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ABSTRACT 

 

Rapid evolution of technologies in petroleum industry in last decades has 

significantly improved our abilities in hydrocarbon reservoirs development. The number 

and complexity of tasks to be solved by reservoir engineers are gradually increasing, while 

the cost of field development projects is rising. In this conditions, optimal decision-making 

in reservoir management becomes critical since it might result in either significant benefit 

or financial loss to a production company. Although a significant improvement was made 

in project risk management to control project costs in the case of unfavorable outcome, 

reservoir evaluation still plays the important role and affect entire reservoir management 

and production process. Since the work of petroleum engineers actively involves reservoir 

simulation and target search for optimal solution of the particular reservoir assessment 

problems, selection of the most appropriate simulation approach in a timely manner is 

important. Successful search for suitable solution to a particular reservoir engineering 

problem is always a non-trivial task since it involves analysis and processing of large 

amounts of data and requires professional expertise in the subject area.    

In this work we proposed an expert system, what provide flexible framework for 

the proper simulation approach selection and involves thorough data analysis, multiple 

constraints handling, expert knowledge utilization, and intelligent output requirements 

implementation. This expert system utilizes linguistic method of the pattern recognition 

theory for knowledge base design and inference engine implementation, what significantly 

simplifies procedures of the system design and provides it with tuning flexibility. This 
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thesis elaborates on major aspects of the expert system design in close relation to data 

processing and recommended solution finding methods. 

To validate the expert system’s applicability, several tests were designed based on 

the synthetic Brugge field case and real petroleum reservoir data. These tests demonstrate 

functionality of the major expert system elements and advantages of selected 

implementation methods. Based on obtained results we can conclude successful 

development of the expert system for appropriate simulation approach selection. 
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1. INTRODUCTION 

 

Rapid evolution of technologies in petroleum industry during the last decades 

expanded capabilities in oil and gas reservoirs development. Along with the growing 

advances in exploration and production techniques, deployed in conventional and 

unconventional reservoirs, an increase in field development projects cost is also observed. 

Because of risk associated with project failure, it may therewith enlarge size of financial 

losses. Depending on the size of the losses for a certain company, actions that prevent 

similar failures in the future should be introduced. This section summarizes the importance 

of data evaluation approach and lay down the foundation to the development of an expert 

system in the thesis.  

 

1.1 Importance of Data, Models, and Simulation Approach Selection in Reservoir 
Management 

 

According to McVay and Dossary (2014), companies in petroleum industry 

continuously underperform compared to the project expectations. Authors suspect that 

while high oil prices of the last decade have overall improved industry performance, they 

also caused industry relaxation and worsening the quality of decision making. In general, 

this point of view does not exactly imply an irresponsible business management since 

entire decision-making process is very complex, situational, and involves multi-stage 

information handling with a high number of issues. However, it still requires 

improvements in the overall process workflows. For instance, in the third quarter of 2015 
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the Shell company reported “loss of $ 6.1 billion – net $ 8.2 billion of upstream write-

downs and other charges primarily linked to its unsuccessful Arctic drilling off Alaska 

and Canadian Oil Sands project” (Smedley, 2015). As a major disappointing moment, 

drilling of a dry hole was mentioned in the report. This example shows that even a 

petroleum industry leader, fully equipped up with up-to-date technology, is not insured 

from failure. Hence, the use of the most advanced technologies in petroleum exploration 

and/or production cannot guarantee success until all the major parts of uncertainty are 

removed from data gathering and information processing, or full reservoir study is 

improved starting from the very basic level to a more complex. 

It is important to point out that the main source of incorrect decisions is always 

related to the lack of required information or poor data assessment. Because entire 

reservoir management process directly involves field study as a starting point, reservoir 

evaluation plays a significant role affecting the output results. Taking in consideration a 

“cause and effect” concept, the visualization of poor outcomes in reservoir management 

is shown in Figure 1.1: 

 

 

Figure 1.1 – Impact of unsatisfactory reservoir data on reservoir management outcomes 
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Figure 1.1 represents a basis for incorrect decision-making process. Initially 

misleading or insufficient data cause a situation when uncertainty either is evaluated 

incorrectly or remains unknown and not taken into account. Therefore, it becomes difficult 

or even impossible to assess data uncertainty ranges that further lead to improper decision-

making risk evaluation. Consequently, errors in conclusions and incorrect decisions are 

inevitable, which can lead to financial loses or disasters. Hence, quantity and quality of 

reservoir data play a very important role in reservoir management, as they are key criteria 

that define what we exactly know and understand about the subsurface object. 

 

 

Figure 1.2 – The place of reservoir model design and simulation in field management 

process 
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Figure 1.2 shows data flow process during the life cycle of a petroleum field 

management. Collected field or reservoir data is used for the particular reservoir model 

design and rectification within all stages of a field life. This model is employed in 

simulation runs for variety of purposes that include reservoir performance studies under 

different development strategies called “what-if” scenarios. Nowadays, the use of 

reservoir simulation allows assessment of multiple “what-if” realizations and selection of 

the most optimal ones (Satter, Iqbal, and Buchwalter, 2008). Depending on the particular 

goal to be reached, the simulated outputs are further analyzed and implemented for 

conclusions and decision-making, which are then executed as the field management 

program.  

In addition, the need of reservoir models in petroleum industry is dictated by long 

duration of the processes, control actions and object responses, that we need monitor and 

optimize. Therefore, we cannot experiment with reservoirs since by the time we see some 

response, it might be too late to take any actions to correct it. Hence, we need predictive 

models.  

The study of a petroleum reservoir is truly a multidisciplinary effort. Specialists in 

Geology, Geostatistics, Geophysics, Geochemistry, Petrophysics, and Engineering 

contribute their joint work in an integrated reservoir model designs for a real reservoir 

performance understanding and forecasting (Satter, Iqbal, and Buchwalter, 2008). Results 

of various applied studies give us an information about subsurface objects, their history, 

properties, and features setting a basis of the model. Simulation model design, validation, 

and optimization processes is a separate wide topic that is not included into the scope of 
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our work. Detailed description of the modelling methodology can be found in literature 

(Falkenhainer and Forbus, 1991; Levy, Iwasaki, and Fikes, 1997; Malak and Paeridis, 

2007; Oberkampf and Roy, 2010).  

Correct choice of an appropriate simulation approach to be used for the specific 

reservoir evaluation problem is a daunting task to be performed by petroleum engineers. 

Proper selection of the simulation method is critical since it determines the accuracy and 

applicability of simulated results and, consequently affects decision-making process. 

Depending on the exact goal, reservoir engineers select simulation approach based on the 

certain data availability, its quality, constraints existence, and methodology (Satter, Iqbal, 

and Buchwalter, 2008). In practice, determination of the most suitable simulation method 

at certain conditions is not easy since it is characterized by the following features: 

- Different simulation approaches may give discrepant results at the same given 

conditions; 

- Some of them can or cannot be used for a special task solving under number 

of constraints, data quality and insufficiency, and methodology in the basis; 

- The most appropriate approach selection involves analysis and processing of 

large amount of data and requires professional expertise in the subject areas. 

In addition, the sought-for proper simulation approach should provide: 

- Sufficient accuracy, adequate complexity, and representation of available data; 

- Robust and appropriate basis for realization of reservoir analysis objectives 

under existing constraints, among others. 
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Making a choice in such conditions is non-trivial while it also implies the use of 

sufficient amount of theoretical knowledge and practical experience that can be very 

limited.  

 

1.2 Objectives and Scope of Work 

 

Summing up, the quality of decision-making process in reservoir management is 

strongly dependent on a realistic understanding of the certain subsurface object, its 

parameters and features, and quality and sufficiency of data we build the model from. The 

choice of the most appropriate simulation method is very important, since it primarily 

defines the data requirements and accuracy and applicability of simulated output with 

respect to the particular reservoir engineering task. Correct selection of the proper 

simulation method implies an existence of extensive theoretical knowledge and practical 

experience. Their lack may result in reduction of reservoir evaluation quality.  

The most suitable reservoir simulation approach selection under specific 

circumstances is a problem that has not yet been posed as a formal task in reservoir 

evaluation, and requires to be developed.1  To contribute to a proper reservoir management 

improvement, we have posed the following goals and scope of our work: 

- The primary objective is to formalize, design and test the reliable methodology 

to provide decision-making support in simulation approach selection;  

                                                           
1 At least to the best of my knowledge, I am not aware of such proposed work developed elsewhere. 
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- This methodology should supply flexible framework, involve thorough data 

analysis, multiple constraints and limitations handling, expert knowledge 

utilization, and intelligent output requirements implementation; 

- Use the linguistic method of the Pattern Recognition Theory to set a basis for 

the methodology realization procedures, such as data encoding, symbolic 

reasoning, search and recommending the most suitable simulation method, and 

suggesting on what should be additionally done for a specific engineering task 

solving;  

- Implement the developed methodology in the knowledge-based expert system 

design, with specific structure and functionality, as a means for problem 

solving that requires expertise. 

Realization of these objectives could significantly improve the simulation 

approach selection process, increase quality of data analysis and reduce the risk of errors 

to emerge.  

Furthermore, the developed software can be also used for the guiding or coaching 

purposes. An ability of the expert system to generate explanations on output results could 

be useful for those users who experience a deficiency of qualification in the particular area 

of interest. Namely, users can get the information on: 

- What reservoir simulation method is recommended to be used for particular 

problem solving as the most appropriate under number of constraints and 

limitations; 
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- What additional reservoir data should be obtained in order to execute other 

methods; 

- What could be a predicted accuracy of calculated results; 

- What should be the workflow when engineering problem solving require 

implementation of multiple simulation methods. 

 

1.3 Thesis Organization 

 

In the first section of this thesis we discussed motivation and objectives of our 

work and described proposed solution. I order to accomplish the main objectives proposed 

here, the following structure was organized. 

In the second section, we introduce extensive literature review that enlightens 

application of five major simulation approaches with respect to particular reservoir 

evaluation tasks. The set of listed assumption, constraints, and limitations in the 

foundation of each method is used to create the basis of our methodology.   

The third section provides overview of expert systems as a means of complex 

problem solving that requires professional expertise. The main concept and structure of 

the systems, their key features and functionality, history of development, and application 

in Petroleum Industry are described in this part of the thesis. 

  In the fourth section, we present the detailed framework depiction of the 

methodology and expert system design for the proper simulation method selection. Here, 

we explain the use of the linguistic method of the Pattern Recognition Theory as a means 
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that determines data encoding algorithm for the alphabet of key parameters design, 

generation of scenarios as representation an expert knowledge, and solution search 

workflow. Additionally, we delineate the structure of the developed expert system, 

construction, and functionality of its components, such as Data Pre-processing, Scenario 

Generation, Knowledge Base, Inference Engine, and Decision Support modules. As a very 

important topic, the input data quality control and detection and dealing with constraints, 

which affect applicability of simulation method and restrict an accuracy of simulated 

results, are described as a part of Data Pre-processing module. Besides, we also present 

the well placement justification technique as an extension of the expert system 

functionality.  

The fifth section represents the expert system validation and field application 

workflow using Brugge synthetic simulation model and offshore petroleum reservoir data. 

Obtained results are discussed in this section. 

Finally, in the six section of the thesis we summarize obtained results and 

conclusions, discuss observations, and provide our vision of future work on the expert 

system improvement.   
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2. RESERVOIR SIMULATION METHODS 

 

This section presents an overview of the major simulation approaches using in 

reservoir evaluation and areas of their application. We introduce the list of specific 

engineering tasks that can be solved using five major reservoir evaluation methods. Also, 

we mention assumptions, constraints, and limitations in the basis of each method which 

determine its applicability and accuracy of calculated results.  

 

2.1 Discussion on Model Application in Reservoir Engineering 

 

Reservoir simulation is based on the methodology put into a certain approach, 

where specific mathematical relationships describe ongoing physical processes in the 

reservoir (Odeh, 1969). These descriptions, i.e. models, define the certain set of 

engineering tasks that can be solved and parameters to be used. By its nature, any 

methodology is developed considering specific assumptions, stipulations, simplifications, 

and solving methods, which further establishes opportunities, requirements, and 

constraints for the use of the particular method (Satter, Iqbal, and Buchwalter, 2008).  

Models can be based on the understanding of underlying physical processes that 

occur in the field, data collected from fields under development, or fields that show certain 

degree of similarity. To express the degree of similarity, term “analog” is often used. 

Analog means an object with properties so similar to the properties of the object under 

investigation, that a sufficient level of confidence exists in similarity of the reaction 
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produced by these two objects if the similar actions are applied. In other words, for analogs 

we can extrapolate knowledge gained through observing one object to predict reaction of 

another object with certainty. In practice, establishing analogy between two reservoirs is 

a difficult task because of their originality. However, every reservoir is an analog for itself 

and this is actively used in petroleum industry since the early days and serves a basis for 

methodology of decline curve analysis. If extensive database of analogs exists, then 

correlations might be a viable approach to follow since they are simple, robust, and 

sufficiently accurate. 

Oil and gas reservoirs are complex objects with multiple compartments, different 

drive mechanisms, and spatially variable rock and fluid properties. Some “simple” 

reservoirs might be represented as a single geobody with a simple geometry with relatively 

homogeneous rock properties and filled with a single fluid. “Complex” reservoirs can be 

comprised of multiple partially interconnected geobodies with a complex geometry, 

highly spatially varying rock properties, and containing fluids with highly varying 

properties as well. However, simplicity of reservoir is just a one axis that describes 

complexity of the case we are dealing with. Development scenario is another axis that 

controls the complexity of the case for our understanding. Even a simple reservoir with a 

complex development scenario might result in a case of a higher complexity than that of 

the complex reservoir with simple development plan. Therefore, complexity of the case 

depends not only on the nature of the object, but also on the kind of production process 

and scenario that we try to apply to it.  
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Overall, physics of the processes in conventional reservoirs behavior is well 

understood. Ability to understand the underlying processes allows creation of 

mathematical models that can be used to describe behavior of the object under certain 

conditions and control actions. Mathematical models that are solved analytically can 

describe a simple reservoir. Complex reservoirs require solution of more complex systems 

of equations that are solved numerically. However, overall complexity of the model that 

has to be solved depends on the application. Different model applications require different 

levels of model complexity. For example, a simple reservoir with complex pattern water-

flood might require application of a numeric model. At the same time, complex reservoir 

that is developed by isolated producers under primary production might be sufficiently 

described by analytic models. Therefore, complexity of selected model depends not only 

on complexity of the object, but on analysis objectives (reservoir development scenario) 

it will be used for. 

The nature of the objects that we study in reservoir engineering allows collection 

of a very limited amount of data. Scarcity of the data, multitude of scales and ambiguity 

of interpretation creates difficulties in proper characterization of the object. Knowledge of 

physics and numeric tools allow us to solve problems at a very fine scale. However, 

resolution and amount of data available limits the scale of object representation in the 

model. At the same time, scale at which we need model response might be much coarser 

that the one we can characterize the object at. Hence, while selecting the model for proper 

representation of the object we have to take into account scale expectations in addition to 

model complexity, analysis objectives and availability of analogous data. 
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Model scale is a sensitive topic in reservoir engineering. Intuitively, subsurface 

teams try to obtain model at the finest scale possible. However, application of fine scale 

models even at current level of computational hardware development is extremely time 

consuming. Certain models can run days and even weeks, which pushes reservoir 

engineering studies outside of the reasonable time frame. In practice, preference is given 

to the models that can run faster while still providing robust and accurate representation 

of the object. This, in turn, brings focus to selection of proper scale, proper simplifying 

assumptions and finally proper model representation. Proper model scale coarsening can 

be achieved with parameter upscaling techniques as long as proper model accuracy is 

supported.  

To summarize, with respect to the particular simulation task, we are looking for 

the most appropriate simulation approach, where the simplest model (reduced) that 

provides sufficient accuracy (accurate), adequate complexity and representation of the 

available data. At the same time, it should provide robust and appropriate basis for 

realization of analysis objectives. In other words, making a choice of the proper simulator 

we should confidently understand the reservoir, thoroughly assess available data, clearly 

define simulation goal, and distinctly select appropriate methodology of problem solving 

(Satter, Iqbal, and Buchwalter, 2008). 

Depending on the data required for reservoir evaluation and problem solving, all 

the simulation approaches that exist today can be combined in five major groups as it 

shown in Figure 2.1: Correlations, Proxy model based, Material Balance based, 

Streamlines, and Finite Difference (volume) numerical simulation.  
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Figure 2.1 – Modelling methods (simulation approaches) 

 

 

2.2 Correlations (Decline Curve Analysis) 

 

In petroleum engineering correlation is a mathematical relationship that defines 

correspondence between an output variable and a set of input variables. Correlations are 

empiric relationships that depend on the availability of data. At the same time, they are 

based on analogy. Traditionally, they were actively implemented in the areas where 

physics of the process is not well defined or adequate mathematical models do not exist 

to represent physical processes. Namely, they are predominantly used when large 

uncertainty or lack of knowledge about the reservoir data do not allow application of more 

complex methods, such as numerical simulations.  
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Correlations were actively used in estimation of fluid properties (PVT), prediction 

of multiphase flow in the pipes, etc. Fundamentally, correlations are interpolation 

functions that are built on an extensive experimental dataset that covers possible 

combinations of input parameters and corresponding values of the output parameters. If 

all parameters significant for the estimation are taken into account and a proper 

interpolation function is developed, this function can be used to predict output values (i.e. 

PVT properties, flow regimes, etc.) for any combinations of input variables. However, one 

needs to make sure that parameters are selected within the interpolation region. This 

approach relies on an assumption that if multidimensional surface goes through some 

experimental points, it will give sufficiently accurate prediction for all points in between 

those experimental points. Therefore, use of these functions in extrapolation mode might 

not be appropriate. However, extrapolation might be appropriate if developed correlation 

relies not on the mathematical function that better fits the data, but has some resemblance 

of the physics as well. For example, decline curve analysis is based on observation made 

by Arps that production rate decline at the well can be described by a simple equation. So, 

Arps’ equation adjusted to fit available data can successfully be used to extrapolate 

declining production rate into the future.  

Decline curve analysis will be discussed further as the most typical correlation 

technique widely used in reservoir performance evaluation.  

Historically, Aprs’ observation that fluid production rate declines versus time 

exponentially (Arps, 1945) stimulated emergence and further development of decline 

curve analysis. Many researchers (Ershaghi and Omorigie, 1978; Blasingame, McCray, 
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and Lee, 1991; Fetkovich’s, 1996; Agarwal, Gardner, Kleinsteiber, et al., 1999, and many 

others) contributed in improvement and extension of this method applicability. Nowadays, 

decline curve analysis techniques are widespread because they are relatively simple and 

require a lesser data set than other methods. For instance, decline curve analysis is 

employed in reserves assessment for approximately “95% of the thousands of reservoirs 

in the United States” (Satter, Iqbal, and Buchwalter, 2008) since these reservoirs are not 

large in size, with studied recovery drive mechanisms, and do not require complex and 

expensive numerical simulation.  

Fundamentally, decline curve method is based on the analysis of individual wells 

or field production rates, when sufficient data is available and production decline is 

established (Figure 2.2).  

 

 

Figure 2.2 – Two views of decline (reprinted from Satter, Iqbal, and Buchwalter, 2008) 
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In Figure 2.2, the left plot represents measured oil production rate extrapolated 

until some economically reasonable value (abandonment limit). The extrapolation decline 

curve here, obtained by fitting measured early data, shows prediction of future well 

performance. Analogically, the right plot characterizes measured and predicted 

performance; in this case for entire gas field. The most important parameters that should 

be established by analysis and further used in extrapolation are decline rate and its 

exponent: 

nKq
q

dtdq
D =−= /

 ,            (2.1) 

where: D – decline rate; q – production rate; t – time; K – constant; n – exponent.   

Depending on combination of n and D and their characteristics, there are three 

main decline types can be identified in classical analysis (Satter, Iqbal, and Buchwalter, 

2008): 

1. Exponential – decline rate D is constant and exponent n = 0; 

2. Hyperbolic – D varies with time and n = [0 < n < 1]; 

3. Harmonic – D varies with time and n = 0. 

 

Once the decline type has been identified and average fluid and reservoir 

properties, such as reservoir thickness, rock and fluid compressibility, reservoir initial and 

bottomhole pressure, porosity, oil or gas saturation and formation volume factor were 

obtained, the following parameters can be calculated using specific equations related to 

the decline type and evaluation method: 
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- Predicted production rate; 

- Ultimate recovery by summation of measured and expected (predicted) 

production; 

- Remaining time of a well or reservoir production; 

- Initial value of oil / gas in place; 

- Recovery factor; 

- Drainage area; 

- Reservoir parameters, such as average permeability and skin factor. 

However, the use of decline curve analysis must be taken with care in reservoir 

performance evaluation and prediction (Sun, 2015). This requirement emanates from 

assumptions and limitations put into methodology: each well produces from constant area, 

entire reservoir has no leaky boundary even though adjacent aquifer exists, depletion is 

the only drive mechanism, production data is sufficient for analysis, decline is established, 

and field operations will not consider future changes. Violation of any of these items 

immediately disturbs impracticability of the decline curve analysis. Additionally, the 

following factors influence production rates and decline curve performance, and should 

be taken into account: 

- Early-time field life stage (exploration, appraisal, startup) do not allow to use 

this method since production data either do not exist or not sufficient for 

analysis; 

- Early beginning of decline, when its trend is not confidently obvious, results 

in very low accuracy of calculations; 
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- Restricted production, bottomhole pressure changes, modification of 

production methods along with well treatments, workovers, implementation of 

enhanced recovery programs, water influx from aquifer and breakthrough are 

considered as intervention into a stabilized production regime. That 

interruption distorts decline trend and can make it impossible for using.  

Overall, decline curve analysis is quite simple and efficient tool for the reservoir 

performance evaluation. At the condition, sufficient amount of analytical data is available 

and not any of the above listed limitations cause restrictions, this method gives fair results 

in solving particular tasks. 

 

2.3 Proxy Models 

 

Proxy models are fundamentally interpolation functions, but more sophisticated 

than the ones traditionally used. Basically, they are used as simplified models that are not 

based on physics, but closely resemble numeric models (i.e. can mimic their output for the 

same set of input parameters), “as a computationally cheap alternative to full numerical 

simulation” (Zubarev, 2009). Besides this, proxy models are also constructed by size 

reducing of an initial full physics model (Yang, Davidson, Fenter, et al., 2009).  So, they 

can act as a proxy to a certain model, but cannot fully replace it.  

As for interpolation method that is not restricted by the physics of the process, 

robustness of proxy models in extrapolation mode is not easy to justify. Therefore, to 

replace simulation models, engineers define a set of input parameters of interest 
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(parameterize the problem) and create an, “experimental dataset,” by running numeric 

simulation with selected parameter within defined ranges. Basic workflow of the proxy 

model design, shown in Figure 2.3, includes sensitivity analysis as mandatory and the 

most important step. Basically, this process is an evaluation of the effect of the input 

variables changes to the simulation model output. As a result of analysis, the input 

variables can be separated into the following groups: 

- Variables that sufficiently affect simulation model response and should be used 

in dataset sampling; 

- Insignificant variables that can be eliminated to reduce the model size. 

Sampled datasets are used to create proxy models that can not only closely 

resemble outputs of the dataset, but can predict output values for different realization of 

input parameters. Depending on simulation model response, the proxy model is estimated 

separately with its quality validation. Namely, this model should reproduce the same 

results as a real model with required accuracy. Polynomial, artificial neural networks, 

genetic algorithms, kriging-based, and radial basis function based proxy models are the 

most widely used in the petroleum industry (Lophaven, S.N., Nielsen, H.B. and 

Sondergaard, J., 2002; Jurecka, 2007; Artun, Ertekin, Watson, et al., 2009).  
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Figure 2.3 – Proxy-modelling workflow (reprinted from Zubarev, 2009) 

 

 

Proxy models found a wide implementation in the petroleum industry. They are 

used not only as a substitution to numeric simulation models, but in virtual metering, well 

transient pressure data analysis, well test predictions, substitution for multiphase flow 

correlations, hydrocarbons initially in place calculation and much more. In general, typical 

application areas in reservoir simulation include (Zubarev, 2009): 
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- Sensitivity analysis of uncertainty variables (Yeten, Castellini, Guyaguler, et 

al., 2005; Junker, Dose, Plas, and Little, 2006; Slotte, and Smorgrav, 2008; 

Christie and Bazargan, 2012); 

- Probabilistic forecasting and risk analysis (Kabir, Chawathe, Jenkins, et al., 

2002; Osterloh, 2008); 

- History matching (Cullick, Johnson, and Shi, 2006; Slotte, and Smorgrav, 

2008; Christie and Bazargan, 2012); 

- Reservoir connectivity evaluation, development modelling, screening, and 

production optimization (Pan and Horne, 1998; Guyaguler, Horne, Rogers, et 

al., 2000; Onwunalu, Litvak, Durlofsky, and Aziz, 2008; Artun, Ertekin, 

Watson, et al., 2009; Yang, Davidson, Fenter, et al., 2009; Pfeiffer, Reza, 

Schechter, McCain, and Mullins, 2011; Christie and Bazargan, 2012). 

Proxy models provide certain advantages when used with problems of moderate 

non-linearity. However, with highly non-linear problems accuracy and robustness of 

proxy-models are actually questionable. The problem is not in their interpolating 

properties. All of the mentioned above types of proxy models are actually exact 

interpolators. Namely, in multidimensional parameter space they represent a surface that 

goes exactly through the experimental points. The problem with highly non-linear 

problems is in proper selection of these points. Obviously, if one runs an infinite number 

of simulations, a very accurate proxy model can be created. But the need for large number 

of simulation runs diminishes the effect of proxy models application for time saving. 
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Therefore, one has to come up with a small set of runs that allows creating a proxy-model 

properly representing model non-linearity and hence providing sufficient accuracy.  

To date, different methods of Design of Experiments (DoE) are used to propose 

this set of models. They are generic “space filling” designs that randomly scatter sampling 

points over the parameters space insuring uniform coverage. This creates certain 

challenges. 

First of all, proper representation of highly non-linear problems with small set of 

experiments requires a prior knowledge of the response surface complexity and effective 

sampling technique. Otherwise, a large set of experiments would be needed. Second, 

random nature of sampling combined with limited experimental sample makes accuracy 

and robustness of the approach questionable. Absence of “intelligent sampling” 

methodology makes creation of reliable model that can provide appropriate prediction 

accuracy across the parameter space a non-trivial task. At the same time, precision of the 

approach is not guaranteed because of random nature of sampling. 

Overall, all proxy models are strongly dependent on real model complexity, 

sufficiency and quality of input data, and clear understanding of their constraints. 

Individually well-built proxy model can be a very convenient substitution of full numerical 

simulation model since it is capable of replicating the same output being exceedingly 

cheaper in computational time.   
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2.4 Material Balance Models 

 

As it goes from the name, material balance model is based on the mass 

conservation law. The initial material balance equation, as a volume balance between 

cumulatively produced fluid and its expansion in a reservoir due to pressure drop, was 

presented by Schilthuis (Tracy, 1955; Dake, 1978). Many researchers, including Havlena 

and Odeh (1963, 1964), Tehrani (1972), Campbells (1978) and others sufficiently 

extended material balance analysis techniques and areas of application. This type of 

models focuses on volumetric characteristics and mass exchange between the reservoir 

and outer world (Figure 2.4). At the same time, it does not provide any insight into spatial 

saturation change and fluid movements within the reservoir due to single tank assumption. 

It is probably the most simplistic type of model that actually accounts for physical 

processes occurring within the reservoir during production.  

In general, material balance equations for reservoir performance are expressed as 

follows (Satter, Iqbal, and Buchwalter, 2008): 

- Oil reservoir: 

efwgo WEmEENF +++= )(           (2.2) 

- Gas reservoir: 

efwg WEEGF ++= )(            (2.3) 

where: F – underground fluid withdrawal; N – original volume of oil in place; G – original 

volume of gas in place; Eo – expansion of oil and originally dissolved gas;                 

Eg – expansion of gas cap gas; Efw – expansion of connate water and reduction of 
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pore volume; We – cumulative natural water influx; m – initial gas cap volume 

fraction. 

 

 

Figure 2.4 – Material balance tank model assumption (reworked from Dake, 1978) 

 

 

As shown in Figure 2.4, material balance model represents reservoir as a tank of 

a certain volume filled with fluids and is a subject to fluid movement into and out of the 

tank due to the presence of sinks and sources. Fluid movement changes energy balance 

and impacts phase changes and PVT properties of the fluids which are also accounted for 

in the model.  
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Methodologically, the conceptual material balance model is based on the following 

assumptions:  

- The reservoir is considered as a tank, homogeneous, with averaged rock and 

fluid properties (porosity, compressibility, permeabilities, and saturations) 

uniformly distributed within strata, as well as reservoir pressure; 

- Fluid injection and production is assumed to be provided at certain areas of 

reservoir where these fluids are concentrated; 

- All processes within the tank are considered as isothermal; 

- Direction of fluids flow and distribution of wells in the reservoir are not taken 

into account.   

These assumptions set a basis for creation of a simple reservoir model for the 

further analysis and generation of cogent results. Simplicity of the model and support of 

physical processes makes it a very popular tool that provides insight into reservoir 

performance. Nowadays, material balance methods allow to resolve the whole set of 

engineering tasks, such as: 

- Assessment of oil and gas original volume in place; 

- Determination of the presence, type, and size of aquifer and gas cap and depth 

of gas-oil, water-oil, and gas-water contacts; 

- Forecasting production characteristics of the reservoir, such as pressure and 

future production, with respect to different recovery drive mechanisms, and 

recovery factor calculations; 

- History matching of reservoir drive mechanisms. 
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Depending on the particular problem being solved and required governing 

equations for it’s solution, the following parameters are used in material balance 

simulation (Satter, Iqbal, and Buchwalter, 2008): 

- Reservoir geometry – area and thickness; 

- Rock properties – average porosity and saturation, compressibility, and 

absolute and relative permeabilities; 

- Fluid properties – oil, gas, and water compressibilities, solubilities, formation 

volume factors and viscosities related to pressure; 

- Production and injection data - oil, gas, and water production and injection 

rates and pressures over the time, cumulative values of produced and injected 

fluids.  

Although material balance method is quite simple and convenient tool in the 

reservoir characterization, its use must be taken with care in certain cases. This 

requirement emanates from methodological assumptions mentioned above. For example, 

estimation of fluid in place can be very inaccurate when significant heterogeneity of the 

reservoir exists. Moreover, it may give inadequate results in the study of fluid reinjection 

at the late reservoir life stage when fluid production involves water extraction from the 

aquifer.   
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2.5 Streamline Simulation   

 

Streamline simulation methodology is essentially a simplification of the finite 

difference simulators where pressure change in reservoir is analyzed on a finite difference 

grid, but fluid movement and saturation change is analyzed along the flow lines 

(streamlines) that coincide with the fluid flow direction in the reservoir. Conceptually, the 

stream line simulation is a faster substitution of the finite-difference method even though 

they both use the same reservoir model with a similar set of variables.   

Streamline simulation methods are based on the concept of particle tracking to 

design fluid flow path lines in the reservoir using time (time of flight) of tracer particle 

travel along these lines. The use of time of flight as a spatial coordinate variable allows to 

segregate mathematically a complex physics of flow transport from the reservoir 

heterogeneity, which is the key feature of this method. Another aspect of streamline 

simulation is that the time of flight coordinates can be used for the fluid flow visualization 

in three-dimensional space, which is extremely useful in solving such practical tasks as 

fluid front analysis, pattern balancing, and wells allocation. (Datta-Gupta and King, 2007).  

Once streamlines designed, the convection-dominated spatial flow calculations in 

form of transport equations (saturation and concentration) are executed in 1-D along the 

individual streamlines and therefore can be performed faster. Further, these streamlines 

should not necessarily be rebuilt every simulation run, they can be used in multiple 

simulations until a change in well conditions occurs.  
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Figure 2.5 – Streamlines for Emerald 1380 synthetic case study 

 

 

An example in Figure 2.5 shows the visualization of the streamlines spatial 

distribution between injection and production wells in color scale with respect to depth. 

Such distribution provides an outstanding advantage in swept area and volume 

calculations that can be useful in flood optimization and pattern balancing.  

Initial development of 3D two-phase streamline simulation techniques to model 

reservoir heterogeneity, changing well conditions, black oil displacement, and water 

flooding using numerical solutions along streamlines, gradually obtained such 
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improvements as: ability to model dispersive transport flow, separate gravity and capillary 

terms from the convective ones, deal with capillary and gravity effects, perform simulation 

of dual-porosity and fractured reservoirs, and model compressible fluid flow, CO2 

injection and polymer flooding (Batycky, 1997; Jang, Lee, Choe, and Kang, 2002; 

Berenblyum, Shapiro, and Jessen, et al., 2003; Di Donato,  Huang, and Blunt, 2003; 

Moreno, Kazemi, and Gilman, 2004; Cheng, Oyerinde, Datta-Gupta, and Milliken, 2006; 

Obi and Blunt, 2006; Thiele, Batycky, Pöllitzer, and Clemens, 2010).  

In addition, streamline techniques were equipped with an ability to perform 

compositional fluid simulation (Thiele, Batycky, and Blunt, 1997; Crane, Bratvedt, 

Childs, et al., 2000; Jessen and Orr, 2004; Osako and Datta-Gupta, 2007; Tanaka, Datta-

Gupta, and King, 2014). 

As the further development of streamline simulation methods, the new trend arose 

recently. This is solving tasks related to the thermal simulation. Streamlines simulators 

extended to include thermal effects of temperature dependent parameters, such as viscosity 

and thermal expansivity, for hot water flooding and steam injection processes related to 

non-isothermal flow, physical diffusion of gravity, heat conduction, and energy and mass 

transfer (Pasarai and Arihara, 2005; Zhu, Gerritsen, and Thiele, 2010, 2011; Vicente, 

Priimenko, and Pires, 2014).  

In general, all these techniques demonstrate a good accuracy of obtained results 

and an advantage in computational time comparing to finite-difference simulation. This is 

a kernel in the choice making between these two simulation approaches. However, such 

phenomena as existence of gravity effect, high compressibility, compositional 
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representation of fluids, and complex physics still capable to cause some problems 

diminishing positive effect of streamline application (Datta-Gupta and King, 2007).   

The streamline simulation approach is relatively young compared to other 

methods, and it is still in a development stage. Nevertheless, due to its computational 

speed and versatility the streamline simulation became very popular in the following 

reservoir engineering applications (Datta-Gupta and King, 2007):    

- Sweep volume and efficiency calculations; 

- Rate allocation and optimization; 

- Pattern balancing and delineation of drainage zones; 

- Modelling tracer flow, waterflooding, and well placement; 

- Calculation of primary and enhanced hydrocarbon recovery; 

- Uncertainty quantification, reservoir heterogeneity characterization, and 

ranking geostatistical models; 

- Upgridding and upscaling of geological models; 

- History matching with production data integration; 

- Solvent flooding and compositional simulation; 

- Reservoir management. 

Overall, streamline simulators provide advantage of fast flow simulation which is 

critical when dealing with large models and multiple geologic realization. Flow path 

visualization and availability of properties such as “time of flight” provides basis for rate 

allocation, flood-front optimization, proper simulation mode upgridding, and solution to 

over problems that pose challenges for finite-difference simulation. However, advantages 
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of the streamlines come with certain limitations such as introduction of material balance 

errors due to properties mapping between the grid and streamlines, limitations of the time 

step due to non-stationarity of the pressure solution and complexity in dealing with non-

convective mechanisms such as gravity, capillarity and phase behavior. 

 

2.6 Finite Difference Simulation 

 

Finite difference simulator is the most versatile tool. Over the decades of use it 

was improved to account for variety of physical and chemical processes that can occur in 

reservoirs. This allows us to work with a range of models from very detailed to very coarse 

resolutions. At its extremes, the finite difference simulator can work with models at 

geologic scale and models that contain just a few cells and closely resemble material 

balance models and their functionality. It all depends on the resolution we need, data we 

have to construct the model, and objectives we are trying to achieve (Aziz and Settari, 

1979; Mattax, and Dalton, 1990; Ertekin, Abou-Kassem, and King, 2001; Fanchi, 2006; 

Mustafiz and Islam, 2008; Islam, Moussavizadegan, Mustafiz, and Abou-Kassem, 2010). 

Simulation model construction is the most important and time consuming process. The 

quality of constructed model is critical since it directly defines accuracy and applicability 

of simulated results.  

Engineers of different majors contribute their professional knowledge and 

experience doing teamwork in data gathering, processing, and integrated reservoir model 



 

33 
 

 

design (Satter, Iqbal, and Buchwalter, 2008). The primary goal here is to build virtual 

representation of a real subsurface domain of interest fully described by: 

- Three-dimensional reservoir geometry and connectivity; 

- Spatial distribution of rock properties: pressure, compressibility, porosity, 

fluids absolute and relative permeability and initial and residual saturation; 

- Types of reservoir fluids and their properties: compressibility, density, 

viscosity, formation volume factor, solubility, chemical composition, salinity 

and others; 

- Presence and extend of fluid contact zones; 

- Well allocation, completion, production and injection operating conditions. 

 

 

Figure 2.6 – Initial oil saturation for Brugge synthetic case study (adopted form Peters et 

al., 2009) 
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 An example in Figure 2.6 shows a typical representation of three-dimensional 

reservoir model that consists of certain number of grid blocks, where every cell is assigned 

with particular set of rock and fluid properties. This particular example visualizes a spatial 

distribution of the initial oil saturation within reservoir in color scale and locations of five 

production wells.  

In general, simulation model is a set of parameters that should be used by the 

simulator to achieve a particular simulation goal. The selection of these parameters and 

their properties is based on reasoning about application of the following (Aziz and Settari, 

1979; Satter, Iqbal, and Buchwalter, 2008):  

- Reservoir geometry model (one-, two-, or three-dimensional) and coordinate 

system (Cartesian, Cylindrical, or Spherical); 

- Representation of fluid type as black oil (including dry gas, wet gas, heavy or 

volatile oil) or composition (in terms of moles of individual components) with 

number of phases; 

- Description of a flow type in porous media by Darcy’s Law or its extension 

due to high-velocity effect, slippage effect, and other aberrations; 

- Determination of mass and heat transfer mechanisms, such as immiscible fluid 

flow, phase composition flow, heat flow, mass transport due to dispersion, 

adsorption, and partitioning.  

Once a simulation model is created, it is further sent to the simulator for 

processing. Finite difference simulator is a computer program that has the ability to solve 

a set of partial differential equations replaced with finite differences. The following simple 
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example shows a typical isothermal simulator workflow, where finite differences are 

derived from Taylor’s series (Fanchi, 2006): 

1. The two-phase fluid flow equations are formulated as: 
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where: K – absolute permeability of the fluid; kr – relative permeability of the fluid; µ - 

fluid viscosity; B – fluid formation volume factor; P – pressure; qs – fluid flow 

rate; φ – porosity; S – fluid saturation; x – coordinate along x-axis; t – time 

coordinate. 

2. Derivatives are approximated with finite differences: 

a. Discretize region into grid blocks x∆ : 
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b. Discretize time into time steps t∆ : 
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where: i – index labeling grid location along x-axis; n – index labeling the present time 

level, so that n+1 a future time level. 

3. Numerically solve the resulting set of linear algebraic equations. 

Once the finite difference analogs (2.5) and (2.6) of the partial differential 

equations obtained, they can be substituted into the flow equations (2.4). Further, the full 

set of flow equations is rearranged algebraically and solved using numerical methods. As 

a result of computation, the unknown primary variables, pressure and saturation, are 
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calculated in spatiotemporal coordinates, what allows updating of the pressure-dependent 

(temperature-dependent for non-isothermal processes) parameters of the model. 

Iteratively, this process can be repeated many times.   

Results of simulation represent the reservoir behavior in a time perspective under 

particular conditions. The model validation process is usually made by implementation of 

history-matching procedure, where observed or historical pressure, saturation, and 

productivity measurements are sequentially matched with simulated ones. In case, when 

there is no sufficient deviation observed the simulation model can be further used for the 

reservoir performance prediction including all life stages from exploration to 

abandonment. Otherwise, some key parameters should be revised and adjusted.  

There is no doubt that this type of reservoir simulation is the most popular and 

powerful in the petroleum industry. It can assist in resolving most of the problems related 

to reservoir management, field development strategies design, performance prediction, 

primary and enhanced hydrocarbon recovery evaluation, and many others. However, 

computational speed is an issue especially for highly heterogeneous models consisting of 

more than one million grid blocks. Therefore, engineers constantly looking for alternative 

ways to do the work.  

When we talk about the model to be used for finite difference simulation, speed is 

not the only criterion for selection. Every model comes along with certain simplifications 

and limitations that can make it a perfect or a bad candidate for use. Selected scale of 

uncertainty representation (number of components, gridblocks, etc.), objectives of the 
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study, and minimum accuracy of the model can help us in selecting a good substitute for 

fine scale finite difference simulation. 

 

2.7 Conclusions 

 

Depending on a whole set of aspects of reservoir study, such as field-life stage, 

appraisal purpose, data and its source different simulation approaches can or cannot be 

used. They may give significantly different results even at the same given conditions. The 

sought-for result here implies finding of the proper simulation approach that provides 

sufficient accuracy, adequate complexity, and representation of the available data with 

respect to simulation objectives and existing constraints. 
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3. EXPERT SYSTEMS 

 

The concept of an expert system, as a mean of complex problem solving that 

requires professional expertise, will be discussed in this section. The evolution of expert 

systems during last several decades resulted in a wide use of them in different areas 

including Petroleum Industry. The most common realizations will be discussed to 

formulate improvement in a decision-making support of simulation approach selection. 

 

3.1 Definition of Expert System and Historical Review 

 

Rapid development of computer technologies has given rise to emergence of a 

computer science’s separate branch that is known as artificial intelligence systems. The 

term artificial intelligence combines a large set of procedures, principles, and algorithms 

that implement intelligent behavior based on conscious conclusions. In some ways, it is 

an attempt to replace the thought process of human by machine language formal logic. In 

most cases, it comes down to the analysis of a certain amount of information, its processing 

in accordance to the controlled rules, and the adoption of a final decision (Russel and 

Norvig, 2010).  

The described above procedure suggests an existence of a very important feature 

that should be an integral part of any artificial intelligent system. This part is called as 

cognitive skills. Realization of human cognitive function became widespread within 

computer programs, which rather reason about problems than compute solution. Such 
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approach stimulated emergence and implementation of artificial intelligence systems in a 

number of applied fields such as medicine, commerce, automation and control, 

manufacturing, navigation, aerospace, meteorology, and many others. Since 1956, the 

development of machine intelligence resulted in origin of the following major classes of 

artificial intelligent systems with respect to the solving tasks and methods used 

(Krishnamoorthy and Rajeev, 1996; Russel and Norvig, 2010): 

- Problem solving and planning – setting goals, selection of the most important, 

and their hierarchical prioritization; 

- Automated reasoning – generation of sensible inferences using accumulated 

information; 

- Natural language processing – generation, analysis, recognition, translation, 

and grammatical and stylistic manipulation with text and speech; 

- Learning – dealing with different types of machine learning to adapt them to 

new conditions; 

- Computer vision – detection, perceiving, visualization, and analysis of objects; 

- Robotics – dealing with robotics control; 

- Neural networks – emulation of human learning and solution search by 

aggregating data classification, reasoning, and calculation; 

- Genetic algorithms – implementation of adaptive algorithms in solution search, 

machine learning, and optimization processes; 
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- Expert systems - imitation of professional expertise in complex decision-

making problems, including data classification and reasoning, by knowledge 

processing in specific area. 

According to shown above classification, artificial neural networks and expert 

systems are more suitable tools for solving problems related to simulation of expert 

reasoning as a human with expertise.  By definition, the expertise is the use of professional 

skill or knowledge in particular field of interest by a person, who has comprehensive and 

authoritative qualification. Thus, neural networks and expert systems are capable to 

determine relation between an input data set and output solution, which is called data 

classification: they can find an answer to the question whether the given data set belongs 

to the area of interest or not. 

Even though these systems historically were elaborated to reach the same goals – 

implement machine intelligent behavior and emulate human cognitive ability, they are 

separated into different classes for several reasons. First, conceptually neural network and 

expert system are based on different organizational structure: 

- neural network represents an array of interconnected elements, neurons, where 

knowledge is realized by elements connections adjusted by weights; 

- expert system is formed by two distinctive modules, in which knowledge and 

solution search rules are separated. 

Second, expert systems have strong advantages comparing to neural networks in dealing 

with certain tasks, where data classification and reasoning is not enough for solution. More 
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precisely, Krishnamoorthy and Rajeev (1996) and Leibowitz (1997) provide two very 

important arguments: 

1. The most significant weakness of neural networks is that they do not provide 

interpretation of why the certain inference they create, as that expert systems do. 

So, neural networks can emulate a human expert behavior limitedly. 

2. Due to their structure, expert systems are more suitable in automation of decision-

making and solution search in engineering problems solving. Namely, while neural 

network may require structural rebuilding and retraining in case of new tasks 

emerging, expert system may need only slight knowledge base and/or inference 

engine correction that is much faster in time and easier in effort. 

Therefore, the necessity of solving issues that require expert judgement in the most 

approximate to the human expert extent, explanation of obtained conclusions, and 

flexibility in reconfiguration has created a separate large class within artificial intelligence 

systems called expert systems.    

Giarratano and Riley (2004) proposed the following definition of an expert system 

as “a computer system that emulates the decision-making ability of a human expert.” In 

other words, the software tool substitutes the presence of an expert in some problem 

solving. It should be noted that expert systems have one major difference from other 

systems of artificial intelligence: they are not intended for solving some of the universal 

problems since they are designed to provide high quality solution of the certain problem 

in a specifically defined area.  
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Historically, the emergence and development of expert systems was associated 

with cognitive science. This is a study of human (expert) thinking process in problem 

solving. Since the late 1950-s, when Newell and Simon demonstrated that the most of 

human decision-making solutions are based on “IF-THEN” type production rules, the next 

several decades significantly contributed in expert systems evolution (Giarratano and 

Riley, 2004). The major stages in expert systems evolution are shown in Figure 3.1.     

Starting with implementation of very simple programming algorithms, expert 

systems step-by-step obtained its personal language, complex logic, system shell, 

knowledge base, and inference and search engines. All these components, widely used in 

modern expert systems, resulted in conversion of initially quite simple computer programs 

to powerful software tools and applications (Giarratano and Riley, 2004). Badiru and  

Cheung (2002) pointed out that nowadays a new trend in expert systems design can be 

observed. Namely, expert systems are not created and used as independent software 

applications, but as constituent of software complex that may include more than one 

system. For instance, there are several commercial packages equipped with scilicet 

database and management, information management, statistical analysis, data analysis, 

and project management expert systems. The corresponding example of the modern expert 

system realization can be easily found on the Internet, which is Google or Yahoo search 

engines.  
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Figure 3.1 – Milestones in the expert systems history (adopted from Noran; Giarratano 

and Riley, 2004) 
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3.2 Classification, Structure, and Design of Expert Systems 

 

Depending on the specific tasks being solved by the expert systems, Hayes-Roth 

and Waterman (1983) proposed the following classification: interpreting, forecasting, 

diagnosing, designing, planning, monitoring, instruction, controlling, debugging, and 

repair systems. Since this classification allow overlapping and combining of specific tasks 

due to their inseparability, it was reworked by Clancey (1985) and is used nowadays – the 

following is the list of tasks where expert systems are effectively used: 

- Classification – determination of an object belonging to particular area of 

interest (clustering) based on defined characteristics; 

- Diagnosis – elicitation of nature and causes of the problem by examination of 

observed data; 

- Monitoring – observation and checking the system progress or quality over a 

period of time to describe behavior of process; 

- Process control – management by a process based on monitoring; 

- Design – configuring an object in accordance to certain exposition; 

- Scheduling and planning – design or modification of a workflow or actions 

depending on estimated conditions; 

- Generation of options – creation of alternative decisions to a given task. 

The presented list is not exhaustive because continuous evolution of expert 

systems engenders brand new tasks to be feasible. Nevertheless, this classification gives a 

clear idea about area of systems application. Considering the solving task of simulation 
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approach selection, which is based on expert reasoning and should involve an explanation 

of made decisions, we can conclude that the two main goals of this project – data 

classification and generation of options – can be realized using expert system. On the next 

step of our search we should define a structure of the system, which will provide the 

optimal configuration to be developed in accordance to the project objectives.  

Being a computer program, the expert system is called a “system”, not just a 

“program”, since it consists of several major components: 

- a knowledge base that stores information required for a task solution; 

- an inference engine; 

- additionally, it may include an explanation module that provides description of 

how the system makes recommendation. 

The knowledge base is the foundation of any expert system, which is compiled 

based on the professional expert knowledge. According to Engelmore and Feigenbaum 

(1993), the knowledge base is the set of factual and heuristic knowledge. The factual 

knowledge is widely shared in different sources, such as textbook, journals, and articles 

and have common implementation in the field of study. In contrast, the heuristic 

knowledge is more specific, individualistic, and based on experimental and practical 

performance of good judgement as well as very similar reasoning it the field. The expert 

cognition here is the combination of theoretical understanding of the certain problem and 

practical skills of its solving, which effectiveness is proven in a result of the practical 

work. Properly selected expert and successful formalization of their knowledge endow the 

expert system unique and valuable knowledge. 
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The inference engine usually represents a set of applied rules, such as match, 

select, execute etc. It is built as a set of algorithms, which provide suggestion about ways 

of posed problem solution based on knowledge base and input data set juxtaposition. 

Structurally, all the diversity of expert systems is divided in two large groups based 

on their knowledge base construction principles: knowledge-based and rule-based 

systems. Although both groups have many common features, they are different.  

The knowledge-based system (Figure 3.2) are used for creation of very powerful 

expert systems (Engelmore and Feigenbaum, 1993). Here, the knowledge base consists of 

set of various complex objects which characteristics and types have specific relationships. 

In other words, every object in the knowledge base is a combination of parameters, 

encoded in a certain manner, that describes a composition of data variables and cases of 

their use with respect to particular problems. It is a virtual representation of an expert 

judgment on the possibility to solve a particular problem with a specific input data set. 

In the rule-based expert system (Figure 3.3), the knowledge base is represented 

by a set of production rules, where a group of simple “IF-THEN” statements represents 

knowledge (Engelmore and Feigenbaum, 1993). In general, the production rule consists 

of a condition (prerequisite) expressed by “IF” and conclusion (action) denoted by 

“THEN” (Giarratano and Riley, 2004).  In the case of several dependent rules, they might 

be organized in the form of a decision-making tree.  

  

 



 

47 
 

 

 

Figure 3.2 – The basic concept of a knowledge-based expert system (reworked from 

Giarratano and Riley, 2004) 

 

 

Figure 3.3 – The basic concept of a rule-based expert system (reworked from Giarratano 

and Riley, 2004) 
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As shown above, the rule-based systems are slightly different from the knowledge-

based ones in structure, but sufficiently different in content of the knowledge base. In 

practice, this distinction affects expert system functionality and, consequently, area of 

applicability with respect to the resolving task. The summary of these distinctions is 

presented on Table 3.1. 

 

Table 3.1: Summary of the key differences between rule-based and knowledge based 

systems (reworked from BizRules, 2006-2007) 

 Can process Can output Best for applications in 

Rule-Based 
System 

Data,  
Rules 

Information,  
Decisions,  
Real-Time Decisions 

Decision-making, 
Compliance 

Knowledge-
Based System 

Data,  
Rules, 
Knowledge 

Information,  
Decisions,  
Real-Time Decisions, 
Expert Advice, 
Recommendations 

Advising,  
Decision-making, 
Solution Selection, 
Recommending, 
Troubleshooting 

 

 

As it mentioned above and can be inferred from the Table 3.1, knowledge-based 

systems have a very significant component comparing to the rule-based systems, what is 

knowledge. This “real” knowledge base seriously extends the expert system’s potential in 

output results obtaining and area of applicability 



 

49 
 

 

The above Figures 3.2 and 3.3 represent the basic concept of interaction between 

a user and an expert system. The user gives some facts as input data to the expert system 

in order to obtain solution for particular task. Using the inference engine, the expert system 

processes the user’s data, collating it with data set in the knowledge base, and making 

logical conclusions. The obtained solution returns to the user as a result of expertise, which 

can be either a solution for a given task or a conclusion about problem solvability and 

recommendation on what to do.  

This example demonstrates one of two possible working modes, so-called 

“consulting regime”, when the user applies to the expert system for problem solving. In 

this particular case, the user can be: 

- non-professional in the area of interest, and he asks the expert system to find 

solution that he cannot get by himself; 

- professional in the problematic area, but he uses the expert system as a part of 

routine work to speed up result finding. 

Another working mode is called “teaching/training regime”, when an expert works 

with the expert system instead of user. In this case, the expert describes problematic area 

with a set of facts and rules locating them in the knowledge base and inference engine. In 

other words, he fills out the expert system with knowledge that further allow solving the 

described problem independently of the expert. This mode is usually implemented during 

initial formation and filling of knowledge base and inference engine or when any 

correction of their content or structure is required. 
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 In modern expert systems (Duggal and Chhabra, 2002; Kaimal et al, 2014), the 

training regime has a tendency to be automated by introduction of a learning engine in the 

system’s interface, as is shown in Figure 3.4. Such extension of the system is usually 

made by the application of machine learning algorithms. This ability is especially valuable 

in changing conditions, when: 

- the range of solving problems has tendency to expand; 

- obtained results require correction of the knowledge base and/or inference 

engine; 

- system adjustment procedures, such as modification, tuning, and training are 

too complex and require simplification. 

In other words, these advantages provide possibility to increase the expert system’s 

level of confidence. 

 Shown in Figure 3.4 is an example that represents the following algorithm of self-

learning regime. Initial data from user set is pre-processed in data interface and is then 

inputted into database and inference engine. Expert system finds solution for a given task 

and brings it to a graphical user interface. Simultaneously, the learning engine compares 

the system’s output with other ones stored in database which have the same conditions 

with respect to input data set and solving problem. If the database response has good 

agreement with the system’s output, then the learning engine perceives this situation as 

normal and does not require any additional action. Otherwise, the knowledge base is 

corrected by introduction of new or correction of existing rules (rule-based system) or 
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objects (knowledge-based system) in the knowledge base via the use of specially designed 

algorithms.    

 

 

Figure 3.4 – Architecture diagram of expert system with learning engine (reprinted from 

Kaimal et al, 2014) 

 

 

Thereby, an initially well-built expert system supplemented by a learning engine 

has the opportunity to educate itself on the problem solving via adding corrections into the 

knowledge base in conformity with obtained results, conclusions, and decisions. 

Overall, an essential part of any expert system design is the development of 

knowledge base and inference engine (Giarratano and Riley, 2004). In general, this 
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process implies multi-criterion data analysis and classification. Complex data structure, 

where parameters are represented not only by their measures, but also their connections, 

requests availability of certain procedures or algorithms to evaluate whether set of 

parameters is passable and satisfies the overall requirements or not. Therefore, it is very 

important to define initially the optimal method of data encoding that further allows the 

suitable solution search.  

Addressing the issue of the data encoding method selection, Giarratano and Riley 

(2004) state that in contrast to some computer programs, which use just numerical 

calculations, the “expert systems are primarily designed for symbolic reasoning”.  Siller 

and Buckley (2005) note that “key to expert systems (and to artificial intelligence, for that 

matter) is the concept of reasoning with symbols.” Many programming (procedural) 

languages, such as C, FORTRAN, and others can represent specific symbols in numerical 

or character strings data or even in complex objects. Nevertheless, for the purposes of 

expert systems design the more appropriate languages for symbolic reasoning 

(manipulation), than procedural languages, are LISP or PROLOG where “symbols can 

represent almost anything” (Siller and Buckley, 2005). In essence, these logic languages 

deal with syntactic structures, where: 

- variables are denoted in string of letters; 

- relations between them are defined by clauses; 

- solution search logic is expressed by specific query over variables and 

relations.   
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Expressing data in the form of syntactic structure, as a natural language, has big 

advantage since it allows to construct logical representation or description of objects. It 

opens an opportunity to distinguish common or unique features for different objects, what 

simplifies their clustering for the purposes of further classification and inferring new facts 

about objects. Additionally, solution search logic is built in finding match of assigned 

criteria within object features.  

For instance, there are several objects that can be described as “red car with four 

wheels is vehicle”, “blue bicycle with two wheels belongs to Mary”, and “yellow truck 

with eighteen wheels is long vehicle”. Relations between variables in these objects can be 

assigned as following: “IF wheels THEN car”, “IF wheels THEN bicycle”, IF wheels 

THEN truck”, and “IF wheels THEN vehicle”. Finding the answer to the question of 

whether bicycle is also vehicle or not, analysis of the given above common object features 

and assigned clauses leads to the next conclusion. Because bicycle has “wheels” as the 

other objects, defined as vehicle, it can be classified as “vehicle”.  

This primitive example demonstrates a very simple case of symbolic reasoning 

used in expert systems. In practice, the objects structure and relations between their 

variables are more complex, what is directly depends on the required expert system 

functionality and the area of solving problems. 

Vast majority of systems that are effectively employed today were built using 

languages of symbolic manipulation. For instance, PROLOG is implemented in all known 

operating systems and platforms, including Unix, Windows, Java and .NET.   
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3.3 The use of Expert Systems in Petroleum Industry 

 

According to Waterman (1986) and Leibowitz (1997), the design and use of expert 

systems in Geology and Petroleum Industry began in late 1970s – early 1980s.  

SRI International developed the very first system, named PROSPECTOR, in 1978. 

This system interprets geologic data in order to evaluate an existence of certain minerals 

in the region of interest. In 1981, Schlumberger-Doll Research Centre in association with 

Fairchild Labs for AI Research and MIT created DIPMETER Advisor. Interpreting 

dipmeter logs, this system shows information about geological structure around the well 

with respect to depth. Two years later, Schlumberger developed another expert system 

called LITHO. By using records of oil-well log data, this system issues description of the 

most plausible lithofacies detected in vertical lithological column. At the conference 

“Applications of Artificial Intelligence” (Denver, 1984), G. Khan and J. McDermott 

presented MUD expert system that was developed in collaboration of Carnegie Mellon 

University and NL Baroid.  The main mission of MUD was to diagnose and remedy 

drilling problems via providing optimal properties of drilling mud.   

Proving ability to solve complex engineering problems quickly and accurately and 

being easy to use, expert systems gained a lot of popularity. Starting 1986, there were 

several dozens of expert systems designed for use in various areas of Petroleum 

Engineering. The use of them allows solving a wide range of tasks, but only in highly 

specialized subject areas. Functionally, existing systems can be assigned to following 

groups:  
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- reservoir characterization (Erdle, Archer, Stiff, et al., 1986; Whittaker and 

Macpherson, 1986; Dharan, Turek, Vogel, 1989; Sanjay, Anuj, Sharma, 1989; 

Mabile, Hamelin, du Chaffaut, et al., 1989; Al-Kaabl, McVay, Lee, 1990; Kjell 

and Baleix, 1992; Surguchev, Zolotukhin, Bratvold, 1992; Garrouch, Malallah, 

AlEnizy, 2006; Nashawi and Malallah, 2009); 

- drilling, completion, and production operations control (Martinez, 1992; 

Martinez, Moreno, Castillo, et al., 1993; d’Almeida, Silva, Ramos, 1997; 

Denney, 1999; Pandey, Osisanya, 2001; Al-yami, Schubert, 2012); 

- drilling and workover operations design (Van Domelen, Ford, Chiu, 1992; 

Heinze, 1993; Kulakofsky, Wu, Onan, et al., 1993; Balch, Weiss, Ruan, et al., 

2003; AlMousa, Ertekin, 2013); 

- selection and optimization of enhanced oil recovery techniques (Guerillot, 

1988; Khan, Pope, Sepehrnoori, 1993; Sheremetov, Cosultchi, Batyrshin, et 

al., 2007); 

- reservoir performance prediction (Srinivasan, Ertekin, 2008; Moridis, Kuzma-

Anderson, Reagan, et al., 2011; AlMousa, Ertekin, 2013; Siripatrachai, Rana, 

Bodipat, and Ertekin, 2014). 

In general, these areas are well studied and provide clear strategy of decision-

making.  

Nowadays, the growth of expert systems quantity is diminishing. Developments in 

science and technology complicate the type of problems and approaches to their solution, 
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what in turn significantly expands domain of required knowledge and experience. That is 

triggering natural constraints of expert systems: 

- Transfer of deep knowledge about subject area to the expert system is not a 

trivial task due to the complexity of experts’ heuristic knowledge 

formalization. 

- Frequent involvement of software developers is required to support expert 

systems in actual condition, especially when problem-solving environment is 

changing. Without developers support systems quickly lose their relevance. 

Nevertheless, despite all of these constraints expert systems have already proven 

its value and irreplaceability in some important applications. 

 

3.4 Conclusions 

 

The expert system is a good means for problem solving that requires expertise. The 

basis of any expert system is a complex of knowledge, which is structured in order to 

facilitate the decision-making process. Simultaneous application of input data analysis and 

expert knowledge and skills in making decisions, conclusions, predictions, and 

recommendations can be realized via knowledge base and inference engine creation.  

Knowledge-based expert systems, comparing to rule-based ones, benefit in 

application development in which the use of composite functionality, including decision-

making, solution search, and recommendations development, is required.  
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Overall, the knowledge-based expert system to be designed as a decision-making 

support in simulation approach selection. The symbolic (linguistic) data encoding and 

processing to be used in the system to make it effective and further designate the proper 

solution search. 
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4. DESIGN OF THE EXPERT SYSTEM FOR SIMULATION APPRO ACH 

SELECTION  

 

This section discusses components of the expert system that have been developed 

and implemented in framework. We also describe the linguistic method of the Pattern 

Recognition Theory as a means that determines data encoding algorithm, knowledge base 

content, and solution search procedures with symbolic reasoning. In addition, we present 

the methodology for a new well placement justification as an extension of the expert 

system functionality.   

 

4.1 Workflow Steps 

 

As we mentioned earlier, the primary objective of the work is to formalize, design, 

and test the reliable methodology and software tool to provide decision-making support in 

simulation approach selection. This task is non-trivial since it requires emulation of a 

human cognitive ability in thorough data analysis and the appropriate simulation method 

selection. The complexity of this topic is caused by the need to design and implement 

algorithms of data processing and encoding, which forms the basis of the expert system’s 

functionality. More precisely, the fulfillment of this task consist of the following stages:  

- knowledge base design, including the alphabet and library creation; 

- inference engine development as a set of data processing and matching 

procedures; 
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- assignment of the expert system functionality. 

The basic concept of a knowledge-based expert system, shown in Figure 3.2, 

represents the conceptual image of the further framework of the system design. 

Additionally, it displays interaction between a user and the system. The user gives some 

facts as input data to the expert system in order to obtain a solution for a certain task. 

Using the inference engine, the expert system processes user’s data collating it with 

another dataset in the knowledge base and making logical conclusions. The obtained 

solution returns to the user as a result of emulated human expertise. 

 

4.2 Symbolic (Linguistic) Data Encoding 

 

In the previous section we concluded that the use of symbolic (linguistic) data 

encoding and processing method makes the expert system effective and further designate 

the proper solution search. The LISP and PROLOG languages could be used for symbolic 

manipulation. Since these languages are too complex and cumbersome for use in this 

work, the alternative approach can be implemented and tested for the knowledge base and 

inference engine design. This opportunity is provided by the linguistic method of the 

Pattern Recognition Theory.  

The linguistic approach is particularly useful dealing with objects which cannot be 

described by only numerical measurements or have complex structure as mixture of 

quantitative, qualitative, and perhaps structural or logical characteristics. This ability to 

encode, combine, and process data of different nature equips the linguistic method with 
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indubitable advantage in solution search comparing to other ones, such as heuristic or 

mathematical (Tou and Gonzalez, 1974; Pearl, 1984; Chaban, 2004; Lepsky and 

Bronevich, 2009; Russel and Norvig, 2010; Martí and Reinelt, 2011). 

The main goal of recognition procedure is the answer to the question whether the 

object, described with specified characteristics, is related to the certain category of 

interest, and if yes, to which one? (Chaban, 2004) In our work, the recognition process is 

a search for conformity between the specific simulation method and the problem to be 

solved with a given set of data (object).  

In a very general case, any information model of an object, phenomena or process 

in the real or abstract world can be considered as a pattern (scenario). A distinctive feature 

of such model in the recognition task is the use of only exact objects characteristics subset 

which provides selection of one or several particular object type groups. A full set of the 

most informative features that fully describes an object is called an alphabet (Lepsky and 

Bronevich, 2009). 

Any recognition algorithm can be expressed as the following abstract function 

(Chaban, 2004): 

R = {A, S, P}             (4.1) 

where in regard to the linguistic method: A – alphabet; the variety of uniquely encoded 

objects characteristics; S – scenarios; the variety of alphabet elements combined 

into possible patterns that uniquely describe object of interest; P – inferences; the 

variety of decision making rules. 
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In accordance to the expression (4.1), the further stages of the methodology and 

expert system design are reduced to the following steps: 

- Alphabet design – selection of key parameters (A) involved into the 

particular reservoir evaluation problems solving; then, encoding them with 

unique symbolic names. 

- Knowledge base (vocabulary) design – a set of scenarios generation (S); 

combining the alphabet elements into the particular sequences that define 

requirements to the data quality and sufficiency in the certain problem 

solving, accuracy of output results, and computational speed with respect 

to every simulation approach. 

- Inference engine design – development of certain rules (P) that generate 

conclusions about which simulation approach should be used as optimal 

with a given input data set and/or provide suggestion on what should be 

additionally done to make other methods applicable.  

Once the alphabet is created, then using its linguistic variables the composition of 

patterns (scenarios) is designed in a form of the parametric sets. As a result, every scenario 

uniquely represents an ability to use the exact simulation approach for the simulation goal 

achievement depending on the given set of field data and possible constraints. All the 

generated scenarios are put into the library that is called the knowledge base. Virtually, all 

these patterns are automatically combined into separate clusters, where each cluster 

represents the simulation approach that eliminates necessity of decisive function use in 

solution search (Lepsky and Bronevich, 2009).  
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Realization of the described above procedures turns the inference engine design 

into a quite simple task. In general, its implementation reduces to analyzing the match 

between patterns in the library with another one generated by the expert system through 

the user data processing. The user’s data here is nothing more than the input data set of 

variables that he/she has, such as rock and fluid properties, production data, simulation 

objectives etc. In the case of full pattern match being obtained or part of the scenario being 

matched with a certain cluster from the vocabulary, decision regarding the simulation 

approach to be used is obvious. Otherwise, the library and/or vocabulary should be revised 

and adjusted by an expert because previously unknown/undescribed scenario has been 

met. That process is called training. 

The principle of comparing with an etalon (scenarios in the knowledge base), as a 

match finding procedure, is used because it provides a tuning flexibility and possibility to 

create an adaptive regulation of decision-making (recognition) process. In addition, it 

allows the creation of an explanatory module that can generate comments on why the 

expert system made the certain decision and different recommendations on the problem 

solving workflow.  

 

4.3 Knowledge Base Design 

 

With regard to our work, the realization of the knowledge base involves several 

stages. The first one is the alphabet design, which includes: 
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- selection of parameters that are required to be used for each of simulation 

approaches; 

- selection of constraints that provide some limitations in use of the certain 

simulation approach; 

- selection of certain simulation goals that can be reached by the certain 

simulation approach; 

- parametrization of selected data via encoding into the linguistic (symbolic) 

variables. 

Depending on the methodology put to the basis of every simulation approach, 

described in section 2 of this work, the following major groups of required parameters 

were selected: simulation goals, reservoir rock properties, reservoir geometrical data, fluid 

properties, saturations and relative permeabilities, fluid types, initial volume of fluids, 

fluid contacts, production data, injection data, and number of production/injection wells. 

Additionally, there are several groups of parameters estimated that can affect the 

applicability and accuracy of the certain simulation method or can be considered as 

constrains: field maturity (life stage), reservoir heterogeneity level, source of rock and 

fluid properties, and set of special constraints that may be considered or ignored by user 

during data processing. All these parameters are coded by assigning them unique linguistic 

names. Thus, the alphabet is created, where 126 elements are combined in 16 groups. The 

example of parameters coding for two groups (fluid properties and specific constraints) is 

shown on Table 4.1. The full alphabet is presented on Table A-1 (APPENDIX A). 
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Table 4.1: Fragment of the alphabet with encoded parameters’ names for two groups 

(fluid properties and specific constraints) 

Fluid properties - FP Constraints - CS 

ODN oil density [lb/cu.ft] CTA 
computational time advantage [G - good, 
P - poor] 

WDN water density [lb/cu.ft] FSE 
field scheduled events [affects 
predictability] 

GDN gas density [lb/cu.ft] FLS 
field life stage - goes from FM (field 
maturity) 

OFR 
oil formation volume factor related to 
pressure [rb/STB] 

ACC 
accuracy [L - limited, F - fair, G - good, 
B - the best] 

WFR 
water formation volume factor related 
to pressure [rb/STB] 

CPH complex physics 

GFR 
gas formation volume factor related 
to pressure [rb/SCF] 

GRA 
gravity effect is exist (ODN>=WDN at 
surface) (less than 10 yields constrain for 
stream-line) 

GSR 
gas solution in oil related to pressure 
[SCF/STB] 

PWC critical value of the water cut 

OCM oil compressibility [1/psi] RDM 
recovery drive mechanism (W - water, G 
- gas cap, S - solution gas drive, E - oil 
expansion drive) 

WCM water compressibility [1/psi] PDE 
production decline is established (Y - yes, 
N - no) 

GCM gas compressibility [1/psi] NGD 
number of grid blocks (more than 100000 
for black oil - advantage in CTA for 
streamline vs FD) 

OVS oil viscosity [cP] 
HTL 

level of heterogeneity by Dykstra-Parson 
[0 … 1] (HTL>0.25 limits use of MBL; 
HTG > 0.5  advantage in use of 
streamline vs FD for black oil) WVS water viscosity [cP] 

GVS gas viscosity [cP]  

GDF gas deviation factor  

 

 

It must be noted that the created alphabet is not exhaustive. In case, when new 

elements have to be added or existing ones to be eliminated for some reason, the alphabet 

content can be revised and corrected. 

In the next stage, scenarios that uniquely describe required set of parameters for 

solving the certain simulation problem with respect to exact simulation approach were 
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generated. Basically, the scenario is a combination of parameters that methodologically 

are required for the particular solution. These parameters include available field data and 

constraints, which we described in section 2 of the thesis. Scenarios design is a very 

important part of the entire work since being a key to success of the knowledge base 

creation it directly determines the expert system level of confidence. Moreover, this 

procedure is exactly the process of theoretical knowledge and practical experience 

integration. In other words, generating each scenario we reproduce the same reasoning as 

a human expert on: 

- What parameters are required to solve particular problem; 

- Whether an amount of available data is sufficient or not; 

- What is the accuracy of solution should be considering source of data, field-

life stage, reservoir complexity, and constraints; 

- Whether the certain simulation approach is applicable or not at the given 

conditions; 

- Is it possible to obtain results using only one method or there several ones 

should be implemented as a multistage solution finding; 

- How fast the sought-for results can be computed using the certain type of 

simulation; 

- Overall, what simulation approach should be selected as the most appropriate 

in the given conditions, and/or what additionally should be done to make other 

methods applicable and improve quality of simulated results.   
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Specifically, for this procedure implementation, scenario generator was created 

with the following functionality. On the worksheet, shown in Figure 4.1, the names of 

alphabet parameters are located in upper part of each column. Depending on the necessity 

to introduce new variables or delete unused ones in the alphabet, the number of columns 

can change. There is no specific requirement for parameters ordering within a row and 

they can be organized in columns randomly. This is a very convenient feature because it 

allows an easy generator modification and flexibility in the scope expansion.  Names of 

simulation task and related simulation approach are put in the first and second columns, 

respectively.  

 

 

Figure 4.1 – Scenario generator worksheet: an example of parameters distribution for 

hydrocarbons in place and drainage area estimation using five major simulation methods 

 

 

Depending on the combination of simulation goal and simulation approach, an 

expert qualifies applicability of the certain parameter and constraints that may affect the 

output result. Thus, the transformation of the knowledge into parametric combination 

occurs. Once the worksheet is filled in, the unique combinations of data from rows and 



 

67 
 

 

columns are automatically integrated as scenarios using Visual Basic program code. 

Further, these patterns are put together into the library (etalon) that represents the 

knowledge base. An example of the generated scenario for the oil in place estimation using 

correlation (decline curve) method is shown in Figure 4.2.    

 

CDC DHP.THC.OST.RCM.RPI.OIL.OFR.OCM.PROR.PWF.PTM.PDEO.PWN .ACCF 

Figure 4.2 – An example of generated scenario  

 

 

In Figure 4.2, the following data is coded as scenario: simulation method (CDC – 

correlation, decline curve), simulation task (DHP – hydrocarbon in place estimation), 

required parameters as reservoir thickness (THC), oil saturation (OST), reservoir rock 

compressibility (RCM), reservoir initial pressure (RPI), fluid type (OIL), fluid formation 

volume factor (OFR), fluid compressibility (OCM), fluid production rate (PROR), well-

bore flowing pressure (PWF), production time (PTM), number of production wells 

(PWN), an indicator of the method applicability (PDEO – oil production decline is 

established), predicted accuracy of method (ACCF – is fair). 

 

4.4 Data Pre-processing and Scenario Generation Procedures 

 

In order to improve the sought-for solution search, in this work we decided to 

additionally introduce the input data pre-processing procedures in the system scenario 
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generation operation. The main goal here is to evaluate not only the existence of the certain 

parameter within user’s input data, but also to assess some of them qualitatively and 

quantitatively, what is data quality control process. This approach significantly improves 

the input data analysis since it yields reasonable understanding of why one or another 

parameter, even if it exists within input data, was not included into system generated 

scenario, and why additional constraints were introduced in it. In other words, we 

equipped the Data Pre-processing module with specific procedures that qualify 

applicability of each parameter in the input data set and its ability to affect accuracy of 

output results.  

Although the quantity of existing data control procedures and number of 

constraints and limitations for each simulation method are large, for the purposes of our 

work we selected only several of them to test. Following list of some data pre-processing 

tasks was formulated: 

1. Evaluation of reservoir heterogeneity level by Dykstra-Parson coefficient. 

High heterogeneity restricts the use of material balance simulation. In 

combination with large number of grid-blocks it significantly reduces the 

computational speed of finite difference simulation. 

2. Determination of production data availability and applicability. When required 

fluid production rate data does not exist, but can be obtained via certain data 

manipulation, the search for production data may be considered successful. For 

example, if user does have oil and liquid production rates, but does not have 

required water production rate or water cut, this information can be calculated 
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using available rates, and vice versa. For the correlation (decline curve) method 

an applicability of production data is critical. Thus, the presence of established 

decline for each of wells and stabilized production regime are also evaluated. 

3. Appraisal of “complex physics”. The higher oil density with respect to water, 

compositional fluid representation, relatively high reservoir rock 

compressibility – all these criteria significantly restrict the use of streamline 

simulation, since it becomes less accurate and computationally slower 

comparing to the finite difference simulation.  

4. Taking a field-life stage in consideration. In practice, data obtained during 

early stages is usually characterized with a higher level of uncertainty in 

comparison to the later ones, which may decrease an accuracy of output results. 

At the same time, late time production data, used by material balance 

technique, may give inadequate results in study of fluid reinjection at the late 

reservoir life stage when fluid production involves water extraction from the 

aquifer (Satter, Iqbal, and Buchwalter, 2008).    

This list of the input data pre-processing procedures is not limited and can be 

further extended to improve quality of the expert system outputs. In fact, the necessity of 

new procedures introduction is dictated by evolution of particular problem solving 

techniques and methods, axillary software tools, and technologies. This progress 

determines emergence of new or changes in existing assumptions, constraints, and 

limitations that should be taken in consideration. 



 

70 
 

 

In order to realize the mentioned above principle of comparison with etalon, it is 

required to transform the input data set into the certain form comparable with knowledge 

base scenarios. Following the same approach logic presented in the section 4.3 and 

executing the data pre-processing procedures, the expert system generates new scenario 

from the input data. Figure 4.3 shows the workflow of this process.  

 

 

Figure 4.3 – The workflow diagram of the input data pre-processing and scenario 

generation: cycle for each parameter in the input data set 

 

 

At the beginning, the user selects the simulation task to be solved and may 

additionally assign required accuracy and computational speed as “user defined 

constraints”. Then, the special algorithm takes corresponding alphabet elements and puts 
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them into certain sequence, named system-generated scenario. During next steps, where 

their number is equal to the quantity of parameters in the input data set, the data pre-

processing procedure evaluates each input parameter and qualifies its applicability. In the 

case of successful verification, the corresponding alphabet element is set into the 

“parametric set” section of the system-generated scenario. If the evaluating parameter 

value or quality generates additional constraint, then the certain alphabet element is added 

or corrected in the “constraints” section. If the input parameter fails verification, it is 

considered as inapplicable and rejected from consideration. 

Overall, the system-generated scenario is the result of input data set analysis and 

processing. Each input parameter is evaluated with respect to its essence, applicability, 

and ability to generate additional constraints. Depending on the results, the parameter is 

either rejected or put into generating scenario with the specially assigned name. Once 

scenario is generated and not empty, the inference engine begins work. 

 

4.5 Inference Engine Development 

 

According to the existing methodology of the expert systems design and linguistic 

based pattern recognition, the inference engine can be realized as a procedure of match 

finding between the system generated scenario, based on the user’s input data, and other 

scenarios from the library.  
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Once the scenario is generated based on the input data, it is addressed to the 

inference engine to evaluate the match with other scenarios within a library. The main 

goal here is to find answer to the questions: 

- What simulation approach is recommended at the given conditions and will 

generate an appropriate expected result?    

- Otherwise, what additional data is required for the certain task solving? 

 

 

Figure 4.4 – The workflow diagram of the solution search process 
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As it is shown in Figure 4.4, the solution finding process is quite simple in case 

linguistic method is used. An existence of thoroughly prepared knowledge base and 

deliberately generated scenario reduces the inference engine to the set of ordinary 

procedures, such as “match”, “if-then”, and sorting.  

Based on the assigned simulation goal, the inference engine extracts all related 

scenarios from the library. Then, the generated scenario is compared element-by-element 

with the other ones within excerpt. In general, the sought-for solution is based on: number 

of matched elements, critical (expert system determined) and user-defined constraints. 

 

 

Figure 4.5 – Representation of match-finding process 

 

 



 

74 
 

 

Figure 4.5 represents the element-by-element match-finding process. Match is 

“exact” when number of unmatched elements is zero and all constraints are satisfied. The 

expert system provides recommendation to use this certain simulation approach as the 

most appropriate. When match is “non-exact”, the expert system counts the number of 

unmatched elements (marked by red color in Figure 4.4) and provides suggestion about 

what should be additionally done to solve assigned problem. For instance, what input 

parameters are additionally required to make simulation approaches applicable. 

After the match-finding process is over, the excerpt is filtered with respect to the 

fluid type and critical constraints. Namely, the quantity of possible outcomes is reduced 

in selection by eliminating the unreasonable ones. The excerpt is then rearranged with 

respect to the number of unmatched elements in ascending order.  

Finally, the expert system displays results of the data analysis and processing. In 

the case, when only one simulation approach has zero number of unmatched elements, 

solution is unique and recommended to the user. Furthermore, if there is more than one 

simulation method that does not contain unmatched positions, then either all of them can 

be recommended for user to choose or some of them can be eliminated implementing 

additional user-defined constraints, such as combination of accuracy and computational 

speed. Otherwise, the list of feasible simulation methods will be displayed to the user with 

recommendation about what additionally required parameters should be obtained for each 

method.  
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4.6 Well Placement Justification 

 

As an extension of the expert system functionality, the well placement justification 

technique, using decline curve analysis, was implemented in order to enable a preliminary 

assessment of the need for new wells placement within limitation of initially available 

data. Generally, this approach should give answers to the questions: 

- Are additional wells required? 

- If yes, then should they be producers and/or injectors?   

- If injectors, where they should be placed? 

This method provides an initial guess as to the necessity and number of 

production/injection wells and their placement zones. The exact locations should be 

further optimized using specific well placement techniques that are not in the scope of this 

work. 

The main concept of the method is based on evaluation of internal reservoir energy 

that support hydrocarbon production. Direct energy quantification and its sufficiency 

assessment are very challenging tasks that by definition go out of the scope of traditional 

expert systems. In order to simplify this problem solution and incorporate it within our 

expert system, we have implemented the method of indirect reservoir energy appraisal 

using production data and specific criteria. Namely, using a production data analysis 

technique it is possible to assess whether the desired amount of hydrocarbon can be 

produced within assigned period of time or not. If sought-for answer is yes, then the 

conclusion is that reservoir energy is sufficient to support production. Otherwise, it is 
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necessary to introduce new wells.  Presented below is the methodology description in case 

of oil production. 

The following input data is used for the method implementation: 

- Oil production rate qoil and water production rate qwater (if water is produced) 

per each production well; 

- Reservoir geometry, initial oil saturation Soi , rock properties, and oil formation 

volume factor Bo to calculate the value of total reservoir stock-tank oil in place 

STOIPt. Otherwise, user is asked about the value of total STOIPt; 

- Areal well zonation, initial oil saturation Soi, rock properties, and formation 

volume factor Bo to calculate the value of initial stock-tank oil in place STOIPi 

for each well. Otherwise, user is asked about the value of initial STOIPi for 

each well. In addition, well location within each zone is needed (see Figure 

4.6); 

- Value of the minimum economically acceptable production rate qe (user-

defined variable); 

- The critical value of water cut WC (user-defined variable); 

- The value of remaining recovery factor RFL (user-defined variable) within time 

interval [to, twc] < td. Parameter td here is production time, upon which 

maximum amount of oil should be produced according to the field 

development plan (user-defined variable). 
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Figure 4.6 – Areal well zonation and wells locations (for case with producers only) 

 

 

Figure 4.6 shows distribution of production wells, numbered and marked as black 

dots, within areal extent of reservoir. This is a plain view representation of the Brugge 

simulation model we used for the expert system validation, which described in details in 

the next section of the work. Red lines here display borders that separate areas related to 

the certain wells. 

In accordance to the methodology, the following steps are involved into data 

calculation and analysis: 

1. Water flood justification for the whole reservoir. On this step, the input data 

pre-processing procedure determines whether production decline regime is 

established or not. If it is, then using wells (preferably) or field production rates 

system calculates the amount of cumulatively produced oil upon the beginning 

of forecast Qo and oil to be produced Qf, as it shown in Figure 4.7:  
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Figure 4.7 – Estimation of EUR using decline curve method (Qo – cumulatively produced 

oil upon the beginning of forecast, Qf  – forecasted amount of oil to be produced)   

 

 

Then, the values of oil EUR for each well are computed with respect to the qe 

according to the following equation (for exponential decline): 

a
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where: qf – production rate at the beginning of forecast [STB/day]; a – exponential decline 

rate; i – number of wells. 

In case of hyperbolic or harmonic production decline regime, the second term in 

the right-hand side of equation (4.1) is replaced with the appropriate one.  

Further summation of EUR values and comparing them with the magnitude of 

STOIPt yields the estimation of whole reservoir recovery factor RFF:  
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If RFF < 30 % (average recovery factor with water flooding, user-defined value), 

then water flood is required. In other words, this is a confirmation of fact that internal 

energy is not sufficient to support the desired level of production.  

2. In this step, it is necessary to determine whether each well is flowing optimally- 

normal or improvement is required. For those wells where production decline 

regime is established, system calculates the following parameters: 

- Time to, when oil production rate will reach qe. Equation (4.3) is used for the 

exponential decline regime. In case of hyperbolic or harmonic decline, the 

denominator is replaced with the appropriate one: 
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- Generates the water cut profile with respect to time. This calculation is 

implemented if water production data is available in accordance to the 

equation:   
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Then, system finds the time twc at which water cut reaches the assigned critical 

value of WC. 

- Value of EURi using equation (4.1) and then value of the well recovery factor 

RFWi as: 
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Case A. If RFWi > 30% (user defined value), then drainage improvement is most 

likely not required. Namely, this situation means that the particular well production is 

sufficiently supported by the reservoir energy, and the expected oil recovery level exceeds 

assigned threshold value when the water flood should be implemented. Recommendation: 

do nothing or an additional production well may be introduced into the related reservoir 

zone by user choice as a result of further investigation. 

If RFWi < 30% (user defined value), then system determines the following: 

{ }wcod tttt ,,min=  - evaluation criteria. 

Case B. If t = td, as presented in Figure 4.8, oil reserves are too large for this one 

well to be produced. In other words, the desired amount of oil will not be produced by the 

time td, since oil production rate is still high and does not reach minimum level qe prior to 

the end of production time td. Very significant amount of oil may remain unproduced. 

Recommendation: an additional producer is required in this particular area. 

Case C. If t  =  twc, as shown in Figure 4.9, the well reaches the critical value of 

water cut WC earlier than assigned end of production time td. In such particular situation, 

the oil production is no longer economically reasonable. Recommendation: do nothing or 

consider to transform this well to an injector. 
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Figure 4.8 – Cross-plot of oil production rate and water cut versus time for Case B 

 

 

 

Figure 4.9 – Cross-plot of oil production rate and water cut versus time for Case C 
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If t = to, then there are two additional options are possible: 

- Case D. If td < twc, as depicted in Figure 4.10, production is poorly 

supported by the reservoir energy. Namely, oil production decline reaches 

minimum level qe prior to the end of production time td, and certain amount 

of economically profitable oil may remain unproduced. Moreover, the 

water production should not affect the oil production because the 

achievement of critical water cut level WC, at the given conditions, is 

supposed to be the latest in time.   Recommendation: an additional injector 

is required for this particular area since the reservoir energy is not 

sufficient. 

 

 

Figure 4.10 – Cross-plot of oil production rate and water cut versus time for Case D 
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- Case E. If td > twc, as presented in Figure 4.11, that is doubtful case. At first 

look, lack of reservoir energy to support production is obvious, and 

analogically to Case D an additional injection well is required. At the same 

time, there is a high risk exist that the water cut may reach critical value of WC 

very soon. In such conditions, an implementation of water flood might be not 

beneficial. Hence, an additional calculation of leftover recovery factor RFL is 

needed using equation (4.6) for exponential decline. In case of hyperbolic or 

harmonic decline, the denominator is replaced with the appropriate one: 
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where: qto – value of production oil rate at time to [STB/day]; qtwc – value of production 

oil rate at time twc [STB/day]. 

 

 

Figure 4.11 – Cross-plot of oil production rate and water cut versus time for Case E 
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If calculated value of RFL is larger than it specified by user, then an additional 

injector is required since producible amount of oil is profitable; 

If RFL is less than it specified by user - highly detailed economic analysis is 

required for decision making (or consider this well as injector). 

3. Depending on the obtained results, all well areal zones can be sorted as: 

- Injector requiring; 

- Producer requiring. 

As mentioned above, the exact positions of new wells are the subject for discussion 

and further study that is out of our work scope. But general criterion, as initial guess for 

well position optimization, can be described as the following: new injection well should 

be located between producers that require injection and/or on the flank of reservoir. 

 

4.7 Expert System Functionality 

 

Conceptually, the designed linguistic method based pattern recognition expert 

system consist of two major blocks with following functionality, as shown in Figure 4.12: 

1. Data Processing Block performs the input data analysis, data processing, and 

simulation approach selection. The input data set here is a collection of the reservoir 

parameters, including rock and fluid properties, production data, and other information 

available to a user and is to be used for solving a particular problem.  Passing through the 

Data Pre-processing and Scenario Generation modules, the initial input data set is 

analyzed and certain scenario is generated. Then, Inference Engine compares the obtained 
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result with other ones from the Knowledge Base. If a solution is found, corresponding 

decision support, such as recommendation and suggestion, is proposed to a user as the 

expert system output. Otherwise, the system concludes that there is an undescribed case 

and the Knowledge Base should be revised and supplemented (extended) using scenario 

generation tool described in the section 4.3 of this work.  

2. Analytical Block provides possibility of the simulated results quality 

assessment. Depending on the simulation goal, simulated data might be evaluated 

quantitatively or/and qualitatively. For example, quantitative evaluation could be made by 

comparing simulated data with some etalon solution available for comparing: physically 

measured as pressure or flow rate, obtained by finite difference (volume) simulator or 

from another trustful source. As a result, the magnitude of data deviation, its accuracy, 

and model predictability are assessed and could be used for error analysis. The qualitative 

evaluation is proposed to be provided by user and contain such evaluation criteria as: 

uncertainty, bias, CPU timing, computational costs, overall model applicability, quality of 

initial data source etc. If simulated results do satisfy entire quality requirements, then it is 

considered that no correction is needed. Otherwise, an additional error analysis is provided 

and recommendations about how to improve the simulated results are designed in 

dependence of the estimated source of error: incorrect simulation approach selection, 

uncalibrated simulation model, and/or doubtful input data.  

Since realization of the Analytical Block implies the design of self-teaching option, 

this task is not included into the current work and taken out to the further system 

development.  



 

86 
 

 

 

Figure 4.12 – The expert system functionality, conceptual diagram 
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4.8 Conclusions 

 

The use of linguistic method of the Pattern Recognition Theory allowed creation 

of the alphabet as a set of 126 selected key parameters combined in 16 major groups. 

Initially created in MS Excel, the alphabet was transferred to MatLab database. It is used 

by the Data Pre-processing, Inference Engine, and Decision Support modules of the expert 

system.  

The set of 522 scenarios, describing requirements for solving of 16 reservoir 

evaluation problems with respect to 5 simulation methods, was created and represents the 

Knowledge Base of the expert system. It was constructed in MS Excel using the alphabet 

elements and then transferred to MatLab database, where it is accessed by the Inference 

Engine for the suitable simulation method selection. 

Any corrections of the alphabet or scenarios does not change the methodology. 

The Data Pre-processing module was designed for execution of the input data 

quality control, constraints handling, and construction of the system-generated scenario.  

The Decision Support module was introduced in the expert system to realize 

explanatory function. Depending on the Inference Engine output, it generates results of 

expertise as recommendation and suggestions.  
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5. EXPERT SYSTEM VALIDATION AND FIELD APPLICATION 

 

This section presents the expert system validation and field application workflow. 

It was performed in order to examine correctness of ideas and methodology in the basis of 

the expert system and its capability to provide reservoir data expertise in simulation 

approach selection. Two data sets, synthetic Brugge model and offshore petroleum 

reservoir model, were processed and evaluated by the expert system for several test 

problems. Obtained results will be discussed in this section.  

 

5.1 Brugge Simulation Model 

 

For the purposes of the expert system validation, we have used the complete 

synthetic Brugge simulation model by TNO company (Peters et al., 2009). This model 

consists of 60 000 grid block with detailed set of rock and fluid properties. Representing 

initial reservoir development with five equally spaced producers (Figure 5.1), Brugge 

model was run to obtain the test production dataset.  

Initial 4 years of simulated data was used to introduce actual field production and 

majority of the expert system input to solve multiple tasks such as estimation of: 

- recoverable field resources (EUR); 

- stock-tank oil initially in place (STOIIP); 

- drainage area; 

- recovery factor; 



 

89 
 

 

- investigation of water-flood feasibility.  

Finite difference model simulation results are used as reference for another 

methods and to validate appropriateness of solution suggested by the expert system.  

 

 

Figure 5.1 –Brugge simulation model with five equally spaced producers. Initial oil 

saturation is shown in color scale (adopted form Peters et al., 2009) 

 

 

For each task, the control results were obtained using decline curve analysis 

technique, material balance simulation (MBAL software by Petroleum Experts), and finite 

difference simulation (Eclipse 100 software by Schlumberger). List of the used input 

parameters and estimated results for each method are shown in Figures  5.2 – 5.4. These 

control results, derived via mentioned methods, were assessed in accuracy and 

computational speed as evaluation criteria. Namely, we discovered capability of each 

simulation approach to solve particular tasks with regard to the output exactness and time 
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expenses. This information is very important, since it is used in the expert system 

predictability validation.   

 

 

Figure 5.2 – Input parameters and calculated data using decline curve analysis (Brugge 

simulation model) 

 

 

Figure 5.2 represents the use of the decline curve analysis for the test problems 

solving. All required results were calculated with respect to each of five producing wells 

and then combined to represent full field data. Since this method does not allow direct 

assessment of water flood justification, we made required conclusion by comparison of 

calculated recovery factor value with its average values in case of primary oil recovery 

without water-flood (Muggeridge, Cockin et al., 2014).  
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Figure 5.3 – Input parameters and calculated data using material balance approach 

(MBAL software, Brugge simulation model)   

 

 

Application of the material balance method in assigned problems solving is shown 

in Figure 5.3. The single tank model with an aquifer and five production wells was created 

and used for simulation purposes. Additionally, the aquifer size was calibrated to match 

previously generated production data. Analogically to the described above decline curve 

analysis results, the water injection justification has been made indirectly. We have made 

the same logical conclusion because the calculated value of recovery factor is lower than 

it could be when the water-flood is implemented. 
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Figure 5.4 – Input parameters and calculated data using finite difference simulation 

(Eclipse 100 software, Brugge simulation model)   

 

 

Figure 5.4 depicts details of the finite difference simulation method 

implementation. As a result of simulation, the required solution for each test problem was 

calculated and further used as reference data. In order to investigate the water injection 

justification, we supplemented initial model with an additional water injection well and 

executed one more simulation run. Consequently, we have received extra confirmation 

that introduction of water injection can improve the oil production.   
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Table 5.1: Summary of results calculated by different simulation methods using Brugge 

simulation model 

Engineering Task Units 
Decline Curve 

Analysis 
Material Balance 

Finite Difference 
Simulation 

(REFERENCE) 

Estimation of 
recoverable field 
resources (EUR)  

MMSTB 46.04 50.8 47.4 

Estimation of recovery 
factor 

% 6.1 6.7 6.31 

Estimation of STOIIP MMSTB 797 758 751 

Estimation of drainage 
area 

Acres 3,558 N/A 4,768 

Investigation of water 
flood feasibility 

--- 
Indirect, by analogy 

(water flood is 
required) 

Indirect, by analogy 
(water flood is 

required) 

19.4 % recovery 
factor (water flood 

is required) 

 

 

Summary of the calculated results for each of the selected test problems is 

presented on Table 5.1. Comparison of obtained numbers and conclusions additionally 

supports our initial statement that the most appropriate selection of simulation approach 

to be used for particular problem solving is non-trivial. As it shown on the Table 5.1 and 

discussed in the section 2, different methods can generate variety of output results for each 

task although the same input data is used. Emergence of such situations is defined by not 

only assumptions and limitations in the basis of each method, but also by the quality and 

sufficiency of input data. Thus, certain cautions should be taken into account when 

accuracy of simulated results is critical. Suitability of Decline Curve Analysis and 
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Material Balance method in terms of accuracy of calculated results is highlighted in colors, 

considering Brugge model correction explained below. Comparing to the reference data, 

green color marks the recommended method to be used, yellow marked approach might 

be used at the discretion of a user, and red color suggests to avoid this method. 

Time expenses for each test problem solution are almost the same with respect to 

the particular simulation approach, since previously generated reservoir production data 

and full simulation model with relatively small number of grid blocks were used.  

In order to improve quality of the expert system validation process, we have 

complicated the input data set. Namely, end point of the residual oil saturation and several 

nearby ones were eliminated from the initial Brugge simulation model. Therefore, we have 

artificially reduced applicability of the finite difference simulation in the test problems 

solving, while decline curve analysis and material balance methods still can be used. In 

other words, we designed experiment that allows to conduct study and evaluate quality of 

the expert system’s modules performance. Namely, we tested an ability of the procedures 

and algorithms in the basis of the data pre-processing, scenario generation, knowledge 

base, and inference engine to deal with the quality and sufficiency of input data and 

generate correct conclusions.    

The corrected, as described above, Brugge simulation model and generated 

production data was processed by the expert system. For the testing purposes, we 

transferred simulation model and production data variables and their values to MatLab 

databases as the input data set for the expert system. These input files contain detailed 

information about: 
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- reservoir grid geometry; 

- detailed rock properties – spatial porosity and permeabilities distribution, 

compressibility; 

- detailed reservoir fluids properties – densities, compressibilities, formation 

volume factors, viscosities, relative permeabilities with respect to saturations 

(except deleted oil residual saturation), initial saturations, gas oil ratio and 

deviation factor; 

- reservoir fluid types – oil and water; 

- fluid contacts – water-oil contact depth; 

- pressures – initial, capillary with respect to water saturation; 

- well data – number and locations of production wells; 

- production data – fluids production rates, wellbore flowing pressures, 

production time. 

 To distinguish variables, the same Eclipse keywords were used as they appear in 

ASCII files of Brugge simulation model. 

For each task, the system has generated expert recommendations. Examples of 

solution search workflow and outputs are shown in Figures 5.5 – 5.9 and on Table 5.2. 

Validity of these recommendation was tested through comparison with previously 

calculated ones (Table 5.1) by decline curve analysis, material balance simulation, and 

finite difference simulation.  
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Figure 5.5 – Expert system workflow for estimation of recoverable field resources 

(corrected Brugge simulation model)     
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Figure 5.5 represents an example of the expert system reasoning and solution 

search structure, where from top to bottom: 

- The upper box shows main input for the system as selection of certain 

simulation goal and description of the input data set; 

- The second from above box displays results of the input data pre-processing as 

the system-generated scenario; 

- The third box represents selected simulation approaches ranged in applicability 

as the “Inference Engine output” results. Yellow boxes highlight simulation 

methods, blue ones mark the name of solving problem, and green rectangles 

shows predicted accuracy of calculated results; 

- The lower box demonstrates recommendation and suggestion on applicability 

of the selected simulation approaches with some explanations and predictions.  

At the beginning, user defines the particular simulation problem to be solved and 

desired level of accuracy and computational time (user-defined constraints). In this 

example, the simulation task is encoded as “RRS” and put into the beginning of parametric 

set of the line that represents the system-generated scenario. Here and further, the meaning 

of encoded parameters can be found on the Table A-1 (APPENDIX A).  

Then, the input data set is processed by the Data Pre-processing module in 

accordance to the methodology described in the section 4.4 of this work. Once system-

generating scenario created and is not empty, the inference engine evaluates its match with 

other scenarios, which related to the same simulation goal, within the knowledge base. In 

Figure 5.5, the matched elements in system-generated scenario are marked in blue color. 
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These elements are common for all three scenarios that the Inference Engine selected, 

ranged, and put in rows as the “Inference Engine output”. If element (marked in red color), 

required for implementation in the particular scenario, does not exist in the system-

generated scenario or is considered as system-determined constraint, then the system 

generates explanation and suggestion for a user. For instance, in this particular case the 

expert system selected three applicable scenarios, where: 

- The first one, related to decline curve analysis (CDC), does not contain 

unmatched elements in the parametric set and applicability of this approach 

has been verified because required production data is characterized by 

established decline regime (PDEO). Predicted accuracy of calculation is 

supposed to be fair (ACCF). 

- Next one, associated with material balance (MBL), contains only one red-

colored unmatched element (HMG) that is homogeneity. Because calculated 

value of Dykstra-Parson’s coefficient for the given model is equal to 0.35, the 

Data Pre-processing module considered this situation as system-determined 

constraint for the material balance method applicability. Hence, in case of that 

approach implementation the accuracy of the calculated result is expected to 

be low (ACCL).     

- The last one, linked with finite difference simulation (FDV), also contains only 

one unmatched element (OSR) which is residual oil saturation to water. Since 

the initial Brugge simulation model was corrected as it mentioned above, the 

Data Pre-processing module has not detected this parameter within the input 
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data set. Thus, the expert system considered that case as system-determined 

constraint for application of the finite difference simulation, since simulation 

model is incomplete and additional time is required to obtain required data. 

Expected accuracy of simulated results is predicted as the best (ACCB).   

Finally, the expert system has generated output for a user as “Expert System 

recommendation” and “Expert System suggestions”.  The system recommends to use the 

decline curve analysis as the most appropriate method for the recoverable reserves 

calculation because all requirements and constraints are satisfied, predicted accuracy is 

fair, and computation is fast. It additionally suggests that the material balance method can 

also be used at the discretion of a user. The input data set is sufficient for that, but estimated 

level of heterogeneity can negatively affect the accuracy of solution. Moreover, the expert 

system has verified applicability of the finite difference simulation and what information 

should be additionally obtained for it execution.  Besides, the streamline simulation 

method was rejected by the expert system from consideration due to small simulation 

model size, what does not provide any advantage comparing to the finite difference 

simulation.  
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Figure 5.6 – Expert system workflow for estimation of recovery factor (corrected Brugge 

simulation model)     

 

 

Analogically to the previous one, Figure 5.6 represents an example of the expert 

system reasoning and solution search structure. As a result of the input data set pre-

processing, the system has generated scenario and found matching scenarios in the 

knowledge base, which correspond to the decline curve analysis (CDC), material balance 

method (MBL), and finite difference simulation (FDV). Predicted accuracy of recovery 

factor estimation for each of these approaches is supposed to be fair (ACCF), low (ACCL), 

and as the best (ACCB), respectively. Finally, the expert system recommends to use the 

decline curve analysis as the most suitable and suggests implementation of other two 

approaches considering particular constraints, such as heterogeneity and lack of required 

data.  
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Figure 5.7 – Expert system workflow for estimation of stock-tank oil initially in place 

(corrected Brugge simulation model)     

 

 

For the task of STOIIP estimation, required accuracy of simulated result was 

assigned as the highest; it is user-defined constraint. In such condition, the entire workflow 

of the expert system reasoning and solution search, shown in Figure 5.7, differs from 

previous cases. Although the system found scenario with zero unmatched elements, which 

corresponds to the decline curve analysis, this scenario is not recommended as the optimal. 

Because the assigned accuracy requirement is considered by the expert system as a critical 

constraint, the “ES output” excerpt was additionally rearranged in descending order with 

respect to predicted accuracy. Therefore, the expert system generates recommendation to 

obtain missing data and use the finite difference simulation. As alternative, the system 
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suggests two more approaches with lower predicted accuracy of simulated result at the 

discretion of a user.   

 

  

Figure 5.8 – Expert system workflow for estimation of drainage area (corrected Brugge 

simulation model)     

 

 

Figure 5.8 represents an example of the expert system workflow for estimation of 

drainage area. As a result of the input data processing and solution search, there only two 

approaches were found by the system to be applicable. Material balance approach has been 

rejected from consideration as unsuitable due to limitations in the basis of this method. 

Because the accuracy limit has been set, the expert system recommends to use the finite 

difference simulation as optimal although lack of required data was detected. In addition, 
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the system suggests implementation of the decline curve analysis, taking into account that 

predicted accuracy is low.  

 

 

Figure 5.9 – Expert system workflow for investigation of water-flood feasibility 

(corrected Brugge simulation model)     

 

 

Investigation of water-flood feasibility is closely related to the recovery factor 

estimation and requires the same data set. The expert system workflow and output are 

shown in Figure 5.9. As inference, the expert system recommendation is to use the decline 

curve analysis as appropriate. In addition, the system suggestion is that other two 

approaches, material balance and finite difference simulation, could be used considering 

detected constraints.   
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Executing methodology described in the section 4.6, we have tested an ability of 

the expert system to assess necessity of new wells and their types (well placement 

justification problem). The described method was implemented in the expert system as a 

separate procedure. For the testing purposes, we made the following assumptions for the 

values of user-defined variables: 

- critical value of water cut WC  = 95%; 

- average recovery factor with water flooding = 30 %; 

- production time, upon which maximum amount of oil should be produced td = 

30 years; 

- value of the minimum economically acceptable production rate qe = 50 

STB/day; 

- total reservoir stock-tank oil in place STOIPt = 751 MMSTB; 

- initial stock-tank oil in place for each well STOIPi = 150.2 MMSTB. 

Initial 4 years of simulated production data were used to evaluate the necessity of 

production and injection wells. The wells spatial distribution within reservoir is the same 

as it schematically shown in Figure 4.6.  

As a result of the production data analysis, the data pre-processing module detected 

that decline regime is established for each well; hence, the decline curve analysis can be 

used in recovery factor calculation. Further, the system calculated amount of oil that can 

be produced (EUR) by the time to when the value of production rate reaches qe. Then, the 

corresponding values of to for each well have been also estimated. Summary of the test 

results is presented on Table 5.2.   
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Table 5.2: Evaluation of additionally required wells with respect to existing producers 

Parameter For field For well 1 For well 2 For well 3 For well 4  For well 5 

STOIP, MMSTB 751.0 150.2 150.2 150.2 150.2 150.2 

EUR, MMSTB 45.85 11.53 8.88 6.79 2.65 16.00 

RFF , % 7.52<30 % --- --- --- --- --- 

RFW , % --- 7.68<30 % 5.91<30 % 4.52<30 % 1.76<30 % 10.65<30 % 

to , years --- 12.5 12.0 8.5 9.0 10.0 

t = min{t d, to, twc} --- to to to to to 

Expert System 
Conclusion 

Reservoir 
energy is 
not enough 
to support 
production 

Reservoir 
energy is 
not enough 
to support 
production 

Reservoir 
energy is 
not enough 
to support 
production 

Reservoir 
energy is 
not enough 
to support 
production 

Reservoir 
energy is 
not enough 
to support 
production 

Reservoir 
energy is 
not enough 
to support 
production 

Expert System 
Recommendation  

New wells 
are required 

Injector is 
required 

Injector is 
required 

Injector is 
required 

Injector is 
required 

Injector is 
required 

 

 

The expert system calculated values of whole reservoir recovery factor RFF and 

recovery factor for each well RFW, shown on Table 5.2, are much lower than they could 

be in case of water flooding. In addition, estimated values of time to, when oil production 

rate reaches qe, also smaller then assigned production time td. Considering these two facts, 

the expert system makes conclusion that reservoir internal energy is not enough to support 

the desired level of production. Namely, all the wells suffer of low reservoir energy, and 

significant amount of oil remains unproduced until the established time td. Hence, the 
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expert system recommends introducing of new injection wells to improve oil extraction. 

Since areal wells zonation is not available for more precise determination of the new wells 

locations, the system generated an ordinary recommendation to put injectors somewhere 

between producers and on the flank of reservoir. This recommendation is very general and 

can be used as initial guess for the further implementation of well placement optimization 

techniques.   

Summarizing the expert system validation with the data set of Brugge simulation 

model, the comparison of previously obtained control results with the system outputs is 

presented on Table 5.3. Here, the following simulation approaches ranking, recommended 

by the system, highlighted in color: 

- green – is recommended for use as the most appropriate; 

- yellow – may be used at the discretion of user; 

- red – is not recommended. 

As expected, decline curve analysis provides fast solution framework, but some of 

the results might be inaccurate if drive mechanism is different from the fluid expansion 

dominated. In contrast to that, material balance provides reasonably fast solution 

framework for different drive mechanisms. However, spatial metrics is not well supported 

by the method. Finite difference simulation provides most accurate results, but requires 

more time for data analysis, model construction and simulation. Streamline simulation 

was rejected by the system because of small model size that is not critical for the use of 

finite difference simulation with respect to the tested engineering tasks.  
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Table 5.3: The qualitative comparison of calculated results with the system-predicted ones 

(Brugge simulation model).  

Engineering Task 
Comparative 

criteria 

Decline Curve 
Analysis 

Material Balance 
Finite Difference 

Simulation 

Predicted Actual Predicted Actual Predicted Actual 

Estimation of 
recoverable field 
resources (EUR)  

Speed / 
Accuracy 

Fast / 
Accurate 

Fast / 
Accurate 

Fast / 
Acceptable 

Fast / 
Acceptable 

Slow* / 
Accurate 

Slow / 
Accurate 

Estimation of 
recovery factor 

Speed / 
Accuracy 

Fast / 
Accurate 

Fast / 
Accurate 

Fast / 
Acceptable 

Fast / 
Acceptable 

Slow* / 
Accurate 

Slow / 
Accurate 

Estimation of 
STOIIP 

Speed / 
Accuracy 

Fast / 
Inaccurate 

Fast / 
Inaccurate 

Fast / 
Acceptable 

Fast / 
Acceptable 

Slow* / 
Accurate 

Slow / 
Accurate 

Estimation of 
drainage area 

Speed / 
Accuracy 

Fast / 
Inaccurate 

Fast / 
Inaccurate 

Rejected N/A 
Slow* / 
Accurate 

Slow / 
Accurate 

Investigation of 
water flood 
feasibility 

Speed / 
Accuracy 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Acceptable 

Slow* / 
Accurate 

Slow / 
Accurate 

 

 

Slow computational speed was assumed by the expert system for the finite 

difference simulation approach because the input data set does not contain all the required 

parameters. Hence, the system considers that simulation model is not prepared yet, and 

additional time is required besides the computational time. 

We can conclude that obtained control results are consistent with the expert system 

recommendations based on the input data and decision criteria provided.  
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5.2 Offshore Petroleum Reservoir Model 

 

In order to evaluate applicability of the expert system in real field conditions, we 

did an additional system test using an offshore reservoir model. This offshore reservoir is 

characterized as heterogeneous with strong aquifer and free gas cap. The given simulation 

model consists of 140 000 grid blocks with detailed rock and fluid properties Three years 

of recorded production data is very noisy, affected by multiple well shut in and gas lift, 

where decline regime is established for only four last months of production. Current value 

of recovery factor without water flooding is equal to 48.6 %.  

In analogy to the previous section, we have tested the expert system with the same 

set of simulation tasks. The control results were also obtained using decline curve analysis 

technique, material balance simulation (MBAL software by Petroleum Experts), and finite 

difference simulation (Eclipse 100 software by Schlumberger). Finite difference 

simulation results are used as etalon (reference) solution, since this model is complete, 

calibrated, and provides reasonable realistic output.  

Because the reservoir location and its parameters is non-public information, we do 

not present the control results calculation details and the expert system reasoning and 

solution search workflow. Moreover, the control results, shown on Table 5.4, were 

normalized but still give insight into a state of affairs.  
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Table 5.4: Summary of results calculated by different simulation methods using real 

petroleum reservoir model 

Simulation Task Units 
Decline Curve 

Analysis 
Material Balance 

Finite Difference 
Simulation 

(REFERENCE) 

Estimation of recoverable 
field resources (EUR), 
normalized  

Ratio to 
reference 

0.99 1.03 1 

Estimation of recovery 
factor, normalized 

Ratio to 
reference 

0.99 1.03 1 

Estimation of STOIIP, 
normalized 

Ratio to 
reference 

0.95 1 1 

Estimation of drainage 
area, normalized 

Ratio to 
reference 

1.39 N/A 1 

Investigation of water 
flood feasibility 

--- 
Indirect, by analogy 
(water flood is not 

required) 

Indirect, by analogy 
(water flood is not 

required) 

1 % RF (water 
flood is not 
required) 

 

 

Comparison of control results with the system outputs is presented on Table 5.5, 

where the color scheme of simulation approaches ranking, recommended by the system, 

is the same as in the previous section. Streamline simulation again was rejected by the 

expert system because of small model size. 

As expected, different simulation techniques provide variation of calculated results 

with respect to the particular task. Nevertheless, the expert system is capable to predict 

these outputs and generate relatively correct recommendations.   
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Table 5.5: The qualitative comparison of calculated results with the system-predicted ones 

(real petroleum reservoir model) 

Simulation Task 
Comparative 

criteria 

Decline Curve 
Analysis 

Material Balance 

Finite Difference 
Simulation 

(REFERENCE) 

Predicted Actual Predicted Actual Predicted Actual 

Estimation of 
recoverable field 
resources (EUR)  

Speed / 
Accuracy 

Fast / 
Accurate 

Fast / 
Accurate 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Accurate 

Fast / 
Accurate 

Estimation of 
recovery factor 

Speed / 
Accuracy 

Fast / 
Accurate 

Fast / 
Accurate 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Accurate 

Fast / 
Accurate 

Estimation of 
STOIIP 

Speed / 
Accuracy 

Fast / 
Inaccurate 

Fast / 
Inaccurate 

Fast / 
Accurate 

Fast / 
Accurate 

Fast / 
Accurate 

Fast / 
Accurate 

Estimation of 
drainage area 

Speed / 
Accuracy 

Fast / 
Inaccurate 

Fast / 
Inaccurate 

Rejected N/A 
Fast / 

Accurate 
Fast / 

Accurate 

Investigation of 
water flood 
feasibility 

Speed / 
Accuracy 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Acceptable 

Fast / 
Accurate 

Fast / 
Accurate 

 

 

Overall, we can conclude that obtained results are also consistent with the expert 

system recommendations, what confirms correctness of ideas and methodology in the 

basis of the expert system.  

In order to explain why the expert system outputs are slightly different for both 

Brugge synthetic and offshore petroleum reservoir cases, the comparison of their key 

features is shown on Table 5.6.    
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Table 5.6: Comparison of Brugge and offshore reservoir outputs 

Brugge Synthetic Case Offshore Petroleum Reservoir Case 

Decline Curve Analysis 

4 years of production data with established 
smooth decline regime. 

3 years of production data, very noisy, 
affected by multiple well shut in and gas 
lift, decline regime is established for only 
four last months of production. 

Material Balance Method 

Reservoir is heterogeneous, calculated 
Dykstra-Parson’s coefficient is equal to 
0.35. Calibrated weak aquifer. 

Reservoir is heterogeneous, calculated 
Dykstra-Parson’s coefficient is equal to 
0.41. Strong aquifer and free gas cap.  

Finite Difference Simulation 

Implemented simulation model does not 
contain all required parameters to execute 
simulation. Additional time is required to 
complete simulation model. Number of 
grid blocks (60 k) is small, so 
computational speed is considered as high.  

Implemented simulation model does 
contain all required parameters to execute 
simulation. Since number of grid blocks 
(140 k) is small, computational speed is 
considered as high. 

 

 

This comparison shows, the expert system is capable to detect correctly these key 

features that affect accuracy and applicability of particular methods. It is additionally 

supports previous conclusions that the system predicted outputs are reasonable. Hence, it 

also proves the correctness of ideas in the basis of the developed methodology.  
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6. SUMMARY AND FUTURE WORK 

 

This section summarizes previously made conclusions and obtained results. Our 

vision of the future work and recommendations on the expert system improvement will 

also be discussed. 

In petroleum industry, we are always dealing with processes that we need control 

and optimize. We have to come up with “educated” actions and decisions in a timely 

manner to make sure that processes flow in an optimal way. Efficiency of decision-making 

in reservoir management is strongly dependent on quantity and quality of knowledge about 

particular subsurface object. Successful search for optimal solution to a particular 

reservoir engineering problem is always a non-trivial task since it involves analysis and 

processing of large amounts of data and requires professional expertise in the subject area. 

Depending on a whole set of aspects of reservoir study, different simulation approaches 

can or cannot be used because they may give significantly different results even at the 

same given conditions. The sought-for result here implies finding of the most appropriate 

simulation approach that provides sufficient accuracy, adequate complexity, and 

representation of the available data with respect to simulation objectives and existing 

constraints. 

Based on our previous discussions, we have made an attempt to improve selection 

of the most appropriate simulation method as a part of reservoir management workflow. 

Summarizing results of extensive literature review and practical work, we decided to 



 

113 
 

 

design the knowledge-based expert system as a good means for problem solving that 

requires expertise.  

Thorough analysis of existing reservoir evaluation methods and techniques 

resulted in selection of the set of key parameters. In general, these parameters are 

quantitative and qualitative variables, which are used for reservoir description and 

involved into particular problems solving. On the one hand, certain combinations of these 

parameters are determined by methodology in a basis of the simulation approach to be 

used for resolving of assigned task. On another hand, specific values of these parameters 

strongly affect applicability of reservoir evaluation methods and may generate constraints 

and limitations. Therefore, such dualism is a subject for expertise and establishes basis for 

the expert system functionality.   

Using linguistic method of the Pattern Recognition Theory, the selected set of key 

parameters was encoded with unique symbolic names and put into alphabet; then, we 

brought encoded elements into particular sets named scenarios. Scenario is a description 

of the required set of parameters for solving the certain simulation problem with respect 

to exact simulation approach. To make this process little easier, the scenario generator was 

specially created. The full collection of generated scenarios is a core of the expert system 

called Knowledge Base. Along with the Inference Engine, this base is used to execute 

technical expertise of the reservoir data and simulation approach selection. We found out 

that the symbolic (linguistic) data encoding and processing makes the expert system 

effective, allows further improvement of the proper solution search and realization of an 

explanatory module. In addition, it enables easy adjustment of the system scope and 
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functionality extension. To wit, once correction of the alphabet content and size or 

scenarios adjustment are required due to some reasons, it can be easily done. At the same 

time, these corrections do not affect the developed methodology. The designed workflow 

is general and remains the same.  

In order to enhance the expert system level of confidence, the workflow was 

equipped with the input data pre-processing module. This module performs data quality 

control procedures, evaluates applicability of each parameter in the input data set and its 

ability to produce constraints, and creates the system-generated scenario. If this scenario 

is not empty, it is further used by the inference engine in match finding with other 

scenarios within the knowledge base. As a result of the search, the inference engine creates 

an excerpt, where selected from the knowledge base scenarios are filtered with respect to 

user- or system-defined constraints and arranged in number of unmatched elements in 

ascending order.   

In case of finding of one (or more) scenario with zero unmatched elements, the 

expert system determines respective simulation approach and recommends it to a user as 

the most appropriate in the given conditions. Appropriate means that this particular 

approach allows to solve assigned problem using available input data, under existing 

constraints and limitations, and reach the desired level of accuracy and computational time 

expenses. Otherwise, the expert system displays a list of feasible simulation methods to a 

user with suggestion about what additionally required parameters should be obtained for 

each method, and what expected accuracy of solution should be then. Such useful 

explanatory function of the expert system was realized based on the use of symbolic 
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encoding of scenario elements. Since the exact unmatched elements are detected by the 

inference engine, their meanings are easily decoded with the alphabet and utilized to 

generate advices for a user.  

The obtained results of the expert system validation using Brugge simulation 

model and the application with offshore petroleum reservoir data confirm correctness of 

the tested ideas and methodology in the basis of the system. Simultaneous application of 

input data analysis and expert reasoning in suitable simulation approach selection, making 

conclusions, predictions, and recommendations resulted in creation of convenient 

software tool which can improve quality of reservoir engineering work. The expert system 

validation and field application tests show simulated results are consistent with the expert 

system predictions and recommendations. Practically, the developed expert system can be 

further used as a separate or integrated tool for solving reservoir evaluation problems and 

for personnel coaching. 

The key feature that determines applicability of any expert system is its level of 

confidence. In other words, it is a capability of the system to provide sufficiently accurate 

or trustful response to user’s request. With regard to the designed expert system, we can 

define two main ways of the future work related to the system improvement.   

First, the input data pre-processing module should be extended by introduction of 

additional data quality control procedures. For instance, the same methods that are usually 

applied for quality check of measured PVT-properties and special core analysis data, 

uncertainty quantification, and other ones could be incorporated in this module, if 

applicable. It may significantly improve the input data analysis and detection of possible 
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constraints that affect the accuracy and applicability of simulated results, what 

undoubtedly leads to increase of the expert system efficiency.      

Second, we assume realization of the Analytical Block, as it described in the 

section 4.7 of this work. Integration of this module into the expert system, as we expect, 

will significantly enhance its level of confidence. Moreover, implementation of that 

module sets a basis for the learning engine design, what we would like to test. 

Supplemented by the learning engine, the expert system might educate and train itself. 

Successful realization of this idea will help us to eliminate the main weakness of expert 

systems, which is: frequent involvement of software developers is required to support 

expert systems in actual condition, especially when problem-solving environment is 

changing.       
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APPENDIX A 

TABLES 

 

Table A-1: Alphabet – list of encoded key parameters combined into groups 

Simulation approach - SA  Reservoir geometry data - RG 

CDC  correlation (decline curve) GBM  
grid block mesh [number of grid 
blocks] 

PRX  proxy modelling ARE  reservoir areal extend [acre, sc.ft] 

MBL  material balance THC  reservoir thickness [ft] 

STL  stream line  

FDV  finite difference (volume) numerical  Reservoir rock properties - RP 
 POR  porosity 

Field maturity (life stage) - FM RCM  rock compressibility 

EXP  exploration RPI  reservoir initial pressure [psi] 

APP  appraisal RCP capillary pressure distribution 

DEV  development  

PLT  plateau Saturations and Relative permeabilities - PR 
DCL  decline WSI  Irreducible water saturation 
 OSR  residual oil saturation to water 

Simulation task (goal) - ST OSG  residual oil saturation to gas 

DHP  hydrocarbon in place MSG  minimum gas saturation 

RRS  recoverable resource / EUR WRP  water relative permeability 

RFT  recovery factor calculation ORW  oil relative permeability to water 

DAE  drainage area estimation ORG  oil relative permeability to gas 

PRC  production rate calculation GRP  gas relative permeability 

RPC  reservoir pressure calculation PER  absolute permeability 

HIM  history matching WST  average water saturation 

RDP  reservoir drainage zones delineation OST  average oil saturation 

IWJ  in-fill well justification GST  average gas saturation 

WLP  well placement justification  

RSO  reservoir sweep optimization Reservoir heterogeneity - RH 
FLJ  flood feasibility HMG   homogeneous 

FLO  flood optimization HTG   heterogeneous  

UGM  upscaling of geological model 
 UCF  uncertainty quantification 

DMD  drive mechanism determination 
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Table A-1 Continued 

Fluid type - FT Number of wells - NW 
OIL  oil PWN  production wells number 

GAS  gas IWN  injection wells number 

WAT  water  

COM  composite fluid (multicomponent) Production data - PD 

 PROR  
production oil rate (well/field) 
[STB/day] 

Fluid properties - FP PRWR  
production water rate (well/field) 
[STB/day] 

ODN  oil density [lb/cu.ft] PRGR  
production water rate (well/field) 
[SCF/day] 

WDN  water density [lb/cu.ft] PWLR  well liquid production rate [STB/day] 

GDN  gas density [lb/cu.ft] PWLC  
well liquid cumulative production 
[STB] 

OFR  
oil formation volume factor related 
to pressure [rb/STB] 

PFLR  field liquid production rate [STB/day] 

WFR  
water formation volume factor 
related to pressure [rb/STB] 

PFLC  
field liquid cumulative production 
[STB] 

GFR  
gas formation volume factor related 
to pressure [rb/SCF] 

PWOR  well oil production rate [STB/day] 

GSR  
gas solution in oil related to pressure 
[SCF/STB] 

PWOC  well oil cumulative production [STB] 

OCM  oil compressibility [1/psi] PFOR  field oil production rate [STB/day] 

WCM  water compressibility [1/psi] PFOC  field oil cumulative production [STB] 

GCM  gas compressibility [1/psi] PWWR  well water production rate [STB/day] 

OVS  oil viscosity [cP] PWWC  
well water cumulative production 
[STB] 

WVS  water viscosity [cP] PFWR  field water production rate [STB/day] 

GVS  gas viscosity [cP] PFWC  
field water cumulative production 
[STB] 

GDF  gas deviation factor PWGR  well gas production rate [SCF/day] 
 PWGC  well gas cumulative production [SCF] 

Initial volume of fluid in place - IV PFGR  field gas production rate [SCF/day] 

OIP  oil initially in place PFGC  
field gas cumulative production 
[SCF] 

WIP  water initially in place PWF   
production well bottom hole pressure 
[psi] 

GIP  gas initially in place PTM   production time [hours, days, months] 
 PTH   production well head pressure [psi] 
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Table A-1 Continued 

Injection data - ID Constraints - CS 

INWR  
injection water rate (well/field) 
[STB/day] 

CTA  
computational time advantage [G - 
good, P - poor] 

INGR  
injection water rate (well/field) 
[SCF/day] 

FSE  
field scheduled events [for 
predictability] 

IWWR  well water injection rate [STB/day] FLS  
field life stage goes from FM (field 
maturity) (affects accuracy ACC) 

IWWC  
well water cumulative injection 
[STB] 

ACC  
accuracy [L - limited, F - fair, G - 
good, B - the best] 

IFWR  field water injection rate [STB/day] CPH  complex physics 

IFWC  
field water cumulative injection 
[STB] 

GRA  
gravity effect is exist (ODN>=WDN 
at surface) (less than 10 yields 
constrain for streamline) 

IWGR  well gas injection rate [SCF/day] PWC  critical value of the water cut 

IWGC  well gas cumulative injection [SCF] RDM  
recovery drive mechanism (W - 
water, G - gas, S - solution gas drive, 
E - oil expansion) 

IFGR  field gas injection rate [SCF/day] PDE  
production decline is established (Y - 
yes, N - n) 

IFGC  field gas cumulative injection [SCF] 

NGD  

number of grid blocks (more than 
100000 for black oil advantage in 
CTA for streamline vs FD)  
(more than 28000 for compositional 
advantage in CTA for streamline vs 
FD) 

IWF   
injection well bottomhole pressure 
[psi] 

 

Fluid contacts - FC 
WOC  oil-water contact / aquifer 

GOC  gas-oil contact 

HTL 

level of heterogeneity by Dykstra-
Parson [0 … 1]   
(HTL>0.25 limits use of MBL; HTG 
> 0.5  advantage in use of streamline 
vs FD for black oil) 

GWC  gas-water contact 

FEC  
fluid expansion when GOC and 
WOC are absent 

 

Source of rock and fluid properties - SP   

GSI  geologic and seismic interpretation   

ANL  analogue   

WLA  well logging   

WTA  well test    

CRA  laboratory core analysis   

PVA laboratory fluid analysis   

IWI  inter-well interpolation    

 


