k = 1, . . . , nj, have a counterclockwise ordering,
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Figure 2.8: Geometric parameters defining F i0.

i.e. ϕ(mj1) < ϕ(mj1) < · · · < ϕ(mjnj) ∀ j ∈ {1, . . . , NI} where ϕ(·) is defined in

Equation (2.4).

The mapping from the vertex position vectors vj, j = 1, . . . , NI + NB, to the

vectors mjk, k = 1, . . . , nj, is provided in Equation (2.7). The angles between adja-

cent fold centerlines intersecting at a common interior vertex αjk, j = 1, . . . , NI , k =

1, . . . , nj, are calculated using Equation (2.8). A schematic showing the vectors mjk

and the angles αjk is provided in Figure 2.9.
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Figure 2.9: Schematic showing faces and smooth folds adjacent to an interior fold
intersection and associated geometric parameters.

2.2.3 Constraints

As in conventional origami with creased folds [121, 276], constraints are required

for origami with smooth folds to ensure that every current configuration St is valid7

(according to Definition 2.5).

The angles αjk, k = 1, . . . , nj, satisfy the following constraint since they are

defined in S0:

Kj = 2π −
nj∑

k=1

αjk = 0 ∀ j ∈ {1, . . . , NI}. (2.60)

Since the faces undergo only rigid deformations, the angles αjk are constant during

the deformation history of the sheet, i.e. independent of t, and therefore Equation

(2.60) holds at every configuration St. Equation (2.60) represents the developability

7As stated in Section 2.1.2, self-intersection avoidance is not considered in this work.
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constraint for origami with creased folds (see Equation (2.9)). However, pointwise

isometric deformation is relaxed here for origami with smooth folds since stretching is

permitted within the subdomains F it and I it and thus only S0 is in general pointwise

developable. It is remarked that isometry is assumed for the smooth folds F it in the

direction of hi (see Figure 2.5). However, the arc-length of the curve parameterized

by ĉi(ζ1) may change in general during deformation and thus stretching of the smooth

folds in such a direction may be allowed. Refer to Definition 2.6 and its subsequent

discussion.

The variables describing the deformation associated with the folding of the smooth

folds are constrained such that every configuration St is valid. These variables corre-

spond to the fold angle θ̂i, the distance ŵi between the end-points of the cross-section

parametric curve ĉi(ζ1), and âi, i = 1, . . . , NF (refer to Section 2.2.1). Following Sec-

tion 2.1.2, a new set of constraints for the variables associated with the smooth folds

adjacent to each interior fold intersection is now proposed.

The variables θjk, wjk, and ajk are those associated with the kth smooth fold

adjacent to Ij0 . The vectors θj ∈ Rnj , j = 1, . . . , NI , constructed by collecting

the fold angles θjk, k = 1, . . . , nj, are defined in Equation (2.10). The vectors wj,

aj ∈ Rnj , j = 1, . . . , NI , are constructed by collecting the variables wjk and ajk,

k = 1, . . . , nj, and are defined as follows:

wj =




wj1
...

wjnj



, (2.61)
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aj =




aj1
...

ajnj



. (2.62)

The mapping from the vector θ̂ with elements corresponding to the fold angles

of the sheet to each vector θj with elements corresponding to the fold angles of the

smooth folds adjacent to Ij0 is provided in Equation (2.11). The mapping from the

vector ŵ, defined in Equation (2.18), to each vector wj is the following:

wj = |Cj|∗ ŵ, (2.63)

where the definition of the matrix Cj in Equation (2.6) holds in the context of

connectivity of fold centerlines. Taking into account the orientation of the adjacent

smooth folds with respect to the considered fold intersection Ij0 (i.e. whether the

interior vertex associated with Ij0 is the start-point or the end-point of the adjacent

smooth fold centerline), the mapping from the vector â, defined in Equation (2.20),

to each vector aj is as follows:

aj =

[
Cj ACj

]


â

1


 , (2.64)

where ACj ∈ Rnj is a vector with elements ACj
k that are determined as follows:

ACj
k =

1

2

(
1−

NF∑

i=1

Cj
ki

)
. (2.65)

Note that if the vector mjk is coincident with and has the same orientation as

the ith fold centerline, then ajk = âi. Conversely, if the vector mjk is coincident with

and has the opposite orientation as the ith fold centerline, then ajk = 1− âi. This is
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obtained from the mapping provided in Equation (2.64).

The fold widths associated with the smooth folds adjacent to Ij0 are denoted w0
jk,

k = 1, . . . , nj, and are required in the subsequent derivations. Let w0,j ∈ Rnj be the

vector constructed by collecting the fold widths w0
jk, k = 1, . . . , nj. Such a vector

and its mapping from ŵ0 (defined in Equation (2.19)) are as follows:

w0,j =




w0
j1

...

w0
jnj




= |Cj|∗ ŵ0.

(2.66)

Let γj(η) : [0, 1] → S0 be an arbitrary simple closed path (i.e. γj(0) = γj(1))

enclosing Ij0 and crossing each smooth fold adjacent to Ij0 once. An example of a path

γj(η) is shown in Figure 2.10. The point having position γj(0) = γj(1) is defined

such that it is located at the face adjacent to the smooth folds with corresponding

vectors mj1 and mjnj . Also, the path γj(η) is defined such that it crosses the smooth

folds with associated vectors mjk in counterclockwise order (i.e. mj1,mj2, . . . ,mjnj).

The position vectors of the points where γj(η) crosses each boundary ruling of

the smooth folds with associated vector mjk are denoted bjkL ∈ span(e1, e2) (point

where γj(η) enters the smooth fold) and bjkR ∈ span(e1, e2) (point where γj(η) exits

the smooth fold). This is shown schematically in Figure 2.10(a).

Let Q1(φ) ∈ R4×4 be the transformation matrix in homogeneous coordinates
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j (⌘)
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bjk
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Figure 2.10: (a) Path γj(η) crossing the faces and smooth folds joined to Ij0 . (b)
Vectors wjk and ljk with start-points and end-points corresponding to the points
where the path γj(η) crosses the boundary rulings of the smooth folds.
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associated with a rotation by φ about an axis of rotation aligned to e1:

Q1(φ) :=




1 0 0 0

0 cos(φ) − sin(φ) 0

0 sin(φ) cos(φ) 0

0 0 0 1




=




R1(φ) 03

0>3 1


 , (2.67)

and Q3(φ) ∈ R4×4 be the transformation matrix associated with a rotation by φ

about an axis of rotation aligned to e3:

Q3(φ) :=




cos(φ) − sin(φ) 0 0

sin(φ) cos(φ) 0 0

0 0 1 0

0 0 0 1




=




R3(φ) 03

0>3 1


 . (2.68)

Let T(b) ∈ R4×4 be the matrix representing the transformation associated with

a translation by vector b ∈ R3 with elements bi:

T(b) :=




1 0 0 b1

0 1 0 b2

0 0 1 b3

0 0 0 1




=




I3 b

0>3 1


 . (2.69)

Considering an axis with direction aligned to a vector y ∈ span(e1, e2) that

crosses a point with position vector b ∈ span(e1, e2), the transformation associated
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with a rotation by φ about such an axis can be represented as follows [121, 276]:

T(b) Q3(ϕ(y)) Q1(φ) Q−1
3 (ϕ(y)) T−1(b). (2.70)

Theorem 2.1. The transformation matrix Ljk describing the deformation associated

with the folding of the kth smooth fold crossed by the path γj(η) is determined as

follows8:

Ljk =
(
T(bjkL − gj k−1) Q3(ϕ(mjk)) Q1(ajkθjk)

×Q−1
3 (ϕ(mjk)) T−1(bjkL − gj k−1)

×T(bjkR − gjk) Q3(ϕ(mjk)) Q1((1− ajk)θjk)

×Q−1
3 (ϕ(mjk)) T−1(bjkR − gjk)

)
,

(2.71)

where the vectors gjk ∈ span(e1, e2), k = 0, . . . , nj, are used to accounting for the

change in the distance between the boundary rulings of the smooth folds in a current

configuration and are determined recursively as follows:

gj0 = 03,

gjk = gj k−1 + (w0
jk − wjk)

(
e3 ×

mjk

‖mjk‖

)
∀ k ∈ {1, . . . , nj}.

(2.72)

Proof. Referring to Figures 2.11(c) and 2.11(d), the transformation associated with

the folding of the kth smooth fold crossed by γj(η) can be discretized by two consecu-

tive rotation transformations. The first transformation corresponds to a rotation by

8Alternative approaches for modeling the large rotations resulting from folding include
quaternions-based [273] and geometric algebra-based approaches [429]. However, such approaches
are not explored in this work.
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(1 − ajk)θjk about an axis aligned to mjk and crossing a point with position vector

bjkR − gjk. Using Equation (2.70), the transformation matrix associated with this

rotation is the following:

(
T(bjkR − gjk)Q3(ϕ(mjk))Q1((1− ajk)θjk)

×Q−1
3 (ϕ(mjk))T−1(bjkR − gjk)

)
.

(2.73)

The second transformation corresponds to a rotation by ajkθjk about an axis

aligned to mjk and a crossing point with position vector bjkL − gj k−1. The transfor-

mation matrix associated with this rotation has the form:

(
T(bjkL − gj k−1)Q3(ϕ(mjk))Q1(ajkθjk)

×Q−1
3 (ϕ(mjk))T−1(bjkL − gj k−1)

)
.

(2.74)

The composition of the transformations shown in Equations (2.73) and (2.74)

results in the transformation matrix Ljk provided in Equation (2.71).

Referring to Figures 2.11(a) and 2.11(b), the change in the distance between the

boundary rulings of a smooth fold in a current configuration is given by −(w0
jk−wjk).

To define the position of the axes of rotation for the transformations composing Ljk,

the vector
∑k−1

l=1 (w0
jl−wjl)(e3× mjl

‖mjl‖) must be subtracted from bjkL while
∑k

l=1(w0
jl−

wjl)(e3× mjl

‖mjl‖) must be subtracted from bjkR . The recursive definition of the vectors

gjk, k = 0, . . . , nj, in Equation (2.72) allows for a simplified form of these vector

subtractions.

Utilizing the block matrix expressions for the rotation and translation matrices

given in Equations (2.67)–(2.69), the transformation matrices Ljk provided in Equa-

tion (2.71) can be partitioned into four blocks ([Ljk]11 block ∈ R3×3, [Ljk]12 block ∈ R3×1,
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(c) 

e3
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||mjk||
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wjk wjk
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(1� ajk)✓jk
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(d) (e) 

e3 ⇥
mjk
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fold 
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bjk
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L � gj k�1

�
j (⌘)

Figure 2.11: Schematics illustrating the transformation associated with folding of
the kth smooth fold crossed by γj(η). (a) Reference configuration of the fold. (b)
Intermediate step to determine the location of the axes of rotation taking into account
the change in the distance between the boundary rulings of the smooth fold in a
current configuration. Note that the vector gj k−1 is subtracted from bjkL to account
for the previous smooth folds crossed by γj(η). (c) Rotation by (1−ajk)θjk about an

axis aligned to mjk and crossing a point with position vector bjkR −gjk. (d) Rotation
by ajkθjk about an axis aligned to mjk and a crossing point with position vector

bjkL − gj k−1. (e) Resulting configuration of the smooth fold and its adjacent faces.
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[Ljk]21 block ∈ R1×3, [Ljk]22 block ∈ R1×1) as follows:

[
Ljk
]

11 block
= R3(ϕ(mjk))R1(θjk)R

−1
3 (ϕ(mjk)), (2.75)

[
Ljk
]

12 block
= bjkL − gj k−1

+R3(ϕ(mjk))R1(ajkθjk)R
−1
3 (ϕ(mjk)(bjkR − gjk − bjkL + gj k−1)

−R3(ϕ(mjk))R1(θjk)R
−1
3 (ϕ(mjk))(bjkR − gjk),

(2.76)

[
Ljk
]

21 block
= 0>3 , (2.77)

[
Ljk
]

22 block
= 1. (2.78)

The vectors wjk, ljk ∈ span(e1, e2) are defined as follows:

wjk := bjkR − gjk − bjkL + gj k−1, (2.79)

ljk :=





bj k+1
L − bjkR ; k = 1, . . . , nj − 1

bj1L − bjkR ; k = nj

. (2.80)

The vectors wjk and ljk for the example in Figure 2.10(a) are shown in Fig-

ure 2.10(b). Let the vectors w̃jk and l̃jk be wjk and ljk, respectively, expressed in a
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coordinate system with the 1-axis aligned to mjk and the 3-axis aligned to e3:

w̃jk = R−1
3 (ϕ(mjk))wjk, (2.81)

l̃jk = R−1
3 (ϕ(mjk))ljk. (2.82)

Following the process presented in [121, 276], to formulate constraints for the

shape variables associated with the folds, the map from the reference to current

configurations considering only the faces and smooth folds adjacent to an interior

fold intersection is first constructed. The face containing the point with position

γj(0) is assumed fixed in space (not translating or rotating) for the derivation of

constraints. Let X ∈ span(e1, e2) be the position vector of a point in a face adjacent

to Ij0 in the reference configuration and let x ∈ R3 be the position vector of such a

point in a current configuration. The map X 7→ x is constructed as the composition

of transformations Ljk associated with the folds crossed by the segment of path γj(η)

that connects γj(0) to the face containing the point with initial position X:




x

1


 =

(
ny∏

k=1

Ljk

)
T−1(gjny)




X

1


 ,

=

(
ny∏

k=1

Hjk

)


X

1


 ,

(2.83)

where the simplified fold transformation matrices Hjk, j = 1, . . . , NI , k = 1, . . . , nj,
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are expressed as follows:

Hjk =
(
T(bjkL ) Q3(ϕ(mjk)) Q1(ajkθjk)

×Q−1
3 (ϕ(mjk)) T−1(bjkL )

×T−1
(

(w0
jk − wjk)

(
e3 × mjk

‖mjk‖

))

×T(bjkR ) Q3(ϕ(mjk)) Q1((1− ajk)θjk)

×Q−1
3 (ϕ(mjk)) T−1(bjkR )

)
,

(2.84)

and ny is the number of smooth folds crossed by the segment of the path γj(η) that

connects γj(0) and the face containing the point with position vector X. Note that

x is the position vector of such a point in a current configuration determined by θjk,

ajk, and wjk, k = 1, . . . , nj. Since such a mapping is a composition of translation

and rotation matrices, each face undergoes a rigid deformation (required for a valid

configuration). In order to prevent tearing among the surface subdomains joined to

Ijt , the following constraints are proposed:

Theorem 2.2. For the initially closed strip of faces and smooth folds joined to Ij0 to

remain closed with each face undergoing a rigid deformation, two constraints must

hold. These are the rotation constraint:

Rj :=

nj∏

k=1

R1(θjk)R3(αjk) = I3, (2.85)
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and the translation constraint:

dj :=

nj∑

k=1

((
k−1∏

l=1

R1(θjl)R3(αjl)

)
R1 (ajkθjk) w̃jk

+

(
k−1∏

l=1

R1(θjl)R3(αjl)

)
R1 (θjk) l̃jk

)
= 03.

(2.86)

Proof. The deformation map of a point in the face containing the point with position

γj(0) must be the identity transformation since such a face is assumed fixed (i.e. if

ny = nj in Equation (2.83) is considered, then x = X). This requires the following:

I4 =

nj∏

k=1

Hjk

=

(
nj∏

k=1

Ljk

)
T−1(gjnj).

(2.87)

Utilizing Equations (2.75)–(2.78), Equation (2.87) can be partitioned into four

blocks. The 11 block is the following:

I3 =

nj∏

j=1

R3(ϕ(mjk))R1(θij)R
−1
3 (ϕ(mjk)),

= R3(ϕ(mj1))

( nj−1∏

k=1

R1(θjk)R3(αjk)

)
R1(θjnj)R

−1
3 (ϕ(mjnj)),

(2.88)

where the following equality was used:

R3(αjk) =





R−1
3 (ϕ(mjk))R3(ϕ(mj k+1)); k = 1, . . . , nj − 1

R−1
3 (ϕ(mjk))R3(ϕ(mj1)); k = nj

. (2.89)
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Multiplying the last expression in Equation (2.88) by R−1
3

(
ϕ(mj1)

)
from the left

and by R3

(
ϕ(mj1)

)
from the right, the following is obtained:

I3 =

( nj−1∏

k=1

R1(θjk)R3(αjk)

)
R1(θjnj)R

−1
3 (ϕ(mjnj))R3(ϕ(mj1)),

=

( nj−1∏

k=1

R1(θjk)R3(αjk)

)
R1(θjnj)R3(αjnj),

=

nj∏

k=1

R1(θjk)R3(αjk),

= Rj,

(2.90)

cf. Equation (2.85). The 12 block of Equation (2.87) is the following:

03 =

nj∑

k=1

(( k−1∏

l=1

R3(ϕ(mjl))R1(θjl)R
−1
3 (ϕ(mjl))

)

×
(

bjkL − gj k−1

+
(
R3(ϕ(mjk))R1(ajkθjk)

×R−1
3 (ϕ(mjk))(bjkR − gjk − bjkL + gj k−1)

)

−
(
R3(ϕ(mjk))R1(θjk)R

−1
3 (ϕ(mjk))(bjkR − gjk)

)))

−
(

nj∏

k=1

R3(ϕ(mjk))R1(θjk)R
−1
3 (ϕ(mjk))

)
gjnj .

(2.91)

Substituting the second expression of Equation (2.88) and Equations (2.81) and
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(2.82) into Equation (2.91), the following is obtained:

03 =

nj∑

k=1

((
k−1∏

l=1

R(ϕ(mjl))R1(θjl)R
−1
3 (ϕ(mjl))

)

(
R3(ϕ(mjk))R1(ajkθjk)w̃

jk + R3(ϕ(mjk))R1(θjk )̃l
jk

) )
.

(2.92)

Finally multiplying both sides of the previous expression by R−1
3 (ϕ(mj1)) and

simplifying using Equation (2.89), the following is obtained:

03 =

nj∑

k=1

((
k−1∏

l=1

R1(θjl)R3(αjl)

)
R1 (ajkθjk) w̃jk

+

(
k−1∏

l=1

R1(θjl)R3(αjl)

)
R1 (θjk) l̃jk

)
,

= dj,

(2.93)

cf. Equation (2.86). The 21 and the 22 blocks of the right side of Equation (2.87)

are equal to 0>3 and 1, respectively.

Corollary 2.2. (i) If Ij0 has a single adjacent smooth fold, it allows for a valid

configuration if θj1 = 0.

(ii) If Ij0 has two adjacent smooth folds, it allows for a valid configuration if (ii,1)

αj1 6= π, θj1 = θj2 = 0 or (ii,2) αj1 = π, θj1 = θj2.

(iii) If Ij0 has three adjacent smooth folds, it allows for a valid configuration if

(iii,1) αj1 6= π, αj2 6= π, αj3 6= π, θj1 = θj2 = θj3 = 0, or (iii,2) αj1 = π, θj1 =

θj2, θj3 = 0, or (iii,3) αj2 = π, θj2 = θj3, θj1 = 0, or (iii,4) αj3 = π, θj3 =

θj1, θj2 = 0.
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Since the rotation constraint for smooth folds (Rj = I3, cf. Equation (2.85)) also

holds for creased folds (cf. Equation (2.14)), the proof of this corollary is the same

as that provided for Corollary 2.1.

The selection of the vectors bjkL ,b
jk
R , k = 1, . . . , nj is not unique and depends on

the particular choice of the closed path γj(η) (see Figure 2.10(a)). The corner points

of the smooth folds defined in Equations (2.54)–(2.57) provide a simple choice for

the points where γj(η) crosses the boundary rulings of each smooth fold adjacent to

Ij0 . Thus, they can be used to define bjkL ,b
jk
R , k = 1, . . . , nj. First, let Bj

L,B
j
R ∈ R3nj

be the vectors constructed by concatenating the vectors bjkL ,b
jk
R , k = 1, . . . , nj, as

follows:

Bj
L =




bj1L

...

b
jnj
L



, (2.94)

Bj
R =




bj1R

...

b
jnj
R



. (2.95)

Taking into account the orientation of the adjacent smooth folds with respect

to the considered fold intersection Ij0 (i.e. whether the interior vertex associated

with Ij0 is the start-point or the end-point of the adjacent smooth fold centerline),

the mapping from the corner points of the smooth folds to Bj
L and Bj

R is compactly
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given as follows:




Bj
L

Bj
R


 =




1
2
(|Cj|∗ + Cj)⊗ I3

1
2
(|Cj|∗ −Cj)⊗ I3

1
2
(|Cj|∗ −Cj)⊗ I3

1
2
(|Cj|∗ + Cj)⊗ I3







P̂
1

P̂
4


 , (2.96)

where the vectors P̂
i

are defined in Equation (2.59). Note that the mapping provided

in Equation (2.96) results in bjkL = p̂i1, bjkR = p̂i4 if mjk is coincident with and has

the same orientation as the ith smooth fold centerline and bjkL = p̂i4, bjkR = p̂i1 if mjk

is coincident with and has the opposite orientation as the ith smooth fold centerline.

Finally, the constraints on the fold shape variables that allow for a valid configu-

ration (excluding self-intersection avoidance) for a sheet with smooth folds are then

the following:

Rj = I3, dj = 03 ∀ j ∈ {1, . . . , NI}, (2.97)

cf. Equation (2.15).

In general, the variables θ̂i, ŵi, and âi for each individual smooth fold represent

its shape variables (i.e. degrees of freedom) that describe its configuration. If certain

assumptions hold regarding the deformation of each individual smooth fold, the

associated variables θ̂i, ŵi, and âi may not vary independently but rather relations

among them can be derived. For simplicity in the implementation of the proposed

model, assumptions on the extensibility and curvature field of the curve ĉi(ζ1) are

taken such that the overall deformation of a smooth fold becomes a function of the

fold angle θ̂i and the arc-length ŝi (i.e. ŵi = ŵi(θ̂i, ŝi), âi = âi(θ̂i, ŝi) for each fold).

Such a process involves non-dimensionalization of the parametric curve ĉi(ζ1) and is
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presented in detail in Section 2.2.5 for the case of smooth folds exhibiting G1 and

G2 continuity.

2.2.4 Folding Map

The formulation of the deformation mapping that relates the reference and cur-

rent configurations (termed folding map here) is provided in this section. A folding

map considering only the smooth folds and faces adjacent to an interior fold inter-

section was presented in Equation (2.83). Here such a formulation is extended for

the derivation of a folding map for all the smooth folds and faces in the sheet.

First, an arbitrary face in the sheet is assumed fixed in its reference configuration9.

Let γ̆j(η) : [0, 1] → S0, j = 1, . . . , NP , be paths connecting the fixed face to Pj0 ,

j = 1, . . . , NP , respectively (see Figure 2.12 for an example). The paths γ̆j(η),

j = 1, . . . , NP , may not cross any fold intersection (i.e. they pass only through faces

and smooth folds of S0). Following the formulation of Equation (2.83), the map

for points located in the faces is constructed as the composition of transformations

associated with the smooth folds crossed by the path γ̆j(η) between γ̆j(0) (located

at the fixed face) and γ̆j(1) (located at Pj0). Each path γ̌j(η) crosses a number of pj

smooth folds.

The path γ̆j(η) crosses a smooth fold positively if it enters such a fold from

the ruling F i(−1, ζ2) and exits at the ruling F i(1, ζ2). Conversely, the path γ̆j(η)

crosses a smooth fold negatively if it crosses such a fold in the opposite direction.

The matrices C̆j ∈ {−1, 0, 1}pj×NF , j = 1, . . . , NP , with elements C̆j
ki are used for

9A breve ( ˘ ) is used to distinguish the symbols related to the folding map from the symbols
used in Section 2.2.3.
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Figure 2.12: (a) Two equivalent paths γ̆j(η) connecting the fixed face to Pj0 . (b)
Paths γ̆j(η), j = 1, . . . , NP , connecting the fixed face to every other face in S0.
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the identification and ordering of the folds crossed by γ̆j(η):

C̆j
ki =





1; F i0 is the kth fold crossed by γ̆j(η) and is positively crossed

−1; F i0 is the kth fold crossed by γ̆j(η) and is negatively crossed

0; otherwise

.

(2.98)

Let m̆jk be the vector along the length of the centerline of the kth smooth fold

crossed by γ̆j(η). Such a vector has the same orientation as the fold centerline if

γ̆j(η) crosses the fold positively and opposite orientation if γ̆j(η) crosses the fold

negatively. The vector M̆
j ∈ R3pj is constructed by concatenating the vectors m̆jk,

k = 1, . . . , pj, as follows:

M̆
j

=




m̆j1

...

m̆jpj



. (2.99)

The mapping from the vertex position vectors collected in the vector V to each

vector M̆
j

is compactly given as follows:

M̆
j

=
(

(C̆jĈ)⊗ I3

)
V. (2.100)

Let θ̆jk, w̆jk, and ăjk, k = 1, . . . , pj, be the shape variables associated with the

ordered smooth folds crossed by γ̆j(η). The vectors θ̆j, w̆j, ăj ∈ Rpj are constructed
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by collecting the variables θ̆jk, w̆jk, and ăjk, k = 1, . . . , pj, as follows:

θ̆j =




θ̆j1
...

θ̆jpj



, (2.101)

w̆j =




w̆j1
...

w̆jpj



, (2.102)

ăj =




ăj1
...

ăjpj



. (2.103)

Following the formulation presented in Section 2.2.3, the vectors θ̆j, w̆j, and ăj

are determined from the shape variables of the smooth folds in the sheet as follows

(cf. Equations (2.11), (2.63), and (2.64)):

θ̆j = |C̆j|∗ θ̂, (2.104)

w̆j = |C̆j|∗ ŵ, (2.105)

ăj =

[
C̆j AC̆j

]


â

1


 , (2.106)

where AC̆j ∈ Rpj is a vector with elements AC̆j
k determined as follows (cf. Equation
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(2.65)):

AC̆j
k = 1

2
− 1

2

NF∑

i=1

C̆j
ki. (2.107)

The fold widths associated with the smooth folds crossed by γ̆j(η) are denoted

w̆0
jk, k = 1, . . . , nj, and are required in the formulation of the folding map. As

such, let w̆0,j ∈ Rpj be the vector constructed by collecting the fold widths w̆0
jk,

k = 1, . . . , pj. Such a vector and its mapping from ŵ0 (defined in Equation (2.19))

are as follows:

w̆0,j =




w̆0
j1

...

w̆0
jnj




= |C̆j|∗ ŵ0.

(2.108)

The position vectors of the points where γ̆j(η) crosses the boundary rulings of

the smooth folds are denoted b̆jkL ∈ R3 (point where γ̆j(η) enters the smooth fold)

and b̆jkR ∈ R3 (point where γ̆j(η) exits the smooth fold). Let B̆
j

L, B̆
j

R ∈ R3pj be the

vectors constructed by concatenating the vectors b̆jkL , b̆
jk
R , k = 1, . . . , pj, respectively,

as follows:

B̆
j

L =




b̆j1L

...

b̆
jpj
L



, (2.109)
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B̆
j

R =




b̆j1R

...

b̆
jpj
R



. (2.110)

The corner points of the smooth folds in S0 defined in Equations (2.54)–(2.57)

provide a simple choice for the locations where the path γ̆j(η) crosses the boundary

rulings of the smooth folds. Therefore, as in Section 2.2.3, the position vectors of

such corner points are used herein to define the vectors b̆jkL , b̆
jk
R , k = 1, . . . , pj (cf.

Equation (2.96)):




B̆
j

L

B̆
j

R


 =




1
2
(|C̆j|∗ + C̆j)⊗ I3

1
2
(|C̆j|∗ − C̆j)⊗ I3

1
2
(|C̆j|∗ − C̆j)⊗ I3

1
2
(|C̆j|∗ + C̆j)⊗ I3







P̂
1

P̂
4


 . (2.111)

After defining all the shape variables and geometric parameters associated with

the smooth folds crossed by each path γ̆j(η), j = 1, . . . , NP , the folding map for

points in the faces is obtained as the composition of transformations H̆jk associated

with the smooth folds crossed by these paths (cf. Equation (2.83)):

x = χ(X, t) where:




x

1


 =

(
pj∏

k=1

H̆jk

)


X

1


 , (2.112)

where X ∈ span(e1, e2) is the position vector of a point in Pj0 ⊂ S0 and x ∈ R3 is

the position vector of such a point in Pjt ⊂ St. Since the results of Theorem 2.1

and Equations (2.83) and (2.84) are also applicable for the smooth folds crossed by

the paths γ̆j(η), the simplified fold transformation matrices H̆jk follow the same
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formulation presented in Equation (2.84):

H̆jk =

(
T(b̆jkL ) Q3(ϕ(m̆jk)) Q1(ăjkθ̆jk)

×Q−1
3 (ϕ(m̆jk)) T−1(b̆jkL )

×T−1
(

(w̆0
jk − w̆jk)

(
e3 × m̆jk

‖m̆jk‖

))

×T(b̆jkR ) Q3(ϕ(m̆jk)) Q1((1− ăjk)θ̆jk)

×Q−1
3 (ϕ(m̆jk)) T−1(b̆jkR )

)
.

(2.113)

Determining the folding map for the smooth folds requires further steps since

these surface subdomains undergo non-rigid deformations in addition to rotations

and translations. The position vector of a point in F it expressed in its associated

fold coordinate system (with basis {êi1, êi2, êi3} and origin at 1
2

(ci(−1) + ci(1)), see

Section 2.2.1) is denoted x̂ ∈ R3. Since the current configuration of a smooth fold F it
is known in its associated fold coordinate system for a given set of fold shape variables,

the focus here is on the formulation of the map x = χ̂(x̂(t), t). To construct this map,

a transformation represented by the matrix L̂i ∈ R4×4 is first applied to the vector

x̂. This transformation returns the position of the deformed smooth fold as joined

to the reference configuration of the face adjacent to its boundary ruling F i(−1, ζ2)

(denoted P iF0 ). The transformation L̂i is obtained by first aligning position of the

smooth fold expressed in its associated fold coordinate system with the plane spanned

by e1 and e2 (performed via the transformation Q1(âiθ̂i)T([0, ŵi/2, 0]>)) and then

aligning such a resulting position to P iF0 (performed through the transformation

T(p̂i1)Q3(ϕ(v̂i2 − v̂i1)). Therefore, L̂i is given as follows:

L̂i = T(p̂i1) Q3(ϕ(v̂i2 − v̂i1)) Q1(âiθ̂i) T([0, ŵi/2, 0]>). (2.114)

104



Subsequently, the folding map associated with the face P iF0 is applied to determine

the position of the smooth fold in the current configuration expressed in the global

coordinate system. Thus, the folding map for points in the smooth folds is defined

as follows:

x = χ̂(x̂(t), t) where:




x

1


 =

(piF∏

k=1

H̆iFk

)
L̂i




x̂(t)

1


 , (2.115)

where x̂ is the position vector of a point in F it ⊂ St expressed in the ith fold coordinate

system with basis {êi1, êi2, êi3} and x ∈ R3 is the position vector of such a point

expressed in the global coordinate system with basis {e1, e2, e3}. Note that the

position vector of a point in F i0 ⊂ S0 is obtained as X = χ̂(x̂(0), 0) ∈ span(e1, e2):

X = χ̂(x̂(0), 0) where:




X

1


 = I4 L̂i

∣∣∣∣
t=0




x̂(0)

1


 ,

= T(p̂i1) Q3(ϕ(v̂i2 − v̂i1)) T([0, ŵ0
i /2, 0]>)




x̂(0)

1


 .

(2.116)

2.2.5 Determination of Fold Cross-section Shape Variables

As stated in Section 2.2.3, the full set of fold shape variables θ̂i, ŵi, and âi,

i = 1, . . . , NF , is reduced for simplification to only the set of fold angles θ̂i and the arc-

lengths ŝi, i = 1, . . . , NF , by determining relations ŵi = ŵi(θ̂i, ŝi) and âi = âi(θ̂i, ŝi).
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These relations are obtained by making assumptions on the form of the curvature

field of the smooth folds. The process followed to determine such relations is outlined

in this section.

Smooth folds having G1 and G2 continuous joints with their adjacent faces are

considered. The formulation of the parametric curve ĉi(ζ1) describing the cross-

sectional shape for these smooth folds are provided in Equations (2.38) and (2.43),

respectively. In addition to ŵi(θ̂i, ŝi) and âi(θ̂i, ŝi), the relations βiL1
(θ̂i, ŝi) and

βiR1
(θ̂i, ŝi) are also determined here because they are required to fully define the shape

of smooth folds exhibiting G1 continuity (refer to Equations (2.31) and (2.32)) even

though these variables do not appear in the constraints presented in Section 2.2.3.

The relations βiL2
(θ̂i, ŝi) and βiR2

(θ̂i, ŝi) are further required to fully define the shape

of smooth folds exhibiting G2 continuity (refer to Equations (2.35) and (2.36)).

To determine the fold shape variables for any value of arc-length ŝi, the parametric

curve ĉi(ζ1) is made non-dimensional by ŝi as follows:

c̄i(ζ1) :=
ĉi(ζ1)

ŝi
. (2.117)

This leads to the following non-dimensional forms of ĉi(ζ1) presented in Equations

(2.38) and (2.43):

c̄i(ζ1) = h30(ζ1)c̄iL0
+ h31(ζ1)c̄iR0

+ h32(ζ1)c̄iL1
+ h33(ζ1)c̄iR1

, (2.118)

c̄i(ζ1) = h50(ζ1)c̄iL0
+ h51(ζ1)c̄iR0

+ h52(ζ1)c̄iL1

+ h53(ζ1)c̄iR1
+ h54(ζ1)c̄iL2

+ h55(ζ1)c̄iR2
,

(2.119)
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where:

c̄iL0
:=

ĉiL0

ŝi

=




0

−1
2
ŵi
ŝi

0



,

(2.120)

c̄iR0
:=

ĉiR0

ŝi

=




0

1
2
ŵi
ŝi

0



,

(2.121)

c̄iL1
:=

ĉiL1

ŝi

=
βiL1

ŝi




0

cos
(
âiθ̂i

)

− sin
(
âiθ̂i

)



,

(2.122)

c̄iR1
:=

ĉiR1

ŝi

=
βiR1

ŝi




0

cos
(

(1− âi)θ̂i
)

sin
(

(1− âi)θ̂i
)



,

(2.123)
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c̄iL2
:=

ĉiL2

ŝi

=
βiL2

ŝi




0

cos
(
âiθ̂i

)

− sin
(
âiθ̂i

)



,

(2.124)

c̄iR2
:=

ĉiR2

ŝi

=
βiR2

ŝi




0

− cos
(

(1− âi)θ̂i
)

− sin
(

(1− âi)θ̂i
)



.

(2.125)

Equations (2.120)–(2.125) show that the non-dimensional fold cross-section c̄i(ζ1)

is a function of the non-dimensional variables θ̂i, ŵi/ŝi, âi, β
i
L1
/ŝi, β

i
R1
/ŝi, β

i
L2
/ŝi,

and βiR2
/ŝi.

The non-dimensional arc-length of c̄i(ζ1), denoted s̄i, is given as follows:

s̄i =

∫ 1

−1

∥∥∥∥
dc̄i(ζ1)

dζ1

∥∥∥∥ dζ1

=
1

ŝi

∫ 1

−1

∥∥∥∥
dĉi(ζ1)

dζ1

∥∥∥∥ dζ1

=
ŝi
ŝi

= 1,

(2.126)
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and the non-dimensional curvature of c̄i(ζ1), denoted ¯̂κ(ζ1), is given as follows:

¯̂κ(ζ1) := ŝiκ̂(ζ1)

=

∥∥∥∥
dc̄i(ζ1)

dζ1

× d2c̄i(ζ1)

dζ2
1

∥∥∥∥
∥∥∥∥

dc̄i(ζ1)

dζ1

∥∥∥∥
3 .

(2.127)

The non-dimensional signed curvature of c̄i(ζ1), denoted κ̄(ζ1), is given as:

κ̄(ζ1) = ŝiκ(ζ1)

= ¯̂κ(ζ1) sgn

((
dc̄i(ζ1)

dζ1

× d2c̄i(ζ1)

dζ2
1

)
· êi1
)
.

(2.128)

The next step is to provide assumptions on the curvature field of the fold cross-

section exhibited during folding. For smooth folds exhibiting G1 continuity, a con-

stant form for the goal signed curvature field κG(ζ1) is assumed:

κG(ζ1) = κ∗, (2.129)

and for smooth folds exhibiting G2 continuity, a parabolic form for the goal signed

curvature field κG(ζ1) is assumed:

κG(ζ1) = κ∗
(

1− 4
s(ζ1)2

ŝ2
i

)
, (2.130)

where s(ζ1) is defined in Equation (2.23). Note that κG(ζ1) = 0 at s(ζ1) = − ŝi
2

and

s(ζ1) = ŝi
2

in Equation (2.130) to satisfy G2 continuity.

The non-dimensional form of the goal signed curvature field in Equation (2.129),
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denoted κ̄G(ζ1), is the following:

κ̄G(ζ1) = ŝiκ
G(ζ1)

= κ̄∗,

(2.131)

while the non-dimensional form of the goal signed curvature field in Equation (2.130)

is the following:

κ̄s(ζ1) = ŝiκ
s(ζ1)

= κ̄∗ (1− 4s̄(ζ1)2) ,

(2.132)

where:

κ̄∗ := ŝiκ
∗, (2.133)

s̄(ζ1) =
s(ζ1)

ŝi

= −1

2
+

∫ ζ1

−1

∥∥∥∥
dc̄i(ζ)

dζ

∥∥∥∥ dζ.

(2.134)

Once the assumptions on the curvature field are selected, the non-dimensional

variables θ̂i, ŵi/ŝi, âi, β
i
L1
/ŝi, β

i
R1
/ŝi (and βiL2

/ŝi and βiR2
/ŝi if smooth folds with

G2 continuity are considered) are fitted to satisfy such assumptions. For the sym-

metric smooth folds resulting from the selected assumptions, the variables to fit are

simplified as follows:

âi =
1

2
, (2.135)
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βiL1

ŝ0
i

=
βiR1

ŝi
=:

βi1
ŝi
, (2.136)

βiL2

ŝi
=
βiR2

ŝi
=:

βi2
ŝi
. (2.137)

For a given value of κ̄∗i , the error in the non-dimensional arc-length s̄i (which must

be equal to 1, cf. Equation (2.126)) and the error between κ̄si and κ̄sGi is minimized

as follows:

Find θ̂i ∈ [0, π],
ŵi
ŝi
∈ (0, 1],

βi1
ŝi
∈ (0, n],

βi2
ŝi
∈ [0, n],

That minimize f

(
θ̂i,

ŵi
ŝi
,
βi1
ŝi
,
βi2
ŝi

)
,

(2.138)

where:

f

(
θ̂i,

ŵi
ŝi
,
βi1
ŝi
,
βi2
ŝi

)
= (1− s̄i)2 +

∫ 1

−1

(
κ̄G(ζ1)− κ̄(ζ1)

)2
dζ1∫ 1

−1
(κ̄G(ζ1))2 dζi

. (2.139)

It is assumed that the fold shape variables ŵi/ŝi, β
i
1/ŝi, and βi2/ŝi are equal

for folds having the same fold angle absolute value |θ̂i|. Thus, the range for fold

angles in the bounds of the optimization problem in Equation (2.138) only includes

non-negative numbers.

The minimization problem in Equation (2.138) is repeated for a set of values of

κ̄∗ to obtain values of θ̂i, ŵi, β
i
1, β

i
2 associated with such a maximum non-dimensional

curvature that satisfy the assumptions on extensibility and curvature field. The

problem is solved for each value of κ̄∗ using the gradient-based optimization algorithm
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in Matlab fmincon. The upper bound n for βi1/ŝi and βi2/ŝi is selected as 10, which

is far from the actual values obtained for these parameters and thus it resulted in

an inactive bound. Afterwards, approximations for ŵi(θ̂i, ŝi), β
i
1(θ̂i, ŝi), β

i
2(θ̂i, ŝi) and

κ∗(θ̂i, ŝi) are interpolated from the data obtained by solving Equation (2.138) for a

set of values for κ̄∗.

2.2.6 Numerical Implementation

As stated in the previous sections, the continuous motion of the sheet is achieved

by continuously altering the values of the fold shape variables (θ̂i, ŵi, and âi, i =

1, . . . , NF) such that any attained configuration satisfies the constraints presented in

Equation (2.97) (i.e. the motion of the sheet is a continuous path in the constrained

configuration space).

The simulation of the continuous motion of the sheet is executed by incrementally

updating the values of the fold shape variables using input guess increments and then

iteratively applying any required corrections such that the resulting set of fold shape

variables satisfies the constraints of Equation (2.97). The iterative procedure used

to perform such corrections is outlined in this section. As stated in Section 2.2.3,

the full set of fold shape variables θ̂i, ŵi, and âi, i = 1, . . . , NF , is reduced to only

the set of fold angles θ̂i and arc-lengths ŝi, i = 1, . . . , NF , by establishing relations

ŵi(θ̂i, ŝi) and âi(θ̂i, ŝi) following certain assumptions on the form of the curvature

field of the smooth folds (see Section 2.2.5 for details). For kinematic simulation,

here it is further assumed that the deformation exhibited by the smooth folds is

inextensible:

ŝi = ŵ0
i ∀ i ∈ {1, . . . , NF}, (2.140)

and as a consequence the fold angles θ̂i, i = 1, . . . , NF , are the only degrees of freedom
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during kinematic simulation.

2.2.6.1 Kinematic Constraints

Given a guess set of fold angles ordered in the vector kl θ̂ ∈ RNF where the subscript

l denotes to incremental step number and the superscript k denotes to the correction

iteration number, the matrices Rj(kl θ̂) and the vectors dj(kl θ̂), j = 1, . . . , NI , are

calculated. If the vector of fold angles k
l θ̂ does not yield a configuration that satisfies

Equation (2.97), Rj(kl θ̂)− I3 is not equal to the zero matrix in R3×3 and/or dj(kl θ̂)

is not equal to 03.

Let R(kl θ̂) ∈ R6NI+2NF with components Rj(
k
l θ̂) be the vector of residuals from

constraints of Equation (2.97) (6NI in total) and from constraints imposing the

upper and lower fold angle bounds (2NF in total). Since Rj(kl θ̂) is an orthogonal

matrix, only three of its scalar components are independent. Thus, the matrix-type

constraint in Equation (2.85) provides the following three scalar constraints that

contribute to the residual vector [315]:

R6j−5(kl θ̂) =
1

2
λR

(
Rj

23(kl θ̂)
)2

, (2.141)

R6j−4(kl θ̂) =
1

2
λR

(
Rj

31(kl θ̂)
)2

, (2.142)

R6j−3(kl θ̂) =
1

2
λR

(
Rj

12(kl θ̂)
)2

, (2.143)

where j ∈ {1, . . . , NI} and λR is the weight for residuals from Equation (2.85). This

constant weight is an algorithmic parameter included in the residual vector to ensure

that its components are scaled to a similar order of magnitude (i.e. the components

of Rj(kl θ̂) are dimensionless while those of dj(kl θ̂) have units of length). The three
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components of the vector dj(kl θ̂), j = 1, . . . , NI , which must be zero for the constraint

in Equation (2.86) to be satisfied, provide the following components to the residual

vector:

R6j−2(kl θ̂) =
1

2
λd

(
dj1(kl θ̂)

)2

, (2.144)

R6j−1(kl θ̂) =
1

2
λd

(
dj2(kl θ̂)

)2

, (2.145)

R6j(
k
l θ̂) =

1

2
λd

(
dj3(kl θ̂)

)2

, (2.146)

where j ∈ {1, . . . , NI} and λd is the weight for residuals from Equation (2.86).

2.2.6.2 Fold Angle Bounds

Additional components of R(kl θ̂) are included to ensure that the fold angles

remain within prescribed upper and lower bounds during the continuous motion of

the sheet. A penalty approach is used to implement the required fold angle bounds

for each fold as in [315]. The lower bound for θ̂i is denoted θ̂Li ∈ [−π, 0] and the

upper bound is denoted θ̂Ui ∈ [0, π]. Conventional assignments for θ̂Li and θ̂Ui are

provided in Table 2.1.

The additional components of R(kl θ̂) required to enforce the lower bound of kl θ̂i

consist of a penalty that is zero if kl θ̂i ≥ θ̂Li and increases proportionally to the square

of the difference between k
l θ̂i and θ̂Li when k

l θ̂i < θ̂Li :

R6NI+2i−1(kl θ̂) =
1

2
λB max(0,−kl θ̂i + θ̂Li )2, (2.147)

where i ∈ {1, . . . , NF} and λB is the weight for residuals from fold angle bound
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Table 2.1: Conventional assignments for θ̂Li and θ̂Ui .

Fold type θ̂Li θ̂Ui
No assignment −π π

Valley 0 π

Mountain −π 0

Rigidized fold 0 0

constraints. Similarly, to enforce the upper bound of θ̂i, a penalty that is zero if

k
l θ̂i ≤ θ̂Ui and increases proportionally to the square of the difference between k

l θ̂i and

θ̂Ui when k
l θ̂i > θ̂Ui is included in the following components of R(kl θ̂):

R6NI+2i(
k
l θ̂) =

1

2
λB max(0, kl θ̂i − θ̂Ui )2, (2.148)

where i ∈ {1, . . . , NF}.

2.2.6.3 Method of Solution

Following the generalized Newton’s method [315], the first-order expansion of

R(θ̂) is used to determine the increment in θ̂ required to minimize the components

of the constraint residual vector R(θ̂):

R(θ̂ + ∆θ̂) = R(θ̂) +
∂R(θ̂)

∂θ̂
∆θ̂ + . . . = 06NI+2NF . (2.149)

The following correction increment ∆θ̂ is obtained from the previous first-order

expansion:

∆θ̂ = −
(
∂R(θ̂)

∂θ̂

)†
R(θ̂), (2.150)
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where (·)† represents the Moore-Penrose pseudoinverse.

The lth set of guess fold angle increments is collected in the vector IN
l∆θ̂ ∈ RNF .

First, the guess fold angle vector for the lth increment (1
l θ̂) is calculated as follows:

1
l θ̂ = l−1θ̂ + l∆θ̂, (2.151)

where the fold angles are first updated with the input fold angle increments IN
l∆θ̂

projected into the null space of the previous residual derivatives (see [315] for details):

l∆θ̂ =


INF −

(
∂R(l−1θ̂)

∂θ̂

)†(
∂R(l−1θ̂)

∂θ̂

)
 IN

l∆θ̂. (2.152)

If ‖R(1
l θ̂)‖/(6NI + 2NF) ≥ tol1, the fold angles are corrected iteratively as

follows:

k
l ∆θ̂ = −

(
∂R(kl θ̂)

∂θ̂

)†
R(kl θ̂), (2.153)

k+1
l θ̂ = k

l θ̂ + k
l ∆θ̂, (2.154)

cf. Equation (2.150). The iterative correction process of Equations (2.153) and

(2.154) is repeated until ‖R(k+1
lθ̂)‖/(6NI + 2NF) < tol1 or ‖kl ∆θ̂‖/NF < tol2,

where tol1 and tol2 are numerical tolerances. The numerical procedure used for

the kinematic simulation of sheets with smooth folds is summarized in Table 2.2.

2.3 Implementation Examples

The numerical procedure utilized for the simulation of the motion of sheets with

smooth folds presented in Section 2.2.6 is implemented in Matlab. The smooth

folds F it are plotted using the Matlab three-dimensional shaded surface plot function
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Table 2.2: Numerical procedure used to simulate the motion of sheets with smooth
folds followed at the lth fold sequence increment.

1: Determine l∆θ̂ from IN
l∆θ̂ using Equation (2.152)

2: Calculate set of guess fold angles 1
l θ̂ using Equation (2.151)

3: IF ‖R(1
l θ̂)‖/NF < tol1 THEN set lθ̂ = 1

l θ̂ and EXIT

ELSE CONTINUE

4: Determine correction of fold angles k
l ∆θ̂ using Equation (2.153)

5: Update k+1
l θ̂ using Equation (2.154)

6: IF ‖R(k+1
lθ̂)‖/(6NI + 2NF) < tol1

OR ‖kl ∆θ̂‖/NF < tol2 THEN set lθ̂ = k+1
lθ̂ and EXIT

ELSE set k ← k + 1 and GOTO 4

surf while the faces P it are plotted through filled three-dimensional polygons using

fill3. The complete Matlab code for the kinematic simulation of origami with

smooth folds and various input examples are included in the Supplemental Material

of [7] (http://dx.doi.org/10.1115/1.4034299).

Smooth folds having G2 continuous joints with their adjacent faces are assumed

for all the examples presented in this section. The formulation of the parametric

curve ĉi(ζ1) that defines the cross-sectional shape of such smooth folds is provided in

Equation (2.43). Inextensible deformation and a symmetric parabolic curvature field

are assumed for ĉi(ζ1) (see Section 2.2.5 for details). Also, the range of fold angle

values assumed for all the examples presented in this section is the interval [−π, π].

It is noted that the aforementioned assumptions are taken for simplicity and do not

present a limitation of the proposed model. Other assumptions on the extensibility

and curvature field of the folds are also applicable as long as such assumptions do

not violate the continuity conditions for ĉi(ζ1).
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A sheet having eight smooth folds meeting at one interior fold intersection is

shown in Figure 2.13. The folds are enumerated in counterclockwise order. Various

guess fold angle increments are considered ranging from simple to more complex.

The folded configurations shown in Figure 2.13(a) are obtained through the following

guess fold angle increments:

IN
l∆θ̂ =

π

50




1

0

0

0

1

0

0

0




∀ l ∈ {1, . . . , 50}, (2.155)

and the folded configurations shown in Figure 2.13(b) are obtained through the

following guess fold angle increments:

IN
l∆θ̂ =

π

50




0

1

0

0

0

1

0

0




∀ l ∈ {1, . . . , 50}. (2.156)

The two previous guess fold angle increments represent simple examples and the

fold angle correction procedure (refer to Table 2.2) converged prior to performing an
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initial correction iteration (i.e. ‖R(1
l θ̂)‖/NF < tol1 ∀ l ∈ {1, . . . , 50}). Alterna-

tively, an example of a more complex folding motion resulting from guess fold angle

increments that required iterative corrections is shown in Figure 2.13(c). For this

example, the guess fold angle increments are as follows:

IN
l∆θ̂ =

π

50




1

−1

1

−1

1

−1

1

−1




∀ l ∈ {1, . . . , 50}. (2.157)

As shown in the fold angle vs. increment plot in Figure 2.13(c), the fold angles

obtained from the simulation procedure differ from the simple addition of the guess

fold angle increments. As observable in the configurations shown in Figure 2.13(c), all

the surface subdomains comprising the sheet remain joined through the motion of the

sheet. Thus, the simulation procedure presented in Section 2.2.6 successfully allows

for the correction of the fold angles such that they satisfy the necessary constraints

for a valid configuration presented in Equation (2.97).

More complex examples of origami sheets having two interior fold intersections

are shown in Figure 2.16. The graphs of Figure 2.14 show the vertices and fold

centerlines associated with such sheets. Since the two interior fold intersections for

these sheets share a common adjacent fold, their associated constraint equations are

coupled. For all the three sheets, the guess fold angle increments are as follows (see
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Reference configuration 

(a) 

(b) 

Increment 25 Increment 50 

Increment 25 Increment 50 

(c) 

Increment 25 Increment 50 

S0

F1
0

e1

e2

e3

F8
0

Figure 2.13: (a) and (b): Configurations of a sheet having a single interior fold in-
tersection obtained through the guess fold angle increments provided in Equations
(2.155) and (2.156), respectively. (c) Fold angles vs increment number and con-
figurations obtained through the guess fold angle increments provided in Equation
(2.157).
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Figure 2.14 for the numbering of the folds):

IN
l∆θ̂ =

π
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∀ l ∈ {1, . . . , 100}. (2.158)

The sheet with the baseline fold pattern shown in Figure 2.16(a) exhibits a sym-

metric behavior, which is expected from the symmetry of the fold pattern and the

guess fold angle increments. Sheets having fold patterns obtained by modifying the

interior vertex coordinates and the boundary vertex coordinates of the baseline fold

pattern are respectively shown in Figures 2.16(b) and 2.16(c). It is observed that

both sheets undergo dissimilar fold angle histories compared to the sheet having the

baseline fold pattern as observed from both the folded configurations in Figure 2.16

and the fold angle vs. increment number plots in Figure 2.15. These examples show

the versatility of the present model that allows for simulation of sheets having arbi-

trary fold patterns and boundary shapes. This permits the potential application of

the model in the design of origami-based structures and mechanisms constrained by

realistic material and structural constraints.
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(a)

(b)

(c)

Baseline fold pattern

Interior modified

Boundary modified

Figure 2.14: Graphs showing the vertex coordinates and fold centerlines for the sheets
shown in Figure 2.16.
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(a)

(b)

(c)

Baseline fold pattern

Interior modified

Boundary modified

Figure 2.15: Evolution of fold angles with increment number for the sheets shown in
Figure 2.16.
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Reference configuration   
           

Increment 50 Increment 100 

(a) 

(b) 

(c) 

S0

Figure 2.16: Configurations for origami sheets with vertex coordinates and fold cen-
terlines defined in Figure 2.15: (a) Sheet with the baseline fold pattern, (b) Sheet
with a fold pattern generated by modifying the interior vertex coordinates of the
baseline fold pattern, and (c) Sheet with a fold pattern generated by modifying the
boundary vertex coordinates of the baseline fold pattern.
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The present model is also applicable for the simulation of sheets having arbitrary

topology. To illustrate this, sheets having four, five, and six interior fold intersections

are shown in Figure 2.1710. Various configurations are shown for these examples. As

observed from these schematics, the present model captures well the behavior of the

folded sheets during their full range of motion (fold angles vary from 0 to ±π for

various folds in these sheets). The sheet having four interior fold intersections exhibits

a desired response that the proposed model captures well, which is of configurations

having all the faces located in parallel normal directions but not overlapping one

another. This may aid to ongoing efforts to model and design origami structures

with thick sheets (see [399, 400, 403, 430, 431, 432, 433]).

2.4 Summary and Discussion

A model for the kinematic response of origami structures with smooth folds having

non-zero sheet surface area and arbitrary order of geometric continuity was presented

in this section. A brief review of an established model for origami with conventional

creased folds that is extended herein is provided in Section 2.1. The geometrical

description of smooth folds was presented in Section 2.2.1 and parametric represen-

tations of the fold cross-sectional shape for various orders of continuity were provided

in Section 2.2.1.1. The fold pattern description (Section 2.2.2), the constraints on

the sheet deformation for origami with smooth folds analogous to those for origami

with creased folds (Section 2.2.3), and the mapping between reference and current

configurations (Section 2.2.4) were also presented. The numerical implementation of

the model allowing for simulation of the motion of sheets with arbitrary fold pat-

terns was described in Section 2.2.6 and implementation examples were provided in

Section 2.3.

10The example shown in Figure 2.4 is also a simulation result obtained using the proposed model.
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Figure 2.17: Demonstration of constrained motion associated with origami sheets
having four, five, and six interior fold intersections. Note that configurations of
substantial folding are captured without bending or stretching of the faces or tearing
of the sheet.
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From the model formulation developed and the results presented in this section,

a number of concluding remarks can be stated. First, the proposed model success-

fully allows for the mathematical representation of origami with folds of non-zero

sheet surface area and arbitrary order of geometric continuity (in terms of fold shape

geometry, constraints on the fold shape variables, and mapping between reference

and current configurations). The conventional origami with creased folds of G0 con-

tinuity represents a special case of this more general model and is captured as well.

Furthermore, the arbitrary order of geometric continuity in the sheet considered in

this work allows for the physical modeling of origami structures having significant

thickness using plate or shell representations, which is the focus in Section 4. Second,

the present model and its associated numerical implementation allow for the simu-

lation of sheets having arbitrary fold pattern geometry and boundary shape. The

careful consideration of constraints ensures that only meaningful valid configurations

will be predicted. The proposed modeling and simulation framework readily allows

for modifications to the fold pattern and folding sequence as demonstrated in the

implementation examples provided in Section 2.3. These characteristics make such

a model useful in future fold pattern design and fold planning studies for origami

structures and mechanisms having folds that cannot be accurately represented as

creases. This is the main focus of the following section.
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3. DESIGN OF ORIGAMI STRUCTURES WITH SMOOTH FOLDS

Origami has obtained the interest from researchers in various fields during the

last four decades [13, 14, 45]. During this period of time, origami principles have

enabled new approaches for manufacturing, assembling, and morphing of structures

constructed from various materials as reviewed in Section 1. Creating an origami

structure having desired characteristics, particularly a desired shape, is known as

origami design [9]. Origami design is a challenge encountered not only by origami

artists but also by designers and engineers who apply origami in various fields. Be-

fore obtaining extensive interest from the engineering and mathematics communities,

most origami design was performed via trial and error or other heuristic approaches

based on the intuition of an artist or designer [363]. With the increase in complexity

of origami shapes that provide engineering utility, theoretical and computational ap-

proaches for the design of origami structures have become necessary for developments

in this area [3, 13, 363].

Current methods for origami design are generally limited to the idealization of

the folds as creases of zeroth-order geometric continuity (refer to Section 1.5 for a

literature review on design methods for origami structures). Such an idealization is

not proper for origami structures having non-negligible fold thickness or with max-

imum curvature at the folds restricted by material limitations. For such structures,

the folds are not properly represented as creases but rather as bent regions of higher-

order geometric continuity (i.e. smooth folds, see Definition 2.6).

The main contribution of this section is a novel method for origami design having

its inspiration from that presented by Tachi in [9, 391] but considering smooth folds

as opposed to creased folds (see Figure 1.10). The method aims to solve the fol-
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lowing origami design problem: given a goal shape represented as a polygonal mesh

(termed as the goal mesh), find the geometry of a single continuous planar sheet, its

pattern of smooth folds, and a folding sequence allowing for folding motion from the

determined planar sheet configuration to a folded configuration that approximates

the goal mesh. A process for determining a folding sequence allowing for folding mo-

tion from the determined planar sheet configuration to the folded configuration that

approximates the goal mesh has not been previously addressed in [9, 391]. There-

fore, the determination of such a folding sequence addressed here represents another

contribution of the present work and is applicable to both origami with smooth folds

and conventional origami with creased folds.

The outline of this section is as follows: Section 3.1 summarizes the main as-

pects of kinematic simulation of origami structures presented in Section 2 for the

introduction of the contributions provided in this section. The main definitions of

origami design problem considered herein are presented in Section 3.2. The novel

design method for origami with smooth folds proposed in this work is described in

detail in Section 3.3. It includes the description of the input data, required mod-

ifications of the goal mesh, parameterization of the design, and constraints on the

design variables. A numerical procedure used to determine valid designs is outlined

in Section 3.4. A discussion of valid sheet designs is provided in Section 3.5. A brief

description of the kinematic simulation procedure used to determine the continuous

deformation of the designed sheets is provided in Section 3.6. Results illustrating

the capabilities of the proposed design method are provided in Section 3.7 and a

discussion of the section and concluding remarks are provided in Section 3.8.
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3.1 Review of Kinematic Simulation

The problem of kinematically simulating origami structures with smooth folds,

which is fully addressed in Section 2, can be summarized as follows:

• Given: the geometric parameters that describe the fold pattern in a reference

configuration S0 (vertex position vectors and fold widths, refer to Section 2.2.2),

and guess fold angle increments {INl∆θ̂ ∈ RNF | l ∈ {1, . . . , n}} (i.e. the folding

sequence),

• Find: the set of fold angles {θ̂(t) ∈ RNF | t ∈ {t1, . . . , tn}} that satisfy the

kinematic constraints presented in Equation (2.97) closest to those resulting

from the given fold angle increments, and the set of current configurations

attained by the sheet {St | t ∈ {t1, . . . , tn}}.

The numerical approach utilized to solve the aforementioned problem is presented

in Section 2.2.6. Figure 3.1 illustrates the capabilities of such a kinematic simulation

approach for origami structures with smooth folds. The figure shows the reference

configuration S0 and two current configurations Stk and Stn of a sheet having an

arbitrary fold pattern subject to an arbitrary folding sequence. This kinematic sim-

ulation approach is also adopted in this section as described in the subsequent section

and motivates the adopted approach to origami design.

3.2 Origami Design Problem Description

As stated in Section 1.5, creating an origami structure having desired charac-

teristics, particularly a desired shape, is known as origami design [9]. This section

presents a novel method that aims to solve the following origami design problem:

• Given: a goal shape represented as a polygonal mesh (termed as the goal mesh

M),
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Figure 3.1: An origami sheet with smooth folds in its reference configuration S0,
intermediate configuration Stk , and final configuration Stn . This result illustrates
the capabilities of the kinematic simulation approach for origami structures with
smooth folds presented in Section 2.
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• Find: the geometry of the reference configuration S0 of a single planar sheet,

its pattern of smooth folds, and a folding sequence allowing for folding motion

from S0 to a folded configuration that approximates M.

The method for origami design proposed in this section is inspired from that

provided by Tachi in [9, 391] but allows for the consideration of smooth folds, as

opposed to only creased folds addressed in [9, 391]. As previously noted, a process

for determining a folding sequence allowing for folding motion from S0 to a folded

configuration that approximatesM was not addressed in [9, 391]. Therefore, the de-

termination of such a folding sequence represents another contribution of the present

work and is applicable to both origami with smooth folds and conventional origami

with creased folds.

The steps in the proposed method for origami design are the following:

(i) If the given polygonal mesh is not topologically equivalent to a disk [9], edge

cuts introducing an additional boundaries ∂MC are applied (see Section 2.2.1

of [9] for details and additional references regarding the mesh cut procedure).

Further boundary edges forming ∂MC can also be introduced as long as the

resulting mesh satisfies the aforementioned topological property. A goal mesh

M with boundary ∂M = ∂MC ∪ ∂MO and faces Mj ⊂ M, j = 1, ..., NM

(where NM is the total number of faces inM) is then obtained. The boundary

∂MO is comprised of the boundary edges of the originally given mesh. The

goal meshM is defined by its node position vectors {ŷi ∈ R3 |i ∈ {1, . . . , NN}}

(where NN is the number of nodes inM) and connectivity information describ-

ing which nodes are associated with each face Mj (refer to Section 3.4.1 for

details)

(ii) A planar sheet reference configuration S0 consisting of the faces Mj, j =
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e1
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Edge module 
having 3 

smooth folds 
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e1

e2

e3

Edge module 
having 3 

smooth folds	

Example face 

Figure 3.2: Schematic illustrating the method for origami design presented in this
work: given a goal mesh M, find the reference configuration S0 of a sheet that
approximates M in a known folded configuration. The reference configuration S0

is comprised of the faces of M mapped to the plane spanned by e1 and e2 and
introduced edge modules having two rigid faces and three smooth folds.

e1

e2

e3

S0

. . .

Stk

. . .

Stn
= S?

Figure 3.3: Folding motion of a determined sheet reference configuration S0 towards
the goal configuration S? that approximates the goal mesh M (see Figure 3.2).
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1, ..., NM, mapped to the plane spanned by e1 and e2 and N I
E introduced edge

modules (where N I
E is the number of interior edges of M) is then determined

(Figure 3.2). The edge modules consist of three smooth folds and two rigid faces

and are placed between every two faces of M connected by an interior edge1,

hence called edge modules. Thus, S0 has 3N I
E smooth folds and 2N I

E + NM

rigid faces (refer to Section 2.2), i.e.

NF = 3N I
E , (3.1)

NP = 2N I
E +NM. (3.2)

Therefore, S0 = (
⋃3NI

E
i=1 F i0) ∪ (

⋃2NI
E+NM

i=1 P i0). The challenge in this step is to

determine the geometry of the edge modules given the information of M and

the fold widths of the smooth folds in each edge module (i.e. ŵ0
i , i = 1, . . . , 3N I

E )

such that a valid reference configuration S0 is obtained (refer to Section 2.2)

and such a sheet can approximateM in a known goal configuration S? (S? for

the example shown in Figure 3.2 is shown in Figure 3.3)

(iii) The final step entails the determination of a folding sequence that allows for

the folding motion from the reference configuration S0 to the goal configuration

S?. As described in Section 3.1, the simulation of the motion of the sheet is

performed in a sequence of increments. Thus, the challenge in this step is the

determination of the fold angle increments {INl∆θ̂ ∈ R3NI
E | l ∈ {1, . . . , n}}

leading to a set of fold angles {θ̂(t) ∈ R3NI
E | t ∈ {t1, . . . , tn}} that results in

1The idea of introducing such modules with three folds and to tuck fold them in order to
approximate a three-dimensional goal shape was initially introduced for conventional origami with
creased folds by Tachi in [9, 391].
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the set of configurations {St | t ∈ {t1, . . . , tn},Stn = S?}. Figure 3.3 shows

configurations attained by the sheet from the example in Figure 3.2 during a

determined folding sequence allowing for folding motion from S0 to S?.

This work addresses (ii) and (iii) of the previous list (i.e. determination of S0

given M and fold widths ŵ0
i , i = 1, . . . , 3N I

E , and subsequent determination of a

folding sequence for deformation from S0 to S?). Algorithms to determine a boundary

that yields a surface mesh topologically equivalent to a disk are available in the

literature [9, 434, 435, 436] and are not the subject of this work.

3.3 Design Method

As described in Section 3.2, the design method proposed herein aims first to

determine the geometry of a planar sheet configuration S0 and its pattern of smooth

folds that approximates a given three-dimensional surface goal shape represented as

a polygonal mesh M in a known configuration (denoted as the goal configuration

S?). The method is based on the previously known idea of using folds to create

flaps that are tucked in order to morph an initially planar sheet towards an arbitrary

three-dimensional shape [9, 391].

The three-dimensional goal mesh M is a three-dimensional polygonal mesh topo-

logically equivalent to a disk and having a boundary denoted as ∂M. The polygonal

faces forming M are denoted Mj such that M =
⋃NM
i=1 Mj. The boundary of the

originally given mesh is denoted ∂MO (refer to Figure 3.4). For a given mesh that

is not topologically equivalent to a disk, interior edges of such a mesh are assigned

as boundary edges forming a boundary ∂MC in order to obtain a goal meshM that

has a single continuous boundary ∂M = ∂MC ∪ ∂MO (see the example shown in

Figure 3.4). It is noted that the assignment of boundary edges forming ∂MC may

not only be used to generate a valid goal mesh M but also to obtain different sheet
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@MO

@M = @MO [ @MC@MC

Figure 3.4: Outer edges of the given polygonal mesh forming the boundary ∂MO,
additional boundary cut ∂MC , and the boundary of the goal mesh M denoted
∂M = ∂MC∪∂MO. This figure is associated with the example shown in Figure 3.2.

reference configurations for the given mesh. Criteria for determining an optimal

boundary ∂M is not currently addressed but can be found in the literature [9, 434].

An example of a simple goal mesh M is shown in Figure 3.5. The goal mesh

has NN nodes and NE edges (NN = 25 and NE = 56 for the goal mesh shown

in Figure 3.5). The number of interior nodes, i.e. those not contained in ∂M, is

denoted N I
N . As stated in the previous section, each node in M has an associated

position vector ŷi ∈ R3, i = 1, . . . , NN
2. Each polygonal face Mj is defined by

its ordered associated nodes. Therefore, the input data required to define M is the

following: (i) The node position vectors ŷi, i = 1, . . . , NN , and (ii) the index list of

the nodes associated with each polygonal face Mj (in a counterclockwise ordering

which is adopted in this work). The connectivity matrices obtained from this input

data and the mappings among various parameters and variables used in this work

are provided in Section 3.4.1.

The steps towards determining a planar sheet having smooth folds that morphs

towards the input goal mesh and its subsequent kinematic analysis are illustrated

2A hat ( ˆ ) is used to distinguish the mesh-related geometric parameters and variables from
those face- and node-related ones.
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e1

e2

e3

M

Mjŷi

Figure 3.5: Schematic showing a goal meshM. A node position vector ŷi and a goal
mesh face Mj are also shown.

in Figure 3.6. A simple example of a goal mesh M is presented in Figure 3.6(a).

The faces Mj are initially trimmed to account for the gap that will be created by

the tucked edge modules (Figure 3.6(b)). The face trimming process is described

in detail in Section 3.3.1. The set of trimmed mesh faces is denoted as M] and its

associated trimmed faces are denoted as Mj
] such that M] =

⋃NM
i=1 Mj

] .

The method proceeds by determining the geometry of the edge modules (Fig-

ure 3.6(c)) that are placed between any two trimmed faces Mj
] and Mk

] having as-

sociated goal mesh faces Mj and Mk joined by an interior edge. The edge modules

are comprised of three smooth folds and two rigid faces and are designed such that

the facesMj
] together with these edge modules can be placed as a connected surface

on the plane spanned by e1 and e2. Such a resulting planar surface corresponds to

the sheet reference configuration S0 (Figure 3.6(d)).

During folding motion of the designed sheet, each edge module is tucked to morph

the sheet towards its goal configuration S? for which the folds angles are known from

the goal mesh data (Figure 3.6(d)). Note that M] ⊂ S? under appropriate rigid
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transformations. A view of the tucked edge modules, that are designed such that

they do not intersect in the goal configuration, is shown in Figure 3.6(e).

Let zjk ∈ R3, j = 1, . . . , N I
N , k = 1, . . . , nMj , be the vectors connecting the jth

interior node to its kth adjacent node, defined in counterclockwise order, where nMj

is the number of faces connected to the jth interior node (see Figure 3.7). These

vectors are readily determined from the provided input data (see Section 3.4.1.3).

The parameters associated with the faces of M having a common interior node

are the face angles φjk and the face unit normal vectors njk ∈ R3, j = 1, . . . , N I
N ,

k = 1, . . . , nMj . These parameters are determined respectively as follows:

φjk = cos−1

(
zjk · zj k+1

‖zjk‖ ‖zj k+1‖

)
, (3.3)

njk =
zjk × zj k+1

‖zjk × zj k+1‖ . (3.4)

3.3.1 Face Trimming

A side view of a tucked edge module is shown in Figure 3.8. It is assumed that

each edge module is tucked in a symmetric manner and therefore the exterior folds

for each edge module (folds 1 and 3 in Figure 3.8) have the same values for their

geometric variables at S?. The interior fold (fold 2 in Figure 3.8) has a fold angle

of π when the edge module is tucked at S?. It is observed in Figure 3.8 that due to

the bending deformation of the smooth folds (as opposed to creasing), a gap results

between two mesh faces connected to the edge module in the goal configuration S?.

To account for this gap, the faces of the goal mesh are initially recomputed to generate

the trimmed mesh as shown in Figure 3.6(b). The removed regions compensate for

the gaps and have an associated length l̂i, i = 1, . . . , N I
E , as shown in Figure 3.8. To

138



(d) 

(e) 

S?S0
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Edge 
module 

(c) 

Goal mesh 
rigid face 

Smooth folds 

Edge module 
rigid face 

M Mj Mj
]M]

e1

e2
e3

Figure 3.6: (a) Example goal mesh M having one interior node; (b) Set of trimmed
mesh facesM]; (c) Determined sheet geometry and fold pattern associated with the
goal mesh shown in (a); (d) Folding deformation from the reference planar configu-
ration S0 to the goal configuration S?. Note that M] ⊂ S? under appropriate rigid
transformations; (e) View of the non-intersecting tucked edge modules in the goal
configuration S?.
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�jk

njk

zjk zj k+1

Figure 3.7: Geometric parameters associated with the faces ofM having a common
interior node.

define these removed regions, first the edge dihedral angle Θ̂i ∈ (0, 2π), i = 1, . . . , N I
E ,

is calculated as follows (see Figure 3.8):

Θ̂i =





π + cos−1(n̂i1 · n̂i2); for convex edges

π − cos−1(n̂i1 · n̂i2); for concave edges

, (3.5)

where n̂i1 and n̂i2 are the unit normals of the faces adjacent to the ith interior edge.

Table 3.1: Values for fold width and the shape variables of the smooth folds at the
goal configuration S?. Refer to Figure 3.8 for the numbering of the folds.

Fold width Fold angle at S? Distance between cross-
section end-points at S?

Fold 1 ŵE0
i −Θ̂i/2 ŵE?

i

Fold 2 ŵI0
i π ŵI?

i

Fold 3 ŵE0
i −Θ̂i/2 ŵE?

i
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Fold 2 

⇥̂i

ŵI?
i

ŵE?
i sin

⇣
⇥̂i

4

⌘
ŵE?

i sin
⇣

⇥̂i

4

⌘

n̂i1 n̂i2
l̂il̂ i

Figure 3.8: Side view of an example tucked edge module and its adjacent goal mesh
faces at the goal configuration S?. The geometric parameters defining the trim length
l̂i are shown.

Let ŵI?
i be the distance between the cross-section end-points of the interior fold

in the ith edge module at S?, respectively (refer to Table 3.1). Also, let wE?
i be the

distance between the cross-section end-points of the exterior folds. The trim lengths

l̂i are then calculated as follows (refer to Figure 3.8):

l̂i =

(
ŵI?
i

2
+ ŵE?

i sin

(
Θ̂i

4

))
csc

(
Θ̂i

2

)
. (3.6)

Let nCj be the number of corners of the goal mesh polygonal face Mj. Also, let

ỹjk ∈ R3, k = 1, . . . , nCj , be the position vectors of the nodes corresponding to the

corners of Mj, ordered counterclockwise3. The position vectors of the corner points

of the trimmed faceMj
] , denoted ỹjk] ∈ R3, k = 1, . . . , nCj , are determined as follows

3A tilde ( ˜ ) is used to distinguish the face-related parameters and variables from mesh- and
node-related ones.
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(refer to Figure 3.9(a)):

ỹjk] = ỹjk + l̃j k−1 csc(φ̃jk)
ỹj k+1 − ỹjk

‖ỹj k+1 − ỹjk‖ + l̃jk csc(φ̃jk)
ỹj k−1 − ỹjk

‖ỹj k−1 − ỹjk‖ , (3.7)

where the interior corner angles of Mj denoted φ̃jk are determined as follows:

φ̃jk = cos−1

(
(ỹj k−1 − ỹjk) · (ỹj k+1 − ỹjk)

‖ỹj k−1 − ỹjk‖ ‖ỹj k+1 − ỹjk‖

)
, (3.8)

and l̃jk, k = 1, . . . , nCj , is the trim length associated with the kth edge of Mj. The

mapping from the edge trim lengths l̂i, i = 1, . . . , N I
E , to each set l̃jk, k = 1, . . . , nCj ,

is provided in Section 3.4.1.2 (see Equation (3.44)).

Only the length of the edges of Mj is altered by the face trimming process,

while its corner angles remain unchanged under the condition stated in the following

proposition:

Proposition 3.1. The facesMj andMj
] have equal corner angles if and only ifMj

]

is not a degenerate case of Mj and has the same orientation of Mj.

Proof. IfMj andMj
] have equal corner angles, thenMj

] is not a degenerate case of

Mj and both have the same orientation. To show sufficiency, it is first noted that if

the vectors ỹj k+1
] − ỹjk] and ỹj k+1 − ỹjk have the same direction ∀ k ∈ {1, . . . , nCj },

the corner angles of Mj and Mj
] are equal. The vector ỹj k+1

] − ỹjk] is decomposed

as follows:

ỹj k+1
] − ỹjk] = (ỹj k+1

] − ỹjk] )‖ + (ỹj k+1
] − ỹjk] )⊥, (3.9)

where (ỹj k+1
] − ỹjk] )‖ and (ỹj k+1

] − ỹjk] )⊥ are respectively parallel and orthogonal to
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Figure 3.9: (a) Coordinates of the corner points of a face before and after trimming.
The boundaries of Mj and Mj

] are respectively denoted ∂Mj and ∂Mj
] . (b) Pa-

rameters d̃jkm , m = 1, 2, associated with the change in length of each edge of M due
to face trimming.
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ỹj k+1 − ỹjk. The vector (ỹj k+1
] − ỹjk] )‖ is given as follows:

(ỹj k+1
] − ỹjk] )‖ =

(ỹj k+1
] − ỹjk] ) · (ỹj k+1 − ỹjk)

‖ỹj k+1 − ỹjk‖2
(ỹj k+1 − ỹjk),

=

(
1− l̃j k−1 csc(φ̃jk) + l̃j k+1 csc(φ̃j k+1)

‖ỹj k+1 − ỹjk‖

− l̃jk(cot(φ̃jk) + cot(φ̃j k+1))

‖ỹj k+1 − ỹjk‖

)
(ỹj k+1 − ỹjk),

(3.10)

and the squared of the magnitude of the vector (ỹj k+1
] − ỹjk] )⊥ is given as:

∥∥∥(ỹj k+1
] − ỹjk] )⊥

∥∥∥
2

=
∥∥∥(ỹj k+1

] − ỹjk] )− (ỹj k+1
] − ỹjk] )‖

∥∥∥
2

,

= l̃2jk

(
csc(φ̃j k+1)2 + csc(φ̃jk)

2 − (cot(φ̃jk) + cot(φ̃j k+1))2

+ 2 csc(φ̃jk) csc(φ̃j k+1) cos(φ̃jk + φ̃j k+1)
)
,

= 0.

(3.11)

Thus, (ỹj k+1
] − ỹjk] ) = (ỹj k+1

] − ỹjk] )‖ which implies that ỹj k+1
] − ỹjk] is parallel to

ỹj k+1− ỹjk. The coefficient of (ỹj k+1− ỹjk) in Equation (3.10) must be positive4 for

the faceMj
] to not be a degenerate case ofMj and also to have the same orientation

of Mj, which then implies that the faces Mj and Mj
] have equal corner angles

because the vectors ỹj k+1
] − ỹjk] and ỹj k+1 − ỹjk have the same direction.

The parameters d̃jk1 and d̃jk2 are associated with the change in length of the edges

4This requirement is revisited in Section 3.5.
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of Mj due to face trimming and are determined as follows (refer to Figure 3.9(b)):

d̃jk1 = l̃j k−1 csc(φ̃jk) + l̃jk cot(φ̃jk), (3.12)

d̃jk2 = l̃j k+1 csc(φ̃j k+1) + l̃jk cot(φ̃j k+1). (3.13)

Since the resulting goal configuration S? contains M] as a subset rather than

the goal mesh M (see Figure 3.6), the error of the approximation of S? to the goal

mesh M must be quantified. A global measure for such an approximation error is

suggested. Such a measure of approximation error is denoted as E and is defined as

follows:

E := 1− Area(M])

Area(M)
. (3.14)

Since the face trimming process considered in this work only removes surface area

of M, then Area(M])/Area(M) ≤ 1. An approximation error of E = 0 corresponds

only to the case where M = M] and for any other case 0 < E < 1. For instance,

E = 0.30 for the example shown in Figure 3.6.

3.3.2 Design Parameterization and Constraints

Since all fold widths are assumed given (refer to Section 3.2), the fold widths of

the interior and exterior folds of each edge module in the planar reference config-

uration S0, respectively denoted as ŵI0
i and ŵE0

i , are inputs to the design problem

(see Figure 3.10(a)). In practice, the fold widths ŵI0
i and ŵE0

i , i = 1, . . . , N I
E , are

determined such that the smooth folds comprised of a specific material are able to

achieve their required fold angles at S? (see Figure 3.8). Such a physically-based

determination of the fold widths is addressed in Section 4.
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In addition to the information regarding fold widths, the geometry of edge module

in the designed sheet is defined by two variables corresponding to Ŵi and ψ̂i. These

variables are schematically shown in Figure 3.10(a). The modified edge module

accounting for the change in edge lengths due to face trimming (refer to Section 3.3.1)

is presented in Figure 3.10(b). The parameters d̂inm, n,m ∈ {1, 2}, showed therein

correspond to those parameters d̃jkm , m ∈ {1, 2} (see Equations (3.12) and (3.13)), of

the two faces connected to the ith interior edge (refer to Equations (3.53) and (3.54)

in Section 3.4.1.3 for the mapping among such sets of variables).

Let Wjk and ψjk, j = 1, . . . , N I
N , k = 1, . . . , nMj , be the variables that define the

geometry of the edge module associated with the kth interior edge adjacent to the

jth interior node of M. The map from the sets of all the edge module variables Ŵi

and ψ̂i, i = 1, . . . , N I
E , to the sets Wjk and ψjk, j = 1, . . . , N I

N , k = 1, . . . , nMj , is

provided in Section 3.4.1.3 (see Equations (3.50) and (3.51)). The variables Wjk and

ψjk, k = 1, . . . , nMj , must be determined such that the faces of M] and the edge

modules associated with the jth interior node ofM form a closed strip in S0. If this

requirement is met, where a pair of faces inM is connected by an interior edge, their

associated faces in M] are connected in S0 by an edge module. Such a requirement

is associated with the following constraints:

Proposition 3.2. For the faces of M] and the edge modules associated with the jth

interior node of M to form a closed strip in S0, the following constraints must hold:

2π =

nM
j∑

k=1

φjk +

nM
j∑

k=1

ψjk, (3.15)
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kẑik
2

kẑik
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Figure 3.10: (a) Edge module and associated geometric parameters; (b) Modified
edge module accounting for the change in edge lengths due to face trimming; (c) Edge
module trimmed accounting for self-intersection avoidance at the goal configuration
S? (addressed in Section 3.3.2.1).
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and5:

03 =

nM
j∑

k=1


R3

(
k−1∑

l=1

(
ψjl
2

+ φjl +
ψj l+1

2

))

×




(djk21 − djk11) cos
(
ψjk
2

)

Wjk + (djk11 + djk21 − ‖zjk‖) sin
(
ψjk
2

)

0






.

(3.16)

Proof. Let bjk ∈ span(e1, e2), k = 0, . . . , nMj , be the corner position vectors of the

edge modules associated with the jth interior node ofM at the reference configuration

S0 (refer to Figure 3.11). The position vectors of two of the corners of the kth edge

module correspond to bj k−1 and bjk. These position vectors can be determined

5The matrix R3(φ) associated with a rotation by φ about an axis of rotation aligned to e3 is
defined in Equation (2.12).
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recursively as follows (refer to Figure 3.10(b)):

bjk = bj k−1 + R3

(
k−1∑

l=1

(
ψjl
2

+ φjl +
ψj l+1

2

))

×




(djk21 − djk11) cos
(
ψjk
2

)

Wjk + (djk11 + djk21 − ‖zjk‖) sin
(
ψjk
2

)

0



,

=
k∑

l=1




R3

(
l−1∑

m=1

(
ψjm

2
+ φjm +

ψj m+1

2

))

×




(djl21 − djl11) cos
(
ψjl
2

)

Wjl + (djl11 + djl21 − ‖zjl‖) sin
(
ψjl
2

)

0







+ bj0.

(3.17)

Consider the transport of a position vector from the face with corner angle φj k−1

to the face with corner angle φjk. The transformation associated with crossing the

edge module located between these two faces can be decomposed into a translation

by bjk − bj k−1 followed by a rotation of φjk + ψjk about an axis aligned to e3 and

crossing the point with position vector bjk. Such a transformation can be expressed
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in homogeneous coordinates as follows:

T(bjk)Q3(φjk + ψjk)T
−1(bjk)T(bjk − bj k−1) = T(bjk)Q3(φjk + ψjk)T

−1(bj k−1),

(3.18)

where Q3(φ) is the transformation matrix associated with a rotation by φ about an

axis aligned to e3 and T(b) is the transformation matrix associated with a transla-

tion by b. The elements of such transformation matrices are provided explicitly in

Equations (2.68) and (2.69), respectively. It follows that the composition of trans-

formations presented in Equation (3.18) associated with crossing the edge modules

with angles ψjk, k = 1, . . . , nMj , must be identity transformation for these surfaces,

along with the faces with corner angles φjk, k = 1, . . . , nMj , to form a closed strip:

I4 =

nM
j∏

k=1

T(bjk)Q3(φjk + ψjk)T
−1(bj k−1),

= T(bjn
M
j )Q3




nM
j∑

k=1

(φjk + ψjk)


T−1(bj0).

(3.19)

The equation above holds if
∑nM

j

k=1(φjk + ψjk) = 2πn with n ∈ Z. Specifically, n

must be equal to 1 for the closed strip to be developable [418] yielding the constraint

of equation (3.15). In addition to such a constraint, it is required that bjn
M
j = bj0

for Equation (3.19) to hold. Considering Equation (3.17), bjn
M
j = bj0 implies the

constraint in Equation (3.16).

Equation (3.16) implies that the addition of the vectors shown in Figure 3.11

must be equal to 03. This equation provides two scalar constraints because the third

component of such a vector equation is always equal to 0. Therefore, Equations
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bjk
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e2

 jk

�jk

(a) (b)

Figure 3.11: Subdomain of S0 associated with the jth interior node ofM: (a) Position
vectors of the edge module corner points; (b) Face corner and edge module angles.

(3.15) and (3.16) provide a total of 3N I
N equality constraints.

In addition to the loop closure constraints provided in Proposition 3.2, other con-

straints must be imposed to ensure that the geometry of each individual edge module

is valid. For instance, the interior fold (having fold width ŵI0
i , see Figure 3.10(a))

and the faces of an edge module degenerate to straight line segments if ψ̂i reaches

±π (refer to Figure 3.10(a)). Therefore, the following bounds must be imposed for

this variable:

−π < ψ̂i < π. (3.20)

Furthermore, the exterior folds (each having fold width ŵE0
i , see Figure 3.10(a))

of an edge module must not overlap with the interior fold. This requirement yields
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the following constraint (refer to Figures 3.10(a) and 3.10(b)):

Ŵi ≥ ŵI0
i + 2ŵE0

i cos
(
ψ̂i
2

)
+
∥∥ẑi
∥∥ sin

(∣∣∣ ψ̂i2
∣∣∣
)
−





(d̂i11 + d̂i21) sin
(
ψ̂i
2

)
; ψ̂i ≥ 0

(d̂i12 + d̂i22) sin
(
− ψ̂i

2

)
; ψ̂i < 0

.

(3.21)

Equation (3.21) and the upper and lower bounds of ψ̂i in Equation (3.20) provide

3N I
E inequality constraints.

Intersections are not allowed in valid configurations (cf. Definition 2.5) and must

be avoided when adjacent edge modules are tucked in the goal configuration S?. To

preclude such intersections in S?, certain regions of the edge modules are removed

(see Figure 3.10(c)) such that each edge module does not intersect any of its neigh-

boring edge modules. Such a process is denoted as edge module trimming and is

summarized in Section 3.3.2.1. Figure 3.12 shows the importance of the edge module

trimming process. If the edge module trimming process is not considered and the

edge module geometry is as given in Figure 3.10(b), adjacent edge modules intersect

at the goal configuration S? as observed in Figure 3.12(d). However, if the edge

module trimming process is considered and the geometry of the edge modules is as

illustrated in Figure 3.10(c), no intersections among adjacent edge modules occur

as shown in Figure 3.12(g). The angles τ̂ i1 and τ̂ i2, i = 1, . . . , N I
E , are introduced to

determine the trimmed regions the ith edge module as shown in Figure 3.10(c). The

process used to determine these angles is presented in the following section.

3.3.2.1 Edge module trimming

As previously stated, intersections among regions of the sheet are not allowed in

valid configurations (cf. Definition 2.5) and therefore must be avoided when adjacent
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(a) 

(b) 

Edge module trimming not considered 

Edge  module trimming considered 

(c) (d) 

M

(e) (f) (g) S0

S0

Figure 3.12: Example showing the need for edge module trimming. (a) A simple goal
mesh M. (b) and (e) Determined sheet designs S0. Edge module trimming is not
considered for the sheet design shown in (b) while such a process is considered for the
design in (e). (c)–(d), (f)–(g) Exterior and interior views of the goal configuration
S? for both cases. It is observed in (d) that if the edge module trimming process
described in Section 3.3.2.1 is not considered, the tucked edge modules intersect at
S?. If such a process is considered, adjacent edge modules do not intersect in S? as
shown in (g).
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edge modules are tucked in the goal configuration S?. Thus, certain regions of the

edge modules are trimmed such that each edge module does not intersect any of

its neighboring edge modules. The angles τ̂ i1 and τ̂ i2, i = 1, . . . , N I
E , are utilized to

determine the trimmed regions the ith edge module as shown in Figure 3.10(c). These

angles are determined from their corresponding values in the set of angles τjk, j ∈

{1, . . . , N I
N}, k ∈ {1, . . . , nMj }. The formulation for the angles τjk is summarized in

this section.

Unfolded and folded configurations of an edge module are illustrated in Fig-

ure 3.13(a). First, the normal vector associated with each edge incident to an interior

node of M that is denoted n̄jk ∈ R3, j = 1, . . . , N I
N , k = 1, . . . , nMj , is defined as

follows:

n̄jk :=
nj k−1 + njk

‖nj k−1 + njk‖ , (3.22)

where the face normal vectors njk are defined in Equation (3.4). It is noted that the

rigid faces of the tucked edge modules are located in planes parallel to that spanned

by zjk and n̄jk (see Figure 3.13(a)).

The direction of the intersection axis between any two planes containing adjacent

tucked edge modules is defined by the unit vector ωjkl ∈ R3, j = 1, . . . , N I
N , k =

1, . . . , nMj , l = 1, . . . , nMj :

ωjkl =





(n̄jk × zjk)× (n̄jl × zjl)

‖(n̄jk × zjk)× (n̄jl × zjl)‖ ; (n̄jk × zjk)× (n̄jl × zjl) 6= 0

n̄jl; (n̄jk × zjk)× (n̄jl × zjl) = 0

. (3.23)

As assumed in Equation (3.23), the vector n̄jl is utilized to define the vector
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⌧jk
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 jk

2

Figure 3.13: (a) Unfolded and folded configurations of an edge module. (b) View of
the plane spanned by n̄jk and zjk showing the intersection axis vector ωjkl and the
trim angle τjk respectively defined in Equations (3.23) and (3.26).

ωjkl in the case where the rigid faces of the kth and the lth tucked edge modules are

parallel.

The trim angle τjk is utilized to determine the trimmed regions of the kth edge

module associated with the jth interior node of M (see Figure 3.13(b)). The angles

τjk are determined through the following equations in order to prevent unnecessary

trimming of the edge modules:

1υjkl =





0;
−n̄jk · zjl ≤ 0 and

−n̄jl · zjk ≤ 0

−π
2

+





cos−1

(
zjk∥∥zjk
∥∥ · ω

jkl

)
; n̄jk · ωjkl ≥ 0

cos−1

(
− zjk∥∥zjk

∥∥ · ω
jkl

)
; n̄jk · ωjkl < 0,

; otherwise

,

(3.24)
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2υjkl =





1υjkl;
1υjkl ≤ 1υjlk

0; 1υjkl >
1υjlk

, (3.25)

τjk = max
l∈{1,...,nM

j }, l 6=k
(2υjkl). (3.26)

From Equation (3.24), it is noted that if −n̄jk · zjl ≤ 0 and −n̄jl · zjk ≤ 0, the

angles 1υjkl are set to 0 as no further trimming is required in such cases. In Equation

(3.25), the lower trim angle required to prevent intersections among each pair of edge

modules is selected while the larger is set to zero. Finally, in Equation (3.26), the

trim angle τjk required for an edge module to prevent intersections with all of its

adjacent edge modules is determined.

The angles τ̂ i1 and τ̂ i2, i = 1, . . . , N I
E , are introduced to determine the trimmed re-

gions the ith edge module as shown in Figure 3.10(c). These angles are obtained from

their corresponding values in the set of angles τjk, j ∈ {1, . . . , N I
N}, k ∈ {1, . . . , nMj }

(cf. Equation (3.26)). Each edge module must remain connected after edge trim-

ming. This requirement is satisfied if the following inequality holds for each edge

module (refer to Figure 3.10(c))6:

∥∥ẑi
∥∥ cos

(
ψ̂i
2

)
>

(
Ŵi

2
− ‖ẑi‖

2
sin
(
ψ̂i
2

))
tan
(〈
τ̂ i1 + ψ̂i

2

〉)

+
(
Ŵi

2
+ ‖ẑi‖

2
sin
(
ψ̂i
2

))
tan
(〈
τ̂ i2 − ψ̂i

2

〉)

+
(

max(d̂i11, d̂
i
21) + max(d̂i12, d̂

i
22)
)

cos
(
ψ̂i
2

)
.

(3.27)

6The Macaulay brackets are denoted as 〈·〉 and defined as: 〈y〉 =

{
y; y ≥ 0

0; y < 0
.
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It is noted that if (τ̂ i1 + ψ̂i/2) < 0 or (τ̂ i2 − ψ̂i/2) < 0, these angles are set to 0

to prevent any increase in area of the edge modules during this process. Equation

(3.27) yields the following constraint:

Ŵi <
2
(∥∥ẑi

∥∥−max(d̂i11, d̂
i
21)−max(d̂i12, d̂

i
22)
)

cos
(
ψ̂i
2

)

tan
(〈
τ̂ i1 + ψ̂i

2

〉)
+ tan

(〈
τ̂ i2 − ψ̂i

2

〉)

+

∥∥ẑi
∥∥ sin

(
ψ̂i
2

)(
tan
(〈
τ̂ i1 + ψ̂i

2

〉)
− tan

(〈
τ̂ i2 − ψ̂i

2

〉))

tan
(〈
τ̂ i1 + ψ̂i

2

〉)
+ tan

(〈
τ̂ i2 − ψ̂i

2

〉) .

(3.28)

The preceding equation provides N I
E additional inequality constraints.

In summary, the proposed design method introduces 2N I
E design variables cor-

responding to Ŵi and ψ̂i, i = 1, . . . , N I
E . The loop closure constraints (Equations

(3.15) and (3.16)) provide 3N I
N equality constraints. Equations (3.20), (3.21), and

(3.28) allowing for valid edge module geometries and self-intersection avoidance in

S? provide 4N I
E inequality constraints.

The vector of design variables D ∈ R2NI
E is defined as follows:

D :=




Ŵ1

...

ŴNI
E

ψ̂1

...

ψ̂NI
E




. (3.29)

The equality constraints (Equations (3.15) and (3.16)) are set to the form h =

03NI
N

while the inequality constraints (Equations (3.20), (3.21), and (3.28)) are set
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to the form g ≤ 04NI
E

7.

The problem statement for design of origami structures with smooth folds using

the present method can be stated as follows:

Find D

That minimizes f(D)

Subject to h = 03NI
N

g ≤ 04NI
E

and application-dependent constraints

(3.30)

where f(D) is an application-dependent function of the design variables that the user

wants to minimize.

The numerical procedure to be outlined in Section 3.4.2 used to determine a valid

design does not consider any function to minimize (i.e. it only iteratively corrects an

initial guess solution until the presented constraints are satisfied). However, other

methods can be utilized to determine a sheet design that satisfies the presented

constraints while minimizing a given function f(D).

The subsequent section describes the numerical implementation procedure used

to determine a set of design variables that satisfies the aforementioned equality and

inequality constraints.

3.4 Numerical Implementation

3.4.1 Mappings Among Sets of Parameters and Variables

Mappings among various sets of parameters and variables associated with the

implementation of the proposed design method are described in this section, which

7For numerical implementation, strict inequality constraints A < 0 in Equations (3.20) and
(3.28) are expressed as non-strict inequalities of the form A+ ε ≤ 0 where ε > 0.
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only considers the most important parameters and variables used throughout the

design method for the sake of brevity. It should be noted that every parameter

and connectivity matrix mentioned in this section can be obtained from the position

vectors of the nodes ŷi, i = 1, . . . , NN , and the connectivity matrix relating the

nodes of M to the nodes associated with each face Mj, j = 1, . . . , NM (formally

defined afterwards in Equation (3.40)).

3.4.1.1 Mesh Parameters

Let Ŷ ∈ R3NN be the vector constructed by concatenating the position vectors of

the nodes of M as follows:

Ŷ :=




ŷ1

...

ŷNN



. (3.31)

Also, let ẑi ∈ R3, i = 1, . . . , N I
E , be a vector along the length of the ith interior

edge of M. Furthermore, the vector Ẑ ∈ R3NI
E is constructed by concatenating the

vectors ẑi, i = 1, . . . , N I
E , as follows:

Ẑ :=




ẑ1

...

ẑN
I
E



. (3.32)

Define the connectivity matrix CEIN ∈ {−1, 0, 1}NI
E×NN with elements CEIN

ij as
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follows:

CEIN
ij :=





−1; ŷj is the position vector of the ith interior edge start-point

1; ŷj is the position vector of the ith interior edge end-point

0; otherwise, i.e. the point with position vector ŷj is not

connected to the ith interior edge

.

(3.33)

The mapping from the node position vectors ofM to the vectors along the length

of the interior edges of M is then compactly provided as follows:

Ẑ =
(
CEIN ⊗ I3

)
Ŷ. (3.34)

Let l̂ ∈ RNI
E be the vector constructed by collecting the trim lengths l̂i, i =

1, . . . , N I
E (calculated using Equation (3.6)):

l̂ :=




l̂1
...

l̂NI
E



. (3.35)

Also, let the vectors Ŵ , ψ̂ ∈ RNI
E be constructed by collecting the design variables

Ŵi and ψ̂i, i = 1, . . . , N I
E , respectively, as follows:

Ŵ :=




Ŵ1

...

ŴNI
E



, (3.36)
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ψ̂ :=




ψ̂1

...

ψ̂NI
E



, (3.37)

and let d̂mn ∈ RNI
E , m = 1, 2, n = 1, 2, be the vector constructed by collecting the

edge module parameters d̂imn (refer to Figure 3.10(b)), i = 1, . . . , N I
E , as follows:

d̂mn :=




d̂1
mn

...

d̂
NI

E
mn



. (3.38)

3.4.1.2 Face Parameters

Let Ỹ
j ∈ R3nCj , j = 1, . . . , NM, be the vector constructed by concatenating the

position vectors of the nodes corresponding to the corners of face Mj in counter-

clockwise ordering (see Figure 3.9(a)):

Ỹ
j

:=




ỹj1

...

ỹjn
C
j



. (3.39)

Define the connectivity matrices jCMN ∈ {0, 1}nCj ×NN , j = 1, . . . , NM, with

elements jCMN
ki , as follows:

jCMN
ki :=





1; ŷi is the position vector of the kth corner (in

counterclockwise order) of Mj

0; otherwise

. (3.40)
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The mapping from the position vectors of the nodes of M to those associated

with the corners of each face Mj is then given as follows:

Ỹ
j

=
(
jCMN ⊗ I3

)
Ŷ. (3.41)

Let l̃j ∈ RnCj , j = 1, . . . , NM, be the vectors constructed by collecting the trim

lengths l̃jk, k = 1, . . . , nCj (refer to Figure 3.9), as follows:

l̃j :=




l̃j1
...

l̃jnCj



. (3.42)

Define the connectivity matrices jCMEI ∈ RnCj ×NI
E , j = 1, . . . , NM, with elements

jCMEI
ki , as follows:

jCMEI
ki :=





1; the ith interior edge of M corresponds to the kth edge (in

counterclockwise order) of Mj

0; otherwise

.

(3.43)

Therefore, the mapping from the trim lengths of the interior edges ofM to those

associated with the edges of each face Mj is as follows:

l̃j = jCMEI l̂. (3.44)
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3.4.1.3 Interior Node Parameters and Variables

Let Zj ∈ R3nM
j , j = 1, . . . , N I

N , be the vector constructed by concatenating the

vectors zjk, k = 1, . . . , nMj (see Figure 3.7), as follows:

Zj :=




zj1

...

zjn
M
j



, (3.45)

and define the matrix jCNIEI ∈ {−1, 0, 1}nM
j ×NI

E , j = 1, . . . , N I
N , with elements

jCNIEI
ki , as follows:

jCNIEI
ki :=





1; zjk is a vector along the ith interior edge of M and emanates

from the ith interior edge start-point

−1; zjk is a vector along the ith interior edge of M and emanates

from the ith interior edge end-point

0; otherwise

.

(3.46)

The mapping from Ẑ and Ŷ, respectively defined in Equations (3.32) and (3.31),

to each vector Zj is given as:

Zj =
(
jCNIEI ⊗ I3

)
Ẑ

=
(
jCNIEI ⊗ I3

) (
CEIN ⊗ I3

)
Ŷ

=
((
jCNIEICEIN

)
⊗ I3

)
Ŷ.

(3.47)

Let W j,ψj ∈ RnM
j , j = 1, . . . , N I

N , be the vectors constructed by collecting the
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design variables for the edge modules associated with the jth interior node of M

(Wjk and ψjk, i = 1, . . . , nMj ) as follows:

W j :=




Wj1

...

WjnM
j



, (3.48)

ψj :=




ψj1
...

ψjnM
j



. (3.49)

The mappings from the edge module variables of all the interior edges of M to

those associated with the edges connected to the jth interior node ofM are given as:

W j =
∣∣jCNIEI

∣∣
∗ Ŵ , (3.50)

ψj = jCNIEI ψ̂, (3.51)

where | · |∗ : Rm×n → Rm×n
≥0 denotes the element-wise absolute value of a matrix (i.e.

[|Y|∗]ij = |Yij|) and the vectors Ŵ and ψ̂ are defined in Equations (3.36) and (3.37),

respectively.

Let jdmn ∈ RnM
j , j = 1, . . . , N I

N , m = 1, 2, n = 1, 2, be the vector constructed by

respectively collecting the edge module parameters djkmn, k = 1, . . . , nMj , as follows:

jdmn =




dj1mn
...

d
jnM
j

mn



, (3.52)
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and the mapping from d̂mn (refer to Equation (3.38)) to each vector jdmn is given

as follows:




jd11

jd22


 =




1
2

(∣∣jCNIEI
∣∣
∗ + jCNIEI

)
1
2

(∣∣jCNIEI
∣∣
∗ − jCNIEI

)

1
2

(∣∣jCNIEI
∣∣
∗ − jCNIEI

)
1
2

(∣∣jCNIEI
∣∣
∗ + jCNIEI

)






d̂11

d̂22


 , (3.53)




jd12

jd21


 =




1
2

(∣∣jCNIEI
∣∣
∗ + jCNIEI

)
1
2

(∣∣jCNIEI
∣∣
∗ − jCNIEI

)

1
2

(∣∣jCNIEI
∣∣
∗ − jCNIEI

)
1
2

(∣∣jCNIEI
∣∣
∗ + jCNIEI

)






d̂12

d̂21


 . (3.54)

3.4.2 Method of Solution

Given a goal meshM, the node coordinates ofM and the mesh connectivity data

(see Section 3.4.1) are utilized to compute all the geometric parameters presented in

Section 3.3. Afterwards, an iterative numerical procedure presented in this section

is used to determine a set of design variables Ŵi and ψ̂i, i = 1, . . . , N I
E , that satisfies

the proposed constraints.

Let R ∈ R3NI
N +4NI

E be the residual vector defined as follows:

R (D) :=




h (D)

max
(
04NI

E
, g (D)

)


 , (3.55)

where the max(·, ·) operator in the previous equation is applied component-wise

and the vector of design variables D is defined in Equation (3.29). The vectors of

equality and inequality constraints (h (D) and g (D), respectively) are defined in

Section 3.3.2. At the lth iteration, if ‖R(lD)‖/(3N I
N + 4N I

E ) ≥ tol (where tol is
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Table 3.2: Numerical procedure used to determine a set of design variables that
satisfies the constraints of the proposed design method. The design variables are
iteratively corrected until the presented constraints are satisfied.

1: Set l← 1 and provide initial guess 1D

2: Determine ‖R(lD)‖
3: IF ‖R(lD)‖/(3N I

N + 4N I
E ) < tol THEN RETURN lD and EXIT

ELSE CONTINUE

4: Determine l+1D using Equations (3.56) and (3.57)

5: Set l← l + 1 and GOTO 2

a numerical tolerance) the set of design variables is corrected using the generalized

Newton’s method as follows:

l∆D = −
(
∂R

(
lD
)

∂D

)†
R
(
lD
)
, (3.56)

l+1D = lD + l∆D, (3.57)

where (·)† denotes the Moore-Penrose pseudoinverse. Given an initial guess for 1D,

the set of design variables is iteratively updated as indicated in Equation (3.56) and

(3.57) until ‖R(lD)‖/(3N I
N +4N I

E ) < tol. Table 3.2 summarizes the procedure used

to determine a set of design variables that satisfies the constraints of the proposed

design method.

3.5 Discussion

A discussion of the requirements for the existence of valid sheet designs is pre-

sented in this section. Uniqueness of valid sheet designs is also discussed.

For the present design method to be applicable, the goal mesh M must be an
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orientable manifold mesh. The goal mesh M must be a manifold mesh because in

the present design method each edge inM is assumed to be located either at ∂M or

connecting two facesMj. Orientability ofM is also required since the faces ofM],

that have the same orientation as those ofM (see Proposition 3.1), are mapped into

a common plane in S0. Since S0 is orientable, M must also have this property.

The face trimming process described in Section 3.3.1 must not degenerate any face

ofM. This is clearly required because every faceMj and its associated trimmed face

Mj
] must have the same number of edges. The following corollary of Proposition 3.1

provides a practical way to check if such a requirement is met:

Corollary 3.1. The face trimming process does not degenerate any face Mj if and

only if the following conditions hold:

(
ỹj k+1 − ỹjk

)
·
(
ỹj k+1
] − ỹjk]

)
> 0 ⇔ ‖ỹj k+1 − ỹjk‖ − d̃jk1 − d̃jk2 > 0

∀ j ∈ {1, . . . , NM}, k ∈ {1, . . . , nCj }.
(3.58)

The expressions for d̃jk1 and d̃jk2 are provided in Equations (3.12) and (3.13). The

size of the trimmed regions increases proportionally to the width of the folds as

indicated in Equation (3.6). The increase of the size of the trimmed regions with

increase in fold widths is illustrated in Figure 3.14. For the special case of creased

folds that have zero fold width, face trimming is not required and such a requirement

is trivially satisfied (refer to the leftmost schematic in Figure 3.14). For any other

case where the width of the folds is non-zero, the size of the goal mesh is subject to
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Wider folds

Creased 

folds case

Figure 3.14: Trimmed faces associated with edge modules having smooth folds of
various fold widths. The leftmost mesh corresponds to the special case of creased
folds for which face trimming is not required.

the following constraint:

min
j∈{1,...,NM}, k∈{1,...,nCj }

‖ỹj k+1 − ỹjk‖ − d̃jk1 − d̃jk2 > 0. (3.59)

A solution to the equality constraints (Equations (3.15) and (3.16)) must be

contained within the bounds of the design variables (Equations (3.20), (3.21), and

(3.28)). The necessity for such a requirement is evident. The number of degrees of

freedom (Ndof) in the design problem is given as follows:

Ndof = 2N I
E − 3N I

N , (3.60)

where 2N I
E is the number of design variables Ŵi, ψ̂i, i = 1, . . . , N I

E , and 3N I
N is

the number of equality constraints. It is assumed in Equation (3.60) that there are
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no redundant equality constraints and that the inequality constraints in Equations

(3.20), (3.21), and (3.28) permit solutions to the system of Equations (3.15) and

(3.16). The number of interior edges N I
E is additively decomposed as follows:

N I
E = N I0

E +N I1
E +N I2

E , (3.61)

where N Im
E , m ∈ {0, 1, 2}, is the number of interior edges connected to m interior

nodes. Also consider the following equality:

n̄MN I
N =

NI
N∑

j=1

nMj = 2N I2
E +N I1

E , (3.62)

where n̄M is the average valence of the interior nodes inM (i.e. the average number

of edges incident to the each interior node). Substituting Equations (3.61) and (3.62)

into Equation (3.60), the following relation between degrees of freedom and number

of interior edges is obtained:

Ndof =

(
2− 6

n̄M

)
N I2
E +

(
2− 3

n̄M

)
N I1
E + 2N I0

E . (3.63)

For example, a structured triangular mesh with n̄M = 6 has Ndof = N I2
E +

(3/2)N I1
E + 2N I0

E which is always greater than 0 and a structured quadrilateral mesh

with n̄M = 4 has Ndof = (1/2)N I2
E + (5/4)N I1

E + 2N I0
E which is also always greater

than 0. Therefore, the existence of a set of design variables Ŵi, ψ̂i, i = 1, . . . , N I
E , that

satisfies the design constraints is generally dependent on the inequality constraints

(Equations (3.20), (3.21), and (3.28)).

Another requirement is that S0 must not have any overlapping regions. This is

needed since the reference configuration S0 must be planar and having no overlapping

subdomains (refer to Section 2.2). The following proposition provides a requirement
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on M that prevents overlaps of adjacent edge modules having a common interior

node:

Proposition 3.3. To prevent overlaps of adjacent edge modules in S0 associated

with a common interior node in M, the face angles associated with such an interior

node must satisfy the following constraint:

φjk ≤ π ∀ j ∈ {1, . . . , N I
N}, k ∈ {1, . . . , nMj }. (3.64)

If a face angle of an interior node in M is concave (i.e. if φjk > π), the edge

modules connected to such an interior node overlap in S0, which is not allowed. Fig-

ure 3.15 illustrates this requirement. Overlaps in S0 are partially precluded provided

that Equation (3.64) holds for a goal meshM and Equation (3.21) holds for each edge

module. However, no conditions preventing overlaps of edge modules not sharing a

common node, nor preventing overlaps among surface subdomains not associated

with a common interior edge, are currently considered in the present design method.

Nevertheless, it is shown in Section 3.7 that the considered constraints and imple-

mentation of the proposed design method successfully allow for the determination of

sheet designs S0 free of overlapping for goal meshes of various complexities.

For a valid design, it is also required that S? must be a valid configuration (see

Definition 2.5). This requirement is partially accounted for through the edge module

trimming procedure (refer to Section 3.3.2.1) that prevents intersections of edge

modules associated with a common interior node ofM at S?. However, no constraints

are currently imposed to preclude intersections of subdomains of S? that are not

associated to a common interior node inM. Nonetheless, it is also shown in Section

3.7 that the proposed design method successfully allows for the determination of goal
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(a) (b) 

�jk < ⇡

�jk > ⇡

Figure 3.15: (a) Edge modules connected to a face with a convex face angle. (b)
Edge modules connected to a face with a concave face angle.

configurations S? having no overlaps for goal meshes of various complexities.

Finally, for a valid design it is required that there is a continuous set of valid

configurations from the reference configuration to the goal configuration: {St, 0 <

t < tf | Stf = S?}. The procedure for kinematic simulation of the designed sheets to

be described in Section 3.6 permits the determination of valid intermediate configu-

rations between S0 and S?. Although a continuous set of valid configurations is not

obtained using such a numerical procedure, a discrete set containing an arbitrary

number of intermediate configurations can be determined.

Regarding the uniqueness of valid designs, assuming that the inequality con-

straints in Equations (3.20), (3.21), and (3.28) allow for a valid design solution, such

a solution is not unique because in general Ndof > 0 (refer to Equation (3.63)). One

global measure to discriminate among various design solutions and drive toward a

possible unique solution is referred to as the surface area efficiency E and is defined

171



as follows:

E :=
Area(M)

Area(S0)
. (3.65)

The numerical procedure outlined in Section 3.4.2 used to determine a valid de-

sign does not consider any function to minimize or maximize (i.e. it only iteratively

corrects an initial guess solution until the presented constraints are satisfied). How-

ever, other methods can be utilized to determine a sheet design that satisfies the

presented constraints while optimizing a given function (e.g. maximize surface area

efficiency E). Such extensions are application-dependent and are recommended for

future studies. An alternative formulation of the design method utilized to maximize

the value of E in Appendix D.

3.6 Determination of Folding Sequence

The determination of a folding sequence allowing for folding motion from S0 to-

wards S? is considered here. The kinematic simulation approach for origami with

smooth folds and its associated numerical implementation utilized herein are de-

scribed in detail in Section 2. The simulation of the folding motion is executed by

incrementally updating the values of the fold angles using guess increments and then

iteratively applying any required corrections (see Section 2.2.6) such that the result-

ing folded configuration is valid (i.e. the kinematic constraints presented in Equation

(2.97) are met for every fold intersection).

Let θ̂? ∈ R3NI
E be the vector constructed by collecting the values of the fold

angles for each smooth fold at the goal configuration S?. The goal fold angle for the

interior fold of each edge module is equal to π while those for the exterior folds are

equal to −Θ̂i/2 (refer to Figure 3.8). In the reference configuration S0, all the fold

angles are equal to 0. The simulation of the sheet folding motion uses a fold and
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adjust approach and is performed in Nfol +Nadj increments. The Nfol guess fold angle

increments (INl∆θ̂) are simply given as follows:

IN
l∆θ̂ =

θ̂?

Nfol

∀ l ∈ {1, . . . , Nfol}. (3.66)

Since the set of fold angles at each increment is subject to iterative corrections

to ensure that the kinematic constraints presented in Equation (2.97) are met, the

configuration determined at the Nfol increment may not exactly correspond to S?.

As such, Nadj adjusting increments are subsequently applied. These corrective fold

angle increments are calculated as follows:

IN
l∆θ̂ = θ̂? − l−1θ̂ ∀ l ∈ {Nfol + 1, . . . , Nfol +Nadj}. (3.67)

Note that this framework allows for the determination of an arbitrary number

(Nfol +Nadj−1) of valid intermediate configurations between S0 to S?, and represents

another contribution of the present work (i.e. simulation of the motion between

reference and goal configurations was not addressed in related works [9, 391] and

it is remarked that this work is also applicable to origami with creased folds). The

simple set of fold angle increments provided in Equations (3.66) and (3.67) is effective

for the determination of a folding motion from S0 to S? in all the examples presented

in this work. However, it is not guaranteed to work for any arbitrary goal mesh

or sheet reference configuration. For information on more complex motion planning

procedures for origami the reader is referred to [406, 407, 408, 409, 410].

3.7 Implementation Results

The proposed design method for origami structures with smooth folds is now

tested against various goal meshes with diverse geometries. The numerical solution
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procedure for the proposed design method described in Section 3.4 and for deter-

mination of a folding sequence outlined in Section 3.6 are implemented in Matlab.

The smooth folds are visualized using the Matlab three-dimensional shaded surface

plot function surf and the rigid faces and goal meshes are visualized through filled

three-dimensional polygons using fill3. Smooth folds having G2 continuity are

considered in all the examples presented in this section (refer to Figure 2.7).

A reference configuration S0 determined using the proposed design method and

the corresponding goal configuration S? for a goal mesh M having interior nodes of

positive discrete Gaussian curvature [415, 416] is presented in Figure 3.16. A goal

mesh having interior nodes of negative discrete Gaussian curvature is considered in

Figure 3.17.

Variations of the goal mesh shown in Figure 3.16 and their determined sheet

reference configurations are shown in Figure 3.18. Using the kinematic simulation

approach presented in Section 3.6, it is verified that each sheet reference configuration

in Figure 3.18 folds towards their corresponding goal configuration S?, although not

shown here for the sake of brevity.

To illustrate the non-uniqueness of determined sheet reference configurations dis-

cussed in Section 3.5, three determined sheet reference configurations associated with

a single goal mesh are presented in Figure 3.19. These different solutions are obtained

by considering different initial guesses for the sheet design variables in the iterative

solution procedure utilized in this work (described in Section 3.4). Values of sur-

face area efficiency E, defined in Equation (3.65), for the determined sheet reference

configurations are also included in Figure 3.19.

A more complex example of a torus goal shape is presented in Figure 3.20. Two

different discretizations of the goal shape are provided in Figure 3.20(a). The design

method successfully generates sheet designs for both discretizations as shown in Fig-
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M

S0 S?

Figure 3.16: Goal mesh having nodes of positive discrete Gaussian curvature and its
associated determined sheet reference configuration and folded goal configuration.
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M

S0 S?

Figure 3.17: Goal mesh having nodes of negative discrete Gaussian curvature and its
associated determined sheet reference configuration and folded goal configuration.
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M

S0

Figure 3.18: Various of a goal shapes and their corresponding goal meshes and
determined sheet designs.

ure 3.20(b). The complex folding motion determined through kinematic simulation of

one of the designs is shown in Figure 3.20(c). Furthermore, Figures 3.21(a)-(c) show

the successful design/simulation results for a goal mesh associated with a sinusoidal

tessellation.

The proposed method is not limited to triangulated meshes as the only condition

on the shape of the faces in M is that they must be convex (see Proposition 3.3).

Figure 3.22 shows an example of a reference configuration and folding deformation

associated with a goal mesh comprised of quadrilaterals while Figure 3.23 shows the

results for a goal mesh comprised of both octagons and triangles.

3.8 Summary and Concluding Remarks

A method for the design of origami structures with smooth folds was presented in

this section. The method is based on the known idea of using folds to create flaps that

177



M S?, E = 0.56

S0, E = 0.71 S0, E = 0.56 S0, E = 0.41

Figure 3.19: A goal mesh and three determined sheet reference configurations with
different values of surface area efficiency E. The goal configuration S? associated
with the sheet reference configuration having E = 0.56 is also shown.

are tuck folded to morph an initially planar sheet into an arbitrary three-dimensional

goal shape represented as a polygonal mesh. The method solves the origami design

problem of determining the geometry of the planar reference configuration of a sin-

gle sheet including a pattern of smooth folds that allow for the approximation of a

goal mesh through such a tuck-based folding. A description of the design variables,

design constraints, and a numerical solution procedure are provided. Furthermore,

a folding sequence allowing for folding motion from the determined sheet reference

178



8×8 discretization 12×12 discretization 

Folding deformation, 8×8 discretization 

(a) 

(b) 

(c) 

M M

S0 S0

Stf
= S?

Figure 3.20: (a) Two mesh discretizations of a torus; (b) Determined sheet reference
configurations for the two discretizations shown in (a); (c) Folding motion for the
sheet reference configuration obtained from the 8×8 mesh discretization of the torus.
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(a) 

(b) 

(c) 

Folding deformation 

M

S0

Stf
= S?

Figure 3.21: (a) Goal mesh representing a sinusoidal tessellation; (b) Determined
sheet reference configuration; (c) Folding motion towards the goal configuration.
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Folding deformation 

M

S0

S?

Figure 3.22: Determined sheet design and folding deformation associated with a goal
mesh comprised of quadrilaterals.

configuration to a folded configuration that approximates the goal mesh is also de-

termined. For origami design problems in which the goal shape is a not a polyhedral

surface (e.g. a smooth surface), the process to determine a mesh discretization of

such a surface before the utilization of the method presented in this section must

be addressed. Multiple algorithms for obtaining polygonal mesh discretizations of

smooth surfaces are available in the literature [437, 438].

A number of conclusions can be drawn based on the developed theory and the ob-

tained results. First, the design method successfully provides fold patterns that can
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Folding deformation 

M

S0

S?

Figure 3.23: Determined sheet design and folding deformation associated with a goal
mesh comprised of octagons and triangles.
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be realized with diverse engineering materials (e.g. metals, glassy polymers, active

materials) due to the consideration of arbitrary order of continuity Gn at the folds,

as opposed to G0 creased folds idealizations available in the literature. The method

was tested on goal meshes of various geometries and complexities, yielding successful

results for each. Second, comprehensive origami design/simulation is achieved using

the presented framework that includes both the design method and the kinematic

simulation of the determined sheet designs. This framework allows for the determi-

nation of an arbitrary number of intermediate valid configurations between reference

and goal configurations. Such a comprehensive origami design/simulation framework

represents another contribution of the present work and is applicable to both origami

with smooth folds and conventional origami with creased folds.
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4. STRUCTURAL MECHANICS OF ORIGAMI BODIES WITH SMOOTH

FOLDS

As reviewed in Section 1, origami has the potential to impact numerous fields in

engineering by providing new approaches to the fabrication and morphing of various

structures and devices. Modeling the structural mechanics of origami bodies is of

special interest in the engineering community [319, 321]. It allows for the analysis

and design of origami structures taking into account the constitutive behavior of their

comprising materials and the influence of the external environment on the resulting

folding response.

As discussed in Section 1.4, most available models for the structural mechanics

of origami bodies are limited to the idealization of folds as creases of G0 continu-

ity, which is not proper for origami structures having non-negligible fold thickness

or with maximum curvature at the folds restricted by material limitations [350].

Structural analysis of origami bodies having creased folds requires further ideal-

izations of the mechanical response such as the representation of the folds as tor-

sional springs [319, 321, 348]. On the other hand, although FEA models allow for

high-fidelity physical simulation of origami structures having arbitrary thickness, the

mathematical insights provided in the classical approaches of origami (e.g. geomet-

ric constructions [270]) are lost in the generality of FEA. Moreover, the kinematic

variables associated with FEA models such as node displacements are not generally

compatible with those of conventional origami such as fold angles (refer to Sec-

tion 2.1).

In view of this, a novel model for the structural mechanics of origami bodies hav-

ing smooth fold domains of non-zero thickness is presented in this section. The pre-
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sented structural model is developed on the basis of the kinematic model for origami

structures with smooth folds described in Section 2. The arbitrary order of geometric

continuity (Gn) of the smooth fold surfaces described in Section 2.2.1 allows for a

proper structural analysis of smooth fold domains having non-zero thickness using

plate or shell representations (in contrast to torsional spring representations used

for creased folds [319, 321, 348]). Furthermore, the present model considers kine-

matic variables (e.g. fold angles) and constraints analogous to those of conventional

origami with creased folds1. The present model is derived independently from the

behavior of the materials comprising the origami structures; therefore, it is useful

for both origami structures having regions comprised of passive materials (e.g. elas-

tic, elastoplastic) as well as those having regions comprised of active materials. As

such, the present model is useful for the analysis of active material-based self-folding

structures such as those reviewed in Section 1.2.

The organization of this section is as follows: the kinematic assumptions regard-

ing the strain field in origami bodies with smooth fold domains of non-zero thickness

are presented in Section 4.1. The governing field equations and the structural mod-

eling approach considered in this work are presented in Section 4.2. A model for

the structural mechanics of origami bodies having smooth fold domains of non-zero

thickness comprised of arbitrary materials is presented in Section 4.3. The design

method presented in Section 3 is then revisited and extended in Section 4.4 for the

design of active self-folding structures (see Section 1.1.1) that morph towards arbi-

trary three-dimensional goal shapes via simultaneous folding starting from a planar

reference configuration. Finally, a summarizing discussion of the section is provided

in Section 4.5.

1It is remarked that the kinematic constraints for origami with creased folds reviewed in Sec-
tion 2.1.2 represent a special case of those derived for origami with smooth folds in Section 2.2.3.
(refer to Appendix C).
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4.1 Smooth Fold Domains and Plate Kinematics

A plate structural representation is used to model origami structures with smooth

fold domains having non-zero thickness. The sheet surface S0 (refer to Section 2.2)

is taken as the mid-surface of the plate representation for the origami structure.

As stated in Section 2, the sheet surface S0 contains NP faces (P1
0 , . . . ,PNP

0 ) and

NF smooth folds (F1
0 , . . . ,FNF

0 ) (i.e. the fold intersections surfaces introduced in

Section 2.2 are not considered herein). Since the faces are assumed rigid (see Defini-

tion 2.5), the only domains that may undergo non-rigid deformations are the smooth

folds and therefore the focus of this section is on these smooth fold domains.

A schematic of the plate structural representation for the smooth fold domains

of non-zero thickness is provided in Figure 4.1. At the reference configuration, the

ith smooth fold domain in the structure has mid-surface F i0 and thickness hi. At a

current configuration, the ith smooth fold domain has mid-surface F it and thickness

hi (i.e. the thickness is assumed constant during deformation). The smooth fold

domains have a parameterization Fi(ζ1, ζ2, ζ3) ∈ R3 of the following form:

Fi(ζ1, ζ2, ζ3) = ĉi(ζ1) + ζ2h
i + ζ3

hi × dĉi(ζ1)
dζ1∥∥∥hi × dĉi(ζ1)
dζ1

∥∥∥

= F i(ζ1, ζ2) + ζ3

hi × dĉi(ζ1)
dζ1∥∥∥hi × dĉi(ζ1)
dζ1

∥∥∥
,

(4.1)

where ζ3 ∈
[
−hi

2
, hi

2

]
is the coordinate through the thickness of the ith smooth fold

domain, and F i(ζ1, ζ2) ∈ R3 is a parameterization of the smooth fold surface F it
(corresponding to the mid-surface of the ith smooth fold domain). Recalling Defi-

nition 2.6, the intervals for the parameters ζ1 and ζ2 are taken as [−1, 1] and [0, 1],

respectively.
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ŵ 0
i

Figure 4.1: Plate structural representation of an origami structure of non-zero thick-
ness (reference configuration shown): (a) Mid-surface of the structure corresponding
to S0; (b) Smooth fold surface F i0 corresponding to the mid-surface of the ith smooth
fold domain; (c) Continuum smooth fold domain having thickness hi and mid-surface
F i0.
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In this work, only folds comprised of materials that exhibit relatively small strains

(∼5% or less) are considered. Therefore, the second-order linearized strain tensor ε

is used as the measure for non-rigid deformation [439]. The tensorial components

of any field quantity for each smooth fold domain are expressed in their associated

coordinate system with basis {êi1, êi2, êi3} (defined in Section 2.2.1) at the reference

configuration (refer to Figures 4.1(b)–(c)). Making use of the classical plate the-

ory [354], the only considered components of ε are assumed to linearly vary through

the thickness of each smooth fold domain as follows [354]:




ε11

ε22

ε12




=




ε110

ε220

ε120



− ζ3




κ11

κ22

κ12



, (4.2)

where εmn0 are the in-plane strains at the mid-surface, and κmn are the curvatures of

the mid-surface. Thus, the strain field of the entire smooth fold domain of non-zero

thickness depends only on the deformation of its mid-surface.

Reference and current configurations of the smooth fold surface (F i0 and F it ,

respectively) associated with the ith smooth fold domain are shown in Figure 4.2. It is

stated in Section 2.2 that ‖hi‖ is constant upon deformation and hence it is assumed

that the normal strain along the 1-direction is 0. It is also noted that dĉi(ζ1)
dζ1
· hi =

0 holds at any configuration and therefore the shear strain along the 12-plane is

also assumed 0 everywhere in the smooth fold domain (refer to Definition 2.6). In

summary:

ε11 = 0, (4.3)
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ε22 = ε220 − ζ3 κ22, (4.4)

ε12 = 0. (4.5)

êi
2

êi
3

êi
1

F i
0

F i
t

hi

hi

ĉ i
(⇣1)

ĉ i
(⇣1)

Figure 4.2: Reference and current configurations of a smooth fold surface (F i0 and
F it , respectively).

To simplify the notation, ε22, ε220 , and κ22 are denoted as ε, ε0, and κ, respectively.

Following the approach presented in Section 2.2.5 to determine the shape of the

smooth fold cross-section curve ĉi(ζ1), by making assumptions on the form of the

extensibility field ε0 and curvature field κ for each smooth fold, the shape of each
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smooth fold is fully defined by its fold angle θ̂i and its arc-length ŝi. Therefore:

ε(θ̂i, ŝi) = ε0(θ̂i, ŝi)− ζ3 κ(θ̂i, ŝi). (4.6)

Thus, the strain components of every smooth fold domain expressed in their

associated coordinate system with basis {êi1, êi2, êi3} are given as follows:




ε11

ε22

ε12




=




0

ε(θ̂i, ŝi)

0




=




0

ε0(θ̂i, ŝi)− ζ3 κ(θ̂i, ŝi)

0



.

(4.7)

Although not explicitly stated, it is noted that ε0 and κ are fields that in general

may vary along the ζ1 coordinate of the smooth fold. The derivatives of the strain

ε(θ̂i, ŝi) with respect to θ̂i and ŝi are utilized later in this section and they are simply

given as follows:

∂ε(θ̂i, ŝi)

∂θ̂i
=
∂ε0(θ̂i, ŝi)

∂θ̂i
− ζ3

∂κ(θ̂i, ŝi)

∂θ̂i
, (4.8)

∂ε(θ̂i, ŝi)

∂ŝi
=
∂ε0(θ̂i, ŝi)

∂ŝi
− ζ3

∂κ(θ̂i, ŝi)

∂ŝi
. (4.9)

The mid-surface strain and curvature fields ε0(θ̂i, ŝi) and κ(θ̂i, ŝi) must satisfy

the continuity conditions of the assumed order of geometry continuity of the smooth

folds. Additionally, the following kinematic relations hold for any fields ε0(θ̂i, ŝi) and
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κ(θ̂i, ŝi) regardless of the order of geometry continuity:

ŝi − ŵ0
i =

∫ ŵ0
i

2

−
ŵ0
i

2

ε0 ds, (4.10)

θ̂i =

∫ ŵ0
i

2

−
ŵ0
i

2

κ ds. (4.11)

The continuity conditions for smooth folds exhibiting G1 and G2 continuity are

provided in Section 2.2.1. For smooth folds exhibiting G1 continuity, the mid-surface

strain and curvature fields (ε0(θ̂i, ŝi) and κ(θ̂i, ŝi), respectively) are assumed uniform

throughout the fold. Also, for smooth folds exhibiting G2 continuity, ε0(θ̂i, ŝi) and

κ(θ̂i, ŝi) are assumed to have a quadratic form with respect to the arc-length of

ĉi(ζ1) (refer to Figure 2.7). Such a quadratic form allows for the satisfaction of the

conditions for G2 continuity (i.e. zero curvature at the ends of the curve ĉi(ζ1)).

Making use of the relations provided in Equations (4.10) and (4.11), the following

expressions for ε0(θ̂i, ŝi) and κ(θ̂i, ŝi) are obtained for smooth folds exhibiting G1

continuity:

ε0(θ̂i, ŝi) =
ŝi − ŵ0

i

ŵ0
i

, (4.12)

κ(θ̂i, ŝi) =
θ̂i
ŵ0
i

, (4.13)

and the following expressions for ε0(θ̂i, ŝi) and κ(θ̂i, ŝi) are obtained for smooth folds

exhibiting G2 continuity:

ε0(θ̂i, ŝi) =
3

2

(ŝi − ŵ0
i )((ŵ

0
i )

2 − 4s2)

(ŵ0
i )

3
, (4.14)
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κ(θ̂i, ŝi) =
3

2

θ̂i((ŵ
0
i )

2 − 4s2)

(ŵ0
i )

3
, (4.15)

where s ∈
[
− ŝi

2
, ŝi

2

]
is the arc-length coordinate of the curve ĉi(ζ1) defined in Equa-

tion (2.23). It is remarked that ŝi = ŵ0
i at the reference configuration S0. It is

straightforward to show that the mid-surface strain and curvature fields in Equa-

tions (4.12)–(4.15) satisfy the relations provided in Equations (4.10) and (4.11).

4.2 Modeling Approach

In this section, the governing field equations used to determine the mechanical

response of origami continuum bodies with smooth fold domains are briefly reviewed.

Such field equations arise from the law of conservation of linear momentum and the

law of conservation of angular momentum [439, 440]. Since linearized strains are

assumed in this work, no specific distinction between reference and current config-

urations is considered in this section to simplify the notation. The boundary value

problem and modeling approaches for the structural mechanics of continuum bod-

ies considered in this work are presented afterwards. This section is intended as a

review of such conservation laws and structural modeling approaches. For detailed

information on these topics, the reader is referred to [351, 439, 440, 441].

4.2.1 Governing Equations

In order to model the mechanical response of origami structures with smooth fold

domains, the law of conservation of linear momentum and the law of conservation

of angular momentum must be considered [4]. The law of conservation of linear

momentum states that the time rate of change of linear momentum of a continuum

body is equal to the sum of the surface and body forces applied to it [4]. The integral
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form of the conservation of linear momentum is given as follows [4]:

D

Dt

(∫

Ω

ρv dv

)
=

∫

Ω

b dv +

∫

∂Ω

t da, (4.16)

where Ω is the region occupied by the material body, ∂Ω is the boundary of Ω, D
Dt

denotes the material time derivative, ρ is the mass density of a material point, v is

the velocity vector of a material point, b is the body force vector, and t is the surface

traction vector. The pointwise form of the conservation of linear momentum is given

as follows [4]:

∇ · σ + b = ρv̇, (4.17)

where σ is the second-order Cauchy stress tensor and ∇ · σ denotes the divergence

of σ [351]. The acceleration of the material point is denoted as v̇ where (˙) repre-

sents the material time derivative operation. Quasi-static deformation is assumed in

this work. The pointwise form of the conservation of linear momentum provided in

Equation (4.17) for the case of quasi-static deformation is given as follows:

∇ · σ + b = 03. (4.18)

The law of conservation of angular momentum states that the time rate of change

of angular momentum of a continuum body is equal to the sum of the moments

applied by surface and body forces in addition to body couples [4]. If there are no

body couples, as in all the examples considered in this work, the integral form of the

conservation of angular momentum is given as follows [4]:

D

Dt

(∫

Ω

X× ρv dv

)
=

∫

Ω

X× b dv +

∫

∂Ω

X× t da, (4.19)
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where X is the position vector of a material point. The pointwise form of the con-

servation of angular momentum states that the second-order Cauchy stress tensor is

symmetric:

σ = σ>. (4.20)

Only governing equations arising from conservation of linear and angular mo-

mentum are taken into account in the model presented in this section. Even though

structures comprised of materials exhibiting thermomechanical coupling (e.g. SMAs)

are considered herein, the introduced field variables such as temperature T are taken

as given and thus conservation of energy [4] is not considered within the governing

equations.

4.2.2 Boundary Value Problem

In the problems addressed in this section, the objective is to determine the quasi-

static deformation of origami bodies with smooth folds subject to certain boundary

conditions. First, let the boundary of Ω be partitioned into the boundaries ∂Ωu and

∂Ωσ such that:

∂Ωu ∪ ∂Ωσ = ∂Ω, (4.21)

∂Ωu ∩ ∂Ωσ = ∅, (4.22)

where ∂Ωu is the boundary of the region occupied by the material body where dis-

placement boundary conditions are applied, ∂Ωσ is the boundary of the region oc-

cupied by the material body where traction boundary conditions are applied, and ∅

denotes an empty set.
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The boundary value problem statement applicable to all the problems considered

in this section is given as follows:

Find

Subject to

u ∀X ∈ Ω, t ≥ 0

∇ · σ + b = 03, ∀X ∈ Ω, t ≥ 0

u = ū, ∀X ∈ ∂Ωu, t ≥ 0

σn = t̄, ∀X ∈ ∂Ωσ, t ≥ 0

Ξ = Ξ̄, ∀X ∈ Ω, t ≥ 0,

(4.23)

where ū is the vector field of applied boundary displacements, t̄ is the vector field

of applied boundary tractions, n is the boundary unit normal vector, Ξ represents

other physical fields in the material body (e.g. the absolute temperature field), and

Ξ̄ represents other physical field variables imposed in the material body (e.g. the

applied absolute temperature field).

The governing field equation of the boundary value problem in Equation (4.23)

arises from conservation of linear momentum (cf. Equation (4.18)). The other condi-

tions stated in Equation (4.23) correspond to the boundary conditions of the problem.

These boundary conditions appear in the form of applied boundary displacements ū

or applied boundary tractions t̄, and applied field variables Ξ̄. Although not stated

explicitly in Equation (4.23), it is assumed beforehand that the second-order Cauchy

stress tensor σ is symmetric to satisfy conservation of angular momentum (Equation

(4.20)).
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4.2.3 Structural Modeling Approach

Variational approaches are powerful tools for the development of exact or approx-

imate solutions to problems in structural mechanics of continuum bodies [351, 440]

(e.g. FEA). A variational approach is employed herein to determine approximate

solutions for the deformation of origami structures with smooth fold domains.

The principle of virtual work states that a continuum body is in mechanical

equilibrium (i.e. the field equation and boundary conditions in Equation (4.23) are

satisfied) if and only if the virtual work of all forces, internal and external, acting on

the body is zero given a virtual displacement [351]:

δW = δWI − δWE = 0, (4.24)

where δW represents the virtual work of all internal and external forces given a

virtual displacement, δWI is the virtual work of all internal forces given a virtual

displacement, and δWE is the virtual work of all external forces given a virtual

displacement. Their formulation is as follows2:

δWI =

∫

Ω

σ : δε dv, (4.25)

δWE =

∫

Ω

b · δu dv +

∫

∂Ω

t · δu da, (4.26)

where δu is the virtual displacement and δε is the virtual strain increment due to

2 (· : ·) denotes the inner product of two second-order tensors. If such tensors are expressed in

an orthonormal coordinate system, their inner product is given as Y : Z =
∑3

m=1

∑3
n=1 YmnZmn.
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the virtual displacement:

δε =
1

2

(
∇(δu) +∇(δu)>

)
, (4.27)

and ∇(δu) denotes the gradient of δu. The virtual displacements are null on the

boundary ∂Ωu where displacements are applied through boundary conditions:

δu = 03 ∀X ∈ ∂Ωu. (4.28)

To show that the principle of virtual work is equivalent to the boundary value

problem statement in Equation (4.23), the following is first considered by taking into

account Equations (4.25)–(4.28):

0 = δW

= δWI − δWE

=

∫

Ω

σ : δε dv −
∫

Ω

b · δu dv −
∫

∂Ω

t · δu da

=

∫

Ω

σ : δε dv −
∫

Ω

b · δu dv −
∫

∂Ωσ

t̄ · δu da.

(4.29)

The following is then obtained by considering the relation between stress and

traction vector t = σn and the symmetry of the Cauchy stress tensor due to conser-
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vation of angular momentum:

t̄ · δu = (σn) · δu

= (σ>δu) · n

= (σδu) · n.

(4.30)

After substituting Equation (4.30) into Equation (4.29) and then using the di-

vergence theorem, the following is obtained:

0 =

∫

Ω

σ : δε dv −
∫

Ω

b · δu dv −
∫

∂Ωσ

(σδu) · n da

=

∫

Ω

σ : δε dv −
∫

Ω

b · δu dv −
∫

Ω

∇ · (σδu) dv

=

∫

Ω

(
σ : δε− b · δu−∇ · (σδu)

)
dv.

(4.31)

Considering Equation (4.27) and the symmetry of σ, the following is finally de-

termined:

0 =

∫

Ω

(
σ : δε− b · δu− σ : ∇(δu)− (∇ · σ) · δu

)
dv

=

∫

Ω

(
σ : δε− b · δu− σ : δε− (∇ · σ) · δu

)
dv

=

∫

Ω

(
− (∇ · σ + b) · δu

)
dv,

(4.32)

cf. Equation (4.23). Thus, the principle of virtual work is equivalent to the boundary

value problem statement presented in Equation (4.23). Such a principle is utilized in

the following sections to determine approximate solutions for origami bodies having
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smooth fold domains of non-zero thickness. It is noted that the principle of vir-

tual work in Equation (4.24) does not consider any assumptions on the constitutive

behavior of the material(s) comprising the continuum body. Therefore, it is appli-

cable to any continuum body having arbitrary constitutive behavior [351] so long

as strains are small enough such that the linearized strain tensor can be utilized to

properly model the deformation. The principle of virtual work is utilized in the fol-

lowing section for the modeling of origami structures having smooth folds comprised

of arbitrary materials.

4.3 Structural Mechanics Model Formulation

4.3.1 Model Development

The principle of virtual work described in the previous section is utilized here to

develop a model for the structural mechanics of origami structures with smooth fold

domains comprised of arbitrary materials.

The plate kinematics addressed in Section 4.1 lead to a displacement field defined

by the deformation of the mid-surface of the origami body. Such a mid-surface

corresponds to the origami sheet surface addressed in the kinematic model for origami

with smooth folds developed in Section 2. The configuration of such an origami

sheet is fully defined by the fold angles and fold arc-lengths of every smooth fold

in the sheet. Therefore, the displacement field u(X) of an origami structure with

smooth fold domains is a function of θ̂i and ŝi, i = 1, . . . , NF . The vector θ̂ ∈ RNF

constructed by collecting the fold angles θ̂i, i = 1, . . . , NF , is defined in Equation

(2.1). Likewise, the vector ŝ ∈ RNF is constructed by collecting the fold arc-lengths
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ŝi, i = 1, . . . , NF , as follows:

ŝ =




ŝ1

...

ŝNF



. (4.33)

It is assumed in the kinematic model presented in Section 2 that one face in

the sheet is fixed in space (refer to Section 2.2.4). Therefore, the only displacement

boundary condition considered in this work is that the displacement vector is equal

to the zero vector at one face in the sheet.

The virtual displacement and the virtual strain, encountered in the formulation

of the principle of virtual work (refer to Equations (4.25) and (4.26)), are related to

virtual changes in fold angles and fold arc-lengths as follows:

δu =
∂u

∂θ̂
· δθ̂ +

∂u

∂ŝ
· δŝ, (4.34)

δε =
∂ε

∂θ̂
· δθ̂ +

∂ε

∂ŝ
· δŝ. (4.35)

Since the configuration of an origami material body is defined by the fold angles

and fold arc-lengths of each smooth fold, the kinematic constraints in Equation

(2.97) allowing for valid configurations must be considered. The principle of virtual

work as stated in Equation (4.24) does not take into consideration any kinematic

constraints. Kinematic constraints are conventionally included through the method

of Lagrange multipliers or penalty methods [351, 440]. A penalty method approach is

utilized here. Consequently, let L be a penalty function associated with the kinematic
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constraints from Equation (2.97):

L(θ̂, ŝ) = λR

NI∑

i=1

((
Ri

23(θ̂)
)2

+
(
Ri

31(θ̂)
)2

+
(
Ri

12(θ̂)
)2
)

+λd

NI∑

i=1

((
di1(θ̂, ŝ)

)2

+
(
di2(θ̂, ŝ)

)2

+
(
di3(θ̂, ŝ)

)2
)
,

(4.36)

where λR is the penalty scalar for rotational constraints and λd is the penalty scalar

for translational constraints. The modified principle of virtual work statement al-

lowing for the consideration of kinematic constraints is then given as follows:

δWI − δWE + δL = 0, (4.37)

cf. Equation (4.24). By substituting Equation (4.35) into the expression for δWI in

Equation (4.25), the following is obtained:

δWI =

∫

Ω

σ : δε dv

=

∫

Ω

σ :

(
∂ε

∂θ̂
· δθ̂ +

∂ε

∂ŝ
· δŝ
)

dv.

(4.38)

The expression for δWI provided in Equation (4.38) can be decomposed into the

contributions of each smooth fold domain in the origami body:

δWI =

NF∑

i=1

∫

Fi
σ

(
∂ε

∂θ̂i
δθ̂i +

∂ε

∂ŝi
δŝi

)
dv, (4.39)

where σ = σ22 in the fold coordinate system of the ith smooth fold domain and Fi is

the region occupied by the ith smooth fold domain. Performing integration over the
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thickness in the expression presented in Equation (4.39), the following is obtained:

δWI =

NF∑

i=1

∫

Fi

((
N
∂ε0

∂θ̂i
−M ∂κ

∂θ̂i

)
δθ̂i +

(
N
∂ε0

∂ŝi
−M ∂κ

∂ŝi

)
δŝi

)
da, (4.40)

where N and M are respectively the axial force and moment resultants given as

follows [354]:

N =

∫ hi
2

−hi
2

σ dζ3, (4.41)

M =

∫ hi
2

−hi
2

ζ3σ dζ3. (4.42)

By substituting Equation (4.35) into the expression for δWE in Equation (4.26),

the following is obtained:

δWE =

∫

Ω

b · δu dv +

∫

∂Ω

t · δu da

=

∫

Ω

b ·
(
∂u

∂θ̂
· δθ̂ +

∂u

∂ŝ
· δŝ
)

dv +

∫

∂Ω

t ·
(
∂u

∂θ̂
· δθ̂ +

∂u

∂ŝ
· δŝ
)

da

=

∫

Ω

b ·
NF∑

i=1

(
∂u

∂θ̂i
δθ̂i +

∂u

∂ŝi
δŝi

)
dv +

∫

∂Ω

t ·
NF∑

i=1

(
∂u

∂θ̂i
δθ̂i +

∂u

∂ŝi
δŝi

)
da,

(4.43)

where the displacement u as a function of fold angles and fold arc-lengths can be

determined using the folding map formulation provided in Section 2.2.4.

Similarly, the virtual increment in the penalty function L defined in Equation
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(4.36) can be expressed as follows:

δL =
∂L

∂θ̂
· δθ̂ +

∂L

∂ŝ
· δŝ

=

NF∑

i=1

(
∂L

∂θ̂i
δθ̂i +

∂L

∂ŝi
δŝi

)
.

(4.44)

Substituting the expressions for δWI , δWE, and δL provided in Equations (4.40),

(4.43), and (4.44), respectively, into Equation (4.37), the following is obtained:

0 = δWI − δWE + δL

=

NF∑

i=1

∫

Fi

((
N
∂ε0

∂θ̂i
−M ∂κ

∂θ̂i

)
δθ̂i +

(
N
∂ε0

∂ŝi
−M ∂κ

∂ŝi

)
δŝi

)
da

−
∫

Ω

b ·
NF∑

i=1

(
∂u

∂θ̂i
δθ̂i +

∂u

∂ŝi
δŝi

)
dv −

∫

∂Ω

t ·
NF∑

i=1

(
∂u

∂θ̂i
δθ̂i +

∂u

∂ŝi
δŝi

)
da

+

NF∑

i=1

(
∂L

∂θ̂i
δθ̂i +

∂L

∂ŝi
δŝi

)
.

(4.45)

4.3.2 Constitutive Equations

Linear elastic and SMA materials are considered in this work. For a linear elastic

material, stress is related to strain via Hooke’s law [439]:

σ = Cε, (4.46)

where C is the fourth-order stiffness tensor. For the plane stress assumptions made
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in classical plate theory, only the following stress components are considered [354]:




σ11

σ22

σ12




=
E

1− ν2




1 ν 0

ν 1 0

0 0 1− ν







ε11

ε22

ε12



, (4.47)

where E is the Young’s modulus and ν is the Poisson’s ratio of the linear elastic

material (assumed isotropic). By substituting the expressions for strain in Equation

(4.7) into Equation (4.47), the following is obtained:




σ11

σ22

σ12




=
E

1− ν2




1 ν 0

ν 1 0

0 0 1− ν







0

ε(θ̂i, ŝi)

0




=
E

1− ν2




1 ν 0

ν 1 0

0 0 1− ν







0

ε0(θ̂i, ŝi)− ζ3 κ(θ̂i, ŝi)

0



.

(4.48)

As described in Section 1, SMAs are active materials that undergo solid-to-solid

martensitic phase transformations induced by temperature and/or stress stimuli dur-

ing which they can generate or recover seemingly permanent strains [4]. These

characteristics allow SMAs to have multiple applications in various fields such as

aerospace [125] and others [214]. Shape memory alloys exhibit the highest actua-

tion energy density of all conventionally used active materials [4]. Therefore, SMAs

can provide a significant amount of strain under large stresses, a characteristic of

great utility in morphing structures for use in realistic conditions such as the origami
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structures studied herein.

The detailed description of the constitutive model for monolithic SMAs used here

is provided in [442]. It has been used to analyze a broad range of smart structures

having SMA components [443, 444, 445, 446, 447]. The model is three-dimensional,

thermodynamically consistent, and phenomenological. The internal state variables

associated with the inelastic transformation process of SMAs are the martensite

volume fraction ξ and the second-order transformation strain tensor εt. Assuming a

reference state in which the stress and total strain are zero but the transformation

strain is not, the stress is given as follows:

σ = C(ξ)
(
ε−α(T − T0)− εt + εt0

)
, (4.49)

where α is the second-order tensor of thermoelastic coefficients, T0 is the reference

temperature, and εt0 is second-order tensor of pre-strains. The effective fourth-order

stiffness tensor C(ξ) is determined follows:

C(ξ)−1 = S(ξ) = SA + ξ(SM − SA). (4.50)

where SA is the compliance tensor of austenite and SM and is the compliance tensor

of martensite. The following relation between the rates of εt and ξ is assumed [442]:

ε̇t = Λtξ̇, (4.51)

where:

Λt =





Λt
fwd; ξ̇ > 0

Λt
rev; ξ̇ < 0

. (4.52)
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In the above relation, Λt is the second-order transformation direction tensor and

its expression for forward transformation and reverse transformation are given as

follows:

Λt
fwd =

3

2
Hcurσ

′

σ̄
, (4.53)

Λt
rev =

εt−r

ξr
, (4.54)

where σ′ is the second-order deviatoric stress tensor, σ̄ is the von Mises stress,

εt−r is the transformation strain at the cessation of forward transformation, and ξr

is the martensite volume fraction at the cessation of forward transformation. The

transformation strain magnitude for full transformation Hcur is given as follows [442]:

Hcur(σ̄) =





Hmin; σ̄ ≤ σ̄crit

Hmin + (Hsat −Hmin)(1− e−k(σ̄−σ̄crit)); σ̄ > σ̄crit

, (4.55)

where Hmin corresponds to the observable two-way shape memory effect strain mag-

nitude [442], Hsat is the maximum recoverable transformation strain magnitude at-

tained by the SMA, and σ̄crit denotes the critical von Mises stress below which

Hcur = Hmin. Certain constraints on the evolution of martensite volume fraction ξ

must be defined [442]. To this end, the transformation function Φt is introduced.

The constraints on the evolution of ξ are then given as follows:

Φt ≤ 0, (4.56)
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ξ̇Φt = 0, (4.57)

0 ≤ ξ ≤ 1. (4.58)

The following branched form of Φt is proposed in [442]:

Φt =





Φt
fwd; 0 ≤ ξ < 1, ξ̇ ≥ 0

Φt
rev; 0 < ξ ≤ 1, ξ̇ ≤ 0

, (4.59)

where the transformation functions for forward and reverse transformation (Φt
fwd

and Φt
rev, respectively), are given as follows:

Φt
fwd = (1−D)σ : Λt

fwd + 1
2
σ : ∆Sσ + ρ∆s0T − ρ∆u0

−
(

1
2
a1(1 + ξn1 − (1− ξ)n2) + a3

)
− Y t,

(4.60)

Φt
rev = −(1 +D)σ : Λt

rev − 1
2
σ : ∆Sσ − ρ∆s0T + ρ∆u0

+
(

1
2
a2(1 + ξn3 − (1− ξ)n4)− a3

)
− Y t,

(4.61)

and ρ∆s0, ρ∆u0, a1, a2, a3, D, and Yt are parameters calibrated from the experimen-

tally determined transformation temperatures at zero stress (Ms, Mf , As, and Af ,

see Figure 4.3), the stress influence coefficients (CA and CM , see Figure 4.3), elastic

material parameters, and parameters defining Hcur (see Equation (4.55)). Details on

the determination of material parameters for this SMA model are provided in [442].

For the plane stress assumptions made in classical plate theory, only the following
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Figure 4.3: Schematic of an SMA stress-temperature phase diagram.

stress components are considered [354]:




σ11

σ22

σ12




= CPS(ξ)




ε11 − α(T − T0)− εt11 + εt011

ε22 − α(T − T0)− εt22 + εt022

ε12 − εt12 + εt012



, (4.62)

where CPS(ξ) is the effective plane stress stiffness matrix. By substituting the ex-
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pressions for strain in Equation (4.7) into Equation (4.47), the following is obtained:




σ11

σ22

σ12




= CPS(ξ)




−α(T − T0)− εt11 + εt011

ε(θ̂i, ŝi)− α(T − T0)− εt22 + εt022

−εt12 + εt012




= CPS(ξ)




−α(T − T0)− εt11 + εt011

ε0(θ̂i, ŝi)− ζ3 κ(θ̂i, ŝi)− α(T − T0)− εt22 + εt022

−εt12 + εt012



.

(4.63)

For the case of regions comprised of SMA wires such as those considered in [10, 8,

448] (refer to Figure 1.9 for an example), the SMA wires are assumed to be aligned

with the 2-direction of the fold domain and a one-dimensional form of the previously

described three-dimensional SMA model is utilized [10]:




σ11

σ22

σ12




=




0

vfE(ξ)
(
ε0(θ̂i, ŝi)− ζ3 κ(θ̂i, ŝi)− α(T − T0)− εt + εt0

)

0



, (4.64)

where vf is the volume fraction of the SMA wires and E(ξ) is the effective Young’s

modulus dependent on the martensite volume fraction.

4.3.3 Numerical Implementation

In order to determine a configuration that satisfies mechanical equilibrium as

well as the kinematic constraints in Equation (2.97), the coefficients multiplying
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each virtual increment in fold angle δθ̂i and each virtual increment in fold arc-length

δŝi in Equation (4.45) must be set to 0. In a numerical framework such as the one

to be developed here, these coefficients are placed as components of residual vectors

and iteratively minimized in magnitude using the Newton’s method [353].

Let Rθ ∈ RNF be the residual vector for which components Rθ
i are the coefficients

of each virtual increment in fold angle δθ̂i in Equation (4.45):

Rθ
i =

∫

Fi

(
N
∂ε0

∂θ̂i
−M ∂κ

∂θ̂i

)
da −

∫

Ω

b · ∂u

∂θ̂i
dv −

∫

∂Ω

t · ∂u

∂θ̂i
da +

∂L

∂θ̂i
. (4.65)

Likewise, let Rs ∈ RNF be the residual vector for which components Rs
i are the

coefficients of each virtual increment in fold arc-length δŝi in Equation (4.45):

Rs
i =

∫

Fi

(
N
∂ε0

∂ŝi
−M ∂κ

∂ŝi

)
da −

∫

Ω

b · ∂u

∂ŝi
dv −

∫

∂Ω

t · ∂u

∂ŝi
da +

∂L

∂ŝi
. (4.66)

The applied loading to the origami structures with smooth fold domains is evolved

in various loading increments. For each load increment, the configuration that sat-

isfies Equation (4.45) must be determined. The present implementation iteratively

solves for increments in fold angles and fold arc-lengths that minimize the magnitude

of the components of the vectors Rθ and Rs, which must be zero (or sufficiently close

to zero by introducing a numerical tolerance) for a configuration to satisfy Equation

(4.45). Using the Newton’s method, the fold angles and fold arc-lengths at the lth
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loading increment are corrected iteratively as follows:




k
l ∆θ̂

k
l ∆ŝ


 = −




∂Rθ(kl θ̂,
k
l ŝ)

∂θ̂

∂Rθ(kl θ̂,
k
l ŝ)

∂ŝ

∂Rs(kl θ̂,
k
l ŝ)

∂θ̂

∂Rs(kl θ̂,
k
l ŝ)

∂ŝ




−1 


Rθ(kl θ̂,
k
l ŝ)

Rs(kl θ̂,
k
l ŝ)


 , (4.67)

k+1
l θ̂ = k

l θ̂ + k
l ∆θ̂, (4.68)

k+1
l ŝ = k

l ŝ + k
l ∆ŝ, (4.69)

where the subscripts in the previous equation refer to the load increment number and

the superscripts correspond to the correction iteration number. The correction iter-

ations in Equations (4.67)–(4.69) are repeated until ‖Rθ(k+1
l θ̂,

k+1
l ŝ)‖ < tol1 and

‖Rs(k+1
l θ̂,

k+1
l ŝ)‖ < tol2, or alternatively until ‖kl ∆θ̂‖ < tol3 and ‖kl ∆ŝ‖ < tol4

(where tol1, tol2, tol3, and tol4 are numerical tolerances). Table 4.1 summa-

rizes the numerical procedure followed to simulate origami structures of non-zero

thickness.

The components of the tangent matrices ∂Rθ

∂θ̂
, ∂Rθ

∂ŝ
, ∂Rs

∂θ̂
, and ∂Rs

∂ŝ
must be calcu-

lated to determine the corrective increments in fold angles and fold arc-lengths as
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Table 4.1: Numerical procedure followed at the lth loading increment to determine
the response of origami structures with smooth fold domains of non-zero thickness.

1: Determine the components of the residual vectors Rθ(1
l θ̂,

1
l ŝ) and Rs(1

l θ̂,
1
l ŝ)

2: IF (‖Rθ(1
l θ̂,

1
l ŝ)‖ < tol1 AND ‖Rs(1

l θ̂,
1
l ŝ)‖ < tol2)

THEN set lθ̂ = 1
l θ̂, lŝ = 1

l ŝ and EXIT

ELSE CONTINUE

3: Determine corrections k
l ∆θ̂ and k

l ∆ŝ using Equation (4.67)

4: Update k+1
l θ̂ and k+1

l ŝ using Equations (4.68) and (4.69)

5: IF (‖Rθ(k+1
l θ̂,

k+1
l ŝ)‖ < tol1 AND ‖Rs(k+1

l θ̂,
k+1

l ŝ)‖ < tol2)

OR (‖kl ∆θ̂‖ < tol3 AND ‖kl ∆ŝ‖ < tol4)

THEN set lθ̂ = k+1
l θ̂, lŝ = k+1

l ŝ and EXIT

ELSE set k ← k + 1 and GOTO 3

given in Equation (4.67). These components are given as follows:

∂Rθ
i

∂θ̂i
=

∫

Fi

(
∂N

∂θ̂i

∂ε0

∂θ̂i
+N

∂2ε0

∂θ̂2
i

− ∂M

∂θ̂i

∂κ

∂θ̂i
−M∂2κ

∂θ̂2
i

)
da

−
∫

Ω

(
∂b

∂θ̂i
· ∂u

∂θ̂i
+ b · ∂

2u

∂θ̂2
i

)
dv −

∫

∂Ω

(
∂t

∂θ̂i
· ∂u

∂θ̂i
+ t · ∂

2u

∂θ̂2
i

)
da

+
∂2L

∂θ̂2
i

,

(4.70)
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∂Rθ
i

∂ŝi
=

∫

Fi

(
∂N

∂ŝi

∂ε0

∂θ̂i
+N

∂2ε0

∂θ̂i∂ŝi
− ∂M

∂ŝi

∂κ

∂θ̂i
−M ∂2κ

∂θ̂i∂ŝi

)
da

−
∫

Ω

(
∂b

∂ŝi
· ∂u

∂θ̂i
+ b · ∂2u

∂θ̂i∂ŝi

)
dv −

∫

∂Ω

(
∂t

∂ŝi
· ∂u

∂θ̂i
+ t · ∂2u

∂θ̂i∂ŝi

)
da

+
∂2L

∂θ̂i∂ŝi
,

(4.71)

∂Rθ
i

∂θ̂j

∣∣∣∣∣
j 6=i

= −
∫

Ω

(
∂b

∂θ̂j
· ∂u

∂θ̂i
+ b · ∂2u

∂θ̂i∂θ̂j

)
dv

−
∫

∂Ω

(
∂t

∂θ̂j
· ∂u

∂θ̂i
+ t · ∂2u

∂θ̂i∂θ̂j

)
da+

∂2L

∂θ̂i∂θ̂j
,

(4.72)

∂Rθ
i

∂ŝj

∣∣∣∣∣
j 6=i

= −
∫

Ω

(
∂b

∂ŝj
· ∂u

∂θ̂i
+ b · ∂2u

∂θ̂i∂ŝj

)
dv

−
∫

∂Ω

(
∂t

∂ŝj
· ∂u

∂θ̂i
+ t · ∂2u

∂θ̂i∂ŝj

)
da+

∂2L

∂θ̂i∂ŝj
,

(4.73)

∂Rs
i

∂ŝi
=

∫

Fi

(
∂N

∂ŝi

∂ε0

∂ŝi
+N

∂2ε0

∂ŝ2
i

− ∂M

∂ŝi

∂κ

∂ŝi
−M∂2κ

∂ŝ2
i

)
da

−
∫

Ω

(
∂b

∂ŝi
· ∂u

∂ŝi
+ b · ∂

2u

∂ŝ2
i

)
dv −

∫

∂Ω

(
∂t

∂ŝi
· ∂u

∂ŝi
+ t · ∂

2u

∂ŝ2
i

)
da

+
∂2L

∂ŝ2
i

,

(4.74)
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∂Rs
i

∂θ̂i
=

∫

Fi

(
∂N

∂θ̂i

∂ε0

∂ŝi
+N

∂2ε0

∂θ̂i∂ŝi
− ∂M

∂θ̂i

∂κ

∂ŝi
−M ∂2κ

∂θ̂i∂ŝi

)
da

−
∫

Ω

(
∂b

∂θ̂i
· ∂u

∂ŝi
+ b · ∂2u

∂θ̂i∂ŝi

)
dv −

∫

∂Ω

(
∂t

∂θ̂i
· ∂u

∂ŝi
+ t · ∂2u

∂θ̂i∂ŝi

)
da

+
∂2L

∂θ̂i∂ŝi
,

(4.75)

∂Rs
i

∂ŝj

∣∣∣∣∣
j 6=i

= −
∫

Ω

(
∂b

∂ŝj
· ∂u

∂ŝi
+ b · ∂2u

∂ŝi∂ŝj

)
dv

−
∫

∂Ω

(
∂t

∂ŝj
· ∂u

∂ŝi
+ t · ∂2u

∂ŝi∂ŝj

)
da+

∂2L

∂ŝi∂ŝj
,

(4.76)

∂Rs
i

∂θ̂j

∣∣∣∣∣
j 6=i

= −
∫

Ω

(
∂b

∂θ̂j
· ∂u

∂ŝi
+ b · ∂2u

∂ŝi∂θ̂j

)
dv

−
∫

∂Ω

(
∂t

∂θ̂j
· ∂u

∂ŝi
+ t · ∂2u

∂ŝi∂θ̂j

)
da+

∂2L

∂ŝi∂θ̂j
,

(4.77)

where the derivatives of the axial force and moment resultants with respect to fold
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angle and fold arc-length are given as follows:

∂N

∂θ̂i
=

∂

∂θ̂i

∫ hi
2

−hi
2

σ dζ3

=

∫ hi
2

−hi
2

∂σ

∂θ̂i
dζ3

=

∫ hi
2

−hi
2

∂σ

∂ε

∂ε

∂θ̂i
dζ3

=

∫ hi
2

−hi
2

∂σ

∂ε

(
∂ε0

∂θ̂i
− ζ3

∂κ

∂θ̂i

)
dζ3,

(4.78)

similarly:

∂N

∂ŝi
=

∂

∂ŝi

∫ hi
2

−hi
2

σ dζ3

=

∫ hi
2

−hi
2

∂σ

∂ŝi
dζ3

=

∫ hi
2

−hi
2

∂σ

∂ε

∂ε

∂ŝi
dζ3

=

∫ hi
2

−hi
2

∂σ

∂ε

(
∂ε0

∂ŝi
− ζ3

∂κ

∂ŝi

)
dζ3,

(4.79)
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∂M

∂θ̂i
=

∂

∂θ̂i

∫ hi
2

−hi
2

ζ3σ dζ3

=

∫ hi
2

−hi
2

ζ3
∂σ

∂θ̂i
dζ3

=

∫ hi
2

−hi
2

ζ3
∂σ

∂ε

∂ε

∂θ̂i
dζ3

=

∫ hi
2

−hi
2

∂σ

∂ε

(
ζ3
∂ε0

∂θ̂i
− (ζ3)2 ∂κ

∂θ̂i

)
dζ3,

(4.80)

∂M

∂ŝi
=

∂

∂ŝi

∫ hi
2

−hi
2

ζ3σ dζ3

=

∫ hi
2

−hi
2

ζ3
∂σ

∂ŝi
dζ3

=

∫ hi
2

−hi
2

ζ3
∂σ

∂ε

∂ε

∂ŝi
dζ3

=

∫ hi
2

−hi
2

∂σ

∂ε

(
ζ3
∂ε0

∂ŝi
− (ζ3)2 ∂κ

∂ŝi

)
dζ3,

(4.81)

The evaluation of the integrals over the smooth fold surfaces and over the thick-

ness of the smooth fold domains in the previous equations is performed through

numerical integration [428, 449]. Figure 4.4 shows the location of integration points

used for in-surface integration and also the location of integration points through the

thickness of each layer. Integration points at only one location along the 1-direction

(i.e. that aligned with êi1) are needed as strain is assumed uniform throughout this di-

rection. Gauss-Legendre quadrature rule is used for integration along the 2-direction.
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3 êi

1

F i
0
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Figure 4.4: Schematic of a smooth fold surface showing the location of in-surface
integration points and integration points through the thickness of each layer.

The number of integration points needed in the 2-direction is dictated by assumed

in-plane strain and curvature fields in the fold domain (refer to Section 4.1). Inte-

gration through the thickness of the smooth fold domains is performed layer by layer

as shown in Figure 4.4. For each individual layer, Gauss-Lobatto quadrature rule is

used for integration [428, 450] because it considers integration points at the ends of

the integration domain (i.e. the top and bottom of each layer) which often are the

locations of maximum stress.

217



4.3.4 Implementation Results

In this section, implementation results of the model derived in Section 4.3 are pre-

sented. The numerical procedure used for the simulation of the response of origami

structures with smooth fold domains presented in Section 4.3.3 is implemented in

Matlab. Diverse patterns of smooth folds are analyzed using the proposed model.

The smooth folds F it are visualized using the Matlab three-dimensional shaded sur-

face plot function surf while the faces P it are visualized as filled three-dimensional

polygons using fill3.

Finite element analysis is used for numerical validation of the model. In this

work, FEA is performed using Abaqus finite element software. Static analysis steps

considering large rotations (i.e. the NLGEOM option in Abaqus is active, see [10, 451])

are used. Abaqus S4 elements (4-node doubly curved general-purpose shells, finite

membrane strains) are used to discretize the sheet in all the FEA examples shown

in this section. In order to capture rigid behavior for the faces which is assumed in

the model derived in Section 4.3, rigid body constraints are imposed to the finite

elements located at the face regions.

Implementation examples considering smooth fold domains comprised of elastic

and SMA materials are considered herein. Nonetheless, it is remarked that the

present model is applicable to smooth folds comprised of other passive or active

materials so long as strains are small enough such that the linearized strain tensor

can be utilized to properly model the deformation.

The first example considers a structure having one linear elastic smooth fold

domain of 0.5 mm thickness and subject to a point load. The boundary value problem

is schematically shown in Figure 4.5. The material parameters for the linear elastic

smooth fold domain are provided in Table 4.2. The results for this simple example
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Figure 4.5: Boundary value problem considering a structure having one smooth fold
domain of thickness hi = 0.5 mm. The material parameters of the elastic smooth
fold domain are provided in Table 4.2.

Table 4.2: Material parameters assumed for the aluminum layers.

Parameter Value

E 70 GPa

ν 0.3

are shown in Figure 4.6. The applied load vector is parallel to the normal direction of

the structure; therefore, it induces folding deformation. It is observed in Figure 4.6

that the out-of-plane displacement determined using both the smooth folds model

developed here and FEA are in good agreement for the entire loading history.

The second example considers a boundary value problem with the same planar

geometry as that shown in Figure 4.5 but includes SMA layers in addition to elastic

layers at the smooth fold domain. The boundary value problem of this second ex-

ample is shown in Figure 4.7. The laminate comprising the smooth fold domain has
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Figure 4.6: Results associated with the boundary value problem presented in Fig-
ure 4.5: (a) Configurations attained by the structure during the applied loading
history (reference, intermediate, and final); (b) Magnitude of applied force vs. out-
of-plane displacement at a point. Results using both the smooth folds model and
FEA are shown.
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three layers. The upper layer corresponds to an SMA (wire) layer having material

response defined by Equation (4.64), a pre-strain of εt0 = Hsat, and volume fraction

vf = 0.05. The material parameters of the SMA layer, the elastomer layer, and the

aluminum layer are provided in Tables 4.3, 4.4, and 4.2, respectively. Initially at a

temperature of 300 K, the SMA layer is in a fully pre-strained martensitic phase. By

increasing the temperature from 300 K to 400 K, the SMA layer undergoes phase

transformation from martensite to austenite and its transformation strain is recov-

ered (because As = 337.15 K, refer to Table 4.3). Since the SMA layer is placed

off-center relative to the thickness direction of the laminate, the recovery of transfor-

mation strain induces folding deformation of the smooth fold domain. The results for

this problem are shown in Figure 4.8. It is observed from the out-of-plane displace-

ment vs. applied temperature plot in Figure 4.8(b) that the results obtained using

the present smooth folds model and those obtained from FEA are in good agreement

for this example considering SMA-actuated folds.

A more complex example considers a structure having four elastic smooth fold

domains meeting at a single fold intersection. The boundary value problem asso-

ciated with this example is shown in Figure 4.9. Two point loads are applied to

the structure as shown in Figure 4.9. Unlike the two previous examples shown in

Figures 4.5 and 4.7, the kinematic constraints in Equation (2.97) must be considered

since a fold intersection is present in the structure. The results for this example are

shown in Figure 4.10. It is observed from the deformed configuration plots and the

plot showing the components of the displacement vector at a point during the applied

loading history (Figures 4.10(a) and 4.10(b), respectively) that the results between

the smooth folds model and FEA are also in good agreement for this example of an

structure having a fold intersection.

An example of a structure with one fold intersection that morphs via SMA actu-
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Figure 4.7: Boundary value problem considering a structure having one smooth fold
domain comprised of a three-layer laminate. The material parameters of the SMA
layer, the elastomer layer, and the aluminum layer are provided in Tables 4.3, 4.4,
and 4.2, respectively. The material response of the SMA layer is determined using
Equation (4.64) and εt0 = Hsat.

ation is shown in Figure 4.11. It is noted that the location of the SMA layer (top or

bottom) determines the intended direction of the resulting fold (valley or mountain,

respectively). Upon increasing the temperature from 300 K to 400 K, the SMA layers

in the smooth fold domains actuate and induce folding of the structure as shown in

Figure 4.12. The deformed configuration plots and the plot showing components of

the displacement vector at a point during the applied loading history in Figure 4.12

show that there is good agreement between the smooth folds model and FEA also

for this example.

Figure 4.13 shows a boundary value problem of a structure having four fold

intersections. The smooth fold domains in this example are all linear elastic having

material parameters provided in Table 4.2. The central face is fixed and four point

loads are applied. The direction and maximum magnitude of the four point loads are

equal. The results for this example are shown in Figure 4.14. Figure 4.14(a) shows

configurations attained by the structure during the applied loading history (reference
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Figure 4.8: Results associated with the boundary value problem presented in Fig-
ure 4.7: (a) Configurations attained by the structure during the applied loading
history (reference, intermediate, and final). The martensite volume fraction contour
plot of the SMA layer is shown. (b) Out-of-plane displacement at a point vs. applied
temperature. Results using both the smooth folds model and FEA are shown.
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Table 4.3: Material parameters assumed for the SMA layers based on those provided
in [10].

Parameter Value

EA 48 GPa

EM 42.9 GPa

νA 0.3

νM 0.3

α 0 K−1

Ms 332.15 K

Mf 302.15 K

As 337.15 K

Af 362.15 K

CA 9.54 MPa/K

CM 9.00 MPa/K

Hmin 4.4%

Hsat 4.4%

k 0.24 MPa−1

n1 1

n2 1

n3 1

n4 1

Table 4.4: Material parameters assumed for the elastomer layers based on those
provided in [11].

Parameter Value

E 15.2 MPa

ν 0.45
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Figure 4.9: Boundary value problem considering a structure having one fold inter-
section. The elastic smooth fold domains have thickness hi = 0.5 mm. The material
parameters of the elastic smooth fold domain are provided in Table 4.2.

and final) for both the smooth folds model and FEA. Figure 4.14(b) shows a plot of

two components of the displacement vector at a point exhibited during the applied

loading history. It is observed from the results in Figure 4.14(a) and Figure 4.14(b)

that there is good agreement between FEA and the smooth folds model for this more

complicated example.

The last example considers the planar geometry as that shown in Figure 4.13

but includes smooth folds comprised of laminates having SMA layers. The boundary

value problem for this example is shown in Figure 4.15. The central face of the

origami structure is fixed and the temperature at four folds is increased from 300 K

to 400 K to induce folding deformation of the structure. The results for this example

are presented in Figure 4.16. Just as in the previous examples, the deformation

determined using the proposed model is good agreement with that determined using

FEA.
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Figure 4.10: Results associated with the boundary value problem presented in Fig-
ure 4.9: (a) Configurations attained by the structure during the applied loading
history (reference, intermediate, and final); (b) Two components of the displacement
vector at a point exhibited during the applied loading history. Results using both
the smooth folds model and FEA are shown.
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Figure 4.11: Boundary value problem considering a structure having one fold inter-
section and smooth fold domains comprised of a three-layer laminate. The laminate
layup for each individual smooth fold domain are shown. The material parameters
of the SMA layers, the elastomer layers, and the aluminum layers are provided in
Tables 4.3, 4.4, and 4.2, respectively. The material response of the SMA layers is
defined by Equation (4.64) and εt0 = Hsat.

The computational efficiency of the proposed model for origami structures with

smooth domains as compared to FEA is also explored. All the simulations pre-

sented in this work (using the smooth folds model and FEA) were performed on

the same computer. Table 4.5 shows the wall-clock time in seconds required for the

simulation of each boundary value problem considering SMA behavior shown in Fig-

ures 4.7, 4.11, and 4.15. The wall-clock time required for analysis using the proposed

model is significantly lower than that required using FEA for all the problems (by

more than 90% in all problems). Such results show that the proposed model provides

accurate results as compared to higher-fidelity FEA while being significantly more

computationally efficient.
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Figure 4.12: Results associated with the boundary value problem presented in Fig-
ure 4.11: (a) Configurations attained by the structure during the applied loading
history (reference and final). The martensite volume fraction contour plot of the
SMA layers is shown. (b) Two components of the displacement vector at a point
exhibited during the applied loading history. Results using both the smooth folds
model and FEA are shown.
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Figure 4.13: Boundary value problem considering a structure having four fold inter-
sections. The elastic smooth fold domains have thickness hi = 0.5 mm. The material
parameters of the elastic smooth fold domain are provided in Table 4.2.

Table 4.5: Wall-clock time in seconds required for each example considering SMA
behavior.

Example Smooth folds
model

FEA Difference (%)

Single fold example (Figure 4.7) 3.6 60 94.0%

Single fold intersection example
(Figure 4.11)

82 2418 96.6%

Fold fold intersections example
(Figure 4.15)

475 6215 92.4%

229



(a) 

(b) 

Point for which displacement is plotted in (b) 

Smooth 
folds 
model 

FEA 

-14 
-12 
-10 

-8 
-6 
-4 
-2 
0 

-10 -5 0 

Smooth 
Folds Model 
FEA -14 

-12 
-10 

-8 
-6 
-4 
-2 
0 

-10 -5 0 

u3
 [c

m
] 

u1 [cm] 

Smooth 
Folds Model 
FEA 

u1 [cm] 

u 3
 [c

m
] 

e1

e2

e3

Figure 4.14: Results associated with the boundary value problem presented in Fig-
ure 4.13: (a) Configurations attained by the structure during the applied loading
history (reference and final); (b) Two components of the displacement vector at a
point exhibited by the origami structure during the applied loading history. Results
using both the smooth folds model and FEA are shown.
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Figure 4.15: Boundary value problem considering a structure having four fold inter-
sections and smooth fold domains comprised of a three-layer laminate. The folds at
which the temperature is uniformly increased are highlighted. The material param-
eters of the SMA layers, the elastomer layers, and the aluminum layers are provided
in Tables 4.3, 4.4, and 4.2, respectively. The material response of the SMA layers is
defined by Equation (4.64) and εt0 = Hsat.

4.4 Design of Self-folding Origami Structures with Smooth Folds

In this section, the design method for origami structures with smooth folds pre-

sented in Section 3 is extended for the design of self-folding structures morphed

through active material actuation (unlike the purely kinematic-based approach taken

in Section 3). First, it is noted that the origami design method presented in Sec-

tion 3 allows for simple folding sequences for motion between the determined ref-

erence configuration S0 and the goal configuration S?. In Section 3.6, the folding

sequence is determined by simultaneously folding all the smooth folds in the origami

structure. Such a characteristic is desirable and utilized here to develop a design

method for self-folding origami structures with smooth folds. The method intro-

duced here is based on simultaneous folding in structures having active smooth fold

domains driven by uniform imposition of the activation field (e.g. uniform increase

in temperature for SMAs). Therefore, the presented design method does not require
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Figure 4.16: Results associated with the boundary value problem presented in Fig-
ure 4.15: (a) Configurations attained by the structure during the applied loading
history (reference and final). The martensite volume fraction contour plot of the
SMA layers is shown. (b) Two components of the displacement vector at a point
exhibited during the applied loading history. Results using both the smooth folds
model and FEA are shown.
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Figure 4.17: Simulation results of a sheet having a single smooth fold domain with
the laminate layup shown in Figure 4.7. It is observed that by increasing the fold
width ŵ0

i , a higher fold angle magnitude can be achieved when the SMA layer is fully
transformed into austenite.

any particular control over the actuation of each individual fold. The design method

entails the consideration of the fold widths as design variables which dictate the fold

angle achieved by the active smooth fold domain under the uniform imposition of the

activation field. Figure 4.17 shows simulation results of a structure having a single

smooth fold domain with the laminate layup shown in Figure 4.7. It is observed

that by increasing the fold width ŵ0
i , a higher fold angle magnitude can be achieved

when the SMA layer is fully transformed from pre-strained martensite into austenite.

Therefore, the fold widths ŵ0
i , i = 1, . . . , NF , must be considered as design variables

in the present method, in contrast to the method addressed in Section 3 where the

fold widths were given.
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4.4.1 Problem Statement and Implementation

In the present design method, the laminate layup and material selection for each

smooth fold domain are given. These can be determined prior to the application of

the method by optimizing layer thicknesses and other design variables allowing for

higher curvatures at the smooth folds. Such efforts are not discussed herein but were

addressed previously in [8, 128, 361, 448]. The problem statement is as follows:

• Given: a goal shape represented as a polygonal mesh (termed as the goal mesh

M) and a laminate layup for the smooth fold domains in the structure,

• Find: the geometry of the reference configuration S0 of a single planar sheet

that morphs towards a configuration that approximatesM via active material-

driven simultaneous folding.

Following the approach presented in Section 3, the geometry of the introduced

edge modules in S0 (refer to Figure 3.2) is defined by the length variables Ŵi and the

angle variables ψ̂i, i = 1, . . . , N I
E (where N I

E is the number of interior edges in M).

Here, the fold widths ŵ0
i , i = 1, . . . , NF , are the newly introduced design variables.

Each edge module has three smooth folds and thus NF = 3N I
E . Let D ∈ R5NI

E be the

vector of design variables defined as follows (cf. Equation (3.29)):

D :=




Ŵ

ψ̂

ŵ0



, (4.82)

where Ŵ ∈ RNI
E is the vector having components Ŵi, i = 1, . . . , N I

E , and ψ̂ ∈ RNI
E

is the vector having components ψ̂i, i = 1, . . . , N I
E , defined in Equations (3.36) and

(3.37), respectively. The vector ŵ0 ∈ R3NI
E has components corresponding to the
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fold widths ŵ0
i , i = 1, . . . , 3N I

E , and is defined in Equation (2.19). The optimization

problem associated with this design method is stated as follows:

Find D

That minimizes ‖θ̂tf − θ̂?‖

Subject to h = 03NI
N

g ≤ 04NI
E

ŵ0
L ≤ ŵ0 ≤ ŵ0

U

(4.83)

where θ̂tf ∈ R3NI
E is the vector having components corresponding to the fold angles

at the final configuration attained by the active origami structure (e.g. the fold

angles of an SMA-based origami structure at full transformation from pre-strained

martensite into austenite of the SMA layers in its folds). The vector θ̂? ∈ R3NI
E

has components corresponding to the fold angles of the goal configuration S?. The

vectors h ∈ R3NI
N and g ∈ R4NI

E are those associated with the equality and inequality

constraints of the design method presented in Section 3, respectively, allowing for a

valid reference configurations S0 (refer to Section 3.4.2). The vectors ŵ0
L ∈ R3NI

E and

ŵ0
U ∈ R3NI

E have components corresponding to the lower and upper bounds allowed

for the fold widths. The optimization problem in Equation (4.83) is solved here

using the gradient-based optimization algorithm in Matlab fmincon. Each design

evaluation is performed using the model presented in Section 4.3.

4.4.2 Results

For the results presented in this section, the laminate layup shown in Figure 4.7

is adopted for all the examples. The material parameters of the SMA layer, the

elastomer layer, and the aluminum layer of such a laminate layup are provided in
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Tables 4.3, 4.4, and 4.2, respectively. The orientation of the laminate layup (i.e.

whether the SMA layer is located on the top or the bottom of the laminate) is

decided by the direction of the intended fold angle (see Figure 3.8). Figure 4.18

shows the goal mesh M and determined sheet design S0 associated with a goal

shape of positive Gaussian curvature. As in the examples shown in Section 4.3.4, the

temperature is raised from 300 K (where the SMA is fully in pre-strained martensite

phase) to 400 K (where the SMA has completed full transformation into austenite).

Configurations attained by the designed structure during its deformation history are

also shown in Figure 4.18.

Figure 4.19 shows the same results as those in Figure 4.18 but considering a

goal mesh associated with a shape of negative Gaussian curvature. Both examples

show that the design method successfully provides the geometry of the reference

configuration S0 of a single planar sheet that morphs towards a configuration that

approximatesM via active material-driven simultaneous folding. The examples ad-

dressed in Section 3 of goal meshes having not only triangulated faces (illustrated in

Figures 3.22 and 3.23) are revisited here and their associated results are shown in

Figures 4.20 and 4.21, respectively. It is observed in these figures that the present

design method for self-folding structures successfully provides results for such exam-

ples. Although only examples where SMA actuation is utilized are provided here,

the present design method is applicable to structures having smooth fold domains

comprised of other active materials so long as strains are small enough such that the

linearized strain tensor can be utilized to properly model the deformation.

4.5 Summary and Discussion

A model for the structural response of origami bodies with smooth folds was

presented in this section. The description of motion and kinematic constraints for
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Figure 4.18: Implementation results of the design method for self-folding structures
associated with a dome goal mesh. The goal mesh, its associated determined sheet
design with optimal fold widths, and the configurations attained by the structure
during its deformation history are shown.
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Figure 4.19: Implementation results of the design method for self-folding structures
associated with a saddle goal mesh. The goal mesh, its associated determined sheet
design with optimal fold widths, and the configurations attained by the structure
during its deformation history are shown.
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Figure 4.20: Implementation results of the design method for self-folding structures
associated with a goal mesh comprised of quadrilateral faces. The goal mesh, its
associated determined sheet design with optimal fold widths, and the configurations
attained by the structure during its deformation history are shown.
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Figure 4.21: Implementation results of the design method for self-folding structures
associated with a goal mesh comprised of triangular and octagonal faces. The goal
mesh, its associated determined sheet design with optimal fold widths, and the con-
figurations attained by the structure during its deformation history are shown.
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the model correspond to those presented in Section 2. Relations between the strain

field in each smooth fold domain of non-zero thickness and their fold angle and fold

arc-length were derived. Consequently, the kinematic variables fully describing the

deformation of origami structures having smooth fold domains of non-zero thickness

correspond to the fold angles and fold arc-lengths of each fold in the structure. The

governing field equations were presented and the principle of virtual work including

the consideration of kinematic constraints was used to develop a structural mechanics

model for origami bodies. The present model does not make any assumptions on the

material response of the origami structures; therefore, it is applicable to a large spec-

trum of origami structures (ranging from those having elastic folds to those having ac-

tive material actuation). The numerical implementation of the model was described

and various implementation examples were presented. The results determined using

the present model were numerically validated against higher-fidelity FEA and good

agreement is observed for all the examples. Furthermore, it was shown that the

present model is significantly more computationally efficient as compared to FEA

(by more than 90% in the examples shown) while providing accurate results. Thus,

it can be utilized for computationally efficient structural analysis of origami bodies

having smooth fold domains such as the active material based-morphing structures

described in Section 1.

The design method for origami with smooth folds presented in Section 3 was then

revisited and extended for the design of self-folding structures morphed through ac-

tive material actuation. The approach is based on simultaneous folding in structures

having active smooth fold domains driven by uniform imposition of the activation

field (e.g. uniform increase in temperature for SMAs). Therefore, the presented de-

sign method does not require any particular control over the actuation of each indi-

vidual fold. The design method entails the consideration of the fold widths as design
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variables which dictate the fold angle achieved by the active smooth fold domain

under the uniform imposition of the activation field. The numerical implementation

of the design method is presented. Results of SMA-based origami structures that

morph into arbitrary three-dimensional shapes starting from a planar configuration

are provided.
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5. SUMMARY AND FUTURE WORK

Although the art of origami is ancient, the science and technology associated

with origami engineering structures is new and developing rapidly. After review-

ing the existing and prospective applications origami-inspired structures (with and

without self-folding capabilities) in Sections 1.1 and 1.2, it was clear that origami

has the potential to enable new advancements in various fields such as aerospace,

manufacturing, robotics, architecture, etc. To allow or facilitate such advancements,

modeling and design approaches for origami structures are needed and hence there

is ongoing research on the subject. From the literature review on modeling and de-

sign of origami structures presented in Sections 1.3–1.5, it was evident that there

is a gap between realistic folding behavior and existing models and design methods

that mostly focus on conventional origami with creased folds. Consequently, new

approaches for origami modeling and design are needed and were the focus of this

dissertation. The work presented in the previous sections is summarized here and

suggestions for future work are provided.

5.1 Kinematics of Origami Structures with Smooth Folds

A model for the kinematic response of origami structures with smooth folds hav-

ing non-zero surface area and arbitrary order of geometric continuity was presented

in Section 2. Therein, the folds are not limited to G0 creases as conventionally as-

sumed in the literature but instead may have non-zero surface area and arbitrary

order of geometric continuity Gn (termed as smooth folds). By considering Gn con-

tinuity at the folds, the realistic response of origami structures based on the bending

concepts (Figures 1.4(d) and (e)) can be properly captured. The section begins with

a review of an established model for origami with conventional creased folds that
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is adopted and extended in this work. Subsequently, the geometrical description of

smooth folds was presented in Section 2.2.1 and parametric representations of the fold

cross-sectional shape for various orders of geometric continuity were provided. The

fold pattern description, the constraints on the sheet deformation for origami with

smooth folds analogous to those for origami with creased folds, and the mapping

between reference and current configurations were also presented. The numerical

implementation of the model allowing for simulation of the motion of sheets having

arbitrary fold patterns and subject to arbitrary folding sequences was described and

implementation examples were provided.

The model for conventional origami with creased folds of zeroth-order geometric

continuity reviewed in Section 2.1 represents a special case of the proposed model for

origami with smooth folds and is captured as well. It is shown in Appendix C that

the known kinematic constraints for origami with creased folds are a special case of

those derived here for origami with smooth folds.

There are various directions for future work in the modeling of the kinematics of

origami structures with smooth folds. First, fold intersections surfaces briefly intro-

duced in Section 2.2 (refer to Figure 2.4) were not addressed in the current work.

For the modeling of origami structures in which holes at the fold intersections are

not desired, parametric formulations for the fold intersection surfaces and kinematic

variables defining their geometry must be addressed. Another effort suggested for

future work entails the consideration of contact detection algorithms to prevent self-

intersections in the kinematic simulation procedure, which were not considered in

this work. Also, here the reference configuration of the smooth folds is simplified

to a rectangular shape and their deformation only includes stretching and bending

of the fold cross-section. However, the kinematic modeling framework proposed in

Section 2 can be extended for the consideration of folds having a trapezoidal refer-
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ence configuration (that deform into conical sections) or folds that exhibit torsional

deformation. Such extensions are also recommended for future studies.

5.2 Design of Origami Structures with Smooth Folds

Section 3 addresses a method for the design of origami structures with smooth

folds. The method is developed based on the previously known idea of using modules

having three folds and two rigid faces to create flaps that are tuck folded to morph an

initially planar sheet into an arbitrary three-dimensional goal shape represented as

a polygonal manifold mesh [9, 391]. The method solves the origami design problem

of finding the geometry of a single planar sheet and its pattern of smooth folds that

allow for the approximation of a goal mesh through such a tuck-based folding. The

work presented in Section 3 includes parameterization of the sheet design, constraints

on the design variables, and a numerical solution procedure.

A process for determining a folding sequence allowing for folding motion from the

determined planar sheet configuration to the folded configuration that approximates

the goal mesh is also presented. Such a process has not been previously addressed in

related work (e.g. [9, 391]). Therefore, the determination of such a folding sequence

addressed here represents another contribution of the present work and is applicable

to both origami with smooth folds and conventional origami with creased folds.

The design method is shown to successfully provide origami structures that can be

physically realized with various engineering materials due to the consideration of

arbitrary order of continuity Gn at the folds. The method was tested against goal

meshes of various geometries and complexities and successful results were obtained

for each.

For origami design problems in which the goal shape is not a polyhedral surface

(e.g. a smooth surface), the process to determine a mesh discretization of such a
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surface before the utilization of the method presented in Section 3 must be addressed.

Multiple algorithms for obtaining polygonal mesh discretizations of smooth surfaces

are available in the literature [437, 438]. Also, algorithms to determine a boundary

that yields a surface mesh topologically equivalent to a disk (a necessary property

for the applicability of the proposed design method) are available in the literature [9,

434, 435, 436, 452] and were not addressed in the work presented in Section 3. Thus,

one direction for future work is the development of a tool for origami design that

integrates in a synergistic manner the mesh determination or simplification [453, 454],

determination of an optimal mesh boundary, and the design method presented in

Section 3.

5.3 Structural Mechanics of Origami Bodies

As identified in Section 1, active materials can play a significant role in the real-

ization of self-folding origami structures. Researchers have demonstrated self-folding

behavior in many active material-based structures with activation fields that include

thermal, chemical, electrical, and magnetic. Several combinations of materials, ge-

ometry, and inducing field are feasible, yielding a large spectrum of design options.

To allow for developments of such origami structures, models for their structural

mechanics must be created and were the focus of Section 4.

Section 4 presents a model for the structural response of origami bodies with

smooth folds domains of non-zero thickness. The kinematic variables and constraints

for the model correspond to those provided in Section 2. The kinematic variables that

fully describe the configuration of origami structures having smooth fold domains of

non-zero thickness corresponded to the fold angles and fold arc-lengths of each fold in

the structure. The governing field equations were presented and the principle of vir-

tual work including the consideration of kinematic constraints via a penalty method
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was used to develop a structural mechanics model for continuum origami bodies. No

assumptions about the material response of the origami structures were made on the

derivation of the model; thus, it is applicable to a wide domain of origami structures.

The numerical implementation of the model was described in detail. Implementation

examples considering structures having smooth fold domains comprised of elastic and

SMA materials were considered therein. Nevertheless, it is remarked that the present

model is applicable to smooth folds comprised of other passive or active materials

so long as strains are small enough such that the linearized strain tensor can be uti-

lized to properly model their deformation. The results determined using the present

model were numerically validated against FEA and good agreement was observed for

all the examples. Moreover, the present model was shown to be significantly more

computationally efficient as compared to FEA while providing comparable results.

The design method for origami structures with smooth folds developed in Sec-

tion 3 was then extended for the design of self-folding structures morphed through

active material actuation. The considered approach assumes simultaneous folding in

structures having active smooth fold domains driven by uniform imposition of the ac-

tivation field (such as a uniform increase in temperature for SMA-based structures).

Therefore, the presented design method does not require any particular control over

the actuation of each individual fold. The design method entails the consideration of

the fold widths as design variables which determine the fold angle achieved by the ac-

tive smooth fold domain under the uniform imposition of the activation field. Results

of SMA-based origami structures that morph towards arbitrary three-dimensional

shapes starting from a planar configuration are provided. Further examples of the

design method for active self-folding structures of Section 4.4 considering other active

materials (e.g. SMPs) could be considered in future work.

Regarding the design method for self-folding origami structures presented in Sec-
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tion 4.4, it is recommended as future work to consider sensitivity analyses to deter-

mine the influence of the various material and geometric parameters on the resulting

folding response (i.e. whether variations in such parameters could considerably af-

fect the final fold angles and thus result in a configuration significantly different from

the goal configuration). In the model developed in Section 4, classical plate theory

assumptions are made for the kinematics of the plate representation for each smooth

fold domain. For future work, higher-order plate theories [355, 455, 456] or layerwise

theories [354, 457] may be considered to improve the current model.
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APPENDIX A

ANALYSIS OF SELF-FOLDING USING A LAMINATE WITH AN ACTIVE

LAYER AND A PASSIVE LAYER

1The derivation of the equations used for the simplified analysis of the multilayer

self-folding concept (Figure 1.4(d)) presented in Section 1.1.3 is outlined in this

Appendix. For simplicity, bending of a laminated beam having one active layer and

one passive layer is considered. The base analytical solution for this case is obtained

from [458]. The bilayer laminate is illustrated in Figure A.1. The laminate of total

thickness hB has a layer of material I of thickness aB1 and a layer of material II of

thickness aB2 such that:

aB1 + aB2 = hB. (A.1)

The width of the laminated beam is denoted as wB so that the total cross-sectional

area of the beam is wBhB. In [458], it is assumed that both materials comprising the

laminate are thermoelastic. Material I has Young’s modulus and thermal expansion

coefficient of EB
1 and αB1 , respectively. Likewise, material II has Young’s modulus

and thermal expansion coefficient of EB
2 and αB2 , respectively. When the temperature

of the laminate is uniformly altered from the reference temperature T0 to a current

temperature T , the laminate bends to a configuration having a mid-surface radius of

curvature RB (see Figure A.1) due to the unequal thermal expansion coefficients of

the constituent layers (i.e. when αB1 6= αB2 ). The relationship between the obtained

1Portions of this appendix are reprinted or adapted from [3] E. A. Peraza-Hernandez, D. J.
Hartl, R. J. Malak Jr, and D. C. Lagoudas. Origami-inspired active structures: a synthesis and
review. Smart Materials and Structures, 23(9):094001, 2014. c© IOP Publishing. Reproduced with
permission. All rights reserved. http://dx.doi.org/10.1088/0964-1726/23/9/094001
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Figure A.1: Bending of a bilayer laminated beam under unequal field-induced ex-
pansion of its comprising layers. The bending radius of curvature RB is measured at
the mid-surface of the laminate.

radius of curvature RB and the geometric and material parameters of the laminate

was derived by Timoshenko [458] and is given as follows:

1

RB

=
6(αB2 − αB1 )(T − T0)(1 +mB)2

hB

(
3(1 +mB)2 + (1 +mBnB)

(
m2
B + 1/(mBnB)

)) , (A.2)

where mB and nB are defined as follows:

mB :=
aB1
aB2
, (A.3)
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nB :=
EB

1

EB
2

. (A.4)

Also let the dimensionless constants CB
1 and CB

2 be defined as follows:

CB
1 :=

3(1 +mB)2 + (1 +mBnB)
(
m2
B + 1/(mBnB)

)

6(1 +mB)2
, (A.5)

CB
2 := 2 +

6hB(aB1 )2EB
1

EB
1 (aB1 )3 + EB

2 (aB2 )3
. (A.6)

For the assessment of self-folding with respect to actuation strain and actuation

stress, material I is assumed as the active material while material II is assumed as

the passive material. In Equation (A.2), the actuation strain is assumed to be due to

the thermal expansion of the constituent layers. However, the final configuration of

such a laminate would be the same regardless of the physical mechanisms generating

the actuation strain. Therefore, the following expressions are considered:

αB2 = 0, (A.7)

εACT = −αB1 (T − T0). (A.8)

Equation (A.7) emerges from the assumption that the passive material provides

negligible strain under the applied field. Equation (A.8) implies that the active layer

is deforming with a strain of εACT . The following is obtained after substituting in

Equations (A.7) and (A.8) into Equation (A.2):

1

RB

=
6εACT (1 +mB)2

hB

(
3(1 +mB)2 + (1 +mBnB)

(
m2
B + 1/(mBnB)

)) . (A.9)
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The radius of curvature non-dimensionalized by the laminate thickness is then

given as follows:

RB

hB
=

3(1 +mB)2 + (1 +mBnB)
(
m2
B + 1/(mBnB)

)

6εACT (1 +mB)2
. (A.10)

To simplify the preceding equation, the constant CB
1 , defined in Equation (A.5),

is substituted into Equation (A.10) and the following is obtained:

εACT =
CB

1 hB
RB

. (A.11)

Equation (A.11) provides a non-dimensional analytical expression for the assess-

ment of the self-folding behavior of a bilayer laminate with a layer of active material

and a layer of passive material. Clearly, as the actuation strain increases, the radius

of curvature of the bent sheet decreases.

An assessment of the influence of effective actuation stress σACT on the fold-

ing performance is subsequently derived. The effective actuation stress σACT is as-

sumed as the maximum stress experienced by the active layer. An expression for

the maximum stress in the considered bilayer laminated beam was also obtained by

Timoshenko [458] and is given as follows:

σACT =
PB
wBaB1

+
aB1 E

B
1

2RB

, (A.12)

where PB is the total axial force in the active layer. It can be shown [458] that the

total bending moment MB relates to PB and RB as follows:

PB =
2MB

hB
, (A.13)
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RB =
EB

1 I
B
1 + EB

2 I
B
2

MB

=
wB(EB

1 (aB1 )3 + EB
2 (aB2 )3)

12MB

,

(A.14)

where IB1 and IB2 are the area moments of inertia of the cross-sections of layers I and

II, respectively. The term EB
1 I

B
1 +EB

2 I
B
2 represents the effective bending stiffness of

the laminate. The moments of inertia were substituted in Equation (A.14) using the

relation IBi = wB(aBi )3/12 where i = 1, 2. Substituting the results from Equations

(A.13) and (A.14) into Equation (A.12) the following is obtained:

σACT =
MB

wBhBaB1


2 +

6hB(aB1 )2EB
1

EB
1 (aB1 )3 + EB

2 (aB2 )3


 . (A.15)

To simplify Equation (A.15), the constant CB
2 defined in Equation (A.6) is sub-

stituted into Equation (A.15) and the following simplified relation between actuation

stress and bending moment is obtained:

σACT =
MBC

B
2

wBhBaB1
. (A.16)
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APPENDIX B

ANALYSIS OF SELF-FOLDING USING A TORSIONAL ACTUATOR

1The derivation of the equations used for the simplified analysis of the torsional

concept for an active fold (Figure 1.4(b)) presented in Section 1.1.3 is summarized in

this Appendix. In order to allow for a simplified analysis, only the active torsional

element is contained in the analysis domain [3]. A boundary value problem of the

torsional element is considered by modeling the interactions of the element with other

bodies (hinge and connected faces, refer to Figure 1.4(b)) as applied moments. The

active torsional element is represented as a rod of length LT and having uniform

circular cross-section of radius rT . The rod is assumed to initially have zero stresses.

The rod twists under the uniform application of the activation field which allows for

the generation of actuation strains. If the rod is constrained to some degree at its

ends, it is subjected to equal and opposite end-torques denoted as MT . These torques

are associated with the resistance of the sheet to fold (caused by friction at the hinge,

interactions of the sheet with other bodies, the effects of gravity, etc.). The reference

and current configurations of the torsional element are shown in Figure B.1.

In this analysis, the longitudinal axis of the rod is defined such that it coincides

with the 1-axis. By the rotational symmetry of the problem, it is reasonable to

assume that the deformation of each infinitesimal region along the longitudinal axis

of the rod with thickness dX1 is restricted to a rigid body rotation about the 1-

axis [459]. Considering a quasi-static form of the equations for conservation of linear

1Portions of this appendix are reprinted or adapted from [3] E. A. Peraza-Hernandez, D. J.
Hartl, R. J. Malak Jr, and D. C. Lagoudas. Origami-inspired active structures: a synthesis and
review. Smart Materials and Structures, 23(9):094001, 2014. c© IOP Publishing. Reproduced with
permission. All rights reserved. http://dx.doi.org/10.1088/0964-1726/23/9/094001

314



Applied field 

X1

X1

X2

X2

X3

X3

MT

MT

LT

rT

�T (X1)

Figure B.1: Reference and current configurations of an active rod that twists under
the application of a uniform field.

momentum, no body forces, and uniform actuation strains along the 1-axis, it can

be determined that the twist angle φT varies linearly along the 1-axis [459]:

dφT
dX1

= constant = φ′T . (B.1)

Under such an assumption on the deformation of the rod, the only non-zero

strains, which are due to elastic strains (denoted as εELij ) and physical mechanism-

agnostic actuation strains (denoted εACTij ) are given by:

εEL12 + εACT12 = −1

2
X3φ

′
T , (B.2)
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εEL13 + εACT13 =
1

2
X2φ

′
T . (B.3)

The corresponding non-zero stress components are the following:

σ12 = GT

(
−1

2
X3φ

′
T − εACT12

)
, (B.4)

σ13 = GT

(
1

2
X2φ

′
T − εACT13

)
, (B.5)

where GT is the shear modulus of the active material rod that is assumed to be

homogeneous and independent from the deformation of the rod. To determine the

influence of the actuation stress and actuation strain of the active material on the

folding performance, two different cases are explored. To relate actuation strain to

the folding performance of the torsional element, it is assumed that the magnitude

of the actuation shear strain far exceeds that of the elastic shear strain due to the

choice of active material and/or the assumption of negligible applied moments at

the fold (i.e. σ12 = σ13 = 0). Considering Equations (B.4) and (B.5) under this

assumption:

εACT12 = −1

2
X3φ

′
T , (B.6)

εACT13 =
1

2
X2φ

′
T . (B.7)

The effective actuation strain εACT in the rod considering the strain components

316



given in Equation (B.6) and (B.7) is the following:

εACT =

(
2

3

(
2(εACT12 )2 + 2(εACT13 )2

))1/2

=

√
3

3
φ′T (X2

2 +X2
3 )1/2.

(B.8)

The maximum value of εACT occurs at (X2
2 +X2

3 )1/2 = rT . Therefore, the spatial

derivative of twist angle along the rod longitudinal axis φ′T multiplied by rT is given

by:

rTφ
′
T =
√

3 εACT , (B.9)

and the total twist angle ϕT (that is expected to translate into a fold angle) is

calculated by integrating φ′T over the entire length of the rod:

ϕT =

∫ LT

0

φ′T dX1

= φ′T

∫ LT

0

dX1 = φ′TLT .

(B.10)

Substituting Equation (B.10) in Equation (B.9), the following relation between

εACT and the total twist angle ϕT is obtained:

εACT =

√
3 rTϕT
3LT

. (B.11)

To assess the influence of actuation stress on the resulting folding response, the

case in which the fold having the active torsional rod is fully constrained from folding

is considered. In this case, φT (X1) = 0 and φ′T = 0. Considering Equations (B.2)–
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(B.5) and the previous assumptions, the following is obtained:

σ12 = GT (−εACT12 )

= GT ε
EL
12 ,

(B.12)

σ13 = GT (−εACT13 )

= GT ε
EL
13 .

(B.13)

The preceding equation corresponds to the elastic solution of the problem for

which the relations between the stresses and the applied torque are given as fol-

lows [459]:

σ12 = −
MTX3

IT
, (B.14)

σ13 =
MTX2

IT
, (B.15)

where IT is the polar second moment of the circular cross-section (IT = πr4
T/2). The

von Mises stress σ̄ in the rod is given as follows [439]:

σ̄ =

(
3

2

(
2(σ12)2 + 2(σ13)2

))1/2

=
√

3
MT

IT
(X2

2 +X2
3 )1/2,

(B.16)

and the effective actuation stress σACT (assumed as the maximum von Mises stress

in the rod) occurs at (X2
2 +X2

3 )1/2 = rT and is related to the applied torque MT as
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follows:

σACT =
2
√

3MT

πr3
T

. (B.17)

Equations (B.11) and (B.17) provide an assessment of the folding performance

(twist angle, applied torque) of the torsional concept for an active fold as function

of actuation stress and strain of the active material.
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APPENDIX C

DERIVATION OF THE CONSTRAINT FOR ORIGAMI WITH CREASED

FOLDS (EQUATION (2.14)) AS A SPECIAL CASE OF THE CONSTRAINTS

FOR ORIGAMI WITH SMOOTH FOLDS

1The constraint for origami with creased folds presented in Equation (2.14) has

been derived in the literature (see [121, 276]) using an approach analogous to that

taken in Section 2.2.3 to derive the constraints for origami with smooth folds (Equa-

tions (2.85) and (2.86)). The purpose here is not to reproduce such a derivation

from the literature but rather derive Equation (2.14) as a special case of Equations

(2.85) and (2.86) occurring when the smooth folds are degenerated to straight lines

(corresponding to creased folds).

Since Equation (2.14) is already accounted for in origami with smooth folds (cf.

Equation (2.85)), it is only needed to show that dj = 03 (Equation (2.86)) holds for

origami with creased folds if the constraint presented in Equation (2.14) is met. A

segment of a general path γj(η) enclosing an interior fold intersection (corresponding

to a single point for origami with creased folds) crossing each of its incident folds once

in a counterclockwise order is shown in Figure C.1. Using Figure C.1 as a reference,

the vectors w̃jk and l̃jk (see Equations (2.81) and (2.82)) are respectively given as

1Portions of this appendix are reprinted or adapted from [7] E. A. Peraza Hernandez, D. J.
Hartl, and D. C. Lagoudas. Kinematics of origami structures with smooth folds. Journal of
Mechanisms and Robotics, 2016. Copyright c© 2016 by ASME. Reproduced with permission.
http://dx.doi.org/10.1115/1.4034299
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�
j (⌘)

ljk

↵jk

ljk + bjk

l j
k
+

1

l̃jk

w̃jk
mjk

mj k+1

Figure C.1: Schematic showing two adjacent creased folds (along the vectors mjk and
mj k+1) incident to a common interior vertex. The vectors w̃jk and l̃jk are shown.

follows:

w̃jk =




bjk

0

0



, (C.1)

l̃jk =








lj k+1 cos(αjk)− ljk − bjk

lj k+1 sin(αjk)

0




; k = 1, . . . , nj − 1




lj1 cos(αjk)− ljk − bjk

lj1 sin(αjk)

0




; k = nj

, (C.2)

where ljk ∈ R≥0, bjk ∈ R, and ljk + bjk ≥ 0.
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Substituting Equations (C.1) and (C.2) into the expression for dj provided in

Equation (2.86) and utilizing the fact that R1(φ)w̃jk = w̃jk for the expression of w̃jk

in Equation (C.1), the following is obtained:

dj =

nj∑

k=1




(
k−1∏

l=1

R1(θjl)R3(αjl)

)



bjk

0

0







+

nj−1∑

k=1




(
k−1∏

l=1

R1(θjl)R3(αjl)

)
R1 (θjk)




lj k+1 cos(αjk)− ljk − bjk

lj k+1 sin(αjk)

0







+

(
nj−1∏

l=1

R1(θjl)R3(αjl)

)
R1

(
θjnj
)




lj1 cos(αjnj)− ljnj − bjnj

lj1 sin(αjnj)

0




=

nj−1∑

k=1




(
k−1∏

l=1

R1(θjl)R3(αjl)

)
R1 (θjk)




lj k+1 cos(αjk)− ljk

lj k+1 sin(αjk)

0







+

(
nj−1∏

l=1

R1(θjl)R3(αjl)

)
R1

(
θjnj
)




lj1 cos(αjnj)− ljnj

lj1 sin(αjnj)

0



.

(C.3)
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The following equality is then used to simplify the previous expression:




lj k+1 cos(αjk)

lj k+1 sin(αjk)

0




= R3(αjk)R1(θj k+1)




lj k+1

0

0




∀ k ∈ {1, . . . , nj − 1}.

(C.4)

Substituting Equation (C.4) into Equation (C.3), the following simplified expres-

sion is obtained:

dj = R1(θj1)




−lj1

0

0




+

(
nj−1∏

l=1

R1(θjl)R3(αjl)

)
R1

(
θjnj
)




lj1 cos(αjnj)

lj1 sin(αjnj)

0




=




−lj1

0

0




+

(
nj−1∏

l=1

R1(θjl)R3(αjl)

)
R1(θjnj)R3(αjnj)




lj1

0

0




=




−lj1

0

0




+

(
nj∏

l=1

R1(θjl)R3(αjl)

)



lj1

0

0




=




−lj1

0

0




+ Rj




lj1

0

0



.

(C.5)
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The previous equation shows that Rj = I3 ⇒ dj = 03 for origami with creased

folds independently from the choice of the path γj(η). Therefore, dj = 03 is a

redundant constraint for origami with creased folds. This result shows that the

constraints for origami with creased folds are a special case of the more general

constraints for origami with smooth folds.
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APPENDIX D

ALTERNATIVE FORMULATION OF DESIGN METHOD CONSTRAINTS

As noted in Section 3.5, one of the objectives that may be considered during the

implementation of the origami design method presented in Section 3 is to maximize

the surface area efficiency E (defined in Equation (3.65)). For a given goal mesh

M, E is maximized by minimizing the area of the determined sheet design S0. The

surface area of S0 is the addition of the surface areas of the trimmed mesh faces and

the edge modules (see Figure 3.6). The surface areas of the trimmed mesh faces are

prescribed by the given goal meshM and the fold widths. Therefore, the only surface

areas of S0 that may be altered by selecting different values of the design variables

Ŵi and ψ̂i, i = 1, . . . , N I
E , are the surface areas of the edge modules. This Appendix

addresses an alternative formulation of the constraints in the origami design method

presented in Section 3 allowing for reduction of the surface areas of the edge module

rigid faces (as a consequence allowing for an increase in the value of E).

Referring to Figure 3.10(a), the total surface area of the rigid faces in the ith edge

module, denoted as Ai, is given as follows:

Ai =
(
Ŵi − ŵI0

i − 2ŵE0
i cos

(
ψ̂i
2

))
‖ẑi‖ cos

(
ψ̂i
2

)
. (D.1)

For simplicity in the formulation presented here, the surface area of the edge

module rigid faces prior to face trimming (Section 3.3.1) and edge module trimming

(Section 3.3.2.1) is considered in Equation (D.1). It is observed from Equation (D.1)

that the total surface area of the rigid faces in the ith edge module is linear with

respect to the length design parameter Ŵi. Thus, for a fixed value of ψ̂i, the total
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surface area of the rigid faces in the ith edge module reaches its minimum value when

Ŵi reaches its lowest feasible value. For a fixed value of ψ̂i, the lowest feasible value

for Ŵi is determined by setting the inequality constraint in Equation (3.21) to an

equality constraint. The resulting equality constraint is given as follows:

Ŵi = ŵI0
i + 2ŵE0

i cos
(
ψ̂i
2

)
+
∥∥ẑi
∥∥ sin

(∣∣∣ ψ̂i2
∣∣∣
)
−





(d̂i11 + d̂i21) sin
(
ψ̂i
2

)
; ψ̂i ≥ 0

(d̂i12 + d̂i22) sin
(
− ψ̂i

2

)
; ψ̂i < 0

,

(D.2)

cf. Equation (3.21). With this alternative formulation, the loop closure constraints

(Equations (3.15) and (3.16)) and the additional constraints in Equation (D.2) pro-

vide 3N I
N + N I

E equality constraints. Equations (3.20) and (3.28) allowing for valid

edge module geometries and self-intersection avoidance in S? provide 3N I
E inequality

constraints. For numerical implementation of the present alternative formulation,

the equality constraints are set to the form h = 03NI
N +NI

E
while the inequality con-

straints are set to the form g ≤ 03NI
E
. The numerical procedure outlined in Sec-

tion 3.4.2 is again utilized to implement this alternative formulation for the origami

design method.

Two implementation results of this alternative formulation of the design method

are shown in Figures D.1 and D.2. Both examples show high values of surface area

efficiency (E = 0.80 for the example shown in Figure D.1 and E = 0.76 for the

example shown in Figure D.2).
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M

S0
S?

Figure D.1: Goal mesh M having interior nodes of positive discrete Gaussian cur-
vature and its associated determined sheet reference configuration S0 obtained using
the alternative formulation of the design method presented in this Appendix. The
surface area efficiency for this example has a value of E = 0.80. The folded goal
configuration S? is also shown.
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M

S0
S?

Figure D.2: Goal mesh M having interior nodes of negative discrete Gaussian cur-
vature and its associated determined sheet reference configuration S0 obtained using
the alternative formulation of the design method presented in this Appendix. The
surface area efficiency for this example has a value of E = 0.76. The folded goal
configuration S? is also shown.
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