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ABSTRACT

Rapid evolution of technologies in petroleum indysin last decades has
significantly improved our abilities in hydrocarbogservoirs development. The number
and complexity of tasks to be solved by reservagimeers are gradually increasing, while
the cost of field development projects is risimgtHis conditions, optimal decision-making
in reservoir management becomes critical sinceghbresult in either significant benefit
or financial loss to a production company. Althowg$ignificant improvement was made
in project risk management to control project castthe case of unfavorable outcome,
reservoir evaluation still plays the important rated affect entire reservoir management
and production process. Since the work of petrolengineers actively involves reservoir
simulation and target search for optimal solutiérih@ particular reservoir assessment
problems, selection of the most appropriate sinraapproach in a timely manner is
important. Successful search for suitable solutmm particular reservoir engineering
problem is always a non-trivial task since it inved analysis and processing of large
amounts of data and requires professional expertige subject area.

In this work we proposed an expert system, whatigeoflexible framework for
the proper simulation approach selection and ire®lthorough data analysis, multiple
constraints handling, expert knowledge utilizatiand intelligent output requirements
implementation. This expert system utilizes lingjaisnethod of the pattern recognition
theory for knowledge base design and inferencenerigiplementation, what significantly

simplifies procedures of the system design andigesvit with tuning flexibility. This



thesis elaborates on major aspects of the expstersydesign in close relation to data
processing and recommended solution finding methods

To validate the expert system’s applicability, sal&ests were designed based on
the synthetic Brugge field case and real petroleeservoir data. These tests demonstrate
functionality of the major expert system elementsd aadvantages of selected
implementation methods. Based on obtained results can conclude successful

development of the expert system for appropriateikition approach selection.
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1. INTRODUCTION

Rapid evolution of technologies in petroleum indysdiuring the last decades
expanded capabilities in oil and gas reservoireld@ment. Along with the growing
advances in exploration and production techniquEployed in conventional and
unconventional reservoirs, an increase in fieldetlgyment projects cost is also observed.
Because of risk associated with project failuren@y therewith enlarge size of financial
losses. Depending on the size of the losses fartain company, actions that prevent
similar failures in the future should be introduc€His section summarizes the importance
of data evaluation approach and lay down the fotim&o the development of an expert

system in the thesis.

1.1 Importance of Data, Models, and Simulation Appoach Selection in Reservoir
Management

According to McVay and Dossary (2014), companiespéiroleum industry
continuously underperform compared to the projegteetations. Authors suspect that
while high oil prices of the last decade have oNargroved industry performance, they
also caused industry relaxation and worsening tiadityy of decision making. In general,
this point of view does not exactly imply an irresgible business management since
entire decision-making process is very complexjasibnal, and involves multi-stage
information handling with a high number of issudsowever, it still requires

improvements in the overall process workflows. iastance, in the third quarter of 2015



the Shell company reported “loss of $ 6.1 billiomet $ 8.2 billion of upstream write-
downs and other charges primarily linked to itsuaaessful Arctic drilling off Alaska
and Canadian Oil Sands project” (Smedley, 2015)aArajor disappointing moment,
drilling of a dry hole was mentioned in the repdrhis example shows that even a
petroleum industry leader, fully equipped up withtto-date technology, is not insured
from failure. Hence, the use of the most advaneetrologies in petroleum exploration
and/or production cannot guarantee success uhtih@lmajor parts of uncertainty are
removed from data gathering and information praogssor full reservoir study is
improved starting from the very basic level to arencomplex.

It is important to point out that the main sourdanzorrect decisions is always
related to the lack of required information or patata assessment. Because entire
reservoir management process directly involves fitldy as a starting point, reservoir
evaluation plays a significant role affecting theput results. Taking in consideration a
“cause and effect” concept, the visualization obpoutcomes in reservoir management

is shown inFigure 1.1

* Poor data . * Errorsin
Risk and . ) .
assessment ) conclusions ¢ Financial loses
mm)| uncertainty ) )
 Lack of . * Incorrect ¢ Disasters
. . are disregarded .
information decisions

Figure 1.1— Impact of unsatisfactory reservoir data on reggeimanagement outcomes



Figure 1.1 represents a basis for incorrect decision-makiraggss. Initially
misleading or insufficient data cause a situatidmemv uncertainty either is evaluated
incorrectly or remains unknown and not taken irooaint. Therefore, it becomes difficult
or even impossible to assess data uncertainty sghgefurther lead to improper decision-
making risk evaluation. Consequently, errors inabasions and incorrect decisions are
inevitable, which can lead to financial loses ®adiers. Hence, quantity and quality of
reservoir data play a very important role in res@rinanagement, as they are key criteria

that define what we exactly know and understandiethe subsurface object.

Petroleum field

Field W, Field data collection,
development | analysis and
program interpretation

dovblogs.rvidia. com

Simulated results

analysis

Conclusions

Decision-making Forecasting A4
Evaluation (/" L

devblog; .com

What-if assessment :
Reservoir model

Simulation

Figure 1.2 — The place of reservoir model design and simutain field management

process



Figure 1.2 shows data flow process during the life cycle gfedroleum field
management. Collected field or reservoir data edusr the particular reservoir model
design and rectification within all stages of aldidife. This model is employed in
simulation runs for variety of purposes that induédservoir performance studies under
different development strategies called “what-i€emarios. Nowadays, the use of
reservoir simulation allows assessment of multipleat-if” realizations and selection of
the most optimal ones (Satter, Igbal, and Buchwa?@08). Depending on the particular
goal to be reached, the simulated outputs are durdimalyzed and implemented for
conclusions and decision-making, which are thencateel as the field management
program.

In addition, the need of reservoir models in peoh industry is dictated by long
duration of the processes, control actions andobibgsponses, that we need monitor and
optimize. Therefore, we cannot experiment with nesies since by the time we see some
response, it might be too late to take any actiororrect it. Hence, we need predictive
models.

The study of a petroleum reservoir is truly a naidiciplinary effort. Specialists in
Geology, Geostatistics, Geophysics, Geochemistmtrophysics, and Engineering
contribute their joint work in an integrated ressrvmodel designs for a real reservoir
performance understanding and forecasting (Sadteal, and Buchwalter, 2008). Results
of various applied studies give us an informatibowd subsurface objects, their history,
properties, and features setting a basis of theem&tmulation model design, validation,

and optimization processes is a separate wide tbptds not included into the scope of



our work. Detailed description of the modelling hmeedology can be found in literature
(Falkenhainer and Forbus, 1991; Levy, Ilwasaki, bikgs, 1997; Malak and Paeridis,
2007; Oberkampf and Roy, 2010).

Correct choice of an appropriate simulation appndacbe used for the specific
reservoir evaluation problem is a daunting taskd@@erformed by petroleum engineers.
Proper selection of the simulation method is aitgnce it determines the accuracy and
applicability of simulated results and, consequemiifects decision-making process.
Depending on the exact goal, reservoir enginedests&imulation approach based on the
certain data availability, its quality, constraietastence, and methodology (Satter, Igbal,
and Buchwalter, 2008). In practice, determinatibthe most suitable simulation method
at certain conditions is not easy since it is ctimrazed by the following features:

- Different simulation approaches may give discrepasitilts at the same given

conditions;

- Some of them can or cannot be used for a spesialsalving under number

of constraints, data quality and insufficiency, amethodology in the basis;

- The most appropriate approach selection involvedyais and processing of

large amount of data and requires professionalrégpen the subject areas.

In addition, the sought-for proper simulation agmio should provide:

- Sufficient accuracy, adequate complexity, and regmeation of available data,

- Robust and appropriate basis for realization oémesr analysis objectives

under existing constraints, among others.



Making a choice in such conditions is non-trividiilg it also implies the use of
sufficient amount of theoretical knowledge and pcat experience that can be very

limited.

1.2 Objectives and Scope of Work

Summing up, the quality of decision-making procdesseservoir management is
strongly dependent on a realistic understandinghef certain subsurface object, its
parameters and features, and quality and suffigiehdata we build the model from. The
choice of the most appropriate simulation methoseis/ important, since it primarily
defines the data requirements and accuracy andcabpility of simulated output with
respect to the particular reservoir engineering.t&orrect selection of the proper
simulation method implies an existence of extentine®retical knowledge and practical
experience. Their lack may result in reductionesarvoir evaluation quality.

The most suitable reservoir simulation approachecsigin under specific
circumstances is a problem that has not yet besedias a formal task in reservoir
evaluation, and requires to be developdah contribute to a proper reservoir management
improvement, we have posed the following goalssoupe of our work:

- The primary objective is to formalize, design amst the reliable methodology

to provide decision-making support in simulatiop@gach selection;

L At least to the best of my knowledge, | am not et such proposed work developed elsewhere.



This methodology should supply flexible framewoirkyolve thorough data
analysis, multiple constraints and limitations Harg] expert knowledge
utilization, and intelligent output requirementslementation;

Use the linguistic method of the Pattern Recognifibeory to set a basis for
the methodology realization procedures, such aa datoding, symbolic
reasoning, search and recommending the most saigabllation method, and
suggesting on what should be additionally doneafspecific engineering task
solving;

Implement the developed methodology in the knowdelgsed expert system
design, with specific structure and functionalips a means for problem

solving that requires expertise.

Realization of these objectives could significantipprove the simulation

approach selection process, increase quality ef alaalysis and reduce the risk of errors

to emerge.

Furthermore, the developed software can be alsbfesehe guiding or coaching

purposes. An ability of the expert system to geteegaplanations on output results could

be useful for those users who experience a defigiehqualification in the particular area

of interest. Namely, users can get the informadion

What reservoir simulation method is recommendebetaused for particular
problem solving as the most appropriate under nunolbeconstraints and

limitations;



- What additional reservoir data should be obtaimedrder to execute other
methods;

- What could be a predicted accuracy of calculatedltg

- What should be the workflow when engineering problsolving require

implementation of multiple simulation methods.

1.3 Thesis Organization

In the first section of this thesis we discussedivation and objectives of our
work and described proposed solution. | order tmawplish the main objectives proposed
here, the following structure was organized.

In the second section, we introduce extensivedlitee review that enlightens
application of five major simulation approacheshwiespect to particular reservoir
evaluation tasks. The set of listed assumption,sttamts, and limitations in the
foundation of each method is used to create this basur methodology.

The third section provides overview of expert syseas a means of complex
problem solving that requires professional expertighe main concept and structure of
the systems, their key features and functiondatitstory of development, and application
in Petroleum Industry are described in this pathefthesis.

In the fourth section, we present the detaileaim@work depiction of the
methodology and expert system design for the prsjpeulation method selection. Here,

we explain the use of the linguistic method of Bagtern Recognition Theory as a means



that determines data encoding algorithm for thehadet of key parameters design,
generation of scenarios as representation an ekpewledge, and solution search
workflow. Additionally, we delineate the structucd the developed expert system,
construction, and functionality of its componerstis¢ch as Data Pre-processing, Scenario
Generation, Knowledge Base, Inference Engine, audibn Support modules. As a very
important topic, the input data quality control atetection and dealing with constraints,
which affect applicability of simulation method anelstrict an accuracy of simulated
results, are described as a part of Data Pre-pmgemodule. Besides, we also present
the well placement justification technique as arteesion of the expert system
functionality.

The fifth section represents the expert systemdaibn and field application
workflow using Brugge synthetic simulation modetlarifshore petroleum reservoir data.
Obtained results are discussed in this section.

Finally, in the six section of the thesis we summ@mearobtained results and
conclusions, discuss observations, and providevsion of future work on the expert

system improvement.



2. RESERVOIR SIMULATION METHODS

This section presents an overview of the major Rtran approaches using in
reservoir evaluation and areas of their applicatife introduce the list of specific
engineering tasks that can be solved using fiv@magervoir evaluation methods. Also,
we mention assumptions, constraints, and limitationthe basis of each method which

determine its applicability and accuracy of caltedaresults.

2.1 Discussion on Model Application in Reservoir Egineering

Reservoir simulation is based on the methodologyimtio a certain approach,
where specific mathematical relationships descabgoing physical processes in the
reservoir Qdeh, 1969) These descriptions, i.e. models, define the iterset of
engineering tasks that can be solved and paramt&iebe used. By its nature, any
methodology is developed considering specific agdioms, stipulations, simplifications,
and solving methods, which further establishes dppdies, requirements, and
constraints for the use of the particular methaatté®, Igbal, and Buchwalter, 2008).

Models can be based on the understanding of undgrphysical processes that
occur in the field, data collected from fields undevelopment, or fields that show certain
degree of similarity. To express the degree of lamty, term “analog” is often used.
Analog means an object with properties so simibathe properties of the object under

investigation, that a sufficient level of confidenexists in similarity of the reaction

10



produced by these two objects if the similar actiare applied. In other words, for analogs
we can extrapolate knowledge gained through ohbsgmme object to predict reaction of
another object with certainty. In practice, esttilhg analogy between two reservoirs is
a difficult task because of their originality. Hoves, every reservoir is an analog for itself
and this is actively used in petroleum industrycsithe early days and serves a basis for
methodology of decline curve analysis. If extenstisgabase of analogs exists, then
correlations might be a viable approach to follawce they are simple, robust, and
sufficiently accurate.

Oil and gas reservoirs are complex objects withtiplel compartments, different
drive mechanisms, and spatially variable rock alu fproperties. Some “simple”
reservoirs might be represented as a single geolitkdya simple geometry with relatively
homogeneous rock properties and filled with a grflglid. “Complex” reservoirs can be
comprised of multiple partially interconnected gedies with a complex geometry,
highly spatially varying rock properties, and conitag fluids with highly varying
properties as well. However, simplicity of reservid just a one axis that describes
complexity of the case we are dealing with. Develept scenario is another axis that
controls the complexity of the case for our underding. Even a simple reservoir with a
complex development scenario might result in a chsehigher complexity than that of
the complex reservoir with simple development plEmerefore, complexity of the case
depends not only on the nature of the object, mat @an the kind of production process

and scenario that we try to apply to it.

11



Overall, physics of the processes in conventioeakemvoirs behavior is well
understood. Ability to understand the underlyingogasses allows creation of
mathematical models that can be used to describavime of the object under certain
conditions and control actions. Mathematical modbkt are solved analytically can
describe a simple reservoir. Complex reservoirgirecsolution of more complex systems
of equations that are solved numerically. Howewgerall complexity of the model that
has to be solved depends on the application. Riftemodel applications require different
levels of model complexity. For example, a sim@servoir with complex pattern water-
flood might require application of a numeric mod&tithe same time, complex reservoir
that is developed by isolated producers under pyirpeoduction might be sufficiently
described by analytic models. Therefore, compleaitgelected model depends not only
on complexity of the object, but on analysis obyexs (reservoir development scenario)
it will be used for.

The nature of the objects that we study in resemgineering allows collection
of a very limited amount of data. Scarcity of tread multitude of scales and ambiguity
of interpretation creates difficulties in propeachcterization of the object. Knowledge of
physics and numeric tools allow us to solve prolsleah a very fine scale. However,
resolution and amount of data available limits slbale of object representation in the
model. At the same time, scale at which we needetn@$ponse might be much coarser
that the one we can characterize the object atcéjevhile selecting the model for proper
representation of the object we have to take intmant scale expectations in addition to

model complexity, analysis objectives and availgbdf analogous data.

12



Model scale is a sensitive topic in reservoir eagiing. Intuitively, subsurface
teams try to obtain model at the finest scale jssHowever, application of fine scale
models even at current level of computational hardgwdevelopment is extremely time
consuming. Certain models can run days and everksyeehich pushes reservoir
engineering studies outside of the reasonable friamee. In practice, preference is given
to the models that can run faster while still pdiwg robust and accurate representation
of the object. This, in turn, brings focus to sétat of proper scale, proper simplifying
assumptions and finally proper model representaffoaper model scale coarsening can
be achieved with parameter upscaling techniqudsras as proper model accuracy is
supported.

To summarize, with respect to the particular simoilatask, we are looking for
the most appropriate simulation approach, where sihglest model (reduced) that
provides sufficient accuracy (accurate), adequataptexity and representation of the
available data. At the same time, it should prowidbust and appropriate basis for
realization of analysis objectives. In other womdsking a choice of the proper simulator
we should confidently understand the reservoirtdhighly assess available data, clearly
define simulation goal, and distinctly select agpirate methodology of problem solving
(Satter, Igbal, and Buchwalter, 2008

Depending on the data required for reservoir evanoand problem solving, all
the simulation approaches that exist today candoebied in five major groups as it
shown in Figure 2.1: Correlations, Proxy model based, Material Balamased,

Streamlines, and Finite Difference (volume) numargimulation.

13



Correlations (Analogy, Decline curve)

Uncertainty

Simulation approach comlexity

Proxy

Material Balance

Stream Lines

Finite-difference (Volume)

-
T,

Figure 2.1— Modelling methods (simulation approaches)

2.2 Correlations (Decline Curve Analysis)

In petroleum engineering correlation is a mathecahtielationship that defines
correspondence between an output variable and @ sgiut variables. Correlations are
empiric relationships that depend on the availgbdi data. At the same time, they are
based on analogy. Traditionally, they were activeiplemented in the areas where
physics of the process is not well defined or adégjumathematical models do not exist
to represent physical processes. Namely, they asdominantly used when large
uncertainty or lack of knowledge about the reserdata do not allow application of more

complex methods, such as numerical simulations.

14



Correlations were actively used in estimation ofdlproperties (PVT), prediction
of multiphase flow in the pipes, etc. Fundamentaligrrelations are interpolation
functions that are built on an extensive experi@emataset that covers possible
combinations of input parameters and correspondahges of the output parameters. If
all parameters significant for the estimation aa&eh into account and a proper
interpolation function is developed, this functicam be used to predict output values (i.e.
PVT properties, flow regimes, etc.) for any comhimas of input variables. However, one
needs to make sure that parameters are selecthuoh hie interpolation region. This
approach relies on an assumption that if multidisnemal surface goes through some
experimental points, it will give sufficiently aa@aie prediction for all points in between
those experimental points. Therefore, use of thasetions in extrapolation mode might
not be appropriate. However, extrapolation mighappropriate if developed correlation
relies not on the mathematical function that bditeithe data, but has some resemblance
of the physics as well. For example, decline cawalysis is based on observation made
by Arps that production rate decline at the wetl ba described by a simple equation. So,
Arps’ equation adjusted to fit available data caccessfully be used to extrapolate
declining production rate into the future.

Decline curve analysis will be discussed furthetthaess most typical correlation
technique widely used in reservoir performance uatadn.

Historically, Aprs’ observation that fluid produeti rate declines versus time
exponentially (Arps, 1945) stimulated emergence fumther development of decline

curve analysis. Many researchers (Ershaghi and Qrepd978; Blasingame, McCray,
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and Lee, 1991, Fetkovich’s, 1996; Agarwal, GardiKéginsteiber, et al., 1999, and many
others) contributed in improvement and extensiaiigfmethod applicability. Nowadays,
decline curve analysis techniques are widespreaduse they are relatively simple and
require a lesser data set than other methods. rfstanice, decline curve analysis is
employed in reserves assessment for approxima®&lo“of the thousands of reservoirs
in the United States” (Satter, Igbal, and BuchwalP@08) since these reservoirs are not
large in size, with studied recovery drive mechamsisand do not require complex and
expensive numerical simulation.
Fundamentally, decline curve method is based omuladysis of individual wells

or field production rates, when sufficient dataamailable and production decline is

establishedRigure 2.2).
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Figure 2.2— Two views of decline (reprinted from Satter, Ifjlzad Buchwalter, 2008)
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In Figure 2.2 the left plot represents measured oil productaie extrapolated
until some economically reasonable value (abandobhimait). The extrapolation decline
curve here, obtained by fitting measured early ,dat@ws prediction of future well
performance. Analogically, the right plot charazes measured and predicted
performance; in this case for entire gas field. st important parameters that should
be established by analysis and further used inapatation are decline rate and its

exponent:
D=——1"—=Kq", (2.1)

where: D — decline rate; q — production rate;itmet K — constant; n — exponent.

Depending on combination of n and D and their attarsstics, there are three
main decline types can be identified in classicellygsis (Satter, Igbal, and Buchwalter,
2008):

1. Exponential — decline rate D is constant and expbne- O;

2. Hyperbolic — D varies with time and n = [0 <n < 1]

3. Harmonic — D varies with time and n = 0.

Once the decline type has been identified and geeftuid and reservoir
properties, such as reservoir thickness, rock lmnd ¢ompressibility, reservoir initial and
bottomhole pressure, porosity, oil or gas satunadiod formation volume factor were
obtained, the following parameters can be calcdlat@ng specific equations related to

the decline type and evaluation method:
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- Predicted production rate;

- Ultimate recovery by summation of measured and ebepe (predicted)
production;

- Remaining time of a well or reservoir production;

- Initial value of oil / gas in place;

- Recovery factor;

- Drainage area,;

- Reservoir parameters, such as average permeaititgkin factor.

However, the use of decline curve analysis mudaken with care in reservoir
performance evaluation and prediction (Sun, 20IH)s requirement emanates from
assumptions and limitations put into methodologyhewell produces from constant area,
entire reservoir has no leaky boundary even thadjacent aquifer exists, depletion is
the only drive mechanism, production data is sidfitfor analysis, decline is established,
and field operations will not consider future chasigViolation of any of these items
immediately disturbs impracticability of the dedirturve analysis. Additionally, the
following factors influence production rates ancldae curve performance, and should
be taken into account:

- Early-time field life stage (exploration, appraisstiartup) do not allow to use
this method since production data either do nostear not sufficient for
analysis;

- Early beginning of decline, when its trend is nohftdently obvious, results

in very low accuracy of calculations;
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- Restricted production, bottomhole pressure changesdification of
production methods along with well treatments, voodes, implementation of
enhanced recovery programs, water influx from aguahd breakthrough are
considered as intervention into a stabilized pr&idac regime. That
interruption distorts decline trend and can makeagossible for using.

Overall, decline curve analysis is quite simple affetient tool for the reservoir

performance evaluation. At the condition, suffitiamount of analytical data is available
and not any of the above listed limitations caesgrictions, this method gives fair results

in solving particular tasks.

2.3 Proxy Models

Proxy models are fundamentally interpolation fumas, but more sophisticated
than the ones traditionally used. Basically, theywsed as simplified models that are not
based on physics, but closely resemble numeric legide. can mimic their output for the
same set of input parameters), “as a computatpicakap alternative to full numerical
simulation” (Zubarev, 2009). Besides this, proxydels are also constructed by size
reducing of an initial full physics model (Yang, Bdson, Fenter, et al., 2009). So, they
can act as a proxy to a certain model, but canulytifeplace it.

As for interpolation method that is not restrictey the physics of the process,
robustness of proxy models in extrapolation modeotseasy to justify. Therefore, to

replace simulation models, engineers define a $einput parameters of interest
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(parameterize the problem) and create an, “exp@atah@lataset,” by running numeric
simulation with selected parameter within definadges. Basic workflow of the proxy
model design, shown iRigure 2.3 includes sensitivity analysis as mandatory ared th
most important step. Basically, this process issaaluation of the effect of the input
variables changes to the simulation model output.aAresult of analysis, the input
variables can be separated into the following gsoup

- Variables that sufficiently affect simulation modesponse and should be used

in dataset sampling;

- Insignificant variables that can be eliminatedegduce the model size.

Sampled datasets are used to create proxy modatiscéim not only closely
resemble outputs of the dataset, but can predipubwalues for different realization of
input parameters. Depending on simulation modgaese, the proxy model is estimated
separately with its quality validation. Namely, ghmodel should reproduce the same
results as a real model with required accuracyyrfeohial, artificial neural networks,
genetic algorithms, kriging-based, and radial b&sistion based proxy models are the
most widely used in the petroleum industry (Lophgv&.N., Nielsen, H.B. and

Sondergaard, J., 2002; Jurecka, 2007; Artun, Erfékiatson, et al., 2009).
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Figure 2.3— Proxy-modelling workflow (reprinted from Zubare2Q09)

Proxy models found a wide implementation in thergdetim industry. They are
used not only as a substitution to numeric simairethodels, but in virtual metering, well
transient pressure data analysis, well test priedst substitution for multiphase flow
correlations, hydrocarbons initially in place ca#tion and much more. In general, typical

application areas in reservoir simulation includelqarev, 2009):
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- Sensitivity analysis of uncertainty variables (Yet€astellini, Guyaguler, et
al., 2005; Junker, Dose, Plas, and Little, 20061t8) and Smorgrav, 2008;
Christie and Bazargan, 2012);

- Probabilistic forecasting and risk analysis (Kal@hawathe, Jenkins, et al.,
2002;0sterloh, 2008

- History matching (Cullick, Johnson, and Shi, 20G8otte, and Smorgrav,
2008; Christie and Bazargan, 2012);

- Reservoir connectivity evaluation, development nllgdg screening, and
production optimizationRan and Horne, 199&uyaguler, Horne, Rogers, et
al., 2000; Onwunalu, Litvak, Durlofsky, and Aziz, 200&rtun, Ertekin,
Watson, et al., 2009; Yang, Davidson, Fenter, gt2409; Pfeiffer, Reza,
Schechter, McCain, and Mullins, 2011; Christie &agargan, 2012).

Proxy models provide certain advantages when usédproblems of moderate
non-linearity. However, with highly non-linear piems accuracy and robustness of
proxy-models are actually questionable. The problismnot in their interpolating
properties. All of the mentioned above types ofxgronodels are actually exact
interpolators. Namely, in multidimensional parametigace they represent a surface that
goes exactly through the experimental points. Thablpm with highly non-linear
problems is in proper selection of these pointsviQusly, if one runs an infinite number
of simulations, a very accurate proxy model caoreated. But the need for large number

of simulation runs diminishes the effect of proxydels application for time saving.
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Therefore, one has to come up with a small setrd that allows creating a proxy-model
properly representing model non-linearity and hegmrowiding sufficient accuracy.

To date, different methods of Design of ExperimgBtsE) are used to propose
this set of models. They are generic “space fillidgsigns that randomly scatter sampling
points over the parameters space insuring unifoower@ge. This creates certain
challenges.

First of all, proper representation of highly namelkr problems with small set of
experiments requires a prior knowledge of the raspsurface complexity and effective
sampling technique. Otherwise, a large set of empsrts would be needed. Second,
random nature of sampling combined with limited exxmental sample makes accuracy
and robustness of the approach questionable. Absafc“intelligent sampling”
methodology makes creation of reliable model tlaat provide appropriate prediction
accuracy across the parameter space a non-tigkl At the same time, precision of the
approach is not guaranteed because of random raftsaenpling.

Overall, all proxy models are strongly dependentreal model complexity,
sufficiency and quality of input data, and cleardewrstanding of their constraints.
Individually well-built proxy model can be a vergrovenient substitution of full numerical
simulation model since it is capable of replicating same output being exceedingly

cheaper in computational time.
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2.4 Material Balance Models

As it goes from the name, material balance modebased on the mass
conservation law. The initial material balance dmum as a volume balance between
cumulatively produced fluid and its expansion ireaervoir due to pressure drop, was
presented by Schilthuis (Tracy, 1955; Dake, 19¥VEny researchers, including Havlena
and Odeh (1963, 1964), Tehrani (1972), Campbel®&/&L and others sufficiently
extended material balance analysis techniques ez af application. This type of
models focuses on volumetric characteristics angsmexchange between the reservoir
and outer worldKigure 2.4). At the same time, it does not provide any insigto spatial
saturation change and fluid movements within tisemeoir due to single tank assumption.
It is probably the most simplistic type of modehthactually accounts for physical
processes occurring within the reservoir duringdpation.

In general, material balance equations for resep@iformance are expressed as
follows (Satter, Igbal, and Buchwalter, 2008):

- QOil reservoir:

F =N(E, +mE, +E,,) +W, (2.2)

- Gas reservoir:

F=G(E, +E,) +W, (2.3)

where: F —underground fluid withdrawal; N — origlirolume of oil in place; G — original
volume of gas in place; &~ expansion of oil and originally dissolved gas;

Ey — expansion of gas cap gasy E expansion of connate water and reduction of
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pore volume; W— cumulative natural water influx; m — initial gaap volume

fraction.

Gas Injection Gas Production

_Oil Production
Water Injection b Water Production
Aquifer

-

Figure 2.4— Material balance tank model assumption (rewofkaah Dake, 1978)

As shown inFigure 2.4, material balance model represents reservoirtaskaof
a certain volume filled with fluids and is a sultjex fluid movement into and out of the
tank due to the presence of sinks and sourcesl Rlovement changes energy balance
and impacts phase changes and PVT properties @iitde which are also accounted for

in the model.
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Methodologically, the conceptual material balan@elel is based on the following

assumptions:

The reservoir is considered as a tank, homogeneotisaveraged rock and
fluid properties (porosity, compressibility, perrbégies, and saturations)
uniformly distributed within strata, as well aseesir pressure;

- Fluid injection and production is assumed to bevigled at certain areas of

reservoir where these fluids are concentrated;

- All processes within the tank are considered abhemal;

- Direction of fluids flow and distribution of welia the reservoir are not taken

into account.

These assumptions set a basis for creation of plesineservoir model for the
further analysis and generation of cogent res8itsplicity of the model and support of
physical processes makes it a very popular tod phavides insight into reservoir
performance. Nowadays, material balance methodsvaib resolve the whole set of

engineering tasks, such as:

Assessment of oil and gas original volume in place;

Determination of the presence, type, and size oif@agand gas cap and depth
of gas-oil, water-oil, and gas-water contacts;

- Forecasting production characteristics of the raB8ersuch as pressure and
future production, with respect to different recogvdrive mechanisms, and
recovery factor calculations;

- History matching of reservoir drive mechanisms.
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Depending on the particular problem being solved aequired governing
equations for it's solution, the following paramsteare used in material balance

simulation (Satter, Igbal, and Buchwalter, 2008):

Reservoir geometry — area and thickness;

- Rock properties — average porosity and saturatammpressibility, and
absolute and relative permeabilities;

- Fluid properties — oil, gas, and water compressigsl, solubilities, formation
volume factors and viscosities related to pressure;

- Production and injection data - oil, gas, and wateduction and injection
rates and pressures over the time, cumulative saliproduced and injected
fluids.

Although material balance method is quite simpld aonvenient tool in the
reservoir characterization, its use must be taketh ware in certain cases. This
requirement emanates from methodological assungptizentioned above. For example,
estimation of fluid in place can be very inaccunateen significant heterogeneity of the
reservoir exists. Moreover, it may give inadequatailts in the study of fluid reinjection
at the late reservoir life stage when fluid productinvolves water extraction from the

aquifer.
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2.5 Streamline Simulation

Streamline simulation methodology is essentiallgiraplification of the finite
difference simulators where pressure change imveseas analyzed on a finite difference
grid, but fluid movement and saturation change malyzed along the flow lines
(streamlines) that coincide with the fluid flow elttion in the reservoir. Conceptually, the
stream line simulation is a faster substitutiothef finite-difference method even though
they both use the same reservoir model with a amsit of variables.

Streamline simulation methods are based on theepbraf particle tracking to
design fluid flow path lines in the reservoir usitige (time of flight) of tracer particle
travel along these lines. The use of time of flighta spatial coordinate variable allows to
segregate mathematically a complex physics of floansport from the reservoir
heterogeneity, which is the key feature of this hodt Another aspect of streamline
simulation is that the time of flight coordinatesde used for the fluid flow visualization
in three-dimensional space, which is extremely wisef solving such practical tasks as
fluid front analysis, pattern balancing, and wallscation. (Datta-Gupta and King, 2007).

Once streamlines designed, the convection-domirsgiatial flow calculations in
form of transport equations (saturation and comeéinh) are executed in 1-D along the
individual streamlines and therefore can be peréarifaster. Further, these streamlines
should not necessarily be rebuilt every simulation, they can be used in multiple

simulations until a change in well conditions oscur
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Figure 2.5— Streamlines for Emerald 1380 synthetic case study

An example inFigure 2.5 shows the visualization of the streamlines spatial
distribution between injection and production wetiscolor scale with respect to depth.
Such distribution provides an outstanding advantageswept area and volume
calculations that can be useful in flood optimiaatand pattern balancing.

Initial development of 3D two-phase streamline datian techniques to model
reservoir heterogeneity, changing well conditiobkck oil displacement, and water

flooding using numerical solutions along streandinggradually obtained such
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improvements as: ability to model dispersive tramsfiow, separate gravity and capillary
terms from the convective ones, deal with capilrg gravity effects, perform simulation
of dual-porosity and fractured reservoirs, and nhactEmpressible fluid flow, C®
injection and polymer flooding (Batycky, 1997; Jarigee, Choe, and Kang, 2002,
Berenblyum, Shapiro, and Jessen, et al., 2003; @iaib, Huang, and Blunt, 2003;
Moreno, Kazemi, and Gilman, 2004; Cheng, Oyerifta-Gupta, and Milliken, 2006;
Obi and Blunt, 2006Thiele, Batycky, Pdllitzer, and Clemens, 2010).

In addition, streamline techniques were equippeth wan ability to perform
compositional fluid simulation (Thiele, Batycky, cdarBlunt, 1997; Crane, Bratvedt,
Childs, et al., 2000; Jessen and Orr, 2@gako and Datta-Gupta, 200/anaka, Datta-
Gupta, and King, 2014).

As the further development of streamline simulatimethods, the new trend arose
recently. This is solving tasks related to the riindrsimulation. Streamlines simulators
extended to include thermal effects of temperadependent parameters, such as viscosity
and thermal expansivity, for hot water flooding atedam injection processes related to
non-isothermal flow, physical diffusion of gravityeat conduction, and energy and mass
transfer (Pasarai and Arihara, 2005; Zhu, Gerrjtsgrd Thiele, 2010, 2011; Vicente,
Priimenko, and Pires, 2014).

In general, all these techniques demonstrate a goodracy of obtained results
and an advantage in computational time compaririigite-difference simulation. This is
a kernel in the choice making between these twallsition approaches. However, such

phenomena as existence of gravity effect, high c¢esgbility, compositional
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representation of fluids, and complex physics stdpable to cause some problems
diminishing positive effect of streamline applicati(Datta-Gupta and King, 2007).

The streamline simulation approach is relativelyury@ compared to other
methods, and it is still in a development stagevextbeless, due to its computational
speed and versatility the streamline simulationabez very popular in the following
reservoir engineering applications (Datta-Guptalaimg), 2007):

- Sweep volume and efficiency calculations;

- Rate allocation and optimization;

- Pattern balancing and delineation of drainage zones

- Modelling tracer flow, waterflooding, and well poent;

- Calculation of primary and enhanced hydrocarboovery;

- Uncertainty quantification, reservoir heterogenetaracterization, and

ranking geostatistical models;

- Upgridding and upscaling of geological models;

- History matching with production data integration;

- Solvent flooding and compositional simulation;

- Reservoir management.

Overall, streamline simulators provide advantagtasf flow simulation which is
critical when dealing with large models and mu#igleologic realization. Flow path
visualization and availability of properties such“ame of flight” provides basis for rate
allocation, flood-front optimization, proper simtitm mode upgridding, and solution to

over problems that pose challenges for finite-défece simulation. However, advantages
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of the streamlines come with certain limitationstsas introduction of material balance
errors due to properties mapping between the guidsé&reamlines, limitations of the time
step due to non-stationarity of the pressure swiudind complexity in dealing with non-

convective mechanisms such as gravity, capillanig phase behavior.

2.6 Finite Difference Simulation

Finite difference simulator is the most versatdelt Over the decades of use it
was improved to account for variety of physical ahdmical processes that can occur in
reservoirs. This allows us to work with a rangenafdels from very detailed to very coarse
resolutions. At its extremes, the finite differensienulator can work with models at
geologic scale and models that contain just a fells @and closely resemble material
balance models and their functionality. It all deg® on the resolution we need, data we
have to construct the model, and objectives wetrgneg to achieve (Aziz and Settari,
1979; Mattax, and Dalton, 1990; Ertekin, Abou-Kassand King, 2001; Fanchi, 2006;
Mustafiz and Islam, 2008; Islam, Moussavizadeganstislfiz, and Abou-Kassem, 2010).
Simulation model construction is the most importantl time consuming process. The
quality of constructed model is critical sinceiitedtly defines accuracy and applicability
of simulated results.

Engineers of different majors contribute their pssional knowledge and

experience doing teamwork in data gathering, pogsand integrated reservoir model
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design (Satter, Igbal, and Buchwalter, 2008). Thegry goal here is to build virtual
representation of a real subsurface domain ofestdully described by:

- Three-dimensional reservoir geometry and conneygfivi

- Spatial distribution of rock properties: pressucempressibility, porosity,
fluids absolute and relative permeability and aliaind residual saturation;

- Types of reservoir fluids and their properties: poessibility, density,
viscosity, formation volume factor, solubility, ah&al composition, salinity
and others;

- Presence and extend of fluid contact zones;

- Well allocation, completion, production and injectioperating conditions.

Ol Saturation

Figure 2.6— Initial oil saturation for Brugge synthetic cagady (adopted form Peters et

al., 2009)
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An example inFigure 2.6 shows a typical representation of three-dimensiona
reservoir model that consists of certain numbeyriof blocks, where every cell is assigned
with particular set of rock and fluid propertie$id particular example visualizes a spatial
distribution of the initial oil saturation withireservoir in color scale and locations of five
production wells.

In general, simulation model is a set of parametieas should be used by the
simulator to achieve a particular simulation gddle selection of these parameters and
their properties is based on reasoning about agijit of the following (Aziz and Settari,
1979; Satter, Igbal, and Buchwalter, 2008):

- Reservoir geometry model (one-, two-, or three-disnenal) and coordinate
system (Cartesian, Cylindrical, or Spherical);

- Representation of fluid type as black oil (incluglary gas, wet gas, heavy or
volatile oil) or composition (in terms of molesiatlividual components) with
number of phases;

- Description of a flow type in porous media by Dasciaw or its extension
due to high-velocity effect, slippage effect, artder aberrations;

- Determination of mass and heat transfer mechansumeh, as immiscible fluid
flow, phase composition flow, heat flow, mass tgors due to dispersion,
adsorption, and partitioning.

Once a simulation model is created, it is furthentsto the simulator for

processing. Finite difference simulator is a corepprogram that has the ability to solve

a set of partial differential equations replacethwinite differences. The following simple
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example shows a typical isothermal simulator wankfl where finite differences are

derived from Taylor’s series (Fanchi, 2006):

1. The two-phase fluid flow equations are formulated a

3 [K (9P, o soxony = 2[5
&{w[axﬂ+qsd(x X,) at[Bj (2.4)

where: K — absolute permeability of the fluid;krelative permeability of the fluid; p -

fluid viscosity; B — fluid formation volume factoB — pressure;sg fluid flow
rate; ¢ — porosity; S — fluid saturation; x — coordinaleng x-axis; t — time
coordinate.
2. Derivatives are approximated with finite differeace

a. Discretize region into grid blockAx :

a_P~ R+1_P =AP

- (2.5)
0X X=X AX
b. Discretize time into time stepAt :
n+l _ n
5. 87-5 4 29
ot -t At
where: i — index labeling grid location along xsxn — index labeling the present time

level, so that n+1 a future time level.

3. Numerically solve the resulting set of linear algeb equations.

Once the finite difference analogs (2.5) and (26)the partial differential
equations obtained, they can be substituted irgdltlv equations (2.4). Further, the full
set of flow equations is rearranged algebraically solved using numerical methods. As

a result of computation, the unknown primary vaeab pressure and saturation, are
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calculated in spatiotemporal coordinates, whatadlapdating of the pressure-dependent
(temperature-dependent for non-isothermal procgsgesameters of the model.
Iteratively, this process can be repeated manystime

Results of simulation represent the reservoir bignaw a time perspective under
particular conditions. The model validation procissssually made by implementation of
history-matching procedure, where observed or hesib pressure, saturation, and
productivity measurements are sequentially matetigd simulated ones. In case, when
there is no sufficient deviation observed the satioh model can be further used for the
reservoir performance prediction including all lifstages from exploration to
abandonment. Otherwise, some key parameters sheulkelised and adjusted.

There is no doubt that this type of reservoir satioh is the most popular and
powerful in the petroleum industry. It can asastasolving most of the problems related
to reservoir management, field development stragediesign, performance prediction,
primary and enhanced hydrocarbon recovery evaluadod many others. However,
computational speed is an issue especially forlyigbterogeneous models consisting of
more than one million grid blocks. Therefore, eegirs constantly looking for alternative
ways to do the work.

When we talk about the model to be used for fidifeerence simulation, speed is
not the only criterion for selection. Every modehtes along with certain simplifications
and limitations that can make it a perfect or a baddidate for use. Selected scale of

uncertainty representation (number of componenigplgpcks, etc.), objectives of the
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study, and minimum accuracy of the model can helmselecting a good substitute for

fine scale finite difference simulation.

2.7 Conclusions

Depending on a whole set of aspects of reservoiystsuch as field-life stage,
appraisal purpose, data and its source differentilstion approaches can or cannot be
used. They may give significantly different res@t®en at the same given conditions. The
sought-for result here implies finding of the progénmulation approach that provides
sufficient accuracy, adequate complexity, and regm&ation of the available data with

respect to simulation objectives and existing a@msts.
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3. EXPERT SYSTEMS

The concept of an expert system, as a mean of exmpbblem solving that
requires professional expertise, will be discugadtiis section. The evolution of expert
systems during last several decades resulted imda uwse of them in different areas
including Petroleum Industry. The most common megions will be discussed to

formulate improvement in a decision-making suppbgimulation approach selection.

3.1 Definition of Expert System and Historical Revew

Rapid development of computer technologies hasngnse to emergence of a
computer science’s separate branch that is knovartdigial intelligence systems. The
term artificial intelligence combines a large sepmcedures, principles, and algorithms
that implement intelligent behavior based on camssiconclusions. In some ways, it is
an attempt to replace the thought process of hdsganachine language formal logic. In
most cases, it comes down to the analysis of aioeatmount of information, its processing
in accordance to the controlled rules, and the tolof a final decisionRussel and
Norvig, 2010.

The described above procedure suggests an existéaceery important feature
that should be an integral part of any artificiatielligent system. This part is called as
cognitive skills. Realization of human cognitiven@ition became widespread within

computer programs, which rather reason about pmabihan compute solution. Such
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approach stimulated emergence and implementatiantifitial intelligence systems in a

number of applied fields such as medicine, commermgomation and control,

manufacturing, navigation, aerospace, meteorolagg, many others. Since 1956, the

development of machine intelligence resulted igiardf the following major classes of

artificial intelligent systems with respect to tl®lving tasks and methods used

(Krishnamoorthy and Rajeev, 19%ussel and Norvig, 200

Problem solving and planning — setting goals, $ele®f the most important,

and their hierarchical prioritization;

Automated reasoning — generation of sensible infee using accumulated
information;

Natural language processing — generation, analggtggnition, translation,

and grammatical and stylistic manipulation withtterd speech;

Learning — dealing with different types of machlaearning to adapt them to
new conditions;

Computer vision — detection, perceiving, visual@atand analysis of objects;
Robotics — dealing with robotics control;

Neural networks — emulation of human learning aotuteon search by

aggregating data classification, reasoning, anclitation;

Genetic algorithms — implementation of adaptiveatgms in solution search,

machine learning, and optimization processes;
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- Expert systems - imitation of professional expertis complex decision-
making problems, including data classification aedsoning, by knowledge
processing in specific area.

According to shown above classification, artificredural networks and expert
systems are more suitable tools for solving proBlemiated to simulation of expert
reasoning as a human with expertise. By definjtibe expertise is the use of professional
skill or knowledge in particular field of interdsy a person, who has comprehensive and
authoritative qualification. Thus, neural networksd expert systems are capable to
determine relation between an input data set ampubwgolution, which is called data
classification: they can find an answer to the tjaesvhether the given data set belongs
to the area of interest or not.

Even though these systems historically were elabdr@ reach the same goals —
implement machine intelligent behavior and emulatenan cognitive ability, they are
separated into different classes for several reagarst, conceptually neural network and
expert system are based on different organizatstnatture:

- neural network represents an array of interconaegiEments, neurons, where

knowledge is realized by elements connections &stjusy weights;

- expert system is formed by two distinctive moduiesyhich knowledge and
solution search rules are separated.

Second, expert systems have strong advantages domp@aneural networks in dealing

with certain tasks, where data classification aasoning is not enough for solution. More
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precisely, Krishnamoorthy and Rajeev (1996) andhdaeitz (1997) provide two very
important arguments:

1. The most significant weakness of neural networktha they do not provide
interpretation of why the certain inference thegate, as that expert systems do.
So, neural networks can emulate a human expervimehanitedly.

2. Due to their structure, expert systems are motalseiin automation of decision-
making and solution search in engineering probleohgng. Namely, while neural
network may require structural rebuilding and reireg in case of new tasks
emerging, expert system may need only slight kndgdebase and/or inference
engine correction that is much faster in time aasiey in effort.

Therefore, the necessity of solving issues thatiregxpert judgement in the most
approximate to the human expert extent, explanatibrobtained conclusions, and
flexibility in reconfiguration has created a sepafarge class within artificial intelligence
systems called expert systems.

Giarratano and Riley (2004) proposed the followdedjnition of an expert system
as “a computer system that emulates the decisidangability of a human expert.” In
other words, the software tool substitutes the gores of an expert in some problem
solving. It should be noted that expert systemsehave major difference from other
systems of artificial intelligence: they are nateimded for solving some of the universal
problems since they are designed to provide higtlityusolution of the certain problem

in a specifically defined area.
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Historically, the emergence and development of exggstems was associated
with cognitive science. This is a study of humarpgat) thinking process in problem
solving. Since the late 1950-s, when Newell andddirdemonstrated that the most of
human decision-making solutions are based on “IEEMHtype production rules, the next
several decades significantly contributed in expgdtems evolution (Giarratano and
Riley, 2004). The major stages in expert systenaduéion are shown ifrigure 3.1

Starting with implementation of very simple programg algorithms, expert
systems step-by-step obtained its personal languegmplex logic, system shell,
knowledge base, and inference and search engitiebede components, widely used in
modern expert systems, resulted in conversionitdliy quite simple computer programs
to powerful software tools and applications (Gitan@ and Riley, 2004). Badiru and
Cheung (2002) pointed out that nowadays a new tiemkpert systems design can be
observed. Namely, expert systems are not creatdduaed as independent software
applications, but as constituent of software compleat may include more than one
system. For instance, there are several commepaekages equipped with scilicet
database and management, information managematistisal analysis, data analysis,
and project management expert systems. The comdsgpexample of the modern expert
system realization can be easily found on the matierwhich is Google or Yahoo search

engines.
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2000 —— Intelligent agents - Web, E-commerce, Search engines

1998 - MNlorethan 12 500 expert systems (USA onlv)

1996 - GUESS - Generically Used Expert Scheduling System
1994 - Commercial Artificial Neural Systems

1993 - Lumiere Project (Microsoft)

1990 - Artificial Neural Systems

1985 - CLIPS expert system tool (INASA)

1983 -1 KEE expert system tool (InteliCorp)

Japan - Fifth Generation Project (inteligent computers)
Hopfield Neural Net

1932 -— SMP math expert system
1980 - LMI and symbolic founded for manufacturing LISP machines
Inference Corp formed
Artificial Intelligence goes commercial
1979 - RETE Algorithun for fast pattern matching (Forgv)
Meta-DENDEAL - metarules and rule induction (Buchanan)
1978 --— HXCONMTRI (DEC computer system configuration) started (McDermott, DEC)
1977 -+ OPS expert system shell for XCON/RI (Forgy)

Theory of Reasoning under Uncertainty (Dempster-Shafer)
PROSPECTOR expert system started (Duda, Hart)

1976 --— Artificial Matematician (AM) discovery of math concepts (Lenat)
1975 -+ Frames and knowledge representation (Minsky)

HEARSATY II - cooperating experts blackboard model

EMYCIN - expert system shell (Van Mele, Shortliffe, Buchanan)
TEIRESIAS - explanation facility concept (Davis)

GUIDON (intelligent tutoring} {Clancey)

1973 -— MNYCIN expert system for medical diagnosis (Shorthffe)
Human Problem Solving (Newell, Simon)

1971 - HHEARSAY I(speechrecognition)

1970 -+ PROLOG work started(Colmerauer, Rousell)
Perceptrons (Minsky and Papert)

1969 -— MNACSYMA math expert system (Martin Moses)

1968 --— Semantic nets, associative memory model (Quillian)

DENDERAL started (Feigenbawmn, Buchanan)
Fuzzy logic ({Zadeh)

1965 -1 Automatic theorem Proving via Resolution Method (Robinson)

1962 --— Principles of Newrodynamics on perceptions {Rosenblatt)

1958 --— LISP artificial nteligence language invented (McCarthy)

1957 -+— Perceptron invented. General Problem Solver started (Newell Shaw, Simon)
1956 - Artificial intelligence term is used. Logistic Theorist. Heuristic Search

1954 - Mlarkov Algorithm (control rule execution)

1943 - Postproduction rules. The neuron model (McCulloch, Pitts)

Figure 3.1— Milestones in the expert systems history (adbftem Noran; Giarratano

and Riley, 2004)
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3.2 Classification, Structure, and Design of ExperBystems

Depending on the specific tasks being solved byeipert systems, Hayes-Roth
and Waterman (1983) proposed the following classiifon: interpreting, forecasting,
diagnosing, designing, planning, monitoring, instimn, controlling, debugging, and
repair systems. Since this classification allowrtagping and combining of specific tasks
due to their inseparability, it was reworked byr@@iay (1985) and is used nowadays — the

following is the list of tasks where expert systeans effectively used:

Classification — determination of an object belowgto particular area of
interest (clustering) based on defined charactesist
- Diagnosis — elicitation of nature and causes ofpttadlem by examination of
observed data;
- Monitoring — observation and checking the systeogpass or quality over a
period of time to describe behavior of process;
- Process control — management by a process basedmtoring;
- Design — configuring an object in accordance ttaterexposition;
- Scheduling and planning — design or modificatioraoforkflow or actions
depending on estimated conditions;
- Generation of options — creation of alternativeisieas to a given task.
The presented list is not exhaustive because agnis evolution of expert
systems engenders brand new tasks to be feasiertieless, this classification gives a

clear idea about area of systems application. @ensig the solving task of simulation
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approach selection, which is based on expert réagamd should involve an explanation
of made decisions, we can conclude that the twanngaials of this project — data
classification and generation of options — candadized using expert system. On the next
step of our search we should define a structurth@fsystem, which will provide the
optimal configuration to be developed in accordacie project objectives.

Being a computer program, the expert system iedadl “system”, not just a
“program”, since it consists of several major comgats:

- aknowledge base that stores information requioe@ task solution;

- aninference engine;

- additionally, it may include an explanation modihlat provides description of

how the system makes recommendation.

The knowledge base is the foundation of any exggstem, which is compiled
based on the professional expert knowledge. Acongrth Engelmore and Feigenbaum
(1993), the knowledge base is the set of factudl feuristic knowledge. The factual
knowledge is widely shared in different sourceghsas textbook, journals, and articles
and have common implementation in the field of gtubh contrast, the heuristic
knowledge is more specific, individualistic, andsed on experimental and practical
performance of good judgement as well as very aimmédasoning it the field. The expert
cognition here is the combination of theoreticallenstanding of the certain problem and
practical skills of its solving, which effectiversess proven in a result of the practical
work. Properly selected expert and successful fbratéon of their knowledge endow the

expert system unique and valuable knowledge.
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The inference engine usually represents a set pliegbrules, such as match,
select, execute etc. It is built as a set of atgors, which provide suggestion about ways
of posed problem solution based on knowledge badéngut data set juxtaposition.

Structurally, all the diversity of expert systeraslivided in two large groups based
on their knowledge base construction principlesovkedge-based and rule-based
systems. Although both groups have many commontfestthey are different.

The knowledge-based systeRigqure 3.2) are used for creation of very powerful
expert systems (Engelmore and Feigenbaum, 19983, He knowledge base consists of
set of various complex objects which charactessiind types have specific relationships.
In other words, every object in the knowledge bmsa combination of parameters,
encoded in a certain manner, that describes a caitigyoof data variables and cases of
their use with respect to particular problemssltivirtual representation of an expert
judgment on the possibility to solve a particuleslgem with a specific input data set.

In the rule-based expert systeRigure 3.3), the knowledge base is represented
by a set of production rules, where a group of &iff--THEN” statements represents
knowledge (Engelmore and Feigenbaum, 1993). Inrgén®e production rule consists
of a condition (prerequisite) expressed by “IF” aomhclusion (action) denoted by
“THEN” (Giarratano and Riley, 2004). In the cageseveral dependent rules, they might

be organized in the form of a decision-making tree.
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Facts Set of various
encoded objects

Inference Engine

E—

Expertise

Expert System

Figure 3.2 — The basic concept of a knowledge-based expstesy (reworked from

Giarratano and Riley, 2004)

Knowledge Base

Expertise

Inference Engine

Expert System

Figure 3.3— The basic concept of a rule-based expert syg@norked from Giarratano

and Riley, 2004)
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As shown above, the rule-based systems are slidiftirent from the knowledge-
based ones in structure, but sufficiently differancontent of the knowledge base. In
practice, this distinction affects expert systemcfionality and, consequently, area of
applicability with respect to the resolving taskheTsummary of these distinctions is

presented oifable 3.1

Table 3.1: Summary of the key differences between rule-baset knowledge based

systems (reworked from BizRules, 2006-2007)

Can process Can output Best for applications in
Rule-Based Data, Informanon, Decision-making,
System Rules Demspns, . Compliance
Real-Time Decisions
Information, Advising,
Knowledae- Data, Decisions, Decision-making,
Based Sgstem Rules, Real-Time Decisions, | Solution Selection,
y Knowledge | Expert Advice, Recommending,
Recommendations Troubleshooting

As it mentioned above and can be inferred fromTialele 3.1, knowledge-based
systems have a very significant component compadadrige rule-based systems, what is
knowledge. This “real” knowledge base seriouslyeaxt the expert system’s potential in

output results obtaining and area of applicability
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The abovd-igures 3.2and3.3 represent the basic concept of interaction between
a user and an expert system. The user gives satseafs input data to the expert system
in order to obtain solution for particular taskitggthe inference engine, the expert system
processes the user’'s data, collating it with datairs the knowledge base, and making
logical conclusions. The obtained solution retuathe user as a result of expertise, which
can be either a solution for a given task or a waen about problem solvability and
recommendation on what to do.

This example demonstrates one of two possible wgrkinodes, so-called
“consulting regime”, when the user applies to tkpegt system for problem solving. In
this particular case, the user can be:

- non-professional in the area of interest, and ke #® expert system to find

solution that he cannot get by himself;

- professional in the problematic area, but he usegxpert system as a part of

routine work to speed up result finding.

Another working mode is called “teaching/trainiegime”, when an expert works
with the expert system instead of user. In thigctse expert describes problematic area
with a set of facts and rules locating them inkhewledge base and inference engine. In
other words, he fills out the expert system witlowtedge that further allow solving the
described problem independently of the expert. Tosle is usually implemented during
initial formation and filling of knowledge base amdference engine or when any

correction of their content or structure is reqdire
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In modern expert systems (Duggal and Chhabra, ;2Q8inal et al, 2014), the
training regime has a tendency to be automatedtbgduction of a learning engine in the
system’s interface, as is shownhkigure 3.4 Such extension of the system is usually
made by the application of machine learning algong. This ability is especially valuable
in changing conditions, when:

- the range of solving problems has tendency to ekpan

- obtained results require correction of the knoweedgse and/or inference
engine;

- system adjustment procedures, such as modificatimimg, and training are
too complex and require simplification.

In other words, these advantages provide posgihilincrease the expert system’s
level of confidence.

Shown inFigure 3.4is an example that represents the following atboriof self-
learning regime. Initial data from user set is preeessed in data interface and is then
inputted into database and inference engine. Exystem finds solution for a given task
and brings it to a graphical user interface. Siamdbusly, the learning engine compares
the system’s output with other ones stored in degalwhich have the same conditions
with respect to input data set and solving probl&énthe database response has good
agreement with the system’s output, then the legrengine perceives this situation as
normal and does not require any additional act@therwise, the knowledge base is

corrected by introduction of new or correction afséing rules (rule-based system) or
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objects (knowledge-based system) in the knowledge kia the use of specially designed

algorithms.

Input Data|

New 'Rules

Real-Time/
Historic Learning Engine
Database {Data Mining)

Figure 3.4— Architecture diagram of expert system with I&grengine (reprinted from

Kaimal et al, 2014)

Thereby, an initially well-built expert system sigypented by a learning engine
has the opportunity to educate itself on the proldelving via adding corrections into the
knowledge base in conformity with obtained reswtsjclusions, and decisions.

Overall, an essential part of any expert systemgdes the development of

knowledge base and inference engine (GiarratanoRiley, 2004). In general, this
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process implies multi-criterion data analysis aftasfication. Complex data structure,
where parameters are represented not only by niegisures, but also their connections,
requests availability of certain procedures or atgms to evaluate whether set of
parameters is passable and satisfies the oveqalireznents or not. Therefore, it is very
important to define initially the optimal method @dta encoding that further allows the
suitable solution search.

Addressing the issue of the data encoding methledtgmn, Giarratano and Riley
(2004) state that in contrast to some computer rarog, which use just numerical
calculations, the “expert systems are primarilyiglesd for symbolic reasoning”. Siller
and Buckley (2005) note that “key to expert systéansl to artificial intelligence, for that
matter) is the concept of reasoning with symbobMany programming (procedural)
languages, such as C, FORTRAN, and others cansaprepecific symbols in numerical
or character strings data or even in complex objedevertheless, for the purposes of
expert systems design the more appropriate langudge symbolic reasoning
(manipulation), than procedural languages, are LWSPROLOG where “symbols can
represent almost anything” (Siller and Buckley, 200n essence, these logic languages
deal with syntactic structures, where:

- variables are denoted in string of letters;

- relations between them are defined by clauses;

- solution search logic is expressed by specific yuarer variables and

relations.
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Expressing data in the form of syntactic structasea natural language, has big
advantage since it allows to construct logical @gpntation or description of objects. It
opens an opportunity to distinguish common or uaitpatures for different objects, what
simplifies their clustering for the purposes oftigr classification and inferring new facts
about objects. Additionally, solution search logicbuilt in finding match of assigned
criteria within object features.

For instance, there are several objects that cateberibed as “red car with four
wheels is vehicle”, “blue bicycle with two wheelslbngs to Mary”, and “yellow truck
with eighteen wheels is long vehicle”. RelationsAm®en variables in these objects can be
assigned as following: “IF wheels THEN car”, “IF adls THEN bicycle”, IF wheels
THEN truck”, and “IF wheels THEN vehicle”. Findindpe answer to the question of
whether bicycle is also vehicle or not, analysithefgiven above common object features
and assigned clauses leads to the next concluBarause bicycle has “wheels” as the
other objects, defined as vehicle, it can be diaskas “vehicle”.

This primitive example demonstrates a very simgsecof symbolic reasoning
used in expert systems. In practice, the objectsctsire and relations between their
variables are more complex, what is directly degead the required expert system
functionality and the area of solving problems.

Vast majority of systems that are effectively enyplb today were built using
languages of symbolic manipulation. For instan&QBPOG is implemented in all known

operating systems and platforms, including Unixnddéws, Java and .NET.
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3.3 The use of Expert Systems in Petroleum Industry

According to Waterman (1986) and Leibowitz (199 design and use of expert
systems in Geology and Petroleum Industry begdaten1970s — early 1980s.

SRI International developed the very first systaamed PROSPECTOR, in 1978.
This system interprets geologic data in order @weate an existence of certain minerals
in the region of interest. In 1981, SchlumbergeitBesearch Centre in association with
Fairchild Labs for Al Research and MIT created DIPMER Advisor. Interpreting
dipmeter logs, this system shows information algmaiogical structure around the well
with respect to depth. Two years later, Schlumhedgzeloped another expert system
called LITHO. By using records of oil-well log dathis system issues description of the
most plausible lithofacies detected in verticahdibgical column. At the conference
“Applications of Artificial Intelligence” (Denver1984), G. Khan and J. McDermott
presented MUD expert system that was developedliaboration of Carnegie Mellon
University and NL Baroid. The main mission of MUlas to diagnose and remedy
drilling problems via providing optimal propertiegdrilling mud.

Proving ability to solve complex engineering prabtequickly and accurately and
being easy to use, expert systems gained a lobpdlarity. Starting 1986, there were
several dozens of expert systems designed for miseaiious areas of Petroleum
Engineering. The use of them allows solving a wiglege of tasks, but only in highly
specialized subject areas. Functionally, existipgtesns can be assigned to following

groups:
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- reservoir characterization (Erdle, Archer, Stiff,a., 1986; Whittaker and
Macpherson, 1986; Dharan, Turek, Vogel, 1989; Sajauj, Sharma, 1989;
Mabile, Hamelin, du Chaffaut, et al., 1989; Al-Kgd¥icVay, Lee, 1990; Kjell
and Baleix, 1992; Surguchev, Zolotukhin, Bratvdlé92; Garrouch, Malallah,
AlEnizy, 2006; Nashawi and Malallah, 2009);

- drilling, completion, and production operations toh (Martinez, 1992;
Martinez, Moreno, Castillo, et al., 1993; d’Almejd&ilva, Ramos, 1997;
Denney, 1999; Pandey, Osisanya, 2001; Al-yami, Betiu2012);

- drilling and workover operations design (Van Domel&ord, Chiu, 1992;
Heinze, 1993; Kulakofsky, Wu, Onan, et al., 1993ldB, Weiss, Ruan, et al.,
2003; AlMousa, Ertekin, 2013);

- selection and optimization of enhanced oil recoviaghniques (Guerillot,
1988; Khan, Pope, Sepehrnoori, 1993; Sheremetosul€@bi, Batyrshin, et
al., 2007);

- reservoir performance prediction (Srinivasan, BrteR008; Moridis, Kuzma-
Anderson, Reagan, et al., 2011; AlMousa, Erteki13 Siripatrachai, Rana,
Bodipat, and Ertekin, 2014).

In general, these areas are well studied and peoslelar strategy of decision-

making.

Nowadays, the growth of expert systems quantityenishing. Developments in

science and technology complicate the type of prokland approaches to their solution,
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what in turn significantly expands domain of regdiknowledge and experience. That is
triggering natural constraints of expert systems:

- Transfer of deep knowledge about subject areag@#pert system is not a
trivial task due to the complexity of experts’ histic knowledge
formalization.

- Frequent involvement of software developers is ireguto support expert
systems in actual condition, especially when probs®lving environment is
changing. Without developers support systems quidse their relevance.

Nevertheless, despite all of these constraintsrexystems have already proven

its value and irreplaceability in some importanplagations.

3.4 Conclusions

The expert system is a good means for problemraphhiat requires expertise. The
basis of any expert system is a complex of knowdedaghich is structured in order to
facilitate the decision-making process. Simultarseaqpplication of input data analysis and
expert knowledge and skills in making decisionsnabtesions, predictions, and
recommendations can be realized via knowledge &r@dénference engine creation.

Knowledge-based expert systems, comparing to raded ones, benefit in
application development in which the use of comjgosinctionality, including decision-

making, solution search, and recommendations dpredat, is required.
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Overall, the knowledge-based expert system to Beyded as a decision-making
support in simulation approach selection. The symltnguistic) data encoding and
processing to be used in the system to make ittefeeand further designate the proper

solution search.
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4. DESIGN OF THE EXPERT SYSTEM FOR SIMULATION APPRO ACH

SELECTION

This section discusses components of the expadmythat have been developed
and implemented in framework. We also describelitiguistic method of the Pattern
Recognition Theory as a means that determinesetatading algorithm, knowledge base
content, and solution search procedures with syimbehsoning. In addition, we present
the methodology for a new well placement justificatas an extension of the expert

system functionality.

4.1 Workflow Steps

As we mentioned earlier, the primary objectivehsf tork is to formalize, design,
and test the reliable methodology and softwaretmplovide decision-making support in
simulation approach selection. This task is nowidtisince it requires emulation of a
human cognitive ability in thorough data analysid ¢he appropriate simulation method
selection. The complexity of this topic is causedtite need to design and implement
algorithms of data processing and encoding, whochn$ the basis of the expert system’s
functionality. More precisely, the fulfillment ofiis task consist of the following stages:

- knowledge base design, including the alphabet ilanary creation;
- inference engine development as a set of data gsmgeand matching

procedures;
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- assignment of the expert system functionality.

The basic concept of a knowledge-based expert mysthown inFigure 3.2,
represents the conceptual image of the further dveonk of the system design.
Additionally, it displays interaction between a uaad the system. The user gives some
facts as input data to the expert system in ordebtain a solution for a certain task.
Using the inference engine, the expert system pemseuser’s data collating it with
another dataset in the knowledge base and makmgigaloconclusions. The obtained

solution returns to the user as a result of emdlhtaman expertise.

4.2 Symbolic (Linguistic) Data Encoding

In the previous section we concluded that the dsgyambolic (linguistic) data
encoding and processing method makes the expéensysfective and further designate
the proper solution search. The LISP and PROLO@Guages could be used for symbolic
manipulation. Since these languages are too comgexcumbersome for use in this
work, the alternative approach can be implememeldested for the knowledge base and
inference engine design. This opportunity is predidy the linguistic method of the
Pattern Recognition Theory.

The linguistic approach is particularly useful diegiwith objects which cannot be
described by only numerical measurements or hawveplex structure as mixture of
guantitative, qualitative, and perhaps structurdiogical characteristics. This ability to

encode, combine, and process data of differenr@a&tguips the linguistic method with

59



indubitable advantage in solution search compatingther ones, such as heuristic or
mathematical (Tou and Gonzalez, 1974; Pearl, 198daban, 2004; Lepsky and
Bronevich, 2009Russel and Norvig, 2010jarti and Reinelt, 2011).

The main goal of recognition procedure is the amgaéhe question whether the
object, described with specified characteristicsralated to the certain category of
interest, and if yes, to which one? (Chaban, 2004&ur work, the recognition process is
a search for conformity between the specific sitmotamethod and the problem to be
solved with a given set of data (object).

In a very general case, any information model oblaject, phenomena or process
in the real or abstract world can be considerelzttern (scenario). A distinctive feature
of such model in the recognition task is the usenty exact objects characteristics subset
which provides selection of one or several paréicobject type groups. A full set of the
most informative features that fully describes aject is called an alphabet (Lepsky and
Bronevich, 2009).

Any recognition algorithm can be expressed as tfieviing abstract function
(Chaban, 2004):

R={A, S, P} (4.1)
where in regard to the linguistic method: A — alpéia the variety of uniquely encoded

objects characteristics; S — scenarios; the vaoéglphabet elements combined

into possible patterns that uniquely describe dlpémterest; P — inferences; the

variety of decision making rules.
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In accordance to the expression (4.1), the fursteges of the methodology and
expert system design are reduced to the followiegss

- Alphabet design — selection of key parameters @®olved into the
particular reservoir evaluation problems solvidggrt, encoding them with
unique symbolic names.

- Knowledge base (vocabulary) design — a set of smengeneration (S);
combining the alphabet elements into the particsdguences that define
requirements to the data quality and sufficiencytha certain problem
solving, accuracy of output results, and computatiepeed with respect
to every simulation approach.

- Inference engine design — development of certdesr(P) that generate
conclusions about which simulation approach shbwaldused as optimal
with a given input data set and/or provide suggestin what should be
additionally done to make other methods applicable.

Once the alphabet is created, then using its Istiguwariables the composition of
patterns (scenarios) is designed in a form of #drarmetric sets. As a result, every scenario
uniquely represents an ability to use the exactikition approach for the simulation goal
achievement depending on the given set of fielé datd possible constraints. All the
generated scenarios are put into the library theailed the knowledge base. Virtually, all
these patterns are automatically combined into ragpeclusters, where each cluster
represents the simulation approach that eliminagegssity of decisive function use in

solution search (Lepsky and Bronevich, 2009).
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Realization of the described above procedures tilmasnference engine design
into a quite simple task. In general, its implenaéioh reduces to analyzing the match
between patterns in the library with another oneegated by the expert system through
the user data processing. The user’'s data hemthsng more than the input data set of
variables that he/she has, such as rock and fiaidepties, production data, simulation
objectives etc. In the case of full pattern mateimt obtained or part of the scenario being
matched with a certain cluster from the vocabulaegision regarding the simulation
approach to be used is obvious. Otherwise, tharjtand/or vocabulary should be revised
and adjusted by an expert because previously unkfumaescribed scenario has been
met. That process is called training.

The principle of comparing with an etalon (scenauiothe knowledge base), as a
match finding procedure, is used because it prevedieining flexibility and possibility to
create an adaptive regulation of decision-makimgdgnition) process. In addition, it
allows the creation of an explanatory module treat generate comments on why the
expert system made the certain decision and difteecommendations on the problem

solving workflow.

4.3 Knowledge Base Design

With regard to our work, the realization of the Whedge base involves several

stages. The first one is the alphabet design, wihidhdes:
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- selection of parameters that are required to be fmeeach of simulation

approaches;

- selection of constraints that provide some limitiasi in use of the certain

simulation approach;

- selection of certain simulation goals that can bached by the certain

simulation approach;

- parametrization of selected data via encoding the&olinguistic (symbolic)

variables.

Depending on the methodology put to the basis efyegimulation approach,
described in section 2 of this work, the followingjor groups of required parameters
were selected: simulation goals, reservoir rockprtes, reservoir geometrical data, fluid
properties, saturations and relative permeabilitilesd types, initial volume of fluids,
fluid contacts, production data, injection datag aamber of production/injection wells.
Additionally, there are several groups of paransetestimated that can affect the
applicability and accuracy of the certain simulatimethod or can be considered as
constrains: field maturity (life stage), reservbeterogeneity level, source of rock and
fluid properties, and set of special constraint thay be considered or ignored by user
during data processing. All these parameters ateccby assigning them unique linguistic
names. Thus, the alphabet is created, where 1B&ats are combined in 16 groups. The
example of parameters coding for two groups (fluioperties and specific constraints) is

shown onTable 4.1 The full alphabet is presented dable A-1 (APPENDIX A).
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Table 4.1: Fragment of the alphabet with encoded parametersies for two groups

(fluid properties and specific constraints)

Fluid properties - FP Constraints - CS
ODN | oil density [Ib/cu.ft] CTA ‘F:,O_mp%‘gg“o”a' time advantage [G - goo
field scheduled events [affects

L

WDN | water density [Ib/cu.ft] FSE predictability]
GDN | gas density [Ib/cu.ft] FLS field I|fe stage - goes from FM (field
maturity)
OFER oil formation volume factor related t)ACC accuracy [L - limited, F - fair, G - good,
pressure [rb/STB] B - the best]
water formation volume factor related .
WFR to pressure [th/STB] CPH complex physics
as formation volume factor related gravity effect is exist (ODN>=WDN at
GFR |9 GRA surface) (less than 10 yields constrain for
to pressure [rb/SCF] .
stream-line)
GSrR | 933 solution in oil related to Pressu pwe critical value of the water cut

[SCF/STB]

U/

recovery drive mechanism (W - water, (
OCM | oil compressibility [1/psi] RDM - gas cap, S - solution gas drive, E - all
expansion drive)

production decline is established (Y - yes,

WCM | water compressibility [1/psi] PDE N - no)
number of grid blocks (more than 100000
GCM | gas compressibility [1/psi] NGD | for black oil - advantage in CTA for

streamline vs FD)

level of heterogeneity by Dykstra-Parso
[0 ... 1] (HTL>0.25 limits use of MBL;
HTG > 0.5 advantage in use of
streamline vs FD for black oil)

>

ovs oil viscosity [cP]

HTL
WVS | water viscosity [cP]

GVS gas viscosity [cP]

GDF gas deviation factor

It must be noted that the created alphabet is xlodusstive. In case, when new
elements have to be added or existing ones toiéated for some reason, the alphabet
content can be revised and corrected.

In the next stage, scenarios that uniquely desecehaired set of parameters for

solving the certain simulation problem with respeciexact simulation approach were
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generated. Basically, the scenario is a combinaifgpmarameters that methodologically
are required for the particular solution. Theseapuaaters include available field data and
constraints, which we described in section 2 of tthesis. Scenarios design is a very
important part of the entire work since being a keysuccess of the knowledge base
creation it directly determines the expert syst@wvel of confidence. Moreover, this
procedure is exactly the process of theoreticalwkedge and practical experience
integration. In other words, generating each scewee reproduce the same reasoning as
a human expert on:
- What parameters are required to solve particulaiblpm;
- Whether an amount of available data is sufficienat;
- What is the accuracy of solution should be congidesource of data, field-
life stage, reservoir complexity, and constraints;
- Whether the certain simulation approach is appleas not at the given
conditions;
- Is it possible to obtain results using only one hodtor there several ones
should be implemented as a multistage solutionirfgnd
- How fast the sought-for results can be computedgusiie certain type of
simulation;
- Overall, what simulation approach should be setkatethe most appropriate
in the given conditions, and/or what additionalpsld be done to make other

methods applicable and improve quality of simulatsiilts.
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Specifically, for this procedure implementationgisario generator was created
with the following functionality. On the worksheatiown inFigure 4.1, the names of
alphabet parameters are located in upper partobf @umn. Depending on the necessity
to introduce new variables or delete unused onésaralphabet, the number of columns
can change. There is no specific requirement foarpaters ordering within a row and
they can be organized in columns randomly. Thes v&ry convenient feature because it
allows an easy generator modification and flextipiin the scope expansion. Names of
simulation task and related simulation approachpatan the first and second columns,

respectively.

v|0G  -reservoir[RP  -resemoir properties -sat|3!— FT |:F PD |'.'-,'I‘-l -WE|CE
.GBM_.ARE .THC|.PER .POR .WST .0ST .GST .RCM .RPI |.0SR[.HME.OIL |.ODN .OFR .OCM.OVS PROI.PWF .PTM .PDE [.PWN.IWN|.CTA .ACC FLS

DHP €De 1 1 T 1 11 1 1 10 | 1 | °F

DHP PRX

DHP MBL 1 1 1 1 11 1 1 1 11 11 L E
DHP STL 1 11 1 11 1 1 1 1 1 1 11 G
DHP FDV 1 1 1 1 1 1 1 1 1 1 1 1 11 B

DAE coC 1 1 1 1] ] 1] 1 1 1 1 10 | 1 | F

DAE PRX

DAE MEL

DAE STL 1 1 1 1 T 1 1 1 1 1 1 1 1 1 G

DAE FDV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 B

Figure 4.1 — Scenario generator worksheet: an example ofnpateas distribution for

hydrocarbons in place and drainage area estimasimg five major simulation methods

Depending on the combination of simulation goal amdulation approach, an
expert qualifies applicability of the certain paeter and constraints that may affect the
output result. Thus, the transformation of the kleolge into parametric combination

occurs. Once the worksheet is filled in, the unigoambinations of data from rows and
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columns are automatically integrated as scenarsisguVisual Basic program code.
Further, these patterns are put together into ithary (etalon) that represents the
knowledge base. An example of the generated scefoaithe oil in place estimation using

correlation (decline curve) method is showrrigure 4.2

CDC DHP.THC.OST.RCM.RPI.OIL.OFR.OCM.PROR.PWF.PTM.PDEO.PWN .ACCF

Figure 4.2— An example of generated scenario

In Figure 4.2 the following data is coded as scenario: simafathethod (CDC —
correlation, decline curve), simulation task (DHFhydrocarbon in place estimation),
required parameters as reservoir thickness (THiCgaturation (OST), reservoir rock
compressibility (RCM), reservoir initial pressuiRR]), fluid type (OIL), fluid formation
volume factor (OFR), fluid compressibility (OCM)uid production rate (PROR), well-
bore flowing pressure (PWF), production time (PTMumber of production wells
(PWN), an indicator of the method applicability (PO — oil production decline is

established), predicted accuracy of method (AC@-fair).

4.4 Data Pre-processing and Scenario Generation Rredures

In order to improve the sought-for solution searohthis work we decided to

additionally introduce the input data pre-proceggimocedures in the system scenario
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generation operation. The main goal here is tauatalnot only the existence of the certain
parameter within user’'s input data, but also teesssome of them qualitatively and
guantitatively, what is data quality control prageshis approach significantly improves
the input data analysis since it yields reasonablgerstanding of why one or another
parameter, even if it exists within input data, wes included into system generated
scenario, and why additional constraints were dioed in it. In other words, we
equipped the Data Pre-processing module with dpegfocedures that qualify
applicability of each parameter in the input dagaand its ability to affect accuracy of
output results.

Although the quantity of existing data control pedares and number of
constraints and limitations for each simulation moet are large, for the purposes of our
work we selected only several of them to test.dvailhg list of some data pre-processing
tasks was formulated:

1. Evaluation of reservoir heterogeneity level by Dy&sParson coefficient.

High heterogeneity restricts the use of materidlar@e simulation. In
combination with large number of grid-blocks it miicantly reduces the
computational speed of finite difference simulation

2. Determination of production data availability anppkcability. When required

fluid production rate data does not exist, but lbarobtained via certain data
manipulation, the search for production data magdresidered successful. For
example, if user does have oil and liquid productiates, but does not have

required water production rate or water cut, thfsimation can be calculated
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using available rates, and vice versa. For thestadion (decline curve) method
an applicability of production data is critical. d$) the presence of established
decline for each of wells and stabilized productiegime are also evaluated.

3. Appraisal of “complex physics”. The higher oil dépsvith respect to water,
compositional fluid representation, relatively higheservoir rock
compressibility — all these criteria significantigstrict the use of streamline
simulation, since it becomes less accurate and uatatpnally slower
comparing to the finite difference simulation.

4. Taking a field-life stage in consideration. In fgree, data obtained during
early stages is usually characterized with a higbeel of uncertainty in
comparison to the later ones, which may decrease@iracy of output results.
At the same time, late time production data, usgdniaterial balance
technique, may give inadequate results in studiuaf reinjection at the late
reservoir life stage when fluid production involwgater extraction from the
aquifer (Satter, Igbal, and Buchwalter, 2008).

This list of the input data pre-processing procedus not limited and can be
further extended to improve quality of the expgdtem outputs. In fact, the necessity of
new procedures introduction is dictated by evohutmf particular problem solving
technigues and methods, axillary software toolsj &echnologies. This progress
determines emergence of new or changes in exiggsymptions, constraints, and

limitations that should be taken in consideration.
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In order to realize the mentioned above princigleamparison with etalon, it is

required to transform the input data set into #¢atn form comparable with knowledge

base scenarios. Following the same approach logisepted in the section 4.3 and

executing the data pre-processing procedures Xbertesystem generates new scenario

from the input dataFigure 4.3 shows the workflow of this process.

Input data set Proceed to the

from user next parameter

Yes

. - No .
Data pl_e Genelate; new Applicable?
processing constraint?

No

Yes

!

‘ Find parameter name in the alphabet |

T T =
| N\ .,
|

\ ~
N

/ ! \ .
B ot scouis | [0

: -
Simulation task Parametric set Constraints

Put encoded parameter name into generating scenario

last parameter in
data set?

Proceed to
solution search

Figure 4.3 — The workflow diagram of the input data pre-procegsand scenario

generation: cycle for each parameter in the inpita det

At the beginning, the user selects the simulatiask tto be solved and may

additionally assign required accuracy and computati speed as “user defined

constraints”. Then, the special algorithm takesesponding alphabet elements and puts
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them into certain sequence, named system-geneseagedrio. During next steps, where
their number is equal to the quantity of parameterthe input data set, the data pre-
processing procedure evaluates each input paraaredegualifies its applicability. In the
case of successful verification, the correspondafighabet element is set into the
“parametric set” section of the system-generateshaco. If the evaluating parameter
value or quality generates additional constraiv@ntthe certain alphabet element is added
or corrected in the “constraints” section. If thgut parameter fails verification, it is
considered as inapplicable and rejected from cenaicbn.

Overall, the system-generated scenario is thetreSuiput data set analysis and
processing. Each input parameter is evaluated rggpect to its essence, applicability,
and ability to generate additional constraints. &ejng on the results, the parameter is
either rejected or put into generating scenaridliie specially assigned name. Once

scenario is generated and not empty, the inferengane begins work.

4.5 Inference Engine Development

According to the existing methodology of the exggdtems design and linguistic

based pattern recognition, the inference enginebearealized as a procedure of match

finding between the system generated scenariodb@séhe user’s input data, and other

scenarios from the library.
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Once the scenario is generated based on the irgtaf dl is addressed to the

inference engine to evaluate the match with otkenarios within a library. The main

goal here is to find answer to the questions:

- What simulation approach is recommended at thengoamditions and will

generate an appropriate expected result?

- Otherwise, what additional data is required fordhgain task solving?

Knowledge Base (Etalon, Library)

FO D GNP PR ST G5 PR w1 /8 CSAL AP G L WAT GO COf v O/ o €14 AGEB
FOv GEM PER PO FCH P O

HEEEEEE

€OC  RAS. THC.OST.RCM.APLOILOFR.OCM PROR PWF.PT ACCE
MBL RAS.ARE.THC, POR. OST.ACM. RPLHMG.OIL ODN.OFF ACCL
COC  RRS.THC.GST.ROM.APLGAS.GFR.OCM.GDF PRGR.PYACCE
FOV RAS.GBM.PER.POR.OST.RCM.RPLOSA. OILODN.OFF ACCE
MBL RRS.ARE.THC POR.GST.RCM.RPLHMG GAS. GDN.GF ACCF
FOV RRS.GBM.PER.POR.GSTRCM, RPLMSG.GRP.GAS.GL ACCE

BNOwnkO

‘ Simulation task ‘

‘ System-generated scenario

h 4

Extract scenarios that fit
simulation task

I

Find element-by-element

match

}

Apply filtering with
respect to the fluid type
and constraints

I

Rearrange excerpt with
respect no the number of
unmatched elements in

ascending order

‘ Display recommendation ‘

Display suggestion

Figure 4.4— The workflow diagram of the solution search s
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As it is shown inFigure 4.4, the solution finding process is quite simple ase
linguistic method is used. An existence of thordugbrepared knowledge base and
deliberately generated scenario reduces the infereangine to the set of ordinary
procedures, such as “match”, “if-then”, and sorting

Based on the assigned simulation goal, the infereamgine extracts all related
scenarios from the library. Then, the generatedao®is compared element-by-element
with the other ones within excerpt. In general,gsbaght-for solution is based on: number

of matched elements, critical (expert system deteed) and user-defined constraints.

Scenario
Simulation task 4!/ | ‘ | ‘ ‘ | | | | | ‘ |
: T S
Simulation approach Parametric set Constraints
Generated scenario - . | | | ‘ | ‘ | ‘ | ‘ | ‘ Exact match — the most appropriate solution.
. | | | ‘ | ‘ | ‘ | ‘ | ‘ Expert System generates recommendation

Scenarios from . | | | ‘ | ‘ | ‘ Non-exact match - solution is possible
the Library B if additional data is exist.
\ Expert System generates suggestions

| INENEEEEEEENEENS
\

Set of additionally required parameters and/or constraints

Figure 4.5— Representation of match-finding process
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Figure 4.5 representshe element-by-element match-finding process. Madch
“exact” when number of unmatched elements is zetbadl constraints are satisfied. The
expert system provides recommendation to use #rnsio simulation approach as the
most appropriate. When match is “non-exact”, thpeeixsystem counts the number of
unmatched elements (marked by red coldfigure 4.4) and provides suggestion about
what should be additionally done to solve assigmexblem. For instance, what input
parameters are additionally required to make sitrmrapproaches applicable.

After the match-finding process is over, the extesiltered with respect to the
fluid type and critical constraints. Namely, theaqtity of possible outcomes is reduced
in selection by eliminating the unreasonable ofié® excerpt is then rearranged with
respect to the number of unmatched elements imdsagorder.

Finally, the expert system displays results ofdata analysis and processing. In
the case, when only one simulation approach has m@&mber of unmatched elements,
solution is unique and recommended to the useth&umore, if there is more than one
simulation method that does not contain unmatclositipns, then either all of them can
be recommended for user to choose or some of tlnbe eliminated implementing
additional user-defined constraints, such as coation of accuracy and computational
speed. Otherwise, the list of feasible simulatiggthnods will be displayed to the user with
recommendation about what additionally requirecpeaters should be obtained for each

method.
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4.6 Well Placement Justification

As an extension of the expert system functionalitg,well placement justification
technique, using decline curve analysis, was impleaed in order to enable a preliminary
assessment of the need for new wells placementrwlithitation of initially available
data. Generally, this approach should give ansteeitse questions:

- Are additional wells required?

- If yes, then should they be producers and/or injsét

- If injectors, where they should be placed?

This method provides an initial guess as to theessty and number of
production/injection wells and their placement zn&he exact locations should be
further optimized using specific well placementieiques that are not in the scope of this
work.

The main concept of the method is based on evaluafiinternal reservoir energy
that support hydrocarbon production. Direct enegggntification and its sufficiency
assessment are very challenging tasks that byitiefigo out of the scope of traditional
expert systems. In order to simplify this probleatuon and incorporate it within our
expert system, we have implemented the methoddffeict reservoir energy appraisal
using production data and specific criteria. Namelsing a production data analysis
technique it is possible to assess whether theaedesimount of hydrocarbon can be
produced within assigned period of time or notsaught-for answer is yes, then the

conclusion is that reservoir energy is sufficiemtsupport production. Otherwise, it is
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necessary to introduce new wells. Presented hislttve methodology description in case
of oil production.

The following input data is used for the method lenpentation:

- Oll production rate g and water production rate.r (if water is produced)
per each production well;

- Reservoir geometry, initial oil saturatios Srock properties, and oil formation
volume factor Bto calculate the value of total reservoir stoakktail in place
STOIR. Otherwise, user is asked about the value of ®T&IR,;

- Areal well zonation, initial oil saturationsSrock properties, and formation
volume factor Bto calculate the value of initial stock-tank ailplace STOIP
for each well. Otherwise, user is asked about #iaevof initial STOIR for
each well. In addition, well location within eacbre is needed (sdggure
4.6);

- Value of the minimum economically acceptable praiduc rate @ (user-
defined variable);

- The critical value of water cut WC (user-definediahle);

- The value of remaining recovery factor REser-defined variable) within time
interval [b, twc] < ta. Parameterqthere is production time, upon which
maximum amount of oil should be produced accordiong the field

development plan (user-defined variable).
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Figure 4.6— Areal well zonation and wells locations (for easth producers only)

Figure 4.6 shows distribution of production wells, numbered anarked as black
dots, within areal extent of reservoir. This islaim view representation of the Brugge
simulation model we used for the expert systemdaditon, which described in details in
the next section of the work. Red lines here displarders that separate areas related to
the certain wells.

In accordance to the methodology, the followingpstare involved into data
calculation and analysis:

1. Water flood justification for the whole reservo®n this step, the input data
pre-processing procedure determines whether priodudecline regime is
established or not. If it is, then using wells (prably) or field production rates
system calculates the amount of cumulatively predual upon the beginning

of forecast Qand oil to be produceds(&s it shown irFigure 4.7:
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Figure 4.7— Estimation of EUR using decline curve method{@umulatively produced

oil upon the beginning of forecast; @ forecasted amount of oil to be produced)

Then, the values of oil EUR for each well are coteguwith respect to theeq

according to the following equation (for exponehdacline):

EUR =(Qq +Qr) =Qq +qf e 4.1)

where: @— production rate at the beginning of forecastB&lay]; a — exponential decline
rate; i — number of wells.
In case of hyperbolic or harmonic production dezliagime, the second term in
the right-hand side of equation (4.1) is replacéti the appropriate one.
Further summation of EUR values and comparing tisth the magnitude of

STOIR yields the estimation of whole reservoir recoviagtor RF:
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D EUR

= 4.2
STOIIP, 42)

RF,

If RFr < 30 % (average recovery factor with water flogglinser-defined value),
then water flood is required. In other words, tisi& confirmation of fact that internal
energy is not sufficient to support the desirealef production.

2. In this step, it is necessary to determine whetlaeh well is flowing optimally-
normal or improvement is required. For those wellere production decline
regime is established, system calculates the fatigywarameters:

- Time %, when oil production rate will reach.dequation (4.3) is used for the

exponential decline regime. In case of hyperbolihharmonic decline, the
denominator is replaced with the appropriate one:

i

a

(4.3)

to

- Generates the water cut profile with respect toetinfihis calculation is
implemented if water production data is availakte accordance to the

equation:

Oarer (t)
WC(t) = 4.4
® Ao (1) + Qyarer (1) (4-4)

Then, system finds the timgtat which water cut reaches the assigned critical
value of WC.
- Value of EUR using equation (4.1) and then value of the welbvery factor

RFwi as:
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_ _EUR
" sroip

(4.5)

Case A. If Rk > 30% (user defined value), then drainage impram@ns most
likely not required. Namely, this situation meahsattthe particular well production is
sufficiently supported by the reservoir energy, trelexpected oil recovery level exceeds
assigned threshold value when the water flood shioelimplemented. Recommendation:
do nothing or an additional production well mayibigoduced into the related reservoir
zone by user choice as a result of further invastg.

If RFwi < 30% (user defined value), then system deterntme$ollowing:

t = min{t,,t,,t,.} - evaluation criteria.

Case B. If t =4, as presented iRigure 4.8 oil reserves are too large for this one
well to be produced. In other words, the desiredamof oil will not be produced by the
time 1y, since oil production rate is still high and does reach minimum levelegrior to
the end of production time.tVery significant amount of oil may remain unprodd.
Recommendation: an additional producer is requimetis particular area.

Case C. If t =, as shown irFigure 4.9 the well reaches the critical value of
water cut WC earlier than assigned end of prodadiie . In such particular situation,
the oil production is no longer economically reasae. Recommendation: do nothing or

consider to transform this well to an injector.
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Figure 4.8— Cross-plot of oil production rate and water\eertsus time for Case B
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Figure 4.9— Cross-plot of oil production rate and water\ertsus time for Case C
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If t = to, then there are two additional options are possibl
- Case D. If 4 < tw, as depicted irFigure 4.1Q production is poorly
supported by the reservoir energy. Namely, oil podidn decline reaches
minimum level @ prior to the end of production timgdnd certain amount
of economically profitable oil may remain unproddcéMoreover, the
water production should not affect the oil prodoctibecause the
achievement of critical water cut level WC, at tfigen conditions, is
supposed to be the latest in time. Recommendaioadditional injector
is required for this particular area since the masie energy is not

sufficient.

F 9 aa
wWC
=
= =
0 —
— -
wl O
6 | —
o <
=
Qe

Time, days

Figure 4.10— Cross-plot of oil production rate and water\eintsus time for Case D
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- Case E. If¢ > twc, as presented iRigure 4.11], that is doubtful case. At first
look, lack of reservoir energy to support productics obvious, and
analogically to Case D an additional injection wslirequired. At the same
time, there is a high risk exist that the waterroay reach critical value of WC
very soon. In such conditions, an implementatiowafer flood might be not
beneficial. Hence, an additional calculation ofdeér recovery factor RHs
needed using equation (4.6) for exponential declmease of hyperbolic or

harmonic decline, the denominator is replaced téhappropriate one:

— (qto - thc)

RF
- a

/ STOIP (4.6)

where: @ — value of production oil rate at timg[6TB/day]; gqwc — value of production

oil rate at time . [STB/day].
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Figure 4.11— Cross-plot of oil production rate and watereintsus time for Case E
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If calculated value of RFis larger than it specified by user, then an aolai
injector is required since producible amount ofigiprofitable;
If RFL is less than it specified by user - highly dethieconomic analysis is
required for decision making (or consider this veallinjector).
3. Depending on the obtained results, all well areakes can be sorted as:
- Injector requiring;
- Producer requiring.
As mentioned above, the exact positions of newsnak the subject for discussion
and further study that is out of our work scopet §eneral criterion, as initial guess for
well position optimization, can be described asftil®wing: new injection well should

be located between producers that require injecradior on the flank of reservaoir.

4.7 Expert System Functionality

Conceptually, the designed linguistic method bagatlern recognition expert
system consist of two major blocks with followinghttionality, as shown iRigure 4.12

1. Data Processing Block performs the input datlyasis, data processing, and
simulation approach selection. The input data ®eé is a collection of the reservoir
parameters, including rock and fluid propertienduction data, and other information
available to a user and is to be used for solvipgréicular problem. Passing through the
Data Pre-processing and Scenario Generation maqdthlesinitial input data set is

analyzed and certain scenario is generated. Thégrehce Engine compares the obtained
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result with other ones from the Knowledge Base Holution is found, corresponding
decision support, such as recommendation and stgges proposed to a user as the
expert system output. Otherwise, the system coesldldat there is an undescribed case
and the Knowledge Base should be revised and suepled (extended) using scenario
generation tool described in the section 4.3 of wrk.

2. Analytical Block provides possibility of the gimated results quality
assessment. Depending on the simulation goal, atedildata might be evaluated
guantitatively or/and qualitatively. For exampleagtitative evaluation could be made by
comparing simulated data with some etalon solugiealable for comparing: physically
measured as pressure or flow rate, obtained biefohiference (volume) simulator or
from another trustful source. As a result, the niagie of data deviation, its accuracy,
and model predictability are assessed and coulcsed for error analysis. The qualitative
evaluation is proposed to be provided by user andain such evaluation criteria as:
uncertainty, bias, CPU timing, computational cost®rall model applicability, quality of
initial data source etc. If simulated results diss§aentire quality requirements, then it is
considered that no correction is needed. Othenaisadditional error analysis is provided
and recommendations about how to improve the si@ailaesults are designed in
dependence of the estimated source of error: iacbgimulation approach selection,
uncalibrated simulation model, and/or doubtful ingata.

Since realization of the Analytical Block implidgetdesign of self-teaching option,
this task is not included into the current work aa#ten out to the further system

development.
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Figure 4.12— The expert system functionality, conceptual chay



4.8 Conclusions

The use of linguistic method of the Pattern RechgmiTheory allowed creation
of the alphabet as a set of 126 selected key paeasneombined in 16 major groups.
Initially created in MS Excel, the alphabet wassferred to MatLab database. It is used
by the Data Pre-processing, Inference Engine, auisidn Support modules of the expert
system.

The set of 522 scenarios, describing requirememtssélving of 16 reservoir
evaluation problems with respect to 5 simulatiorthuds, was created and represents the
Knowledge Base of the expert system. It was coasduin MS Excel using the alphabet
elements and then transferred to MatLab databdserewt is accessed by the Inference
Engine for the suitable simulation method selection

Any corrections of the alphabet or scenarios da¢simange the methodology.

The Data Pre-processing module was designed fazuére of the input data
guality control, constraints handling, and conginrcof the system-generated scenario.

The Decision Support module was introduced in tkped system to realize
explanatory function. Depending on the Inferencgii® output, it generates results of

expertise as recommendation and suggestions.
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5. EXPERT SYSTEM VALIDATION AND FIELD APPLICATION

This section presents the expert system validatr@hfield application workflow.
It was performed in order to examine correctnesdeds and methodology in the basis of
the expert system and its capability to provideemnesir data expertise in simulation
approach selection. Two data sets, synthetic Bruggeel and offshore petroleum
reservoir model, were processed and evaluated ®yexipert system for several test

problems. Obtained results will be discussed ig $leiction.

5.1 Brugge Simulation Model

For the purposes of the expert system validatiom,have used the complete
synthetic Brugge simulation model by TNO compangtél’s et al., 2009). This model
consists of 60 000 grid block with detailed setaxfk and fluid properties. Representing
initial reservoir development with five equally sed producersHigure 5.1), Brugge
model was run to obtain the test production dataset

Initial 4 years of simulated data was used to ohice actual field production and

majority of the expert system input to solve muétifasks such as estimation of:

recoverable field resources (EUR);

stock-tank oil initially in place (STOIIP);

drainage area;

recovery factor;
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- investigation of water-flood feasibility.
Finite difference model simulation results are usedreference for another

methods and to validate appropriateness of solstiggested by the expert system.

Oil Saturation b |

0.0 0204 06 08

X

Figure 5.1 Brugge simulation model with five equally spaceddrcers. Initial oil

saturation is shown in color scale (adopted forteiRest al., 2009)

For each task, the control results were obtainegdgudecline curve analysis
technique, material balance simulation (MBAL softevhy Petroleum Experts), and finite
difference simulation (Eclipse 100 software by Safberger). List of the used input
parameters and estimated results for each metleoshamwn inFigures 5.2 — 5.4These
control results, derived via mentioned methods, ewassessed in accuracy and
computational speed as evaluation criteria. Nam@&ly,discovered capability of each

simulation approach to solve particular tasks wethpard to the output exactness and time
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expenses. This information is very important, simicés used in the expert system

predictability validation.

Decline Curve Analysis

Input data: : el
= 4 years of production data g
= average rock and fluid properties £

Model:

= Well based hyperbolic decline curves ~ \
\\

Results: g o

» EUR=46.04 MMSTB -

* Recovery factor=6.1%

= STOIP =797 MMSTB

* Drainage area = 3,558 Acres

* Water Injection justification — RF is lower than expected
water-flood RF (20 —40%) by analogy (Muggeridge,
Cockin, et al. 2014)
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Figure 5.2 —Input parameters and calculated data using declinee analysis (Brugge

simulation model)

Figure 5.2 represents the use of the decline curve analgsithé test problems
solving. All required results were calculated widspect to each of five producing wells
and then combined to represent full field datac8ithis method does not allow direct
assessment of water flood justification, we madpiired conclusion by comparison of
calculated recovery factor value with its averagigs in case of primary oil recovery

without water-flood (Muggeridge, Cockin et al., 201
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Material Balance Approach

Ill"llt data: Brugge
* 4 years of production,

* Dbasic fluid data and rock properties
Model:

* single tank model with aquifer

* aquifer size calibration to production data

Results:

EUR = 50.8 MMSTB
Recovery factor = 6.7%
STOIIP = 758 MMSTB
Water Injection justification — RF is lower than expected water-flood RF (20 — 40%) by
analogy (Muggeridge, Cockin, et al. 2014)

Material Balance Aproach
1000000

100000 \\\ —History
10000 —Forecast
100

1
12/30/1997 12/31/1999 12/30/2001 12/31/2003 12/30/2005 12/31/2007 12/30/2009 12/31/2011 12/30/2013 12/31/2015 12/30/2017

Field Oil Rate, STB/d

Figure 5.3 —Input parameters and calculated data using matbakince approach

(MBAL software, Brugge simulation model)

Application of the material balance method in assajproblems solving is shown
in Figure 5.3 The single tank model with an aquifer and fivedarction wells was created
and used for simulation purposes. Additionally, dagiifer size was calibrated to match
previously generated production data. Analogictdlyhe described above decline curve
analysis results, the water injection justificatltas been made indirectly. We have made
the same logical conclusion because the calculatkot of recovery factor is lower than

it could be when the water-flood is implemented.

91



Finite Difference Simulation

]_Hw: Ol Saturation .q. ]
* Production history

* Detailed rock, fluid and rock-fluid data (
* Fluid contacts

Model:

» Black oil 2-phase finite difference model
Results:

* EUR =474 MMSTB

Recovery factor =6.31%

Developed STOIIP = 751 MMSTB e o m L. SwwowuRaTmCsen
P —
Water Injection justification — water-flood
RF=194%

Liggesied Fleswrate, (STES]
" i i

Tl egand
BREA —EBRPZ —EARPI  BRP4 — BRPY

Figure 5.4 —Input parameters and calculated data using finitierdnce simulation

(Eclipse 100 software, Brugge simulation model)

Figure 5.4 depicts details of the finite difference simulatiomethod
implementation. As a result of simulation, the rieggi solution for each test problem was
calculated and further used as reference datarder @o investigate the water injection
justification, we supplemented initial model with additional water injection well and
executed one more simulation run. Consequentlyhaee received extra confirmation

that introduction of water injection can improve thil production.
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Table 5.1: Summary of results calculated by different simolatmethods using Brugge

simulation model

Decline Curve Finite Difference
Engineering Task Units Analvsis Material Balance Simulation
y (REFERENCE)
Estimation of
recoverable field MMSTB 46.04 50.8 47.4
resources (EUR)
Estimation of recovery % 6.1 6.7 6.31
factor
Estimation of STOIIP | MMSTB 797 758 751
Estimation of drainage Acres 3.558 N/A 4768
area
. : 0
Investigation of water Indirect, by anglogy Indirect, by anglogy 19.4 % recovery
o (water flood is (water flood is | factor (water flood
flood feasibility . . . .
required) required) is required)

Summary of the calculated results for each of thkected test problems is
presented offable 5.1 Comparison of obtained numbers and conclusiod#iadally
supports our initial statement that the most appate selection of simulation approach
to be used for particular problem solving is namidt. As it shown on th@able 5.1and
discussed in the section 2, different methods emegte variety of output results for each
task although the same input data is used. Emeegainguch situations is defined by not
only assumptions and limitations in the basis @heaethod, but also by the quality and
sufficiency of input data. Thus, certain cautiomm®wd be taken into account when

accuracy of simulated results is critical. Suitdpilof Decline Curve Analysis and
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Material Balance method in terms of accuracy ofwalted results is highlighted in colors,
considering Brugge model correction explained beldamparing to the reference data,
green color marks the recommended method to be yettdw marked approach might
be used at the discretion of a user, and red soiggests to avoid this method.

Time expenses for each test problem solution anestlthe same with respect to
the particular simulation approach, since previpgsnerated reservoir production data
and full simulation model with relatively small nber of grid blocks were used.

In order to improve quality of the expert systenidation process, we have
complicated the input data set. Namely, end pdith@residual oil saturation and several
nearby ones were eliminated from the initial Bruggpulation model. Therefore, we have
artificially reduced applicability of the finite ffierence simulation in the test problems
solving, while decline curve analysis and matebi@bance methods still can be used. In
other words, we designed experiment that allowtaluct study and evaluate quality of
the expert system’s modules performance. Namelyested an ability of the procedures
and algorithms in the basis of the data pre-pracgsscenario generation, knowledge
base, and inference engine to deal with the qualig sufficiency of input data and
generate correct conclusions.

The corrected, as described above, Brugge simuolatodel and generated
production data was processed by the expert syskam.the testing purposes, we
transferred simulation model and production dataabées and their values to MatLab
databases as the input data set for the expedmsy3dthese input files contain detailed

information about:
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- reservoir grid geometry;

- detailed rock properties — spatial porosity andnabilities distribution,

compressibility;

- detailed reservoir fluids properties — densitiesmpressibilities, formation

volume factors, viscosities, relative permeabiti@th respect to saturations
(except deleted oil residual saturation), initiatusations, gas oil ratio and
deviation factor;

- reservoir fluid types — oil and water;

- fluid contacts — water-oil contact depth;

- pressures — initial, capillary with respect to wataturation;

- well data — number and locations of production syell

- production data — fluids production rates, wellbdtewing pressures,

production time.

To distinguish variables, the same Eclipse keywavdre used as they appear in
ASCII files of Brugge simulation model.

For each task, the system has generated expernneeodations. Examples of
solution search workflow and outputs are showfigures 5.5 — 5.9and onTable 5.2
Validity of these recommendation was tested throwgimparison with previously
calculated onesT@ble 5.1) by decline curve analysis, material balance sathah, and

finite difference simulation.
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Engineering task: Estimate Recoverable Field Resources (RRS)

Input Data: Production history, rock data, fluid properties, reservoir geometry, etc.
(accuracy limits are not set as user-defined constraint)

s 4

Data pre-processing and encoding using alphabet

RRS.GBML.ARE.THC.PER.POR.WST.OST.GST.RCM.RPL.HTG.WRP.ORW.ORG.GRP.WSI.OSR.OILWAT.ODN.WDN.OFR.WFR.
.OCM.WCM.GSRWCM.OVS.WVS.PROR.PRWR.PWEPTM.PDEO.OIPWIP.PWN.WOC

¥

Inference Engine: query to the Knowledge Base and solution search

¥

cDC HC.OST.RCM.RPLOIL.OFR.OCM.PROR.PWF.PTM.PDEO.PWN|ACCF |

Inference Engine output:

MBLlRRSIARE.THC.POR.OST.RCM.RPI.HMG.OIL.ODN.OFR.OCM.PROR.PWF.OIP.F‘WN'ACCL|

FDV |RRS|GBM.PER.POR.OST.RCM.RF‘I.OSR.OIL.ODN.OFR.OCM.OVS.PWN'ACCB'

$

Inference Engine output ranking. Decision Support module
generates recommendation and suggestions using Alphabet

4

Expert System Recommendation (the most appropriate simulation method):

Decline curve analysis (CDC) approach, which has accuracy [ ACCF ]

Expert System Suggestions:

Ifdata [ ] is available, then MBL approach can be used, which has [ HMG ] constraints and
accuracy [ ACCL ]

If data [ OSR ] is available, then FDV approach can be used, which has accuracy [ ACCB |

* STL rejected because of small model size

Figure 5.5 — Expert system workflow for estimation of recovembleld resources

(corrected Brugge simulation model)
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Figure 5.5 represents an example of the expert system raag@md solution
search structure, where from top to bottom:

-  The upper box shows main input for the system dscten of certain

simulation goal and description of the input dag s

- The second from above box displays results ofripatidata pre-processing as
the system-generated scenario;

- The third box represents selected simulation aghresranged in applicability
as the “Inference Engine output” results. Yellowké® highlight simulation
methods, blue ones mark the name of solving propserd green rectangles
shows predicted accuracy of calculated results;

- The lower box demonstrates recommendation and stiggeon applicability
of the selected simulation approaches with somé&eaggions and predictions.

At the beginning, user defines the particular satiah problem to be solved and
desired level of accuracy and computational timsefwdefined constraints). In this
example, the simulation task is encoded as “RR8man into the beginning of parametric
set of the line that represents the system-gertesatnario. Here and further, the meaning
of encoded parameters can be found ornTddde A-1 (APPENDIX A).

Then, the input data set is processed by the Deggoi®cessing module in
accordance to the methodology described in thaosedt4 of this work. Once system-
generating scenario created and is not emptynfieesnce engine evaluates its match with
other scenarios, which related to the same sinlajoal, within the knowledge base. In

Figure 5.5 the matched elements in system-generated sceararimarked in blue color.
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These elements are common for all three scendnaisthie Inference Engine selected,
ranged, and put in rows as the “Inference Engirpuiti If element (marked in red color),
required for implementation in the particular saemadoes not exist in the system-
generated scenario or is considered as systeruatst constraint, then the system
generates explanation and suggestion for a usernnkiance, in this particular case the
expert system selected three applicable scenaviteye:

- The first one, related to decline curve analysi®QJ, does not contain
unmatched elements in the parametric set and aydliy of this approach
has been verified because required production dataharacterized by
established decline regime (PDEO). Predicted acgurd calculation is
supposed to be fair (ACCF).

- Next one, associated with material balance (MBloptains only one red-
colored unmatched element (HMG) that is homogen&#gcause calculated
value of Dykstra-Parson’s coefficient for the givandel is equal to 0.35, the
Data Pre-processing module considered this situas system-determined
constraint for the material balance method appliitgbHence, in case of that
approach implementation the accuracy of the caledleesult is expected to
be low (ACCL).

- The last one, linked with finite difference simuat (FDV), also contains only
one unmatched element (OSR) which is residualatilration to water. Since
the initial Brugge simulation model was correctsdtanentioned above, the

Data Pre-processing module has not detected thasngder within the input
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data set. Thus, the expert system considered #s&t a&s system-determined
constraint for application of the finite differensanulation, since simulation
model is incomplete and additional time is requitedbtain required data.
Expected accuracy of simulated results is prediatethe best (ACCB).

Finally, the expert system has generated outputafaiser as “Expert System
recommendation” and “Expert System suggestiongie ystem recommends to use the
decline curve analysis as the most appropriate adefor the recoverable reserves
calculation because all requirements and consgraireg satisfied, predicted accuracy is
fair, and computation is fast. It additionally segts that the material balance method can
also be used at the discretion of a user. The ihgiat set is sufficient for that, but estimated
level of heterogeneity can negatively affect theuaacy of solution. Moreover, the expert
system has verified applicability of the finite féifence simulation and what information
should be additionally obtained for it executiofesides, the streamline simulation
method was rejected by the expert system from dersiion due to small simulation
model size, what does not provide any advantagepadny to the finite difference

simulation.
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Task: Estimate Recovery Factor (RFT)

Data: Production history, rock data, fluid properties, reservoir geometry, etc. (accuracy limits are not set)

4

ES enCOdlng: RFT.GBM.ARE.THC.PER.POR.WST.OST.GST.RCM.RPI.HTG.WRP.ORW.ORG.GRP.WSILOSR.OILWAT.ODN.WDN.OFR.WFR.OCM.WCM.GSR.WCM.OVS.WVS.PROR.PRWR.PWF.PTM.PDEQ.OIP.WIP.PWN.WOC.GWC.GOC

ES OUtEUt: CDC RFT.THC.OST.RCM.RPLOIL.OFR.OCM.PROR.PWF.PTM.PDEQ.QIP.PWN ACCF
MBL RFT.ARE.THC.POR.OST.RCM.RPI.HMG.OIL.ODN.OFR.OCM.PROR.PWF.OIP.PWN. ACCL
FDV RFT.GBM.PER.POR.OST.RCM.RPI.OSR.OIL.ODN.OFR.OCM.OVS.PWN. ACCB

\ 4

ES Recommendation: Decline curve analysis (CDC) approach, which has accuracy [ ACCF ]

ES suggestion:
If data [ ] is available, then MBL approach can be used, which has [ HMG ] constraints and accuracy [ ACCL ]
If data [ OSR ] is available, then FDV approach can be used, which has accuracy [ ACCB ]

* STL rejected because of small model size

Figure 5.6 —Expert system workflow for estimation of recoveagtor (corrected Brugge

simulation model)

Analogically to the previous on€&jgure 5.6represents an example of the expert
system reasoning and solution search structurea Aessult of the input data set pre-
processing, the system has generated scenario camdl fmatching scenarios in the
knowledge base, which correspond to the declineecanalysis (CDC), material balance
method (MBL), and finite difference simulation (FIR\WPredicted accuracy of recovery
factor estimation for each of these approachagipased to be fair (ACCF), low (ACCL),
and as the best (ACCB), respectively. Finally, élpert system recommends to use the
decline curve analysis as the most suitable angesig implementation of other two

approaches considering particular constraints, sisdimeterogeneity and lack of required

data.
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Task: Estimate STOIIP (DHP)

Data: Production history, rock data, fluid properties, reservoir geometry, etc. (accuracy limit set as the highest)

¥

ES EnCOdlngl DHP.GBM.ARE.THC.PER.POR.WST.OST.GST.RCM.RPI.HTG.WRP.ORW.ORG.GRP.WSI.OSR.OIL WAT.ODN.WDN. OFR.WFR.OCM.WCM.GSR.WCM.QVS.WVS.PROR.PRWR.PWF.PTM.PDEQ. PWN.WOC.GWC.GOC

ES OUtEUt: CDC DHPTHC.OST.RCM.RPI.OIL.OFR.OCM.PROR.PWF.PTM.PDEO.PWN ACCL
MBL DHP.ARE.THC.POR.OSTWST.RCM.RPI.HMG.OIL.ODN.OFR.GSR.OCM . WCM.PROR.PWF.PWN. ACCF
FDV DHP.GBM.PER.POR.OST.RCM.RPI.OSR.OIL.ODN.OFR.OCM.OVS.PWN. ACCB

¥

ES Recommendation: Finite difference simulation (FDV) approach has accuracy [ ACCB ], can be used if data [ OSR ]
is available

ES suggestion:
If data [ ] is available, then MBL approach can be used, which has [ HMG ] constraints and accuracy [ ACCF ]
Decline curve analysis (CDC) approach, which has accuracy [ ACCL |

* STL rejected because of small model size

Figure 5.7 —Expert system workflow for estimation of stock-tamik initially in place

(corrected Brugge simulation model)

For the task of STOIIP estimation, required accyrat simulated result was
assigned as the highest; it is user-defined canstia such condition, the entire workflow
of the expert system reasoning and solution seatobywn inFigure 5.7, differs from
previous cases. Although the system found scematiiozero unmatched elements, which
corresponds to the decline curve analysis, thisateis not recommended as the optimal.
Because the assigned accuracy requirement is @aditly the expert system as a critical
constraint, the “ES output” excerpt was additiopaflarranged in descending order with
respect to predicted accuracy. Therefore, the ésystem generates recommendation to

obtain missing data and use the finite differeniogukation. As alternative, the system
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suggests two more approaches with lower predictedracy of simulated result at the

discretion of a user.

Task: Estimate Drainage Area (DAE)

Data: Production history, rock data, fluid properties, reservoir geometry, etc. (accuracy limit set as the highest)

\ 4

DAE.GBM.ARE.THC.PER.POR.WST.OST.GST.RCM.RPI.HTG.WRP.ORW.ORG.GRP.WSI.0SR.0ILWAT.ODN.WDN.OFR.WFR.OCM.WCM.GSR.WCM.OVS.WVS.PROR.PRWR.PWF.PTM.PDEQ.PWN.WOC.GWC.GOC

ES encoding:

ES Output: CDC DAE.THC.OST.RCM.RPI.OIL.OFR.OCM.PROR.PWF.PTM.PDEO.PWN ACCL
FDV DAE.GBM.PER.POR.OST.RCM.RPI.OSR.OIL.ODN.OFR.OCM.OVS.PWN ACCB

\ 4

ES Recommendation: Finite difference simulation (FDV) approach has accuracy [ ACCB ], can be used if data [ OSR ]
is available

ES suggestion:
Decline curve analysis (CDC) approach, which has accuracy [ ACCL ]

* STL rejected because of small model size

Figure 5.8 —Expert system workflow for estimation of drainageaa(corrected Brugge

simulation model)

Figure 5.8represents an example of the expert system waevktho estimation of
drainage area. As a result of the input data psiegsnd solution search, there only two
approaches were found by the system to be appdiceaterial balance approach has been
rejected from consideration as unsuitable duenmatdtions in the basis of this method.
Because the accuracy limit has been set, the egpstem recommends to use the finite

difference simulation as optimal although lack equired data was detected. In addition,
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the system suggests implementation of the declineecanalysis, taking into account that

predicted accuracy is low.

Task: Investigate Water-flood Feasibility (FLI)

Data: Production history, rock data, fluid properties, reservoir geometry, etc. (accuracy limits are not set)

ES encoding:

+ FL.GBM.ARE.THC.PER.POR.WST.OST.GST.RCM.RPLHTG. WRP.ORW.ORG.GRP.WSLOSR.OIL.WAT.ODN. WDN.OFR.WFR.OCM.WCM.GSR.WCM.OVS.WVS.PROR PRWR.PWF.PTM.PDEOQ.OIP.WIP.PWN.WOC.GWC.GOC
ES OUtEUt CDC FLJ.THC.OST.RCM.RPI.OIL.OFR.OCM.PROR.PWF.PTM.PDEO.PWN ACCF

MBL FLI.ARE.THC.POR.OST.RCM.RPI.HMG.OIL.ODN.OFR.OCM.PROR.PWF.OIP.PWN. ACCF
FDV FL.GBM.PER.POR.OST.RCM.RPL.OSR.OIL.ODN.OFR.OCM.OVS.PWN. ACCB

\

ES Recommendation: Decline curve analysis (CDC) approach, which has accuracy [ ACCF ]
ES suggestion:

If data [ ] is available, then MBL approach can be used, which has [ HMG ] constraints and accuracy [ ACCF ]
If data [ OSR ] is available, then FDV approach can be used, which has accuracy [ ACCB ]

* STL rejected because of small model size

Figure 5.9 — Expert system workflow for investigation of watéodd feasibility

(corrected Brugge simulation model)

Investigation of water-flood feasibility is closefglated to the recovery factor
estimation and requires the same data set. Thetesystem workflow and output are
shown inFigure 5.9 As inference, the expert system recommendatitonuse the decline
curve analysis as appropriate. In addition, thetesyssuggestion is that other two

approaches, material balance and finite differesicailation, could be used considering

detected constraints.
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Executing methodology described in the section wehave tested an ability of
the expert system to assess necessity of new aplstheir types (well placement
justification problem). The described method waplemented in the expert system as a
separate procedure. For the testing purposes, we tha following assumptions for the
values of user-defined variables:

critical value of water cut WC = 95%:;

- average recovery factor with water flooding = 30 %;

- production time, upon which maximum amount of dibsld be produced &
30 years;

- value of the minimum economically acceptable prdiduc rate @ = 50
STB/day;

- total reservoir stock-tank oil in place STEH#751 MMSTB;

initial stock-tank oil in place for each well STO¥150.2 MMSTB.

Initial 4 years of simulated production data wesedito evaluate the necessity of
production and injection wells. The wells spatiatdbution within reservoir is the same
as it schematically shown Figure 4.6.

As aresult of the production data analysis, tha gee-processing module detected
that decline regime is established for each welhde, the decline curve analysis can be
used in recovery factor calculation. Further, th&tam calculated amount of oil that can
be produced (EUR) by the timgwhen the value of production rate reachgd ben, the
corresponding values of tor each well have been also estimated. Summatlefest

results is presented drable 5.2
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Table 5.2: Evaluation of additionally required wells with pext to existing producers

Parameter For field | Forwell 1| For well 2| Forwell3 | Forwell4| For well 5
STOIP, MMSTB 751.0 150.2 150.2 150.2 150.2 150.2
EUR, MMSTB 45.85 11.53 8.88 6.79 2.65 16.00
RFr, % 7.52<30 %

RFw , % 7.68<30 %| 5.91<30 %| 4.52<30 %]| 1.76<30 %] 10.65<30 %
to, years 125 12.0 8.5 9.0 10.0
t= min{td, to, twc} - to to to to to
Reservoir |Reservoir |Reservoir |Reservoir |Reservoir |Reservoir
energy is |energyis |energyis |energyis |energyis |energy is
E)époer:éligfgﬁm not enough|not enough|not enough|not enough|not enough|not enough
to support |to support |to support [to support |to support |to support
production |production |production |production |production |production
Expert System |New wells |Injector is |Injectoris |Injectoris |Injectoris [Injector is
Recommendation |are requiredrequired |required |required |required |required

The expert system calculated values of whole reserecovery factor RFand
recovery factor for each well RE shown onTable 5.2 are much lower than they could
be in case of water flooding. In addition, estindatalues of timeof when oil production
rate reachesegalso smaller then assigned production tim€onsidering these two facts,
the expert system makes conclusion that resemvigrnal energy is not enough to support
the desired level of production. Namely, all thdlsveuffer of low reservoir energy, and

significant amount of oil remains unproduced utti¢ established timea.tHence, the
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expert system recommends introducing of new impectells to improve oil extraction.
Since areal wells zonation is not available for enarecise determination of the new wells
locations, the system generated an ordinary recardai®n to put injectors somewhere
between producers and on the flank of reservoiis ildcommendation is very general and
can be used as initial guess for the further impletation of well placement optimization
techniques.

Summarizing the expert system validation with taéadset of Brugge simulation
model, the comparison of previously obtained cdnmsults with the system outputs is
presented ofable 5.3 Here, the following simulation approaches ranknegommended
by the system, highlighted in color:

- green —is recommended for use as the most apptepri

- yellow — may be used at the discretion of user;

- red —is not recommended.

As expected, decline curve analysis provides fastisn framework, but some of
the results might be inaccurate if drive mechanismifferent from the fluid expansion
dominated. In contrast to that, material balancevipes reasonably fast solution
framework for different drive mechanisms. Howeggratial metrics is not well supported
by the method. Finite difference simulation prowdeost accurate results, but requires
more time for data analysis, model construction singulation. Streamline simulation
was rejected by the system because of small maketisat is not critical for the use of

finite difference simulation with respect to theted engineering tasks.
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Table 5.3 The qualitative comparison of calculated resuith the system-predicted ones

(Brugge simulation model).

_ Decline Curve Material Balance Finite Difference
Engineering Task Com.par.atlve Analysis Simulation
criteria
Predicted| Actual | Predicted  Actual Predictedctual
Estimation of
recoverable field Speed / Fast / Fast / Fast / Fast/ | Slow*/ | Slow/
Accuracy | Accurate | Accurate |AcceptableAcceptabld Accurate| Accurate
resources (EUR)
Estimation of Speed / Fast / Fast / Fast / Fast/ Slow*/ | Slow/
recovery factor Accuracy | Accurate | Accurate |AcceptableAcceptablg Accurate| Accurate
Estimation of Speed / Fast/ Fast/ Fast/ Fast/ | Slow*/ | Slow/
STOIIP Accuracy | Inaccurate Inaccuratg Acceptable Acceptablg Accurate| Accurate
Estimation of Speed / Fast / Fast / . Slow*/ | Slow/
. Rejected N/A
drainage area Accuracy | Inaccuratg Inaccurate Accurate| Accurate
:/C;fesrtlf?(?;:n of Speed / Fast / Fast / Fast / Fast/ | Slow*/ | Slow/
teasibility Accuracy |AcceptableAcceptablg AcceptableAcceptablg Accurate| Accurate

Slow computational speed was assumed by the exystem for the finite
difference simulation approach because the inptat it does not contain all the required
parameters. Hence, the system considers that giorulaodel is not prepared yet, and
additional time is required besides the computaititime.

We can conclude that obtained control results ansistent with the expert system

recommendations based on the input data and dedaisteria provided.
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5.2 Offshore Petroleum Reservoir Model

In order to evaluate applicability of the expersteyn in real field conditions, we
did an additional system test using an offshorersvesr model. This offshore reservoir is
characterized as heterogeneous with strong acqanféfree gas cap. The given simulation
model consists of 140 000 grid blocks with detaileck and fluid properties Three years
of recorded production data is very noisy, affedigdnultiple well shut in and gas lift,
where decline regime is established for only fast Inonths of production. Current value
of recovery factor without water flooding is equ@ai8.6 %.

In analogy to the previous section, we have teste@xpert system with the same
set of simulation tasks. The control results wése abtained using decline curve analysis
technique, material balance simulation (MBAL softevhy Petroleum Experts), and finite
difference simulation (Eclipse 100 software by $Sadhberger). Finite difference
simulation results are used as etalon (refererme}ign, since this model is complete,
calibrated, and provides reasonable realistic dutpu

Because the reservoir location and its parametersn-public information, we do
not present the control results calculation detaild the expert system reasoning and
solution search workflow. Moreover, the controluiés, shown onTable 5.4 were

normalized but still give insight into a state &fa#&s.
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Table 5.4: Summary of results calculated by different simolatmethods using real

petroleum reservoir model

_ Finite Difference
Simulation Task Units Decline Curve Material Balance Simulation
Analysis
(REFERENCE)
Estimation of recoverable Ratio to
field resources (EUR), 0.99 1.03 1
) reference
normalized
Estimation of _recovery Ratio to 0.99 1.03 1
factor, normalized reference
Est|ma_t|on of STOIIP, Ratio to 0.95 1 1
normalized reference
Estimation of drainage Ratio to 139 N/A 1
area, normalized reference
i i 0,
Investigation of water Indirect, by analogy Indirect, by analogy 1% RE (water
- (water flood is not | (water flood is not flood is not
flood feasibility . . .
required) required) required)

Comparison of control results with the system ot#psi presented ofhable 5.5
where the color scheme of simulation approachdsngnrecommended by the system,
is the same as in the previous section. Streamsimelation again was rejected by the
expert system because of small model size.

As expected, different simulation techniques prewdriation of calculated results
with respect to the particular task. Neverthel#lss,expert system is capable to predict

these outputs and generate relatively correct revemdations.
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Table 5.5 The qualitative comparison of calculated resuith the system-predicted ones

(real petroleum reservoir model)

_ Finite Difference
, Decline Curve Material Balance Simulation

Simulation Task Comparative Analysis

criteria (REFERENCE)

Predicted| Actual | Predicted Actua Predicted  Actual

Estimation of
recoverable field Speed / Fast / Fast/ Fast / Fast / Fast/ Fast /

Accuracy | Accurate | Accurate |AcceptableAcceptabld Accurate | Accurate
resources (EUR)
Estimation of Speed / Fast / Fast / Fast / Fast/ Fast / Fast/
recovery factor Accuracy | Accurate | Accurate |AcceptableAcceptablg Accurate | Accurate
Estimation of Speed / Fast / Fast / Fast / Fast/ Fast / Fast/
STOIIP Accuracy | Inaccuratg Inaccuratg Accurate | Accurate | Accurate | Accurate
Estimation of Speed / Fast/ Fast/ . Fast / Fast/

. Rejected N/A

drainage area Accuracy | Inaccuratg Inaccurate Accurate | Accurate
:/C;fesrtlf?(?;:n of Speed / Fast / Fast / Fast / Fast / Fast / Fast /
teasibility Accuracy |AcceptableAcceptable AcceptableAcceptablg Accurate | Accurate

Overall, we can conclude that obtained resultsatse consistent with the expert

system recommendations, what confirms correctnésdeas and methodology in the

basis of the expert system.

In order to explain why the expert system outpuéssdightly different for both

Brugge synthetic and offshore petroleum reservases, the comparison of their key

features is shown ohable 5.6
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Table 5.6 Comparison of Brugge and offshore reservoir otstpu

Brugge Synthetic Case Offshore Petroleum Reservoir Case

Decline Curve Analysis

3 years of production data, very noisy,
4 years of production data with establishedfected by multiple well shut in and gas
smooth decline regime. lift, decline regime is established for only
four last months of production.

Material Balance Method

Reservoir is heterogeneous, calculat&kservoir is heterogeneous, calculated
Dykstra-Parson’s coefficient is equal [tDykstra-Parson’s coefficient is equal |to
0.35. Calibrated weak aquifer. 0.41. Strong aquifer and free gas cap.

Finite Difference Simulation

Implemented simulation model does j@plemented simulation model does

contain all required parameters to exe . )
. . . . . . contain all required parameters to exegute
simulation. Additional time is required to

. : imulation. Since number of grid blocks
complete simulation model. Number |0 . . .
: : 140 k) is small, computational speed| is
grid blocks (60 k) is small, s , .
. . . “considered as high.
computational speed is considered as hjgh.

This comparison shows, the expert system is capialdetect correctly these key
features that affect accuracy and applicabilitypafticular methods. It is additionally
supports previous conclusions that the system getioutputs are reasonable. Hence, it

also proves the correctness of ideas in the basieaeveloped methodology.
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6. SUMMARY AND FUTURE WORK

This section summarizes previously made conclusamusobtained results. Our
vision of the future work and recommendations aa élkpert system improvement will
also be discussed.

In petroleum industry, we are always dealing witbhgesses that we need control
and optimize. We have to come up with “educatedioas and decisions in a timely
manner to make sure that processes flow in an aptiray. Efficiency of decision-making
in reservoir management is strongly dependent antify and quality of knowledge about
particular subsurface object. Successful searchoftirmal solution to a particular
reservoir engineering problem is always a non4dtiv@sk since it involves analysis and
processing of large amounts of data and requikegsional expertise in the subject area.
Depending on a whole set of aspects of reservodystdifferent simulation approaches
can or cannot be used because they may give signify different results even at the
same given conditions. The sought-for result hemglies finding of the most appropriate
simulation approach that provides sufficient accyraadequate complexity, and
representation of the available data with respecsitulation objectives and existing
constraints.

Based on our previous discussions, we have mad#dempt to improve selection
of the most appropriate simulation method as a @anrtservoir management workflow.

Summarizing results of extensive literature reviamd practical work, we decided to
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design the knowledge-based expert system as a g@aahs for problem solving that
requires expertise.

Thorough analysis of existing reservoir evaluatiorethods and techniques
resulted in selection of the set of key parametbdrsgeneral, these parameters are
guantitative and qualitative variables, which ameedi for reservoir description and
involved into particular problems solving. On theedhand, certain combinations of these
parameters are determined by methodology in a lodidise simulation approach to be
used for resolving of assigned task. On anothed hgipecific values of these parameters
strongly affect applicability of reservoir evalu@iimethods and may generate constraints
and limitations. Therefore, such dualism is a stifjgr expertise and establishes basis for
the expert system functionality.

Using linguistic method of the Pattern Recognifidreory, the selected set of key
parameters was encoded with unique symbolic naméspat into alphabet; then, we
brought encoded elements into particular sets nasnedarios. Scenario is a description
of the required set of parameters for solving teeagn simulation problem with respect
to exact simulation approach. To make this protittleseasier, the scenario generator was
specially created. The full collection of generasednarios is a core of the expert system
called Knowledge Base. Along with the Inference iBagthis base is used to execute
technical expertise of the reservoir data and satian approach selection. We found out
that the symbolic (linguistic) data encoding andgassing makes the expert system
effective, allows further improvement of the progetution search and realization of an

explanatory module. In addition, it enables easpsithent of the system scope and
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functionality extension. To wit, once correction thie alphabet content and size or
scenarios adjustment are required due to somengascan be easily done. At the same
time, these corrections do not affect the developethodology. The designed workflow
is general and remains the same.

In order to enhance the expert system level of idente, the workflow was
equipped with the input data pre-processing modihés module performs data quality
control procedures, evaluates applicability of epalameter in the input data set and its
ability to produce constraints, and creates théesygjenerated scenario. If this scenario
is not empty, it is further used by the inferenewire in match finding with other
scenarios within the knowledge base. As a resuhli@$earch, the inference engine creates
an excerpt, where selected from the knowledge basmarios are filtered with respect to
user- or system-defined constraints and arrangetumber of unmatched elements in
ascending order.

In case of finding of one (or more) scenario widtzunmatched elements, the
expert system determines respective simulationcggbr and recommends it to a user as
the most appropriate in the given conditions. Appiete means that this particular
approach allows to solve assigned problem usingladla input data, under existing
constraints and limitations, and reach the desaeel of accuracy and computational time
expenses. Otherwise, the expert system displags @f feasible simulation methods to a
user with suggestion about what additionally reggiiparameters should be obtained for
each method, and what expected accuracy of soliwuld be then. Such useful

explanatory function of the expert system was redlibased on the use of symbolic
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encoding of scenario elements. Since the exact totae elements are detected by the
inference engine, their meanings are easily decodd#d the alphabet and utilized to
generate advices for a user.

The obtained results of the expert system validatising Brugge simulation
model and the application with offshore petrolewservoir data confirm correctness of
the tested ideas and methodology in the basiseo$yktem. Simultaneous application of
input data analysis and expert reasoning in sutsiphulation approach selection, making
conclusions, predictions, and recommendations texsuin creation of convenient
software tool which can improve quality of resenangineering work. The expert system
validation and field application tests show simetatesults are consistent with the expert
system predictions and recommendations. Practjdhkydeveloped expert system can be
further used as a separate or integrated toololeirg) reservoir evaluation problems and
for personnel coaching.

The key feature that determines applicability of amrpert system is its level of
confidence. In other words, it is a capability loé system to provide sufficiently accurate
or trustful response to user’s request. With redartthe designed expert system, we can
define two main ways of the future work relatedhe system improvement.

First, the input data pre-processing module shbaléxtended by introduction of
additional data quality control procedures. Fotanse, the same methods that are usually
applied for quality check of measured PVT-properigd special core analysis data,
uncertainty quantification, and other ones couldibeorporated in this module, if

applicable. It may significantly improve the inpgidta analysis and detection of possible
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constraints that affect the accuracy and applitgbibf simulated results, what
undoubtedly leads to increase of the expert syst#imiency.

Second, we assume realization of the AnalyticalcBlaas it described in the
section 4.7 of this work. Integration of this moeluhto the expert system, as we expect,
will significantly enhance its level of confidenckloreover, implementation of that
module sets a basis for the learning engine desigrgt we would like to test.
Supplemented by the learning engine, the expetesysnight educate and train itself.
Successful realization of this idea will help usetoninate the main weakness of expert
systems, which is: frequent involvement of softwdevelopers is required to support
expert systems in actual condition, especially wipeoblem-solving environment is

changing.
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APPENDIX A

TABLES

Table A-1: Alphabet — list of encoded key parameters contbing® groups

Simulation approach - SA Reservoir geometry data RG
CDC | correlation (decline curve) GBM glnd block mesh [number of grid
ocks]
PRX | proxy modelling ARE | reservoir areal extencra sc.ft]
MBL | material balance THC| reservoir thickness [ft]
STL | stream line
FDV | finite difference (volume) numerical Reservoir rock properties - RP
POR porosity
Field maturity (life stage) - FM RCM | rock compressibility
EXP | exploration RPI reservoir initial pressursi[p
APP | appraisal RCP capillary pressure distribution
DEV | development
PLT | plateau Saturations and Relative permeabilities - PR
DCL | decline WSI Irreducible water saturation
OSR residual oil saturation to water
Simulation task (goal) - ST OSG residual oil saturation to gas
DHP | hydrocarbon in place MSG  minimum gas satorati
RRS | recoverable resource / EUR WRP  water relgi@reneability
RFT | recovery factor calculation ORW oil relatppermeability to water
DAE | drainage area estimation ORG oil relativenpeability to gas
PRC | production rate calculation GRH gas relgiememeability
RPC | reservoir pressure calculation PER absokite@ability
HIM | history matching WST | average water saturation
RDP | reservoir drainage zones delineation ~ OST  a@eeoil saturation
IWJ | infill well justification GST average gastgeation
WLP | well placement justification
RSO | reservoir sweep optimization Reservoir heterogeneity - RH
FLJ flood feasibility HMG | homogeneous
FLO | flood optimization HTG heterogeneous
UGM | upscaling of geological model
UCF | uncertainty quantification
DMD | drive mechanism determination
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Table A-1 Continued

Fluid type - FT Number of wells - NW

OlIL oil PWN production wells number
GAS | gas IWN injection wells number
WAT | water

COM | composite fluid (multicomponent) | Production data - PD

PROR

production oil rate (well/field)
[STB/day]

Fluid properties - FP

PRWR

production water rate (well/field)
[STB/day]

ODN | oil density [Ib/cu.ft]

PRGR

production water rate (well/field)
[SCF/day]

WDN | water density [Ib/cu.ft]

PWLR

well liquid produoti rate [STB/day]

GDN | gas density [Ib/cu.ft]

PWLC

well liquid cumulative production
[STB]

oil formation volume factor related

T
—_

(4%

OFR to pressure [rb/STB] PFLR | field liquid production rate [STB/day
water formation volume factor field liquid cumulative production
WFR related to pressure [rb/STB] PFLC [STB]
gas formation volume factor relategd . :
GFR to pressure [rb/SCF] PWOR | well oil production rate [STB/day]
gas solution in oil related to pressur , , ,
GSR [SCE/STB] Pwoc | well oil cumulative production [STB]
OCM | oil compressibility [1/psi] PFOR | field oil produch rate [STB/day]
WCM | water compressibility [1/psi] PFOC| field oil cunative production [STB]
GCM | gas compressibility [1/psi] PWWRwell water production rate [STB/day
ovVS | oil viscosity [cP] PWWA well water cumulative production
[STB]
WVS | water viscosity [cP] PFWR| field water producti@ter [STB/day]
GVS | gas viscosity [cP] PEWC IEEJ_IIEJIB\]Nater cumulative production
GDF | gas deviation factor PWGRwell gas production rate [SCF/day]
PWGC | well gas cumulative production [SCF
Initial volume of fluid in place - IV PFGR | field gas production rate [SCF/day]
OoIP oil initially in place PFGC [galct:jF(:J:]as cumulative production
WIP | water initially in place PWE Fg:i(]juctlon well bottom hole pressur
GIP gas initially in place PTM production tinteours, days, months
PTH production well head pressure [psi]
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Table A-1 Continued

Injection data - ID

Constraints - CS

injection water rate (well/field)

computational time advantage [G -

n)

[psi]

INWR [STB/day] CTA good, P - poor]
injection water rate (well/field) field scheduled events [for
INGR 1 1SCE/day] FSE | bredictability]
S field life stage goes from FM (field
IWWR | well water injection rate [STB/day]| FLS maturity) (affects accuracy ACC)
well water cumulative injection accuracy [L - limited, F - fair, G -
WwC [STB] ACC good, B - the best]
IFWR | field water injection rate [STB/day] CPH cplax physics
field water cumulative injection gravity effect is exist (ODN>=WDN
IFWC GRA | at surface) (less than 10 yields
[STB] . .
constrain for streamline)
IWGR | well gas injection rate [SCF/day] PWC  critical walof the water cut
recovery drive mechanism (W -
IWGC | well gas cumulative injection [SCF] RDM water, G - gas, S - solution gas drive
E - oil expansion)
IFGR | field gas injection rate [SCF/day] PDH %Zdllj\lcfl?]r)] decline is established (Y
IFGC .fi('ald gas cumulative injection [SCH] number of grid blocks (more than
\wg | iniection well bottomhole pressure 100000 for black oil advantage in

CTA for streamline vs FD)

(4]

NGD (more than 28000 for compositional
Fluid contacts - FC advantage in CTA for streamline vs
WOC | oil-water contact / aquifer FD)
GOC | gas-oil contact level of heterogeneity by Dykstra-
GWC | gas-water contact Parson [0 ... 1]
fluid expansion when GOC and HTL | (HTL>0.25 limits use of MBL; HTG
FEC WOC are absent > 0.5 advantage in use of streamlin
vs FD for black oil)
Source of rock and fluid properties - SP
GSl geologic and seismic interpretation
ANL analogue
WLA | well logging
WTA | well test
CRA laboratory core analysis
PVA laboratory fluid analysis
IWI inter-well interpolation
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