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ABSTRACT

During low speed maneuvers, such as landing and approach, a significant portion

of the noise generated by transport aircraft is due to airframe noise. The leading-

edge slat is a primary source of airframe noise. Previous work has shown that the

slat-cove filler (SCF) is effective at mitigating the noise generated by the slat. The

objective of this work was to further the development of a superelastic shape memory

alloy (SMA) SCF concept by investigating fluid-structure interaction (FSI) behavior

via computational and physical models.

Structural optimization of a SCF design for a representative, transport-class air-

foil was first conducted considering the SCF response to aerodynamic and slat re-

traction loads. The objective of the optimization was to minimize the actuation

force needed to retract the slat and SCF. A monolithic SMA SCF was found to

minimize the actuation force while satisfying constraints, which agreed with findings

from prototype testing on the bench-top apparatus.

The success of the design optimization motivated further work that sought to

determine how the SCF responded in flow using a combination of finite volume fluid

models and finite element structural models based on a small-scale wind tunnel model

of a conventional multi-element wing configuration with a SCF. Multiple angles of

attack and deployment states of high lift devices were considered for computational

fluid dynamics (CFD) analysis to gain an initial understanding of the flow around

the wing. FSI analysis of the SCF in flow was conducted for multiple load cases

using a framework that was compatible with custom material subroutines (for SMA

material response). Wind tunnel testing of a physical model of the multi-element

wing configuration was used to begin validation of the CFD and FSI models.
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1. INTRODUCTION AND CONCEPT OF THE SMA SCF∗

1.1 Introduction

One the main factors in wing design of conventional transport aircraft is cruise

efficiency. At cruise and other high speed phases of flight, the wing must generate

sufficient lift for steady level flight. However, in low speed phases of flight such

as approach and landing, high-lift devices are deployed to improve the aircraft’s

lift and stall characteristics. High-lift devices typically include a leading-edge slat

and a trailing edge flap. These high-lift devices, normally flush against the wing in

cruise for reduced drag, present geometric discontinuities (gaps, edges, coves) to the

airflow resulting in unsteadiness and the production of aeroacoustic noise. The noise

produced by the leading-edge slat is the focus of this work.

Environmental and community noise is an ever-increasing problem because of

continued growth of population in the vicinity of airports and growth in the air-

transport industry itself. Reduction of noise produced by the slat has been studied

for many years and a number of concepts have been proposed. Lockard and Khorrami

used extended blade seals [1] while Dobrzynksi and Mau used a brush-based concept

to mitigate the noise produced by the slat [2]. A third concept, proposed 14 years

ago by Gleine and his coworkers was the slat-cove filler (SCF) [3]. The SCF fills

the aft cavity of the deployed slat, modifying the airflow in such a way that its

unsteadiness is reduced that in turn reduces aeroacoustic noise. Both experimental

and computational results have shown that the SCF is effective at noise reduction

[4, 5, 6]. It has furthermore been shown that a SCF shape that is dictated by

∗Figure 1.1 is from “Development and Analysis-Drive Optimization of Superelastic Slat-Cover
Fillers for Airframe Noise Reduction” by Scholten, W. and Hartl, D. and Turner, T. and Kidd, R.;
reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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the total pressure distribution between the slat and main wing at nominal landing

conditions produces the maximum noise reduction. Development of the SCF concept

was previously hindered by creating a SCF that could meet three conflicting goals

common to morphing aerostructures [7]: i) compliance for morphing, ii) stiffness

under aerodynamic loading, and iii) low weight. These conflicting design goals are

illustrated in the requirement triangle of Fig. 1.1[8] (modeled after [7]).

Light 

Stiff Under 

Aero-loading 

Compliant During 

Retraction high weight 

Conventional actuators 

(e.g. hydraulic) 

Figure 1.1: Morphing aero-structures requirement triangle.

In this work, shape memory alloys (SMAs), a type of active material, was incor-

porated into the design of the SCF. SMA materials have many qualities that make

them suitable for morphing structure applications including a high energy density

(for actuator applications) and an ability to undergo large amounts of recoverable

deformation without yielding, allowing for a reduction in system complexity [9].

The legacy method of smart structures design required many expensive and pro-

tracted cycles of designing, constructing and testing physical models to reach an

2



optimal design. Using high-speed computational tools, analysis-driven optimization

can be performed more efficiently to solve design problems involving SMAs. Many

SMA design efforts using optimization techniques are discussed in a recent review

[10, 11]. Gradient-based optimization has been used in applications such as SMA

wire-actuated rotors [12] and active SMA panel structures [13]. Design optimizations

using genetic algorithms have been considered in biomedical and aerospace applica-

tions. With regards to designs incorporating SMAs, genetic algorithms have been

used in the design of spring actuation components [14] and structural damping mech-

anisms [15]. A design effort with goals similar to this work was the Boeing-developed

variable geometry chevron (VGC) [16]. The goal of the VGC was to reduce the noise

produced by the engine through modification of the exhaust nozzle airflow. Many

optimization efforts [10, 11, 13] were motivated by the VGC’s success. The design

optimization methods developed in these efforts are incorporated into this work to

find the optimal SCF design.

Morphing aerostructures, such as the SCF, can have significant effects on the

surrounding airflow that in turn can affect the loading of the structure. To cap-

ture this interaction, fluid-structure interaction (FSI) analysis was considered. This

type of analysis has been used for adaptive and morphing structures in many works.

MacPhee and Beyene performed FSI analysis on a two-dimensional passive, morph-

ing wind turbine blade under variable loading to demonstrate increased efficiency of

passive morphing compared to conventional active control in wind energy conversion

systems [17]. Similarly, Heo and coworkers investigated in-plane flexible properties

of cellular structures and its use in a passive morphing airfoil application by con-

structing and analyzing a two-dimensional FSI model of an airfoil with a honeycomb

core [18]. FSI analysis has also been incorporated into optimization frameworks.

Maute and Reich performed design optimization of a quasi-three-dimensional adap-

3



tive wing section considering both structural and aerodynamic design criteria using

a FSI model and compared the optimal design to another design from a conventional

two-step approach [19]. A computational framework for the design and analysis

of bio-inspired flapping wings was developed by Willis and coworkers, and design

sweeps of models with varying fidelity models were conducted [20]. Daynes and

Weaver developed and analyzed an FSI model of a morphing flap on a wind turbine

blade for the purpose of load reduction and increased energy output. In addition,

a wind tunnel model of the morphing flap was tested and the experimental results

were compared to the FSI analysis [21].

Limited FSI analysis has been conducted on morphing structures incorporating

SMAs. Nam and coworkers incorporated an SMA spar into a structural model of a

wing and performed a parametric study of the design to assess effects of the SMA

spar on wing performance[22]. Using FSI analysis, Strelec and coworkers developed

and optimized the design of a morphing airfoil incorporating SMAs wire actuators

that altered the airfoil shape to improve efficiency at various stages of flight. Strelec

and coworkers also developed and tested a physical wind tunnel model of the optimal

design [23]. Oehler and coworkers developed an FSI model of the Boeing VGC to

better model the aeroelastic response of the VGC to airflow. Both the VGC tip

deflection and nozzle pressure ratio were examined and compared to wind tunnel

tests of the VGC [24].

While computational analysis is useful for understanding complex interactions

(such as fluid-structure) and allows for efficient design optimization, validation of

computational models using physical models is needed. For the SCF application in

the present work, validation was done using a scaled wind tunnel model incorporating

an SMA SCF. Some of the works previously described that featured FSI analysis

with SMAs included wind tunnel testing [23, 24]. Many wind tunnel tests with
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models incorporating SMAs are described in a recent review of SMA applications in

morphing aircraft [25]. Ruggeri and coworkers tested a three blade rotor system with

embedded SMA torque tubes that controlled the blade twist [26]. Kudva presents a

summary of the DARPA Smart Wing Project that developed and tested a full span

model with SMA-actuated leading and trailing edge control surfaces [27]. Singh and

Chopra designed and tested a SMA wire-actuated tracking tab for a rotor blade to

study its ability to reduce vibrations caused by differences in the rotor blades of a

helicopter. Popov and coworkers investigated a morphing wing with SMA actuators

that changed the shape of the overall wing [28].

1.2 SMA-Based Slat-Cove Filler Concept

As previously mentioned, a primary source for aeroacoustic noise on a typical

transport aircraft is the leading-edge slat cove. The flow field in this region for a

conventional airfoil at a typical landing condition is shown in Fig. 1.2. The flow

bifurcates at the stagnation point resulting in two flows that follow the upper and

lower surfaces of the slat. At the forward-most edge of the slat-cove, the lower

portion of the flow separates resulting in a shear layer that later reattaches near the

slat trailing edge. The shear layer encompasses a recirculating region of flow in the

slat cove and supports considerable unsteadiness that are airframe noise sources.

Noise reduction is possible with the SCF due to the guiding of the flow in the

vicinity of the deployed slat along a desired that removes removing the circulation

within the slat-cove and the unsteady shear layer (see Fig. 1.3). The SCF profile

shown in Fig. 1.3 is the contour dictated by total pressure and minimizes the flow

unsteadiness and noise. When the slat is retracted for cruise, the SCF must sustain

large deformations to allow the slat to nest tightly and cleanly with the main wing.

The resulting strain in the SCF from the deformation (approximately 2-5% [29])
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Circulation

Stagnation Point

Separation

Reattachment

Figure 1.2: Illustration of flow in region of slat for conventional airfoil without SCF.

Figure 1.3: Illustration of flow in region of slat for conventional airfoil with SCF.

surpasses the limit of standard aerospace materials. This deformation, along with

the previously mentioned requirement of stiffness under aerodynamic loading led to

consideration of superelastic SMAs. This type of SMA is processed such that it is in

the austenite phase while unloaded at normal operating temperatures. When given a

sufficient applied stress, superelastic SMA undergoes a solid-to-solid phase transfor-

mation to the martensite phase allowing for large deformation. Once unloaded, the

superelastic SMA undergoes a reverse transformation back into the austenite phase,
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returning to its original configuration.

Retraction and deployment of the SMA SCF is shown in Fig. 1.4. The considered

SMA SCF system includes the SCF, main wing, slat, and a hinge mounted on the

slat cusp to assist with SCF retraction and deployment. As the slat is retracted from

its fully deployed configuration (1), the SMA flexures of the SCF contact the main

wing (2) causing localized stress in the flexure and in turn phase transformation from

austenite to martensite. The localized transformation of the SMA flexures causes the

SCF to deform into a configuration suitable for the small space between the slat and

wing (3 and 4). During slat deployment (5), the SMA flexures are unloaded as the

SCF loses contact with the wing, resulting in a return to the original configuration

(6) if properly designed.

Main 

WingSlat
SCF

1)

2)

3)

4)

5)

6)

Hinge

Figure 1.4: SMA SCF retraction/deployment.

Analyzing the stress on the SCF during retraction of the slat demonstrates the

need for SMA materials in this application. Figure 1.5 shows the relation between
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actuation force and percent retraction for SCFs made entirely out of SMA, steel,

aluminum and titanium with scaled thicknesses such that each SCF has the same

deflection from a representative static aerodynamic load.1 Material properties for

the SMA are from previous work [8] while the properties for the other materials

are from the Metallic Materials Properties Development and Standards database

[30]. As shown in Fig. 1.5, with scaled thicknesses, the SCFs have approximately

the same actuation force curve. The sharp drop in moment near 90% retraction is

due the hinge snapping into its retracted position. The hinge snap is a dynamic

event in the quasi-static analysis and resulting drop in moment should not be not

be trusted. Note that the SMA SCF has a higher moment past 80% retraction due

to contact between main wing and slat. he The trailing edge of the SCFs made out

of typical standard materials were able to fit in the small space between the leading

edge of the main wing and trailing edge of the slat better than the SMA SCF since

they were thinner. Examining the stress in each SCF shows that every standard

material SCF exceeds the yield stress. The steel and aluminum SCFs exceeded

the yield stress at relatively the same percentage of retraction (21.6% for steel and

22.4% for aluminum). The titanium SCF successfully retracts but exceeds the yield

stress at full retraction. Some adjustments could be made to the slat-cove to slightly

lower the stress on the titanium SCF. However, the titanium SCF would still be

loaded to high levels of stress that overtime could be detrimental. The yielding of

the standard material SCFs is due to large amount of strain encountered during

retraction. Standard aerospace materials have a linear relation between stress and

strain until the onset of plasticity while SMAs exhibit a hysteresis effect allowing for

large amounts of recoverable inelastic strain (see Fig. 1.6).

1The thicknesses for the SMA, steel, aluminum and titanium were 0.0762 mm, 0.00481 mm,
0.0681 mm and 0.05825 mm, respectively.

8



-0.05

-0.03

-0.01

0.01

0.03

0.05

0 20 40 60 80 100

R
ea

ct
io

n
 M

o
m

en
t 

(N
-m

)

% Retraction

Aluminum Steel Titanium SMA

Aluminum yield stress 

exceeded (240 Mpa)

Steel yield stress 

exceeded (483 Mpa)

Titanium yield stress 

exceeded (870 Mpa) 
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Figure 1.6: Comparison of stress-strain curves for SMA and typical materials.
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1.3 Physical Bench-top Model

Previous work done by NASA engineers regarding the SCF concept focused on

the development of a physical bench-top model of the SCF [29]. Initial designs of

the SCF featured elastomers and SMA wires, but the results from those models led

NASA engineers to consider SMA sheet-based designs. Section 1.3 will describe the

development of the SMA sheet-based SCF bench-top model that was the template

for all models developed in the current work.

Figure 1.7 shows a schematic of SMA sheet-based concept. The sheet of supere-

lastic SMA material would be heat treated (shape set) into a stress-free form that

matched the desired (total pressure) SCF contour in the deployed configuration, as

shown by the red contour in Fig. 1.7. To accommodate the contact of the slat cusp

with the main wing in the retracted configuration, a conventional hinge was intro-

duced at the location of the lower attachment between the slat and the SCF. A lap

joint between the hinge arm and the SCF positioned the outer surface of the SCF

flush with the slat at the cusp. Another lap joint between the slat trailing edge and

the SCF accommodated the tight clearance between the main wing and slat trailing

edge during retraction.

During retraction, the SCF was envisioned to deform by transforming to the

martensite phase in areas of high stress. The contact between the main wing and

the SCF was such that stress was initially concentrated near the SCF trailing edge

and transformation initialized there. Transformation ensued elsewhere adaptively in

regions of high stress to allow the SCF to deform and conform to the main wing,

thus accommodating the deformation requirement. By choosing the appropriate

transformation characteristics and geometric parameters, the force needed to stow

the SCF could be minimized. Proper storage of recoverable strain energy in the
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Figure 1.7: Deformable, thin-shell SCF schematic.

SMA during retraction enabled autonomous deployment of the SCF when the slat

was moved away from the wing. While in the deployed configuration and under

aerodynamic loads, transformation was not anticipated and the SCF was expected to

maintain its shape due to the relatively moderate magnitude and smooth distribution

of the aerodynamic load applied normally to the surface of the curved (and thus

inherently stiff to the aerodynamic load) SMA structure.

It was unknown at the initiation of concept development if a single monolithic

SMA flexure was feasible for use as a slat-cove filler. Cost savings and potential re-

tract/deploy kinematic advantages might be realized by including stiffened regions in

the SCF. Thus, a parametric study was planned to examine the design space in terms

of the number of deforming and non-deforming SCF regions, their thicknesses, and

their sizes in order to minimize the force needed to retract the slat-SCF assembly.

Feasible designs also needed to retain proper retraction and self-deployment function-

ality and exhibit sufficiently high SCF stiffness given an applied, static aerodynamic

load when deployed.

Initial SCF work used large (75% scale) physical apparatuses to test various SCF
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designs. For the shell-based SCF design, physical apparatus with a 1.9 cm span

(effectively making it a 2-D prototype) was used (see Fig. 1.8). This enabled a

faster and less expensive parametric study of the superelastic SMA concept and was

more compatible with available SMA forms. Bearings were mounted underneath the

slat that, when moved within machined slots in the baseplate, enforced proper 2-D

kinematics between the leading edge of the main wing and the slat.

Slat 

Baseplate 

Main Wing 

Guide  

Slots 

SMA SCF 

Figure 1.8: Bench-top apparatus used in parametric study of SCF prototypes incor-
porating SMA flexures.

Superelastic SMA flexures that were shape-set to the total pressure SCF pro-

file were obtained in thicknesses ranging from 0.51 mm to 1.27 mm (increments of

0.127 mm). The heat treatment and composition of the flexures gave them a supere-

lastic response at room temperature.

Initial work using the simplified bench-top apparatus of Fig. 1.8 led to two pro-

totypes: a) the long hinge monolithic-SMA prototype (Fig. 1.8 and Fig. 1.9(a)),

which consisted of one superelastic SMA flexure and b) the multi-flexure prototype

(Fig. 1.9(b)), which consisted of a forward SMA flexure, a non-deforming inter-

mediate link (mid-link), and an aft SMA flexure. In either design, the hinge arm

was configured such that SCF stowage space and mobility were maximized. It was

12



qualitatively found that the long hinge monolithic prototype, being in general more

flexible, required less force during retraction than the multi-flexure prototype. In

fact, the increase in compliance (and associated decrease in actuator load) during

retraction motivated a further reduction in hinge length, resulting in a third design:

c) the short hinge monolithic SCF (Fig. 1.9(c)). The length of the hinge arm was

minimized by creating the abrupt “z-curve” in the SMA flexure needed to maintain

a continuous outer mold line at the slat cusp (inset of Fig. 1.9(c)).

Monolithic

SMA

Trailing Edge Part

Hinge Arm

(a) Long hinge monolithic
SMA SCF.

Aft SMA

Non-

deforming

Segment
Forward SMA 

Trailing Edge Part

Hinge Arm

(b) Multi-flexure SMA SCF.

Monolithic 

SMA

Trailing Edge Part

Hinge Arm

(c) Short hinge monolithic
SMA SCF.

Figure 1.9: FEA model of SCF assembly (mesh hidden).

The multi-flexure design clearly required consideration of more design variables

and thus provided more design flexibility in balancing the stowage force versus the

resistance to aerodynamic loading and in adjusting the kinematics of retraction and

deployment. The multi-flexure SCF prototype consisted of three components: a

0.51 mm forward SMA flexure, a 1.02 mm aft SMA flexure, and a non-deforming

mid-link. Each component spanned roughly 1/3 of the overall curvilinear length of

the SCF profile. This configuration was found to provide the best compromise regard-

ing design goals for the multi-flexure designs considered; a change in the thickness

of either SMA flexure resulted in unacceptable shifts in the balance between com-

pliance during stowage and stiffness under aerodynamic loading. The retraction and
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deployment sequence for the multi-flexure design is shown in Fig. 1.10. Note that,

although this multi-flexure SCF retracted into the slat cavity with acceptable force,

no such configuration tested would self-deploy without the installation of additional

components (e.g., a restoring spring), which would increase both retraction force and

system complexity.

1) Deployed

2) Stowed

3) Incomplete     

Redeployment

Figure 1.10: Multi-flexure-SMA SCF with 0.51 mm thick forward flexure and
1.02 mm thick aft flexure: 1) deployed, 2) stowed and 3) redeployed (exhibiting
bi-stable behavior).

Both the longe hinge monolithic (baseline) and the short hinge monolithic pro-

totypes employed a continuous 1.02 mm thick SMA flexure. Both autonomously

redeployed and met the contradictory stowage compliance and aeroelastic stiffness

requirements. Figure 1.11(a) and Fig. 1.11(b) show the retraction and deployment

of the two monolithic prototypes. The short hinge prototype exhibited a noticeable

decrease in stowage force (measured qualitatively) relative to the long hinge due to

the additional length of compliant SMA. Both designs had a similar response to a

distributed force configured to approximate the aerodynamic load. During physi-
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cal prototype testing the load was approximated using shot bags. Having shown

smooth response, successful self-deployment, and sufficient aeroelastic stiffness, the

short hinge monolithic concept was deemed superior to other design configurations

tested.

1 

2 

3 

4 

5 

6 

(a) Long hinge monolithic.

1 

2 

3 

4 

5 

6 

(b) Short hinge monolithic.

Figure 1.11: Monolithic prototypes with 1.02 mm flexure thickness: 1) deployed, 2)
SCF flexing around leading edge, 3) hinge clearing leading edge, 4) stowed, 5) slat
at ∼75% redeployment and 6) autonomously redeployed.

1.4 Research Issues

There are important research issues concerning the development of the SCF that

must be addressed. These issues include the balancing of the three conflicting design

goals (stiffness to aerodynamic loads, compliance to retraction/deployment and low

weight), the behavior of the SMA SCF in flow, the sensitivity of the SMA SCF to

changes in temperature and the manufacturing of the SMA SCF.

Due to the hysteresis of SMAs, incorporating SMAs into the SCF design provides

a means to meet the requirements of light weight, stiffness to aerodynamic loading,

and compliance to retraction/deployment. However, the SMA SCF must be designed
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correctly. An overly stiff SMA SCF would meet the design requirements during

aerodynamic loading, but could require an actuation force that exceeds the maximum

force in current slat actuation systems or it could damage the main wing resulting

in significant loss of aerodynamic effectiveness. In addition, overly stiff designs may

yield during retraction due to the increased stress. Conversely, a very compliant SMA

SCF design will meet the retraction/deployment requirement, but may be unable to

maintain its shape under aerodynamic loading, potentially compromising structural

stability or limiting the noise mitigation effectiveness. The incorporation of SMAs

into the SCF design allows allows for the possibility of designs that can meet the three

conflicting requirements, but fail in the autonomous redeployment of the SMA SCF

due to bi-stability. Satisfaction of the three requirements in addition to autonomous

redeployment are addressed by performing design optimizations of the SMA SCF.

The second issue is understanding the behavior of the SMA SCF in flow. Cur-

rently, all wind tunnel tests related to the SMA SCF have used rigid models. It is

unknown how the SMA SCF will behave in flow. Airflow could either assist or hinder

the retraction and deployment of the SMA SCF. In addition, since the SMA SCF is

a thin shell spanning the length of the wing, it may vibrate which could produce as

much noise as the wing without the SMA SCF. Performing both wind tunnel tests

and fluid structure interaction (FSI) analysis of a high-lift wing with a flexible SMA

SCF would assist in the understanding of the SMA SCF in flow. These tests are

not trivial. Scaled wind tunnel models can be difficult to manufacture due to part

sizes. Fastened, brazed or welded joints at full scale may be limited to adhesive

joints at model scale. Computational FSI analysis will require a complex model that

can handle many complicated features such as contact, large deformation, nonlinear

materials, turbulent fluid flow and CFD mesh adaptation (including elimination of

fluid volume) due to airfoil reconfiguration.
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The third issue for the SMA SCF research is the sensitivity of the SMA SCF to

temperature changes. This issue is significant since transport aircraft can undergo a

wide range of temperatures depending on the flight origin and destination. Material

response of SMAs, such as the transformation temperatures, are highly dependent

on the operating temperature, potentially effecting the performance of the SMA

SCF. In addition if the temperature is low enough, the SMA could transform pre-

maturely into the martensite phase with no loading, ruining the superelastic effect.

The SMA material for the SCF will need to have a composition and training such

that it minimizes its sensitivity to temperature. Alternatively, there will need to be a

temperature control system that can maintain the temperature of the SMA material

at the optimal condition.

The final issue for the development of the SMA SCF is the physical implemen-

tation of the SMA SCF. Current physical full scale models of the SMA SCF have

only been a few inches in span. At wind tunnel scales, this is not an issue since the

curvilinear length of the SMA SCF will only be a few inches. At full scale the SMA

SCF system will span almost the entire length of the wing. This size exceeds what

current SMA (specifically NiTi) manufacturers can achieve. This issue will be re-

solved as SMA manufacturing processes improve. However, using current technology

the full scale operational SCF will have to be created in small spanwise slices.

1.5 Research Objectives and Plan

This research will focus specifically on development and understanding of the

SMA SCF using both computational and physical models. The following is a list of

objectives for the research presented in this document.

• Develop a structural model of the SMA-SCF and perform design optimization

considering both aerodynamic and retraction/deployment load cases.
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• Develop and analyze CFD and FSI models of a scaled SCF for a conventional

high-lift system at various angles of attack and slat/flap deployment.

• Develop and test a scaled wind tunnel model of the SCF for a conventional

high-lift system to validate computational models using experimental results.

A finite element structural model of the full scale SMA SCF, based on the phys-

ical model developed by NASA [29], will be presented and used to analyze the SCF

response to aerodynamic and slat retraction loads with the goal of optimization. The

objective of the optimization will be the minimization of the actuation force needed

to retract the slat-SCF assembly while subject to constraints involving aeroelastic

deflection of the SCF when deployed, maximum stress in the SMA flexures, au-

tonomous deployment of the SCF during slat deployment. The design optimization

will consider the SMA flexure thicknesses and lengths of various SCF components as

design variables. The results of design of experiment (DOE) studies will be presented

and used to guide the optimization.

The wind tunnel model will be presented and is based on a 2D section from the

mid-span of the outboard slat on the Common Research Model (CRM) [31] with a

SCF for the specific section. The CRM is a theoretical wing developed by Boeing

and NASA with available geometry (fixed wing and multiple slat/flap positions)

and computational fluid dynamics (CFD) results that can serve as validation checks

for early CFD and FSI models of the SCF. The wind tunnel model consists of 3D

printed and metal ”off-the-shelf” parts. In addition, actuators are used to simulate

the retraction and deployment of the slat and flap. Results from wind tunnel tests

at various angles of attack and slat/flap deployment will be presented. Results

will include measurements of lift and drag using load cells, SCF deflection using a

laser displacement sensor and pressure at discrete points on the main wing using a
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Scanivalve system. An FSI model of the scaled wind tunnel model, created using

a combination of Abaqus (structural solver) and SC/Tetra (fluid solver), will be

presented. The FSI model will be analyzed at flow conditions, angles of attack

and slat/flap deployment levels similar to the wind tunnel tests. The FSI model

has provisions to accommodate the large deformations of the SCF and to capture

the SMA material response. The FSI analysis will present more data regarding

the behavior of the SCF in flow. Deflection data for the entire SCF profile will be

presented from the FSI analysis while only data for discrete points will be presented

from the wind tunnel tests. In addition, the pressure and velocity distributions

throughout the entire tunnel will be presented from the FSI analysis. The FSI

results will compared and correlated with the experimental results (lift, drag, SCF

displacement) from the wind tunnel tests.
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2. STRUCTURAL MODEL DEVELOPMENT AND ANALYSIS-DRIVEN

OPTIMIZATION OF BENCHTOP SCF MODEL∗

The first part of this work was a computational study of the superelastic SMA

SCF concept. The ultimate goal of this computational study was a design optimiza-

tion of the SCF. In this section the computational framework and analytical model

of the SCF are presented, followed by a discussion of the design variables, goals

and constraints of the design optimization. Results from the investigation of design

variable influence are discussed and optimization results are presented.

2.1 Structural Model and Computational Framework

In Section 2.1, the creation of a capable computational framework and a repre-

sentative structural model subjected to meaningful load cases are discussed. The

superelastic SMA SCF benchtop prototype served as a basis for the development of

the computational model. Computational analysis offered a more efficient way to

examine the SCF designs compared to the long and expensive physical development.

2.1.1 Computational Framework

To analyze various morphing structure configurations for the purpose of obtaining

an optimal design, an efficient computational analysis framework was needed. The

chosen framework made use of a combination of a commercial finite element analysis

(FEA) suite (Abaqus) [32] and custom constitutive model implementations for the

SMA that included algorithms intended to decrease runtime. A simulation process

management tool (ModelCenter) [33] was then used to automate this combination

∗This section was from “Development and Analysis-Drive Optimization of Superelastic Slat-
Cover Fillers for Airframe Noise Reduction” by Scholten, W. and Hartl, D. and Turner, T. and
Kidd, R.; reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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[10] such that desired FEA models representing trial designs were automatically

generated and analyzed. A likewise automated post-processor was used to extract

local and global analysis results associated with each trial design, these being passed

to the optimization algorithm that considered model response and fulfillment of

design requirements to determine new trial configurations to be analyzed.

SMA materials exhibit complex thermomechanical behaviors that require the use

of specialized constitutive models. For this work, the phenomenological constitutive

model based on continuum thermodynamics by Lagoudas, Hartl, and coworkers [34]

was utilized. This model was implemented in Abaqus as a Fortran custom User

MATerial (UMAT) subroutine and calibrated using experimental data. The overall

analysis-driven design framework was flexible and allowed for various FEA tools,

constitutive models, or simulation process managers to be substituted.

2.1.2 Constitutive Model Description

A general description of the constitutive model for the behavior of the SMA

flexures is provided. A more detailed description can be found elsewhere [35]. The

constitutive model considers two tensorial external state variables, stress σ and strain

ε, in addition to the scalar, absolute temperature T . The two internal state variables,

the scalar martensitic volume fraction ξ and the recoverable inelastic transformation

strain tensor εt, account for the microstructural state of the SMA. The temperature

and total strain are assumed to be given values in displacement-driven FEA, leaving

three unknowns (total of 13 scalar components) to be calculated. Additive strain

decomposition is assumed per

ε = S(ξ)σ +α(T − T0) + εt, (2.1)

where T0 is a reference temperature, S(ξ) is the phase-dependent, fourth-order com-
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pliance tensor, and α is the second-order coefficient of thermal expansion tensor.

S(ξ) is calculated by the rule of mixtures via

S(ξ) = SA + ξ(SM − SA). (2.2)

The time rate of change of the inelastic transformation strain can be determined by

ε̇t = ξ̇Λt; Λt =

{
H 3

2
σ

′

σ̄
ξ̇ > 0

εt−r

ξr
ξ̇ < 0

, (2.3)

where Λt is the transformation direction tensor, σ
′
is the deviatoric stress tensor, and

H is the maximum uniaxial transformation strain. During forward transformation

from austenite to martensite (i.e., during loading or retraction; ξ̇ > 0), transforma-

tion strain is generated as in Mises plasticity. The Mises equivalent stress σ̄ is given

as

σ̄ = (
3

2
σ

′
: σ

′
)1/2, (2.4)

In reverse transformation (unloading or deployment; ξ̇ < 0), the transformation

strain direction and magnitude are specified in such a way that the transformation

strain present at the end of forward transformation is fully recovered, allowing the

SMA to fully transform back into austenite. The memory variables εt−r and ξr are the

transformation strain tensor and the martensitic volume fraction at transformation

reversal, respectively.

The criteria for phase transformation during loading and unloading is quantified

by the transformation function Φt. The constraints on the evolution are specified as

Φt ≤ 0, ξ̇Φt = 0, 0 ≤ ξ ≤ 1. (2.5)
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The martensitic volume fraction can only range from 0 (pure austenite) to 1 (pure

martensite). Due to the different stress levels inducing forward and reverse transfor-

mation, the branched form of Φt is considered, given by

Φt =


Φt
fwd; 0 ≤ ξ < 1; ξ̇ ≥ 0

Φt
rev; 0 < ξ ≤ 1; ξ̇ ≤ 0

. (2.6)

The forward transformation function is given as

Φt
fwd = (1−D)Hσ̄ + 1

2
σ : S̃σ + ρs̃0T − ρũ0

−
[

1
2
a1(1 + ξn1 − (1− ξ)n2) + a3

]
− Y t

0 ,
(2.7)

while the reverse transformation function is given by the following

Φt
rev = −(1 +D)σ:εt−r

ξr
− 1

2
σ : S̃σ − ρs̃0T + ρũ0

+
[

1
2
a2(1 + ξn3 − (1− ξ)n4)− a3

]
− Y t

0

(2.8)

The parameters SA, SM , α, ρs̃0, ρũ0, Y t, D, a1, a2, a3, n1, n2, n3, and n4 are

calibrated using the method described in Section 2.1.3.

2.1.3 Constitutive Model Parameters and Calibration

The constitutive model was calibrated using experimental data from tension tests

(per F-2516 ASTM standard [36]) on superelastic SMA supplied and tested by John-

son Matthey Inc. that was used in the physical benchtop model described in the

previous section. Figure 2.1 shows the stress-strain diagram for this material.

The thermoelastic behavior is described by SA,SM , and α (Equations (1) and

(2)), which are easily calibrated using standard isotropic forms [37, 38]. The max-

imum magnitude of the evolving transformation strain is described by the scalar

H; in this study is assumed to be a constant. It is common to employ a stress-
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Figure 2.1: Stress-strain data of the superelastic SMA material used for full scale
models.

temperature phase diagram to graphically describe the transformation criterion and

then to calibrate the thermodynamic model parameters (D, Y t
0 , ρũ0, ρs̃0, a1, a2,

and a3). The phase diagram assumed for the SMA material used in this portion of

the work (cf. Fig. 2.1) is shown in Fig. 2.2. The slanted pairs of lines denote the

transformation limits and have slopes CM and CA for forward and reverse transfor-

mation, respectively. The constitutive model is formulated to consider the zero stress

transformation temperatures (Ms, Mf , As, Af ).
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Figure 2.2: Phase diagram of SMA material associated with the calibrated constitu-
tive model.

Knowing the value of H (see Fig. 2.1) and the properties from the phase diagram

(Fig. 2.2), the criteria for the transformation criterion Φt
fwd and Φt

rev are calibrated

as shown [35]:

a1 = ρs̃0(Mf −Ms), (2.9)

a2 = ρs̃0(As − Af ), (2.10)

a3 = −a1

4

(
1 +

1

n1 + 1
− 1

n2 + 1

)
+
a2

4

(
1 +

1

n3 + 1
− 1

n4 + 1

)
, (2.11)

ρũ0 =
ρs̃0

2
(Ms + Af ) , (2.12)

Y t
0 =

ρs̃0

2
(Ms − Af )− a3, (2.13)

ρs̃0 =
−2H (CMCA)

(CM + CA)
, (2.14)

D =
(CM − CA)

(CM + CA)
. (2.15)
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The transformation hardening coefficients parameters n1, n2, n3, and n4 are selected

such that the best fit for the four corners of the transformation hysteresis can be

obtained.

The material properties for the SMA material considered in this portion of the

work are shown in Table 2.1. Properties were based on the tension tests (EA, EM ,

Ms, Mf , As, Af and H) or were assumed to be a typical value for this type of

material (νA, νM , CA, CM and ρ). These properties were validated by superimposing

the hysteresis loop generated by the calibrated model onto experimental results as

shown in Fig. 2.3.1 Clearly the hysteresis loop generated by the model matches the

experimental response closely.
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Figure 2.3: Hysteresis loop generated using calibrated model and superimposed on
the experimental data.

1The experimental hysteresis loop in Fig. 2.3 was produced by plotting only key stress-strain
points from Fig. 2.1 to facilitate comparison with the data from the constitutive models.
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Table 2.1: SMA material properties for full scale models.

Property Value

(Elastic Properties)

EA,EM 48.9 GPa, 40.0 GPa

νA = νM 0.33

(Phase Diagram Properties)

Ms, Mf 251.9 K, 247.6 K

As, Af 277.3 K, 283.4 K

CA = CM 10.0 MPa/K

(Transformation Strain Properties)

H = Hv 4.4%

(Smooth Hardening Properties)

n1, n2, n3, n4 0.5

(Other Properties)

ρ 6480 kg/m3

αM = αA 0

2.1.4 FEA Model

The three-dimensional finite element model was based on the simplified physical

bench-top prototype and can be seen in Fig. 2.4(a). The main wing, slat and hinge

arm were considered to be non-deforming, though the slat and hinge arm could

undergo rigid body motion. The hinge arm was able to freely rotate about the hinge

axis through the use of a connector element. The SCF was attached to the mating

surfaces of the hinge arm and the slat near the trailing edge through “contact tie”

constraints. The entire SCF was modeled as a single geometric part in Abaqus, where

partitions were used to subdivide the overall SCF into four sections; the SCF-hinge
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arm (stiff), the forward SMA flexure, the aft SMA flexure, and the mid-link (stiff)

(see Fig. 2.4(b)). These partitions were defined through the use of parametrized

datum planes, which will be subsequently referred to as partition planes, such that

the lengths of the SCF sections could be easily adjusted through the specification of

these design variables in the scripted model, as shown in Fig. 2.5.

Main 

Wing

Slat

SCF

Hinge Arm

(a) Overall assembly.

Mid-Link

SCF-Hinge Arm

Aft SMA Flexure

Forward SMA Flexure

(b) Sections of the SCF.

Figure 2.4: FEA model of SCF assembly (mesh hidden).

The location of each partition plane was determined by its offset from the pre-

ceding plane, preventing section inversion. Upper and lower bounds on these offset

parameters prevented unreasonable designs. To model different lengths of the hinge

arm, the length of the SCF-hinge arm section was adjusted by moving the “SCF-

hinge” plane and assigning this small partition of the SCF stiff (nearly rigid) elastic

properties to approximate the hinge arm. The rigid hinge arm part shown in Fig.

2.5, for example, represented the smallest hinge arm length considered (1.52 cm).

Monolithic designs could be considered by allowing the length of the mid-link (i.e.,

the offset between the “Mid-Link” and “Forward SMA” planes) to be reduced to
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SCF 

Mid-Link Plane 

Forward SMA Plane 

SCF-Hinge Arm Plane 

Vertical 

Base 

Plane 

Horizontal Base Plane 

Leading Edge Slat 

Hinge Arm Hinge Arm Plane 

Figure 2.5: Sectioning of SCF into SMA, mid-link, and hinge regions via partition
planes.

nearly zero (0.254 cm), which approximated the absence of a mid-link. 172 general

shell elements (type S4 [32]) were evenly distributed chord-wise along the total SCF

(see Fig. 2.6).2 A “2.5-dimensional” model was created by utilizing only one element

in the width (span-wise) direction and specifying symmetry conditions along both

edges of the SCF. This “2.5-dimensional” approach was chosen in order to develop

a model consistent with the bench-top prototype, allowing for eventual comparisons

between the physical and computational models. In addition, a “2.5-dimensional”

model allowed for the estimation of actuation force for a longer (more realistic) SCF

using only a small segment of it. The mid-link and hinge arm sections of the SCF

were assigned thicknesses and material properties compatible with their experimental

counterparts and were much stiffer than the SMA sections (i.e., deformations were

taken to be negligible). Positioning and movement of the partition planes, shown

in Fig. 2.5, gave rise to the reference dimensions shown in Fig. 2.7 that will be

2Mesh convergence studies were conducted on initial versions of the FEA model, but not on
the current iteration. The element size was based on the minimum size of the mid-link section
(approximately 0.6% of the total SCF curvilinear length).
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used later in this document. The dimensions denote the length of the SCF-hinge

arm (Lh), the length of the forward SMA flexure (Lfwd), the length of the mid-link

(LML) and the two SMA flexure thicknesses (tfwd and taft). The aft SMA flexure

length (Laft) is dependent on the other lengths because the overall SCF length is

fixed. Note that these length dimensions are linear in the vertical direction from the

horizontal base plane and not contour lengths along the respective components.

Figure 2.6: FEA mesh of the SCF, the only deformable part in the model.

An Abaqus surface-to-surface contact formulation was utilized to model the con-

tact between the SCF and the main wing or slat. A simple linear penetration law was

used to reduce the runtime of the analysis and avoid excessively long optimization

processes. The linear contact stiffness was selected to be sufficiently high so as to

prevent unreasonable surface penetrations. Contact between the SCF and the main

wing or slat was considered to be frictionless in the tangential direction.
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tfwd

Laft (not independent)

Lh

Lfwd

LML

taft

Figure 2.7: Illustration of SCF design variables considered during the optimization.

2.1.5 Load Cases

To perform accurate FEA of the SCF, meaningful loads were needed. In this

study, the SCF response to a representative aerodynamic load and to retraction

and deployment processes were assumed to be decoupled and were thus assessed

separately.

2.1.5.1 Aerodynamic Load Case

The elastic SCF response to a representative aerodynamic load was analyzed

using quasi-static mechanical analysis (*Static step in Abaqus).3 Aerodynamic

loading was considered only in the fully-deployed configuration and the rigid slat

was held stationary during the analysis. Other aerodynamic loadings due to slat

and SCF positions or flight conditions were not considered because there was no

available data. The distributed aerodynamic load was obtained from a wind tunnel

test of a relevant aircraft model at typical landing conditions and was applied to

3The aerodynamic load case required approximately 1 minute of computational time using a
standard workstation laptop and 1 CPU.
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the FEA model as a normal pressure through the use of X,Y,Z point data. The

pressure was assumed to be constant in the spanwise (Z) direction. Figure 2.8 shows

the pressure distribution plotted along the SCF, where it can be seen that positive

pressure presides over the leading portion of the SCF and is replaced by suction in

the aft section.

Pressure (Pa)
1725

-2070

Pressure 

Application

Figure 2.8: Distribution of aerodynamic pressure load plotted along the SCF (Note
that positive pressure is pushing while negative pressure is suction).

2.1.5.2 Retract/Deploy Load Case

Aerodynamic loads were neglected for simulation and analysis of the retract/deploy

case. The retract/deploy load case required movement of the slat and resulted in

unstable dynamic motion of the SCF. Thus, the implicit dynamic solver was used

(*Dynamic Implicit step in Abaqus).4 The quasi-static application was employed

to improve computational speed at the expense of not resolving transient behavior

accurately.

4Depending on the SCF configuration, the retraction and deployment load case required ap-
proximately 20-40 minutes of computational time using a standard workstation laptop and 2 CPU.
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The slat was retracted and deployed through specification of a prescribed z-axis

rotation about the slat reference point, as shown in Fig. 2.9. The hinge arm was

constrained to move with the slat via a multi-point constraint that was defined

between the slat reference point and the hinge axis. A rotation of 0.57 rad (32.7◦)

was required to move the slat-SCF assembly between the fully-retracted and fully-

deployed configurations. The hinge was able to freely rotate about its own local axis

during retraction and deployment of the slat through the use of a connector element.

Reference Point

Hinge Multi-Point Constraint

Deploy

Retract

Actuation 

Force (F)

Slat Area 

Centroid

Hinge

Moment-Arm: ~0.74m

Figure 2.9: Schematic of model for retraction and deployment analysis.

Figure 2.10 shows an example FEA analysis for SCF retraction and deployment

corresponding to a monolithic (no mid-link) design. Lengths of the hinge, forward

flexure and mid-link were 1.52 cm (the minimum possible), 5.08 cm and 0.254 cm

(the minimum possible), respectively, and the thickness of the forward and aft flex-

ures were equal at 0.089 cm for this design. In general, the maximum SMA stress

occurred near frame (3) in Fig. 2.10 and was largest between the hinge and the

SCF/main wing contact point for this case. At such locations, the SMA flexure
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locally deformed into the martensite phase, providing the compliance necessary for

reconfiguration. In poor design configurations, the SMA became “pinched” at criti-

cal locations, causing the stress to greatly increase. These effects were considered in

the constrained optimization process to follow.

2

3

4

5

6

1

480

0

Mises (MPa) 1

Figure 2.10: Example FEA of retraction and deployment for a nominally mono-
lithic SCF design: Lh=1.52 cm, Lfwd=5.08 cm, LML=0.254 cm, tfwd=0.089 cm,
taft=0.089 cm.

2.2 Design Optimization Problem

The overall goal of the analysis-driven optimization described in this work was

to minimize the peak actuation force Fmax that was needed to retract the slat-SCF

assembly. In the FEA model, the actuation force was calculated by dividing the

reaction moment on the reference point about which the slat pivots by the distance

between the slat area centroid and its reference point (see Fig. 2.9). A smaller actu-

ation force would require less power (for a known retraction time) and was naturally

correlated with a lighter weight actuation system, making the SMA-based SCF more
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viable for implementation. Special considerations regarding the calculation of Fmax,

especially the complexities of dynamic response, are described in the Appendix A.

The constraints for this optimization were that i) the SCF must self-deploy upon

slat deployment, ii) the maximum Mises stress anywhere in the SMA flexures dur-

ing retraction (σSMA
max ) must be less than 690 MPa, and iii) the maximum deflection

(Umax) anywhere in the SCF must be less than 0.254 cm under the previously de-

scribed aerodynamic load. By requiring the SCF to self-deploy, the complexity and

weight of the system was reduced significantly. SCF self-deployment was determined

by tracking the rotation of the hinge, θhinge. If θhinge < 0.1 rad after slat deployment,

as measured relative to the fully-deployed configuration, then the SCF was known to

have successfully self-deployed [39]. While the SMA flexures were relatively compli-

ant when undergoing the stress-induced transformation during retraction, excessive

localized stresses occurring after completion of transformation could lead to plas-

tic deformation, resulting in permanent modification of the SCF shape, potential

failure to self-deploy, and likely acceleration of fatique. Finally, when the slat was

deployed during landing and takeoff, the SCF experienced aerodynamic loads. It was

estimated that resulting localized displacements larger than 0.254 cm would lead to

losses in lift or reduced aeroacoustic effectiveness.

In summary, the design variables considered in this work were (see Fig. 2.7):

the length of the forward SMA flexure (Lfwd), the length of the mid-link (LML), the

length of the SCF-hinge arm (Lh), and the two SMA flexure thicknesses (tfwd and

taft). The aft SMA flexure length is not a design variable because it is dependent on

the lengths of the other two SCF components.
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The design optimization problem is summarized as follows:

SCF Design Optimization Problem

Minimize:
The maximum actuation
force needed to retract
the slat-SCF assembly (Fmax)

by varying
design variables:

SCF-hinge Arm Length (Lh)
Forward flexure Length (Lfwd)
Mid-link Length (LML)
Flexure Thicknesses (tfwd, taft)

subject to constraint
on outputs:

Umax ≤ 0.254 cm
σSMA
max ≤ 690 MPa
θhinge ≤ 0.1 rad

2.3 Towards Optimization: Understanding the Influence of Design Variables

The overarching goal of this study was a comprehensive understanding of the

design trade-offs involved in selecting a SCF configuration. Therefore in a manner

similar to the experimental studies in previous work [29], the analysis-driven design

efforts were started by performing a thorough design of experiment (DOE) to estab-

lish trends between design variables (inputs) and SCF structural responses (outputs).

In following a path first employed in a previous preliminary study [39], the aerody-

namic load analysis and the retract-deploy analysis were conducted in separate DOE

studies. Only the most significant results are reported herein due to the large amount

of information obtained from this DOE study.
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The bounds for the DOE studies are shown in Table 2.2. The chosen ranges for

the design variables were considered to be physically reasonable given the overall

physical design of the wing, the slat, and its cove while also being large enough to

consider wide design variations. The lower limit of Lh corresponded to the length of

the hinge arm for the baseline part. The lower limit of Lfwd was chosen so that its

corresponding partition plane would not cross the SCF-hinge arm partition plane,

avoiding unreasonably small forward flexures. The lower limit of LML (0.254 cm)

corresponded to an approximation of a monolithic design (mid-link eliminated).5

The upper limits of both the forward SMA flexure and the mid-link lengths were

chosen such that the aft SMA flexure would not be eliminated. The lower limit for

both SMA flexure thicknesses was chosen based on results from previous work [39],

which showed that flexures with a thickness of less than 0.0508 cm were infeasible due

to insufficient stiffness under aerodynamic loading (i.e., Umax≤0.254 cm consistently

exceeded). The upper limit of the flexure thickness was a design constraint that

prevented the flexures from penetrating the slat when it is in the fully retracted

configuration.

2.3.1 Aerodynamic Load DOE

The first DOE study assessed how the aerodynamic load affected the SCF when

in the deployed (reference) configuration. Because the complexities of retraction

(contact, dynamics, snap-through, etc.) were not encountered, static elastic analysis

was sufficient and this phase of design investigation was highly computationally effi-

cient. Using the ModelCenter Design of Experiment [33] feature and a three-level full

factorial array (three equally spaced values based on ranges in Table t:Parameters),

5The lower limit is not 0 cm because that would remove the mid-link section from the FEA
model and destabilize the model.

37



Table 2.2: Ranges used in the exploration of the design space for the DOE studies
(Aerodynamic and Retract/Deploy).

Design Variable Range

Lh 1.52-5.08 cm

Lfwd 5.08-15.2 cm

LML 0.254-15.2 cm

taft 0.0508-0.127 cm

tfwd 0.0508-0.127 cm

35 = 243 configurations of Lh, Lfwd, LML, tfwd, and taft were analyzed.6 The main

outputs were Umax and σSMA
max . Fig. 2.11 shows a scatter-plot matrix of the results. As

seen in this figure, thicker SMA flexures were generally associated with lower deflec-

tion and lower stress under aerodynamic loading, as expected and shown in rectangles

a), b), c) and d). The nearly-linear relation observed in rectangle e) between max-

imum deflection and maximum stress was also expected due to the linearity of the

response to the static load.

The results from this study reinforced previous work [39]. The factor-effects plot,

shown in Fig. 2.12, indicates that the SMA flexure thicknesses (specifically tfwd)

had the greatest effect on maximum SCF displacement under static aerodynamic

loading, while the length of the hinge arm had little effect. This was consistent with

the role of the flexures as the compliant portion of the structure. A more informative

illustration of the relation between flexure thicknesses and maximum aerodynamic

displacement is shown in Fig. 2.13. The figure shows a general trend of increased

stiffness resulting from increased flexure thickness, though strong non-linear effects

6Note that 17 of the 243 runs failed to converge due to excessive deflection of the SCF associated
with poor designs having flexures of insufficient thickness.

38



LML 

(cm) 

Lfwd 

(cm) 

tfwd  
(cm) 

taft 

(cm) 

Umax 

(cm) 

σmax 

(MPa) 

Lh 

(cm) 

0.15 

  0.1 

0.05 

  0.0 

0.15 

  0.1 

0.05 

  0.0 

   15 

   10 

     5 

     0 

   15 

   10 

     5 

 200 

 100 

    0 
    6 

    4 

    2 

    0 

0 2 4 6 0.0 0.05 0.1 0.15 0.0 0.05 0.1 0.15 0 5 10 15 5 10 15 0 50 100 150 200 

b) 

a) 

d) e) 

c) 
SMA 

tfwd 

(cm) 

taft 

(cm) 

LML 

(cm) 

Lfwd 

(cm) 

σmax 

(MPa) 

SMA 

Figure 2.11: Scatter-plot matrix for aerodynamic load DOE.
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Figure 2.12: Design parameter influence on maximum SCF displacement (Umax)
under aerodynamic loading.

were observed at lower deflections, especially when one flexure was much stiffer than

the other. It was also observed that as the length of the stiff mid-link increased,

the maximum displacement decreased as the overall structural stiffness increased.

Finally, it was observed that no design configuration exhibited a maximum von

Mises stress exceeding 200 MPa, indicating that aeroelastic overstressing need not

be considered during design optimization.
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Figure 2.13: Contour plot showing effect of flexure thicknesses on maximum
SCF displacement under static aerodynamic loading (Lh=1.52 cm, Lfwd=10.2 cm,
LML=8.89 cm).

2.3.2 Retract-Deploy DOE

The second DOE study focusing on the retract-deploy response was similarly

performed. Here, all components of the computational analysis framework were

used (UMAT, Abaqus, and ModelCenter). Due to the time required to perform

a single run, a full-factorial array was not considered feasible. Instead a Design

Explorer Orthogonal Array was used in conjunction with the Design of Experiment

feature in ModelCenter, such that 125 combinations of Lh, Lfwd, LML, tfwd, and

taft were analyzed.7 It was observed that approximately half of these runs did not

complete due to excessive and non-physical deformations that prevented numerical

convergence, such as the SMA flexures being severely “pinched” (i.e., very tightly

bent) by the slat or main wing. An example is shown in Fig. 2.14. It was observed

7Orthogonal arrays uses the minimum number of runs that gives full information regarding
design variable influence on the outputs. More layers results in more combinations of the design
variables. Five layers were chosen since it was unknown how many designs would fail.
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that these failed runs exhibited a combination of flexure thicknesses and mid-link

length that also did not satisfy the displacement constraint according to the results

of the aerodynamic-load DOE. Thus, the failed runs were considered to be infeasible

designs.8 Figure 2.15 shows a scatter-plot matrix of the data from the retract/deploy

DOE. As expected, a larger rigid mid-link typically resulted in an increased maximum

retraction force, as observed in rectangle a), and larger SMA thicknesses also typically

corresponded to larger Fmax, as observed in rectangles b) and c). Other key outputs

of this analysis included the maximum Mises stress in the SMA flexures and the

rotational displacement of the hinge after the slat was deployed.

1

11000

0
Pinching of 

forward flexure

Mises (MPa)

Figure 2.14: “Pinching” of forward SMA flexure due to excessive hinge arm length.
Note that deformation curvatures of this magnitude are not physically feasible and
thus the mesh refinement is no longer applicable.

Based on the results of this DOE study, the length of the hinge arm had a strong

effect on the maximum stress in the SMA flexures due to the propensity of the

857 of the 125 designs failed to converge.
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Figure 2.15: Scatter-plot matrix for retract-deploy DOE.

flexure to be “pinched” when poor hinge configurations were considered. As seen

in Fig. 2.16, the maximum stress in the SMA flexures increased greatly for SCF-

hinge arm lengths greater than 3.3 cm. This result was not intuitively expected, and

it was decided that hinges over 4.19 cm in length should not be considered during

the optimization phase to follow.9 A contour plot showing the relation between

the maximum retraction force and the flexure thicknesses can be seen in Fig. 2.17.

Clearly, the force increased as either of the flexure thicknesses increased, though

tfwd had a greater effect since the forward flexure was undergoing the most bending

deformation. However, as shown in Fig. 2.13, a design with thin flexures does

not satisfy the displacement constraint under static aerodynamic loading. Thus,

determination of flexure thickness was identified as a key outcome of the optimization

process.

9The upper value was set to 4.19 cm in order to consider designs that might converge between
3.3 cm and 4.19 cm.
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Figure 2.16: Relation between the SCF-hinge length and the maximum Mises stress.
Note the increase in stress to unreasonable levels as the hinge length increases due
to “pinching” of the SCF (see Fig. 2.14).
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Figure 2.17: Contour plot showing the relation between the maximum actuation
force and the flexure thicknesses (Lh=1.52 cm, Lfwd=10.2 cm, LML=8.89 cm).
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2.4 Constrained Optimization

The results from both DOE studies were used to determine the design variable

bounds for the optimization, which are provided in Table 2.3. The only bound that

was adjusted from the DOE studies was the length of the SCF-hinge arm, the upper

bound of which was changed from 5.08 cm to 4.19 cm because of the “pinching” of the

forward flexure (see Fig. 2.14 and Fig. 2.16). The bounds of the flexure thicknesses

were unchanged due to their opposing effects on the aeroelastic deflection and the

maximum actuation force. The bounds for Lfwd or LML were not adjusted because

nearly every combination resulted in a feasible design, depending on other variables.

Table 2.3: Range of design variables used in the optimization.

Design Variable Range

Lh 1.52-4.19 cm

Lfwd 5.08-15.2 cm

LML 0.254-15.2 cm

taft 0.0508-0.127 cm

tfwd 0.0508-0.127 cm

The optimal design that minimized actuator force was expected to correspond to

thin flexures. This obvious trend was constrained, however, by the need of the SCF to

maintain the deployed shape under aerodynamic loading. Due to the opposing effects

of flexure thicknesses on aeroelastic deflection and retraction actuation force, both

the simple aeroelastic analysis and more intensive retract-deploy analysis needed to

be run during the optimization.
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To perform the optimization, all components of the analysis framework (FEA,

UMAT, simulation process control) along with the Design Explorer tool from Mod-

elCenter were employed [10, 33].10 A flowchart depicting the optimization process is

shown in Fig. 2.18. 213 runs were needed to converge on an optimized solution.

Table 2.4 shows the design variables and the model outputs of the optimized

design. Figure 2.19 shows the design configuration with a rendered thickness for the

optimal design.

New Design Variables 
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Figure 2.18: Flowchart of the optimization process.

As shown in Table 2.4 for the given constraints, the optimal design solution for

the SCF was a short hinge, monolithic SMA configuration with a constant flexure

thickness of approximately 0.10 cm. As stated earlier, the physical realization of the

10The Design Explorer tool invokes a surrogate-based optimization scheme in which Kriging
surfaces for the goals and constraints are fit to initial DOE data and then further improved with
additional analysis. Mathematical optimization is performed over these surrogate models. Final
convergence requires accurate correspondence between the Kriging surfaces and the analysis results
in the neighborhood of the optimal design point. In this work, the default settings of the Design
Explorer tool were used which included an initial search of 49, a maximum number of functional
evaluations of 500, and a convergence tolerance of 10−5.
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short hinge, monolithic prototype had a noticeable reduction in the amount of force

required to retract the SCF, validating the results of the optimization.

Table 2.4: Optimized design inputs and output parameters.

Design Variable Optimized Value Nearest Bound
Lh 1.65 cm 1.52 cm
Lfwd 15.2 cm 15.2 cm
LML 0.254 cm 0.254 cm
tfwd 0.103 cm 0.127 cm
taft 0.0975 cm 0.127 cm

Output Parameters Optimized Value Nearest Constraint
Umax 0.253 cm 0.254 cm
σSMA
max 478 MPa 690 MPa

Self-Deploy? Yes
Fmax 22.3 N

Figure 2.19: Optimized design configuration for SMA-based SCF.
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Based on the optimization results, the constraint on the maximum displacement

was the active constraint. In order to examine how sensitive the optimal design

was to the displacement constraint, the constraint was increased by 10% (new con-

straint of 0.2794 cm). The forward and aft flexure thickness (design variables with

most effect on outputs) were decreased till this new constraint was reached. The

resulting design had forward and aft flexure thicknesses of 0.101 cm and 0.0956 cm,

respectively (approximately 2% decrease in the thickness for both flexures) with a

maximum displacement of 0.278 cm. Under retraction/deployment loading, the de-

sign was able to redeploy and had a maximum actuation force of approximately

21.0 N (approximately 6% decrease from optimal design).
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3. COMPUTATIONAL FLUID DYNAMICS ANALYSIS AND

FLUID-STRUCTURE INTERACTION ANALYSIS OF SCF FOR CRM

GEOMETRY

The success of the design optimization of the SCF motivated further work on the

SCF concept. Specifically, focus shifted to the development and testing of CFD and

FSI models of the SCF in order to gain an understanding of how the SCF behaved

in flow.1 For this portion of the work, a new airfoil system (and thus a new SCF

profile) was chosen to align with other efforts related to the SCF. Note that much of

the work conducted in this section was done in congruence with the next section on

wind tunnel testing of the physical analog to the computational models.

3.1 CRM Model Geometry

The SCF profile considered in this portion of the work was developed for a high-

lift version of the CRM. The CRM is an open-geometry, transport-class aircraft

developed collaboratively developed by NASA and Boeing for the purpose of CFD

analysis validation and testing new technologies [40, 31]. For this portion of the

work, the base geometry of the computational and physical models2 was from a

6.25% scaled 2D section aligned with freestream flow at mid-span of the outboard

slat (see Fig. 3.1). This scale was chosen to avoid significant blockage effects in the

wind tunnel. At 6.25% scale, the chord of the retracted wing was approximately

0.32 m (1 ft). Due to sweep and taper of the wing, the shape of the slat and flap

in the 2D section (see Fig. 3.1) are different at each deployment level. To make

articulation of the slat and flap possible in both the computational and physical

1Prior to this shift, design optimization was conducted on a similar SCF profile and further
reduction of actuation loads was examined.

2See the following section for a detailed description of the physical model
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models, the retracted versions of the slat and flap were used.

Plane for 2D section

2D CRM Geometry 

Figure 3.1: Solidworks model of 3D CRM wing configuration used to obtain 2D
section. Note that the 2D section shown is not the same scale as the 3D wing.

3.2 Effect of Scaling on Structural Model Load Cases

Section 3.2 will serve as a transition between the previous section and the current

section by discussing how scaling the SCF geometry effects the aerodynamic loading

and retraction/deployment load cases. For this discussion, a scale factor λx is intro-

duced which relates a physical quantity x at full scale to the same physical quantity

at a smaller scale by the following equation,

λx =
xSmallScale
xFullScale

(3.1)

The scaling presented in this work utilizes static aeroelastic scaling theory that

is extensively described elsewhere[41]. General aeroelastic similitude requires that a

scale model have the same Reynolds number, Mach number, shape, ratio between

stiffness of the structure and aerodynamic forces, mass ratio, reduced frequency and
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Froude number. Depending on the wind tunnel used for small scale tests, meeting all

of these requirements may not be possible. The scaling theory assumes that effects

due to change in mass ratio, Reynolds number and Froude number can be neglected

for static aeroelastic scaling. Applying these assumptions to the relation between

force and deflection results in the following equation,

λEI = λqλ
4
L (3.2)

where λEI , λq and λL are the stiffness, dynamic pressure and size scale factors,

respectively. Static aeroelastic scaling requires that this equation be maintained.

Also, this equation implies that the scale factor for displacement due to loading λd

is equal to the size scale factor.

We will now apply the scaling to the load cases of the SCF. Since we are only

interested in the landing and approach phases of flight (generally low altitude), we can

assume that the wind tunnel model and full scale vehicle are at the same atmospheric

conditions changing Eq. 3.2 to the following,

λEI = λ2
Mλ

4
L (3.3)

where λM is the scale factor for the Mach number. For the case where the mach

number for the wind tunnel model and full scale vehicle is equal and assuming the

same material properties for the SCF, Eq. 3.3 (and thus λd = λL) can be maintained

by scaling the entire structure by λL. This is shown in Fig. 3.2(a). At full scale

(λL = 1) the displacement of a sample SCF configuration is on the order of 0.1 cm

while at 10% scale (λL = 0.1) the displacement is on the order of 0.01 cm (10% of

the displacement at full scale). In addition, the distribution of the displacement is

the same. As a result of Mach number being equal and using the same material
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properties for both full scale and small scale, the actuation force is scaled by a factor

(λF ) that is equal to (λ2
L). As shown in Fig. 3.2(b), at full scale the actuation force

is on the order of 10 N while at 10% scale the actuation force is on the order of 0.1Ṅ

(1% of the force at full scale).

λL= 1

λM= 1

λq= 1

λd= 1

Full Scale

λL= 0.1

λM= 1

λq= 1

λd= 0.1

10% Scale

Displacement (cm)
0.3

0

- -

Displacement (cm)
0.03

0

(a) Displacement due to aerodynamic loading.
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Figure 3.2: Effect of scaling when Mach number is the same between full scale and
small scale.

For the case where the Mach number of the wind tunnel model is not the same

as the Mach number at full scale, assuming that the pressure distribution on the

SCF will scale in the same manner as the dynamic pressure (λq = λ2
M), Eq. 3.3 can

be maintained by adjusting the structural stiffness of the SCF.3 Ideally, the same

material is used between full scale and wind tunnel scale (λE = 1), so only inertia

can be changed. The scale factor for the inertia λI is equal to λ4
L. Since the SCF is

a thin shell in flow, the thickness can be changed to adjust the inertia. Scaling the

thickness of the SCF (λt) separately from its overall size scaling results in the scale

3Note that a case of different Mach numbers is not presented in the work from which the scaling
theory is obtained. This case is simply further manipulation of the relation between applied force
and displacement.
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factor for inertia being equal to λ3
tλL. Substituting this relation between the scale

factors for inertia (and thus stiffness), thickness and size into Eq. 3.3 and solving for

scale factor of the thickness results in the following equation,

λt = λ
2/3
M λL. (3.4)

This equation solves for the scale factor of thickness that is required to maintain Eq.

3.3. Figure 3.3(a) shows the SCF displacement 10% scale for two cases with scale

factors of the Mach number. With the proper scaling of the pressure distribution

and SCF thickness, the displacement for both cases is the same as the displacement

for the SCF when the Mach number matched (see Fig. 3.2(a)). Since the thickness

of the SCF is changed to maintain Eq. 3.3, the scale factor for the actuation force is

now calculated as follows:

λF = λ2
Mλ

2
L. (3.5)

For example, a 10% scale model of the SCF with a Mach number scale factor of 0.5

has a scale factor for the thickness of 0.063 resulting in a scale factor of 0.0025 for

the actuation force. This is shown in Fig. 3.3(b), where the actuation force of the

10% scale model is 0.25% of the full scale version.

As previously stated, the geometry for both computational and physical models

in the current work is scaled by 6.25% from the full scale wing (λl = 0.0625). During

landing and approach for full scale the CRM wing, the Mach number is 0.2. Current

physical tests and computational analysis are conducted with a free stream velocity

of 15 m/s which corresponds to a Mach number of 0.044 (λM = 0.22). Based on

the size and Mach number scale factors, the scale factor for the thickness should be

0.0238. However, design optimization has not been conducted for the SCF from the
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Figure 3.3: Effect of scaling when Mach number is not the same between full scale
and small scale.

full scale CRM geometry. Based on the thickness of the optimal design of the SCF

from the previous section (which was a 75% scale geometry), the thickness of the

scaled SCF should be 0.03 mm (0.0012 in). Since the SCF geometry and pressure

distribution being used for CFD/FSI and wind tunnel tests are different from the

design optimization, this thickness is only used as an initial estimate.

3.3 CFD Model Development and Analysis

Before conducting FSI analysis on the SCF, CFD models of the SCF needed to be

constructed. These models and their results would serve as a basis for the FSI mod-

els. CFD analysis was conducted using the thermo-fluid solver known as SC/Tetra

[42]. This CFD suite utilized density and pressure based finite volume methods and

unstructured meshing to solve both turbulent and laminar flows. Also, SC/Tetra

made use of overset meshes4 that can be incorporated in slat articulation and is

connected to Abaqus with a built-in link, making FSI analysis easier to perform.

4A detailed description of overset meshes follows in the FSI portion of this section.
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3.3.1 Turbulence Model Description

In Section 3.3.1, a general description of turbulence modeling, specifically the

Shear-Stress Transport (SST) k-ω, is provided. More detailed descriptions of the

SST k-ω can be found elsewhere [42, 43].

For laminar, incompressible flow (single species), fluid solvers such as SC/Tetra

solve the conservation of mass, conservation of momentum and conservation of energy

equations. For this problem, the change in temperature is not of interest so temper-

ature is held constant. This simplifies the conservation equations and removes the

need to solve the conservation of energy.

The conservation of mass is given as,

∂ui
∂xi

= 0 (3.6)

where xi is the ith coordinate (i= 1 3 for a 3-dimensional system) and ui is the

velocity in the xi direction. The conservation of momentum equation is,

∂ρui
∂t

+
∂ujρui
∂xj

= −∂P
∂xi

+
∂

∂xj
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.7)

where ρ is the density (constant for incompressible fluid), t is time, p is the fluid

pressure and µ is the viscosity.

Unlike the smooth, steady movement of laminar flow, turbulent flow is the un-

steady movement of fluid. Turbulent flow can develop from laminar flow when the

Reynolds number exceeds a critical value. A key characteristic of turbulent flow is

the development of eddies (circular motion of flow) which increases the mixing of

fluid. Eddies of various length scales are formed and need to be resolved to solve

the turbulent flow. Capturing all of the eddies in turbulent flow is impossible due
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to computer limitations. Instead, the change in mean velocity (or heat transfer)

due to turbulence is obtained. For this reason instantaneous pressure and velocity

are expressed as a summation of the mean values (detonated as P and ui) and the

fluctuation (detonated as P ′ and u′i).

ui = ui + ui
′ (3.8)

P = P + P ′ (3.9)

Substituting these values into conservation of mass and conservation of momentum

results in the following, equations

∂ui
∂xi

= 0 (3.10)

∂ρui
∂t

+
∂ujρui
∂xj

= −∂P
∂xi

+ µ
∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
− ∂

∂xj

(
ρui′uj ′

)
(3.11)

Equation 3.11 is known as the Reynolds equation. The term −ρui′uj ′ is known

as the Reynolds shear stress and represents the shear stress produced by turbulent

flow. This term cannot be solved practically without making some assumptions.

Joesph Boussinesq proposed treating the Reynolds stress as the following

−ρui′uj ′ = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
ρkδij (3.12)
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where µt is a proportionality constant known as the eddy viscosity and k is the

turbulent energy expressed as,

k =
1

2
ui′ui′ (3.13)

The only remaining information to specify in Eq. 3.12 is the eddy viscosity µt.

However, since the eddy viscosity changes with location and state it needs to be

constantly redefined. This is accounted for by introducing fundamental quantities of

turbulence and solving the transport equations related to the quantities.

The k-ω turbulence model proposed by Wilcox [44], uses the turbulent energy k

and the dissipation rate per unit of turbulence energy ω. The dissipation rate per

unit turbulent energy ω is proportional to ε/k where ε is the dissipation rate. In this

model, eddy viscosity is expressed as,

µt |k−ω= ρ
k

ω
(3.14)

The transport equations for k and ω are expressed as:

∂ρk

∂t
+
∂uiρk

∂xi
=

∂

∂xi

[(
µ+

µt
σk

)
∂k

∂xi

]
+Gs − ρε (3.15)

∂ρω

∂t
+
∂ujρω

∂xi
=

∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+
γρ

µt
+Gs − βρω2 (3.16)

Gs = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

(3.17)

where ε = Cµ k ω. Note that Cµ, σk, σω, β and γ are all model constants.
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The model constant γ is calculated from the other constants by the following equa-

tion.

γ =
β

Cµ
− κ2

σω
√
Cµ

(3.18)

where κ is another model constant. Note that the k-ω model can be analytically

equivalent to the k-εmodel (another popular turbulence model [42]) with the addition

of the cross-diffusion term to the right side of the ω transport equation as follows,

CDkω = 2
ρ

σωω

∂k

∂xj

∂ω

∂xj
(3.19)

In near-wall flow, the k-ω model has advantages over other turbulence models.

It better estimates the boundary layer separation in flow with adverse pressure-

gradients, and damping functions are not required for calculating the near-wall ve-

locity. The k-ω model, however, is very dependent on boundary conditions such as

the free stream turbulence properties. Also, in the outer free-steam layer of a bound-

ary layer, the k-ω model loses accuracy. For these reasons, we consider a variation of

the standard k-ω model known as the SST k-ω. This model, developed by Menter [43]

uses a zonal treatment to avoid the numerical errors associated with the k-ω model

in the outer boundary layer region. In the near-wall regions, the standard k-ω equa-

tions are used, while towards the outer regions, the equations are adjusted to match

the behavior of k-ε turbulence models that are more accurate in the outer region.

The shift in model behavior is performed using a product of the cross-diffusion term

shown in Eq. 3.19 and a blending function that is dependent on the wall distance

and turbulence quantities. In addition, the blending function is used to interpolate

the model constants from given values for both the inner and outer regions.
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The eddy viscosity for this model is represented by the following equation,

µt |SST= ρ
a1k

Ω
(3.20)

where a1 is a constant (=0.31) and Ω is the magnitude of mean vorticity. Both Eq.

3.14 and Eq. 3.20 are interpolated using a blending function with arguments of wall

distance and turbulence quantities.

3.3.2 Fluid Models

Both the tunnel and the scaled wing were modeled in the CFD software (shown

in Fig. 3.4). In addition, there were three variants of the fluid CRM wing model

(shown in Fig. 3.5): 1) retracted, 2) deployed, and 3) deployed with SMA SCF. The

overall fluid model was based on the dimensions of the Texas A&M University 3 ft-

by-4 ft tunnel (test section was 2.74 m in length), which was used for physical wind

tunnel testing. The physical model spanned the entire width of the tunnel so a 2.5D

(one element in spanwise, Z, direction) model was used for the analysis, reducing

the computation time. The length of the models in the spanwise direction was set

to 1.27 cm (0.5 in). The CFD model was broken into three closed volumes (aside

from the solid parts): 1) outer, 2) middle, 3) inner. The inner region was based

on a 10% chord offset from the wing. The middle region was a 1-chord by 2-chord

box centered about the retracted mid-chord of the wing. The outer region was the

remainder of the fluid domain. Each region was assigned an individual element size

such that computational runtime was reduced while accuracy of flow results near the

wing was maintained. Note that the mesh near the tunnel floor and ceiling in the

outer region was refined to match the size of the inner mesh to accurately capture

wall effects from the tunnel.

Mesh studies were performed on the deployed-with-SCF configuration to deter-
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Inlet Outlet

Tunnel Floor

Tunnel Ceiling

Fine

Figure 3.4: CFD model for Boeing-NASA CRM airfoil with mesh shown.

Deployed

Retracted

Deployed with SMA SCF

Figure 3.5: CRM CFD model variants.

mine the element sizes (2.56 cm, 0.64 cm and 0.08 cm for the outer, middle and inner

regions, respectively) that would not significantly change the lift and drag of the wing

with further refinement of the mesh (see Appendix A). Note that the solid wing sec-
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tions were not heavily meshed as they do not impact the CFD analysis. Prism layers

were inserted along the surface of the wing and tunnel ceiling/floor to capture the

boundary layer. The thickness of the first layer, change of thickness between lay-

ers, and total number of layers were chosen based on a prism layer study using the

deployed-with-SCF configuration that also evaluated changes in lift and drag (see

Appendix A). It was assumed that the element and prism layer sizes would be suf-

ficient for the deployed (no SCF) and retracted configurations. The deployed and

deployed-with-SCF had approximately 200,000 elements (130,000 Prism and 70,000

Hexahedron) while the retracted configurations had approximately 187,000 elements

(119,000 Prism and 68,000 Hexahedron). The origin of the model was placed at the

mid-chord of the retracted configuration at an angle of attack of -1.48◦, which was

the orientation of the original CRM geometry and wind tunnel model. Different an-

gles of attack were considered by rotating the medium, fine and wing closed volumes

about the rotation point of the wing ((x=-44.45 mm, y=0 mm) from the physical

model).

Three boundary conditions were placed on the CFD model: 1) the wing surface

and tunnel floor/ceiling had a smooth no-slip wall condition, 2) the static pressure

at the outlet was zero, and 3) the freestream velocity at the inlet was prescribed.

Incompressible air (viscosity of 1.83x10−5 Pa-s and density of 1.206 kg/m3), was used

as the fluid. The turbulence properties (k, ε) at the inlet of the test section were

unknown so two cases were considered: 1) inlet flow was almost laminar or 2) inlet

flow had fully developed turbulence. For the first case, k and ε were set to default

values (k=0.0001 m2/s2, ε=0.0001 m2/s3).
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For fully developed turbulence at the inlet, k and ε are calculated using the follow

equations

k =
u2

100
(3.21)

ε =
0.09

3
4 ∗ k 3

2

0.07D
(3.22)

where D is the equivalent diameter of the test section (currently taken as the height

of the tunnel 0.91 m). At 15 m/s, k and ε are 2.25 m2/s2 and 8.66 m2/s3, respectively.

3.3.3 CFD Results

Computational runtime for FSI analysis was significant. Therefore, an accurate

model needed to be used. CFD analysis provided baseline results that could be

compared to wind tunnel data, other fluid solvers and FSI results, giving confidence

to researchers regarding the computational tools. For this purpose, CFD analysis

was conducted for all three configurations mentioned earlier at angles of attack from

-2◦ to 12◦ with an inlet velocity of 15 m/s. Each CFD analysis was run until the

solution appeared to be steady. Of particular interest were results between 4◦ and 8◦

angles of attack since that was the range of angles for approach and landing phases

of flight for this wing.

Pressure and viscous forces acting on the surface of the wing in the vertical (Y)

and horizontal (X) directions were extracted for each configuration and normalized

by the retracted chord, span of the fluid model and dynamic pressure to obtain the lift

(Cl) and drag (Cd) coefficients. Figure 3.6 shows the lift-AoA curves of the retracted

and deployed configurations for both laminar inlet flow (denoted as Laminar Inlet)

and turbulent inlet flow (denoted as Turbulent Inlet). As shown the zero lift-angle of
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attack (AoA) of the retracted configuration for both inlet cases was slightly less than

-2◦. Between -2◦ and 6◦ for both inlet cases, the lift-AoA curves of the retracted

configuration were approximately linear and had similar values. After 6◦ the two

lift-AoA curves diverge due to the differences in inlet turbulence. For the laminar

inlet flow case, the lift-AoA curve started to flatten as the angle of attack reached

8◦, possibly indicating the configuration was near maximum lift. At 10◦ and 12◦

angle of attack, the lift coefficient decreased signaling that the configuration was

stalling. For the turbulent inlet flow case, the lift-AoA curve remained linear till 8◦

but started to flatten between angles of attack of 8◦ and 12◦, possibly indicating the

configuration was approaching maximum lift. Unlike the laminar inlet flow case, at

12◦ with turbulent inlet flow the retracted configuration had not stalled indicating

that the inlet turbulence was allowing flow to stay attached to the wing for higher

angles of attack.
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Figure 3.6: Lift-AoA curve for CRM configurations.
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With the exception of an angle of attack of -2◦ with laminar inlet flow, all

deployed cases exhibited a significant increase in the lift coefficient as compared to

the retracted configuration. In addition for each inlet case, the lift coefficient between

the two deployed configurations was approximately equal, showing that the SCF did

not negatively affect the lift. For both inlet cases, the lift-AoA curve of the deployed

configurations was near-linear between 0◦ and 10◦. Under laminar inlet flow, the

curve continued to be linear while under turbulent inlet flow, the lift-AoA curve

flattened indicating that both deployed configurations were near maximum lift. Stall

had not occurred for either deployed configuration at the maximum considered angle

of attack of 12◦, but given the flatness of the turbulent inlet flow lift-AoA curve,

both configurations were near stall. Also, for both inlet cases, there was a significant

decrease in lift below 0◦ since the slat started to cause separation that extended the

entire length of the lower surface of the main wing, negatively impacting the lift

characteristics of the wing. The main difference between the two inlet cases, was

that the deployed configurations under laminar inlet flow generally had higher lift

as compared to the turbulent inlet flow case, indicating that there was a loss of lift

due to turbulence at the inlet.

Drag polars for the three configurations are shown in Fig. 3.7. For both inlet cases

of the retracted configuration at low angles of attack, the lift coefficient significantly

increased with small increases in the drag coefficient. As the wing approached higher

angles of attack, the drag polar began to curve resulting in significant increases in

drag for small increases in lift. For the laminar inlet flow case, maximum lift

was achieved and the configuration began to stall, further increases in AoA led

to increases in drag and decreases in lift due to flow separation.once the For the

turbulent inlet flow case, maximum lift and stall had not occurred at 12◦ angle of

attack since there was still an increase in lift. However, the significant increase in
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drag for small increases in lift indicated that the configuration was near maximum

lift. In general, having fully developed turbulence at the inlet results in higher drag

at the same value of lift. Also, the drag polar had a smoother curve for turbulent

inlet flow, while the drag polar for laminar inlet flow was almost vertical at low

angles of attack, followed by a sharp turn as as the configuration began to stall.
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Figure 3.7: Drag Polar for CRM configurations.

For both inlet cases of the deployed configurations, the entire drag polar was

shifted in the positive direction for both the lift and drag coefficients. In addition,

for both inlet cases, the deployed configurations had similar values of lift and drag,

indicating that the SCF did not negatively impact the wing. As with the retracted

configuration, turbulent inlet flow increased the drag and created a smoother polar

as compared to laminar inlet flow. For the laminar inlet flow case, the lift coefficient

increased with little change in drag between angles of attack of 0◦ and 10◦while for the

turbulent inlet flow case with the same range of angles, the lift coefficient increased
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with larger increases in drag. In addition for turbulent inlet flow, as the angle of

attack increased, the change in lift decreased while the change in drag increased. At

higher angles of attack for both inlet cases, there was significant increase in drag for

small increases in lift, indicating that both deployed configurations were nearing stall.

At -2◦ for both inlet cases, the lift significantly decreased while the drag increased

since there was separation on the lower surface of the main wing.

The pressure coefficient distribution around the surface of the retracted configu-

ration at multiple angles of attack for turbulent inlet flow can be seen in Fig. 3.8.

5 The x=0 mm location corresponds to the x coordinate of the retracted chord at

mid-chord at -1.48◦ angle of attack (origin of CFD model). At lower angles of attack

(Fig. 3.8(a) and Fig. 3.8(b)), the difference in the pressure coefficient between the

lower and upper surfaces was small (with the exception of the leading and trailing

edges), which led to the low lift coefficient values seen in Fig. 3.6. As the angle

increased (Fig. 3.8(c) - Fig. 3.8(f)), the difference in pressure coefficient between

the surfaces increased and the suction peak grew resulting in increased lift. Nearing

the maximum lift (Fig. 3.8(f)), the change in pressure coefficient with respect to the

angle of attack decreased.

Pressure distributions for the retracted configuration were also created using a

panel-method code known as Javafoil in order to serve as a comparison with CFD

results. The retracted geometry in Javafoil was a smooth airfoil variant with no

gaps between the different components. Figure 3.9 shows the coefficient of pressure

distributions from CFD and panel method analysis for two angles of attack in the

range of interest. Panel method generated a similar distribution as CFD analysis.

However, panel method had a higher suction peak at the leading edge and a larger

5The distributions for both inlet cases were approximately the same between -2◦ and 6◦. Above
6◦, the turbulent inlet case had higher pressure at the suction peak as compared to the laminar
inlet case since the wing was stalling at high angles of attack under laminar inlet flow.
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(b) 0◦ Angle of Attack.

-6

-5

-4

-3

-2

-1

0

1

2

-200 -150 -100 -50 0 50 100 150 200

C
o

ef
fi

ci
en

t 
o

f 
P

re
ss

u
re

, 
C

p

X Position (mm)

(c) 4◦ Angle of Attack.
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(d) 6◦ Angle of Attack.
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(e) 8◦ Angle of Attack.
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Figure 3.8: Coefficient of pressure distribution for the retracted configuration.
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distributions on the upper and lower surfaces of the wing.
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Figure 3.9: Comparison of coefficient of pressure distributions for the retracted con-
figuration from CFD and panel method analysis.

Figure 3.10 shows the pressure coefficient distribution for both deployed con-

figurations. 6 With the exception of 0◦ angle of attack, the pressure coefficient

distribution was nearly identical for both deployed configurations. This result was

understandable since the lift coefficients were also approximately equal. The differ-

ence in the 0◦ angle of attack configuration may be due to partial flow separation

inside the slat cove. The main difference between the two deployed cases at higher

angles of attack (Fig. 3.10(c) - Fig. 3.10(f)) was along the lower surface of the slat. A

difference on the lower surface of the slat was understandable since the SCF modifies

the shape of the lower surface. However, it should be noted that the difference in

the pressure coefficient distribution between these two configuration was small so an

6The pressure distribution for the deployed configurations under laminar inlet flow generally
had more developed suction peaks on the slat and main wing than as compared to turbulent inlet
flow. This was understandable since the laminar inlet flow case predicted higher lift.
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initial estimate of the pressure distribution along the SCF could be obtained from

the distribution along the lower surface of the slat without the SCF.

At an angle of attack of -2◦ (Fig 3.10(a)), the difference in pressure coefficient

distribution along both surfaces of the main wing and flap was small resulting in low

lift. Most of upper surface of the slat had positive pressure while the lower surface

had negative pressure. This was indicative of the flow separating along the lower

surface of the wing (specifically at the leading edge of the slat) which accounted for

the low value of lift at this angle. Increasing the angle of attack to 0◦ (Fig. 3.10(b))

resulted in the disappearance of flow separation along the lower surface, significantly

changing the pressure coefficient distribution. Suction peaks for the main wing and

flap were more developed and there was significant difference in pressure coefficient

distribution between the upper and lower surfaces. Further increase in angle (Fig.

3.10(c) - Fig. 3.10(f)) resulted in growth of the slat suction peak as the slat became

more effective. The rise in angle also increased the difference in pressure coefficient

between the upper and lower surfaces of the main wing (which also corresponds to

increased lift). Most of the change in pressure coefficient distribution was along the

upper surfaces of the slat and main wing while the distribution along the flap surfaces

changed the least.

Velocity profiles for the retracted configuration at various angles of attack for the

turbulent inlet flow case are shown in Fig. 3.11. As expected, at low angles of attack,

the flow remained attached for most of the wing. Increasing the angle resulted in

an increased velocity at the leading edge as well as growth of the separation zone

near the trailing edge. At 12◦ AoA, the flow was separating midway along the upper

surface of the wing indicating that maximum lift was near or at 12◦, which matched

observations from the lift and pressure results. Further increases in angl would result

in separation across the entire upper surface indicating that the wind had stalled.
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(b) 0◦ Angle of Attack.
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(d) 6◦ Angle of Attack.
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(e) 8◦ Angle of Attack.
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Figure 3.10: Coefficient of pressure distribution for the deployed configurations.
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Figure 3.11: Velocity contours for retracted CRM configuration.

Figure 3.12 shows the velocity contours for both deployed configurations with

turbulent inlet flow.As shown in Fig. 3.12, the velocity contours for both deployed

configurations were similar at all angles of attack. At -2◦, the flow separated over the

entire lower surface of the wing and flap, resulting in significant decreases in lift. At

higher angles of attack, where the slat was effective, the flow remained attached over

most of the wing but separated along the upper surface of the flap. Also, the flow

was energized at the leading edge of the main wing due to the slat. Similar to the

retracted configuration, increased angle of attack led to an increase in the velocity

at the leading edge of the main wing. Figure 3.12 also showed the effect of the SCF.

At angles with an effective slat, the SCF removed the circulation in the cove of slat

without significantly changing the velocity contour of the overall flow.
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Figure 3.12: Velocity contours for deployed CRM configurations.

3.4 FSI Model Development and Analysis

With the completion of CFD analysis for the CRM model, focus shifted to FSI

analysis of the SMA SCF in flow. Details are given regarding the changes made to the

fluid model required for FSI analysis and how the fluid and structural models were

linked. In addition, analysis of model response to various load cases is presented.

3.4.1 FSI Structural Model

The structural FEA model of the scaled SMA SCF (shown in Fig. 3.13(a)) for

FSI analysis was created in a similar manner as that described in Section 2.1.4.

The spanwise (Z) length of all parts in the model was 10.27 mm (0.5 in). The slat,

hinge and main wing were modeled as rigid bodies. The slat in the structural model

was modified from the original CRM slat to accommodate the retracted SCF (see

Fig. 3.14). The hinge was relatively simplistic. For FSI analysis, both its length
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and position were chosen based on decisions made during the manufacturing process

(see the next section for more details). The hinge axis was placed against the cove

wall and the hinge arm was set to 8 mm long. Unlike the work described in the

previous section, only a monolithic SMA SCF was considered due to the size of the

SCF (approximately 5 cm in length). Structural optimization was not conducted for

this SCF due to practical fabrication constraints at this scale such as custom SMA

thickness and connecting the hinge to the slat and SCF. For FSI analysis, the SCF

was set to 0.0762 mm (0.003 in) to match the physical model (see the next section

for more details).7 Similar to the previous structural model, 265 general four node

shell elements (type S4) [32] were distributed evenly along the profile of the SCF

while it had one element in width in the spanwise direction (shown in Fig. 3.13(b)).

In addition, symmetry conditions were used on both SMA SCF edges in the X-Y

plane to implement one element in the width making the model essentially infinitely

long in span (“2.5-dimensional”). This maintained the accuracy of the results while

reducing computational runtime significantly.

Contact between the SCF and the main wing or slat was modeled using the

Abaqus surface-to-surface contact with the linear penetration law in the normal

direction and a coefficient of friction of 0.42 in the tangential direction. The coef-

ficient of friction was determined experimentally from friction tests with SMA and

3D printer plastic.

This structural model was built to be run with or without FSI analysis. Like

the previous model, two load cases could be separately assessed without using FSI

analysis: 1) static aerodynamic loading and 2) quasi-static retraction/deployment.

Aerodynamic loading of the SCF was analyzed using static analysis (*Static

7A thickness of 0.0762 mm corresponded to 1.22 mm (0.048 in) at full scale if the wind tunnel
and full scale Mach numbers were the same or to 3.35 mm (0.131 in) at full scale for 15 m/s flow in
the wind tunnel.
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Wing

Slat
SCF

Hinge

SCF-Hinge Arm

(a) Overall assembly. (b) SCF Mesh.

Figure 3.13: Structural FEA model of 2.5D SMA SCF assembly.

Modified Slat

Unmodified Slat

Figure 3.14: Overlay of original slat (red) and modified slat for FSI analysis (blue).

step in Abaqus). This analysis was only considered in the fully deployed SCF config-

uration. Other SCF configurations and dynamic loading were considered during FSI

analysis. The static aerodynamic loading was considered to be a uniform pressure

distribution in the spanwise direction and was implemented using X, Y, Z point data
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from preliminary CFD analysis (see Fig. 3.15). The hinge was allowed to freely

rotate in this load case through the use of a connector element

Pressure (Pa)

-40

85

Figure 3.15: Pressure distribution on SCF from preliminary CFD.

An implicit dynamic solver (*Dynamic Implicit step in Abaqus) with a quasi-

static implementation was used to analyze slat retraction/deployment since the mo-

tion of the SCF could be unstable. During this analysis, aerodynamic loading was

neglected when FSI analysis was not conducted. The retraction/deployment of the

slat was controlled by applying a rotation to the slat reference point. Full retraction

occurred at 0.44 rad of rotation. A multi-point constraint between the slat reference

point and rotation axis of the hinge was used to maintain the relation between the

slat and hinge. In this analysis, the hinge was able to freely rotate.

The material properties used for this portion of the work are shown in Table 3.1.

To obtain the material properties, tensions tests were performed at different tem-

peratures on dogbone specimens (per ASTM standard [45]) cut from the same SMA

material used in the physical wind tunnel model. The specimens (one heat-treated
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like the physical SMA SCF and one untreated8) were loaded until the specimens fully

transformed into the martensite phase, and then unloaded (see Fig. 3.16).

Table 3.1: SMA material properties for scaled models.

Property Value

(Elastic Properties)

EA,EM 44.2 GPa, 26.4 GPa

νA = νM 0.33

(Phase Diagram Properties)

Ms, Mf 236.9 K, 236.5 K

As, Af 266.6 K, 268.1 K

CA = CM 7.1 MPa/K, 7.7 MPa/K

(Transformation Strain Properties)

H = Hv 5.15%

(Smooth Hardening Properties)

n1, n2, n3, n4 0.5

(Other Properties)

ρ 6480 kg/m3

αM = αA 0

The hysteresis loops from the tension tests were used to calibrate the UMAT,

which was then validated by superimposing the calibrated model onto the experi-

mental results. Figure 3.17 shows the calibrated model for the treated SMA material

superimposed unto experimental results at 25◦C. As seen the figure, the hysteresis

loops matched fairly well. Figure 3.18 shows the hysteresis loops for the treated and

8Shape setting of the SCF will be discussed in the next section.
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Figure 3.16: Experimental stress-strain data for untreated and heat-treated SMA
specimens.

untreated specimens as well as the loop from the original material data used in the

previous section at 25◦C. The hysteresis loop for the heat-treated SMA exhibited

similar stiffness in the austenite phase and similar forward transformation stresses

to the untreated material. This showed that the heat treatment would not adversely

effect the material response for low loadings such as the aerodynamic load case. The

most significant difference between the untreated and treated hysteresis loops is the

reverse transformation stresses. Reverse transformation occurs at a higher stress for

the treated material resulting in a smaller hysteresis loop. Compared to the original

material response, both the treated and untreated material responses achieve more

transformation strain at lower stresses.

Linear perturbation analysis was conducted on the structural model in order to

obtain the natural frequency of the structure. From the analysis it was found that

the SCF had a natural frequency of 285 Hz.

76



0

100

200

300

400

500

600

0 2 4 6 8

S
tr

es
s 

(M
p

a
)

Strain (%)

UMAT Experimental

Figure 3.17: Calibrated UMAT hysteresis loop superimposed onto experimental data
at 25◦C.
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Figure 3.18: Comparison of calibrated constitutive models at 25◦C.
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3.4.2 Changes to Fluid Model

Many changes were required to make the fluid model compatible with FSI analy-

sis. The most significant change was the implementation of the overset mesh. During

slat retraction as the SCF is stowed into its retracted configuration, there is signif-

icant reduction and elimination of volume in the slat cove. Numerical instabilities

were introduced that can make the FSI analysis unstable as elements in the fluid

volume approach zero volume. The change in volume can be handled by remeshing

the fluid model every cycle, but this would be very computationally expensive. An

alternative is the overset mesh approach, which overlaps movable (and deformable)

slave meshes onto a master mesh allowing for complex motion and contact of solid

bodies. This is significantly faster as compared to remeshing. When using an overset

mesh, parts of the mesh are not analyzed for the following conditions: 1) a part of

the master mesh that is overlapped by the slave mesh, 2) a part of the slave mesh

that does not overlap the master mesh and 3) a part of the slave mesh that overlaps

a solid in the master mesh. Information is exchanged through interpolation between

the nodes on the outer surface of the slave mesh and the surrounding elements in

the master mesh. For better interpolation, it is recommended that the master region

have a finer mesh than the slave region at the boundary between the two meshes.

Note that when two slave meshes overlap each other, the section of the master mesh

contained within the overlapping region of both slave meshes is used in the analysis.

For this problem, the main wing, flap and tunnel test section were set to be the

master mesh since those volumes were fixed for all considered FSI analyses. The slat

and SMA SCF were set as slave meshes (see Fig. 3.19) since retraction/deployment

of those sections was needed for some FSI analyses. In CFD analysis, the slat and

SMA SCF were combined into a single rigid solid, removing the fluid in the slat
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cove. However, for FSI analysis of the SCF, the SCF and slat were separated to

accommodate large changes in volume that required the reintroduction of the slat

cove. As the SCF was deformed by contact with the main wing, its associated

fluid mesh in the slat cove would also deform. Eventually the fluid mesh would

pass through the wall of the slat while the wall boundary condition was maintained,

allowing the volume in the slat cove to shrink. Due to the overlap of the slat and

SCF slave meshes, some boundary conditions (specifically the wall condition of the

SCF) could be ignored at the start of the analysis. This influenced how the slave

meshes were designed.

Overall Mesh

Master Mesh

Slave Meshes

Figure 3.19: Implementation of overset mesh.

Figure 3.20 shows an example of the interaction between the slave and master

meshes by separating the velocity contour between the two types of meshes. As seen

in the master mesh (Fig. 3.20(a)), there were almost no flow results in the vicinity

of the slat and SCF due to that region of the master mesh being overlapped with
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slave meshes. Instead the flow results were present in the slave meshes, as shown

in Fig. 3.20(b). In the vicinity of the slat and SCF, only in regions where both

slave meshes overlapped each other (such as the slat cusp and slat trailing edge)

was the master mesh used in analysis of the flow.9 Interpolation between the slave

and master meshes is also visible in Fig. 3.20. At the outer boundary of the slave

meshes, the master mesh elements interpolated data from the nodes on the slave

mesh. Also, at the leading edge of the main wing, the slave mesh interpolated data

with the master mesh due to the presence of a solid body.

Overlapped Slave Meshes

Overlapped Slave Meshes

Interpolation With Slave Mesh

Interpolation With Slave Mesh

030

Flow Velocity (m/s)

(a) Master mesh (slave meshes suppressed).

Overlapped Slave Meshes

Overlapped Slave Meshes
Outer Boundary 

of Slave Mesh

Outer Boundary 

of Slave Mesh

Interpolation With 

Master Mesh Due to Solid

030

Flow Velocity (m/s)

(b) Slave meshes (master mesh suppressed).

Figure 3.20: Interaction between the slave and master meshes for the CRM FSI
model.

Along with the overset mesh, a new boundary condition was also needed. This

boundary condition was a zero pressure applied to the fluid in the slat cove since the

fluid was enclosed and incompressible while undergoing deformation. Without this

condition, deformation of the SCF resulted in numerical instabilities that crashed

the analysis. As a result of the slat cove containing fluid, the outer surface of the

9A small region inside the slat cove could be analyzed by the master mesh if the interior of the
slat was considered to be a fluid volume.
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SCF was assigned as a panel (wall that separates fluid) maintaining the no slip wall

boundary conditions. Note that some FSI attempts (specifically retraction cases)

showed that replacing the interior of the slat with fluid and applying a zero pressure

boundary condition assisted the analysis, specifically with the interaction between

the slave and master meshes.

During initial FSI analysis attempts of the SCF retraction, when the SCF came

into contact with the leading edge of the main wing, numerical instabilities in the

fluid model due to contact between the SCF and main wing occurred and led to

the eventual crash of the analysis. To avoid this instability, the outer mold line of

the main wing in the fluid model was negatively offset by 0.127 mm. As a result,

when the SCF came into contact with main wing in the structural model, there was

small gap between the two parts in the fluid model preventing the introduction of

the instabilities associated with contact.

Finally, the other significant change to the fluid model was the size of the elements

in multiple sections of the model. Multiple factors influenced the size of the elements

including the implementation of overset meshes, the overlapping of the slave meshes

and the transfer of data between the fluid and structure models. As mentioned

earlier, the element size of a slave mesh was typically required to be larger than its

corresponding master mesh. To maintain an element size in the slave meshes similar

to the one used in CFD analysis, the inner region of the master mesh needed to be

refined. The overlapping slave meshes was the most influential factor on the element

sizes in the fluid model. Maintaining the wall boundary condition on the SCF surface

required multiple iterations of adjusting the master and slave mesh element sizes to

create a stable model. Finally, having a refined mesh near the surface of interest

for FSI analysis allowed for more data to be transferred between the structure and

fluid models, improving the results. After multiple iterations, a stable mesh was
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created. The master mesh had element sizes of 0.07 mm, 0.56 mm and 2.24 mm for

the inner, middle and outer regions respectively. In addition, in the vicinity of the

slat and SCF, the master mesh was further refined to an element size of 0.035 mm.

The slat and SCF meshes had element sizes of 0.04 mm and 0.045 mm, respectively.

The change of thickness between prism layers and the total number of layers were

adjusted for each mesh in order to maintain the same prism layer size as the CFD

model without distorting the mesh. Note that prism layers were not inserted near

the overlapping regions of both slave meshes avoid potential numerical errors.

Figure 3.21 shows the pressure coefficient distribution from CFD analysis of the

CRM in the fully-deployed configuration at 6◦ and 8◦ angle of attack with an inlet

velocity of 15 m/s for the original fluid model and the modified fluid model for FSI

analysis. As seen in this figure, the pressure distribution across the surface of the

wing was similar for the two meshes. The main difference between the two models was

that the original model had a slightly more developed suction peak and distribution

on the upper surface. In addition, pressure was lower at the leading edge of the

main wing possibly due to interpolation between the meshes. With regards to flow

separation on the upper surface of the flap, at 6◦ both models predicted separation in

approximately the same location while at 8◦ the modified model predicted separation

further aft than the original fluid model. The difference in pressure distribution also

effected the overall lift and drag as shown in Table 3.2. The lift and drag coefficients

for both models were within 10% of each other except for the drag coefficient at

8◦. The drag coefficient for the modified model at this angle of attack was 57.8%

higher than the drag coefficient for the original fluid model. Examining the drag from

each of the components of the model at this angle showed that the main wing had

significantly higher drag than it did in the original fluid model. Differences in the

flow results could be due to the interpolation between the slave and master meshes

82



specifically at the leading edge of the main wing. In addition, the removal of prism

layers near the overlapping slave regions could result in a loss of accuracy in the

calculation of the drag. Further mesh refinement near the leading edge of the main

wing and adjustment of the slave mesh boundaries should improve the results.
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Figure 3.21: Comparison of pressure coefficient distribution between the original
fluid model and modified fluid model for FSI analysis.

3.4.3 Linking the Computational Models

A significant factor for using SC/Tetra was its built-in link to the Abaqus Co-

Simulation Engine. The two solvers were weakly coupled meaning that each program

solved its physical quantities separately. The coupling was bi-directional so SC/Tetra

sent a pressure vector acting on a specified surface while Abaqus sent displacement

of that surface. The chosen time marching technique for the coupled analysis was

Gauss-Seidel. In this method, Abaqus calculated cycle n+1 for the structural model

based on fluid data from cycle n in SC/Tetra. Then SC/Tetra calculated the n+1

cycle for the fluid model based on the displacement data from the n+1 cycle of
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Table 3.2: Lift and drag coefficient comparison for original and modified fluid models.

Angle Cl Cd

(Original)

6◦ 2.37 0.0874

8◦ 2.58 0.0868

(Modified)

6◦ 2.29 0.0958

8◦ 2.41 0.137

Abaqus. During FSI analysis, both SC/Tetra and Abaqus had the same time step.

For this work, prior to running FSI analysis, CFD analysis was conducted on the

fluid model at a chosen inlet speed till a specified time (cycle n). The results of

the CFD analysis were then used as input data for the FSI analysis. Specifically,

Abaqus would use the input data (and time of cycle n) to calculate cycle n+1.

Using an initial CFD analysis as input data avoided having to increase flow velocity

from zero to the desired speed during FSI analysis saving a significant amount of

computational runtime. This framework is illustrated in Fig. 3.22. The time step

for both solvers was 0.00005 s. Output from the structural model was recorded

every 0.0005 s (Nyquist frequency of 1000 Hz) while output from the fluid model was

recorded every 0.005 s. Global pressure and viscous forces acting on the surface of

the wing were recorded every cycle.

Linking the structural and fluid computational models required that the same

coordinate system be used. Therefore, every angle of attack considered required a

unique fluid and structural model. The SCF was the only surfaced linked between

the solvers since it was the only deformable part.
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Figure 3.22: Illustration of FSI framework.

3.4.4 Load Case: Fixed Fully Deployed

The first load case considered in FSI analysis was the aerodynamic loading of the

fully deployed SCF. In this analysis, the slat was fixed and the hinge was able to

freely rotate. Multiple inlet speeds and angles of attack were considered for this load

case.

For 15 m/s inlet flow, FSI analysis was conducted on models at 6◦ and 8◦ angle of

attack using input data from initial CFD analysis of the fluid model. Computational

runtime for this load case was approximately 1.5 days. Figure 3.23 shows the deflec-

tion over time at the maximum deflection point on the SCF for both angles of attack.

At the beginning of the FSI analysis, the SCF displacement significantly fluctuated

due to the initial interactions between the fluid and structural models, but dampened

to a much smaller magnitude by 0.1 s. The average maximum displacement of the

SCF at 6◦ and 8◦ angle of attack were 0.0298 mm and 0.0290 mm respectively. These
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average displacements (approximately 40% of the SMA thickness) were reasonable

when compared to a static analysis using the pressure distributions from CFD anal-

ysis. As seen in Fig. 3.24, the displacement of the SCF was similar in both the FSI

analysis and static analysis. At 8◦, the SCF had approximately the same maximum

deflection in both FSI and static analysis (deflection was 0.0291 mm). However, at

6◦, the SCF had a 10.7% higher defection (0.033 mm) in static analysis as compared

to the deflection in the FSI analysis. Differences in the displacement could be due to

slight differences in the pressure distribution between the two models. Based on the

scaling laws discussed earlier in this section, this analysis corresponded to a full scale

SCF with a thickness of 3.35 mm at Mach 0.2. The full scale SCF displacements at

6◦ and 8◦ angle of attack were 0.477 mm and 0.464 mm, respectively.
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Figure 3.23: SCF displacement in FSI analysis with 15 m/s inlet flow.

As seen in Fig. 3.23, the fluctuation of the maximum SCF displacement after

the dampening at the start of FSI analysis was quite small (less than 0.001 mm). To

determine the frequency of the SCF deflection, a Fourier analysis was conducted using
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Figure 3.24: Comparison of SMA SCF deflection between FSI analysis and static
aerodynamic loading.

the last 0.25 s of the FSI analysis (512 data points since displacement was recorded

every 0.005 s). The resulting frequency resolution was approximately 4 Hz. As shown

in Fig. 3.25, at 6◦ the SCF appeared to be vibrating at a frequency of 74 Hz, while

at 8◦, it vibrated at 50 Hz. The root mean square (RMS) value for the spectrum at

6◦ and 8◦ were 3.35*10−6 and 1.13*10−4, respectively.10 These frequencies appeared

to be fundamental since there appeared to be harmonic frequencies. As expected,

the amplitude of the frequencies at 8◦ was significantly higher than the ones at 6◦

since the fluctuation of SCF displacement was higher. Given that the amplitude of

the frequencies for both angles was small, the fluctuation of SCF displacement could

be due to numerical noise in the analysis.

Flow results were also re-examined to account for changes due to the introduction

of a flexible SCF to the flow analysis. For 6◦ angle of attack, the average lift and drag

coefficients were 2.29 and 0.0963, respectively. These coefficients were approximately

the same as the coefficients from the initial CFD analysis (see Table 3.2). However,

10The RMS value was calculated from the spectrum plot by first summing the squared value of

each magnitude, and then taking the square root of that sum and multiplying it by
√
2
2 .
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Figure 3.25: Spectrum magnitude plot of SCF deflection at 15 m/s in fully deployed
configuration.

for 8◦ angle of attack the average lift and drag coefficients in FSI analysis were

slightly different from the values in the initial CFD. The lift coefficient was 2.35

(2.49% lower) while the drag coefficient was 0.147 (7.30% higher). Also, though it is

not shown, the pressure coefficient distribution was practically unchanged for both

angles. At these angles and inlet speed, the SCF does not appear to significantly

change the flow results.

FSI analysis of the fixed fully deployed configuration at 6◦ angle of attack was

also conducted with an inlet speed of 30 m/s. The SCF deflection over time is shown

in Fig. 3.26(a). Similar to the results using 15 m/s inlet speed, the SCF displace-

ment significantly fluctuated at start of the analysis, but quickly dampened. The

SCF deflected shape was also similar to the 15 m/s cases, as shown in Fig. 3.26(b).

The average/steady maximum displacement of SCF was 0.124 mm which was ap-

proximately four times the maximum displacement for both 15 m/s cases. Also, the

maximum displacement occurred in approximately the same location (distance of

0.39 mm between the two points) as the maximum displacement for the 15 m/s case.
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These results were expected given that the dynamic pressure (and thus the load

acting on the SCF) increased by a factor of four. Even at 30 m/s inlet speed, the

fluctuation of the SCF displacement was very small (less than 0.001 mm). Fourier

analysis of the SCF displacement on the last 0.5 s of the analysis showed the SCF

was vibrating at a frequency of approximately 240 Hz (see Fig.3.27). The RMS value

of the spectrum was 2.87*10−6. Given the size of the amplitude, this frequency could

be due to numerical noise. Performing a Fourier analysis on the lift coefficient from

the initial CFD analysis showed that the lift was fluctuating at similar frequencies as

the SCF displacement. This further suggested that the frequency of SCF vibration

was due to numerical noise. This analysis corresponded to a full scale SCF with a

thickness of 2.21 mm at Mach 0.2 and a maximum displacement of 1.984 mm.
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Figure 3.26: SCF displacement in FSI analysis with 30 m/s inlet flow.
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Figure 3.27: Spectrum magnitude plot of SCF deflection at 30 m/s in fully deployed
configuration.

3.4.5 Load Case: 14% Slat Retraction (SCF Touching Wing)

The second load case considered was aerodynamic loading of the SMA SCF when

the slat setting placed the SCF in contact with the main wing. After the initial

CFD analysis of the fixed fully deployed SCF, the slat and SCF were rotated about

the slat rotation center to approximately 14% retraction ( 0.06 radians) over 0.14 s,

where the SCF first comes into contact with the main wing. The SCF was then held

in this position for another 0.38 s. Note for this analysis, to assist with retraction,

the interior of the slat was treated as fluid. Total runtime of the FSI analysis was

approximately two days using a 4 core computer. Recall that in the FSI analysis,

the outer boundary of the main wing was negatively offset in the fluid model to

create a small spacing between the main wing and SCF when the two parts come

into contact in the structural model. Only a 6◦ angle of attack configuration at

15 m/s was considered. The purpose of this load case was to begin assessment of
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the SCF compliance to retraction. In addition, this load case provided another SCF

configuration to compare with the wind tunnel model.

As shown in Fig. 3.28, there was a small region of high-velocity flow in the

gap between the SCF and main wing, but it did not appear to effect the overall

flow. There were also some disturbances due to interpolation at the boundaries of

the slave meshes that propagated downstream. Since the boundaries were (mostly)

away from the surface of the slat and SCF, the effect of the disturbances was small

on the flow near the SCF. Investigation into the creation of these disturbances is

currently in progress. Further refinement of the slave mesh or adjustment of its

outer boundary may reduce the propogation of the disturbances. With the SCF

touching the main wing, it effectively prevented fluid from flowing across the leading

edge of the main wing, resulting in the separation of flow off of the slat/SCF. The

separation created circulation regions on either side of the main wing’s leading edge

and eventually reattached to the wing further downstream. This meant that with

the SCF implemented, above 14% retraction the slat was effectively an extension of

the main wing and not a separate body.

The effects of the SCF contacting the main wing can be further seen in the pres-

sure coefficient distribution shown in Fig. 3.29. On both the upper and (especially)

the lower surfaces, there appeared to be a smooth transition from the pressure on

the slat/SCF to the pressure on the main wing. In addition, the suction peak on the

slat grew since the it was at a higher effective angle attack which also corresponded

to a negative increase in the pressure on the lower surface.

The “combining” of the slat and main wing created a longer main wing with more

camber, which corresponded to a slight increase in the lift coefficient (2.40). The

drag coefficient also slightly increased (0.0992) more than likely due to the creation

of the circulation regions between the slat and main wing. Further investigation
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Figure 3.28: Velocity contours at 14% slat retraction.

-4

-3

-2

-1

0

1

2

-200 -150 -100 -50 0 50 100 150 200

C
o
ef

fi
ci

en
t 

o
f 

P
re

ss
u

re
, 

C
p

X Position (mm)

Figure 3.29: Pressure coefficient distribution at 14% slat retraction.

into the effect of the SCF at this retraction level (and higher) on the overall flow

is necessary since above 14% retraction the SCF created a morphing wing whose

camber could be set by simply retracting/deploying the slat. However, aeroacoustic
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effects will also need to be taken into consideration since two circulation regions were

created.

In order to obtain the frequency of any SCF vibrations in this configuration,

Fourier analysis was conducted on the displacement of the SCF once it was in contact

with the main wing. As with the previous load case, the last 0.25 s of the FSI analysis

was used (512 data points). From Fig. 3.30, it can be seen that the SCF was vibrating

at approximately 84 Hz. The RMS value for this spectrum was 1.44*10−5. Given

the small spectral magnitude at that frequency, this vibration could be the result of

numerical noise.
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Figure 3.30: Spectrum magnitude plot of SCF deflection at 15 m/s at 14% re-
traction.

3.4.6 Load Case: Full SCF Retraction/Deployment

The final load case was FSI analysis of the full retraction/deployment of the

slat. However, at the time of this work only slat retraction was performed. Note
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that slat retraction under flow was not a physically meaningful case. However, this

analysis deformed the meshes of the slat and SCF into a configuration suitable for

slat deployment while the boundary conditions of the slat-cove and walls of the SCF

and slat were maintained. This analysis was conducted with a previous iteration of

the fluid model (prior to mesh refinement and prism layer studies) which was used

to develop the techniques and modeling choices used in the current iteration. The

model had approximately 1,360,000 elements (1,351,000 prism and 9000 hexahedron).

In addition, an artificial thickness of 0.25 mm was added to the main wing in the

structural model such that the SMA SCF never contacted the main wing in the

fluid model. This was essentially the opposite of what was done in the most recent

iteration of the fluid model. In addition, this analysis was conducted prior to the

tension tests of the SMA so SMA material properties from Section 2 were used.11 The

slat in both the fluid and structural models was set to rotate over 2 s about the same

point (slat reference point), which was faster than flight hardware (typically 10 s to

20 s) but necessary for reasonable computational runtime. As with the previous load

cases, the FSI analysis used input data from CFD analysis of the model with an

inlet speed of 15 m/s. The computational runtime for this analysis was significant,

requiring multiple days to complete. The analysis crashed at approximately 94% slat

retraction due to a zero volume element in the fluid mesh associated with the SCF.

The mesh deformation due to the slat retraction, hinge rotation and SCF deformation

contributed to the creation of the zero volume element. The velocity contours at

various stages of slat retraction are shown in Fig. 3.32. Note that any velocity inside

the slat cove was also a result of the overlap between the slave meshes, but in this case

could not be prevented. Local disturbances due to interpolation between the slave

11The wind tunnel version of the SCF had also not been constructed yet. The hinge was set to
0.5 mm away from the slat-cove wall and the hinge arm length was set to 1.5 mm.
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and master meshes was evident at all retraction levels. As with the 14% retraction

load case, there was a small region of high-speed flow in the gap between the SCF

and main wing. In addition, the SCF created two circulation regions on either side

of the leading edge of the main wing at multiple retraction levels. However, this

effect appeared to diminish near the end of slat retraction. The deformation of the

fluid volume inside the slat cove is also shown in Fig. 3.32. At 40% retraction, there

were local disturbances near the upper surface of the slat. These disturbances were

due to the outer boundary of the SCF fluid mesh, originally in the slat cove, passing

through the slat slave mesh. As the slat was further retracted, the disturbances

moved further from the upper surface of the slat to accommodate the shrinking slat

cove volume. This proved that the treatment of the slat cove as a fluid and the

separation of the slat and SCF was a good modeling choice.

Flow Velocity 
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0
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Fully Deployed

20% Retraction

94% Retraction40% Retraction

60% Retraction

80% Retraction

Figure 3.31: Velocity countours of FSI retraction analysis.
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Figure 3.32 shows the actuation force about the slat rotation center versus percent

retraction for slat retraction with flow (FSI analysis) and without flow (structural

analysis) up to 94% retraction. As seen in the figure, the actuation force curve from

FSI analysis oscillated slightly while the curve from structural analysis was smoother.

The oscillations were due to the aerodynamic loading of the SCF. Under flow, the

actuation force was decreased for most of the slat retraction as compared to retraction

without flow. The aerodynamic loading on the SCF assisted with its retraction. Past

75% slat retraction during FSI analysis, most of the SCF was essentially untouched by

airflow resulting in approximately the same actuation force curve as the structural

analysis. Note that since the outer mold line of the main wing was extended by

0.25 mm, the actuation force was artificially higher due to the smaller space between

the main wing and slat. Prior to contact with the main wing (approximately 14%),

the aerodynamic loading of the SCF resulted in negative actuation force. This meant

that the aerodynamic loading was attempting to further retract the slat/SCF. For

the scale (6.25%), inlet speed (15 m/s) and span (12.7 mm), the peak actuation force

was approximately 0.35 N. The corresponding peak actuation force at full scale was

1850 N for a SCF with 2.23 mm and a spanwise length of 203.2 mm at Mach 0.2.

Note that the optimal design for the SCF profile from Section 2 had a maximum

actuation force of 22.3 N for a 19.05 mm spanwise section at 75% scale. At full scale

and with a spanwise length of 203.2 mm, the optimal SCF design had a maximum

actuation force of 310 N (approximately six times smaller than).
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4. WIND TUNNEL TESTING AND VALIDATION OF SCF FOR CRM

GEOMETRY

While CFD and FSI results were useful in understanding how the SCF behaved

under flow, the computational models needed to be validated against a physical

model. Validation of the computational model would allow for its results to be

trusted. A validated model could then be used to consider load cases and scales (full

scale and higher speeds) that as of now cannot be physically tested.

4.1 Physical Wind Tunnel Model Description and SCF Implementation

The physical model was constructed and tested in parallel with the computational

model. Section 4.1 presents a general description of the wind tunnel model, the

instrumentation and test methods used used to study it and the implementation of

the SCF.

4.1.1 Wind Tunnel Model Description

The physical wind tunnel model was also based on a 6.25% scaled 2D section of

the CRM at mid-span of the outboard slat and parallel to freestream flow. Solidworks

was used to design the model (see Figure 4.1). An aluminum spar consisting of two

plates and a web served as the main structural support for the wing. 3D printed,

plastic shells were connected to the spar to obtain the shape of the main wing outer

mold ling (see Fig. 4.2).

Remote controlled, Firgelli L12 linear actuators were installed inside the main

wing and connected to the slats and flaps (see Fig. 4.3) allowing for the testing of

multiple slat/flap configurations. Three actuators (one at each end and one in the

middle of the wing) were used for each high-lift device. The retraction/deployment
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Figure 4.1: SolidWorks model of wind tunnel model.

Top Cover

Bottom Cover Aluminum Spar

Figure 4.2: 3D plastic covers connected to aluminum spar.

path for the slat and flap were defined by tracks in a steel plate at the middle of the

main wing (separating the wing into two 0.61 m spanwise sections) and two acrylic

splitter plates at either end of the wing. Due to their small size, the slats and flaps

were also built using a 3D printer and stiffened with embedded steel rods (see Fig.

4.4). The steel rods also served as pins, passing through the tracks in the steel and
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acrylic plates. Two variations of slats were built: 1) an unmodified slat based on the

CRM geometry and 2) a modified slat that was compatible with stowage of the SCF.

The latter slat had a steel trailing edge to allow for better bonding with the SCF, a

steel cusp and paper hinges bonded to the cove wall to allow for the SCF to freely

rotate. The hinge axis for the paper hinges was against the cove wall and the hinge

length was approximately 8 mm. In addition, the cove in the slat was increased,

relative to the unmodified slat, by removing material from the slat along the cove

wall, thereby creating more space to stow the SCF

Steel Guide Plate

Acrylic Guide Plate

Linear Actuator
Connector Arm

Slat Flap
Main Wing

Figure 4.3: Linear actuators and slat/flap tracks.

The model was connected at both ends to ATI Delta F/T load cells in a test

section for the Texas A&M University 3 ft-by-4 ft tunnel (see Fig. 4.5). One load cell

was connected to a gear system that controlled the angle of attack of the wing while

the other was free to rotate. The load cells were to able measure forces and moments

in all three directions. However, only the forces corresponding to lift and drag were

of interest in this work. The model was also connected to a US Digital inclinometer
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Figure 4.4: Trailing-edge flap and leading-edge slats.

for angle of attack measurements. The inclinometer was tared when the spar was

approximately 0◦ (horizontal) using a Lucas AngleStar digital protractor.1

Pressure along the surface of the main wing was measured at quarter-span using

a Pressure Systems Minature Electronic Pressure Scanner (shown in Fig. 4.6). Med-

ical grade tubes were glued to drilled holes in the surface of 3D printed sections of the

main wing and connected to the pressure scanner outside of the tunnel. The loca-

tion of each hole was marked during the printing of the parts to ensure accurate hole

placement. Figure 4.7 shows an illustration of the locations where pressure was mea-

sured. Pressure measurements at a wind-off (no flow) condition were used to tare the

measurements at other conditions. Due to their small size, pressure measurements

could not be taken on the slat and flap with the current system.

1An angle of 0◦ corresponds to an angle of attack of -1.48◦. This was determined in the
SolidWorks model by measuring the angle between the retracted chord line and the horizontal.
This was taken into account during the post processing.
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Figure 4.5: Wind tunnel model of CRM wing 2D section.

Figure 4.6: Pressure scanner with tubing.

The displacement of the SCF was to be measured using a Keyence IL-600 Laser

Displacement Sensor (Fig. 4.8(a)). The sensor was connected to a custom fixture

(shown in Fig. 4.8(b)) that could translate in the chordwise direction and rotate in
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Figure 4.7: Illustration of locations for pressure measurements on the main wing.

(a) Laser sensor.

Test Section 

Attachment

Slots For Linear Position

Laser Mounting 

Bracket
Slots For Rotational Position

(b) Laser mount.

Figure 4.8: Laser displacement measuring system.

the spanwise direction. The fixture was connected to a support beam underneath

the test section. Slots were cut into the floor of the test section to allow for the laser

to be pointed at the wing. The sensor was set to measure the dynamic displacement

with a bandwidth of 0-500 Hz. The fixture could accommodate two sensors, but at

the time of this work only one sensor was ready for use.

4.1.2 SCF Implementation

Due to the small size (curvilinear length of the SCF was approximately 5 cm),

creating a segmented, multi-flexure SCF would be difficult to manufacture. Thus, to

simplify the manufacturing process, only a monolithic SCF was considered. In the
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determination of the SMA thickness, a formal design optimization was not conducted

since manufacturing SMA panels with a custom thickness at the current scale (less

than 0.1 mm) was expensive. Instead discrete thicknesses were evaluated using the

load cases of the structural model. Also note, as this analysis was conducted prior

to purchasing the SMA material for the SCF, material properties shown in Section

2 were used. In addition, the hinge length was held at approximately 1.8 mm long

and hinge location was held at approximately 0.5 mm away from the cove wall for

this design since the hinge had not been constructed at the time. A thickness of

0.0762 mm (0.003 in) required a reasonable amount of actuation force and it did not

significantly deflect under static aerodynamic loading2. In addition, this thickness

of SMA was readily available so it was used in the FSI analysis and physical wind

tunnel model.

The fully deployed SCF profile was the zero stress state. Since the SMA sheet

was flat, shape setting using a heat treatment was required to obtain the desired

SCF profile. Due to size constraints in the furnace, creating a single SCF spanning

the entire length of the wing was not possible. Instead multiple smaller SCF sections

were created. The shape setting was performed by placing the flat SMA sheet into a

custom mold (see Fig. 4.9(a)), which was then placed in a furnace at 600◦C. Smaller

SCF sections were treated for 22.5 min, while larger sections were treated for 30 min

due to the increase in thermal mass. After the allotted time, the molds with the SCF

sections were water quenched. Each mold was 7.62 cm (3 in) in length, but larger

SCF sections could be created by linking the molds together (see Fig. 4.9). The

treated dogbone specimen discussed in the previous section was also heat treated in

this way.

Due to the small size of the SCF, it could not be connected to the slat using

2The pressure distribution for the static load was extracted from an early CFD analysis.
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(a) Single SCF mold. (b) SCF molds linked together.

Figure 4.9: SCF molds used for shape setting.

conventional means (bolts, screws, etc.). Instead it was bonded to the steel trailing

edge and paper hinge using JB-Weld. SCF sections were installed over the entire

slat expect in the vicinity of the linear actuators.

4.2 Wind Tunnel Results and Comparisons

All wind tunnel tests were conducted in the Texas A&M University 3 ft-by-

4 ft tunnel. Both retracted and deployed configurations were considered with a

freestream velocity of approximately 15 m/s. Lift-AoA curves for the retracted con-

figuration from the CFD model and wind tunnel tests are shown Fig. 4.10. As

seen in the figure, both the CFD and wind tunnel lift-AoA curves were linear at

low angles of attack, and began to flatten at higher angles of attack as the wing

approached maximum lift. With the exception of the lift-AoA curve from laminar

inlet flow at high angles of attack, CFD results had a slightly higher lift than the

wind tunnel results at every angle of attack. Also, the difference between the CFD

and wind tunnel lift-AoA curves increased at higher angles of attack. The difference
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in the lift-AoA curves was expected since the CFD model was a rigid body with

smooth surfaces that did not have the geometric discontinuities caused by screws,

bolts, actuator arms, etc.. The CFD model with turbulent inlet flow matched the

experimental results better than the laminar inlet flow case. The lift-AoA curve

from the CFD model using laminar inlet flow flattened significantly as compared to

the other lift-AoA curves. In addition, stall only occurred for the CFD model under

laminar inlet flow. These results suggested that the flow at the inlet of the wind

tunnel test section was not laminar.
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Figure 4.10: Comparison of CFD and wind tunnel lift-AoA curves for the retracted
configuration.

The lift-AoA curves for the deployed configurations from CFD analysis and exper-

imental data are shown in Fig. 4.11. Like the CFD results, the experimental results

for both fully deployed configurations had similar lift-AoA curves. This showed that

the addition of the SCF did not significantly effect the lift of the fully deployed
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Figure 4.11: Comparison of CFD and wind tunnel lift-AoA curves for the deployed
configurations.

configuration. Both CFD and experimental results showed a significant nonlinear

increase at low angles of attack followed by a more linear curve starting near 0◦.

At low angles of attack, the linear portion of the lift-AoA curves from experimental

data was between the CFD lift-AoA curves for laminar inlet flow and turbulent inlet

flow. This suggested that the inlet flow was neither fully developed turbulent flow

or laminar flow. Measurement of the turbulence properties at the inlet of the test

section in the wind tunnel will improve the computational results. At higher angles

of attack, the lift-AoA curve for the CFD model was higher in value than experi-

mental results. The same factors affecting the results for the retracted configuration

(surface roughness, geometric discontinuities) would also contribute to differences

between CFD and experimental results in the deployed configurations. In addition

at higher angles of attack, the slat and flap could be slightly fluttering, potentially

lowering the lift. The slat and flap were rigid bodies in the CFD model, but in the
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wind tunnel model they could slightly bend. Also, at higher angles of attack, there

could have been blockage effects that lowered the freestream velocity in the tunnel

and thus the lift of the wing. This was not present in the CFD model since the inlet

speed was always set to 15 m/s. The motor for the wind tunnel was constant power

driven so the drop in velocity could be counteracted by an increase in the revolutions

per minute (RPM). However, the current setup for the tunnel increases the RPM

of the tunnel motor in increments of 20 RPM which could make the tunnel faster

than intended. An alternate solution would be to include real-time measurements of

velocity into the data collection process.

The drag polars for the retracted configuration from CFD and wind tunnel tests

are shown in Fig. 4.12. Note that the CFD drag polars were shifted to the right

such that the drag at 0◦angle of attack was the same for both experimental and CFD

results. The shift was done to account for any aspects of the wind tunnel model not

captured in the current iteration of the fluid model such as surface roughness in the

physical model, geometric discontinuities and wall effects from tunnel walls, all of

which would have increased the drag. Unmodified CFD drag polars generally had

lower drag at the same lift coefficient than the wind tunnel model. As shown in

the figure, at low angles, an increase in lift due to a change in angle of attack did

not significantly change the corresponding drag. As maximum lift was approached,

the change in drag per unit angle increased while the change in lift per unit angle

decreased. One difference between these drag polars was that the wind tunnel model

exhibited a decrease in drag for a corresponding increase in lift at angles of attack

lower than 0◦while the drag polars from the CFD model did not significantly change.

Between 0◦ and 6◦ angle of attack, the shifted CFD drag polar for the laminar inlet

flow case was approximately aligned with the experimental results while the shifted

polar for the turbulent flow case had higher drag. Having fully developed turbulent
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flow at the inlet allowed for flow to stay attached at higher angles of attack, but

resulted in a loss of accuracy on the drag. Above 6◦, the laminar inlet flow case no

longer matched experimental results since maximum lift and stall occurred for that

case resulting in significant increases in drag.
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Figure 4.12: Comparison of CFD and wind tunnel drag polars for the retracted
configuration.

Figure 4.13 shows the drag polars for the deployed configurations from CFD and

wind tunnel tests. As with the retracted case, the CFD drag polars were shifted to the

right such that the drag at 0◦angle of attack was the same for both experimental and

CFD results. Note that the drag polars for the turbulent inlet flow cases were shifted

significantly less than the laminar inlet flow cases. There were multiple differences

between the CFD and experimental drag polars. The wind tunnel results generated

a smoother curve with more variation in drag while the polar from CFD results with

laminar inlet flow showed little variation in drag for the highest and lowest considered
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angles of attack. Above 0◦ angle of attack, the drag polars from CFD results with

turbulent inlet flow had more gradual curves as compared to experimental results.

Also, the CFD Maintaining a constant velocity may change the drag polar for the

wind tunnel model to one more similar to either of the CFD results. In addition,

measuring the turbulence properties at inlet will improve the accuracy of the CFD

results. Further mesh refinement may also be needed to better capture the boundary

layer which would improve the drag measurement. Another difference between the

experimental and CFD results was the change in drag with the addition of the SCF.

Based on the unmodified CFD drag polars, the SCF had negligible effects on the

drag. However, based on experimental results, the SCF noticeably shifted the drag

polar. This shift in drag was possibly due to the increased number of geometric

features (slat cusp, spaces between SCF sections and imperfections associated with

assemblage of those features.).
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(a) 4◦ angle of attack.
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(b) 6◦ angle of attack.
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(c) 8◦ angle of attack.

Figure 4.14: Comparison of coefficient of pressure distribution for CFD and experi-
mental results in retracted configuration.

Pressure measurements along the surface of the main wing were taken for the

retracted, deployed and deployed with SCF configurations at 4◦, 6◦ and 8◦ angle of

attack. The coefficient of pressure distributions from wind tunnel testing and CFD

analysis for the retracted configuration are compared in Fig. 4.14. Note that three

of the pressure ports were covered by the retracted slat so pressure measurements As

seen in the figure, the distribution from CFD analysis for both inlet casesmatched

well with the experimental results at all angles of attack. This was expected since

the experimental and CFD lift-AoA curves were similar.

Figures 4.15 and 4.16 show the coefficient of pressure distribution for both de-

ployed configurations from CFD analysis and wind tunnel testing. As with the

results for the retracted configuration, the distribution from CFD analysis for both

deployed configurations was close to the experimental results in terms of value and

overall shape of the distribution. Both the characteristics on the lower surface and

trailing edge of the upper surface were accurately captured. The main difference

between experimental and CFD results were the values at the leading edge of the

main wing. Experimental results showed a higher suction peak on the upper surface

than the CFD results. In addition, as the angle of attack increased, the difference
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between CFD and experimental results grew. The pressure distribution on the main

wing from CFD analysis for both configurations was approximately the same indi-

cating that the SCF did not significantly affect the distribution on the main wing.

However, pressure distributions from experimental results showed that the deployed

with SCF configuration had a higher suction peak at the leading edge than the distri-

bution from the deployed configuration. Away from the upper surface of the leading

edge, the experimental distribution for both configurations was approximately the

same. In general, the pressure distribution from CFD analysis with laminar flow

better matched the experimental results since it had a higher suction peak at the

leading edge of the main wing.
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(a) 4◦ angle of attack.
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(b) 6◦ angle of attack.
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(c) 8◦ angle of attack.

Figure 4.15: Comparison of coefficient of pressure distribution for CFD and experi-
mental results in deployed configuration.

Measurements of the SCF displacement response were attempted. The laser

was aimed at the region of the SCF with the largest displacement in FSI analysis.

However, the surface of the SMA SCF was highly reflective and the location where

the laser was aimed was very close to the surface of the main wing (which was white).

Both of these caused significant scattering of the laser and thus significant scattering

of the measured displacement. In addition, there appeared to be some slight rotation
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(a) 4◦ angle of attack.
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(b) 6◦ angle of attack.
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(c) 8◦ angle of attack.

Figure 4.16: Comparison of coefficient of pressure distribution for CFD and experi-
mental results in deployed with SCF configuration.

of the slat when the tunnel was turned on, resulting in a shift of the SCF by a few

millimeters. Future work will need to address the rotation of the slat and reduce the

reflectiveness of the SCF.

Wind tunnel testing was also conducted for a 14% retracted slat configuration

where the SCF was touching the main wing. Figure 4.17(a) shows the lift-AoA curve

for the 14% retracted configuration in comparison to the curve from the fully deployed

configuration, both with the SCF. The lift for both configurations was approximately

the same at every angle of attack. With regards to computational results, at 6◦

angle of attack, for the 14% retracted slat configuration, FSI analysis predicted a

lift coefficient of 2.4, which was slightly higher (5%) than the lift coefficient for the

fully deployed configuration. The measured drag polar for the 14% retracted slat

configuration was similar in shape to the corresponding polar for the fully deployed

configuration (see Fig. 4.17(b)). However, the values of the drag coefficient were

different between these two configurations. At low angles of attack, the drag from

the 14% retracted slat configuration was significantly larger than the fully deployed

configuration. The difference in drag between the two configurations decreased at

higher angles of attack till there was no difference. Computational results predicted

113



only a 3% increase in drag which was comparable to the experimental results at high

values of lift. More angles of attack need to be considered in the FSI analysis for the

14% retracted slat configuration to make better comparisons to experimental results

regarding lift and drag.

Pressure along the surface of the main wing was also measured for the 14% re-

tracted slat configuration. Figure 4.17 shows the pressure coefficient distribution at

6◦ angle of attack for both experimental and computational results. The distribu-

tion from computational analysis was close to the experimental results in terms of

value and overall shape of the distribution. Characteristics of the distribution were

accurately captured on both the upper and lower surfaces. In addition, the compu-

tational results seemed to better match the measured pressure at the suction peak

than either fully deployed case.
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Figure 4.17: Comparison of lift and drag for fully deployed and 14% retracted slat
configurations.
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Figure 4.18: Comparison of coefficient of pressure distribution for CFD and experi-
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5. CONCLUSIONS AND FUTURE WORK

5.1 Summary and Conclusions

The goal of this work was to further the development and understanding of a SMA

SCF that would reduce the noise produced by the wing of a typical transport-class

aircraft using both computational and physical models. Specifically this work focused

on three tasks: 1) develop and optimize a structural model of the SCF considering

aerodynamic and retraction/deployment load cases, 2) develop and analyze CFD and

FSI models of a scaled SCF at various angles of attack and slat/flap deployment and

3) develop and test a scaled wind tunnel model of the SCF to validate computational

models using experimental results.

To be a viable addition to known and desirable airframe configurations, the

SCF needed to satisfy three contradictory characteristics: 1) stiffness during aerody-

namic loading, 2) compliance for morphing during slat retraction and 3) low weight.

These characteristics drove designers to consider shape memory alloys. Finite ele-

ment analysis models of a physical benchtop prototype were constructed to perform

analysis-driven design optimization using a proven framework. Design of experi-

ment studies were first conducted to understand how the design variables influenced

model response and to more efficiently perform the optimization. It was found that

an approximately-monolithic, short-hinge SCF with a forward flexure thickness of

0.103 cm and an aft flexure thickness of 0.0975 cm minimized the actuation force.

This design was similar to the physical model developed by NASA engineers.

The success of the design optimization motivated further studies into the SMA

SCF concept. Work specifically focused on how the SCF behaved under flow using

computational models. The computational tools consisted of finite element structural
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models and finite volume fluid models based on a wind tunnel model of a scaled 2D

section of the Boeing-NASA CRM. Prior to FSI analysis of the SCF, CFD analysis

was performed on multiple configurations of the CRM to examine how flow char-

acteristics were affected by the SCF. Results from CFD analysis showed significant

increases in lift for the deployed configurations relative to the retracted configuration.

Also, incorporation of the SCF eliminated the circulating flow region in the slat

cove without significantly effecting the overall flow characteristics, complying with

known SCF behavior. This was mirrored in the drag polars and pressure distribu-

tions. Two inlet flow cases were also considered: laminar flow and fully developed

turbulent flow.

FSI analysis of the fixed-fully-deployed case at two angles of attack with an inlet

speed of 15 m/s resulted in a maximum SCF displacement of approximately 0.03 mm,

which was similar to the displacement of a static analysis of the SCF. There was some

fluctuation in the SCF displacement, however the amplitude and frequency of this

fluctuation suggested that it might be due to numerical noise in the analysis. FSI

analysis was also conducted for the case of the SCF touching the main wing (14%

slat retraction). At this retraction level, the SCF prevented air from flowing around

the leading edge of the main wing. This essentially made it an extension of the main

wing. Finally, FSI analysis of full slat retraction was conducted, but the analysis

crashed at 94% retraction due to a zero volume element. This was possibly the first

FSI analysis of a morphing structure on a moving rigid body relative to fixed rigid

body with massive changes in volume. Overset meshes were used to assist with the

deformation of the SCF in the fluid model during FSI analysis which introduced local

disturbances into the flow. However, the disturbances did not appear to significantly

alter the flow in the vicinity of the wing.

A scaled physical wind tunnel model of the CRM geometry was built and tested
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for the purpose of validating computational results. This model incorporated the first

flexible SMA SCF in a wind tunnel. The lift-AoA curves from wind tunnel testing and

CFD analysis had similar trends for both the retracted and deployed configurations.

In general for all configurations, the CFD model had lower drag than the wind tunnel

model. However, shifting the CFD drag polar such that the drag at 0◦ was the same

for both experimental and computational results, showed that the polars were of

similar shape. This may have been due to surface roughness, some geometric features

not captured in the CFD model and side wall effects. The pressure distributions

along the main wing from CFD and experimental results matched well except for the

upper surface near the suction region for both deployed configurations which would

be sensitive to angle of attack. Attempts were made to measure the displacement of

the SCF, but the surface of the SCF was too reflective and slat appeared to rotate

slightly when the tunnel was activated preventing accurate readings.

5.2 Future Work

Future work will continue the development of the computational models. Im-

provements of the overset mesh will be investigated to remove the downstream prop-

agation of the local disturbances at the mesh boundaries. This in turn will improve

the overall accuracy of the analysis. Additionally, measurement of the turbulence

properties will be conducted in order to more accurately model the flow of the inlet.

Future work will also focus on the further development of the wind tunnel model.

During this work, slight rotations of the model may have caused some wing twist and

prevented accurate measurements of the SCF displacement. Reinforcing the model

and developing means to account for the rotation will improve these measurements.

To observe more aeroelastic responses in the computational and physical models, a

thinner SMA may be considered. Finally, future work will consider the creation of
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nonlinear reduced order models for the SCF under flow. The current implementation

is not feasible for use in a design optimization due to the exceptionally long runtimes.

Reduced order models will significantly reduce the runtime allowing for analysis of

the SCF under flow to be considered in design studies.
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APPENDIX A

MESH AND PRISM LAYER STUDIES

A.1 Mesh Study

Mesh refinement studies were conducted on the CFD model in the fully deployed

with SCF configuration at an angle of attack of 8◦in order to obtain an accurate

mesh that did not require a significant amount of computational runtime. It was

assumed that obtaining a refined mesh for this configuration would be sufficient for

obtaining accurate results for other configurations and angles of attack. The mesh

study focused on setting the mesh sizes of the outer, middle and inner regions. Three

mesh sizes were considered since flow results near the surface of the wing were more

important than results at freestream. Different mesh sizes also significantly reduced

computational runtime. During the study, the mesh size for one region would be

changed while the mesh sizes for the other two regions would be held constant at

a base size (12.8 mm, 1.6 mm and 0.4 mm for the outer, middle and inner regions,

respectively). This study was conducted prior to the study of the prism layer so

default parameters (3 layers, thickness based on element size) were used. In addition,

inlet turbulence were set to default values (k=0.0001m2/s2 and ε = 0.0001m2/s3).

During this study, changes in both the lift and drag coefficient were examined. Tables

A.1, A.2 and A.3 show the results of the mesh studies. In general, the more refined

the mesh was, the longer. Note that only four meshes sizes were considered for the

inner region due to significant computational runtimes for fine meshes. For all meshes

considered, the lift coefficient did not significantly change which means that a coarse

mesh would be sufficient to capture the pressure distribution (and thus the lift) of
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the wing. However, there was significant variation in the drag coefficient. For both

the outer and middle regions, there was a approximately 10% difference between

the minimum and maximum drag coefficients. Changes to the inner region exhibited

significantly more variation in the drag coefficient. This was expected since the prism

layer elements (and thus the boundary layer) were directly effected by the mesh size

of the inner region. A prism layer study would better capture the boundary layer

and thus the drag coefficient than significant mesh refinement of the inner region.

Based on the low variation of lift coefficient, the mesh sizes for the outer and middle

regions were set to 25.6 mm and 6.4 mm, respectively. The mesh size for the inner

region was set to 0.8 mm since prism layer studies would better refine the mesh near

the surface of the wing. This refined mesh resulted in a lift coefficient of 2.88 and a

drag coefficient of 0.0872 which were to values observed in the mesh study.

Table A.1: Mesh study of outer region.

Element Size (mm) 25.6 12.8 6.4 3.2 1.6

CL 2.779 2.815 2.777 2.790 2.720

CD 0.116 0.108 0.106 0.119 0.118

% change in CL - 1.31 -1.34 0.45 -2.50

% change in CD - -6.43 -1.51 11.89 -0.89

A.2 Prism Layer Study

Prism layer elements were inserted along the surface of the wing and tunnel wall

in order to improve the calculation of the boundary layer. Accuracy of the prism

layer was dependent on the selection of the prism layer paramters: the thickness of
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Table A.2: Mesh study of middle region.

Element Size (mm) 6.4 3.2 1.6 0.8 0.4

CL 2.765 2.815 2.815 2.820 2.846

CD 0.111 0.113 0.108 0.111 0.102

% change in CL - 1.80 -0.01 0.17 0.94

% change in CD - 1.84 -4.31 2.52 -8.09

Table A.3: Mesh study of inner region.

Element Size (mm) 1.6 0.8 0.4 0.2

CL 2.810 2.845 2.815 2.879

CD 0.0765 0.0934 0.108 0.0860

% change in CL - 1.27 -1.09 2.29

% change in CD - 22.19 15.74 -20.45

the first layer, change of thickness between layers and total number of layers (and

in turn overall thickness of the prism layer). A preliminary study of the prism layer

was conducted to find a prism layer that sufficiently captured the boundary layer.

Note that the same prism layer was applied to each wall. As with the mesh study, it

was assumed that a refined prism layer for one configuration (fully deployed SCF at

an angle of attack of 8◦) would be sufficient for all other configurations. At the time

of this study, the Spalart-Allamaras (SA) turbulence model [46] was being used for

CFD analysis. 1 To quickly assess multiple cases, the mesh size of the inner region

1The SA turbulence model was not chosen as the final turbulence model due to its significant
dependence on the element size of the inner region and it required significant computational runtime
to converge to a near steady solution for refined meshes.
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was set to 0.0016 mm while the mesh sizes for the other regions were set to the sizes

chosen in the mesh study. The study was split into two parts. The first part of the

study focused on the effect of the total prism layer thickness while the second part

focused on the thickness of the first layer (which directly effected the normalized wall

distance y+).

During the first part of the study, the thickness of the first layer was set to

0.04 mm while the number of layers and variation of thickness were adjusted to

achieve different total thicknesses and keep the thickness of the last layer similar to

the element size of the inner region. Table A.4 shows the variation of lift and drag

with the total thickness. As shown in the table, the lift and drag converged as the

total thickness of the prism layer was increased. A total thickness of 2.46 mm (Case

4) was chosen based on the results. The number of layers and variation for Case 4

were 12 and 1.27 respectively.

Table A.4: Total thickness of prism layer study.

Case 1 2 3 4 5

Total Thickness (mm) 1.04 1.58 2.02 2.46 2.97

CL 2.62 2.44 2.38 2.34 2.33

CD 0.0886 0.118 0.122 .122 0.121

% change in CL - -6.74 -2.72 -1.48 -0.254

% change in CD - 33.1 3.46 -0.344 -0.893

The prism layer parameters from Case 4 were used as the initial case for the

second part of the prism layer study which evaluated the effect of the thickness of

the first layer. The thickness of the first layer directly corresponded to the normalized
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wall distance y+. During this portion of the study the total thickness was held to

approximately 2.46 mm. As with the previous part of the study, the number of layers

and variation of thickness were adjusted to a desired total thickness while keeping

the thickness of the last layer similar to the inner region mesh size. Results for this

portion of the study are shown in Table A.5. For all thicknesses considered, there was

little change in either lift or drag. Also, as the thickness of the first layer decreased,

the computational runtime increased. Since only the runtime increased with change

in the thickness of the first layer, the prism layer parameters corresponding to Case 4

were chosen for CFD analysis of the CRM configurations. Note that for models used

in FSI analysis, the same thickness of the first layer and total thickness were used,

while the variation and number of elements were adjusted to prevent mesh distortion

which resulted in more elements for the prism layer.

Table A.5: First layer thickness of prism layer study.

Case 4 6 7 8

First Layer Thickness (mm) 0.04 0.03 0.02 0.01 0.003

Maxy+ 6.01 4.69 3.21 1.66 0.55

CL 2.34 2.34 2.35 2.34 2.35

CD 0.122 0.121 0.122 .122 0.122

% change in CL - 0.181 0.103 -0.111 0.134

% change in CD - -0.745 1.21 -0.2 -0.0626

129


