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ABSTRACT 

 

In response to altered physiological demands, cardiac muscles remodel their 

muscle mass and contractile properties to sustain muscle performance. However, 

dramatic alterations of the sarcomere structure are rarely observed in mammalian 

models. I studied the C. elegans anal depressor development in males and 

hermaphrodites, to address how a differentiated muscle cell sex-specifically remodels to 

achieve sarcomere rearrangement and functional alterations. In both larval males and 

hermaphrodites, the anal depressor muscle possesses a dorsal-ventrally oriented 

sarcomere. The contraction of the muscle cell facilitates defecation behavior. However 

in adult males, the anal depressor reorganizes its sarcomere and becomes a copulation 

muscle. To identify the cytoskeletal alteration events, as well as the sex-determination 

mechanism that contribute to the sarcomere rearrangement, I used YFP:actin to monitor, 

and mutant analysis, laser-ablation and transgenic feminization to perturb the cell's 

morphological dynamics. In young larva, the muscle of both sexes has similar sarcomere 

morphology. However later in L4, the male extrinsic sex mechanism promotes formation 

of a ventral slit, demarcating the sarcomere into anterior and posterior half. The male 

intrinsic sex determination mechanism then promotes the disassembly of sarcomere. 

Finally, the anterior domain establishes a novel ventral attachment to the sex muscles, 

and reassembles an anterior-posteriorly oriented sarcomere.  

To identify the signaling pathways that are sex-differentially activated to 

promote sarcomere disassembly, I first examined a series of Wnt-canonical mutants. egl-
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20, lin-44, lin-17 and bar-1 mutants possess sarcomere disassembly defects. However, 

the incomplete penetrance of the Wnt mutants suggests the involvement of parallel 

mechanisms. Through forward genetics, I isolated a nonsense mutation in egl-

8/phospholipase C-β, which potentially perturbs the calcium signaling in the anal 

depressor. Mutant analysis of goa-1/Gα, itr-1/IP3R, and unc-68/RyR suggests the 

positive role of Wnt-calcium pathway in regulating the sarcomere disassembly process. 

By monitoring the calcium dynamics in the anal depressor, I found that the calcium 

signaling is active during L4 development, to activate a group of proteases (clp-

6/Calpain) and phosphatase (tax-6/Calcineurin). Monitoring BAR-1 activity in the anal 

depressor suggests an active role of β-catenin signaling during early development. 

Therefore, Wnt-β-catenin and Wnt-calcium pathway function during different 

development stages to regulate anal depressor remodeling.     
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NOMENCLATURE 

 

BAR-1                C. elegans homologue of β-catenin 

CFP                    cyan fluorescent protein 

CLP-6                C. elegans homologue of calpain 

CNB-1               C. elegans homologue of calcineurin B 

EGL-8                C. elegans homologue of phospholipase C-β 

EGL-19              C. elegans homologue of voltage-gated calcium channel 

EGL-20              C. elegans homologue of Wnt ligand 

EXP-1                C. elegans homologue of excitatory GABA receptor 

GOA-1               C. elegans homologue of Gα 

lf                         loss of function 

LIN-17               C. elegans homologue of Frizzled 

LIN-44               C. elegans homologue of Wnt ligand 

MAB-5               homeodomain transcription factor 

RyR                    ryanodine receptor 

TAX-6               C. elegans homologue of calcineurin A 

UNC-68             C. elegans homologue of ryanodine receptor 

YFP                    yellow fluorescent protein 
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CHAPTER I 

INTRODUCTION
*

Capability of a fully-differentiated muscle cell to regenerate 

Diseases-induced heart injury requires the cardiac muscles to regenerate to 

compensate for the loss of muscle fibers. However, the regeneration capability is limited 

to certain cardiac systems, like zebrafish cardiac muscles. To activate the regeneration 

potential of a human heart, illuminating the muscle remodeling mechanisms utilized in 

those model systems is both necessary and required. 

The cardiac muscles can adopt different muscle remodeling mechanisms to 

respond to diseases-induced heart injury. They can become hypertrophied to expand the 

size of the sarcomere. They can also generate novel cardiomyocytes from either the 

progenitor cells, or from the pre-existing cardiomyocytes. The remodeled muscle cells 

undergo cellular processes that are also involved in cardiogenesis. Therefore studying 

cardiogenesis pathways helps to develop and improve heart regeneration therapies. 

Wnt signaling has been shown to regulate different aspects of cardiogenesis in 

the vertebrate system. Therefore it might also play a role in regulating cardiac muscle 

regeneration. Due to the conservation of the Wnt signaling pathway, the easily-

manipulated body structure and the well-controlled muscle remodeling process in 

* Portions of this chapter are reprinted from Chen, X. and Rene Garcia, L. (2015) Developmental 

alterations of the C. elegans male anal depressor morphology and function require sex-specific cell 

autonomous and cell non-autonomous interactions. Developmental Biology 398, 24-43. 
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worms, we used C. elegans to study muscle regeneration. The sexually dimorphic 

development of the C. elegans muscle cells indicates that the sex determination 

mechanisms act upstream of the muscle remodeling pathway to regulate muscle 

remodeling. Therefore, the muscle remodeling events occurring in C. elegans are under 

tight control, which sheds lights on how to develop more reliable therapy for heart 

regeneration. 

Heart regeneration 

In rat and zebrafish, cardiac muscles can regenerate to compensate for the loss of 

the muscle fibers. Heart regeneration can occur by either the proliferation of the 

myocardial progenitors, or the proliferation of the fully-differentiated cardiomyocytes. 

The latter has been shown to be intriguing, because it might involve the process of cell 

dedifferentiation. 

Recent studies found that cardiomyocytes in adult heart can proliferate to repair 

heart injury.  Neuregulin1 (NRG1) is the agonist for the RTK of the EGF receptor family 

(Erb4). In mice, NRG1/Erb4 signaling was found to be vital for cardiomyocyte 

generation (Gassmann et al., 1995; Lee et al., 1995). Differentiated rat cardiomyocytes 

can proliferate and generate novel muscle fibers under induction conditions. Conditional 

knockout of ErbB4 in the differentiated cardiomyocytes abolished their ability to 

proliferate during postnatal development. And overexpression of ErbB4 in the 

differentiated cardiomyocytes also increase the proliferate potential of those cells 

(Bersell et al., 2009). NRG1 stimulates the differentiated cardiomyocytes to reenter cell 
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cycle, generate new cardiomyocytes to compensate for the loss of muscle fibers after 

myocardial infarction.  

Other studies suggest that dedifferentiation occurs before the cardiomyocytes can 

proliferate (Jopling et al., 2010). After amputation, the differentiated zebrafish 

cardiomyocytes reenter cell cycle and undergo DNA duplication. Those cardiomyocytes 

do not show regression within the cardiac lineage, since no earlier marker expression 

was detected in those proliferating cells. However, they did show levels of 

dedifferentiation. Those cardiomyocytes detach from each other, the sarcomeric 

filaments are disorganized and the transverse and longitudinal sarcomeric structures 

were absent. Inhibition of plk1, which is a regulator of cell cycle progression, leads to 

reduced heart regeneration after amputation. 

 During zebrafish heart regeneration, the cardiomyocytes did not upregulate the 

expression levels of the early cardiac markers, like Nkx2.5 and Tbx5. Expression of 

those genes are observed during early embryonic heart development. However, msxB 

and msxC, plus notch1b and deltaC are found to increase their expression levels 

dramatically in the regenerating myocardium (Raya et al., 2003). Those genes are not 

expressed during embryonic heart development. This indicates that heart regeneration in 

zebrafish may adopt a genetic program that is completely different from heart 

development. 

Cardiac progenitors also contribute to heart regeneration in zebrafish (Lepilina et 

al., 2006). After amputation, undifferentiated cardiomyocytes start to appear at the apical 

edge of regeneration region. Those cardiomyocytes are not derived from the pre-existing 
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cardiomyocytes, since no dedifferentiation process was detected. Therefore, those newly 

differentiated cardiomyocytes are derived from the progenitor cells. The cardiac markers 

of the embryonic cardiogenesis are also detected around the apical edge of the 

regenerative tissue during the heart regeneration process. The heart epidermis generate 

an epithelial layer that envelopes the wound after heart injury. This epithelial layer also 

invades into the myocardium to generate the vasculature structure that promotes 

regeneration. To investigate the importance of heart epidermis in heart regeneration, they 

inhibited Fgf signaling, which is essential for the invasive and enveloping activity of the 

epidermis. They found that the inhibition of the Fgf signaling compromised the 

regeneration capability of the heart, indicating the importance of epidermis in heart 

regeneration.  

Although the remodeling mechanisms are diversified, they all involve some 

common cellular processes: sarcomere disassembly, production of new sarcomeric 

proteins, and synthesis of a new sarcomere. Those cellular events also occur during the 

process of heart formation. Therefore, illuminating the signaling network that controls 

cardiogenesis also benefits heart regeneration research.  

Mammalian cardiogenesis 

The generation of a mammalian heart involves specification of the precardiac 

mesoderm, formation of the heart tube and generation of heart chambers. The initiation 

of heart marker genes expression marks different developmental stages of cardiogenesis, 

and also serves as the impetus to drive the heart formation process. During gastrulation, 

cells derived from the primitive streak give rise to the precardiac mesoderm (Garcia-
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Martinez and Schoenwolf, 1993; Tam et al., 1997). Those cardiac progenitors undergo 

cell migration, turn on early myocardial markers, and form the epithelium of cardiac 

crescent (Tam et al., 1997). The cardiac crescent then fuses at the midline to form the 

early heart tube. The tube then undergoes the looping process and expands the 

myocardium. The heart is finally shaped by the formation of cardiac chambers. 

MESP1 (mesoderm posterior 1) and MESP2 (mesoderm posterior 2) are the two 

earliest cardiac markers for the cardiac progenitors, which are detected from the cardiac 

crescent. BMPs and FGFs then activate downstream myocardial regulators, such as 

NKX2-5(NK2 transcription factor related, locus 5) and GATA4(GATA-binding protein 

4) (Brand, 2003). WNT signaling has been shown to exert a repressive effect (Brand, 

2003).  

NKX2-5 then activates Hand1 (heart and neural crest derivatives expressed 

transcript 1), which marks the left ventricle (Yamagishi et al., 2001). TBX5 also 

promotes Hand1 expression and represses Hand2 expression, therefore promoting left-

ventricle specification and repressing the fate specification of other regions (Takeuchi et 

al., 2003; Waldo et al., 2001). The right ventricle was specified by Hand2 expression 

(Srivastava et al., 1995; Srivastava et al., 1997). TBX1 upregulates Fgf signaling (Fgf8 

and Fgf10) in the second heart field, which is essential for cell proliferation (Waldo et 

al., 2001). ISL1 promotes cell migration, cell proliferation and cell maintenance in the 

second heart field (Cai et al., 2003).  
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Wnt signaling regulates cardiogenesis in mammalian cells 

Among the signaling pathways that regulate heart formation, Wnt signaling has 

been shown to regulate different aspects of cardiogenesis. The role of the Wnt pathway 

differs depending on the context of the signaling events. During early heart induction 

process, Wnt signaling exerts repressive effect on the formation of the precardiac 

mesoderm.  

In Xenopus, the cardiogenic mesoderm is derived from the dorsoanterior 

mesoderm. The Spemann organizer and the dorsoanterior endoderm function as the 

signaling center for heart induction in the dorsoanterior mesoderm (Schultheiss et al., 

1995). In chick embryos, the anterior endoderm can differentiate into heart muscles, 

whereas posterior endoderm differentiates into blood and vessels. Expression of crescent 

from the anterior endoderm helps to antagonize Wnt8c and Wnt3a derived from the 

posterior tissues, and promote heart tissue formation (Marvin et al., 2001).  

Wnt antagonists were also shown to have heart induction effects on 

noncardiogenic tissues. The noncardiogenic ventral marginal zone (VMZ) explants, 

which is derived from the Xenopus embryos, was induced to beating hearts by exposure 

to the Spemann organizer and dorsoanterior endoderm (Schneider and Mercola, 2001). 

Injecting Wnt antagonists dkk-1 or crescent mRNA into the VMZ explants was able to 

induce early heart markers, such as Nkx2.5 and Tbx5, as well as cardiomyocyte-specific 

contractile proteins like TnIc and MHCα. Similarly, the posterior lateral plate mesoderm 

(PLP) explants starts to express several cardiac genes, including Nkx-2.5, vMHC, 

aMHC, and GATA-4 when it was infected with RCAS viruses encoding crescent 
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(Marvin et al., 2001). On the other hand, Wnt dramatically reduced the Nkx-2.5 

expression level if it is ectopically expressed in the chick embryo fibroblasts. This 

suggests that the expression of Wnts inhibits the cardiac markers expression and 

differentiation into muscles.  

However, other studies revealed a positive role of Wnt signaling in regulating 

heart muscle formation. Wnt11 is the only Xenopus Wnt gene whose expression pattern 

shows correlation with cardiac specification. Knocking down Wnt11 expression 

conferred defects to heart development. And ectopic expression of Wnt11 in the 

embryonic explants induces the formation of cardiac structures. The heart induction 

activity of Wnt11 is not mediated by β-catenin, but through protein kinase C and JNK 

(Pandur et al., 2002). Therefore non-canonical Wnt pathway functions to promote 

cardiogenesis.  

The role of canonical Wnt pathway in heart muscle formation was also tested in 

mouse embryos (Lickert et al., 2002). Conditional deletion of β-catenin in the endoderm 

of the mouse embryo leads to the cell fate change of the posterior endodermal cells. 

Instead of giving rise to cells of the hindgut, the presumptive endodermal cells give rise 

to ectopic precardic mesoderm and eventually generate cardiac structures in the posterior 

embryo. Therefore, unlike non-canonical pathway, the Wnt-canonical pathway 

negatively regulates cardiogenesis. 

The biphasic role of Wnt signaling in cardiogenesis 

Studies using zebrafish and mouse ES cells show that Wnt signaling plays 

biphasic role in regulating cardiogenesis (Naito et al., 2006; Ueno et al., 2007). During 
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zebrafish embryonic development, Wnt signaling represses anterior lateral mesodermal 

fates and promotes posterior lateral mesodermal fate. Activation of the Wnt pathway by 

heat shock induced Wnt8 had different effects on cardiac development, depending on the 

time when the signaling was induced. Heat shock before gastrulation promotes heart 

marker expression, but heat shock after gastrulation represses heart marker expression 

(Ueno et al., 2007).  

Heart induction experiments done in the mouse ES cells generated similar 

results: Treatment of Wnt3A during early development promotes cardiogenesis, whereas 

treatment during late development stage represses cardiogenesis (Naito et al., 2006; 

Ueno et al., 2007). 

Study of the transcriptional activity of Wnt3A target genes shows that Wnt-

signaling also induces a negative-feedback loop besides heart inducing activity. Wnt 

antagonist Dkk-1 and Wnt11 transcripts are increased after Wnt3A treatment (Ueno et 

al., 2007). It supports the conclusion that Wnt signaling plays a biphasic role in heart 

inducing activity. Therefore the system generates this negative-feedback mechanism to 

allow later cardiogenesis events to occur. 

The interaction between BMP signaling and Wnt signaling in regulating 

cardiogenesis 

BMP signaling has been shown to promote cardiogenesis in many model systems 

(Frasch, 1995; Monzen et al., 1999; Schultheiss et al., 1997; Zhang and Bradley, 1996). 

BMP inhibitor treatment at late ES cell differentiation stage causes decreased expression 

level of heart markers (Naito et al., 2006). Ectopic Wnt signaling induced at this stage 
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reduced BMP expression level, whereas addition of BMP4 restored the Wnt3A-inhibited 

heart induction activity. Therefore, Wnt-β-catenin signaling represses late-stage cardiac 

development by antagonizing BMP activity.  

Wnt signaling in regulating isl1
+
 progenitor renewal and differentiation 

The Wnt pathway also regulates the maintenance of the pluripotency as well as 

proliferation capabilities of the cardiovascular progenitor cells. The Multipotent isl1
+
 

cardiovascular progenitors (MICPs) can generate three major cell types in the heart: 

cardiac, smooth muscle and endothelial cells (Moretti et al., 2006). In vivo studies 

indicate the isl1
+
 cardiovascular progenitors contribute to over two thirds cells of 

embryonic heart, and to all three major cell types in almost all the cardiovascular 

compartments (Cai et al., 2003; Laugwitz et al., 2005).  

Cardiac mesenchymal cells (CMC) provide the microenviroment to maintain 

multipotency and to promote renewal of the isl
+
 cardiovascular progenitors. Studies 

show that Wnt-β-catenin signaling derived from the CMCs promote isl
+
 cells 

proliferation, but inhibits their prespecification and differentiation (Qyang et al., 2007). 

In vitro studies show that Wnt-3a, which is a well-established ligand for the Wnt-β-

catenin pathway (Logan and Nusse, 2004), inhibits the prespecification of MICPs from 

embryoid bodies. But it promotes MICPs proliferation after cell fate specification. The 

role of the Wnt-β-catenin pathway is also supported by in vivo studies: Introducing 

constitutively active β-catenin into the isl
+
 cells causes the expansion of the second heart 

field; ectopic activation of Wnt-β-catenin signaling in the anterior heart field (AHF) also 

blocks the differentiation of isl
+
 cells in the outflow tract (OFT); conditional knockout β-
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catenin in the AHF reduces the proliferation rate of the isl
+
 progenitors in the OFT 

(Qyang et al., 2007); and conditional deletion of β-catenin in the isl
+
 progenitors results 

in decreased expression level of isl1, reduced proliferation rate of isl
+
 cells and increased 

level of apoptosis (Lin et al., 2007). 

β-catenin was also found to be stabilized in all heart chambers and in the outflow 

tract derived from the SHF during later embryonic stage. Deletion of β-catenin in the 

SHF progenitors before cardiac differentiation resulted in the loss of right ventricle (Ai 

et al., 2007; Kwon et al., 2007). The initial commitment markers (Isl) and migration 

markers (Fgf10) are not affected by conditional deletion of β-catenin. However, 

stabilization of β-catenin in the SHF progenitors leads to enlarged right ventricle 

segment, expanded SHF progenitor pool and increased number of mitotic cells (Ai et al., 

2007). In vivo studies, using a conditional allele of β-catenin that was inactivated in the 

SHF progenitors after cardiac differentiation, show reduction in ventricular size, and 

ventricular wall thickness. This was resulted from reduction in proliferation activity of 

the progenitors and decreased level of differentiation (indicated by decreased level of 

expression of cardiogenesis markers, BMP4, hand2, Mef2c, etc).  

Therefore, heart formation in the vertebrate system requires the participation of 

the Wnt canonical pathway, as well as the Wnt non-canonical pathway. The diversified 

roles that the Wnt signaling pathways play during cardiogenesis can be attributed to the 

altered signaling context. They can also be attributed to the distinct effectors activated 

by different Wnt pathways. The complexity of the signaling components as well as the 
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interaction between different Wnt pathways confers Wnt signaling the capability to 

regulate complicated biological processes.     

Wnt-Ca
2+

 pathway: ligands efficiency and crosstalk with other Wnt pathways 

In model systems like Xenopus and zebrafish, the Wnt ligands preferentially 

activate one Wnt pathway rather than others. The antagonistic effects of those Wnt 

ligands indicate that the signaling pathways that they activate are mutually inhibitive. 

Identifying the signaling components that mediate the crosstalk helps to illuminate the 

interactions between different Wnt pathways. 

Overexpression of Wnt ligands had different effects on the development of 

Xenopus embryos. And some Wnts have been found to mutually inhibit the activity of 

each other. Overexpression of XWnt-8 induces ectopic dorsal mesoderm in Xenopus 

embryos (Christian et al., 1992). This effect can be mimicked by inhibiting the PI cycle 

using Li
+
 (Cooke et al., 1989; Slack et al., 1988). Li

+
 functions as a PI cycle inhibitor 

(Busa and Gimlich, 1989), however, it has also been found to inhibit GSK-3 activity 

(Klein and Melton, 1996). This indicates XWnt-8 activity may function to activate the 

canonical beta-catenin pathway, and to inhibit PI cycle. On the other hand, 

overexpression of XWnt-5A perturbs convergent extension movement, and 

downregulates the induction of goosecoid expression by XWnt-8. XWnt-5A may 

function to activate PI cycle activity, since overstimulation of PI cycle using serotonin 

type 1c receptor would have the same effects as XWnt-5A on blastula-stage embryos 

(Ault et al., 1996). To verify that XWnt-5A suppresses the XWnt-8-induced goosecoid 

expression through upregulating Ca
2+

 levels, XWnt-5A was injected into zebrafish 
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embryos and Ca
2+

 dynamics in the enveloping layer of the early blastula was monitored. 

Compared to the control injection, XWnt-5A induced higher Ca
2+

 frequency (Slusarski 

et al., 1997b), confirming the role of PI cycle and Ca
2+

 influx downstream of XWnt-5A 

to suppress the activity of XWnt-8. 

How does XWnt-5A initiate Ca
2+

 transients? Some Frizzled receptors have been 

reported to have a seven transmembrane topology that is similar to the G-protein coupled 

receptors (GPCR) (Chan et al., 1992; Wang et al., 1996); therefore, Frizzled may 

function as a GPCR to activate G-protein mediated signaling and activate Ca
2+

 influx. 

Rat frizzled-2 (Rfz-2) and XWnt-5A has been found to induce Ca
2+

 release when 

ectopically expressed in the zebrafish embryo (Slusarski et al., 1997a). PTX, which is 

the Go/i inhibitor, was able to block the Ca
2+

 increase induced by Rfz-2. Inhibiting the 

activity of Gβγ units using α-transducin also blocked Rfz-2-induced Ca
2+

 increase. This 

proves that Rfz-2 induces the Ca
2+

 change in the zebrafish embryo through activating the 

Go/i - Gβγ - phosphatidylinositol pathway.  

Different Wnt ligands have differential ability to translocate PKC to the cell 

membrane. XWntXWnt-5A, Rfz2, Mfz3, Mfz4 or Mfz6 were able to induce the 

activation of PKC much more efficiently compared to XWntXWnt-8, Rfz1, Mfz7 or 

Mfz8 (Sheldahl et al., 1999). The activation of PKC requires the activation of Gqα and 

Gβγ, since using PTX (Gα inhibitor) or expressing Go/i (inhibits Gβγ activity) would block 

the activation of PKC.  

PKC also plays important roles in cross-talk between different Wnt pathways. 

Wingless has been shown to inactivate GSK-3β (Cook et al., 1996). The inhibition of 
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GSK-3β activity by Wg is not suppressed by inhibition of PI3 kinase or p42/p44 MAP 

kinase cascade. However, the PKC inhibitor Ro31-8220 was able to block the inhibition 

of GSK-3 activity. It indicates that Wg signals through PKC to phosphorylate GSK-3 

and therefore inhibits its activity. 

Ca
2+

 homestasis in vertebrate skeletal muscle 

Besides regulating muscle development via the Wnt-calcium pathway, the role of 

calcium signaling in regulating muscle physiology is well established. The sarcoplasmic 

reticulum plays important roles in regulating Ca
2+

 levels in the cytoplasm. In order for 

skeletal muscle to contract, cytoplasmic Ca
2+

 levels must be rhythmically upregulated 

and downregulated to facilitate contractile protein interaction. The upregulation of 

cytoplasmic Ca
2+

 was achieved through a series of events: a stimulation signal, 

transmission of the signal by altering membrane potential, activation of the voltage-

gated Ca
2+

 channels, activation of the RyR on the sarcoplasmic reticulum (SR), and 

eventually Ca
2+

 efflux from the SR into the cytoplasm. During the relaxation cycle, Ca
2+

 

needs to be removed from the cytoplasm, by Ca
2+

 uptake into the SR. The channels that 

facilitate the processes are mainly the Na+/ Ca
2+

 exchanger (NCX), and the Ca
2+

 ATPase 

in the SR (SERCA) (Dirksen, 2009). 

Mitochondria promotes Ca
2+

 removal activity of the SR (Allen et al., 2008). 

Within the mammalian skeletal muscles, mitochondria are located close to the Ca
2+

 

releasing unit (CRU). CRU consists of T-tubule membrane and sarcoplasmic reticulum 

terminal cisternae, which contains the RyR responding to Ca
2+

 levels changes and 

releasing Ca
2+

 from the SR (Melzer et al., 1995). Mitochondria have been found to 
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sequester Ca
2+

 during Ca
2+

 oscillations in cardiac myocytes, neurons and many other cell 

types (Duchen, 1999). But because of the low affinity of the Ca
2+

 transporter located on 

the mitochondria, the role of mitochondria Ca
2+

 uptake during contraction-relaxation 

cycle may not be significant. Mitochondria may only function as a sensor of the 

cytoplasmic Ca
2+

 homeostasis. 

However, mitochondria may play an indirect role in promoting the Ca
2+

 uptake 

function of the Ca
2+

 ATPase in the SR. Although ATP is required to promote sarcomere 

protein contraction, around 80% of the ATP consumed is to facilitate SERCA’s reuptake 

of Ca
2+

 from the cytoplasm (Allen et al., 2008). Therefore malfunction of the 

mitochondria may lead to failure of the SR to be refilled with Ca
2+

 and block the 

contraction-relaxation cycle.    

Therefore, proper function of the muscle cells requires behavior-activated 

calcium signaling. The generation of rhythmic calcium influx requires the coordination 

of different cellular compartments. The involvement of those cellular compartments in 

regulating developmental calcium signaling is unknown. But the conserved function of 

ER and mitochondria predicts that the Wnt-calcium pathway utilizes the same system to 

modulate calcium signaling.   

Wnt signaling in C. elegans 

The Wnt signaling network was shown to be conserved among C. elegans and 

the vertebrates. The worms have the corresponding homologs for different components 

of the Wnt pathways. The biological output of the Wnt pathways is also conservative. In 
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C. elegans, Wnt signaling pathways have been found to promote cell fate specification, 

and regulate cell migration and cell polarity.  

Wnt signaling and vulva induction 

Wnt signaling has been shown to activate the expression of the hox gene lin-39 

in the six vulva precursor cells (VPCs) (Eisenmann et al., 1998). lin-39 maintains the 

competency of the VPCs to respond to the vulva induction signals from the EGF 

signaling pathway. lin-39 loss-of-function mutants show loss of VPCs and the P3.p to 

P8.p fused with the hypodermal syncytium. lin-39 expression domain was expanded in a 

pry-1 mutant (Maloof et al., 1999), indicating that pry-1 negatively regulates the Wnt 

pathway. Also pry-1 mutant has the multi-vulva phenotype, and this phenotype is not 

suppressed by let-23/RTK or let-60/Raf loss of function mutations (Gleason et al., 2002). 

This indicates that Wnt and RTK/Ras pathway may play redundant roles in regulating 1̊ 

and 2̊ vulva fate.  

Wnt signaling and cell migration 

In the hermaphrodites, the Q neuroblast gives rise to two descendants, QL and 

QR. The migratory neuroblasts (QL on the left and QR on the right) initially have 

similar anterior-posterior positions. Each of the neuroblasts gives rise to three neurons 

and two cells that undergo apoptosis (Sulston and White, 1980). However, the migration 

direction of the mother cell and their daughters are distinct between the QL and QR 

lineage. The QL cell and its descendants migrate posteriorly towards the tail. The QR 

lineage migrates anteriorly, towards the head. The difference in migration is specified by 

the differential activation of mab-5 expression in the QL cell. In mab-5 (lf) mutants, both 
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QL and QR cells migrate anteriorly (Chalfie et al., 1981; Kenyon, 1986). The activation 

of mab-5 in the QL lineage is mediated by a canonical Wnt pathway, which involves 

BAR-1/β-catenin being relieved from the degradation by the APC destruction complex, 

and positively regulating the transcriptional activity of POP-1/TCF.  

The migration of Q lineage cells are in response to EGL-20/Wnt (Whangbo and 

Kenyon, 1999). Egl-20 has been shown to activate mab-5 expression in the QL cell, 

which is required for either maintain stationary or migrate posteriorly. Altering the 

expression domain of egl-20 from tail to head did not switch the migration pattern of QL 

and QR. Instead, the QL and QR cells displayed doseage-dependent response to EGL-

20, in which the lower level of EGL-20 promotes anterior migration, and higher levels of 

EGL-20 promotes posterior migration.   

Different β-catenin proteins have different functions in C. elegans 

C. elegans has three β-catenin homologs, including bar-1, wrm-1 and hmp-2. The 

three β-catenin proteins have different functions in C. elegans. BAR-1 and WRM-1 

function downstream of the Wnt signaling. However, only BAR-1 interacts with POP-

1/TCF to function in a canonical Wnt pathway (Korswagen et al., 2000). WRM-1 binds 

to the NLK/TAK complex to inhibit POP-1 transcriptional activity, and therefore 

functions in a non-canonical pathway (Rocheleau et al., 1999; Shin et al., 1999). HMP-2 

is localized to the adherens junctions and interacts with HMR-1/cadherin and HMP-1/α-

catenin (Korswagen et al., 2000). Therefore, it functions to consolidate the actin 

cytoskeleton. 
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The non-canonical Wnt pathway in C. elegans 

The EMS cell division is regulated by MOM-2/Wnt pathway. The MOM-2/Wnt 

pathway promotes E cell fate in one of the daughter cell, the other daughter cell will not 

be affected by the pathway and becomes MS cell. If any of the pathway components are 

mutated, the two daughter cells will all become MS cell. However, different from the 

canonical Wnt pathway discovered from flies and vertebrates, mutating the POP-1/TCF 

has the opposite effect to mutating WRM-1/β-catenin, indicating WRM-1/β-catenin is 

inhibiting POP-1/TCF activity (Lin et al., 1998; Lin et al., 1995). Another difference is 

that SGG-1/GSK3β and APC-related protein APR-1 promotes the WRM-1/β-catenin 

function (Rocheleau et al., 1997; Schlesinger et al., 1999). The inhibition of POP-1/TCF 

activity is achieved by the collaboration of MOM-2/Wnt pathway with a parallel MAPK 

pathway. The MAPK pathway activates MOM-4/TAK1 and LIT-1/NLK, which activate 

and form complex with WRM-1/β-catenin to phosphorylate POP-1 and inhibit its 

activity (Rocheleau et al., 1999; Shin et al., 1999). The vertebrate homologs for NLK 

and TAK may have similar functions, to phosphorylate and inhibit the binding of β-

catenin/TCF-4 complex to DNA (Ishitani et al., 1999). 

Sex determination and sexual dimorphism 

C. elegans serves as a good model system to study muscle remodeling, not only 

because of the conservation of the Wnt signaling pathway, but also because of the well-

controlled muscle remodeling process. In C. elegans, some of the muscle cells are 

developmentally-remodeled in the males. In those cells, muscle remodeling is under the 

control of specific developmental programs, and therefore rarely proceeds beyond limit. 
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Among those developmental programs, the sex determination mechanisms act in higher 

hierarchy to activate the muscle remodeling pathways. This is because the muscle cells 

are remodeled in a sex-specific manner.      

The developmental mechanisms that transform genotypic sex into sexual 

dimorphic structures vary between species. In some species, the sex determination 

mechanism induces sex differential hormone signaling, which in turn exert effects on the 

morphogenesis of sex specific structures. In mammals, the Sry gene is expressed from 

the Y chromosome. The SRY protein induces testis development (Koopman et al., 1991) 

and the testicular hormones promote the masculinization of the embryo (Can et al., 1998; 

Eddy et al., 1996; Imbeaud et al., 1996). In other species, a hierarchy of sex 

determination molecules acts in conjunction with hormone signaling to contribute to the 

sexual dimorphic development. How the sex determination signal is transformed into 

cellular events to promote sexually dimorphic development has been studied thoroughly 

in C. elegans. In C. elegans, the activities of the sex determination proteins are sex-

regulated (de Bono et al., 1995; Hodgkin, 1987; Hodgkin, 1988). The activity level of 

those proteins triggers sex differential cellular events, which lead to the morphogenesis 

of sex-specific structures. 

C. elegans naturally exists as either a hermaphrodite or a male, which are 

morphologically and behaviorally different. The sexual dimorphism can arise from cells 

that are derived from sex-specific cell divisions, migration, differentiation, and apoptosis 

events. It also arises from sex common cells, which superficially look similar between 

the two sexes, but display different functional properties (Lee and Portman, 2007; 
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Mowrey et al., 2014; Reiner and Thomas, 1995; White and Jorgensen, 2012; White et 

al., 2007). 

The initial sex determination signal comes from the sex chromosome/autosome 

ratio (X:A), with X:A=0.5 determining the male fate, and X:A=1 determining the female 

fate. Depending on the chromosome/autosome ratio, a cascade of sex determination 

proteins differentially interacts with each other to regulate the activity of the terminal 

regulator, TRA-1 (de Bono et al., 1995; Hodgkin, 1987; Hodgkin, 1988). In the 

hermaphrodites, TRA-1 is active, whereas in the male, the TRA-1 activity is suppressed 

by the upstream male sex determination pathway proteins. TRA-1 functions as a 

transcription factor that enters the nucleus to promote hermaphrodite development and 

repress male development (Hodgkin, 1987; Hunter and Wood, 1990). 

TRA-1 mediates sexual dimorphism through the activation or repression of 

critical regulators for cell metabolism, migration, or proliferation events. One of TRA-

1’s functions is to differentially activate the programmed apoptosis regulators in the 

males or the hermaphrodites. For example, the HSN neurons are egg-laying promoting 

neurons that exist only in the hermaphrodites. They are generated during embryonic 

development in both sexes, but die in the male (Sulston and Horvitz, 1977; Sulston et al., 

1983). The female sex determination mechanism prevents apoptosis in the 

hermaphrodite HSNs by repressing the cell death activator gene, egl-1 (Conradt and 

Horvitz, 1999). In contrast, to trigger the programmed cell death of the male specific 

CEM neurons in the hermaphrodites, TRA-1 functions to suppress the apoptosis 

inhibitor CEH-30 (Peden et al., 2007; Schwartz and Horvitz, 2007). 
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Cell fusion and migration can also be regulated differentially to promote sexually 

dimorphic development. This occurs in the development of the dimorphic tail. Before 

the L4 larval stage, both the hermaphrodites and males possess a tapered tail. However, 

during L4 development, the male tail tip cells fuse and migrate anterior-dorsally 

(Nguyen et al., 1999). As a result, the adult male tail has a blunt-ended shape. The DM 

protein, dmd-3, functions in the male tail to promote tail tip cell fusion and migration. 

The female sex determination pathway blocks the process by repressing the DMD-3 

activity in the hermaphrodite tail. Transforming the female sex determination pathway 

into a male one will trigger tail tip retraction in the XX pseudomales (Mason et al., 

2008). Therefore, the sex determination pathway plays an essential role in switching the 

tail remodeling program to be on in males and off in hermaphrodites.  

Sexual dimorphic structures are more commonly generated by differential cell 

specification, followed by division, migration and differentiation. The B, F, U, Y and M 

cells display male-specific cell lineages, which give rise to the copulatory structures in 

the male tail. In both sexes, the B cell is born as a single cell in the tail region (Sulston et 

al., 1980a). During the L1 stage, the male B cell undergoes an asymmetrical cell division 

(Sulston et al., 1980a) and in later larval stages ultimately produces the spicules, spicule 

associated neurons, proctodeum and post cloacal sensillia neurons (Sulston et al., 

1980a). In the hermaphrodites, the B cell remains as a single cell. The detailed 

mechanisms that promote the male B cell to enter the cell cycle and undergo 

differentiation has not been determined. In contrast, the M cell descendants undergo 

distinct cell divisions and migration in the two sexes, to produce the different 
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reproductive muscles. In the hermaphrodite, the M. vlpaa and M. vrpaa descendants of 

the M cell migrate to the vulva region and divide to give rise to the uterine and vulva 

muscles (Sulston and Horvitz, 1977). Whereas in the male, M.dlpaa, M. dlpap, M. drpaa, 

M. drpap, in addition to M. vlpaa and M. vrpaa, migrate to the tail region to produce the 

male-specific sex muscles (Sulston et al., 1980a).  

Finally, gender common neurons and muscles can alter their morphology and/or 

function during the last stage of larval development to produce sexually distinctive cells 

in the adults. The alterations can be subtle, so that no obvious anatomical difference can 

be detected. For example, the modulation of the neural and muscular locomotion circuit 

activity contributes to the difference in locomotion behavior between the males and the 

hermaphrodites (Mowrey et al., 2014). Similarly, the functional difference in sensory 

neurons leads to the sexually distinctive olfactory and gustatory preference behaviors 

(Lee and Portman, 2007; White and Jorgensen, 2012; White et al., 2007). In contrast, the 

alterations can also be radical, so that the adult cells display a distinct morphology, as-

well-as function. The male sphincter muscle and the anal depressor muscle follow this 

developmental path to generate the two sexually dimorphic muscle cells. 

Dissertation objectives: 

The main objective of this dissertation is to identify the sex determination 

mechanisms that govern the sexually dimorphic development of the anal depressor, and 

the signaling network that regulates the sarcomere disassembly process in the male.  

Chapter II describes in detail the experimental procedures used to elucidate this 

dissertation objective. In this study, I used genetics, confocal imaging, laser ablation, 
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transgene manipulation, and calcium imaging to identify the signaling components that 

control the anal depressor development. 

In Chapter III, I determined that both endogenous sex determination pathway and 

exogenous inductive signaling are involved in the sexually differential growth of the 

anal depressor. By illuminating the sarcomere structure of the muscle cell, I found that 

the male anal depressor undergoes dramatic changes during L4 development. Through 

feminization and masculinization assay, I found that early anterior growth of the anal 

depressor is controlled by the cell-autonomous sex determination pathway. However, the 

migration of the anterior domain and the sarcomere disassembly process are controlled 

by signaling derived from the sex muscles. The conclusion is supported by the M cell-

ablation assay and analysis of mab-5 mutants. Additionally, the morphological change of 

the male anal depressor is accompanied by functional transition. Laser ablation of the 

anal depressor does not affect defecation behavior after L4 development, indicating it 

does not function as a defecation muscle after being reorganized. 

In Chapter IV, I described in detail the identification of genes and potential 

signaling pathways that regulate the sarcomere disassembly process in the male anal 

depressor. Analysis of the Wnt mutant phenotype and their expression pattern suggest 

that the Wnt-canonical signaling functions in the anal depressor to regulate sarcomere 

disassembly. Through EMS mutagenesis and mutant screening, I isolated a mutation that 

confers similar sarcomere disassembly defects. By SNP mapping and genome 

sequencing, I mapped the mutation to egl-8/PLC-β. Mutant analysis of itr-1 and unc-68 

suggest that Wnt-calcium pathway also promote the disassembly of the sarcomere. 
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Calcium imaging and monitoring β-catenin levels in the anal depressor indicate that the 

Wnt-β-catenin signaling functions during earlier developmental stage, whereas the Wnt-

calcium signaling is activated during L4 development to directly regulate sarcomere 

disassembly. 

In Chapter V, I identified that lin-44 and lin-17 mutants have anal depressor 

asymmetry phenotype. This suggests that Wnt signaling is required for symmetrical 

development of the anal depressor in both the hermaphrodite and the male.  
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CHAPTER II 

EXPERIMENTAL PROCEDURES
*

Strains 

C. elegans strains were cultured at 20°C and manipulated following standard 

protocols (Brenner, 1974). All strains contained him-5(e1490) on LG V (Hodgkin et al., 

1979). I also used the following alleles in this study: mab-5(e2088) on LG III (Kenyon, 

1986); pha-1(e2123) on LGIII (Schnabel and Schnabel, 1990); lite-1(ce314) on LG X 

(Edwards et al., 2008); egl-20 (n585) on LG IV; lin-44 (n1792) on LG I; cwn-1(ok546) 

on LG II; lin-17(e620) on LG I; mig-1(e1787) on LG I; bar-1(ga80) on LG X; hmp-

2(qm39) on LG I; egl-8 (n488) on LG V; goa-1(n1134) on LG I; gpa-16(it143) on LG I; 

gpa-14(pk347) on LG I; rrf-3(pk1426) on LG II; unc-68(r1158) on LG V; pkc-2(ok328) 

on LG X; tax-6(ok2065)on LG IV; cnb-1(jh103) on LG V; clp-6(ok1779) on LG IV; 

egl-19(n582) on LG IV; exp-1(ox276) on LG II. 

The rg441 allele described in this study was isolated from an EMS screen that 

selected for males that have anal depressor sarcomere disassembly defects. The strain 

CG912, which carries the integrated transgene rgIs3 [Plev-11:Dsred; Plev-11:G-CaMP] 

was mutagenized to generate mutant lines. The rg441 strain was identified and 

outcrossed three times to eliminate background mutations. Whole genome sequencing 

* Portions of this chapter are reprinted from Chen, X. and Rene Garcia, L. (2015) Developmental 

alterations of the C. elegans male anal depressor morphology and function require sex-specific cell 

autonomous and cell non-autonomous interactions. Developmental Biology 398, 24-43. 
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was conducted by BGI Americas Corporation and the rg441 allele was found to be 

located within egl-8 locus on LG V. The rg441 mutation changed the wild type sequence 

CTTGACCAAT to the mutant sequence CTTGACTAAT (Gln to Ochre). 

Plasmids construction 

Plasmid for anal depressor visualization  

To drive the expression of fluorescent proteins in the anal depressor, I used the 

transgenic array rgEx430 [Plev-11: G-CaMP; Plev-11: mDsRed] (Guo et al., 2012). To 

maintain a stable transgene expression level, rgEx430 [Plev-11: G-CaMP; Plev-11: 

mDsRed] was integrated into the strain CG912 using a UV irradiation-based method 

(Mello et al., 1991). The pha-1(e2123) and lite-1(ce314) mutations contained within 

CG912 were eliminated by outcrossing with him-5(e1490) males before integration. The 

integrated line was outcrossed 5 times to reduce background mutations. 

To visualize the actin filaments, I fused the YFP coding sequence to the N 

terminus of the actin genomic sequence (Guo et al., 2012). To generate pXG31, pXG30 

(the gateway ccdB cassette: YFP::actin) was recombined with pLR21 (Reiner et al., 

2006), which contains the unc-103E promoter. pXG31 was injected at 50 ng/µL together 

with 150 ng/µL of pUC18 into him-5(e1490) hermaphrodites to make the transgene 

rgEx497 [Punc-103E: YFP::actin] (Guo et al., 2012). 

To drive the YFP::actin expression using the exp-1 promoter, I PCR-amplified 

the 3.6 kb exp-1 sequence upstream of the ATG (Beg and Jorgensen, 2003). The primer 

pair used to amplify the exp-1 promoter was: 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTATTCTGGTCGATGCTGTGCTTGC
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CCATGGCT -3’ and 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTCACGGAGCGGAGGACGATTTTG

GAGATTAAC -3’.The primer pair contains Invitrogen Gateway ATTB sites.  

To generate the entry vector pXC15, I recombined the exp-1 promoter sequence 

into the ATTP-containing donor vector pDG15 (Reiner et al., 2006) using BP clonase 

(Invitrogen, Carlsbad, CA). pXC15 was then recombined with the destination vector 

pXG30 using LR clonase (Invitrogen) to generate pXC8. pXC8 was injected at 50 

ng/µL, together with pBX1 (100 ng/µL) and pUC18 (50ng/µL) into pha-1(e2123); him-

5(e1490); lite-1(ce314) adult hermaphrodites.  

tra-2 feminizing plasmid construction 

The pEntry 1-2-tra-2(IC) (Mowrey et al., 2014), which contains the 1084 bp of 

the tra-2 intracellular fragment coding sequence, was a gift from Kelli Fagan and Dr. 

Douglas Portman from the University of Rochester, New York.  

The tra-2 intracellular fragment was PCR-amplified from pEntry 1-2-tra-2-(IC) 

using the primer pair: 

5’-

GAGGATCTCGCCACCATGGAATTCTCAATCAAACGATCATCTCCTCCCTGCC

G -3’  

and 5’-

GCCAATCCCGGCCGCTTAAACCTCTGGGTCTGATAGGTCGCCTTCCCGT -3’.  

These two primers contain homology to the sequences that flank the G-CaMP3 in 

pLR279 (the gateway ccdB cassette: G-CaMP3::SL2:::DsRed) (Correa et al., 2012).  
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The primer pair: 5’- 

GACCCAGAGGTTTAAGCGGCCGGGATTGGCCAAAGG -3’ and 5’- 

GATTGAGAATTCCATGGTGGCGAGATCCTCTAGATCAACC -3’ was used to 

linearize and remove the G-CaMP coding sequence in pLR279. The two primers contain 

homology to the 5’ and 3’ sequence of the tra-2-(IC) sequence, respectively. The tra-2-

(IC) fragment was ligated into the SL2:DsRed plasmid backbone using the In-Fusion 

Dry-Down PCR Cloning Kit (Clontech, Mountain View, CA) to make pXC14 ( the 

gateway ccdB cassette: tra-2 (IC)::SL2:::DsRed). Using LR clonase, pXC14 was 

recombined with pXC15 to generate pXC16. To visualize both the cytoplasm and the 

sarcomere structure of the feminized anal depressor, pXC16 (50 ng/µL) was co-injected 

with pXG31 (40 ng/µL), pBX1 (100 ng/µL) and pUC18 (10 ng/µL) into pha-1(e2123); 

him-5(e1490); lite-1(ce314) adult hermaphrodites.  

fem-3 masculinizing plasmid construction 

The pEntry 1-2 fem-(+) SL2 mCherry (Mowrey et al., 2014), which contains the 

1165 bp of the fem-3 cDNA sequence, was a gift from Kelli Fagan and Dr. Douglas 

Portman from the University of Rochester, New York. The fem-3 cDNA sequence was 

PCR-amplified from pEntry 1-2-fem-3 SL2 mCherry using the primer pair 

5’-GAGGATCTCGCCACCATGGAGGTGGATCCGGGTTCAGATGATGTAGAAGC 

-3’ and 5’- 

GCCAATCCCGGCCGCATCGTTTCCTGGAGCAATCAGTAGCATAAACATTCAT

AATCCGAA -3’. These two primers contain homology to the sequences that flank the 

G-CaMP3 coding sequence in pLR279. The primer pair  
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5’-GCTCCAGGAAACGATGCGGCCGGGATTGGCCAAAGG -3’ and 5’- 

CGGATCCACCTCCATGGTGGCGAGATCCTCTAGATCAACC -3’ was used to 

linearize pLR279 and remove the G-CaMP coding sequence. The two primers contain 

homology to the 5’ and 3’ sequence of the fem-3 cDNA sequence, respectively. The fem-

3 cDNA was ligated into the SL2:DsRed plasmid backbone using the In-Fusion Dry-

Down PCR Cloning Kit to make pXC26 ( the gateway ccdB cassette:fem-3 

cDNA::SL2:::DsRed). Using LR clonase, pXC26 was recombined with pXC15 to 

generate pXC29. To visualize both the cytoplasm and the sarcomere structure of the 

masculinized anal depressor, pXC29 (50 ng/µL) was co-injected with pXG31 (40ng/µL), 

pBX1 (100 ng/µL) and pUC18 (10 ng/µL) into pha-1(e2123); him-5(e1490); lite-

1(ce314) adult hermaphrodites. 

Cloning the hlh-8 promoter 

~5.9 kb sequence upstream of the hlh-8 ATG was PCR-amplified using the pair 

5’- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCGCTCGAGGACTTTGAAAAT

CGCAA -3’ and 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTACTGTGAAAATCATATTTGAAAT

CGGTCAGT-3’. This promoter region contains cis-acting elements that drive 

expression in the M lineage and the coelomocytes, but not in the anal depressor or any 

other defecation-associated muscles (Harfe et al., 1998). The primer pair contains 

Invitrogen Gateway ATTB sites. I recombined the hlh-8 promoter sequence into the 
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ATTP-containing donor vector pDG15 (Reiner et al., 2006) using BP clonase to generate 

the entry vector pXC27. 

mab-5 rescuing plasmid construction  

 The 376 bp mab-5 cDNA sequence containing the 3
rd

 to 5
th

 exons was PCR 

amplified from the genomic DNA of the strain CF301 mab-5(e2088); unc-31(e169); 

him-5(e1490); muIs9[hs-mab-5 +C14G10(unc-31
+
)] (Salser et al., 1993). The primer 

pair used was: 5’-

GAGGATCTCGCCACCATTCGCCTATAACCCACTTCAAGCAACATCTGC-3’ and 

5’-

GCCAATCCCGGCCGCTCAAGAAGAATGTTGTTCATTTTGCTCATCTTGATTTG

ATTCT-3’. These two primers contain homology to the sequences that flank the G-

CaMP3 coding sequence in pLR279 (Correa et al., 2012). The primer pair 5’-

CAACATTCTTCTTGA GCGGCCGGGATTGGCCAAAGG-3’ and 5’-

GGGTTATAGGCGAATGGTGGCGAGATCCTCTAGATCAACC-3’ was used to 

linearize pLR279 and remove the G-CaMP coding sequence. The two primers contain 

homology to the 5’ and 3’ sequence of the mab-5 cDNA sequence (3
rd

 to 5
th

 exons), 

respectively. The mab-5 cDNA sequence (3
rd

 to 5
th

 exons) was ligated into the 

SL2:DsRed plasmid backbone using the In-Fusion Dry-Down PCR Cloning Kit to make 

pXC25 [the gateway ccdB cassette:mab-5 cDNA (3
rd

 to 5
th

 exons)::SL2:::DsRed]. 

The 496 bp mab-5 genomic sequence ranging from the 1
st
 exon to the 2

nd
 exon 

(including the 1
st
 intron) was PCR-amplified from the genomic DNA of him-5(e1490) 

strain. I used the primer pair 5’-
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GAGGATCTCGCCACCATGAGCATGTATCCTGGATGGACAGGCGAC-3’ and 5’-

GGGTTATAGGCGAATGGATTTGATGAATTATCCATCCAACCGGCAGC-3’. 

These two primers contain homology to the pXC25 sequence flanking the mab-5 cDNA 

sequence (3
rd

 to 5
th

 exons). pXC25 was linearized using the primer pair 5’-

TAATTCATCAAATCCATTCGCCTATAACCCACTTCAAGCAACATC-3’ and 5’-

AGGATACATGCTCATGGTGGCGAGATCCTCTAGATCAACC-3’. The two primers 

contain homology to the 5’ and 3’ sequence of mab-5 genomic sequence (1
st
 to 2

nd
 

exon). The mab-5 genomic sequence (1
st
 to 2

nd
 exon) was ligated into the pXC25 using 

the In-Fusion Dry-Down PCR Cloning Kit to make pXC28 [the gateway ccdB 

cassette:mab-5 genomic sequence (1
st
 to 2

nd
 exon) + mab-5 cDNA (3

rd
 to 5

th
 

exons)::SL2:::DsRed]. Using LR clonase, pXC28 was recombined with pXC27 or 

pXC15 to generate pXC32 and pXC31, respectively. To visualize the anal depressor’s 

sarcomere structure, pXC32 (70 ng/µL) or pXC31 (70 ng/µL) was co-injected with 

pXG31 (30 ng/µL) and pUC18 (100 ng/µL) into mab-5 (e2088)/+; him-5 (e1490) adult 

hermaphrodites. The F1 hermaphrodites that were mab-5 (e2088) homozygous and 

stably transmitted the transgene were kept. 

Constructs for masculinization of the M lineage in the hermaphrodites 

Using LR clonase, pXC26 was recombined with pXC27 to generate pXC30. To 

visualize the sarcomere structure of the anal depressor, pXC30 (70ng/µL) was co-

injected with pXG31 (20ng/µL), pBX1 (100 ng/µL) and pUC18 (10ng/µL) into pha-1 

(e2123); him-5 (e1490); lite-1 (ce314) adult hermaphrodites.  
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Plasmid to examine the expression pattern of Wnt, Frizzled, β-catenin and 

Phospholipase C  

The 7kb promoter region (Whangbo and Kenyon, 1999) of egl-20 was cloned 

using the primers: 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCTGTAATTGAATGAAAATTG

CTTAATGAA-3’ and 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCTTTGCACTTATTTTCAGCCTG

GCATTGGC-3’. The primer set contains ATTB site, therefore the promoter region was 

recombined using BP clonase, into pDG15 to generate pXC33. To make pXC35 [Pegl-

20:Timer], pXC33 was recombined with pLR186 (a plasmid containing gateway 

destination ATTR cassette in front of pTimer) using LR clonase.  

The 2.7kb promoter region of lin-44 was cloned using the primers: 5’- 

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCGTCGGATGGTCATATGCATG

TCTTTCCGG-3’ and 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTAGCTGTGTCACCTCGAAAAGTG

CGTTTCTT-3’. And the 6.5 kb promoter region of lin-17 was cloned using the primer 

set: 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCAACCACCAGTTGATCTTGGA

GAGGGAAAG-3’ and 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTATTTGGAGAAGGAGCCAGTCTC

TCGAGGAGC-3’. Both primer sets have ATTB sites, and therefore the promoters of 

lin-44 and lin-17 were recombined into pDG15, using the BP clonase, to generate 
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pXC108 and pXC11, respectively. pXC108 and pXC11 were recombined with 

pGW322YFP (plasmid containing the gateway destination ATTR cassette in front of 

YFP), to make pXC110 [Plin-44:YFP] and pXC12 [Plin-17:YFP], respectively.  

To examine the expression pattern of lin-44, pXC110 (50 ng/µL) was co-injected 

with pBX1 (50 ng/µL), and pUC18 (100 ng/µL) into pha-1 (e2123); him-5 (e1490); lite-

1 (ce314) adult hermaphrodites.   

To examine the expression pattern of lin-17, pXC12 (50 ng/µL) was co-injected 

with pBX1 (50 ng/µL), and pUC18 (100 ng/µL) into pha-1 (e2123); him-5 (e1490); lite-

1 (ce314) adult hermaphrodites.   

The 6.3 kb promoter region of bar-1 was cloned using the primer set: 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAACGCTAAACCCAAATCATCG

TTAAAACAT-3’ and 5’- 

GGGGACCACTTTGTACAAGAAAGCTGGGTACCCAGTTTTCTGAAAAAAAAA

GCCAAATA -3’. The primer set contains the ATTB site, therefore the promoter region 

was recombined using BP clonase, into pDG15 to generate pXC67. pXC67 was 

recombined with pGW322YFP to make pXC70 [Pbar-1:YFP]. The genomic sequence of 

bar-1 from ATG to the 761 codon was PCR amplified using the primer set: 5’-

TTTCAGAAAACTGGGATGGACCTGGATCCGAACCTAGTTATTAACCATGA-3’ 

and 5’- 

TTCTCCTTTACTCATATCCAAGTACGTCTCGGGAGGTCCAATTGAGTATT-3’. 

The primers contain homology to the 3’ end of bar-1 promoter region and 5’ end of YFP. 

pXC70 [Pbar-1:YFP] was linearized using primes: 5’-



33 

 

GAGACGTACTTGGATATGAGTAAAGGAGAAGAACTTTTCACTGGAGTTG-3’ 

and 5’-

CGGATCCAGGTCCATCCCAGTTTTCTGAAAAAAAAAGCCAAATATTTTTTTA

TGAAT-3’. The primer set contains homology to the 3’ end and 5’ end of cloned bar-1 

genomic sequence, respectively. The bar-1 genomic region was infused with the 

linearized vector pXC70 [Pbar-1:YFP] using the In-Fusion Dry-Down PCR Cloning Kit 

to make pXC87 [Pbar-1: BAR-1::YFP].  

pXC67[Pbar-1 in pDG15] was also recombined with pGW77C (plasmid 

containing gateway ATTR site in front of CFP) to make pXC93[Pbar-1:CFP].  

To examine the expression pattern of bar-1, pXC87 (40 ng/µL) was co-injected 

with pXC93 (30 ng/µL), pBX1 (50 ng/µL), and pUC18 (80 ng/µL) into pha-1 (e2123); 

him-5 (e1490); lite-1 (ce314) adult hermaphrodites.    

The 3.0 kb promoter region of egl-8 was PCR amplified using the primer set: 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCTTGACCAAAACCACGAGTTG

CAGGCTA-3’ and 5’-

GGGGACCACTTTGTACAAGAAAGCTGGGTACTCTTCTTGCCGGTTACCAGGA

AAA-3’. The primer set contains ATTB site, therefore was recombined into pDG15 

using BP clonase, to make pXC36. pXC36 was recombined with pGW322YFP using LR 

clonase, to make pXC39 [Pegl-8:YFP].  

To examine the expression pattern of egl-8, pXC39 (50 ng/µL) was co-injected 

with pBX1 (50 ng/µL), and pUC18 (100 ng/µL) into pha-1 (e2123); him-5 (e1490); lite-

1 (ce314) adult hermaphrodites. 
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Plasmids for rescuing EGL-20 in egl-20(n585) mutants in time-specific or tissue-

specific manner 

2.3 kb of egl-20 genomic sequence from ATG till last stop codon was PCR 

amplified using the primer set: 5’-GAGGATCTCGCCACC 

ATGCAATTTTTCATTTGCCTGATTTTTCTATTTGTTCTCCTCG-3’ and 5’-

GCCAATCCCGGCCGCTTATTTGCATGTATGTACTGCAACTTCTTCGGTACAAG 

-3’. These two primers contain homology to the sequences that flank the G-CaMP3 

coding sequence in pLR279. The primer pair 5’-

CAACATTCTTCTTGAGCGGCCGGGATTGGCCAAAGG-3’ and 5’-

GGGTTATAGGCGAATGGTGGCGAGATCCTCTAGATCAACC-3’ was used to 

linearize pLR279 and remove the G-CaMP coding sequence. The two primers contain 

homology to the 3’ and 5’ sequence of the egl-20 genomic sequence, respectively. The 

egl-20 genomic sequence was ligated into the SL2:DsRed plasmid backbone using the 

In-Fusion Dry-Down PCR Cloning Kit to make pXC99 [the gateway ccdB cassette:egl-

20::SL2:::DsRed].    

pXC33 [Pegl-20 in pDG15], pBL172 [heat shock promoter in pDG15] and 

pBL348 [aex-2 promoter recombined with pDG15] was recombined with pXC99 using 

LR clonase to make pXC100 [Pegl-20:egl-20::SL2:::DsRed], pXC101 [hsp-16: egl-

20::SL2:::DsRed], and pXC106 [Paex-2: egl-20::SL2:::DsRed], respectively.  

To test the functionality of EGL-20 expressed from the transgene, pXC100 (50 

ng/µL) was co-injected with pXC23 (50 ng/µL), pBX1 (50 ng/µL) and pUC18 (50 

ng/µL) into egl-20(n585); him-5(e1490) adult hermaphrodites.  
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To test the timing of EGL-20 function, pXC101 (20 ng/µL) was co-injected with 

pXC8 (30 ng/µL), pBX1 (50 ng/µL), and pUC18 (100 ng/µL) into egl-20(n585); pha-

1(e2123); him-5(e1490) adult hermaphrodites. 

To test the site of action of EGL-20, pXC106 (50 ng/µL) was co-injected with 

pXC23 [Punc-103E:YFP::actin(only exons)] (30 ng/µL), pBX1 (50 ng/µL), and pUC18 

(70 ng/µL) into egl-20(n585); pha-1(e2123); him-5(e1490) adult hermaphrodites. 

rg441 rescue constructs 

To amplify the genomic sequence of egl-8, I first cloned the genomic region 

from the 6
th

 to the 11
th

 exons using primer pair: 5’-

GGGGACAAGTTTGTACAAAAAAGCAGGCTCAATGTGCACAGACGTGTTCTTC

AAGGTGGG-3’, 5’-

GGGGACCACTTGTACAAGAAAGCTGGGTACCCACACCTTACGGGTTGCAGC

CGAAAC. The primer pair contains ATTB sites, therefore can be recombined into 

pDG15 using BP clonase, to make pXC66. I also cloned the genomic region from the 

promoter region to the 6
th

 exon using primer pair: 

GGAATATATCCTGTACCGCCTCCCACTTAAATTGGCGGCTCTTT, 

CACGTCTGTGCACATGGCCTTTCCGTGAGTGATAATGGGTTCTC; the primer 

pair contains homology to the 3’ end of the 6th exons. I linearized pXC66 using primers: 

5’-

ACTCACGGAAAGGCCATGTGCACAGACGTGTTCTTCAAGGTGGGTATTTTGA

ACT-3’, 5’-

TTAAGTGGGAGGCGGTACAGGATATATTCCGCTTCCTCGCTCACTGACTCGC
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T-3’. The PCR product of the promoter region to the 6
th

 exons sequence was ligated into 

pXC66 using In-Fusion Dry-Down PCR Cloning Kit to make pXC71 (egl-8 genomic 

sequence from promoter region to the 11
th

 exons).  

To amplify the egl-8 genomic region from 12
th

 exon to the 16
th

 exon, I used the 

primer pair: 5’-

GGCCCCAAATAATGACTACTTTGTGGTACAAGTTAGAGCGAGCTATCCAGGG

GAGC-3’, 5’-

GAAGTTGTCCATATTCCTATCATTATTGACCAAATCTTGTGGCACTGGACTTC

CAAT-3’. The primer pair contains ATTB sites, therefore can be recombined into 

pDG15 using BP clonase, to make pXC53. I also cloned the genomic region from 17
th

 

exon to the genomic requence that is 3.6 kb downstream of egl-8 using the primer: 5’-

GTCAATAATGATAGGGTCCGATCTCTCGTGAACACTCAAACCGGAGAATGGT

C, 5’- 

GAAGTTGTCCATATTTAAAGACAACCCACCAGCAGGCGCCAAGTTGTGTCT -

3’. The primers contain homology to the 3’ end of the 16
th

 exon. pXC53 was linearized 

using primers: 5’- 

GGTGGGTTGTCTTTAAATATGGACAACTTCTTCGCCCCCGTTTTCACCATGGG

CAAATA -3’, 5’-

CACGAGAGATCGGACCCTATCATTATTGACCAAATCTTGTGGCACTGGACTT

CCAAT-3’. The PCR product of the 17
th

 exon to the downstream sequence was ligated 

into pXC53 using In-Fusion Dry-Down PCR Cloning Kit to make pXC54 (egl-8 
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genomic sequence from 12
th

 exons till the 3.6 kb sequence downstream of egl-8 in 

pDG15).  

The exon sequences contained in pXC54 and pXC71 were sequenced. The 

insertion mutation contained within pXC54 was corrected by single site mutagenesis to 

make pXC78 (egl-8 genomic sequence from 12
th

 exons till the 3.6 kb sequence 

downstream of egl-8 in pDG15 with mutation corrected).  

The egl-8 genomic sequence from the promoter region till the 11
th

 exon was 

linearized from pXC71 using primers: 5’-

CCGCCTCCCACTTAAATTGGCGGCTCTTT-3’, 5’-

CCCACACCTTACGGGTTGCAGCCGAAAC-3’. 

The egl-8 genomic sequence from the 12
th

 exons till the 3.6 kb sequence 

downstream of egl-8 was linearized from pXC78 using primers: 5’- 

CTACTTTGTGGTACAAGTTAGAGCGAGCTATCCAGGGGAGC-3’; 5’- 

TAAAGACAACCCACCAGCAGGCGCCAAGTTGTGTCT-3’.  

The intron region between the 11
th

 and 12
th

 exons was PCR amplified using 

primers: 5’-CAGGTTGCTTGAAACGATGGAATGCGATATTTTCT-3’; 5’- 

CTGCCCACCCTTGGTTCATAGTACTCACTAGTC-3’.  

The three PCR products of egl-8 genomic sequence were injected at 32.5 ng/µL 

(promoter region till 11
th

 exon), 16.3 ng/µL (intron between 11
th

 and 12
th

 exon), 27.5 

ng/µL (12
th

 exon till downstream) together with pLR132 [Plev-11:DsRed] (20 ng/µL) 

and pUC18 (103 ng/µL) into rg441 adult hermaphrodites. The injection concentration of 

the three PCR products was calculated so that their molecular ratio is close to 1:1:1. 
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Generate transgenic mutant lines 

Crosses were set up between him-5(e1490) males that carry the transgene rgEx497 

[Punc-103E: YFP::actin] males with mutant hermaphrodites to generate the following 

transgenic mutants lines: 

egl-20 (n585) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; lin-44 (n1792) him-

5(e1490) rgEx497 [Punc-103E: YFP::actin]; cwn-1(ok546) him-5(e1490) rgEx497 

[Punc-103E: YFP::actin]; lin-17(e620) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; 

mig-1(e1787) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; bar-1(ga80) him-

5(e1490) rgEx497 [Punc-103E: YFP::actin]; hmp-2(qm39) him-5(e1490) rgEx497 

[Punc-103E: YFP::actin]; egl-8 (rg441) him-5(e1490) rgEx497 [Punc-103E: 

YFP::actin]; egl-8 (n488) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; goa-

1(n1134) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; gpa-16(it143) him-5(e1490) 

rgEx497 [Punc-103E: YFP::actin]; gpa-14(pk347) him-5(e1490) rgEx497 [Punc-103E: 

YFP::actin]; unc-68(r1158) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; pkc-

2(ok328) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; tax-6(ok2065) him-5(e1490) 

rgEx497 [Punc-103E: YFP::actin]; cnb-1(jh103) him-5(e1490) rgEx497 [Punc-103E: 

YFP::actin]; clp-6(ok1779) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; egl-

19(n582) him-5(e1490) rgEx497 [Punc-103E: YFP::actin]; exp-1(ox276) him-5(e1490) 

rgEx497 [Punc-103E: YFP::actin]; rrf-3 (pk1426) him-5(e1490) rgEx497 [Punc-103E: 

YFP::actin]. 
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Imaging  

I identified the anal depressor morphology, related to a specific development age. 

The ages for the L1 to L3 hermaphrodites and males were determined by the length of 

the gonadal arm, and the position of the distal tip cells (hermaphrodite) or linker cell 

(male) (Antebi, 1997; Hedgecock et al., 1987). The ages for the L4 and adult 

hermaphrodites were determined by the developmental stage of the vulva (Sternberg and 

Horvitz, 1986). The ages for the L4 and adult males were determined by the position of 

tail tip cells (Nguyen et al., 1999; Sulston et al., 1980a). 

To facilitate imaging, the worms were mounted on agar pads made from a melted 

agar solution (Sulston and Horvitz, 1977). The agar solution was made by adding sterile 

water to Difco Noble agar. The concentration of the agar pads for larval males and 

hermaphrodites was 3%. To immobilize the worm, NaN3 was used and the 

concentrations were: 12 mM NaN3 for L1-L2 males and L1-L2 hermaphrodites, and 24 

mM NaN3 for L3-L4 males and L3-adult hermaphrodites. 8% agar pads with polystyrene 

beads were used for adult males (Kim et al., 2013). NaN3 was not used for the adult 

males, because it caused the adult males to protract their spicules. Cover slips were then 

put on the top of the worm. The worms were crushed so that they were lying on their 

lateral side. All the images were taken using an Olympus IX81 microscope (Olympus 

Corporation, Tokyo, Japan) fitted with a Yokogawa CSU-X1 Spinning Disk Unit (Andor 

Technology, CT, USA). The two outermost lateral sides of the worm tail were set up as 

the starting and ending z stack for optical sectioning. Series of confocal images were 

then collected from one lateral side of the worm tail to the other. For each animal, the 
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oblique images of the individual attachment (either the left or the right) of the anal 

depressor were overlaid together using the Corel Photo-Paint software (Version 

13.0.0.739, Corel Corporation, Ottawa, Canada) to create a flattened image. The 

flattened images were used for measurements and analyses. 

Measurement of the dorsal width of the anal depressor attachment  

Measurements were conducted using the HCImage software (version 2.0.0.0., 

Hamamatsu, Bridgewater, NJ). The extended focus image of the individual attachment 

was used for the measurements. An image of the staged micro-meter was taken at each 

magnification. The scale bar was then calibrated based on the known distance on the 

calibration image.  

3D reconstruction 

To construct the 3D image shown in Figure 1A, 400 confocal images were taken 

of a hermaphrodite anal depressor expressing the transgene rgEx497 [Punc-103E: 

YFP::actin], from one lateral side to the other side. The stack of images was processed 

using the MetaMorph software (version 7.8.0.0., Molecular Devices, Sunnyvale, CA) to 

establish a 3D model. The 3D model was rotated to be at the lateral-transverse angle. 

The image was processed and the background (non-specific expression from the tail 

neurons) was removed.  

To construct the 3D image shown in Figure 2J, 50 confocal images were taken of 

a male anal depressor expressing the transgene rgIs3 [Plev-11: G-CaMP; Plev-11: 

mDsRed]. A 3D model was then reconstructed using the MetaMorph software.  
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Measurement of the area of the anal depressor posterior domain 

Measurements were conducted using the MetaMorph software (version 7.8.0.0., 

Molecular Devices, Silicon Valley). For each animal, the oblique images of the left and 

right attachments of the anal depressor were overlaid together using the Corel Photo-

Paint software (Version 13.0.0.739, Corel Corporation, Ottawa, Canada) to create a 

flattened image. The flattened images were used for measurements. The anal depressor 

region that was occupied by myofilaments was outlined and the area of the region was 

calculated as the number of pixels contained within. The area of non-disassembled 

region of both attachments were added together to represent the data point for each 

individual worm.  

SNP mapping 

Hawaiian males were crossed into rg441 strain to produce F1 heterozygous 

hermaphrodites. The self-progeny of F1s were single picked. Among the F2s that give 

rise to a lot of males (indicating the genotype is homozygous for him-5(e1490)), none 

produced F3 males that are all wild type for rg441 phenotype. This indicates that the 

mutation responsible for rg441 phenotype is linked to him-5. From the F2 plates that are 

heterozygous for the rg441 (1/4 of the F3 males have defective anal depressor), F4 

hermaphrodites were single picked at L4 stage. Among the F4 plates picked, 16 plates 

were identified as homozygous for rg441, and 14 plates were identified as homozygous 

wild type. For each plate, worms were washed off and lysed to get the genomic DNA. 

Different SNP locus were PCR amplified and the identity was examined by restriction 

digestion (N2 allele or Hawaii allele) for the 16 rg441 lines and 14 wild type lines. All 
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16 rg441 lines have N2 allele and all 14 wild type lines have Hawaii allele for F36F12, 

which is located on the left end of chromosome V. This indicates the rg441 mutation 

was located within that interval.       

RNAi assay 

rrf-3(pk1426) him-5(e1490) L4 hermaphrodites which carry the transgene 

rgEx497 [Punc-103E: YFP::actin] were fed with bacteria producing double-stranded 

RNAs to target the ORF of lin-17, itr-1, lit-1, lin-18 and rho-1. Bacteria with the L4440 

(control) or double-T7 vector including exons of target genes were grown and induced 

by IPTG using a standard protocol (Kamath et al., 2001). Carbenicillin was used at the 

concentration of 10 mg/mL to increase the level of plasmid maintenance, and therefore 

the effectiveness of RNAi. Exons of genes that were cloned into the double-T7 vector 

are: 6
th

 to 8
th

 exons of lin-17; 14-19
th

 exons of itr-1; 5
th

-6
th

 exons of lit-1; 1
st
-4

th
 exons of 

lin-18; 1
st
-3

rd
 exons of rho-1. Males that display the corresponding mutant phenotype 

were picked for anal depressor imaging and defects detection.  

Calcium imaging 

Male at mid-L4 stage was put on agar pads which were made from 2.5% noble 

agar dissolved in S-basal solution. Abemectin was added to the agar solution to 

immobilize the worm. The final concentration is 0.25mg/mL. The G-CaMP and DsRed 

fluorescence signals at the male tail were recorded simultaneously using a Dual View 

Simultaneous Image splitter (Photometrics, AZ) and a Hamamatsu ImagEM Electron 

multiplier (EM) CCD camera, with the exposure time of 1 second. The worms were 

imaged using the 40X objective, and the imaging continued until the worm reached L4-
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molt stage. The Ca
2+

 data was analyzed using the Hamamatsu SimplePCI (version 

6.6.0.0) software and Microsoft Excel, as described previously (LeBoeuf et al., 2011). 

Monitoring BAR-1 levels in the anal depressor 

Images of the male tail were taken using an Olympus IX81 microscope 

(Olympus Corporation, Tokyo, Japan) fitted with a Yokogawa CSU-X1 Spinning Disk 

Unit (Andor Technology, CT, USA). Confocal images were then collected from one 

lateral side of the worm tail to the other as described in the imaging section. The images 

were taken sequentially at the excitation wavelength of 515nm for YFP and 445nm for 

CFP using fixed laser and camera settings. The data was analyzed using the Hamamatsu 

SimplePCI (version 6.6.0.0) software. Two ROIs outlining the anal depressor was drawn 

on the anal depressor itself (ROI 1), and the background (ROI 2). Total gray of the ROI 

was calculated for each stack. The total gray for all stacks were summed up for ROI 1 

and ROI 2. The total fluorescence within the anal depressor was calculated as Total Gray 

ROI 1 - Total Gray ROI 2. The total fluorescence of YFP was divided by the total 

fluorescence of CFP to represent the relative BAR-1 protein levels.     

Mating potency assay 

L4 males were isolated and picked to a NGM plate with E.coli the night before 

the mating potency assay. L4 pha-1 hermaphrodites were also isolated and grown at 20 

°C for one day before the mating potency assay. 10 μL of E. coli was spotted onto a 

NGM plate the night before the mating potency assay. On the next day, the mating 

potency assay was performed by picking one 1-day-old pha-1 hermaphrodite and one 1-

day-old male to a NGM plate (seeded with 10 ul of E. coli). Two to three days later, the 
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males whose mating potency plate contained cross-progenies were scored as sexually 

potent (Correa et al., 2012; Guo et al., 2012; Liu et al., 2011).   

Arecoline drug test 

To assay arecoline-induced spicule protraction, I dissolved acecoline (Acrose 

organics, NJ) in distilled water to make a stock solution of 1 mM. 1 mL of the drug was 

added to a nine-well Pyrex titer dish. Three to five males were transferred to the drug 

bath. Then for 5 minutes, the males were observed under a stereomicroscope for spicule 

protraction. Males that had >50% of their spicules out for longer than 10 seconds were 

scored as positive. Drug baths were changed after 20 males were observed (Liu et al., 

2007).  

Assessment of mating behaviors 

L4 males were isolated one day before the mating observation assay. The next 

day, I placed fifteen 2-day-old unc-64(e246) hermaphrodites on a 5-mm-diameter 

bacterial lawn for an hour. One 1-day-old male was then placed with the hermaphrodites. 

The male’s behavior was recorded for no longer than ~ 5 minutes, using an Olympus 

BX51 microscope mounted with a digital camera. In the recordings, multiple mating 

behavioral criteria were then analyzed for each male. The ESI (Efficiency of spicule 

insertion) was calculated as previously described (Correa et al., 2012; Guo et al., 2012; 

LeBoeuf et al., 2014; Liu et al., 2011).  

Laser ablation  

To eliminate the male copulatory structures, I conducted laser-ablation to damage 

their ancestor cells. To facilitate imaging of the anal depressor, the laser-ablation was 
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conducted on males that carried either rgIs3 [Plev-11: G-CaMP; Plev-11: mDsRed] (B.a 

and B.p cell ablation, F and U cell ablation, and SM 1, 2 and 3 ablation) or both rgIs3 

and rgEx497 [Punc-103E: YFP::actin] (M cell ablation) transgenic arrays. The B.a and 

B.p ablations and F and U ablations were conducted at the late L1 stage. The M cell was 

ablated at the L1 stage. The SM 1, 2 and 3 cells were ablated either on the left or right 

side at the late L2-early L3 stage. The cells were identified based on previous cell 

lineage descriptions (Sulston et al., 1980a).  

To determine if the abnormally formed male sex muscles are responsible for the 

additional posterior disassembly defects, I laser-ablated the M cell in L1 mab-5(lf) 

males. To facilitate imaging, I crossed mab-5 (e2088) hermaphrodites with CG997 (him-

5 rgEx497 [Punc-103E: YFP::actin] males) to make the mab-5 (e2088) rgEx497 [Punc-

103E: YFP::actin] transgenic line. The F2 hermaphrodites that gave rise to males with 

abnormal ray patterns were identified as mab-5(e2088) homozygotes (Kenyon, 1986).  

The laser ablation was conducted using a Spectra-Physics VSL-337ND-S 

Nitrogen Laser (Mountain View, Ca) attached to an Olympus BX51 microscope. To 

immobilize the worm, a 2% agar pad with 10mM NaN3 was used for L1 worms and a 

3% agar pad with 24mM NaN3 was used for L3 worms. Cell ablation was conducted 

following the standard protocol (Bargmann and Avery, 1995). The mock-ablated worms 

were operated under the same anesthetic conditions as the ablated worms, with the 

exception that no laser-ablation was performed. After the operation, the worm was 

transferred back onto NGM plates containing OP50. The worms were allowed to grow 

into the L4 stage and then imaged under the confocal microscope. 
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Determining the defecation efficiency  

To identify if the anal depressor is required for defecation during L4 

development, I laser-ablated the L1 male anal depressor nucleus. The strain that carries 

rgIs3 [Plev-11: G-CaMP; Plev-11: mDsRed] was used to facilitate the identification of 

the anal depressor. After the laser-ablation, the worm was transferred back onto NGM 

plates containing OP50. After entering the L3 or L4 stage, the worms were imaged under 

the Zeiss Stemi SV11 dissecting microscope. During the imaging, the worms were 

allowed to crawl freely on OP50. The Simple PCI software (version 6.6.0.0., 

Hamamatsu, Bridgewater, NJ) was used to calculate the intestinal area. A region-of-

interest (ROI) was placed on the intestinal lumen and the boundary of the ROI was 

adjusted, so that it was overlaid with the intestinal lumen boundary. The number of 

pixels that were encompassed within the ROI was measured by the software and used as 

indicator of the intestinal lumen area.  

 

 

 

 



47 

CHAPTER III 

THE SEXUALLY DIMORPHIC DEVELOPMENT OF THE ANAL DEPRESSOR 

IS CONTROLLED BY CELL-AUTONOMOUS AND NON-AUTONOMOUS SEX 

DETERMINATION MECHANISMS
*

The male anal depressor is distinct from the hermaphrodite anal depressor early 

from after L1 stage. 

During the L4 larval stage, the male anal depressor muscle undergoes sex-

specific remodification to change its function into an adult copulation muscle (Garcia et 

al., 2001; Jarrell et al., 2012; Reiner and Thomas, 1995; Sulston et al., 1980a). Prior to 

the obvious dimorphic remodeling, the larval male and hermaphrodite anal depressor are 

morphologically similar and do not exhibit obvious differences in function during 

defecation behavior. I first asked if the anal depressor of pre-L4 larval males and 

hermaphrodites is neuter, or does it undergo subtle dimorphic changes during early 

larval development. 

To visualize the changes in the anal depressor’s morphology and in particular, 

the sarcomere, I used the unc-103E and exp-1 promoters to express YFP fused to the 

actin genomic sequence. In both sexes, the unc-103E promoter drives expression in the 

anal depressor, sex muscles and some head neurons (Gruninger et al., 2006). I used the 

* Portions of this chapter are reprinted from Chen, X. and Rene Garcia, L. (2015) Developmental 

alterations of the C. elegans male anal depressor morphology and function require sex-specific cell 

autonomous and cell non-autonomous interactions. Developmental Biology 398, 24-43. 



48 

 

construct to monitor alterations in the neighbouring cells, in conjunction with changes in 

the anal depressor. However in some animals, sequences contained within the actin 

genomic sequence promoted sporadic expression in some tail neurons. To differentiate 

the anal depressor’s morphological changes from the neighbouring sex muscle cells, I 

also used the exp-1 promoter, which restricted YFP:actin expression to the anal 

depressor and the intestinal muscles of both sexes. Both promoters allowed us to 

visualize cytoplasmic structures throughout the male and hermaphrodite lifespan (Beg 

and Jorgensen, 2003; Gruninger et al., 2006). To obtain a complete image of the 

sarcomere structure, I took series of confocal images ranging from the left lateral side to 

the right; this is because the sarcomere is not completely parallel to the lateral side 

(Figure 1A). I then combined the stacks to assemble a flattened image of the cell’s shape 

and the sarcomere (Figure 1A and 1B), so that parameters such as the sarcomere’s length 

and width can be measured. I presented an image of a single side to represent the anal 

depressor morphology at each stage (Figure 1C-1G), since the left and right attachments 

of the male and hermaphrodite anal depressor were symmetrical throughout 

development (Figure 2B). 
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Figure 1. Morphological changes of the hermaphrodite anal depressor. (A) A 3D model of 

the adult hermaphrodite anal depressor. The anal depressor model was made from stacks of 

images taken from the left to the right lateral side. The images were reconstructed as a 3D image 

and rotated to be a lateral-transverse view. The anal depressor is an H-shaped cell with two 

attachments symmetrically positioned at the left and right side. The left and right attachments are 

attached to the dorsal hypodermis and ventrally attached to the rectum. (B) Cartoon for the 

hermaphrodite anal depressor viewed from the lateral side. The arrow indicates the H zone. The 

H zone is the gap between the two arrays of actin filaments (greenish blue lines) within a single 

sarcomere. The double arrows indicate the dorsal width that was measured in Figure 2. (C-G) 

Lateral views of the anal depressor in A: late L1 (C), late L2 (D), mid-L3 (E), mid-L4 (F) and an 

adult (G) stage hermaphrodite. All the animals expressed the transgene rgEx497 [Punc-

103E:YFP::actin]. The arrow in G indicates the H zone. For each of the images shown, the 

fluorescent staining indicates the actin filaments. The dark band in between the two arrays of 

actin filaments indicates the H zone. Within a single sarcomere, the H zone is the myosin region 

that does not overlap with the actin filaments. All the images are positioned as the anterior to the 

left and ventral to the bottom. For all of the images, the scale bar represents 10µm. 

 

 

As early as after the L1 stage, I observed a quantitive growth difference between 

the hermaphrodite and male anal depressor. The hermaphrodite anal depressor has been 

shown to maintain the sarcomere throughout the animal’s lifespan (Thomas, 1990). As 

expected, I found that the hermaphrodite larva’s sarcomere expanded both anterior-

posteriorly and dorsal-ventrally (Figure 1C-1G). To quantify this change, I measured the 

rectangular anal depressor sarcomere’s dorsal width, since the width determines how 

much of the rectum that the anal depressor can lift. I then compared this metric between 
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the different larval and adult stages. I found that for the hermaphrodite anal depressor, 

anterior-posterior expansion steadily occured throughout development (Figure 2A).  

 

 

 

Figure 2. Growth dynamics of the hermaphrodite anal depressor. (A) Growth dynamics of 

the dorsal attachment of the anal depressor in hermaphrodites. Each dot is the mean value of the 

dorsal width of the left and right attachments of a single animal. Mean + SD is indicated. The p 

value was calculated using one-way ANOVA with the Bonferroni’s Multiple Comparison Test. 

(B) Comparisons of the dorsal width of the hermaphrodite anal depressor’s left and right 

attachments at different larval stages. Mean + SD is indicated. The p value was calculated using 

one-way ANOVA with the Bonferroni’s Multiple Comparison Test (n.s. = not significant).  

 

 

 

 

 

 

 

 



51 

 

In contrast to the hermaphrodite, the male anal depressor displayed retarded 

growth dynamics. From L1 to mid-L3, the male anal depressor morphologically 

resembled the larval hermaphrodite anal depressor, maintaining the dorsal attachment on 

the dorsal hypodermis and the ventral attachment on the rectum (Figure 3A- 3C and  

3A’- 3C’). But unlike the hermaphrodite muscle, I observed that the anal depressor 

growth was static between late L1 to mid-L2 stage. I measured some anterior-posterior 

growth during mid-L2 to mid-L3 stage (Figure 4B); however, the average expansion 

magnitude was much smaller compared to the hermaphrodite (p<0.001, unpaired t test) 

(Figure 2A and 4B). At every stage I measured, the male anal depressor was thinner than 

the hermaphrodite’s (mid-L2, p<0.01; mid-L3, p<0.0001; early L4, p<0.0001; unpaired t 

test).  After mid-L3, the dorsal width of the male anal depressor qualitatively decreased 

(Figure 4B). Therefore, sex differences in the anal depressor development occurs after 

L2 and persist throughout L1 to L3 stage animals. 
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Figure 3. Morphological changes of the male anal depressor. (A-I) Lateral views of the male 

anal depressor at: late L1 (A), mid-L2 (B), mid-L3 (C), 37 hr early L4 (D), 40hr mid-L4 (E), 

41hr mid-L4 (F), 42hr late L4 (G), 43hr late L4 (H) and adult (I) stage. The arrow in (D) 

indicates the ventral slit formed between the anterior and posterior domains. The arrow in (F) 

indicates that the actin filaments contained in the anterior domain are migrating dorsal-anteriorly 

in the mid-L4 stage male anal depressor. The arrow in (G) indicates a reduced H zone in the 

posterior domain. The arrow in (I) indicates the H zone in the newly-established sarcomere in the 

ventral attachment of the anterior domain. All the animals imaged carry the transgene rgEx497 

[Punc-103E:YFP::actin] except (F) rgEx602 [Pexp-1:YFP::actin]. (A’-I’) Cartoons for the anal 

depressors in (A-I). The actin thin filaments that are contained within the sarcomere for L1 to L3 

stages are indicated as greenish blue lines (A’-C’). For L4 and adult stages (D’-I’), the actin 

filaments contained within the anterior domain are highlighted with a red background; and the 

posterior domain background is uncolored. All the images are positioned as the anterior to the 

left and ventral to the bottom. For all of the images, the scale bar represents 10µm. 
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Figure 4. Growth dynamics of the male anal depressor. (A) A flatten 3D reconstructed stack 

of a fluorescing mid-L4 anal depressor and developing dorsal and ventral protractor muscles. 

The filopodia from the anterior domain of the anal depressor (arrow) is shown extending towards 

the dorsal protractor muscle cell, whose nuclei is indicated (arrow head). (B) Growth dynamics 

of the male anal depressor’s dorsal attachment. Each dot is the mean value of the dorsal width of 

the left and right attachments for each animal. Mean + SD is indicated. The p value was 

calculated using one-way ANOVA with the Bonferroni’s Multiple Comparison Test (n.s. = not 

significant). (C) Comparisons of the dorsal width of the male anal depressor’s left and right 

attachments at different larval stages. Mean + SD is indicated. The p value was calculated using 

one-way ANOVA with the Bonferroni’s Multiple Comparison Test (n.s. = not significant). (A) is 

positioned as the anterior to the left and ventral to the bottom.  

 

 

During L4 development, the male anal depressor moves its ventral attachment to 

the spicule protractor muscles and reorganizes the sarcomere to run anterior-posteriorly. 

However, the details concerning cell interactions, timing, whether the sarcomere is 

disassembled and reassembled simultaneously or sequentially were unknown. To 
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address these questions, I identified the sarcomere reorganization events that occur 

during the L4 larval stage. During late L3 development, I observed that a ventral slit was 

formed at the ventral rectal attachment, demarcating the anal depressor into anterior and 

posterior domains (Figure 3D). At around 40 hr mid-L4, the anterior domain moved 

dorsal-anteriorly towards the developing dorsal spicule protractor muscles (Figure 3E 

and 4A). The trans-located anterior domain at this time (40 hr) maintained the sarcomere 

structure. The sarcomere in the posterior domain was still intact and was ventrally 

attached to the rectum. At around 41 hr (Figure 3F), the interface between the anal 

depressor’s anterior domain and the dorsal protractor muscles expanded. The old 

sarcomere in the dorsal column of the anterior domain disassembled, and the actin 

filaments began to reform anterior-posteriorly (Figure 3F). At around 42 hr late L4 stage, 

the sarcomere contained within the posterior domain began to also disassemble and 

eventually, the posterior domain atrophied due to the reduction of actin filaments (Figure 

3G and 3H). The actin filaments, which have been repositioned to the ventral part of the 

anterior domain, were reassembled to establish a novel anterior posterior-oriented 

sarcomere (Figure 3I). Therefore during the reorganization period in L4, only the 

anterior domain of the male anal depressor migrates from rectum to the spicule 

protractor muscles. The sarcomere disassembly occurs in a stepwise fashion, with 

anterior domain disassembling prior to the posterior domain.  
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The majority of the male remodeling events are controlled cell-autonomously by 

the male sex determination mechanism. 

The similar morphology between the larval male and hermaphrodite anal 

depressor led us initially to believe that the early larval anal depressor was neuter. 

However, the differences in the anal depressor growth rate suggested that the male anal 

depressor development might be regulated earlier than the mid-late L3 stage. Previous 

studies showed that sexual dimorphic development can either be regulated by the innate 

sex determination mechanism (Conradt and Horvitz, 1999; Ross et al., 2005), or induced 

non-autonomously by communication with neighboring sex-specific cells (Hunter et al., 

1999). To identify which aspect of the male anal depressor development was controlled 

by a cell autonomous mechanism, and which might be regulated by the neighboring 

male-specified cells, I transgenically expressed a feminizing factor in the anal depressor, 

and asked if and what male remodeling events were altered.  

To transform the anal depressor's sexual identity, I expressed an intracellular 

fragment of TRA-2 in the male anal depressor using the exp-1 promoter (Beg and 

Jorgensen, 2003). In the somatic cells of hermaphrodites, the X:A chromosome ratio 

regulates the sex determination pathway, so that TRA-2 is not inhibited by HER-1. 

Active TRA-2 suppresses the FEM proteins, which frees TRA-1 to enter the nucleus and 

promote hermaphrodite somatic development. In a male cell, the X:A ratio regulates the 

sex determination pathway in the opposite direction, so that TRA-2 is inhibited by HER-

1. Active FEM proteins repress TRA-1 function and male development is specified (de 

Bono et al., 1995; Hodgkin, 1987; Kuwabara, 1996). The function of HER-1 to suppress 
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TRA-2 occurs through the transmembrane domain of TRA-2 (Hunter and Wood, 1992; 

Perry et al., 1993). TRA-2’s intracellular carboxy terminal region (tra-2 IC) is required 

to inhibit the FEM proteins (Kuwabara and Kimble, 1995). The intracellular domain of 

TRA-2 is insensitive to HER-1 inhibition, and thus overexpressing the truncated protein 

can constitutively inhibit the FEM proteins (Lum et al., 2000; Mowrey et al., 2014). In 

this way the male sex determination pathway can be converted into a female pathway.  

I found that in transgenic tra-2 IC-containing males, the larval anterior-posterior 

expansion was altered to resemble the hermaphrodite’s muscle. The dorsal sarcomere of 

the feminized male anal depressor (Figure 5A-5D) was expanded more at the anterior-

posterior orientation compared to wild-type males (Figure 3A-3E) at each larval stage; 

the kinetics of dorsal expansion were similar to the hermaphrodite anal depressor (Figure 

6A-6C). This suggests that at least in wild-type males, the anal depressor’s rate of dorsal 

expansion is cell autonomously promoted by the intrinsic sex determination pathway. 

However, in L3 to L4 larvae, the feminized anal depressor stopped dorsal expansion 

(Figure 6D). This could be due to incomplete feminization from the transgene or because 

of interactions with neighboring male cells, or lack of interactions with neighboring 

hermaphrodite cells. Nonetheless, the elevated level of dorsal expansion indicates that in 

wild-type males, the early regulation of the anal depressor's growth is cell autonomous 

and sex-intrinsic.  
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Figure 5. Feminizing the male anal depressor. (A-F) Lateral views of the anal depressor of: 

mid-L2 (A) and mid-L3 (B), 37 hr early L4 (C), 40 hr mid-L4 (D), and adult (E and F) stage 

males, which carry the transgene rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-

103E:YFP::actin]. The pictures were taken in the YFP emission channel. The arrows in (A-D) 

indicate the expanded anal depressor’s dorsal attachments at different larval stages. The double 

arrows in D indicate the demarcation between the anal depressor’s anterior and posterior domain. 

The double arrowheads in E and F indicate the vertically positioned H zone in both the adult anal 

depressor anterior and posterior domains. (G-L) Lateral views of the anal depressor of: mid-L2 

(G), mid-L3 (H and I), 37 hr early L4 (J and K), and adult (L) males carrying the transgene 

rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-103E:YFP::actin]. The pictures were taken in 

the DsRed emission channel. The arrowheads indicate either the ventral-anteriorly migrating 

filopodia extended from the anal depressor’s ventral attachment (G, I and K), or the abnormal 

sarcomere ventral attachment that is extended into the pre-anal ganglion region (H and J). All the 

pictures are positioned as the anterior to the left and ventral to the bottom. In all of the images, 

the scale bar represents 10µm. 
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Figure 6. Quantification of the dorsal width of feminized anal depressor. (A-C) Mean 

comparisons of the anal depressor’s dorsal width between the male wild-type anal depressor 

(male), wild-type male anal depressor expressing the transgene rgEx698 [Pexp-1:tra-2 

(IC)::SL2:::DsRed; Punc-103E:YFP::actin] (male+TG), wild-type hermaphrodite anal depressor 

(her) and wild-type hermaphrodite anal depressor expressing the transgene rgEx698 [Pexp-1:tra-

2 (IC)::SL2:::DsRed; Punc-103E:YFP::actin] (her+TG) at mid-L2 (A), mid-L3 (B) and early L4 

(C) stages. Mean + SD is indicated. The p value was calculated using one-way ANOVA with the 

Bonferroni’s Multiple Comparison Test (n.s. = not significant). (D) Mean comparisons of the left 

and right dorsal width for the wild-type male anal depressor expressing the transgene rgEx698 

[Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-103E:YFP::actin] at mid-L2, mid-L3 and early L4 

stages. Mean + SD is indicated. The p value was calculated using one-way ANOVA with the 

Bonferroni’s Multiple Comparison Test (n.s. = not significant). 

 

 

To rule out the possibility that the transgenic-induced dorsal expansion was 

unrelated to sex transformation, I also measured the dorsal expansion dynamics in the 
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transgenic hermaphrodite anal depressor. I found that the transgenic hermaphrodite anal 

depressor displayed wild-type dorsal growth (Figure 6A-6C). This observation supports 

the interpretation that the tra-2 IC transgene artificially induced the dorsal expansion in 

the male’s muscle.  

Although the dorsal growth of the feminized male anal depressor resembled the 

hermaphrodite anal depressor during L1 to L3 stages, it partially displayed male 

morphogenesis aspects during L4 development. Like a wild-type male anal depressor, at 

mid-L4 stage (Figure 3E), the feminized male anal depressor demarcated an anterior and 

posterior domain and moved the anterior domain towards the developing spicule 

protractor muscles (Figure 5D). However, unlike the wild-type anal depressor, the 

dorsal-ventrally oriented sarcomere did not disassemble later in the L4 stage (Figure 5E 

and 5F). These observations suggest that the initiation of the wild-type male anal 

depressor’s reorganization is influenced by external signals, but further morphological 

changes require the intrinsic masculine sex determination program. 

Feminizing the anal depressor compromises male mating behavior.  

We hypothesize that in adults, the male mating circuit requires a properly gender-

specified anal depressor to function. If correct, then feminizing the anal depressor should 

interfere with copulation behavior. Therefore I conducted mating potency, arecoline 

drug test and mating observation assays to assess what specific behaviors were affected 

by feminizing the muscle (Garcia et al., 2001; Liu and Sternberg, 1995; Liu et al., 2011). 
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Figure 7. Feminization of the anal depressor causes multiple mating defects. (A) Mating potency of wild-

type males (wild type, n=23) and wild-type males expressing the transgene rgEx698 [Pexp-1:tra-2 

(IC)::SL2:::DsRed; Punc-103E:YFP::actin] (wild type + TG, n=21). The p value was calculated using Fisher’s 

exact test. (B) Percentage of males that protracted their spicules in 1mM arecoline solution for wild-type males 

(wild type, n=50) and wild-type males expressing the transgene rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; 

Punc-103E:YFP::actin] (wild type + TG, n=40). The p value was calculated using Fisher’s exact test. (C) The 

time required for the wild-type males (wild type) and wild-type males expressing the transgene rgEx698 [Pexp-

1:tra-2 (IC)::SL2:::DsRed; Punc-103E:YFP::actin] (wild type + TG) to initiate mating behavior. Each dot 

represents the metric of a single male observed. Mean + SD is indicated. The p value was calculated using 

Mann-Whitney nonparametric test (n.s. = not significant). (D) Number of times for the wild-type males (wild 

type) or the wild-type males expressing the transgene rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-

103E:YFP::actin] (wild type + TG) to scan through the vulva region, but did not stop. Mean + SD is indicated. 

The p value was calculated using Mann-Whitney nonparametric test. (E) Spicule insertion efficiency during 2 

minutes of observation. Closed symbols indicate that the male successfully inserted its spicules. Open symbols 

indicate that the male did not insert his spicules. Mean + SD is indicated. The p value was calculated using 

Mann-Whitney nonparametric test. (F) Average length of time that wild-type males (wild type) or the wild-type 

males expressing the transgene rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-103E:YFP::actin] (wild type + 

TG) prodded against the vulva during the 2 minutes observation time. Mean + SD is indicated. The p value was 

calculated using Mann-Whitney nonparametric test. 
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I first performed the mating potency assay by pairing a 1-day-old male with a 1-

day-old hermaphrodite (Correa et al., 2012; Guo et al., 2012; Liu et al., 2011). The 

hermaphrodites possess the pha-1(e2123) temperature-sensitive mutation, and therefore 

at 20 °C only cross-progeny can survive. By counting the number of males that can sire 

progeny, I found that tra-2-transgenic males were less potent than wild-type males 

(Figure 7A). I then asked if the mating defect was due to reduced performance in 

behaviors that lead to spicule insertion and ejaculation (Correa et al., 2012; Garcia et al., 

2001; LeBoeuf et al., 2014; Liu and Sternberg, 1995; Liu et al., 2011).  

I conducted the arecoline drug assay to investigate if the feminized anal 

depressor affected spicule protraction (Figure 7B). The acetylcholine agonist, arecoline, 

promotes spicule protraction by activating nAChRs and mAChRs in the protractors 

muscles, SPC and post-cloacal sensilla neurons (Correa et al., 2012). I observed that the 

transgenic males were less sensitive to arecoline, compared to the wild type (Figure 7B). 

Previous work established that ablation of the anal depressor did not abolish the 

arecoline-induced protraction (Garcia, 2001). Therefore, the feminized anal depressor 

either developmentally or physically reduced the spicule protractor muscles’ ability to 

contract.  

Next, I examined if feminization impaired other mating behavioral steps. I 

introduced single males with paralyzed hermaphrodites and recorded their behaviors. 

Wild-type males were able to initiate scanning behavior, locate the vulva and insert their 

spicules within 5 minutes. For the transgenic males, they took similar amounts of time to 

initiate backing and scanning behavior (Figure 7C). However, they could not stop at the 
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vulva as efficiently as the wild type (Figure 7D). They hesitated around the vulva region, 

but continued backing without initiating the prodding behavior. Some of the males 

eventually positioned themselves over the vulva, but this was after several rounds of 

circling around the hermaphrodite. Therefore, they had very low spicule insertion 

efficiencies (Figure 7E). I speculate that the transformed anal depressor might interfere 

with the proper functions of other male muscles, such as the oblique and gubernaculum 

muscles. In the wild-type male, these posterior cloacal muscles are electrically connected 

to the anal depressor, which in turn is electrically coupled to the spicule muscles. The 

oblique and gubernaculum muscles function to press the male tail against the vulva and 

initiate spicule insertion attempts (Jarrell et al., 2012; Liu et al., 2011).  

When the tra-2-transgenic males eventually position themselves over the vulva, 

they initiated spicule prodding behavior. The average prodding duration was similar 

between wild type animals and tra-2-transgenic animals (Figure 7F); but many of the 

males failed to insert their spicules (Figure 7E). In wild-type males, the SPC 

proprioceptive neurons make chemical synapses to both the anal depressor and spicule 

protractor muscles (Jarrell et al., 2012). These neurons are essential for copulation, and 

tonic contractions of the anal depressor and protractor muscles occur during full spicule 

insertion (Garcia et al., 2001). In the transgenic males, the low insertion ability might 

arise from reduced or absent signaling between the SPC and the transformed anal 

depressor; in addition, the transformed anal depressor might physically obstruct the 

protractor muscles’ contractile efficiency. Therefore, I conclude that feminization of the 

anal depressor leads to defects in copulation behaviors.  
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Overexpressing FEM-3 in the larval hermaphrodite anal depressor induces male-

like growth dynamics. 

The results from the feminization of the male anal depressor experiment suggest 

that the muscle’s L1 to early L4 development is regulated cell-autonomously. To 

confirm the observation, I performed the converse experiment and cell-autonomously 

masculinized the hermaphrodite anal depressor. I then asked if the potentially 

transformed muscle displayed male growth traits. 

To convert the hermaphrodite sex determination pathway into a male one, I 

overexpressed the FEM-3 proteins in the hermaphrodite anal depressor using the exp-1 

promoter. Excess FEM-3 has been shown to overcome the inhibitory effect of TRA-2, 

thus suppressing TRA-1 activity and promoting male development (Lee and Portman, 

2007; Mehra et al., 1999; Mowrey et al., 2014; White et al., 2007).  

 

 

 

Figure 8. Masculinizing the hermaphrodite anal depressor. (A-C) Lateral views of the anal 

depressor of: mid-L2 (A) and mid-L3 (B), mid-L4 (C) stage males, which carry the transgene 

rgEx721 [Pexp-1:fem-3 cDNA::SL2:::DsRed; Punc-103E:YFP::actin]. The pictures were taken 

in the YFP emission channel. All the pictures are positioned as the anterior to the left and ventral 

to the bottom. In all of the images, the scale bar represents 10µm. 
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As I predicted, fem-3-expressing hermaphrodite anal depressor’s larval growth 

kinetics were altered (Figure 8A-8C and 9A-9B). During the L2 and L3 stages, the 

masculinized anal depressor’s anterior-posterior expansion was reduced compared to the 

wild-type hermaphrodite (Figure 9A and 9B). The dorsal expansion was not significantly 

different from the wild-type male anal depressor or the Pexp-1: fem-3 expressing control 

males. However, unlike a wild-type male anal depressor (Figure 4B), the masculinized 

anal depressor’s dorsal growth continued during the L3-L4 stages (Figure 9D). 

Additionally, during the L4 stage, the masculinized hermaphrodite anal depressor did not 

extend an anterior branch or initiate anterior movement. However in 18% (n=17) of the 

animals, the actin filaments in the anterior sarcomere region were variably detectable 

(Figure 8C), hinting that the masculinized hermaphrodite anal depressor might be 

capable of reorganization. Although the results of this experiment are consistent with the 

idea that the early anal depressor’s growth kinetics are cell autonomous in both sexes, I 

hypothesize that further gross masculine developmental changes require communication 

with neighboring masculinized cells.  
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Figure 9. Masculinization repressed the dorsal expansion of the hermaphrodite anal 

depressor. (A-C) Mean comparisons of the anal depressor’s dorsal width between the 

hermaphrodite wild-type anal depressor (her), wild-type hermaphrodite anal depressor 

expressing the transgene rgEx721 [Pexp-1:fem-3 cDNA::SL2:::DsRed; Punc-103E:YFP::actin] 

(her+TG), wild-type male anal depressor (male) and wild-type male anal depressor expressing 

the transgene rgEx721 [Pexp-1:fem-3 cDNA::SL2:::DsRed; Punc-103E:YFP::actin] (male+TG) 

at mid-L2 (A), mid-L3 (B) and early L4 (C) stages. Mean + SD is indicated. The p value was 

calculated using one-way ANOVA with the Bonferroni’s Multiple Comparison Test (n.s. = not 

significant). (D) Mean comparisons of the left and right dorsal width for the wild-type 

hermaphrodite anal depressor expressing the transgene rgEx721 [Pexp-1:fem-3 

cDNA::SL2:::DsRed; Punc-103E:YFP::actin] at mid-L2, mid-L3 and early L4 stages. Mean + 

SD is indicated. The p value was calculated using one-way ANOVA with the Bonferroni’s 

Multiple Comparison Test (n.s. = not significant). 
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The anterior movement of the male anal depressor requires the developing male 

sex muscle cells. 

Since feminizing the male anal depressor did not block the initiation of cellular 

reorganization, I entertained the possibility that the reorganization process required the 

participation of additional cells in the male tail. The adult male possesses unique 

copulatory structures in the tail region, including the male sex muscles and the 

copulatory spicules. The blast cells that give rise to those copulatory structures are either 

located in the male tail at L1 stage (the B cell that gives rise to the spicules, the F and U 

cells that give rise to the mating neurons, and the V and T seam cells that give rise to the 

rays) (Hunter et al., 1999; Kenyon, 1986; Salser and Kenyon, 1996; Sulston et al., 

1980a), or migrate to the tail region at L3 stage (the M cell that give rise to the male sex 

muscles) (Sulston et al., 1980a). Therefore, during the L4 reorganization period, the 

male tail encompasses many male-specific cells in close proximity to the anal depressor, 

which might initiate the anterior movement of the muscle.  

To test the hypothesis that developing male copulatory cells might present 

instructive signaling to promote the anal depressor’s anterior movement, I either 

eliminated the copulatory structure, or disrupted the lineage from which the copulatory 

structures are derived. I then observed if the anal depressor’s anterior movement was 

compromised. To determine the contributions of the spicules, spicule-associated neurons 

and the proctodeum cells, I laser-ablated the B.a and B.p progenitor cells. I also laser-

ablated the F and U progenitor cells to determine if the male-specific interneurons 

contributed to the anal depressor reorganization. However, when I laser-ablated these 
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cells, I found that the L4 animals showed no anterior movement defects in the anal 

depressor (Figure 10A and 10B), suggesting that they do not initially participate in the 

anal depressor reorganization.  

 

 

 

Figure 10. The spicule cells and proctodeum cells do not regulate the anterior movement of 

the anal depressor. (A and B) Comparisons of the slit width between the anal depressor’s 

anterior and posterior domains in B.a and B.p-ablated (A) or F and U cell-ablated males (B) with 

mock-ablated males. Mean + SD is indicated. The p value was calculated using the unpaired t 

test (n.s. = not significant). 
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To assess the importance of the male sex muscles and rays, I used the mab-5(lf) 

mutation to compromise the cell lineages that give rise to those structures. mab-5 is a 

Hox gene that regulates the expression of genes that control cell fate specification in the 

M cell-sex muscle- and V5, V6-ray-lineages. The male M cell lineage generates 

nonessential body wall muscles and all of the male copulatory muscles, whereas V5 

produces the cells contained in ray 1, and V6 produces the cells contained in rays 2 

through 6 (Sulston et al., 1980a). In mab-5(lf) males, some M-derived sex myoblasts are 

missing, whereas other sub-lineages are miss-specified to produce additional sex 

myoblast-like cells (Harfe et al., 1998; Kenyon, 1986). Additionally, the lack of 

functional MAB-5 causes V5 and V6 to produce only seam cells or hypodermal-like 

cells (Kenyon, 1986). Therefore I examined mab-5(lf) males, to identify if the absence of 

signaling from the sex muscles and rays affects anal depressor development.  
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Figure 11. Compromising the male sex muscle activity affects the L4 development of the 

anal depressor. (A-I) Lateral views of the anal depressor of mab-5 (e2088) males at: mid-L4 

(C), late L4 (F) and adult (I) stage; lateral views of the anal depressor of either mock-ablated 

males (B, E and H) or M cell-ablated males at: mid-L4 (C), late L4 (F) and adult (I) stage. The 

arrows in D, E and F indicate the anteriorly-migrating filopodia extending from the anterior 

domain of the anal depressor. The double arrows in (A-C) indicate the width of the slit 

measured. All the pictures are positioned as the anterior to the left and ventral to the bottom. For 

all of the images, the scale bar represents 10µm. 

 

 

The anal depressor morphology of mab-5(lf) males was recorded at different time 

points during L4 development and adulthood (Figure 11A, 11D and 11G). I observed 

that during mab-5(lf) mid-L4 to adult development, the anal depressor had delayed 

specification and reduced movement of the anterior domain (Figure 3E, 11A and 12A). I 

also observed sarcomere disassembly defects in the posterior domain (Figure 11G, 12C 

and 12D).  
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Figure 12. The anal depressor has anterior migration defects and sarcomere disassembly 

defects when the sex muscle morphogenesis is compromised. (A) Comparisons of the slit 

width between the anterior and posterior domains (the slit width is indicated in 11A, 11B and 

11C by the arrows) among wild-type, mab-5, mock-ablated and M cell-ablated males at mid-L4 

stage. Mean + SD is indicated. The p value was calculated using one-way ANOVA with the 

Bonferroni’s Multiple Comparison Test. (B) Comparisons of the slit width between the anterior 

and posterior domains among mock-ablated, opposite-side SM 1, 2 and 3-ablated (opposite SMs-

ablated: SM1, 2 and 3, which are on the opposite side of the anal depressor attachment 

examined), and same-side SM 1, 2 and 3-ablated (same SMs-ablated: SM1, 2, and 3 which are 

on the same side of the anal depressor attachment examined) males at mid-L4 stage. Mean + SD 

is indicated. The p value was calculated using the unpaired t test (n.s. = not significant). (C and 

D) Comparisons of the width (C) and the area (D) of the anal depressor’s posterior domain 

among the wild-type, mab-5, mab-5 M cell-ablated, mock-ablated and M cell-ablated males at 

adult stage. The width is indicated in 11G by the horizontal arrow, and the area is calculated as 

the result of the width multiplied by the length (vertical arrow) as indicated in 11G. Mean + SD 

is indicated. The p value was calculated using one-way ANOVA with the Bonferroni’s Multiple 

Comparison Test.  
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Since MAB-5 regulates two essential male specific behaviors during L4 anal 

depressor development, the transcription factor might also be involved in the male-

specific regulation of the anterior-posterior expansion during L1 to L3 larva. Thus I 

examined mab-5(lf) male anal depressor development during the L1 to L3 stages. The 

mab-5(lf) males displayed wild-type dorsal growth at all larval stages (Figure 13A-13C). 

I concluded that MAB-5 expressed from the M lineage or rays only contributes to the 

male-specific regulation of the anal depressor development at L4. 

 

 

 

Figure 13. mab-5 does not confer defects to the dorsal growth of the male anal depressor 

during early larval development. (A-C) Mean comparisons of the anal depressor’s dorsal 

width between wild-type and mab-5 mutants at: mid-L2 (A), mid-L3 (B) and early L4 (C) stages. 

Mean + SD is indicated. The p value was calculated using the unpaired t test (n.s. = not 

significant). 

 

 

The male-specific regulation of the anal depressor's anterior movement and 

posterior disassembly could be controlled by signaling from the M or V5, V6 lineage 

cells. I favored the M-lineage-derived male sex muscles to be the more likely signaling 
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source for these reorganization processes. The anal depressor physically contacts the 

spicule protractor muscles when the posterior sarcomere disassembly occurs and 

ultimately makes electrical connections to these muscles. Similar mechanisms can be 

found in the morphogenesis of neuromuscular junctions. The target neurons have been 

shown to secrete the guidance cues to initiate muscle arm extensions from the muscle 

cells (Seetharaman et al., 2011).  

The M cell goes through several rounds of divisions, beginning at mid-L1 and 

ending at late-L3 stage to generate a few body wall muscles and all of the male sex 

muscle cells (Sulston et al., 1980a; Sulston and Horvitz, 1977). I laser-ablated the M cell 

at the early L1 stage, to ask if L1-operated males have similar anal depressor anterior 

and posterior defects, as in the mab-5(lf) males (Figure 11B, 11C, 11E, 11F, 11H and 

11I). When I quantified the data, I found that the M cell-ablated animals displayed 

anterior movement defects similar to mab-5(lf) males (Figure 12A). Therefore the 

anterior movement defects seen in mab-5(lf) males were likely attributed to the cells of 

the M lineage. The adult males from those M cell-ablated animals had a larger posterior 

domain compared to the control (Figure 11H, 11I, 12C and 12D), indicating the M-

lineage cells promote the disassembly of the posterior sarcomere. However, the mab-

5(lf) adult anal depressor displayed more severe disassembly defects than the anal 

depressor of the M cell-ablated adults (Figure 11G and 11I, Figure 12C and 12D).  

MAB-5 is also expressed in the male and hermaphrodite anal depressor 

embryonic progenitors (Cowing and Kenyon, 1992), but no obvious defects are seen in 

the hermaphrodite or larval male muscle. To test if cell-autonomous MAB-5 can rescue 
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the mab-5(lf)-induced L4 male anal depressor defects, I expressed the mab-5 cDNA 

from the exp-1 promoter. To confirm the functionality of the cloned mab-5 cDNA, I also 

expressed the mab-5 cDNA very early in the M lineage, using the hlh-8 promoter. Gene 

expression from the hlh-8 promoter is limited to the M lineage cells and coloemocytes 

(Harfe et al., 1998). The hlh-8 promoter is active from embryonic stage till just before 

the sex myoblasts divide and differentiate into muscle cells during the L3 stage (Harfe et 

al., 1998). The Phlh-8:mab-5 cDNA construct was sufficient to rescue the early mab-

5(lf) division defects, and even specify some of the M-lineage progeny (Figure 14A-

14B’). But the incomplete rescue was expected, since the M-lineage cells likely require 

continual mab-5 expression from the endogenous promoter. In contrast to the partial 

rescue of the M-lineage cells, expressing the mab-5 cDNA solely in the anal depressor, 

via the exp-1 promoter did not alleviate the L4 stage posterior disassembly defects 

(Figure 14C and 14D). This result suggests that the transcription factor’s function in this 

process is likely cell non-autonomous.  
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Figure 14. Cell-autonomous expression of mab-5 did not rescue the anal depressor defects 

of mab-5 mutants. (A and B) Lateral views of the adult male tail of mab-5 (e2088) males (A) 

and mab-5 (e2088) males, which carries the transgene rgEx722 [Phlh-8: mab-5 

cDNA::SL2:::DsRed; Punc-103E:YFP::actin] (B). The crumpled spicule defects were partially 

alleviated when mab-5 was rescued in the M lineage, indicating that the cDNA was functional. 

(A’ and B’) Lateral views of the anal depressor of mab-5 (e2088) adult male (A’) and mab-5 

(e2088) adult male, which carries the transgene rgEx722 [Phlh-8: mab-5 cDNA::SL2:::DsRed; 

Punc-103E:YFP::actin] (B’). The pictures were taken in the YFP emission channel. The sex 

muscle morphogenesis and orientation defects (A’) were alleviated, but not enough to rescue the 

anal depressor defect (B’). (C and D) Comparisons of the width (C) and the area (D) of the anal 

depressor’s posterior domain between the mab-5 (e2088) adult males (mab-5) and mab-5 

(e2088) adult males, which carry the transgene rgEx723 [Pexp-1: mab-5 cDNA::SL2:::DsRed; 

Punc-103E:YFP::actin] (mab-5+TG). Mean + SD is indicated. The p value was calculated using 

the unpaired t test (n.s. = not significant). All the pictures are positioned as the anterior to the left 

and ventral to the bottom. For all of the images, the scale bar represents 10µm. 

 

 

Then I considered the possibility that the abnormal mab-5(lf) M-lineage cells had 

additional inhibitory effects on the disassembly of the posterior sarcomere. To test this 

possibility, I killed the M cell in L1 larval mab-5(lf) males. I found that in those operated 
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mab-5(lf) adult males, the size of the posterior domain was the same as the wild-type M 

cell-ablated adult males (Figure 12C and 12D). Therefore, I speculated that the posterior 

disassembly defects in mab-5(lf) males are due to the absence of normal signaling, in 

conjunction with neomorphic inhibitory effects from the abnormal M-lineage cells.  

In wild-type males, the M-lineage produces a bilateral set of body wall muscle 

and sex muscle cells; thus I asked if the specification and movements of the anal 

depressor’s bilateral anterior attachments are individually regulated by their cognate M-

lineage neighbors. To address this possibility, I allowed the M cell to divide during the 

L1 larval stage to generate the bilateral body wall muscles and sex muscle mesoblasts, 

SM1, SM2 and SM3. The SM mesoblasts go through 3 additional rounds of divisions 

during the L3 stage to generate all of the sex muscles. During the L2 stage, I laser-

ablated one set of SM 1, 2 and 3 (either the left or right); the M cell-derived body wall 

muscles were left intact. At L4 stage, I examined each side of the male tail to determine 

if the anal depressor’s anterior domains were specified, and how much they moved. I 

found that the morphology of the anal depressor attachment was only affected when its 

cognate set of neighboring SM mesoblast cells was laser-ablated (Figure 12B). The 

severity of the anterior domain specification and movement defects were comparable to 

the M cell-ablated worms (Figure12A). This suggests that the sex muscle cells, which 

neighbors the anal depressor attachment and not the M-derived body wall muscles, likely 

contribute to the morphological changes of the anterior domain.  
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A masculinized M lineage is sufficient to induce anterior movement in the 

hermaphrodite anal depressor. 

The M cell ablation experiments, in conjunction with the mab-5(lf) male 

phenotypes suggested that the anterior movement defects were attributed to the absence 

of signaling from the male sex muscles. However, those defects could still be due to 

unknown effects of the experimental design. To rule out this possibility, I masculinized 

the hermaphrodite early M lineage by using the hlh-8 promoter to drive fem-3 cDNA 

expression, and asked if a male-like M lineage can induce anterior movement of the 

hermaphrodite anal depressor.  

In wild-type hermaphrodites, the M.dl/r cells divide during the L1 stage to form 

body wall muscles and coelomocytes, located in the worm’s posterior region (Figure 

15A, n=10). However, in L3 transgenic hermaphrodites, additional M.dl/r –derived cells, 

located at the posterior dorsal region confirmed that the Phlh-8: fem-3 cDNA was 

functional (Figure 15B, n=7). Those additional cells are likely derived from an early 

masculinized M lineage, and resemble the SM1 and SM2 sex mesoblasts, which are born 

during the male L3 stage (Sulston et al., 1980a).  
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Figure 15. Masculinization of the hermaphrodite sex muscles is able to induce slit 

formation in the anal depressor. (A and B) Lateral views of the wild-type hermaphrodites' 

posterior half (A) and hermaphrodites that carry the transgene rgEx724 [Phlh-8: fem-3 

cDNA::SL2:::DsRed; Punc-103E:YFP::actin] (B) at early L3 stage. The arrowhead in B 

indicates the additional cells that were found adjacent to the body wall muscle cells. (C-E) 

Lateral views of the hermaphrodite anal depressor, which expressed the transgene rgEx724 

[Phlh-8: fem-3 cDNA::SL2:::DsRed; Punc-103E:YFP::actin] at late L3 (C), mid-L4 (D) and 

young adult (E) stages. The arrows in C and D indicate the ventral slits. The arrow in E indicates 

the reorganizing anterior domain. The pictures were taken in the YFP emission channel.(F) 

Percentage of animals that possess a ventral slit at late L4 stage in wild type hermaphrodites 

(her) and hermaphrodites, which expressed the transgene rgEx724 [Phlh-8: fem-3 

cDNA::SL2:::DsRed; Punc-103E:YFP::actin] (her+TG). The p value was calculated using 

Fisher’s exact test. All the pictures are positioned as the anterior to the left and ventral to the 

bottom. For all of the images, the scale bar represents 10µm. 
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The masculinized early M lineage led to the formation of a ventral slit in the 

hermaphrodite anal depressor. At the late L3 stage, the ventral region of the muscle cell 

started to be demarcated into two domains (Figure 15C). During the L4 stage, the slit 

expanded (Figure 15D). I observed that some of the young adults even had a reorganized 

sarcomere (Figure 15E). The timing of those reorganization events fits with the wild-

type male process (Figure 3D-3F). Therefore I concluded that the masculinization of the 

M lineage in the hermaphrodite was sufficient to induce anterior movement in the anal 

depressor muscle. However, only a small proportion of the transgenic hermaphrodites 

possessed this anal depressor phenotype (Figure 15F). One possible explanation is that 

the hlh-8 promoter does not express enough fem-3 to cause 100% conversion of the M 

lineage. Overall, the ventral slit in the transgenic hermaphrodite’s anal depressor 

indicates that a male M lineage provides the signal to initiate the anal depressor’s 

anterior movement. 

The male endogenous pathway and exogenous signaling function additively to 

regulate the anterior movement process 

The masculinization of the hermaphrodite M lineage confirms that the exogenous 

signals derived from the male sex muscles contributed to the anterior movement of the 

male anal depressor. I found that the Pexp-1:tra-2 IC transgenic males also possess 

anterior movement defects (Figure 16). To identify if the endogenous and exogenous 

signaling pathways are playing parallel or synergistic roles, I feminized the anal 

depressor in mab-5 males. I found that the muscle cell had more severe anterior 

movement defects, compared to either mab-5 mutants or tra-2 transgenic worms (Figure 
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16). Thus I conclude that exogenous signaling and endogenous sex determination 

mechanisms function additively to regulate the anterior movement of the male anal 

depressor. 

 

 

 

Figure 16. The male sex determination pathway and exogenous signals from the male sex 

muscles function additively to regulate the male anal depressor’s anterior movement. 

Comparisons of the slit width between the anterior and posterior domains (the slit width is 

indicated in 5D and 11A by the arrows) among wild-type, mab-5, wild type expressing the 

transgene rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-103E:YFP::actin] (tra-2-TG) and 

mab-5 males expressing the transgene rgEx698 [Pexp-1:tra-2 (IC)::SL2:::DsRed; Punc-

103E:YFP::actin] (tra-2-TG) at mid-L4 stage. Mean + SD is indicated. The p value was 

calculated using one-way ANOVA with the Bonferroni’s Multiple Comparison Test. 

 

 

Defecation behavior does not require the male anal depressor during the L4 stage.  

Finally, I addressed if the reorganizing anal depressor still participates in 

defecation behavior during the L4 stage. In larval males and hermaphrodites, the anal 

depressor projects a muscle arm to the pre-anal ganglion, which it uses to receive 
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stimulatory input from the defecation neuron DVB (McIntire et al., 1993b; Reiner and 

Thomas, 1995; Sulston et al., 1980a). I first asked if the larval male anal depressor alters 

its pre-anal ganglion muscle arm during development. To visualize the anal depressor 

cytoplasm, including the filopodia and muscle arm extension, I expressed the 

cytoplasmic DsRed protein from a pan-muscular lev-11 tropomyosin promoter. This 

specific construct expresses in the body wall muscles and the anal depressor, but not in 

the pharyngeal or intestinal muscle.  

 

 

 

Figure 17. The male anal depressor retracts the muscle arm from the pre-anal ganglion at 

the L3 larval stage. (A-E) Lateral views of the anal depressor of: late L1 (A), late L2 (B), mid-

L3 (C), mid-L4 (D) and an adult (E) stage hermaphrodite. All the animals imaged carried the 

integrated transgene rgIs3 [Plev-11:Dsred; Plev-11:G-CaMP]. The Plev-11:G-CaMP happened to 

be part of the integrated transgene, and was not used for any analyses in this report. The 

arrowhead in each image indicates the muscle arm extended into the pre-anal ganglion region. 

(F-M) Lateral views of the male anal depressor at mid-L1(F), mid-L2(G), mid-L3(H and I), early 

L4(J), mid-L4(K), late L4(L) and adult(M) stage. All the animals imaged carried the integrated 

transgene rgIs3 [Plev-11:Dsred; Plev-11:G-CaMP]. The arrowheads in (F-H) indicate the muscle 

arm extended into the pre-anal ganglion region. All the pictures are positioned as the anterior to 

the left and ventral to the bottom. For all of the images, the scale bar represents 10µm. 
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I found that the anal depressor muscle arm exhibited dynamic changes in the 

male. In the hermaphrodite, the anal depressor maintained an obvious muscle arm in the 

pre-anal ganglion region throughout adulthood (Figure 17A-17E and Table 1). However, 

in the male, the muscle arm began to retract during the L3 stage (Figure 17F-17H, and 

Table 1). Concurrent with the muscle arm retraction , I observed that the male anal 

depressor started to extend filopodia dorsal-anteriorly towards the sex muscle cells in 

78% (n=18) of the males. By L4 stage, the male anal depressor muscle arm projection 

could not be easily identified in the pre-anal ganglion region (Figure 17I-17M, and Table 

1). When I feminized the anal depressor with the tra-2 IC construct, the muscle arm 

retraction also occurred, but was delayed to mid- to late L4 stage for the majority of the 

males (Figure 17G-17L, and Table 1). This indicates that aspects of this process might 

be regulated by the intrinsic sex of the anal depressor, in addition to the cell-cell 

interactions with neighboring male cells. 

 

 

Table 1. Percentages of animals that have muscle arm extended into the pre-anal ganglion. 

 

Mid-L2 Mid-L3 Early L4 Mid-L4 Adult 

Wild-type Her 100% (n=15) 100% (n=7)   100% (n=12) 100% (n=14) 100% (n=9) 

Her+TG 100% (n=12) 100% (n=17) 100% (n=8) 100% (n=9) 100% (n=13) 

Wild-type Male 100% (n=13) 44% (n=18) 0% (n=17) 0% (n=16)   0% (n=15) 

Male+TG 100% (n=11) 82% (n=17) * 46% (n=26) ** 19% (n=16) 0% (n=39) 

* Fisher’s exact test comparing mid-L3 wild-type males with mid-L3 males carrying the transgene (TG) 

[Pexp-1: tra-2 (IC)::SL2:::DsRed]; p=0.0354. ** Fisher’s exact test comparing early L4 wild-type males 

with early L4 males carrying the transgene (TG) [Pexp-1: tra-2 (IC)::SL2:::DsRed]; p=0.0011. 
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Figure 18. Defecation does not rely on the reorganizing anal depressor during L4 

development. (A) Expulsion in hermaphrodite and larval males. The top figure shows that when 

the expulsion step is not activated, the anus is closed and the sphincter is relaxed. The bottom 

figure shows that when expulsion occurs, the intestinal muscles and the sphincter contract to 

squeeze the intestinal contents posteriorly, and the contraction of the anal depressor helps to 

open the anus to allow expulsion to occur [adapted from (Thomas, 1990)]. (B) Expulsion in adult 

males. The top figure shows that when the expulsion step is not activated, the sphincter contracts 

to seal the intestine. When defecation occurs (bottom figure), the sphincter relaxes to allow the 

intestinal contents to pass through (McIntire et al., 1993a; McIntire et al., 1993b; Reiner and 

Thomas, 1995). The anal depressor does not participate in defecation in adult males [adapted 

from (Reiner and Thomas, 1995)]. (C) Worms that can defecate effectively have a long and thin 

intestine (left figure), whereas worms that have defecation defects have a bloated intestine (right 

figure). The intestinal area is measured as the number of pixels within the intestinal lumen 

(highlighted region). The scale bar is 100 µM. (D) Dot plots on the left compare the intestinal 

lumen area of mock-ablated animals with anal-depressor-ablated animals at L3, early L4 and 

mid-L4 stages. The dot plots on the right compare the length of the intestinal lumen to show that 

there was no difference regarding the worm size between the differentially operated worms. The 

p value was calculated using one-way ANOVA with the Bonferroni’s Multiple Comparison Test 

(n.s. = not significant). 
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We know little of the mechanistic details of the adult male defecation program, 

other than the sphincter’s requirement for molecules that promote inhibitory GABA 

signal transduction (Figure 18A, 18B) (Reiner and Thomas, 1995). During L4 stage, the 

sphincter alters the muscle fiber organization and becomes hypertrophied. In adult 

males, the inhibitory GABA signaling relaxes the sphincter and allows expulsion to 

occur (Reiner and Thomas, 1995; Sulston et al., 1980a). However, the correlation 

between the retraction of the anal depressor muscle arm and morphological 

reorganization suggests that the male adult defecation program might function as early 

as late L3 to L4 stage.  

To determine when the adult male defecation system becomes functional, I laser-

ablated the anal depressor nucleus in L1 animals. I noted that although the anal depressor 

corpse persisted throughout L1 to the end of the L3 larval stages, the operation led to 

ineffective expulsion, accumulation of intestine contents and a dilated (constipated) 

intestinal lumen (Figure 18C and 18D). When the anal depressor-ablated worms 

developed into L4 larva, the dilated intestine phenotype disappeared, suggesting that 

some level of defecation behavior was restored (Figure 18D). Therefore, I suggest that 

the reorganizing anal depressor does not participate in defecation behavior during L4 

development, and likely, the defecation program used by the adult males is capable of 

functioning during the early L4 stage. 

Chapter III summary 

Both endogenous and exogenous sex determination mechanisms are required to 

achieve the sexually dimorphic development of the anal depressor. By illuminating the 
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sarcomere structure using YFP-tagged actin, I found that the male anal depressor alters 

the orientation of the sarcomere during L4 development. Feminized male anal depressor 

displays hermaphrodite-like anterior growth, whereas masculinized hermaphrodite anal 

depressor has restrained anterior growth. Therefore I concluded that early anterior 

growth of the anal depressor is controlled by the cell-autonomous sex determination 

pathway. The M cell-ablated male and the mab-5 mutant male have defects to extend an 

anterior domain to disassemble the sarcomere. This suggests that the two processes are 

controlled by signaling derived from the male sex muscles. Additionally, laser ablation 

of the anal depressor does not affect defecation behavior after L4 development, 

indicating it does not function as a defection muscle after being reorganized. Therefore, 

the morphological change of the male anal depressor is accompanied by functional 

transition.  
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CHAPTER IV 

WNT SIGNALING REGULATES DEVELOPMENT OF THE MALE ANAL 

DEPRESSOR  

 

The sarcomere disassembly during L4 larval stage is controlled by the Wnt 

signaling pathway 

Anal depressor development in male C. elegans is a sexually dimorphic process. 

The L4 developmental process is of particular interest because the sarcomere change is 

dramatic. During early L4 development, a ventral slit demarcates the muscle cell into 

anterior and posterior domains (Figure 19A and 19B). This process is accompanied by 

the anterior retraction of the tail tip cells (Figure 19A’ and 19B’). By the time the tail tip 

cells are completely retracted from the cuticle (Figure 19C’), the anterior domain moves 

from the rectum to the top of the male developing sex muscles. Filopodia start to extend 

along the sex myoblasts and the sarcomere contained within the anterior domain 

disassembles (Figure 19C). The posterior domain remains intact until the hypodermal 

cells start to retract dorsally (Figure 19D’). The posterior sarcomere disassembles, and 

the length of the domain reduces as the dorsal retraction proceeds (Figure 19D and 19E). 

Morphogenesis of the rays also occurs during this time period (Figure 19E’). Just before 

L4 molt, the disassembled sarcomere filaments are depleted from the posterior domain. 

At L4 molt, a novel sarcomere is established on top of the sex muscles, running anterior-

posteriorly (Figure 19F and 19F’).    
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Figure 19. The male anal depressor reorganizes the sarcomere during L4 development. (A-

F) Lateral view of the male anal depressor at: early L4 stage 1 (A), early L4 stage 2 (B), mid-L4 

(C), late L4 stage 1 (D), late L4 stage 2 (E), and adult (F). All the animals imaged carry the 

transgene rgEx497 [Punc-103E:YFP::actin]. Arrows in (A-C) indicates the slit formed at the 

ventral region of the anal depressor. Arrow in (D) indicates the disassembled H zone in the 

posterior anal depressor. Arrow in (E) indicates the H zone disappears from the posterior domain 

of the anal depressor. Arrow in (F) indicates the H zone of the new sarcomere in the adult anal 

depressor. (A’-F’) Corresponding Normaski images of the male tail for (A-F). (A’ and B’) The 

arrows indicate the retracting tail tip cells. (C’) The arrow indicates that the tail tip cells 

complete anterior retraction. (D’) The arrow indicates that the tail hypodermal cells start to 

retract dorsally. (E’) The arrow indicates the rays. (F’) The arrow indicates the spicules. All the 

pictures are positioned as the anterior to the left and ventral to the bottom. For all of the images, 

the scale bar represents 10µm. 
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Wnt signaling pathway has been shown to be involved in vertebrate 

cardiogenesis (Lin et al., 2007; Naito et al., 2006; Qyang et al., 2007; Ueno et al., 2007). 

It also has been shown to regulate cell polarity in Drosophila and cell migration in C. 

elegans (Chalfie et al., 1981; Kenyon, 1986). Therefore, it is a good candidate for 

regulating the anal depressor development during L4 stage. There are three Wnt ligands 

that are expressed from the hermaphrodite tail region during larval development: egl-20, 

lin-44 and cwn-1 (Figure 20A) (Herman et al., 1995; Inoue et al., 2004; Pan et al., 2006; 

Whangbo and Kenyon, 1999). Since the male tail may possess an expression pattern 

similar to the hermaphrodite, the Wnt ligands may be the morphogen to trigger the 

sarcomeric reorganization. I examined the egl-20, lin-44 and cwn-1 loss of function 

mutants to observe if they have anal depressor developmental defects (Figure 20B-20G).  
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Figure 20. Wnt mutants possess anal depressor sarcomere disassembly defects. (A) Cartoon 

showing the expression domain of lin-44, egl-20, and cwn-1 in the posterior half of the 

hermaphrodite. (B-D) Anal depressor of egl-20 (n585) adult males display defects in sarcomere 

disassembly. The posterior domain of the anal depressor either maintains the sarcomere (B) (type 

I), retains large amount of myofilaments (C) (type II), or retain residual myofilaments (D) (type 

III). (E-G) Anal depressor of lin-44 (n1792) adult males display defects in sarcomere 

disassembly. The posterior domain of the anal depressor either maintains the sarcomere (E) (type 

I), retains large amount of myofilaments (F) (type II), or retains residual myofilaments (G) (type 

III). All the animals assayed carry the transgene rgEx497 [Punc-103E:YFP::actin]. The arrows in 

(B) and (E) indicate the H zone of the sarcomere. The arrows in (C), (D), (F), and (G) indicate 

the myofilaments retained in the anal depressor. (H-J) Model images of the anal depressor for 

type I (H), type II (I) and type III (J) defectiveness. The actin filaments are represented by 

greenish blue lines. All the pictures are positioned as the anterior to the left and ventral to the 

bottom. For all of the images, the scale bar represents 10µm. 
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The egl-20(n585) adult males have variably defective anal depressor, which 

either fails to disassemble its sarcomere (Figure 20B) or fails to deplete the 

myofilaments (Figure 20C and 20D). Based on the severity of the phenotype, the 

defectiveness of the adult male depressor was classified into three types (Figure 20H-

20J). Anal depressors that have the type I defects fail to initiate the disassembly process, 

and therefore maintain the posterior sarcomere (Figure 20H). The rest manage to start 

disassembling the sarcomere (indicated by the disappearance of the H zone), but fail to 

remove the myofilaments from the posterior domain. Based upon the amounts of 

filaments retained, the defects were classified as type II, if they contain large amounts of 

filaments (Figure 20I), and type III if they contain few filaments (Figure 20J). The type I 

defects are the most severe, in which the disassembly signaling is absent. The type III 

defects are the least severe in which the majority of the disassembly process is 

completed. The variability of the egl-20(n585) mutant phenotype indicates that there is 

compensating signaling derived from other Wnt ligands. As expected, lin-44(n1792) 

mutants also possess sarcomere disassembly defects similar to the egl-20 mutants 

(Figure 20E-20G). I classified the defectiveness of lin-44 mutant anal depressor using 

the same method as for egl-20; and I found that compared to egl-20, lin-44 mutants have 

a higher mutant penetrance in regards to the anal depressor morphology (Figure 21B). I 

also measured the area of the anal depressor that is filled with retained myofilaments 

(Figure 21A). The broad range of the data shows that the disassembly defects are 

variable among individuals. The majority of the cwn-1(ok546) mutants display wild type 

anal depressor development (Figure 21A and 21B), indicating that CWN-1 plays a minor 
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role in regulating sarcomere disassembly. Therefore, I concluded that EGL-20 and LIN-

44 play a major role in regulating sarcomere disassembly in the male anal depressor. 

 

 

 

Figure 21. Quantification and classification of the anal depressor defects of Wnt mutants. 

(A) Area of the non-disassembled posterior domain of the anal depressor of wild type (n=52), 

egl-20 (n585) (n=55), lin-44(n1792) (n=36), and cwn-1(ok546) (n=30) adult males. All the 

animals assayed carry the transgene rgEx497 [Punc-103E:YFP::actin]. (B) Calculated 

percentage of anal depressor defects for wild type, egl-20 (n585), lin-44(n1792), and cwn-

1(ok546) adult males based on data in (A): 100% of the wild type adult males have a wild type 

adult anal depressor; 10.9%, 36.4%, 29.1%, and 23.6% of the egl-20 (n585) adult males have 

type I, II, III and wild type anal depressors, respectively; 8.3%, 66.7%, 22.2%, and 2.8% of the 

lin-44(n1792) adult males have type I, II, III and wild type anal depressors, respectively; 0%, 

0%, 10%, and 90% of the cwn-1(ok546) adult males have type I, II, III and wild type anal 

depressors, respectively. *** p<0.0001; * p=0.0458. The p values were calculated between the 

wild type and defective (I+II+III) groups using Fisher’s exact test. 

 

 

Wnt can activate different downstream components to trigger distinct cellular 

events (Komiya and Habas, 2008; Niehrs, 2012). The canonical Wnt pathway inhibits 

the APC-Axin-GSK3-CK1 complex and frees β-catenin to initiate cell fate gene 

expression. The Wnt-calcium pathway releases Ca
2+

 from the ER to activate downstream 

Ca
2+

 responsive proteins. The Wnt-PCP pathway activates ROCK and JNK, which then 
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regulate actin polymerization and cytoskeleton reorganization. To identify the signaling 

components that act downstream of EGL-20 and LIN-44, I first examined the canonical 

pathway mutants, including the Frizzled and β-catenin mutants. C. elegans has four 

homologs for Frizzled: lin-17, mig-1, cfz-2 and mom-5. I have examined two of them: 

lin-17 and mig-1. lin-17(e620) mutant males have anal depressor disassembly defects 

(Figure 22A and 22B). However, the anal depressor defects in 30% of the lin-17(e620) 

mutants (n=17) are more severe compared to the egl-20(lf) mutants (Figure 21B, 22A-

22B). This might be that the lin-17(e620) mutation confers pleiotropic developmental 

defects to the male tail, which also compromise the anal depressor’s morphology. To 

confirm the role of LIN-17 in regulating sarcomere disassembly, I knocked down lin-17 

expression using RNAi feeding method. The RNAi-treated males develop a more normal 

tail, indicating that the residue LIN-17 activity allows early larval development to occur 

normally. However, I still observed sarcomere disassembly defects in the anal depressor, 

and the defect level is comparable to the Wnts mutants (Figure 21A and 22C). This 

suggests that LIN-17 is involved in the regulation of sarcomere disassembly, and the 

disassembly process is sensitive to LIN-17 dosage. None of the mig-1 mutants display 

any anal depressor defects, indicating the MIG-1 Wnt receptor is not involved in the 

reorganization process.  
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Figure 22. Frizzled mutants possess anal depressor disassembly defects. (A-B) Anal 

depressor of lin-17(e620) adult males display defects in sarcomere disassembly. The posterior 

domain of the anal depressor either maintains the sarcomere (A) (type I), or retains large 

amounts of myofilaments (B) (type II). The arrow in (A) indicates the H zone of the sarcomere. 

(C) Area of non-disassembled posterior domain of the anal depressor of RNAi control (n=25) 

and lin-17 RNAi (n=20) adult males. (D) Area of non-disassembled posterior domain of the anal 

depressor of wild type (n=52), lin-17(e620) (n=17), and mig-1(e1787) (n=18) adult males. (E) 

Calculated percentages of anal depressor defectiveness for wild type, lin-17(e620), and mig-

1(e1787) adult males based on data in (D): 100% of the wild type adult males have a normal anal 

depressor; 23.5%, 76.5%, 0% and 0% of the lin-17(e620) adult males have type I, II, III and wild 

type anal depressors, respectively; 100% of the mig-1(e1787) males have a wild type adult anal 

depressor. *** p<0.0001. The p value was calculated between the wild type and defective 

(I+II+III) groups using Fisher’s exact test. (A-E) All the animals assayed carry the transgene 

rgEx497 [Punc-103E:YFP::actin]. All the pictures are positioned as the anterior to the left and 

ventral to the bottom. For all of the images, the scale bar represents 10µm. 

 

 

Among the β-catenin homologs in C. elegans, bar-1 and hmp-2 are the possible 

downstream effectors to promote anal depressor sarcomere disassembly. The other β-

catenin homolog, wrm-1, is involved in a non-canonical Wnt pathway which is essential 
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for embryonic development (Rocheleau et al., 1999). Therefore it is difficult to assess 

the role of wrm-1 during post-embronyic development. bar-1(ga80) mutant males have 

the anal depressor sarcomere disassembly defects (Figure 23A-23C). In addition, the 

bar-1 mutation confers a novel phenotype that was not observed in other Wnt mutant 

lines (Figure 23B). Besides anterior migration, the anterior domain exhibits anterior 

lateral growth on top of the sex muscles (Figure 23B). For the type I defects observed in 

bar-1 mutants, the anal depressor maintains an intact sarcomere in both the anterior and 

posterior domain (Figure 23A). This indicates that in those animals, the sarcomere 

disassembly signaling is absent in both the anterior and posterior domain. The 

differences regarding the defectiveness between the bar-1 and Wnt mutants (egl-20 and 

lin-44) indicate that BAR-1 regulates a wider range of cellular events than EGL-20 and 

LIN-44. Or alternatively, BAR-1 is the common effector for both LIN-44 and EGL-20; 

if this possibility is correct, then lin-44 egl-20 double mutants should display the same 

level of defects as the bar-1 single mutants. HMP-2 is the β-catenin that is localized to 

the adheren junction complex and basically functions as a structural protein instead of a 

signaling protein (Korswagen et al., 2000). Therefore, only a small proportion of the 

hmp-2 mutants exhibit minor disassembly defects (Figure 23D and 23E).  

Based on the data for Wnt, Frizzled and β-catenin mutants, I concluded that the 

Wnt-canonical signaling pathway regulates the disassembly of anal depressor sarcomere. 
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Figure 23. β-catenin mutants have anal depressor disassembly defects. (A-C) Anal depressor 

of bar-1(ga-80) adult males display sarcomere disassembly defects. The posterior domain of the 

anal depressor either maintains the sarcomere (A-B) (type I), or retains large amount of 

myofilaments (B) (type II). I* indicates the novel type of defects, in which the anterior domain 

grows anteriorly (arrow). The arrow in (A) indicates the H zone of the sarcomere; the arrow in D 

indicates the myofilaments retained in the anal depressor. (D) Area of non-disassembled 

posterior domain of the anal depressor of wild type (n=55), bar-1(ga80) (n=66), and hmp-

2(qm39) (n=21) adult males. (E) Calculated percentages of anal depressor defectiveness for wild 

type, bar-1(ga80), and hmp-2(qm39) adult males based on data in (D): 100% of the wild type 

adult males have a wild type adult anal depressor; 28.8%, 39.4%, 15.2%, and 16.6% of bar-

1(ga80) adult males have type I, II, III and wild type anal depressors, respectively; 19% and 81% 

of hmp-2(qm39) adult males have type III and wild type anal depressors, respectively. *** 

p<0.0001; ** p=0.0047. The p values were calculated between the wild type and defective 

(I+II+III) groups using Fisher’s exact test. (A-E) All the animals assayed carry the transgene 

rgEx497 [Punc-103E:YFP::actin]. All the pictures are positioned as the anterior to the left and 

ventral to the bottom. For all of the images, the scale bar represents 10µm.  
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Determining the site of action of Wnt-canonical pathway  

There are two possible mechanisms Wnt-canonical signaling uses to regulate the 

sarcomere disassembly of the anal depressor. The Wnt signaling could act on the anal 

depressor itself, by initiating expression of muscle remodeling genes or differentiation 

genes. Or it could be affecting the cell fate specification of the neighboring cells, which 

serve as the signaling center for anal depressor remodeling. To differentiate between 

these two possibilities, I first examined the expression pattern of the Wnts, receptors and 

β-catenin.  

I used the fluorescent protein Timer, which shifts its fluorescence emission from 

green to red over time, to examine the timing and the expression domain of egl-20 in the 

male tail (Figure 24A-24C). EGL-20 is expressed from the male sex myoblasts and the 

anal depressor as early as late L3, just before the anal depressor starts to form a ventral 

slit (Figure 24A and 24B). The expression persists throughout L4 development (Figure 

24C). Therefore, EGL-20 is actively expressed from the developing sex muscles and the 

anal depressor itself over the time period of the male anal depressor reorganization.  
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Figure 24. Expression profile of Wnt and Frizzled during different developmental stages. 

(A-C) egl-20 is expressed from the anal depressor (yellow arrow in A and C), the sex myoblasts 

(blue arrow in B and blue arrowhead in C), and the B lineage cells that form the cloaca (blue 

arrowhead in A and B) at L3 (n=4) and L4 larvae (n=10). All the animals imaged carry the 

transgene rgEx726 [Pegl-20:Timer]. All the images were taken with the wavelength of 540nm. 

(D-F) lin-17 is expressed from the anal depressor (yellow arrow in D, E and F), the proctodeum 

(arrowhead in D), and the B lineage cells that form the spicules (arrowhead in E) during larval 

(n=25) and adult development (n=16). All the animals imaged carry the transgene rgEx804 

[Plin-17:YFP]. (G-I) lin-44 is expressed from the hyp 8-11 (arrowhead in G and H) throughout 

larval development (n=22). In the adults (n=5), some of the ray neurons also express LIN-44 

(arrowhead in I). All the animals imaged carry the transgene rgEx802 [Plin-44:YFP]. All the 

pictures are positioned as the anterior to the left and ventral to the bottom. For all of the images, 

the scale bar represents 10µm. 

 

 

The M cell-derived male sex muscles have been shown to promote sarcomere 

disassembly in the anal depressor (Figure 11I, 12C and 12D). Unless they produce 

additional cues for anal depressor reorganization, the male sex muscles are likely the 
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signaling source of EGL-20. However, the anal depressor defects seen in the M cell-

ablated worms are less severe compared to the egl-20 mutants (Figure 11I and 20B). 

This indicates that either there is still residue EGL-20 signaling from the M-cell-

operated sex muscles, or that the anal depressor-derived EGL-20 signaling also 

contributes to the disassembly of the posterior sarcomere. Autocrine Wnt signaling has 

been seen mainly in stem cell or cancer cell self-renewal (Akiri et al., 2009; Bafico et al., 

2004; Lim et al., 2013). However, self-promoting Wnt has not been shown to regulate 

sarcomere disassembly. I rescued egl-20 expression in the anal depressor in egl-20 

mutants. The transgenic worms show complete rescue of the sarcomere disassembly 

defects (Figure 25A and 25B). This indicates that autocrine Wnt signaling is sufficient to 

induce anal depressor reorganization. However, the endogenous EGL-20 signaling from 

the anal depressor might be weaker compared to transgene expression, and therefore still 

requires the additional EGL-20 secreted from the sex muscles. To assess the role of self-

derived EGL-20 signaling, anal depressor-specific knock-out of EGL-20 needs to be 

conducted to observe if there are any disassembly defects.  
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Figure 25. Cell-specific rescue of egl-20 expression from the anal depressor rescued the 

sarcomere disassembly defects. (A) Area of the non-disassembled posterior domain of the anal 

depressor of egl-20(n585) adult males (egl-20(lf); n=23), or egl-20(n585) adult males that carry 

the transgene rgEx803 [Paex-2:egl-20::SL2:::DsRed; Punc-103E:YFP::actin] (egl-20(lf); adp 

rescue; n=26). (B) Percentage of anal depressor defects of egl-20(n585) adult males (egl-20(lf)), 

or egl-20(n585) adult males that carry the transgene rgEx803 [Paex-2: EGL-20::SL2:::DsRed; 

Punc-103E: YFP::actin] (egl-20(lf); adp rescue) based on data in (A): 79% of the egl-20(n585) 

adult males have defective anal depressor; 100% of the egl-20(n585) adult males that carry the 

transgene have wild type anal depressor. *** p< 0.0001. The p value was calculated using 

Fisher’s exact test.   

 

 

I also examined the tissues that express LIN-44. I found that lin-44 promoter 

activity was very strong in the male tail. During larval stage (L1 to L4), LIN-44 was 

expressed from the tail hypodermal cells: hyp 8, 9, 10 and 11 (Figure 24G). During mid 

L4, when they fused and completed retraction from the tail tip, those hypodermal cells 

were still expressing LIN-44 (Figure 24H). The expression persists until adulthood 

(Figure 24I). Starting from late L4, some of the ray precursor cells also express LIN-44 

(Figure 24I). Thus in contrast to EGL-20, where the expression domain is anterior to the 

anal depressor, tissues that express LIN-44 are located posterior to the anal depressor.  
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LIN-17 is expressed in the anal depressor, the proctodeum, and the B lineage 

cells that form adult spicules during larval and adult development (Figure 24D-24F). The 

expression in the sex myoblasts initiates at around early L4 and persists until adulthood 

(Data not shown). However, the sex muscle expression is weaker and less consistent 

compared to the expression in the anal depressor. The expression from the sex muscles is 

seen in 52% of the L4-adult worms examined (n=29), whereas 93% of those worms 

express LIN-17 in the anal depressor. Therefore, LIN-17 is more likely to function in the 

anal depressor, rather than the sex muscles.  

 

 

 

Figure 26. bar-1 is expressed from the anal depressor during larval development. (A-B) 

bar-1 is expressed in the anal depressor (yellow arrow) at mid-L3 (A) and mid-L4 (B). Note that 

there is no expression in the sex myoblasts during L4 development (blue arrowhead in B). The 

animals assayed all carry the transgene rgEx783 [Pbar-1:bar-1::YFP; Pbar-1:CFP]. (A) is taken 

at the wavelength of 525nm; (B) is taken at the wavelength of 480nm. (C-D) bar-1(ga80) mutant 

males have wild type morphogenesis of sex muscles. The blue arrows in C and D indicate the 

correctly localized sex muscles, the yellow arrow indicates the anal depressor. The animals 

assayed carry the transgene rgEx497 [Punc-103E:YFP::actin]. All the pictures are positioned as 

the anterior to the left and ventral to the bottom. For all of the images, the scale bar represents 

10µm. 

 

 

To monitor the expression pattern of β-catenin, I used the promoter of bar-1 to 

drive the expression of CFP, or bar-1 promoter driving expression of BAR-1 protein 
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tagged with YFP (Eisenmann et al., 1998). The second construct allows me to monitor 

active β-catenin signaling in the anal depressor. I found that BAR-1 is actively expressed 

and functionally active in the male anal depressor during larval and adult development 

(Figure 26A and 26B, n=36). None of those constructs displayed any expression in the 

sex muscles during L4 development (Figure 26B), indicating there is no active form of 

BAR-1 in the sex muscles. I did not examine the BAR-1 activity in earlier M lineage. 

But the bar-1 mutants did not display any obvious defects in sex muscle morphogenesis 

(Figure 26C and 26D, n=66). Therefore, bar-1 mutation seems to confer defects at the 

site of the anal depressor. To confirm the site of action of BAR-1, I need to tissue 

specifically rescue BAR-1 in the anal depressor in the bar-1 mutant.  

Mutagenesis to identify parallel pathways that co-regulate anal depressor 

development 

The Wnt-canonical pathway has been shown to regulate sarcomere disassembly 

in the anal depressor. However, the anal depressor phenotype of bar-1 mutants is not 

fully penetrant (Figure 23E). This led us to think that there is compensatory mechanism 

to co-regulate the disassembly process. To identify other signaling components involved 

in the anal depressor reorganization, I conducted an EMS mutagenesis to search for 

mutants that have similar phenotype as the Wnt mutants (egl-20 and lin-44).  
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Figure 27. rg441 mutant males possess anal depressor sarcomere disassembly defects. (A-

C) Anal depressor of rg441 adult males display defects in sarcomere disassembly. The posterior 

domain of the anal depressor either maintains the sarcomere (A), retains large amount of 

myofilaments (B), or retain residual myofilaments (C). The arrow in (A) indicates the H zone of 

the anal depressor sarcomere, and the arrows in (B) and (C) indicates the retained myofilaments 

in the anal depressor. (D) Area of non-disassembled posterior domain of the anal depressor of 

wild type (n=55) or rg441 (n=51) adult males. All the animals assayed carry the transgene 

rgEx497 [Punc-103E:YFP::actin]. (E) Calculated percentages of anal depressor defects for wild 

type and rg441 adult males based on data in (D): 100% of the wild type adult males have a wild 

type adult anal depressor; 37.3%, 41.2%, 15.7%, and 5.8% of rg441 adult males have type I, II, 

III and wild type anal depressors, respectively. *** p < 0.0001. The p value was calculated 

between the wild type and defective (I+II+III) groups using Fisher’s exact test. (A-C) are 

positioned as anterior to the left, and ventral to the bottom. For all of the images, the scale bar 

represents 10µm.  

 

 

I identified one mutant line, rg441, which possesses the same phenotype as egl-

20 mutants (Figure 27A-27C). Using SNP mapping strategy, I mapped the mutation to 

the left end of chromosome V (Supplementary Table 1). Then I did whole genome 
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sequencing, and found several mutations located within that small chromosomal interval. 

I found that there is a nonsense mutation located within the coding sequence of egl-8 

(Figure 28). egl-8 encodes the C. elegans homolog of phospholipase C-β (PLC-β). PLC-

β functions to cleave PIP2 to generate DAG and IP3. Both products activate some key 

mediators of signaling pathways, such as PKC and JNK, which then trigger different 

cellular responses. I set up several experiments to identify if the mutation is responsible 

for the rg441 anal depressor phenotype. First I verified that rg441 mutation is recessive 

(Table 2). Therefore complementation test can be set up between rg441 and other known 

mutant lines to verify which gene is responsible for the phenotype. The heterozygous 

rg441/n488 (a classical allele of egl-8) males have the rg441 phenotype (Table 2). This 

indicates that the mutation located within egl-8 confers the rg441 phenotype. 

Additionally, the egl-8(n488) males also possess the posterior sarcomere disassembly 

defects (Table 2). The rg441 phenotype was rescued using egl-8 genomic sequence 

(Figure 29). This confirms that PLC-β is required for sarcomere disassembly process in 

the male anal depressor.  
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Figure 28. Diagram of EGL-8 isoforms and location of rg441. Black boxes and lines indicate 

exons and introns in egl-8. Three major isoforms of EGL-8 are shown here: a, b and c. Orange 

arrow and dotted lines indicate the location of rg441 mutation. Magenta box indicates the classic 

deletion allele, n488. 

 

 

 

Table 2. Mutation in egl-8 contributes to the anal depressor defects. 

Genotype 

 

wild type  

adp 

defective  

adp 

N % 

defectiveness 

rg441 3 48 51 90.6 

rg441/+ 18 0 18 0 

rg441/n488 or rg441/+ * 18 15 33 45.5 

egl-8 (n488) 8 21 29 72.4 

*F1 males derived from rg441 hermaphrodite crossed with egl-8 n488/+ males. 
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Figure 29. The anal depressor defects in rg441 males were rescued using egl-8 genomic 

DNA. Percentages of anal depressor defects for rg441 adult males (n=51) and rg441 adult males 

which carry transgene rgEx778 [Pegl-8:egl-8; Plev-11: DsRed] (rg441 rescue) (n=59): 37.3%, 

41.2%, 15.7% and 5.9% of the rg441 males have type I, II, III and wild type anal depressors, 

respectively; 8.5%, 35.6%, 42.4%, and 13.6% of rg441 rescue males have type I, II, III and wild 

type anal depressors, respectively. *** p= 0.0004. The p value was calculated using Fisher’s 

exact test between type I group and none type I group (II+III+wild type).  

 

 

PLC-β has been indicated to trigger Ca
2+

 signaling by inducing Ca
2+

 efflux from 

the endoplasmic reticulum. The signaling components upstream of PLC-β have been 

shown to be some behavior-related G-protein-coupled receptors (Wu et al., 1993). 

Muscarinic acetylcholine receptors activate Gq, which then activates PLC-β to activate 

muscle contraction. To verify if acetylcholine activation is upstream of PLC-β to induce 

sarcomere disassembly, I examined Gq loss of function mutants egl-30. The egl-

30(ad805) mutants have wild type anal depressor development (data not shown). Unless 

Gαs in C. elegans can compensate for the role of EGL-30, it is less likely that Gq-

mediated PLC-β activation is required for sarcomere disassembly in the male anal 

depressor.  
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Figure 30. goa-1 mutants possess anal depressor sarcomere disassembly defects. (A-C) Anal 

depressor of goa-1 adult males display defects in sarcomere disassembly. The posterior domain 

of the anal depressor either retains large amount of myofilaments (A), retain residual 

myofilaments (B), or have a wild type anal depressor (C). The arrows in (A) and (B) indicates 

the retained myofilaments in the anal depressor, and the arrow in (C) indicates the H zone of the 

newly-established anal depressor sarcomere. (D) Area of non-disassembled posterior domain of 

the anal depressor of wild type (n=50), goa-1(n1134) (n=61), gpa-16(it143) (n=16) or gpa-

14(pk347) (n=18) adult males. All the animals assayed carry the transgene rgEx497 [Punc-

103E:YFP::actin]. (E) Calculated percentages of anal depressor defects for wild type, goa-

1(n1134), gpa-16(it143) , or gpa-14(pk347) adult males based on data in (D): 100% of the wild 

type adult males have wild type adult anal depressor; 0%, 8.2%, 23%, and 68.9% of goa-

1(n1134) adult males have type I, II, III and wild type anal depressors, respectively; 14.3% and 

85.7% of gpa-16(it143) males have type III and wild type anal depressors, respectively; 100% of 

the gpa-14(pk347) males have a wild type anal depressor. *** p< 0.0001. The p value was 

calculated using Fisher’s exact test between wild type group and defective group (I+II+III). (A-

C) are positioned as anterior to the left, and ventral to the bottom. For all of the images, the scale 

bar represents 10µm. 

 

 

The Wnt signaling pathway has also been shown to activate Ca
2+

 signaling 

through PLC-β, known as the Wnt- Ca
2+

 pathway. In this pathway, the Wnt receptor 

Frizzled functions as a G-protein coupled receptor (Sheldahl et al., 1999). However, 



107 

 

instead of using Gq as a mediator, the Wnt-calcium pathway uses Go/i to activate 

downstream effectors (Katanaev et al., 2005). C. elegans have 16 Gα proteins (Jansen et 

al., 1999), among which GOA-1 is the identified ortholog for Go. To verify if Go is 

involved in the disassembly process, I examined the goa-1 loss of function mutant. goa-

1 mutants only have partial defects (Figure 30A-30E). There might be redundancy 

between GOA-1 and other C. elegans Gα units in regulating the sarcomere disassembly 

process. GPA-14 and GPA-16 are two other Gαs that display the highest sequence 

similarity with GOA-1 (Correa et al., 2015). Therefore, I also examined gpa-14 and gpa-

16 mutants. However, none of these mutants exhibit substantial defects for anal 

depressor developmental (Figure 30D-30E). Therefore, more Gα mutants, or even 

double or triple Gα mutants, need to be examined.  

Wnt-calcium pathways activate Ca
2+

 signaling, through PLC-β and IP3R. On the 

sarcoplasmic reticulum, there is also the Ca
2+

-gated Ca
2+

 channel, UNC-68, which 

functions to amplify the Ca
2+

 signaling. Both the itr-1 RNAi mutant and unc-68 loss of 

function mutants have the anal depressor disassembly defects (Figure 31). The unc-68 

mutation confers a 95%-penetrant phenotype (Figure 31D). However, the itr-1 RNAi 

assay only gives a 50% penetrance (Figure 31B). This might be due to that RNAi only 

creates knock-down rather than knock-out effect. But it also raises the possibility that 

there might be other Ca
2+

 triggers for UNC-68. 
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Figure 31. Quantification and classification of the anal depressor defects of itr-1 and unc-68 

mutants. (A) Area of non-disassembled posterior domain of the anal depressor of RNAi control 

(n=31) and itr-1 RNAi (n=65) adult males. All the animals assayed carry the transgene rgEx497 

[Punc-103E:YFP::actin]. (B) Calculated percentage of anal depressor defects for RNAi control 

and itr-1 RNAi adult males based on data in (A): 93.5% and 6.5% of the RNAi control adult 

males have wild type and type III anal depressor, respectively; 1.5%, 18.5%, 21.5%, and 58.5% 

of the itr-1 RNAi adult males have type I, II, III and wild type anal depressor, respectively. (C) 

Area of non-disassembled posterior domain of the anal depressor of wild type (n=50) and unc-

68(r1158) (n=22) adult males. All the animals assayed carry the transgene rgEx497 [Punc-

103E:YFP::actin]. (D) Calculated percentage of anal depressor defects for wild type and unc-

68(r1158) adult males based on data in (C): 100% of the wild type adult males have a wild type 

anal depressor; 31.8%, 59.2%, 4.5%, and 4.5% of the unc-68(r1158) adult males have type I, II, 

III and wild type anal depressors, respectively. *** p<0.0001. The p values were calculated 

between the wild type and defective (I+II+III) groups using Fisher’s exact test.  

 

 

The Wnt-calcium pathway mutants also possess the anal depressor disassembly 

defects. Therefore, I concluded that besides Wnt-β-catenin pathway, Wnt-calcium 

pathway also functions to regulate sarcomere disassembly of the anal depressor.  
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Determine the site of action of Wnt-calcium pathway 

The final output of the Wnt-calcium pathway is to regulate cell movement rather 

than cell fate determination (Kohn and Moon, 2005; Moon et al., 2004). To first verify if 

EGL-8 functions in the sex muscles or the tail hypodermal cells (signaling cells for 

EGL-20 or LIN-44) to modulate their migration, I examined the expression pattern of 

egl-8 in the male tail (Figure 32). I found that egl-8 is expressed from both the sex 

muscles and the male anal depressor. But the sex muscle expression starts only from L4 

molt, whereas the expression from the anal depressor persists throughout L4 

development (Figure 32). This indicates that EGL-8 does not influence the migration of 

the male sex muscles. Therefore EGL-8 most likely regulates the anal depressor 

development in the muscle cell itself.  

 

 

 

Figure 32. egl-8 expression pattern in the male tail. (A) In mid-L4 males, egl-8 is expressed in 

the anal depressor (yellow arrow) and the ray precursor cells (blue arrowhead), but not in the sex 

myoblasts (n=11). (B) In the adults, egl-8 is expressed in the ray neurons (blue arrowhead) and 

the anal depressor (n=4). All the males carry the transgene rgEx589 [Pegl-8:YFP]. All the 

images are positioned as anterior to the left, and ventral to the bottom. For all of the images, the 

scale bar represents 10µm. 
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If the hypothesis that Wnt-calcium signaling pathway functions in the anal 

depressor to modulate sarcomere disassembly is correct, elevated cytoplasmic calcium 

levels should be observed in the anal depressor. Calcium signaling tends to trigger 

cellular responses instantaneously. Therefore it is less likely that the calcium events 

occur much earlier than the time of anal depressor reorganization. I observed the calcium 

dynamics in the anal depressor during L4 development, when the remodeling events 

occur. G-CaMP is a Ca
2+

 sensor that increases the level of fluorescence as the amount of 

Ca
2+

 binding increases. By expressing G-CaMP in the anal depressor, I was able to 

monitor the Ca
2+

 changes that occur from the time when the anterior sarcomere starts to 

disassemble, till the time when disassembly completes in the posterior domain. I found 

that there is a continuous increase of Ca
2+

 levels in the anal depressor during this time 

period (Figure 33). The result indicates that there is active Ca
2+

 signaling in the anal 

depressor during the time of reorganization. 

Therefore, I concluded that Wnt-calcium signaling acts in the anal depressor 

during L4 development, possibly directly regulating the sarcomere disassembly process. 
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Figure 33. Calcium dynamics in the anal depressor during midL4-L4 molt transition time. 

For each male recorded, the starting point is mid L4 and the ending point is L4 molt. The 

average % Delta F/F0 is determined for all the males tested (n=3). The light gray lines indicate 

the SD. All the animals assayed carry the transgene rgEx794 [Paex-2:G-CaMP::SL2:::DsRed].  

 

 

Ca
2+

 responsive proteins promote sarcomere disassembly 

How does the Ca
2+

 signaling contribute to sarcomere disassembly? There are a 

group of kinases and proteins that respond to the Ca
2+

 signaling and activate downstream 

effectors (Hogan et al., 2003; Khorchid and Ikura, 2002; Luo and Weinstein, 1993). 

Those proteins might phosphorylate or dephosphorylate the sarcomeric proteins, 

compromise the integrity of the sarcomere and therefore trigger disassembly. The well-

known downstream effectors of  the Wnt-calcium pathway include PKC and CaMKII. 

PKC-2 is the protein kinase that has homology to the classical PKC family of 

calcium/DAG activated kinases. However, the pkc-2 mutant has a wild type anal 

depressor (Figure 34D and 34E). The UNC-43/CaMKII mutant males have 

constitutively protracted spicules (LeBoeuf et al., 2007), indicating that they also have a 

wild type anal depressor. Therefore, the canonical Ca
2+

 activated proteins might not play 

essential roles in regulating sarcomere disassembly in the anal depressor.  
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Figure 34. Ca
2+

 responsive proteins regulate sarcomere disassembly in the anal depressor. 

(A-C) Anal depressor of tax-6(ok2065) adult males display defects in sarcomere disassembly. 

The posterior domain of the anal depressor either maintains the sarcomere (A), retains large 

amount of myofilaments (B), or retain residual myofilaments (C). The arrow in (A) indicates the 

H zone of the anal depressor sarcomere, and the arrows in (B) and (C) indicates the retained 

myofilaments in the anal depressor. (D) Area of non-disassembled posterior domain of the anal 

depressor of wild type (n=33), pkc-2(ok328) (n=41), tax-6(ok2065) (n=48), cnb-1(jh103) (n=39) 

and clp-6(ok1779) (n=9) adult males. All the animals assayed carry the transgene rgEx497 

[Punc-103E:YFP::actin]. (E) Calculated percentages of anal depressor defects for wild type, pkc-

2(ok328), tax-6(ok2065), cnb-1(jh103) and clp-6(ok1779) adult males based on data in (D): 

100% of the wild type adult males have wild type adult anal depressor; 0%, 0%, 2.4%, and 

97.6% of pkc-2(ok328) adult males have type I, II, III and wild type anal depressor, respectively; 

6.3%, 14.6%, 25%, and 54.2% of tax-6(ok2065) males have type I, II, III and wild type anal 

depressors, respectively; 0%, 15.4%, 30.8%, and 53.8% of cnb-1(jh103) adult males have type I, 

II, III and wild type anal depressors, respectively; 11%, 11%, 44.5%, 33.3% of clp-6(ok1779) 

adult males have type I, II, III and wild type anal depressors, respectively. *** p<0.0001. The p 

values were calculated between the wild type and defective (I+II+III) groups using Fisher’s 

exact test. (A-C) are positioned as anterior to the left, and ventral to the bottom. For all of the 

images, the scale bar represents 10µm. 
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In mammals, there is a group of Ca
2+

 responsive phosphatases called 

calcineurins, which participate in muscle remodeling. The calcineurins can 

dephosphorylate and activate nuclear factor of activated T cell (NFAT), which then 

initiate muscle remodeling gene expression (Hogan et al., 2003). C. elegans also has the 

Calcineurin homologs, TAX-6 and CNB-1. tax-6 encodes the subunit that has the 

phosphatase activity whereas cnb-1 encodes the regulatory domain. Both tax-6 and cnb-

1 loss of function mutants have anal depressor sarcomere disassembly defects (Figure 

34A-34E). However, the level of penetrance and the phenotype severity of either mutant 

line are not comparable to the unc-68 or egl-8 mutants (Figure 27D-27E, 31C-31D). This 

indicates there might still be other effectors that act in parallel to calcineurin to regulate 

sarcomere disassembly. Calpains are Ca
2+

-activated cysteine proteases which have been 

shown to facilitate myofibrillar protein degradation during muscle fiber turnover (Huang 

and Forsberg, 1998). C. elegans have a group of Calpain homologs. Among those 

homologs, clp-6 and clp-3 are the two that have the male-specific elevation of 

expression level at L4 stage (http://www.wormbase.com). Therefore I wondered if there 

is any correlation between Calpain activity and anal depressor sarcomere disassembly. I 

examined the Calpain mutant clp-6 and found that clp-6 loss of function mutants possess 

the anal depressor sarcomere disassembly defects (Figure 34D-34E). But still, the level 

of penetrance and the severity of individual defects are not comparable to unc-68 

mutants. This may be due to the redundancy between clp-6 and clp-3. However, 

Calpains can only digest part of the myofibrillar proteins (Huang and Forsberg, 1998). 

Therefore additional proteases or protein kinases must be activated to promote 
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degradation of other sarcomeric proteins. Since unc-68 or egl-8 mutants display more 

severe defects, the activity of those proteases or protein kinases must also be 

compromised because of the lack of calcium signaling.  

Behavior calcium regulates sarcomere disassembly 

unc-68 mutants (UNC-68 is the calcium-gated calcium channel) have 95%-

penetrant phenotype, which is higher compared to egl-8 mutants. However, if egl-8 

signaling is the sole source of calcium for UNC-68 activation, one would expect that 

they have the same level of penetrance. The difference in penetrance level may be due to 

the fact that none of the egl-8 alleles that I used are null. However, the rg441 mutation 

truncates 65% of the protein, thus should function as a null. Therefore, there must be 

other signaling pathways that contribute to the calcium change and activate UNC-68. 

Cation or calcium channels are able to induce calcium influx upon neurotransmitter 

activation. The known calcium channels that are expressed from the anal depressor are 

EXP-1 and EGL-19. EXP-1 is the excitatory GABA receptor, which induce cation influx 

upon GABA binding. EGL-19 is the voltage-gated Ca
2+

 channel, which opens under 

activated membrane potential. Both channels are activated during the expulsion step of 

the defecation cycle, to induce contraction of the anal depressor. Although the male anal 

depressor no longer functions as a defecation muscle in the adults, the exp-1 promoter 

remains active during adulthood (data not shown). Therefore, even during L4 stage when 

the males reorganize their defecation wiring (Chen and Rene Garcia, 2015), there might 

still be GABA signaling which activates the calcium channels and induces Ca
2+

 influx in 

the anal depressor. To identify the role of those calcium channels, I examined exp-1 and 
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egl-19 mutants to observe if they have anal depressor defects. Around 24% of the exp-1 

mutants and around 64% of the egl-19 mutants have the sarcomere disassembly defects 

(Figure 35). This indicates that the calcium channels located on the cell membrane also 

induces Ca
2+

 influx to promote sarcomere disassembly.  The assay highlights the 

importance of behavior-induced calcium in modulating muscle development. 

 

 

 

Figure 35. Quantification and classification of the anal depressor defects of egl-19 and exp-

1 mutants. (A) Area of non-disassembled posterior domain of the anal depressor of wild type 

(n=33), egl-19(n582) (n=34), and exp-1(ox276) (n=32) adult males. All the animals assayed 

carry the transgene rgEx497 [Punc-103E:YFP::actin]. (B) Calculated percentage of anal 

depressor defects for wild type, egl-19(n582), and exp-1(ox276) adult males based on data in 

(A): 100% of the wild type adult males have a wild type anal depressor; 0%, 23.5%, 32.4%, and 

44.1% of egl-19(n582) adult males have type I, II, III and wild type anal depressors, 

respectively; 3.1%, 9.4%, 12.5%, and 75% of exp-1(ox276) adult males have type I, II, III and 

wild type anal depressors, respectively. *** p<0.0001; ** p=0.0021. The p values were 

calculated between the wild type and defective (I+II+III) groups using Fisher’s exact test. 
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Determine the relationship between the Wnt-β-catenin pathway and Wnt-calcium 

pathway 

Muscle defects in the calcium mutants confirm that calcium signaling plays an 

essential role in regulating sarcomere disassembly in the male anal depressor. However, 

previous experiments show that the Wnt-β-catenin pathway also functions in the anal 

depressor to regulate sarcomere disassembly (Figure 21-Figure 23). The severity of unc-

68 mutants indicates that calcium signaling is mainly responsible for the sarcomere 

disassembly process. Additionally, the capability of the Ca
2+

 responsive proteins to 

interact with sarcomeric proteins suggests that calcium signaling directly regulates 

sarcomere disassembly. This puts β-catenin signaling to be upstream of the calcium 

signaling to control anal depressor reorganization. The question then becomes: how does 

the β-catenin pathway interact with the calcium pathway in the male anal depressor?  

Studies in mammalian systems show that there is antagonism between the Wnt-

canonical pathway and the Wnt-calcium pathway (Ishitani et al., 2003; Ishitani et al., 

1999). Since the Wnt-calcium pathway is required for the disassembly of the anal 

depressor, the Wnt-canonical pathway needs to be downregulated in order for the 

calcium signaling to be active. However, the β-catenin mutants do show defects in 

disassembling the anal depressor sarcomere. There are two possibilities that explain this 

scenario. First, the Wnt- β-catenin-pathway is interacting with the calcium pathway in a 

novel, synergistic manner. Second, the β-catenin signaling is required during earlier 

developmental stage to lay foundation for subsequent reorganization events.  
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Figure 36. BAR-1 signaling in the anal depressor at different larval stages. (A) The 

accumulation of BAR-1 was calculated using CFP as control in the wild type male anal 

depressor at mid-late L2 (n=7), mid-late L3 (n=17), early L4 (n=16), and mid L4 (n=6) larval 

stages. (B) The accumulation of BAR-1 was calculated using CFP as control in the wild type 

hermaphrodite anal depressor at mid-late L1 (n=9), mid-late L2 (n=9), late L3 (n=26), and mid 

L4 (n=16) larval stages. The animals assayed carried the transgene rgEx783[Pbar-1:BAR-

1::YFP; Pbar-1:CFP]. 

 

 

To distinguish between these two possibilities, I first examined timing of Wnt-β-

catenin signaling. When Wnt signaling is active, β-catenin is free from degradation from 

the APC complex and enters the nucleus to promote target gene transcription. When Wnt 

signaling is off, β-catenin is degraded and the cytosolic and nucleus localized β-catenin 

levels will be low (MacDonald et al., 2009). Therefore, by determining the levels of the 

cytosolic and nucleus-localized β-catenin at different development stages, I would be 

able to determine when Wnt-β-catenin signaling is active. I tagged the C-terminus of 

BAR-1 with YFP, and the total fluorescence levels of YFP within the anal depressor 

should represent the BAR-1 protein levels. The construct has been tested to rescue the 
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bar-1 vulva phenotype (Eisenmann et al., 1998), therefore should produce functional 

protein. I injected the construct into wild type animals to observe the β-catenin levels in 

the anal depressor. Using the bar-1 promoter driving CFP as an internal control, I 

calculated the YFP/CFP fluorescence ratio in the anal depressor (Figure 36A and 36B). 

A high YFP/CFP ratio (>1.5) indicates an elevated level of β-catenin signaling, whereas 

a low ratio (>0.5 and <1.5) indicates reduced levels of Wnt signaling. Extremely low 

YFP/CFP ratio (<0.5) indicates the absence of Wnt signaling. I found that BAR-1 is 

active from L1 till early L4 larval, but is deactivated at mid-L4 stage (Figure 36A). This 

is different from the hermaphrodite anal depressor, in which β-catenin remains active 

throughout lifespan (Figure 36B). Therefore there is a male-specific downregulation of 

β-catenin signaling during L4 development. This agrees with my observation that Wnt-

calcium signaling is active at L4 larvae, and the antagonistic effects of the β-catenin 

signaling needs to be eliminated.  
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Figure 37. Heat-shock induced BAR-1 signaling disrupt the remodeling of the male anal 

depressor. (A) Area of non-disassembled posterior domain of the anal depressor of control adult 

males (n=10) which carry the transgene rgEx497 [Punc-103E:YFP::actin] (control), or adult 

males that carry the transgene rgEx782 [hsp-16: ∆NT bar-1::SL2:::DsRed; Punc-

103E:YFP::actin] (hs 2hrs). Both the control males and heat-shock males were heat-shocked for 

2hrs at Late L3 stage. (B) Calculated percentage of anal depressor defectiveness for control adult 

males and hs-2hrs adult males based on data in (A): 100% of the control adult males have wild 

type anal depressor; 9.1%, 36.4%, 9.1% and 45.5% of the hs-2hrs males have type I, II, III and 

wild type anal depressor, respectively. * p= 0.0141. The p value was calculated between the wild 

type and defective (I+II+III) groups using Fisher’s exact test. 

 

     

To test the hypothesis that active β-catenin signaling during L4 development 

would antagonize calcium signaling in the anal depressor, I introduced a constitutively 

active form of BAR-1 into the anal depressor during L4 development (Figure 37). I 

found that the ectopic BAR-1 activity during L4 development compromised anal 

depressor remodeling (Figure 37A and 37B). Myofilaments were retained in the anal 

depressor posterior domain. Therefore, the downregulation of BAR-1 activity during L4 

development is necessary for reorganization to occur.  

Then the question becomes how is β-catenin signaling turned off? The presence 

of Ca
2+

 signaling during L4 larval indicates that there is still active binding of Wnt 

ligands. I hypothesize that β-catenin signaling is off, possibly because Ca
2+

 pathway 
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utilizes a different Wnt ligand, which outcompetes the Wnt of β-catenin signaling for 

receptor binding. Previous studies show that  the Wnt-canonical pathway and Wnt-

calcium pathway utilize different Wnts for activation (Mikels and Nusse, 2006). It is also 

possible that both canonical and calcium pathways can be activated by upstream Wnt 

binding. But the Wnt-calcium pathway can inhibit β-catenin pathway. Wnt-calcium 

pathway has been shown to inhibit β-catenin signaling through the CaMKII-TAK-NLK 

cascade (Ishitani et al., 2003). Therefore I asked if knocking down lit-1/NLK expression 

would induce ectopic β-catenin signaling and block anal depressor development. Indeed, 

I found that lit-1 RNAi-treated males have anal depressor disassembly defects (Figure 

38A and 38B). But more evidence needs to be collected; for example asking whether β-

catenin activity is up-regulated during L4 development in the lit-1 knock-down mutants. 

Additionally, the inhibitory effect of the Wnt-calcium pathway on the Wnt-canonical 

pathway has also been shown to be mediated by the calcineurin-NFAT cascade (Huang 

et al., 2011). Therefore, the anal depressor defects that I see in calcineurin mutants may 

be due to the upregulation of β-catenin activity.  
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Figure 38. Quantification and classification of the anal depressor defects of lit-1 RNAi 

mutants. (A) Area of non-disassembled posterior domain of the anal depressor of RNAi control 

(n=27) and lit-1 RNAi (n=27) adult males. All the animals assayed carry the transgene rgEx497 

[Punc-103E:YFP::actin]. (B) Calculated percentages of anal depressor defects for RNAi control 

and lit-1 RNAi adult males based on data in (A): 92.6% and 7.4% of the RNAi control adult 

males have wild type and type III anal depressors, respectively; 11.1%, 11.1%, 22.2%, and 

55.6% of the lit-1 RNAi adult males have type I, II, III and wild type anal depressors, 

respectively. ** p=0.0041. The p value was calculated between wild type and defective 

(I+II+III) groups using Fisher’s exact test.  

 

 

The data tells us that during L4 larval development, BAR-1 plays negative roles 

in regulating anal depressor development. However, the bar-1 mutant phenotype 

indicates that the activation of BAR-1 during L1 to L3 larvae is essential for anal 

depressor development. Additionally, the level of BAR-1 in the male anal depressor is 

lower compared to the hermaphrodite of the same age (Figure 36A and 36B). The sex-

differential BAR-1 levels indicate that BAR-1 may regulate different cellular events 

between the two genders. The male anal depressor exhibits a different pattern of lateral 

growth compared to hermaphrodite. Therefore, it is possible that the low level of BAR-1 

promotes a restricted lateral growth, whereas higher levels promote expanded lateral 

growth.  
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Determine what Wnts are involved in regulating β-catenin and calcium pathway 

The BAR-1 activity during earlier developmental stages indicates that Wnt 

ligands binding occurs earlier than L4 development. Different Wnt ligands may be 

utilized to activate different Wnt pathways at respective developmental stage. I tried to 

determine which Wnt ligands activate the β-catenin signaling during L1 to L3 larval, and 

which ligands activate the calcium signaling during L4 development.  

I monitored the β-catenin levels in the anal depressor during L2 to L4 larvae in 

the egl-20 mutants. I found that egl-20 loss of function mutants have lower β-catenin 

levels in the anal depressor compared to the wild type males (Figure 39A-39C). 

Therefore, egl-20 is at least partially responsible for the β-catenin activity during L2 to 

L4 larvae in the male anal depressor.  

I also monitored the calcium dynamics in the anal depressor in the egl-20 

mutants. I found that from mid L4 until L4 molt, the increase of calcium levels is less 

significant compared to wild type (Figure 33 and 40). Therefore, EGL-20 is also the 

ligand to activate Wnt-calcium signaling. 
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Figure 39. egl-20(lf) mutant males have decreased level of BAR-1 signaling in the anal 

depressor. (A) The accumulation of BAR-1 in the anal depressor in wild type (n=7) and egl-20 

(n585) mutants (n=14) are compared at mid-late L2. (B) The accumulation of BAR-1 in the anal 

depressor in wild type (n=17) and egl-20 (n585) mutants (n=16) are compared at mid-late L3.  

(C) The accumulation of BAR-1 in the anal depressor in wild type (n=16) and egl-20 (n585) 

mutants (n=9) are compared at early L4. (D) The accumulation of BAR-1 in the anal depressor 

in wild type (n=6) and egl-20 (n585) mutants (n=7) are compared at mid-L4 stage. The males 

assayed carried the transgene rgEx811 [Pbar-1:bar-1::YFP; Pbar-1:CFP]. (A) ** p=0.0012. (B) 

*** p< 0.0001. (C) *** p< 0.0001. (D) N.S.=not significant, p=0.1807. All the p values were 

calculated using Mann-Whitney nonparametric test. 
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Figure 40. Calcium dynamics in the anal depressor during midL4-L4 molt transition time 

in egl-20(n585) mutant males. For each male recorded, the starting point is mid L4 and the 

ending point is L4 molt. The average % Delta F/F0 is determined for all the males tested (n=3). 

The light gray lines indicate the SD. All the animals assayed carry the transgene rgEx803 [Paex-

2:G-CaMP::SL2:::DsRed].  

 

 

These data suggest that EGL-20 may be functioning throughout larval 

development to regulate different developmental events in the anal depressor. Since β-

catenin signaling and calcium signaling may function in a linear pathway, rescuing only 

one pathway will not be able to rescue all of the anal depressor defects. I tested this idea 

by rescuing egl-20 expression at different larval stages, and observed if it rescues the 

anal depressor defects. Using a heat shock promoter to drive the expression of egl-20, I 

found that rescuing egl-20 at L2, L3 or L4 larvae was unable to rescue the anal depressor 

defects in the egl-20 mutants (Figure 41A). I also tested double heat shock at L2 and L3 

stage, and found that the defects were also not rescued (Figure 41B). The length of heat 

shock time should be long enough to induce a continuous wave of EGL-20 signaling. 

Therefore, rescuing the egl-20 defects requires EGL-20 activity throughout larval 

development (L1-L4) to rescue both the Wnt-canonical and calcium pathway. A better 
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heat shock method needs to be developed so that EGL-20 signaling can be sustained at a 

moderate level throughout larval development.   

 

 

 

Figure 41. Attempts of using heat-shock-induced egl-20 expression to rescue the anal 

depressor defects in egl-20(lf) mutant males. (A) Area of non-disassembled posterior domain 

of the anal depressor in control egl-20 (n585) adult males (n=24), or egl-20 (n585) adult males 

that have been heat-shocked at L2 larva (n=8), L3 larva (n=35), or L4 larva (n=22). (B) Area of 

non-disassembled posterior domain of the anal depressor in control egl-20 (n585) adult males 

(n=15), or egl-20 (n585) adult males that have been heat-shocked twice at L2 and L3 larval 

stages (n=18). All the males assayed carried the transgene rgEx807 [hsp-16:egl-

20::SL2:::DsRed; Pexp-1:YFP::actin]. (n.s.= not significant.) All the p values were calculated 

using Mann-Whitney nonparametric test.  

  

 

The role of Wnt-PCP pathway in regulating anal depressor development 

The Wnt-PCP (planer cell polarity) pathway regulates cell polarity and cell 

movement through RHOA and JNK. Since the final output of Wnt-PCP pathway is the 

regulation of actin polymerization and cell migration, I tested its role in anal depressor 

development. rho-1 is the C. elegans homolog for RHOA. And lin-18 is the homolog for 
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Ryk, which is a co-receptor for Wnt PCP signaling. When I knocked down the 

expression of the rho-1 and lin-18 using RNAi, around 90% and 70% of the males 

displayed anal depressor disassembly defects, respectively (Figure 42). This indicates 

that the Wnt-PCP signaling pathway also regulates sarcomere disassembly in the male 

anal depressor. The context of LIN-18 signaling, as well as the signaling components 

upstream of rho-1 need to be identified.    

 

 

 

Figure 42. Quantification and classification of the anal depressor defects of lin-18 and rho-1 

RNAi mutants. (A) Area of the non-disassembled posterior domain of the anal depressor of 

RNAi control (n=30), lin-18 RNAi (n=29) and rho-1 RNAi (n=17) adult males. All the animals 

assayed carry the transgene rgEx497 [Punc-103E:YFP::actin]. (B) Calculated percentage of anal 

depressor defectiveness for RNAi control, lin-18 RNAi and rho-1 RNAi adult males based on 

data in (A): 96.7% and 3.3% of the RNAi control adult males have wild type and type III anal 

depressor, respectively; 13.7%, 27.6%, 24.1%, and 34.5% of the lin-18 RNAi adult males have 

type I, II, III and wild type anal depressors, respectively; 11.8%, 47.1%, 29.4%, and 11.8% of 

the rho-1 RNAi adult males have type I, II, III and wild type anal depressors, respectively. *** p 

< 0.0001. The p values were calculated between wild type and defective (I+II+III) groups using 

Fisher’s exact test.  
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Chapter IV summary 

The Wnt-canonical pathway and the Wnt-calcium pathway are activated during 

different developmental stages to regulate sarcomere disassembly in the anal depressor. 

Mutant analyses of egl-20, lin-44, lin-17 and bar-1 suggest that the Wnt-canonical 

signaling functions in the anal depressor to regulate sarcomere disassembly. A forward 

genetic screen identified the egl-8(rg441) mutation, which also confers the mutant 

phenotype. Mutant analyses of potential egl-8 interactors, goa-1, itr-1, unc-68 suggest 

that Wnt-calcium pathway also promote the disassembly of the sarcomere. Calcium 

imaging in the anal depressor reveals increased calcium levels during L4 development. 

This indicates that the Wnt-calcium signaling is activated during L4 development. 

Monitoring BAR-1 levels in the anal depressor suggest that β-catenin signaling is active 

during earlier larval stage. The disruption of the remodeling process by ectopic BAR-1 

activity suggests that β-catenin signaling antagonizes calcium signaling. Therefore, the 

two Wnt pathways are sequentially activated to avoid mutual inhibition. 
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CHAPTER V 

THE SYMMETRICAL DEVELOPMENT OF THE ANAL DEPRESSOR 

REQUIRES WNT SIGNALING IN BOTH THE MALE AND THE 

HERMAPHRODITE 

 

The symmetrical development of anal depressor is maintained through Wnt 

signaling 

In wild type animals, the anal depressor maintains symmetry between the left and 

right attachments (Figure 2). In a screen searching for abnormal anal depressor 

development, I found that lin-17, which is one of the C. elegans homologs of the 

Frizzled receptors, controls the symmetrical development of the anal depressor in both 

hermaphrodite and males. In lin-17 loss of function mutants, the development of the left 

and right attachment becomes asymmetrical, with the majority of the animals have an 

expanded left attachment and a reduced right attachment (Figure 43). 
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Figure 43. The lin-17(lf) mutants have asymmetrical anal depressor development. (A-C) 

The left attachments of the hermaphrodite anal depressor of lin-17(e620) mutants at L1 (A), mid-

L3 (B), and mid-L4 (C) larval stages. (D-F) The left attachments of the male anal depressor of 

lin-17(e620) mutants at L1 (B), mid-L3 (E), and mid-L4 (F) larval stage. (G-I) Three 

representative types of right attachments of the male anal depressor of lin-17(e620) mutants: 

wild type (G), less-reduced (H), and severely reduced (I). All the animals assayed carry the 

transgene rgEx497 [Punc-103E:YFP::actin]. 

 

 

The lin-17 mutants, which have an expanded left attachment were studied in 

more detail to identify how the myofilaments in the right attachment are trans-located to 

the left attachment. Based on the severity of the phenotype, the right attachment can be 

categorized into three groups: the right attachment is either wild type (Figure 43G), or 

mildly-reduced (Figure 43H), or completely lost (Figure 43I) to the left side. For the 

phenotype seen in Figure 43H, a ventral attachment is maintained in the right side, but 
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the dorsal attachment is shifted from the right side to the left side, and is positioned 

posteriorly to the dorsal part of left attachment. This dorsal attachment is fused to the 

original dorsal attachment of the left attachment.  

At the expense of right attachment, the dorsal side of the left attachment becomes 

enormously expanded compared to wild type left attachment (Figure 43A-43F). 

Additionally, in wild type animals the dorsal attachment is parallel to the mid line of the 

body. But in lin-17 mutants, the dorsal side of the left attachment occupies the entire 

dorsal body wall of the left side, with posterior end standing close to the midline, and the 

anterior end standing close to the left lateral hypodermis (Figure 45A). The majority of 

the expanded left attachments maintain sarcomere structure (Figure 43A-43E), whereas a 

small proportion does not (Figure 43F).  

Since the wild type hermaphrodite anal depressor expands in dorsal width 

throughout its lifespan, I studied if expanded left attachment in the lin-17(lf) 

hermaphrodite also maintains the capability to grow. In lin-17 mutant hermaphrodite, 

once the asymmetry is established in L1 larval animals, the left attachment does not 

expand dorsally until mid L3 (Figure 44A-44C and 45B). But from mid-L3 until mid-L4, 

a large proportion of the animals substantially expand the dorsal width of the left 

attachment (Figure 45B). To identify the origin for expansion, I compared the ratio of 

animals that have reduced dorsal right attachment (Figure 43H-43I) and found that the 

ratio increases from mid-L3 to mid-L4. It is possible that some of the mid-L3 animals, 

which originally have a complete right attachment (Figure 43G) lost more symmetry to 

the left during the L3-L4 development. Therefore, in lin-17(lf) hermaphrodites, the 
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expanded left attachment lost the growth capability and the expansion of the left dorsal 

width at mid-L4 stage is due to increased level of right attachment atrophy.  

 

 

 

Figure 44. Quantification of asymmetrical developmental defects of lin-17(lf) mutants. (A-

C) Mean comparisons of the anal depressor’s dorsal width of the either left or right attachments 

between wild type (wt) and lin-17(e620) mutants hermaphrodites at L1 (A), mid-L3 (B), and 

mid-L4 (C) larval stages. (D-F) Mean comparisons of the anal depressor’s dorsal width of the 

either left or right attachments between wild type (wt) and lin-17(e620) mutants males at L1 (A), 

mid-L3 (B), and mid-L4 (C) larval stages. The p values were calculated using the unpaired t test 

(n.s. = not significant). All the animals assayed carry the transgene rgEx497 [Punc-

103E:YFP::actin]. 
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Figure 45. Growth dynamics of expanded left attachment in lin-17(lf) hermaphrodites and 

males. (A) Model of the anal depressor of lin-17(lf) mutants. Anterior is to the left and ventral to 

the bottom. The anal depressor attachments are colored as green. (B-C) dorsal growth dynamics 

of the expanded left attachments of the anal depressor in lin-17(e620) hermaphrodites (B) and 

males (C). The p values were calculated using the unpaired t test (n.s. = not significant). All the 

animals assayed carry the transgene rgEx497 [Punc-103E:YFP::actin]. 

 

 

For the wild type males, the dorsal growth for the attachment is restrained, but 

expansion tendency are obvious (Figure 4B). For the lin-17 mutant males, the left dorsal 

width remains unchanged throughout these stages (Figure 45C). Thus in lin-17(lf) males, 

the expanded left attachment also loses the capability to grow. 
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LIN-44 is the Wnt ligand to maintain the symmetry of the anal depressor 

To determine which Wnt ligand signals through LIN-17 to maintain the 

symmetrical development of the anal depressor, I examined lin-44, egl-20 and cwn-1 

loss of function mutants. lin-44(lf) animals display similar asymmetrical anal depressor 

defects as the lin-17(lf) mutants, whereas egl-20 and cwn-1 loss of function mutants 

maintain symmetrical development for the anal depressor (data not shown). Therefore, 

LIN-44 and LIN-17 regulate the symmetrical development of the anal depressor in the 

male and the hermaphrodite. 

Chapter V summary 

lin-44 and lin-17 mutants have an anal depressor asymmetry phenotype. This 

suggests that Wnt signaling is required for symmetrical development of the anal 

depressor in both the hermaphrodite and the male. But the downstream signaling 

components need to be identified. 
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CHAPTER VI 

SUMMARY OF EXPERIMENTS AND DISCUSSION 

 

Summary of experimental results  

Both endogenous and exogenous sex determination mechanisms are required to 

achieve the sexually dimorphic development of the anal depressor. By illuminating the 

sarcomere structure using YFP-tagged actin, I found that the male anal depressor alters 

the orientation of the sarcomere during L4 development. A feminized male anal 

depressor displays hermaphrodite-like anterior growth, whereas a masculinized 

hermaphrodite anal depressor has restrained anterior growth. Therefore I concluded that 

early anterior growth of the anal depressor is controlled by the cell-autonomous sex 

determination pathway. The M cell-ablated male and the mab-5 mutant male have 

defects in extending an anterior domain to disassemble the sarcomere. This suggests that 

the two processes are controlled by signaling derived from the male sex muscles. 

Additionally, laser ablation of the anal depressor does not affect defecation behavior 

after L4 development, indicating it does not function as a defecation muscle after being 

reorganized. Therefore, the morphological change of the male anal depressor is 

accompanied by functional transition.  

The Wnt-canonical pathway and the Wnt-calcium pathway are activated during 

different developmental stages to regulate sarcomere disassembly in the anal depressor. 

Mutant analysis of egl-20, lin-44, lin-17 and bar-1 suggest that the Wnt-canonical 

signaling functions in the anal depressor to regulate sarcomere disassembly. A Forward 
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genetic screen identified the egl-8(rg441) mutation, which also confers the phenotype. 

Mutant analysis of potential egl-8 interactors, goa-1, itr-1, unc-68 suggest that Wnt-

calcium pathway also promote the disassembly of the sarcomere. Calcium imaging in the 

anal depressor reveals increased calcium levels during L4 development. This indicates 

that the Wnt-calcium signaling is activated during L4 development. Monitoring BAR-1 

levels in the anal depressor suggest that β-catenin signaling is active during earlier larval 

stage. The disruption of the remodeling process by ectopic BAR-1 activity suggests that 

β-catenin signaling antagonizes calcium signaling. Therefore, the two Wnt pathways are 

sequentially activated to avoid mutual inhibition. 

Discussion 

Heart formation requires the function of different Wnt pathways at different 

developmental stages 

My study shows that both the Wnt-canonical signaling and the Wnt-calcium 

signaling are involved in anal depressor development (Figure 46). The activation of β-

catenin during early larval development may be necessary to maintain the identity of the 

muscle cell, and the activation of calcium signaling during L4 development promotes the 

reorganization of the muscle sarcomere. The model of male anal depressor development 

provides the scenario which is partially represented in mammalian heart muscle 

development.  
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Figure 46. Model of Wnt signaling pathways regulating different remodeling events in the 

male anal depressor. (A) During early larval development (L1-L3), EGL-20 derived from the 

anal depressor activates Wnt-β-catenin signaling, which is essential for activation of male 

developmental genes. The role of LIN-44 in this process is not identified. (B) During L4 

development, EGL-20 from both the sex myoblasts and the anal depressor activates Wnt-calcium 

signaling. The Wnt-calcium pathway, on one hand, activates proteases and phosphatase to 

promote sarcomere disassembly. On the other hand, calcium signaling antagonizes β-catenin 

signaling, possibly through the TAK/NLK cascade, to eliminate the repressive effect it has on 

muscle reorganization. The role of hypodermis-derived LIN-44 needs to be examined. 

 

 

Wnt-canonical signaling displays biphasic roles on cardiogenesis when induced 

at different developmental stages (Naito et al., 2006; Ueno et al., 2007). While early 

induction promotes heart tissue formation, late induction represses the process. In this 

case, the repressive effects of the Wnt-β-catenin signaling may be due to the altered 

signaling context. Heart development at later stage may require a different group of 

cardiac marker gene expression compared to earlier development. In case of anal 
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depressor development, the inhibitory effects of β-catenin signaling on muscle 

remodeling are possibly due to the antagonism against the Wnt-calcium signaling. In 

mammalian models, inhibition of Wnt-canonical signaling is also necessary to facilitate 

heart development. 

Wnt inhibition by antagonist Dkk-1 or Crescent is sufficient to induce 

cardiogenesis in noncardiogenic tissues (Marvin et al., 2001; Schneider and Mercola, 

2001).  However, injection of other Wnt antagonists was unable to induce cardiogenesis 

the same way as dkk-1 or crescent. The dominant negative XWnt8 was able to inhibit the 

Wnt target gene Siamois expression. But it only induced very weak level of expression 

of Nkx2.5, and no induction of later muscle markers was found. The similar expression 

level was observed when injected with WIF-1, FrzA or Szl (Schneider and Mercola, 

2001). The difference in heart induction activity may be due to the different 

antagonizing property of Wnt antagonists.  

Wnt antagonists can be classified into two functional classes, the sFRP class and 

the Dickkopf class (Kawano and Kypta, 2003). The sFRPs inhibits Wnt signaling by 

directly binding to Wnt ligands. The Dickkopf class specifically binds to LRP5/LRP6 of 

the receptor complex (Jones and Jomary, 2002). Therefore members of the Dickkopf 

class may only inhibit the Wnt-canonical signaling; Whereas the sFRPs inhibits all 

Wnts.  

Dkk-1 and Crescent belongs to the Dickkopf family. WIF-1, FrzA and Szl belong 

to the sFRP class. Therefore, the heart inducing capability of Dkk-1 and Crescent might 
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because that they only inhibits the Wnt-canonical signaling, but leaves other Wnt 

signaling pathways (PCP and calcium pathway) intact. 

This hypothesis is supported by study that shows that Wnt11 is required for heart 

formation in Xenopus embryos (Pandur et al., 2002). Wnt11 has been established to 

activate the PCP or calcium pathway (Heisenberg et al., 2000; Kuhl et al., 2000). 

Therefore, both the inhibition of the Wnt-canonical pathway and the activation of Wnt-

calcium pathway needs to be fulfilled in order for cardiogenesis to occur.   

Relating anal depressor remodeling to heart regeneration therapy 

Muscle hypertrophy is the physiological response to heart infarction to 

compensate for the loss of muscle fibers (Bassel-Duby and Olson, 2006). Muscle 

remodeling genes are turned on to make new sarcomeric proteins, which then make new 

muscle fibers to meet the physiological demands. However, muscle hypertrophy usually 

leads to heart chamber enlargement and consequently heart muscle atrophy. Therefore 

maintaining the hypertrophy program under control is essential to prevent heart failure.  

The lateral growth of the anal depressor resembles the hypotrophy process 

(Figure 1C-1G). The anal depressor continues to expand the size of the sarcomere 

laterally by adding new myofilaments. The process is modulated so that the expansion of 

the sarcomere never exceeds the length of the rectum. However, I did observe over-

expansion phenotype in the lin-44 and lin-17 mutants (Figure 43). In those mutant 

animals, one attachment of the anal depressor expands dorsally with no control. The 

abnormal morphology of the sarcomere possibly disrupts its contractility. Therefore, 

Wnt signaling modulates the muscle expansion process so that coordinated sarcomere 
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establishment occur. Studying the signaling mechanisms that govern the growth of the 

anal depressor will shed light on heart repair study utilizing the endogenous hypertrophy 

program. 

Heart regeneration studies in rats and zebrafish uncovered other possible 

mechanisms to repair heart injury. The differentiated cardiomyocytes serve as the source 

of new compensating muscle cells (Bersell et al., 2009; Jopling et al., 2010; Raya et al., 

2003). Cell proliferation either occurs without dedifferentiation, or proceeds with the 

activation of a novel dedifferentiation program. The cardiomyocytes detach from each 

other, disassemble their sarcomere during mitosis, and then reassemble the sarcomere in 

the daughter cells. This process shares some similarity with the reorganization process 

occurred in the male anal depressor (Figure 19A-19F). The slit formed at the ventral 

region of the anal depressor might be equivalent to the cleavage furrow that separates the 

two daughter cells. As the size of the slit enlarges, the sarcomere disassembles to allow 

morphological changes to occur. Whether the anal depressor undergoes dedifferentiation 

process is not known. However, the reorganization of the muscle sarcomere might utilize 

the common mechanisms. Therefore, studying the signaling network to activate 

sarcomere reorganization in the male anal depressor shed light on the heart regeneration 

therapy using pre-existing cardiomyocytes. 

Disassembled sarcomere: type I, type II, type III defects; what do they mean? 

 Calcium-activated proteins phosphorylate or dephosphorylate sarcomeric proteins so  

that the sarcomere structure disassembles. When calcium signaling is strong, all responsive 

proteins are activated, so that all sarcomere filaments can be disassembled. But if 
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calcium signaling is weak, then only the proteins that have high affinity to calcium can 

be activated. Therefore, only part of the sarcomere proteins can be disassembled, 

whereas sarcomeric structures are retained. Therefore, type I anal depressor defects may 

display the outcome of the lowest level of calcium signaling. Type II defects indicates 

that a low level of calcium signaling can activate some calcium responsive proteins, 

which can remove part of the myofilaments of the old sarcomere structure. Type III 

defects indicates that there is a high level of calcium signaling that is sufficient to 

activate most of the responsive proteins, which can remove the majority of the 

myofilament, albeit not all of the myofilaments of the larval sarcomere.  

Cell-autonomous sarcomere disassembly signaling is promoted by male sex 

determination mechanism. 

The feminized male anal depressor is able to extend an anterior domain towards 

the sex myoblasts during mid L4 stage (Figure 5D). However, subsequent sarcomere 

disassembly processes are blocked (Figure 5E and 5F). Feminization of the male anal 

depressor should not affect the cells neighboring the anal depressor from providing 

signals for remodeling. The hermaphrodite anal depressor also expresses EGL-20 

(Whangbo and Kenyon, 1999). Therefore feminizing the male anal depressor does not 

affect the EGL-20 secretion from itself. Additionally, in my experimental design, the 

artificial feminization is limited to the anal depressor, and should not directly influence 

the male sex muscles or other male-specific structures. The ability of the feminized anal 

depressor to extend an anterior arm (Figure 5D) indicates that the signaling capability of 

the male sex muscle is not affected. Therefore, the inability to disassemble the sarcomere 
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in the intact signaling environment can only be due to that the cell-autonomous inability 

to respond to male sex muscle developmental signals. Since TRA-1 functions as a 

transcription factor, it may repress the transcription of receptors (like Frizzled) or other 

effectors in the anal depressor (Figure 5E and 5F), thus disrupting the downstream 

signaling. This hypothesis is supported by the fact that when TRA-1 activity is 

suppressed by overexpression of FEM-3, around 18% of the hermaphrodite anal 

depressor start to disassemble the sarcomere (Figure 8C). However, suppression of 

TRA-1 activity is not sufficient to induce sarcomere disassembly. The sarcomere 

disassembly phenotype is not observed until L4 development (Figure 8A-8C), indicating 

that additional factors initiated at L4 larvae is required to disassemble the sarcomere.  

TRA-1 has been shown to repress the transcription of hox genes that promote 

male-specific development (Conradt and Horvitz, 1999; Yi et al., 2000). Therefore, 

TRA-1 may indirectly block the signaling transmission, by repressing the expression of 

hox genes that are essential for the direct effectors (such as the calcium responsive 

Calpain and Calcineurin proteins) that disassemble the male sarcomere.  

Mechanisms to restrain signaling response within a subcellular domain 

The L4 development of the male anal depressor shows how cellular 

compartments move sequentially to achieve cell attachment alterations. Cell migration 

usually involves coordinated movements of the whole cell (Mattila and Lappalainen, 

2008). During migration, the cell’s leading edges first extend protrusions toward the 

guidance cues, and then the cellular components move toward the leading edges. The 
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rear of the cell is pulled forward by the contractions of stress fibers that are attached to 

the posteriorly located adhesion molecules.  

However during male L4 development, the anterior domain of the anal depressor 

moves independently of the posterior domain. This independence could be established 

by polarized distribution of migration molecules. It is possible that the receptors and 

stress fibers that mediate the response to the cue might be restricted to the anterior 

domain.  

Cell polarity might also be established when the anterior domain disassembles its 

sarcomere structure. The signaling pathway that mediates muscle atrophy may not 

regulate this polarized disassembly process, since it should trigger the disassembly of the 

sarcomere within the whole cell. The muscle atrophy pathway activates MuRF1 and 

MAFbx ubiquitin ligases, which promote protein degradation (Bodine et al., 2001). If 

the muscle atrophy pathway is activated uniformly in the anal depressor, the sarcomere 

proteins will be rapidly degraded. Thus if the atrophy pathway is to be used, it must be 

coupled to some type of hypothetical compartmentalization mechanism. 

During the mid- to late L4 stage, the sarcomere disassembly occurs in the 

anterior domain before the posterior domain. This might be because the transmission of 

the disassembly signals from an anterior source(s) (possibly, from the developing spicule 

protractor muscle cells) might be graded and slow. The EGL-20 secreting sex myoblasts 

migrate into the tail region at around early-mid L4 development (Figure 24A-24C). 

What migrates with the sex myoblasts is the EGL-20 morphogen gradient, which first 

reaches the anterior domain of the anal depressor, and this might be why the anterior 
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sarcomere first disassembles at around early-mid L4. Meanwhile, the LIN-44 secreting 

tail hypodermal cells retract from the tail tip at mid-late L4 and moves into proximity to 

the anal depressor prior to the time that the sarcomere in the posterior domain 

disassembles (Figure 24G-24I). As the tail hypodermal cells contacts the anal depress, 

the disassembly signal becomes strengthened in the posterior domain and eventually 

triggers sarcomere disassembly.     

Another possibility for the sequential sarcomere disassembly is that the posterior 

sarcomere is required to provide structural support for the dynamic changes occurring in 

the cell’s anterior, relative to the other gross alterations occurring in the male tail. After 

the anterior domain establishes its new contacts with the protractor muscles, the 

posterior domain of the anal depressor might then receive the signal to atrophy.  

Future Experiments  

My study of the anal depressor development shows that the anal depressor 

development is controlled by both internal and external sex determination mechanisms. 

The sarcomere disassembly of the male anal depressor is regulated by the Wnt-canonical 

and Wnt-calcium pathway. However, some aspects of the study still remain unanswered.  

Specifying the role of EGL-20 in regulating sarcomere disassembly of the anal 

depressor. 

EGL-20 is required during both early and late larval development to activate the 

canonical and calcium pathways (Figure 39 and 40). However, the developmental events 

that occur at a particular time point might be triggered by signals from a specific tissue. 

During early larval development (L1-L3), the source of EGL-20 for the activation of the 
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β-catenin signaling cannot be the sex myoblasts, since they have not migrated into the 

tail region (Sulston et al., 1980b). This leaves the B lineage cells and the anal depressor 

itself as the candidates (Figure 24A-24B). In the hermaphrodites, the B lineage cells that 

will form the future cloaca display the same EGL-20 expression pattern as in the males 

(Whangbo and Kenyon, 1999). Therefore, it is less likely that EGL-20 derived from 

these cells would trigger any male-specific events, unless the male anal depressor 

displays a sex-differential response to the signal. To identify the role of self-derived 

Wnts on activation of Wnt-canonical pathway, I will tissue-specifically knock out EGL-

20 expression in the anal depressor and observe the BAR-1 levels in the L1-L3 male anal 

depressor. Rescuing EGL-20 expression using the anal depressor-specific promoter may 

not be a good choice, since providing a local source of signaling will rescue the 

phenotype, but it cannot help to distinguish between the endogenous expression 

domains. Autocrine Wnt signaling has been discovered in stem cells and cancer cells to 

promote self-renewal (Akiri et al., 2009; Bafico et al., 2004; Lim et al., 2013). β-catenin 

is activated and required for the proliferation to occur. Therefore, self-derived EGL-20 

might be the signal to promote male-identity maintenance in the male anal depressor via 

the β-catenin-dependent pathway.   

Specifying the role of LIN-44 in regulating sarcomere disassembly of the anal 

depressor. 

LIN-44 has been identified as one of the Wnt ligands to regulate the sarcomere 

disassembly process (Figure 20E-20G). However, the specific signaling pathway that 

LIN-44 regulates was not well studied. lin-44 is expressed from the tail hypodermal cells 
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during larval development (Figure 24G-24H). Previous studies show that LIN-44 

controls the symmetrical cell division in the B lineage (Wu and Herman, 2006). 

Therefore, the LIN-44 morphogen gradient is high enough to reach the site of anal 

depressor and activate downstream signaling.  

To identify if LIN-44 activates the Wnt-β-catenin pathway in the anal depressor, 

I will monitor the BAR-1 levels in the anal depressor in lin-44(lf) mutant males. To 

perform this assay, I will first introduce the transgene [Pbar-1:bar-1::YFP; Pbar-1:CFP] 

into lin-44(lf) mutants by microinjection. During L4 development, the tail hypodermal 

cells have migrated to the anal canal region, and therefore are immediately on top of the 

anal depressor. Therefore, it is highly possible that LIN-44 consolidates the effects of 

EGL-20, by upregulating the calcium levels in the anal depressor. To identify if LIN-44 

activates the Wnt-calcium pathway in the anal depressor, I will introduce the transgene 

[Paex-2:GCaMP::SL2:::DsRed] into lin-44(lf) mutants, and monitor the calcium activity 

in the anal depressor of lin-44(lf) mutant males. If lin-44 is tested to activate either the 

Wnt-canonical pathway, or the Wnt-calcium pathway, or both, I will introduce the 

transgene [hsp-16:lin-44::SL2:::DsRed] into lin-44(lf) mutants. The transgenic mutant 

males will undergoes heat shock treatment under different larval stages, to determine the 

timing of LIN-44 action. 

Determine if the function of the Wnt-canonical pathway during early larvae serves 

as a prerequisite for the Wnt-calcium pathway activity during later stage 

Although the relationship between the Wnt-canonical and Wnt-calcium pathway 

is antagonistic (Ishitani et al., 2003; Ishitani et al., 1999), the development of the male 
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anal depressor sequentially requires both pathways. The high defective anal depressor 

penetrance level in the calcium mutants (Figure 31C-31D) indicates that the Wnt-

canonical and the Wnt-calcium pathway function in the same pathway. Therefore, it is 

possible that β-catenin activity in early larvae initiates gene transcription that is essential 

for the activation of the Wnt-calcium pathway during later development stage.  

The Wnt-canonical and non-canonical pathways differ a lot regarding the 

downstream signaling proteins. However, the upstream ligands and receptors do share a 

common mechanism in their interactions (Grumolato et al., 2010). In mammals, certain 

Wnt ligands tend to activate a particular Wnt pathways: Wnt3A and Wnt8 activate the 

canonical pathway, whereas Wnt5A and Wnt11 activate the non-canonical pathway 

(Kawano and Kypta, 2003). But the specificity of the pathway being activated is 

determined by the co-receptors (Grumolato et al., 2010). It is possible that BAR-1 

activates the transcription of the co-receptor that is essential for the subsequent Wnt-

calcium pathway. 

It is also possible that BAR-1 activates the transcription of the calcium-

responsive proteases or phosphatase, which serve as the downstream effectors for Wnt-

calcium pathway. clp-6/Calpain and clp-3/Calpain are activated specifically during L4 

development. Therefore, I will clone the promoter of those genes, and compare their 

activity between wild type and bar-1 mutant. I will observe the calcium dynamics in the 

L4 anal depressor of bar-1 mutant to tell if BAR-1 activity is required to activate the 

calcium signaling.  
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Identify the signaling components downstream of LIN-44 and LIN-17 to regulate 

the symmetrical development of the anal depressor. 

LIN-44 and LIN-17 are identified as the regulator of the symmetrical 

development of the anal depressor in both the males and the hermaphrodites. However, 

the downstream signaling effectors remain elusive. None of the Wnt-canonical or Wnt-

calcium mutants that have been examined in my study display the same asymmetrical 

phenotype as lin-44 or lin-17. lin-44 and lin-17 have been indicated to control the 

asymmetrical cell division within the B lineage via the Wnt PCP pathway (Wu and 

Herman, 2006). Therefore, I will examine mutants of the PCP pathway to determine if 

they have the same phenotype as lin-44 and lin-17.  
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APPENDIX A 

 

Supplementary Tables 

Supplementary Table 1. SNP mapping to identify the locus of the mutation that is 

responsible for rg441 phenotype. 

 

rg441 Wild type 

 

N2 CB het N2 CB het 

LGI  Center 

K04F10 

15/16 

93.75% 

1/16 

6.25% 

0/16 

      0 

13/14 

92.86% 

0/14 

0 

1/14 

7.14% 

LGII  Center 

F45E12 

5/16 

31.25% 

3/16 

18.75% 

8/16 

50% 

4/12 

33.33% 

5/12 

41.67% 

3/12 

25% 

LGIII  

Center 

R13F6 

9/16 

56.25% 

5/16 

31.25% 

2/16 

12.5% 

6/14 

42.86% 

4/14 

28.57% 

4/14 

28.57% 

LGIV  

Center 

D2096 

8/16 

50% 

5/16 

31.25% 

3/16 

18.75% 

5/14 

35.71% 

5/14 

35.71% 

4/14 

28.57% 

LGV  Left 

end 

F36F12 

16/16 

100% 

0/16 

0 

0/16 

0 

0/14 

0 

14/14 

100% 

0/14 

0 
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Supplementary Table 1. Continued 

 

rg441 Wild type 

 

N2 CB het N2 CB het 

LGX 

Left end 

F53A9 

7/16 

43.75% 

6/16 

37.5% 

3/16 

18.75% 

5/14 

35.71% 

5/14 

35.71% 

4/14 

28.57% 

 




